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Abstract
The nematode Panagrolaimus superbus can survive for extended peri-

ods of time in a desiccated state (anhydrobiosis) and is also freezing tol-

erant (cryobiotic). These adaptations make it an interesting candidate for

genome and transcriptome sequencing using second generation high through-

put methods. In this project the transcriptome of P. superbus was sequenced

using the 454 (Roche) platform. To enrich for stress-related genes, nema-

todes were exposed to one of the following stresses (desiccation, cold, heat

or oxidation). Equal numbers of nematodes from each stress treatment were

combined with unstressed control nematodes prior to RNA extraction. Nor-

malised and unnormalised cDNA libraries were prepared from this mixed

population. A de novo assembly of the transcriptome was generated using a

variety of assembly programs and strategies. A Sanger sequenced expressed

sequence dataset comprising 3,982 unigenes was fully annotated and inte-

grated into the de novo transcriptome assembly. The de novo assembly has

also been annotated and putative stress response genes were identified. The

haploid karyotype of P. superbus was determined to be n=4. P. superbus

genomic DNA was sequenced using 454 (Roche) methods along with 50 bp

and 100 bp paired end Illumina reads. Eight different gDNA assemblies were

prepared, generating predicted genome sizes ranging from 87.9 kilobases to

159.7 kilobases. The longest contigs were obtained from the 454 genomic

DNA assembly and the assemblies of the Illumina reads generated shorter

contigs. The gene order of the P. superbus mitochondrial DNA genome was

obtained and a draft assembly of the mitochondrial genome is presented.

The current transcriptome assembly is a resource suitable for use as a refer-

ence for aligning high throughput RNA Seq reads. Both the transcriptome

and genome assemblies can be used to generate a protein reference database

for the mass spectrometry based identification of the proteome of control

and desiccated P. superbus for future studies.
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Chapter 1

Introduction

1.1 Nematodes

Krogh’s Principle states that “For a large number of problems there will be some

animal of choice, or a few such animals, on which it can be most conveniently stud-

ied” (Krogh, 1929). This is indeed true of the nematode Caenorhabditis elegans,

a cosmopolitan animal that lives in soil in virtually every part of the world. The

nematode has been used to study neurological disorders, congenital heart disease,

kidney disease and diabetes due to the large number of genes it has with func-

tional counterparts in humans. Nematodes are even believed to provide insights

into mechanisms for counteracting the effects of ageing (Kaletta & Hengartner,

2006).

The word “Nematoda” means “the thread-like ones”, and comes from the An-

cient Greek words nema (“thread”) and -ode, (“like”) (Chitwood, 1957). The

group was originally established by Karl Rudolphi under the name Nematoidea

(Rudolphi, 1810), but reclassified as family Nematodes by Burmeister in 1837

(Burmeister, 1837). They were eventually renamed ordo Nematoda by K. M.

Diesing (Diesing, 1860). Nathan Cobb later argued that they should be called
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Nemata or Nemates, or the English version “nemas ” rather than “nematodes ”

(Cobb, 1919), but Diesing’s revision had been established.

The phylum Nematoda is an exceptionally diverse ancient phylum with over

a million species, many of which have not been classified (Wasmuth et al., 2008).

They are said to be the most species-rich multicellular phylum on the planet. Using

phylogenetic techniques the phylum has been separated into three major classes:

(Dorylaimia, Enoplia, and Chromadoria) and various different clades (Clade A:

Plectida and Rhabditida, Clade B: Clade A plus Axonolaimidae, Desmolaimus

zeelandicus and Isolaimium sp., and Clade C: Clade B plus Desmodoridae and

Monhysterida (including Comesomatidae)) (Meldal et al., 2007). The nematode

phylogenetic tree shows that parasitic nematodes have evolved independently on

many occasions. They occur in various clades, sharing these clades with a multi-

tude of parasitic nematodes (Blaxter et al., 1998; Dorris et al., 1999) as illustrated

in Figure 1.1.

Nematodes can be categorised into two feeding types:

• free-living, by which it is meant that the nematode feeds on bacteria, fungi

or is carnivorous,

• parasitic nematodes, which infect plants and animals.

Given the importance of parasitic nematodes in agriculture and human health,

much of the research done on nematodes has gone into investigating parasitic

nematodes. Free-living nematodes have a place in the earth’s ecosystem as decom-

posers and predators and are typically smaller than parasitic worms, with some

just a few millimeters long. It is the aim of this project to show how the free-living

nematode Panagrolaimus superbus could be used as a suitable model organism in

the study of anhydrobiotic and cold tolerance genes.
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Figure 1.1: A phylogeny of the Phylum Nematoda based on maximum parsimony
analysis of the small subunit ribosomal DNA sequence Reproduced with permission
from (Blaxter et al., 1998).
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1.1.1 The Panagrolaimus superbus Nematode

P. superbus (strain DF5050) was first isolated on the volcanic island of Surtsey, 30

kilometers off the coast of Iceland (Sohlenius, 1972). Surtsey was formed from a

volcanic eruption in 1963 and has been studied extensively over the past 50 years by

scientists interested in primary succession. Emil Olaisson isolated P. superbus on

the island in July 1981, where the organism was found in a small nest of the hybrid

gulls Larus fuscus and Larus argentatus. The nest was found in a small crevice

in the lava and filled with Rhacomitrium sp. moss. It is presumed that the gulls

arrived on the island from mainland Iceland. Lava rock would not be thought to

contain very substantial growing conditions, but the gull waste produces nitrogen

which would make the environment suitable for protozoa and nematodes.

After five years it was discovered that two independent species were growing

along side each other on the agar culture plates and from this the species were

separated and new cultures were started from a single gravid female, as depicted

in Figure 1.2, by Bjorn Sohlenius (Bostrom, 1988).
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Figure 1.2: A P. superbus female (from Bostrom (1988)).
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General Biology

P. superbus is a gonochoristic (i.e., sexually reproducing with separate males and

females) free-living nematode that feeds on bacteria (Shannon et al., 2005). In

the laboratory it is cultured on nutrient growth agar with a lawn of Escherichia

coli. It has been shown to be widespread in soil and is the most common species

in the United Kingdom and United States amongst the soil-dwelling nematodes

(Williams, 1986). A Panagrolaimus sp., isolated in Surtsey in 1995, was described

thus: “corpus:isthmus ratio was 2.0 - 2.1 for the females, and 2.3 - 2.5 for the

males. The length of the postvulval sac was 75 - 80% of the body width, and the

length of the gubernaculum was 11µm. The lateral field of the female had four

lines and was 5µm wide.” (Frederiksen et al., 2001).

Panagrolaimus have been classified based on many different morphological fea-

tures since the genus was first presented by Fuchs (1930). These include deMan’s

ratios, positions of plasmids, papillae arrangement, spicule shape and stomatal

rhabdions. This has lead to confusion and misclassification due to inconsistency

with measurements and observations. Andrássy (1984) compiled a list of 35 mem-

bers of the genus but, as with previous reviews, this was also done on the basis of

morphological characteristics. Given that few members of the genus have distinct

characteristics, Williams (1986) used scanning electron microscopy (SEM) on 32

identified strains of Panagrolaimus. This allowed for the definitive characterisation

of the Panagrolaimus species on the basis of lip separation and shape. This work

separated these strains into four groups, which were named as four separate species

based on original species descriptions considered by the authors to be most similar

to these groups. Members of group 1 are described as having six lips with distinct

separations between each one. Fuchs had previously described P. superbus in 1930

as having “six, slightly convex small papillae bearing lips” (see Figure 1.3). This

was in accordance with Williams’ observations and thus Williams placed members
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of group 1 in the species P. superbus. Bostrom used morphological, morphometric

and SEM data to compare the two distinct Panagrolaimus species isolated from

a gulls nest on Surtsey Island with a third population of Panagrolaimus isolated

from agricultural soil in Sweden (Bostrom, 1988). He concluded that the Swedish

strain belonged to P. rigidus and the two species from Surtsey corresponded to P.

superbus and P. detritophagus.

Figure 1.3: P. superbus head region with six distinct lips used for morphological
characterisation (from Bostrom (1988)).

Given the subjective nature of differentiating species on the basis of morphology

alone, it was vital that a molecular study be done to verify positioning of the

genus on both the nematode and the Panagrolaimus phylogenetic tree. Lewis et

al. (2009) showed the position of P. superbus in the genus Pangrolaimus in clade

IV (Tylenchida) of the phylum Nematoda. This study was done using the 18S

and 28S rRNA regions of each species (Lewis et al., 2009). Figure 1.4 shows the

phylogenetic tree for Panagrolaimus species based on the neighbour joining (NJ)

algorithm. The NJ phylogeny was highly convergent with the Maximum Parsimony

(MP) phylogeny. The authors acknowledged that, to redefine the genus, closely

related nematodes from other genera would need to be included, but for now this
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remains the most complete phylogeny of the genus.

Geographical Distribution

Members of Panagrolaimoidea are found in all moist environments - marine, fresh-

water and soil (Lewis et al., 2009) Panagrolaimus is the second-most common

genus found in dry soil in the Kinchega National Park in Australia (Nicholas &

Stewart, 1985). Some have been found as far north as the Arctic (P. superbus),

as far south as the Antarctic (P. davidi) and as close by as the roof of the Callan

building, National University of Ireland Maynooth (Panagrolaimus sp. AS02 ).

Despite the nematode P. magnivulvatus n. sp. being an Antarctic nematode, it

also shows many morphological similarities to P. superbus (Bostrom, 1995). Con-

sidering the similarity in morphology this may be a closely related species, but as

no DNA sequencing has been done, this hypothesis is speculative.

Panagrolaimus is one of five nematode genera that dominate bacterial mats in

caves. A Panagrolaimus species has been found in the Bakwena Cave, Guateng

Province in South Africa and in the Movile cave in Romania (Poinar & Sarbu,

1994). The worm was found only in guano deposits so it is assumed that the

nematode’s source of entry was the cave’s resident bats, much the same as its

appearance on Surtsey. It is suggested that Panagrolaimus have a phoretic rela-

tionship with insects. If the bats fed on beetles and the worms associate with the

beetles then this would lead to entry to the cave. Beetle remains found in the

guano deposits support this theory. An assumption could be made that Pana-

grolaimus could have environmentally adapted to this habitat and its sporadic

food resources, by developing genes to allow it to enter a dormant state. The

appearance of Panagrolaimus species in such harsh environments such as caves,

the Antarctic and the Arctic also lends support to this theory (Rensburg et al.,

2010).
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Figure 1.4: The nuclear rRNA gene phylogeny for Panagrolaimus (from Lewis
et al. (2009)). Blue lines indicate parthenogenetic strains with hermaphrodite
strains shown in green. The arrows denote rhabditid strains initially misclassified
as belonging to the Panagrolaimus species. Node-specific bootstrap values are
shown with NJ values over MP.
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Recently, a member of the Panagrolaimidae was isolated from fracture water

from a gold mine 1.3km below the surface (Borgonie et al., 2011). These nema-

todes correspond to a new species named Halicephalobus mephisto. H. mephisto

is tolerant to high temperatures as its maximum growth temperature is 41◦C. It

is a bacterial feeding parthenogenetic nematode.

Panagrolaimus species have also been used in studies of comparative devel-

opment. The genus is quite unique in that gonochoristic, hermaphroditic and

parthenogenetic species are found. Studies done on the phylogenetics of the genus

have shown a single origin of parthenogenesis from what is presumed to be a

gonochoristic ancestor (Lewis et al., 2009).

Life Cycle

Sohlenius (1988) studied the life cycle of P. superbus and P. detritophagus on agar

plates at 20◦C. He found that P. superbus had a generation time of about eight

days from egg to egg. Total life span was found to be 16-17 days. The numbers

of offspring produced range from 7-39 eggs daily depending on environmental con-

ditions. Exponential growth occurs 14-22 days after sub culturing. Mean body

length and frequency of laying eggs decreases as time passes, with longest females

visible during exponential growth and most females containing eggs at that time.

After 23 days, almost no females contain eggs due to the depletion of food source

which can be identified though the disappearance of visible bacterial growth. Due

to the abundance of food during the period of exponential growth, there is a re-

sulting population of small juveniles with a small food supply towards the end of

the culturing cycle (Sohlenius, 1988). Similarly P. detritophagus has a life span of

7-16 days.

10



Nematodes Introduction

1.1.2 Environmental Stress Tolerance in Nematodes

Nematodes are aquatic animals that require a film of water over their body for

normal activity (Wharton, 1996), nevertheless, they are probably the most species-

rich multicellular phylum on the planet. Free-living nematodes occupy a great

diversity of niches including in marine and freshwater sediments, soil and moist

terrestrial habitats. These terrestrial habitats range from the Antarctic, temperate

and semi-arid soils to terrestrial mosses. Nematodes are also successful endopara-

sites of animals and plants. Due to the wide range of habitats that they occupy,

nematodes are often exposed to periods of environmental stress. The occurrence

and duration of a change in optimal conditions can be unpredictable, so several

nematodes have evolved a number of physiological and biochemical adaptations

that allow their survival in response to severe stress such as high temperatures,

cold and freezing conditions, desiccation, oxidative stress and starvation. Given

the natural habitat of P. superbus, exposure to desiccation and/or freezing, could

be an issue at certain times of year and, therefore, the nematode has adapted to

survive both of these stresses. The following sections will focus on these stresses.

1.1.3 Freezing Tolerance

Some nematodes have adapted to survive extreme cold, e.g., the Antarctic nema-

tode P. davidi (Wharton, 1996; Lewis et al., 2009). Cryobiosis or the ability to

survive freezing with little or no preconditioning is an interesting characteristic also

displayed by P. superbus (Shannon et al., 2005). Several species in the genus are

also freezing tolerant, that is, they have the ability to survive intracellular freez-

ing using a cryoprotective dehydration strategy (Wharton, 1996). Much work has

been carried out in P. davidi and an interesting study would be a genome com-

parison between sister species from the Arctic and Antarctic. Freezing tolerant
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nematodes have evolved to survive by allowing their extracellular fluids to freeze

or by supercooling. Due to the sub-zero climates in the habitats of the Antarctic

and Arctic nematodes, this cold tolerance is vital for survival. Freezing tolerance

has also been identified in Trichostrongylus colubriformis (Wharton, 1996), Aphe-

lenchoides ritzemabosi (Asahina, 1959), Coomanus gerlachei (Pickup, 1990a) and

Tetracephalus tilbrooki (Pickup, 1990b). These organisms amongst others provide

a good basis to study extreme habitat survival skills and some suggest that they

could be used to study climate change (Wharton & Marshall, 2009).

1.1.4 Anhydrobiosis and Desiccation

Dehydration is a severe stress for organisms where most animals die if they lose

more than 15-20% of their body water. However, some organisms are able to

survive conditions in which all the free water is removed from their cells, and where

the hydration shell of their biomolecules is lost. They do this by entering into a

state of suspended animation known as anhydrobiosis (life without water). In

this state organisms, including nematodes, can survive without water for extended

periods of time (Crowe et al., 1992). This is believed to be possible through a

series of adaptations, including the production of the carbohydrates trehalose and

glycerol which prevent damage to the cell membranes. There are many types of

organisms that can enter a state of anhydrobiosis in different stages of their life

cycles. These include rotifers, nematodes and tardigrades in the animal kingdom.

Many other organisms can undergo anhydrobiosis and the most common example

is plant seeds, which can be stored for many years and will germinate on the

application of water.

This distribution demonstrates that anhydrobiotic phenotypes are likely to have

evolved independently on multiple occasions and provides support for the con-

cept of anhydrobiotic engineering (Tyson et al., 2012). Invertebrate anhydrobiotes
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include members of the Nematoda, Rotifera, Tardigrada, Crustacea and Insecta.

These anhydrobiotes typically occupy aquatic or terrestrial habitats that are prone

to temporary water loss. Free-living nematodes, rotifers and tardigrades contain

representatives which are capable of entering anhydrobiosis at all stages of their

life cycle. Crustacean anhydrobiotic stages are confined to the embryonic cysts

of aquatic brine shrimps and other microcrustaceans. This advantageous char-

acteristic is being researched in conjugation with the use of dry vaccines, which

will eliminate the need for their cool storage. An understanding of the molecu-

lar mechanisms responsible for anhydrobiotic survival will provide insights which

may ultimately lead to the ability to confer desiccation tolerance on desiccation

sensitive organisms (Tyson et al., 2012).

The free-living nematodes Acrobeloides nanus and Aphelenchus avenae have

been shown to recover after being desiccated for 6.5 years and 18 months respec-

tively. The longest accounts of nematodes surviving anhydrobiosis are the parasitic

nematodes Anguina tritici and Filenchus polyhypnus which survived in seed galls

for 28 years and in a herbarium for 38 years respectively (Aroian et al., 1993).

A large number of plant and animal parasitic nematodes have anhydrobiotic eggs

and infective larval stages (Perry, 1999).

Womersley recognised two broad categories of anhydrobiotic nematodes: fast

dehydration and slow dehydration strategists (Womersley, 1987). Fast dehydration

strategists can survive rapid dehydration; slow dehydration strategists need to

firstly be preconditioned by exposure to a slow reduction in relative humidity,

before they can survive a severe loss of water. P. superbus has been shown to be

desiccation tolerant (Shannon et al., 2005). While some work has been carried

out on the physiological characteristics of anhydrobiosis in Panagrolaimus, DNA

sequencing has been limited to individual genes of interest and the D3 region of

the 28S rRNA gene for phylogenetic studies.
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When cells suffer severe dehydration, metabolism ceases, macromolecules de-

nature, membranes undergo phase changes and fuse with other normally sepa-

rate membranes. Unlike desiccation sensitive taxa, anhydrobiotes have evolved

mechanisms which maintain the structure and integrity of macromolecules and

membranes in the absence of water and also during rehydration and revival. Com-

parative studies of the desiccation tolerance phenotypes of anhydrobiotes show

lineage specific differences in the response patterns and biochemical adaptations,

which implies that anhydrobiotic phenotypes can be achieved in different taxa by

the expression of functionally equivalent molecules. Based on currently available

data from nematodes and other anhydrobiotic animals, Tyson et al. (2012) have

presented a model showing the possible steps involved in the detection and ex-

pression of anhydrobiotic protection mechanisms in nematodes (Figure 1.5). This

diagram lists some of the main effector proteins and biosynthetic enzymes which

have been shown to have a role in anhydrobiotic protection. The application of

high throughput transcriptome sequencing methods to anhydrobiotic nematodes

and other anhydrobiotic organisms will greatly extend our knowledge of the bio-

chemical and genetic mechanisms responsible for anhydrobiotic survival.
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Figure 1.5: Possible steps involved in the detection and expression of anhydro-
biotic protection mechanisms in nematodes (HSP = heat shock protein; LEA =
late embryogenesis abundant protein; IUP = intrinsically unfolded protein)(From
Tyson et al. (2012)).
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1.2 Eukaryote Genomes

1.2.1 Introduction and Overview

All of an organism’s hereditary information is encoded in its genome. In eukaryotes

the genome comprises the haploid set of chromosomes. In bacteria, the genome is

usually contained in one single chromosome, which is usually circular, but may be

linear, as for example, in Streptomyces and Borrelia (Casjens, 1998). In viruses,

the genome may be composed of DNA or RNA (or both) and be circular, linear or

segmented in structure (Dimmock et al., 2007). Extrachromosomal DNA elements

(plasmids) occur in many species of bacteria. Genome sizes range from (<3kb)

for single-stranded DNA viruses (Rosario et al., 2009) to as much as 150,000Mbp

for the angiosperm plant Paris japonica which has the largest genome described

to date (Pellicer et al., 2010). The genome size ranges for extant life forms on

Earth are presented in Figure 1.6. Genome sequences are made up of protein

coding genes, RNA genes, functional intergenic and nongenic regions and ‘non-

functional’ DNA. The functional non-coding DNA includes promoters, telomeres

and regulators while the ‘non-functional’ portion includes repeats and transposable

elements.

The first bacterial genome sequences were published in 1995: these were from

Haemophilus influenzae (Fleischmann & Adams, 1995) and Mycoplasma genital-

ium (Fraser et al., 1995). The genome sequence of the E. coli K12 strain was

published in 1997 (Blattner, 1997). The genome sequence of the unicellular eu-

karyote Saccharomyces cerevisiae was published in 1996 (Goffeau, 1996). The first

published genome sequence of a multicellular organism was that of the nematode

Caenorhabditis elegans (The C. elegans Sequencing Consortium, 1998). Shortly

after, the genomes of the fruit fly Drosophila melanogaster (Adams, 2000) and the

plant Arabidopsis thaliana (Kaul, 2000), human (Lander & International, 2001;
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Venter et al., 2001), mouse (Waterston, 2002) and rice Oryza sativa (Goff et al.,

2002) were published. The genome of the first tree, the black cotton wood, Populus

trichocarpa, was published in 2006 (Tuskan, 2006). In the past 10 years, the num-

ber of genome sequencing projects has increased dramatically and currently the

complete genomes of 4,126 organisms are curated in Genomes Online Database 1.

These comprise Archaeal: 181; Bacterial: 3,762 and Eukaryal: 183 (data accessed

on 28 January, 2013). Studies of these genomes have demonstrated that significant

differences in genome organisation exist between prokaryotes and eukaryotes, but

many aspects of gene and genome structure are conserved across living phyla and

domains.

1http://www.genomesonline.org/cgi-bin/GOLD/index.cgi
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1.2.2 Prokaryote and Eukaryote Genome Organisation

Most bacterial genomes are small, ranging in size from ∼0.5 Mb to 10 Mb (Cas-

jens, 1998) and bacterial gene numbers range from ∼500 to 9,000 (Friar et al.,

2012). The genome of E. coli K-12 is 4.1 Mb and contains 4,281 open reading

frames (ORFs), which occupy ∼88% of the genome; regulatory sequences comprise

∼11% and repetitive sequences ∼0.7% (Blattner, 1997). Gene density is high in

bacteria, averaging one gene per Kb of DNA. Bacterial genomes contain little non-

coding DNA and bacterial genome size shows a strong positive relationship with

gene number. Many bacterial genes, whose protein products form part of a com-

mon biochemical pathway, are organised into operons (reviewed by Rocha (2008)).

Operons are clusters of coregulated genes encoded on a single polycistronic unit

(see Figure 1.7). In addition to being physically close in the genome, these genes

are regulated such that they are all turned on or off together. In E. coli 27% of

all genes are grouped into 600 operons. Grouping related genes under a common

control mechanism allows bacteria to rapidly adapt to changes in the environment

while also minimising genome size. Prokaryotic genes can be found by looking in

genome sequences for long ORFs.

Eukaryotic genome sizes range from 10Kbp for some fungi (Gregory et al., 2007)

to 150Mbp for the angiosperm plant Paris japonica (Pellicer et al., 2010). Haploid

eukaryotic chromosome numbers range from one in male ants of the genus Myrmica

pilulosa (Crosland & Crozier, 1986) to several hundred in polyploid ferns of the

genus Ophioglossum (Khandelwal, 1990). However, the number of protein coding

genes in eukaryote genomes varies less dramatically than either genome size or

chromosome number. Surprisingly, the nematode C. elegans, the plant A. thaliana

and human H. sapiens all have similar gene numbers. Eukaryotic genomes have

several features not found in prokaryotes. These include the presence of introns and

mRNA splicing, an apparent lack of constraint on genome size, which has led to the

19



Eukaryote Genomes Introduction

F
ig

u
re

1.
7:

A
C

.
el

eg
an

s
op

er
on

(v
on

M
er

in
g

et
al

.,
20

02
).

20



Eukaryote Genomes Introduction

accumulation of transposons and repetitive sequences in eukaryote genomes and

a substantially lower gene density than that found in prokaryotes. Additionally,

eukaryotic genes have complex regulatory regions and in multicellular species such

regulatory regions have a modular structure that facilitates tissue specific gene

expression. A review of the sequence statistics for some of the published nematode

genomes is presented in Table 1.1.

Table 1.1: Nematode Nuclear Genome statistics (data from Coghlan (2005)).
Organism Genome size (Mbp) Chromosome Number Number of Genes
C. elegans 100 6 20,621
C. briggsae 104 6 19,507

Ascaris suum 272 12 18,500
Brugia malayi 90 5 11,453

Meloidogyne hapla 62 14 14,200
Pristionchus pacificus 169 6 23,500

Trichinella spiralis 240 3 15,808
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1.2.3 Eukaryote Gene Structure

A typical eukaryotic gene is organised into protein-coding regions called exons,

separated by non-protein-coding regions called introns. Introns are transcribed,

but not translated, being spliced out of the mRNA prior to translation by an

RNA-protein complex called the spliceosome, producing the mature mRNA. In

the typical process of eukaryotic gene expression, a gene is transcribed from DNA

to pre-mRNA. mRNA is then produced by RNA processing, which includes the

capping, splicing and polyadenylation of the transcript. It is then transported from

the nucleus to the cytoplasm for translation. For a given transcript, there may

be alternate splice patterns, each of which produces a different mature mRNA

and may give rise to different protein isoforms (see Figure 1.8, panel B), which

often have tissue specific expression. In humans it is estimated that alternative

splicing occurs in 95% of the multi-exon genes (Pan et al., 2008) and that 68% of

all alternative splicing events show tissue specific regulation (Wang, 2008).

Introns are thought to play a regulatory role in cells and the splicing process

itself might help regulate mRNA passing from the nucleus to the cytoplasm. Dur-

ing RNA processing, splicing can give rise to different proteins by splicing various

combinations of exons together. Introns play a role in the evolution of new and

useful proteins. Genetic recombination could modify the function of a protein by

changing the domain structure of that protein. The more introns a gene has the

higher the frequency of recombination. Theoretically, exons could be exchanged

between different genes and thus give rise to new novel genes with the potential

to create advantageous functions (Roy & Gilbert, 2006).
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1.2.4 Content Comparisons of Selected Model Eukaryote

Genomes

The genome content data for selected model eukaryotes is presented in Table 1.2.

Table 1.2: Eukaryotic genome statistics.
Organism Genome size (Mbp) Chromosome Number Number of Genes

Saccharomyces cerevisiae 12.5 16 5,777
Caenorhabditis. elegans 100 6 20,553
Drosophila melanogaster 180 4 13,600

Homo sapiens 3,200 23 23,000
Mus musculus 250 20 30,000

Arabidopsis thaliana 125 5 25,498
Oryza sativa 420 12 55,986

Polulus trichocarpa 410 19 45,000

There has been a big increase in gene number between S. cerevisiae and the

multicellular eukaryotes. By comparing genome sizes of more than 1,000 publicly

available genomes from the three extant domains of life (Friar et al., 2012) it

was observed that the number of ORFs varies with overall genome size for each

domain. They found that for prokaryotes the number of ORFs increases linearly

with genome size, up to a limit of 10,000Kb but, for eukaryotes the relationship

between number of ORFs and genome size is non-linear (see Figure 1.9). These

authors conclude that arising from an increase in genome size and organismal

complexity there is a requirement to have additional non-coding DNA to control

and efficiently regulate gene expression in eukaryotes.

Plant genomes also tell an interesting story. Even though we can observe a

similarity in gene order and a high level of sequence similarity in genes, (Hu et al.,

2011) there is a reported difference of approximately 80Mb (over 200Mb compared

with 125Mb) in genome size between A. thaliana and A. lyrata. This is surprising

as genome size shift in A. thaliana is consistent with genome loss and there are clear

reductions in size due to chromosome rearrangements, TE copy number, small and

large deletions, and even gene number. Furthermore, with the exception of single
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base pair deletions, the DNA size change between these two species is apparent for

deletion/insertion events at all size ranges, although it is especially exaggerated at

the larger size range.
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1.2.5 Nematode Nuclear Genomes

Free-living nematodes are under-represented in the research literature, with the

exception of C. elegans (Brenner, 1974) which was the first model organism and

first multi-cellular eukaryotic organism to have its genome fully sequenced. The

genome sequencing of C. briggsae followed this and several other Caenorhabditis

genomes have been or are currently being sequenced. In recent years the genome

sequences of seven other nematodes were published, most significantly: the animal

parasite Brugi malayi (Ghedin et al., 2007), a free-living nematode P. pacificus

(Dieterich et al., 2008) and the plant parasites M. incognita (Abad et al., 2008)

and M. hapla (Opperman et al., 2008).

Nematode genome sizes range from 19.56Mb for the plant parasitic nematode

Pratylenchus coffeae, to 2,445Mb for Parascaris univalens, a roundworm parasite

of horses (Animal Genome Size Database. http://www.genomesize.com). The

mean size of all nematodes in the database is 146.7Mb.

The genomes of nematodes, ascidians (sea squirts, Phylum Chordata), and try-

panosomes are unusual among eukaryotes in that they contain operons. Approx-

imately 15% of genes in the genome of C. elegans occur in operons (Blumenthal

et al., 2002) with operons being prevalent among nematodes inside and outside

this genus as well (Guiliano & Blaxter, 2006). The ascidian Ciona intestinalis also

harbours >20% of its genes in operon structures (Satou et al., 2006).

Many of the genes in C. elegans operons encode proteins required for basic cel-

lular processes such as metabolism, transcription and RNA processing. Zaslaver

et al. (2011) found that 88% of the genes in C. elegans operons are growth related

and that the average expression level of operon genes is about 2-fold higher com-

pared to the average expression level of nonoperon genes (Figure 1.10) They also

tested the hypothesis that the need for rapid activation of multiple genes during

recovery from growth-arrested states may explain operon evolution in metazoans.
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They obtained transcriptional evidence that operon genes are upregulated in C.

elegans during recovery from the growth arrested L1 and dauer larval stages (Fig-

ure 1.10 panels B and C). Similarly they found that in the sea squirt Ciona in-

testinalis expression of operon genes increased dramatically immediately following

metamorphosis. Metamorphosis of C. intestinalis is characterised by the transfor-

mation of a non-feeding mobile larva into a filter-feeding adult. Thus Zaslaver et

al. conclude that during metabolic arrest C. elegans and C. intestinalis maintain

low levels of transcriptional resources when they are not needed while also ensuring

that these low levels will support a fast and efficient transition from arrest into

growth (Zaslaver et al., 2011).
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Figure 1.10: Expression profile of operon genes during the life cycle of C. elegans
(A) and during recovery from growth arrested states (B,C). The lifecycle of C.
elegans consists of four larval stages followed by an adult stage. If unfavorable
conditions arise during larval development, worms stop growing and arrest at the
L1 state or as dauer larvae, a highly resistant and long-lived state. When con-
ditions improve, the worms recover and resume normal development. (B,C) The
expression dynamics of operon genes upon recovery from both L1 and dauer arrest
based on cDNA microarray data are presented in panels B and C. Figure taken
from Zaslaver et al. (2011).
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1.3 Mitochondrial Genomes of Nematodes and

Other Animals

Mitochondria are the site of oxidative phosphorylation, which is essential for the

production of ATP. Thus mitochondria have a central role in cellular metabolism.

Within the mitochondria, there is a genome that is separate from the nuclear

genome and referred to as mitochondrial DNA (mtDNA). In animals mtDNA is

generally a small genome (12 to 20Kb). Although much larger animal mtDNA

genomes have occasionally been found, these are the product of duplications of

the mtDNA and are not due to the presence of additional genes (Boore, 1999).

In human cells, 2-10 mtDNA molecules per mitochondrion have been reported

(Griffiths, 2000).

Unlike nuclear DNA, mitochondrial DNA is a circular molecule. Nematode

mtDNA genomes typically contain 12-14Kb and are composed of 12 protein cod-

ing genes, 22 transfer RNA, 2 ribosomal RNA genes (rrnL and rrnS) and a non-

coding hyper-variable region which initiates transcription and replication (See Fig-

ure 1.11).

While the mtDNA genes have a relatively conserved sequence amongst mem-

bers of the phylum, the order of these genes in the circular genome varies between

different nematode genera. This makes each mitochondrial genome sequencing

project a challenge. The 12 mtDNA protein coding genes in nematodes are in-

volved in ATP synthesis which takes place in the matrix of the mitochondria.

These genes are cytochrome oxidase subunits I-III (COXI, COXII and COXIII),

cytochrome B apoenzyme (COB), NADH dehydrogenase subunits 1-6 (NADH1,

NADH2, NADH3, NADH4, NADH4L, NADH5 and NADH6) and ATP synthase

subunit 6 (ATP6). The tRNAs have a 7bp amino - acyl stem, a 4bp DHU stem

with a 4-8bp loop, a 5bp anticodon stem with a loop of 7bps and a TV replacement
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loop of 6-12bps, as show in Figure 1.12. Due to the variation in mitochondrial DNA

genomes, PCR amplification requires the use of primers in a range of combinations

to identify those primer pairs which amplify contiguous DNA sequences.

Figure 1.12: General structure of a tRNA (McNulty et al., 2012).

Previous authors have used a 454 sequencer from Roche to generate the se-

quence of their previously isolated clones and genes following long PCR (Jex et

al., 2008). An interesting study was undertaken which compared sequencing mito-

chondrial genomes by traditional methods, versus re-sequencing them using next-

generation technology (Jex et al., 2010). It was found that there were just 2 errors

in 14,055bp of sequence, generated using the Roche high-throughput sequencing

system. This establishes high-throughput sequencing as a reliable and fast method

of generating sequences even from AT rich genomes.
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1.4 Genome Sequencing

DNA sequencing began in 1977 (Sanger & Nicklen, 1977). The first step in Sanger

sequencing involves separating the double stranded DNA into single strands by

denaturation. A primer binds to the template strand and DNA polymerase is used

to synthesise a complementary strand. A dye terminator nucleotide is included in

the reaction mix and when incorporated into the new DNA strand it stops its

growth, as well as leaving a marker for further identification. By labeling the

fragments of DNA, they can be separated by size on electrophoresis genes and

visualised. By giving each dye terminator molecule a different colour, a pattern,

or sequence, can be established. The discovery of capillary electrophoresis meant

that sequencing speed was increased and about 1Mb of DNA could be sequenced

daily by a single machine.

The speed of sequencing greatly advanced with the introduction of shotgun

sequencing. With this technique, a large fragment of DNA, or indeed a genome,

is fragmented into smaller random pieces. Each piece is cloned into an E. coli

plasmid vector, sequenced and assembled. Due to the large number of copies of

each fragment, the coverage of the genome sequenced is increased (Weber & Myers,

1997). This method ensures that each base is sequenced at least twice. The quality

of each base is measured and the ‘Bermuda agreement’, which states that there

must be less than one error in 10,000 bases sequenced is applied. If this quality

standard is not achieved the genome must be referred to as a draft. The assembly

stage comes with its own set of challenges. Regions of low coverage or that have

had just a single strand sequenced and gaps in the sequence coverage mean that a

new technology had to be developed to deal with this. This technology is referred

to as paired end reads or mate pairs (Roach et al., 1995), where two stretches of

DNA, from each end of a single DNA molecule, are sequenced. They also have a

recorded distance between them.

33



Genome Sequencing Introduction

High-throughput or next generation sequencing is a relatively new and rapidly

evolving technology. The predominant technologies on offer currently are 454

Roche (www.454.com) and Solexa Illumina (www.illumina.com). 454 was devel-

oped by Roche in 2005 and is based on pyrosequencing technology. One million

reads with an average of ∼700bps per read and with greater than 99.5% accu-

racy can be achieved. Illumina operates on a sequencing by synthesis technology

which uses reversible terminators and clonal single molecule array technology to

produce 180 million reads of up to 100bps. Six Gbps per run are produced with

a greater than 98.5% accuracy. Another emerging technology is LifeTech SOLiD

(www.appliedbiosystems.com). This technique is based on sequencing by ligation

which generates one hundred and eighty billion mappable bases per run of 75+35

bases in length.

These technologies can be used for de novo sequencing of transcriptomes and

genomes as well as being used in re-sequencing projects. Both technologies possess

advantages and disadvantages. Illumina is cheaper per base and generates more

data per run, but 454 affords longer reads which are invaluable downstream at

an assembly stage. The relatively cheap cost of sequencing a genome has lead

to various people having their entire genome sequenced. This will lead to future

development of personalised drug treatments, etc. Genomes of bacteria are much

smaller and sequencing of these provides indications as to what makes them viru-

lent and to the establishment of new and more effective control measures. In fact,

Haemophilus influenzae was the first organism to have its genome fully sequenced

(Fleischmann & Adams, 1995). Comparison of genomes of different organisms

allows us to make evolutionary relationship predictions as to common ancestors

amongst species. Using these fully sequenced and somewhat annotated genomes,

we can identify similar proteins in newly sequenced genomes. However, it should

be noted that depending on the organism sequenced, many of the genes discovered
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may have to be labelled as novel as no known gene with similar sequence may have

been identified previously (Blaxter, 2012).

Once a genome has been sequenced it needs to be annotated, that is, biological

sense needs to be made of the masses of DNA sequence data returned from the

sequencer. This is done by using ab initio gene finder programs such as GLIM-

MER (Gene Locator and Interpolated Markov ModelER) (Salzberg et al., 1998),

or GENESCAN (Burge & Karlin, 1997), identifying the RNA genes, promoter and

other regulatory regions. Different levels of completion of genome sequencing have

been established which outline the characteristics a data set must achieve to be

defined as a particular point on the completion scale (Chain et al., 2009) (Fig-

ure 1.13). The authors also hypothesise about the growth curve that will develop

in new sequencing data sets generated as technology becomes more commercially

viable for the average researcher and, indeed, individuals wishing to sequence their

own genomes. In fact, Chain et al. (2009) underestimated these figures and, ac-

cording to the US Department of Energy’s Genome Institution, as of September

2011, 11,472 genome sequencing projects were listed in a publication by the group

(Figure 1.14). As of July 2012 their website lists over 16,000 projects (Pagani et

al., 2012).
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Figure 1.13: Steps in completion of the annotation of genome data. Modified from
Chain et al. (2009)

.
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1.5 Transcriptome Sequencing

Expressed Sequence Tags (ESTs) are short nucleotide sequences of about 200 to

500bps in length. ESTs are a portion of a gene or whole gene in a cDNA clone

which corresponds to an mRNA. Firstly, RNA is isolated and converted to cDNA

using reverse transcriptase. RNAase H is used in conjunction with Polymerase

Chain Reaction (PCR) and the resulting PCR products are cloned into a bacterial

plasmid that is then isolated and sequenced. They can be sequenced from both

the 3’ and the 5’ end of an expressed gene. They can be generated at relatively low

cost from cDNA expressed at various different stages or under different stresses.

They can be used in gene finding, mapping of genomes and in identifying coding

regions of genes. ESTs were used extensively during the human genome project

for gene discovery (Adams et al., 1991).

1.5.1 High Throughput Transcriptome Sequencing

An mRNA encodes the amino acid sequence of a peptide. The set of mRNA

transcripts in a cell is referred to as the transcriptome. As mRNAs encode the

proteins responsible for cellular function, the transcriptome can be used as an

indicator of phenotype and function at a cellular level. The set of transcripts in a

cell are not a stable entity. Depending on the environment, the set of transcripts

expressed will change. Given a particular stressed state, a gene expression profile

can be established and thus important genes for survival in that state will be highly

expressed. This expression profile is regulated at all stages in the pathway from

DNA to RNA to protein.

Many high-throughput transcriptome projects have been carried out. These

projects offer insights into methods for sequencing technologies to establish a data-

set, resulting in functional analysis pipelines and the answer to various biological
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questions. Some examples of high-throughput transcriptome projects for nema-

todes are the A. suum transcriptome project (Wang et al., 2011) and the Ancy-

lostoma caninum project (Wang et al., 2010b).

1.5.2 Transcriptome Assembly

Assembly algorithms are used to piece together the large amounts of short reads

that are produced from sequencers. Up until the end of the last century, this was

seen as an intractable problem. There existed some algorithmic solution to assem-

bling reads but the amount of time it took to do this was not deemed reasonable.

Computer hardware has advanced considerably since then and the accessibility of

cloud computing has meant that these questions can now be answered. Reference

mapping is performed by assemblers when there is a previously sequenced reference

genome dataset that can be used to map the reads. De novo assemblers have no

reference data set and the assembler must perform the assembly based on overlaps

in the reads. If a transcriptome, rather than a genome, is being assembled this

becomes an obvious difficulty. In a genome, an area of high sequence coverage may

indicate repeat sequences but with cDNA sequencing this may also be indicative

of a highly expressed gene.

Thus, the selection of an assembler is paramount in the pipeline of transcrip-

tome analysis. The wrong choice could affect downstream analysis and as many

authors have previously described, the choice is not easy and should not be trivial.

The assembler chosen should be one that is most appropriate for the sequence

data set to be assembled and will need to be optimised. A complete transcriptome

can be defined as one which has long enough sequences to be deemed full length

transcripts but not so long that the possibility of chimeric sequences should need

to be considered. It should also have limited redundancy without excluding too

many reads. Using a hybrid assembler such as CAP3 (Huang, 1999) also should be

39



Transcriptome Sequencing Introduction

considered as it has been shown that these assemblers can generate larger contigs

and preserve better metrics, but redundancy and formation of chimeric contigs

may be an issue, as found in this project (See Chapter 3). Thus they need to be

considered carefully.

Martin & Wang (2011) established a set of metrics for evaluating the quality

of an assembly. These were:

• Accuracy: Percentage of correctly assembled bases using reference tran-

scripts.

• Completeness: Percentage of reference transcripts covered by all assembled

transcripts.

• Contiguity: Percentage of reference transcripts covered by a single longest-

assembled transcript.

• Chimerism: Percentage of chimeras that occur due to misassembly among

all assembled transcripts.

• Variant resolution: Percentage of transcripts assembled.

Martin and Wang (2011) also propose that various factors should be considered

when choosing an assembly strategy. These factors are:

• The existence of a complete reference genome: Given that the P.superbus

genome has not yet been completed this made our choice of a de novo as-

sembler straightforward.

• The availability of computer resources: We were fortunate enough to have

access to Stoney, a Bull Novascale R422-E2 cluster with 64 compute nodes.

Each compute node has two 2.8GHz Intel (Nehalem EP) Xeon X5560 quad-

core processors and 48GB of RAM. This results in a total of 496 cores and
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2976GB of RAM available for jobs. We also had access to Stokes, an SGI

Altix ICE 8200EX cluster with 320 compute nodes. Each compute node has

two Intel (Westmere) Xeon E5650 hex-core processors and 24GB of RAM.

This results in a total of 3840 cores and 7680GB of RAM available for jobs

(ICHEC, 2013). This meant that computer resource availability was not a

critical factor on which to base choosing an assembler.

• The type of data generated: The sequencing was carried out on a Roche

454 FLX Titanium machine. As Newbler is the assembler designed for use

with 454 data, it can correct for long stretches of homopolymers of unknown

length, which are caused by ambiguities in the signal intensity. This is an

interesting point and should be considered. It also means that the use of the

de novo assemblers such as Velvet (Zerbino & Birney, 2008), Oasis (Majoros

et al., 2005), etc., which are designed for shorter Illumina sequences, were

not considered when it came to choosing an assembler. Overlap-Layout-

Consensus assemblers such as MIRA (Chevreux et al., 2004), CAP3 (Huang,

1999) and Newbler are usually chosen for 454 data sets.

• The overall goal of the project: The goal of this study was to establish a list

of transcripts that could be involved in stress pathways. Taking this into

consideration, larger gene size transcripts would be preferable, as shorter

sequences would mean transcripts could be fragmented across various se-

quences. While chimeras are not ideal, blasts hits to known stress transcripts

should be feasible if two sequences were falsely aligned, as long as they truly

belong in the same transcript.

Many authors including Kumar & Blaxter (2010) have used a variety of different

parameters to evaluate the quality of an assembly. These include assembly met-

rics, resource usage, number of reads assembled, similarity/coverage to a reference
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genome, gene coverage, integrity of assembled transcripts, sensitivity, specificity

and percentage coverage to a proteome. This was also the approach that was taken

in this study. Assembly metrics include N50 (number at which half the sequences

of the assembly are that length or greater), max sequence length, total number

of all bases used in assembly, number of large contigs (>1Kb), average sequence

length, and number of contigs generated. Specificity can be examined by looking

at the number of sequences in the assembly that had hits to CEG (Core Eukaryotic

Genes) genes with >70, 80 and 90% coverage. CEG genes are a set of 248 highly

conserved core eukaryotic genes present in low copy number in higher eukaryotes

(Parra et al., 2007). Ambiguity can be checked by taking three CEG genes of

different sizes and aligning them against each of the assemblies. Though N50 is

predominately used to choose a genome assembly, it is important to note that it

should not necessarily be weighted as the most important metric when choosing a

transcriptome assembly as reads from separate transcripts might have been forced

to assemble together.
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1.6 Aims and Objectives of this Project

It is the aim of this project to suggest P. superbus as an alternative model organism

for the use in stress studies.

The objectives of this project are to present:

• An EST data-set of just over 4,000 unigenes as a snapshot of genes of P.

superbus, with an emphasis on those involved in stress,

• A transcriptome data set with a wide range of transcripts, particularly stress-

related transcripts, pooled to be used as a baseline for stress,

• A complete mitochondrial genome for the nematode P. superbus including

protein coding genes, transfer RNA and ribosomal RNA genes,

• A nuclear genome of P. superbus to an automated/directed improvement

level of completion, for future use in gene comparisons and pathway recon-

struction (Chain et al., 2009).

The data-set generated from this project will be made freely available and

should greatly aid in focusing wet-bench studies to genes of interest and thus the

characterisation and evolutionary history of stress genes in nematodes.
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Chapter 2

Expressed Sequence Tags

2.1 Introduction

An EST is a short fragment of DNA traditionally generated by Sanger dideoxy

terminator sequencing. In Sanger sequencing the fragment of DNA grows from

the 3’ end as deoxynucleotides are attached to the fragment by a phosphodiester

bridge. Each of the deoxynucleotides is labelled with a different colour dye and thus

the sequence of the DNA fragment can be identified. Sanger sequencing has been

used in a multitude of sequencing projects to identify expressed genes of interest.

By inducing an environmental state such as stress, the gene expression patterns

characteristic of this stress state can be identified using EST sequencing. NCBI

defines the dbEST as “a collection of short single-read transcript sequences from

GenBank. These sequences provide a resource to evaluate gene expression, find

potential variation, and annotate genes.” As of February 2013, dbEST release No.

130101 has 74,186,692 EST sequences. Total numbers of nematode EST sequences

are listed as 1,252,785 from 73 species. Of the nematodes, C. elegans has the most

sequences with a count of 396,687 (Wheeler et al., 2005).

To identify constitutively expressed candidate anhydrobiotic genes, 9,216 ESTs
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were obtained from an unstressed mixed stage population of P. superbus. 4,009

unigenes were derived from these ESTs. A set of 187 constitutively expressed

candidate anhydrobiotic genes were manually annotated. Notable among those is a

putative lineage expansion of the LEA (late embryogenesis abundant) gene family.

The most abundantly expressed sequence was a member of the nematode specific

sxp/ral-2 family that is highly expressed in parasitic nematodes and secreted onto

the surface of the nematodes’ cuticles.

There were 2,059 novel unigenes (51.7% of the total), 149 of which are pre-

dicted to encode intrinsically disordered proteins lacking a fixed tertiary structure.

One unigene may encode an exo-β-1,3-glucanase (GHF5 family), most similar to

a sequence from Phytophthora infestans. GHF5 enzymes have been reported from

several species of plant parasitic nematodes, with horizontal gene transfer (HGT)

from bacteria proposed to explain their evolutionary origin. This P. superbus

sequence represents another possible HGT event within the Nematoda. The ex-

pression of five of the 19 putative stress response genes tested was upregulated in

response to desiccation. These were the antioxidants glutathione peroxidase, dj-1

and 1-Cys peroxiredoxin, an sHSP sequence and an LEA gene.

In addition to providing cDNA clones and sequence data for candidate anhy-

drobiotic genes, the dataset presented here has also provided anchor sequences

important for the assembly of the genome and transcriptome of P. superbus.

45



Methods & Materials Expressed Sequence Tags

2.2 Methods & Materials

2.2.1 Nematode Culture

P. superbus (strain DF5050) was obtained from Prof. Bjorn Sohlenius, Swedish

Museum of Natural History, Stockholm. The nematodes were cultured at 20◦C in

the dark on nematode growth medium (NGM) plates containing a lawn of strep-

tomycin resistant E. coli strain HB101 obtained from the Caenorhabditis Genetics

Center, University of Minnesota, USA. The NGM was supplemented with strep-

tomycin sulfate (30µg ml-1) as described in Section 5.2.2.

2.2.2 cDNA Library Construction and EST Generation

Total RNA was extracted from mixed stage unstressed worms using TRIzol reagent

(Invitrogen, Carlsbad, USA). The cDNA library was prepared by Ms Mairin Skel-

ton at the Scottish Crops Research Institute, Dundee, using the SMART cDNA

Library Construction Kit Long-Distance (LD) PCR protocol (Clontech, Mountain

View, CA 94043, USA). Fifty ng of total RNA was used for the SMART cDNA

synthesis and there were 25 PCR cycles in the LD PCR amplification step. The

cDNAs were cloned into the pDNR-Lib vector (Clontech) and transformed into E.

coli DH10B cells. A total of 15,360 recombinant E. coli were picked using a Q-Bot

robot (Genetix, Hampshire BH25 5NN, UK) and transferred to 384 well microtitre

plates containing freezing media (Sambrook & Russell, 2011) and chloramphenicol

(30µg ml-1) and the plates were stored at -80◦C. The cDNA inserts from individual

transformants (n = 9,216) from the cDNA library were sequenced by the Sanger

method at the Scottish Crop Research Institute, Dundee (4,224 clones) and at The

GenePool, University of Edinburgh (4,992 clones). As can be seen from Figure 2.1,

the majority of the sequences are between 50-800bps in length.
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Figure 2.1: Sequence counts vs sequence length in base pairs.

2.2.3 Clustering and Sequence Analysis

The raw EST sequences were processed through the PartiGene pipeline at the

Genepool, Edinburgh (Parkinson et al., 2004), first using trace2dbEST, which re-

moves vector-derived sequences, poor quality sequences and ESTs shorter than

150bp, followed by CLOBB (Parkinson et al., 2002), an iterative program which

groups the sequences on the basis of BLAST similarity into clusters that are pu-

tatively derived from the same gene. The Partigene pipeline clustered these ESTs

into 1,079 consensus sequences (contigs) and 2,958 singletons. Removal of puta-

tive bacterial sequences and rRNA genes yielded a total of 3,982 putative protein-

coding transcripts (unigenes). Clusters containing more than one sequence were

then assembled into consensus sequences using Phrap (Green, 2012). The par-

tial transcriptome consists of these consensus sequences, along with those clusters

that contain only one sequence (singletons). Potential bacterial contaminant se-

quences (28 contigs) and nematode rRNA genes (27 contigs) were identified using
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a BLASTN search of the P. superbus consensus sequences against the GenBank

nucleotide (nt) database, with an e-value cut-off of 1e-50 to identify significant

matches. These P. superbus EST sequences have been deposited in dbEST with

the accession numbers GW405912-GW413517. The unigene sequences and annota-

tions along with their constituent ESTs can be downloaded from the NEMBASE4

database (Elsworth et al., 2011) online and the unigene annotations can also be

subjected to keyword queries using the NEMBASE4 database.

Genes encoded on the mitochondrial genome, as discussed in Chapter 6, were

identified by BLASTX using 496 mitochondrial genes from 41 nematode mtDNA

genomes from GenBank. These were used as queries against the P. superbus con-

sensus sequences with an e-value cut-off of 1e-10. This resulted in 293 unique hits

with a BLAST score of greater than 60 hits.

The consensus sequence for each unigene was translated using prot4EST (Was-

muth & Blaxter, 2004). Each unigene was then subjected to a BLASTP search

(e-value cut-off of 1e-4) against a non-redundant custom database containing se-

quences from a variety of sources: the GenBank NR database, Wormpep (version

224) and an extended version of the NEMBASE4 database which will be referred

as NEMBASE4+. NEMBASE4+ has been supplemented with sequences from the

following nematodes: Plectus murrayi, Ditylenchus africanus, Aphelenchus ave-

nae, Trihinella spiralis, Wuchereria bancrofti, Loa loa and Pristionchus pacificus.

Putative genes were annotated using the annot8r algorithm (Schmid & Blaxter,

2008). This software tool assigns Gene Ontology (GO) terms, Enzyme Commission

(EC) numbers (Bairoch, 2000) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway data (Kanehisa & Goto, 2000) to EST sequences based on

BLAST searches against annotated subsets of the EMBL UniProt database (Jain

et al., 2009). All BLAST results were parsed and the corresponding annotations

were saved in a relational postgreSQL database. A web interface where the annot8r
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annotations can be subjected to keyword queries and where output clusters can

be retrieved is available online. Supplemental ortholog assignment and pathway

mapping were carried out using the KAAS-KEGG Automatic Annotation Server

(Moriya et al., 2007).

To identify putative unigene families among four anhydrobiotic nematodes,

EST consensus sequences were kindly provided by various groups: 1,387 Plectus

murrayi sequences (Adhikari et al., 2009) from Dr. B. Adhikari; 2,596 Ditylenchus

africanus sequences (Haegeman et al., 2009) from Dr. A. Haegeman and 2,700

A. avenae sequences (Karim et al., 2009) from Dr. N. Karim. All ESTs were

translated into peptide sequences using prot4EST and they were subjected to an

all-vs-all BLASTP analysis to identify pairwise similarities. A graph representation

of the homologous relationships among the unigenes was constructed, where each

node is a unigene and an edge is drawn between any two nodes that have a BLASTP

match. Each edge is weighted by -logE where E is the e-value of the alignment

between two similar unigenes. e-values of 0 are transformed into 1e-200, i.e., an

edge weight of 200. This graph is then used by the MCL algorithm (Enright et

al., 2002) as input, with an inflation parameter of 2.1, to classify the unigenes into

putative families.

2.2.4 Translation and Primary Structure Analysis of Novel

ESTs

Novel ESTs were translated into putative peptide sequences using prot4EST which

incorporates the ESTScan2.0 (Lottaz et al., 2003) and DECODER (Fukunishi &

Hayashizaki, 2012) programs, using de novo prediction methods for predicting the

amino acid sequence of cDNA sequences with putative sequencing errors (partic-

ularly insertions and deletions). The glycine content and the Grand Average of

Hydropathy (GRAVY) values of these putative peptides were determined using
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the ProtParam tool (Gasteiger, 2003). The GRAVY value is calculated as the sum

of hydropathy values of all the amino acids, divided by the number of residues in

the sequence (Kyte & Doolittle, 1982). Predictions of the extent of intrinsically

disordered regions within each putative peptide were determined using the IUPred

program (using the long disorder prediction algorithm) (Dosztányi et al., 2005)

kindly provided by Dr. Zsuzsanna Dosztnyi.

2.2.5 Real-time Relative qPCR Analysis of Gene Expres-

sion

A mixed population of nematodes was vacuum filtered onto 25mm Super Mem-

brane Disc Filters at a concentration of 2,000 nematodes per filter. Five replicate

filters were prepared for each treatment. The filters were placed in an 8L glass des-

iccation chamber over a saturated solution of potassium dichromate for 12 hours

at 20◦C in the dark, to generate an RH of 98% (Winston & Bates, 1960). Nema-

todes were then washed off the filters with distilled water and the nematodes from

the five filters were pooled together. RNA was extracted using the TRIsure (BIO-

38033, Bioline) method followed by treatment with DNAse I (Promega, M6101).

Control nematodes were placed directly in to TRIsure and flash frozen with liquid

Nitrogen without vacuum filtration.

Total RNA (1µg per reaction) was converted to cDNA using the Roche Tran-

scriptor First Strand cDNA Synthesis Kit (04 379 012 001). One µl of cDNA from

the above reaction was used for each real time qPCR reaction. These reactions

were carried out on a Roche LightCycler 480 thermocycler using Roche SYBR I

Master 1 kit (04 707 516 001). Each qPCR reaction also contained 5µl SYBR

Master Mix, 0.002pmole of each primer and 2µl water. Primers were designed to

produce an amplicon of approximately 125bp for each gene tested. These primer

sequences are presented in Table 2.1. Relative expression data were calculated
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with the LightCycler 480 Efficiency Method analysis software using the second

derivative maximum option. The P. superbus ama-1 and rpl32 genes were used

as a reference. Having established that the crossing point data were normally dis-

tributed and that the variance of the controls and treatment data were equal, two

sample Student’s t-tests were carried out to identify statistically significant differ-

ences in expression levels between the controls and the experimental treatments.
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Table 2.1: The primer sequences used for real time qPCR analysis of gene expres-
sion in P. superbus in response to desiccation stress.

P. superbus
Cluster ID

Description Primer Sequence 5’-> 3’

PSC00673 HSP70 family
PShsp-70F ACGTGCAATGACCAAAGACA

PShsp-70R ACCATTGGCATCAACATCAA

PSC02842 HSP40/DNAJ family member
PShsp-40F AAACAAGCCGTTGAAGCACT

PShsp-40R GCAGGCGATACTCCAAGAAC

PSC03116 sHSP family member
PShsp-12F ACTCCAACATGGACGGAAAA

PShsp-12R ACGGTTGCCAATTTGCTATT

PSC01018 sHSP 21 Bursaphelenchus
PShsp-21F GTTCATTCCTTCGTCGGGTA

PShsp-21R AGGCTTTGGAGCAAAGATGA

PSC00782 LEA Protein PSlea-2F TGGAATCCTCATCTCCAACA

PSlea-2R GCAGCATCATAGGCATCAGA

PSC01853 LEA Protein PSlea-5F GGAGCTGCAAAGGTTAAAGC

PSlea-5R ATGGCATCTTGTTGTTCACG

PSC00514 LEA Protein PSlea-8F GCTGGTAAAGCTAAGGATGTTATG

PSlea-8R GAACATTATCCCATGTTTCTTCAGC

PSC02695 Cyclophilin family member
PScyp-3F TATCTGCACTGCCGTTACCA

PScyp-3R TCGGCAGAAGTTTTTCCACT

PSC00740 Protein disulfide isomerase PS00740F GCAAAACTGGAGCTGGTCTC

PS00740R AAACAGGCAATTTGCGTACA

PSC01029 Aquaporin PS001029F TTAGGAAATGCCCTCATTGG

PS001029R CAAGAACAAGGAAGGCAAGG

PSC03895 Peroxiredoxin 1
PScys-2F TGGGGCTTAAACTTGGTGAC

PScys-2R GTTGTGCAGACAGGCGTAAA

PSC01468 RIC1 (Putative stress responsive protein) Psric-1F CCCCGATTATGTTGCTCTGT

Psric-1R ATCCGGGGATATAACCCAAA

PSC02304 DJ-1 family protein
PSdj-1F AGCGCCAGTTATTTTTGCAC

PSdj-1R CCTGGAGCTCGACTCGTTAC

PSC02494 Glutathione peroxidise PSC02494-F TGATGATGCAGCACCACTTT

PSC02494-R TGGAGCGAAACGTTTAACAA

PSC04819 Glutathione peroxidise PSC04819-F TCAAGAACCTGCGGAAAATC

PSC04819-R GCCGTTGACTTCAAGCTTTC

PSC02624 Glutathione S-transferase PSC02624-F CCCCAAGAATGATTTTGCAT

PSC02624-R TTTGCCATCAACTTCAAGGA

PSC04040 Glutathione S-transferase PSC04040-F GGAGCTCCATGGTTTGTCAT

PSC04040-R ATGGGCTCCAACAAAATCAA

PSC01063 Aldehyde dehydrogenase PSC01063-F GTTGCACGTCGAATTGTTTG

PSC01063-R CAAGTTCATCACGCTTTGGA

PSC01095 Aldehyde dehydrogenase PSC01095-F TGATTTCGCTGTAGGCCTTT

PSC01095-R AACCCCAACAACACCAAGAG

PSC01944 RNA polymerase II PSRNAPOLIIF GATGACTTTATGGAAGAAGATGAGG

PSRNAPOLIIR CTATGATCACAATTTCGGCAAG

PSC00238 60S ribosomal protein L32 PS60SL32-F GTTCGTAGACGTTTCAAGGGTACT

PS60SL32-R TCGAGATCTCTGACATTATTGACG
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2.3 Results

2.3.1 Functional Annotation using BLAST2GO

The working number of 3,982 contigs post filtering were subjected to the BLAST2GO

(Conesa et al., 2005) pipeline as well as all further steps discussed below. A

BLASTX search of the P. superbus consensus sequences against the GenBank nu-

cleotide database (NR), with an e-value cut-off of 1e-10 was completed. The overall

statistics generated from this data set can be seen in Table 2.2.

Table 2.2: Summary of the analysis of EST sequences from a cDNA library pre-
pared from a mixed stage unstressed culture of P. superbus. The number of
putative unigenes excludes bacterial contaminants and rRNA genes but includes
mtDNA genes.

Number of EST sequences
Number of raw sequences 9,216
Number of high quality sequences 7,606
Average length of high quality sequence 425
Total number of contigs 1,079
Total number of singletons 2,958
Number of putative bacterial contaminant sequences 28
Number of rRNA gene consensus sequences 27
Number of mtDNA consensus sequences 10
Number of putative unigenes 3,982
Number of unigenes with signigicant hits to NEMBASE4, WormPep and NR 1,923
Number of unigenes with significant hits to NR 1,544 (39%)
Number of unigenes with a match to GO 1,373 (35%)
Number of unigenes with a match to EC 1,121 (28%)
Number of unigenes with a match to InterProScan 2,979 (75%)

Just over half the sequences are shown as having no BLAST hits or being

novel sequences. Over 1, 000 sequences have been fully annotated with less than

500 shown as having a BLAST hit but no GO mapping or having a BLAST hit, but

no annotation. The distribution of annotation identified from this BLAST step can

be seen in Figure 2.2. Of all hits found, 82% were to nematodes. The breakdown

of species is shown in Figure 2.3. Figure 2.4 shows the e-value distribution versus

the number of hits. While the majority of the hits fall between 0 to 1e-25, there
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Figure 2.2: Overview of the BLAST2GO results distribution for the P. superbus
EST sequences.

are some hits with a significant e-value below that.

2.3.2 Most Abundant Contigs

The 44 most abundantly expressed P. superbus protein-coding sequences comprise

1,200 ESTs and represent 15.7% of the total EST dataset (Table 2.3). The most

abundant sequence, containing 79 ESTs, encodes a member of the nematode spe-

cific family of SXP/RAL-2 proteins (Gallin et al., 1989; Rao et al., 2000). These

proteins have been detected in the pharyngeal glands and as surface associated

antigens in diverse animal parasitic nematodes. Immunisation with recombinant

antigens derived from SXP/RAL-2 has been effective in protecting treated animal

hosts against filarial worm (Wang et al., 1997), roundworm (Tsuji et al., 2003)

and hookworm (Fujiwara et al., 2007) infections. SXP/RAL-2 proteins have also

been described in plant parasitic nematodes (Jones et al., 2000; Tytgat et al.,
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Figure 2.4: The distribution of e-value hits to the P. superbus EST dataset shown
by number of hits for that e-value.

2005) and SXP/RAL-2 sequences from 11 species of plant parasitic nematodes

and are represented in NEMBASE4. GenBank searches show that SXP/RAL-2

homologs also occur in other free-living nematodes in addition to P. superbus.

Nematode SXP/RAL-2 sequences are likely to be encoded by a small multigene

family (Jones et al., 2000; Tytgat et al., 2005). Five SXP/RAL-2 unigenes were

detected in P. superbus, comprising of 95 ESTs and representing 2.2% of the total

EST dataset. With the exception of Ascaris lumbricoides, the level of SXP/RAL-2

expression in P. superbus was higher than that observed for any of the 19 species

of parasites with SXP/RAL-2 homologs in NEMBASE4. SXP/RAL-2 are small

(16-21 kDa) basic proteins which share a common domain of unknown function

(DUF148, PF02520) (Finn et al., 2008). No RNAi phenotypes have been detected

for SXP/RAL-2 homologs in C. elegans, but one homolog was among 14 genes

which were upregulated in C. elegans in response to fungal infection (Pujol et al.,

2008). All SXP/RAL-2 sequences characterised to date, including PSC00077, have

a signal peptide indicative of a secreted protein. Parasitic nematode studies suggest

that these nematode-specific proteins are most likely secreted from the pharyngeal

glands onto the surface of the cuticle, where they appear to carry out a structural
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or protective function. The very high level of expression of SXP/RAL-2 sequences

in P. superbus suggests that this cuticular protein may have an important role in

anhydrobiotic protection in this nematode.

Ten abundantly expressed sequences were associated with reproductive func-

tion, eight corresponding to major sperm protein genes (MSPs) and two to vitel-

logenin genes. In total, 32 P. superbus MSP unigenes and 7 vitellogenin unigenes

were detected. In C. elegans, MSPs are encoded by a multigene family comprising

more than 50 genes (Ward et al., 1988; Tarr & Scott, 2005). Nematode MSPs

are small, basic proteins required for the amoeboid movement of sperm. A fam-

ily of six genes vit-1 to vit-6 encode C. elegans vitellogenin (Blumenthal et al.,

1984; Spieth & Blumenthal, 1985), a major yolk component which is expressed

exclusively in the adult hermaphrodite intestine from which it is secreted into

the pseudocoelomic space and taken up by oocytes (Kimble & W.J., 1983). Four

structural genes were abundantly expressed in P. superbus : an actin family mem-

ber (homolog of C. elegans act-2 ; a gene encoding a core histone protein required

for chromatin assembly and chromosome function (Jorcano & Ruizcarrillo, 1979)

and genes encoding two proteins associated with the 60S ribosomal subunit. Two

abundantly expressed contigs were associated with lipid metabolism. PSC00187

encodes a homolog of C. elegans HEH-1 and human NPC2/He1, a cholesterol-

binding protein whose deficiency in humans causes Niemann-Pick type C2 disease

involving retention of cholesterol in lysosome (Storch & Xu, 2009; Vanier & Millat,

2004). Transcripts for the mitochondrially encoded cytochrome c oxidase subunit

1, essential for oxidative phosphorylation and ATP synthesis, were also highly

expressed in this mixed stage P. superbus library.

Twenty one of the abundant sequences listed in Table 2.3 are novel. These novel

unigenes correspond to 641 ESTs, representing 8.4% of the total EST dataset. Data

on the predicted physico-chemical parameters of the putative proteins encoded
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by these 21 unigenes are presented in Table 2.4. Thirteen (65%) of these novel

unigenes encode a signal peptide indicative of a secreted protein. The association

between sequence novelty and likely secretion has been noted previously in the

parasitic nematode Nippostrongylus brasiliensis (Harcus et al., 2004). Three of

the putative novel proteins are predicted to be natively unfolded over 80-100% of

their primary sequence. The P. superbus dataset contains a total of 2,059 novel

unigenes. Further analysis of these novel sequences is presented in a later section.
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Table 2.4: Putative anhdyrobiotic and stress response genes constitutively ex-
pressed by unstressed P. superbus.

Description Number of Clusters Number of ESTs
Signal Transduction

Mitogen-activated protein kinases 3 4
Serine/threonine protein kinases 12 15

Casein kinases 10 15
Protein tyrosine kinases 6 7
Other protein kinases 4 4

Transcription factors/activators 6 9
Total 41 54

Antioxidant Activity
Manganese superoxide dismutase (sod-2) 1 2

Glutathione peroxidase 3 8
Peroxiredoxin 2 4

Glutathione S-transferase 7 11
Glutaredoxin 2 2
Thioredoxin 1 1

Aldehyde dehydrogenase 2 4
Aldo/keto reductase 2 2

NADP Isocitrate dehydrogenase 1 1
Total 21 35

Late Embryogenesis Abundant Proteins
Total 13 34

Heat Shock Proteins (HSP)
HSP90 family 3 10
HSP70 family 6 13
HSP60 family 1 1

HSP40/DNaJ family 9 14
Small heat shock protein/α-crystallin family 4 6

HSP90 co-chaperone Cdc37 1 1
HSP70 co-chaperone BAG1 1 2

Tetratricopeptide repeat containing protein 1 1
Total 26 48

Other Chaperone/Chaperonin Proteins
Mitochondrial chaperone BCS1 family member 1 1

Mitochondrial prohibitin complex protein 2 1 1
Protein disulfide isomerase 3 9
Cyclophylin family member 5 7

Derlin-2 1 1
DJ-1 family protein 1 2
Prefoldin subunit 2 3

Cytosolic T-complex protein 1 2 3
Putative α-tubulin folding cofactor B 1 1

Total 17 28
The Ubiquitin System

Ubiquitin family protein 8 16
Ubiquitin-conjugating enzyme E1 2 2
Ubiquitin-conjugating enzyme E2 5 6

E3 Ubiquitin ligase 5 9
Ubiquitin elongating factor E4 1 1

Ubiquitin carboxyl-terminal hydrolase 2 2
Ubiquitin fusion degradation protein UFD1 1 1

Total 25 38
The Proteasome

Proteasome subunit alpha family 4 6
Proteasome subunit beta family 4 6

Proteasome regulatory subunit family 15 24
Total 23 36

Autophagy
Autophagy-related protein 2-like (atg2) 1 1

LC3, GABARAP AND GATE-16 family member (lgg-1) 1 1
Total 2 2

DNA Damage Response Proteins
Total 12 12

Others
Aquaporin related family member 2 2

Ezrin/Radixin/Moesin family member (erm-1) 2 2
Thaumatin family member (thn-3) 1 1
AN1-like Zinc finger family protein 1 1

RIC1 Putative stress responsive protein 1 1
Mitochondrial Lon protease 1 1

Total 8 8

Total 187 294
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2.3.3 Assignments to Metabolic Pathways using KEGG

One thousand six hundred and eighty four KEGG orthology assignments were

inferred by searching for P. superbus unigenes that have homologs among the

default set of manually curated eukaryotic genes in the KEGG database (which

contains 26 genomes); similarly, 1,412 KEGG assignments specific to the C. elegans

genome were also inferred (Table 2.5).

KEGG pathways associated with metabolism had the highest representation,

with a large number of the P. superbus sequences associated with ‘carbohydrate

metabolism’, ‘energy metabolism’, ‘lipid metabolism’ and ‘amino acid metabolism’

pathways. In the environmental information processing category, ‘signal transduc-

tion’ was highly represented. Other highly represented pathways were found in

the genetic information processing category including ‘translation’ and ‘folding,

sorting and degradation’ and a large number of sequences had KEGG assignments

to the human neurodegenerative disease sub-category. Many neurodegenerative

diseases are associated with the dysfunction or overload of the protection sys-

tems responsible for repairing or degrading damaged proteins and macromolecules

(Mart́ınez et al., 2010; Irvine et al., 2008; Hegde & Upadhya, 2007). Cells ex-

posed to severe water stress experience serious damage to their macromolecules

and membranes; proteins lose their structures, become unfolded and aggregate.

Thus anhydrobiotic organisms are adapted to survive cellular dehydration by de-

ploying efficient cellular protection and repair systems and it is likely that some

gene products that have roles in anhydrobiotic protection in nematodes may also

have human homologs which are required for neural survival. For example the

molecular chaperone DJ-1, which is associated with familial Parkinson’s disease

(Bonifati et al., 2003; Shendelman et al., 2004), is also upregulated in response

to desiccation stress in the anhydrobiotic nematode A. avenae (Reardon et al.,

2010); and AAvLEA1, a natively unfolded LEA protein which is upregulated in
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Table 2.5: Summary of KEGG orthology assignments of P. superbus unigenes to
biochemical pathways.

KEGG Pathway Category Eukaryotes C. elegans
1. Metabolism 474 438

1.1 Carbohydrate Metabolism 113 102
1.2 Energy Metabolism 70 68
1.3 Lipid Metabolism 61 47

1.4 Nucleotide Metabolism 36 33
1.5 Amino Acid Metabolism 76 71

1.6 Metabolism of Other Amino Acids 26 24
1.7 Glycan Biosynthesis and Metabolism 21 19

1.8 Metabolism of Cofactors and Vitamins 22 18
1.9 Biosynthesis of Polyketides and Terpenoids 7 9

1.10 Biosynthesis of Secondary Metabolites 13 14
1.11 Xenobiotics Biodegradation and Metabolism 29 33

2. Genetic Information Processing 294 272
2.1 Transcription 50 43
2.2 Translation 132 124

2.3 Folding, Sorting and Degradation 91 87
2.4 Replication and Repair 21 18

3. Environmental Information Processing 88 62
3.1 Membrane Transport 4 3
3.2 Signal Transduction 73 53

3.3 Signalling Molecules and Interaction 11 6
4. Cellular Processes 236 163

4.1 Transport and catabolism 91 73
4.2 Cell Motility 19 10

4.3 Cell Growth and Death 63 39
4.4. Cell Communication 63 41

5. Organismal Systems 250 181
5.1 Immune System 52 38

5.2 Endocrine System 60 49
5.3 Circulatory System 21 15
5.4 Digestive System 44 31
5.4 Excretory System 15 14
5.5 Nervous System 20 10
5.6 Sensory System 19 11

5.7 Development 10 5
5.8 Environmental Adaptation 9 8

6. Human Diseases 342 296
6.1 Cancers 63 39

6.2 Immune System Diseases 22 21
6.3 Neurodegenerative Diseases 134 130

6.4 Cardiovascular Diseases 36 33
6.5 Metabolic Diseases 2 3
6.6 Infectious Diseases 85 70

Total (Unigenes) 1,684 (854) 1,412 (714)
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response to desiccation stress in A. avenae (Browne et al., 2002), has been shown

in vitro to protect complex mixtures of proteins from aggregation (Chakrabortee

et al., 2007).

2.3.4 Gene Ontology Assignments

The Gene Ontology consortium has developed a vocabulary of defined terms that

describe gene products in the context of three domains: biological process, molecu-

lar function and cellular component in a species-independent manner (Consortium,

2000). The representation of GO terms as found by BLAST searches of the P. su-

perbus unigenes against genes in the GO database are presented using a filter of at

least 100 sequences. A pie chart was generated for each category; biological process

(Figure 2.5), molecular function (Figure 2.6) and cellular component (Figure 2.7).

In summary, these representations consist of 3,148, 1,671 and 1,245 hits respec-

tively. Several of these hits were to gene products whose descriptions indicate roles

in anhydrobiotic protection.
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Figure 2.5: Biological process categories for the P. superbus unigenes having at
least 100 EST sequences in each category. 3, 148 hits are represented.
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Figure 2.6: Molecular function categories for the P. superbus unigenes having at
least 100 EST sequences in each category. 1, 671 hits are represented.
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Figure 2.7: Cellular component categories for the P. superbus unigenes having at
least 100 EST sequences in each category. 1, 245 hits are represented .
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2.3.5 Putative Anhdyrobiotic and Stress Response Genes

When cells suffer severe dehydration, metabolism ceases, macromolecules denature,

membranes undergo phase changes and fuse with other normally separate mem-

branes. Unlike desiccation sensitive taxa, anhydrobiotes have evolved mechanisms

which maintain the structure and integrity of macromolecules and membranes in

the absence of water and also during rehydration and revival. Comparative stud-

ies of the desiccation tolerance phenotypes of anhydrobiotes show lineage specific

differences in the response patterns and biochemical adaptations, which implies

that anhydrobiotic phenotypes can be achieved in different taxa by the expres-

sion of functionally equivalent molecules. Based on currently available data from

nematodes and other anhydrobiotic animals, a model showing the possible steps

involved in the detection and expression of anhydrobiotic protection mechanisms

in nematodes is presented and shown in Chapter 1. Using GO, KEGG and BLAST

description data, the components of this model in the P. superbus unigene dataset

have been assembled and manually annotated and a set of 187 candidate genes

whose products may be involved in the anhydrobiotic response of P. superbus are

presented. This dataset is summarised in Table 2.4.

2.3.6 Signal Transduction, Protein Kinases and Transcrip-

tion Factors

The P. superbus unigene data set contains 35 protein kinases. Among these were

three contigs encoding MAP kinases. One of these, PSC00478, is a homolog of

MAPKAP kinase-2 which is responsible for the phosphorylation of the small heat-

shock proteins HSP27 (Stokoe et al., 1992) and α-B-crystallin (Ito et al., 1997).

The phosphorylation of these small HSPs in response to stresses such as heat shock

and oxidation is proposed to regulate actin filament dynamics and to stabilise
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microfilaments (Dalle-Donne et al., 2001). Two unigenes encode members of the

STE20 family of serine/threonine kinases (Strange et al., 2006). One of these,

PSC03670, has high BLAST identity (3e-51) to the gck-3 gene whose function is

required by C. elegans for volume recovery and survival after exposure to extreme

hypertonic stress (Choe & Strange, 2007). Nine unigenes encode putative casein

kinases, important regulatory molecules in cell division and differentiation and in

DNA damage repair (Cheung et al., 2005; Knippschild et al., 2005). Casein kinase

2 (CK2) was found to be upregulated in response to desiccation stress in the

nematode Steinernema feltiae (Gal et al., 2003). Other P. superbus stress-related

kinases include a homolog of akt-1, a regulatory component within the insulin/IGF-

1 signaling pathway (Paradis & Ruvkun, 1998; Padmanabhan et al., 2009), which

plays an important role in regulating nematode life span, dauer formation and

stress tolerance and diacetylglycerol (DAG) kinase, which modulates DAG levels

in the cell membrane, regulating intracellular signalling proteins that have evolved

the ability to bind this lipid (Merida et al., 2008). DAG kinase is also activated in

plants during cold and osmotic stress (Arisz et al., 2009).

Several P. superbus unigenes are predicted to encode transcription factors.

Among these are a forkhead protein, a member of a conserved family of transcrip-

tional regulators of cellular processes including metabolism, ageing, apoptosis, cell

cycle progression and stress resistance (Sedding, 2008; Smith & Shanley, 2010).

Two unigenes encode putative jumonji (JmjC) domain-containing proteins. The

C. elegans jmjc-1 gene functions as a transcriptional activator of stress related

genes in response to multiple stimuli, including heat-shock and osmotic and oxida-

tive stress (Kirienko & Fay, 2010). Two unigenes encode putative high mobility

group (HMG) proteins, which are important in modulating chromatin structure

and gene expression. HMG transcripts are upregulated in response to desiccation,

osmotic, heat and cold stresses in the anhydrobiotic nematode A. avenae (Reardon
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et al., 2010) and HMG function is required for the transcription of stress-responsive

genes in Arabidopsis thaliana (Lildballe et al., 2008).

2.3.7 Anti-oxidant Activity

Reactive oxygen species (ROS) accumulate in cells as a result of cellular dehydra-

tion (Kranner & Birtic, 2005; Franca et al., 2007). ROS cause oxidative damage to

proteins, lipids, DNA and other macromolecules. Therefore, proteins with antiox-

idant properties are required to rapidly neutralise ROS immediately after they are

formed. Twenty-one unigenes encoding proteins that fall into this category were

characterised: PSC00113 encodes a manganese superoxide dismutase responsible

for converting oxygen radicals into hydrogen peroxide; three unigenes encode glu-

tathione peroxidases which function to reduce hydrogen peroxide; and sequences

encoding both the 1-Cys and 2-Cys class of peroxiredoxin enzymes (whose main

function is the reduction of peroxides (Wood et al., 2003)) were also identified.

The tripeptide glutathione (GSH) functions as a co-factor for the antioxidant

enzymes glutaredoxin (Grx) and glutathione S-transferase (GST). GSTs catalyse

the conjugation of glutathione to reactive electrophilic compounds from endoge-

nous and xenobiotic sources and are thus capable of detoxifying a large variety of

cytotoxic molecules (Hayes et al., 2005). The P. superbus dataset contains seven

GST unigenes, four from the sigma class of cytosolic GSTs and two from the

kappa class of mitochondrial GSTs. The GST sigma and kappa classes are con-

sidered to be involved in protection against endogenously produced ROS (Corona

& Robinson, 2006). PSC02300 encodes a Grx enzyme. Protein deglutathionyla-

tion is carried out by Grx (Gallogly & Mieyal, 2007), and this enzyme can also

reduce the disulphide bridges of oxidised proteins (Meyer et al., 2009). Such disul-

phide bridges can also be reduced by thioredoxin (PSC00712), which shares a

similar structure and overlapping function with Grx (Holmgren, 1989). Other P.
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superbus unigenes, whose gene products are likely to be involved in antioxidant

activity and redox regulation, include: aldehyde dehydrogenase which deactivates

malondialdehyde, an important end product of lipid peroxidation; two aldo-keto

reductase sequences (Chang & Petrash, 2008; Malik & Storey, 2009) and a putative

cytosolic NADP-isocitrate dehydrogenase (NADP-ICDH). NADP-ICDH catalyses

the production of NADPH and, by supplying NADPH to the antioxidant systems,

NADP-ICDH is an important component in the control of redox balance and the

modulation of oxidative damage in the cytosol (Lee et al., 2002; Leterrier et al.,

2007).

2.3.8 Late Embryogenesis Abundant Proteins

Thirteen P. superbus unigenes encode predicted LEA proteins (Table 2.6). Al-

though LEA proteins have been shown to accumulate during the onset of desicca-

tion in anhydrobiotic animals, including nematodes (Browne et al., 2002; Gal et al.,

2003; Adhikari et al., 2009), genes encoding LEA proteins are particularly numer-

ous and heterogeneous in plant genomes. For example, the Arabidopsis thaliana

genome contains 51 LEA genes placed into 9 different Pfam groups (Hundert-

mark & Hincha, 2008; Bies-Ethève et al., 2008). In animal genomes LEA genes

are less abundant and predominantly belong to the Group 3 LEA family (Pfam

F02987) (Tunnacliffe & Wise, 2007), with members of LEA Group 1 (PF00477)

being described to date only in the brine shrimp Artemia franciscana (Sharon et

al., 2009) and in an unspecified tardigrade species (Forster et al., 2009). Group

3 LEA proteins are highly hydrophilic and largely lacking in secondary structure

when fully hydrated (Tunnacliffe & Wise, 2007). Group 3 proteins also contain

blocks of tandemly repeated 11-mer amino acid motifs (Dure, 1993), the number

of repeats per LEA protein typically ranging in number from 5-24 (Brown et al.,

2004).
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A database of LEA proteins was established recently (Hunault & Jaspard,

2010). Although 89% of the sequences in this database are from land plants, the

LEAPdb database includes LEA sequences from animal taxa. Among BLAST

searches against the LEAPdb (Table 2.6), ten P. superbus unigenes had best hits

to LEA3 proteins from plant species, one unigene was most similar to a putative

LEA protein from H. influenzae (Hogg et al., 207) and two to an LEA3 protein

from C. elegans, the abundance of P. superbus sequences which had hits to plant

genes (using a default E value) may be a consequence of the large number of plant

LEA sequences represented in the LEAP database. The LEA sequences encoded by

six of the P. superbus unigenes are predicted to be 100% natively unfolded. Three

of the 13 P. superbus LEA sequences are predicted to lack substantial regions of

unfolded structure, however, all 13 LEA sequences had negative GRAVY (Grand

Average of Hydropathy) indices characteristic of hydrophilic proteins. All the

predicted sequences showed evidence of tandemly repeated 11-mer amino acid

motifs. The C. elegans genome has been reported to contain three LEA genes

(Brown et al., 2004) and four LEA genes have been detected in the C. briggsae

genome (Brown et al., 2004). The best characterised nematode LEA protein is

AAv1 which is upregulated in the nematode A. avenae in response to desiccation.

AAv1 has been shown to protect complex mixtures of proteins from aggregation

in vitro and in vivo (Chakrabortee et al., 2007). It is possible that some of the

P. superbus unigenes reported here may represent alternatively spliced forms of a

single LEA gene. However, the relative abundance of LEA genes in P. superbus as

compared to C. elegans, along with their constitutive expression (34 LEA-encoding

are ESTs), suggest that LEA Group 3 proteins are an important component of the

anhydrobiotic protection repertoire of P. superbus.
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2.3.9 Molecular Chaperones & Unfolded Protein Response

Heat shock proteins (HSPs) are essential for the correct folding and maturation of

a great diversity of client proteins and for protecting proteins from stress induced

unfolding and aggregation (Morimoto, 2008; Richter et al., 2010). Eukaryotic HSP

families contain multiple genes, which may be either constitutively expressed or

stress inducible and targeted to specific cellular compartments (Kabani & Mar-

tineau, 2008; Vos et al., 2008). The HSP expression repertoire of an anhydro-

biotic organism may thus be very important in maintaining the integrity of the

proteome during the dehydration and recovery phases of anhydrobiosis (Sales et

al., 2000; Jonsson & Schill, 2007; Cho & Choi, 2009; Hu et al., 2003). The P.

superbus dataset contains representatives of all the HSP classes characteristic of

nematodes, including four distinct small heat shock proteins (sHSP). sHSP are

the major “holding” chaperones, retaining unfolding proteins in a conformation

suitable for subsequent refolding, thus preventing their irreversible aggregation

(Stengel et al., 2010; Eyles & Gierasch, 2010). Anhydrobiotic encysted larvae of

the brine shrimp Artemia franciscana accumulate large quantities of a sHSP known

as p26 which constitutes 15% of the non-yolk protein in these larvae (Liang et

al., 1997). A. franciscana cysts are resistant to desiccation, high temperature,

gamma-irradiation and anoxia, and the chaperoning activity of p26 is likely to be

a very significant component of this remarkable stress resistance (Sun et al., 2006).

The accumulation of unfolded proteins in the endoplasmic reticulum (ER) aris-

ing from physiological or abiotic stress and leads to the expression of several pro-

tein folding chaperones, including members of the HSP90 and HSP70 families and

their co-chaperones (Schroder, 2008). Unfolded protein response (UPR) chaper-

ones from the P. superbus dataset include three protein disulfide isomerases (PDI),

which catalyse the formation and isomerisation (rearrangement) of cysteine bonds

during protein folding (Winter et al., 2007; Karala et al., 2007); five cyclophilin-
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type peptidyl-prolyl cis-trans isomerases which catalyse the isomerisation of the

peptide bonds preceeding proline residues, and a homolog of Derlin-2 which is re-

quired for the degradation of misfolded glycoproteins in the ER (Oda et al., 2006).

Five P. superbus unigenes encode proteins required for the facilitated folding of

actin and tubulin to form microtubules: two prefolding subunits, two subunits

of cytosolic T-complex protein 1 and alpha-tubulin folding cofactor B. Changes in

microtubule dynamics have been shown to occur during osmotic stress in Zea mays

(Lü et al., 2007) and during desiccation in Brassica napus (Bagniewska-Zadworna,

2008); it is also possible that adjustments to the stability of the microtubule cy-

toskeleton are also required by P. superbus for successful entry into anhydrobiosis.

2.3.10 Removal of Damaged Proteins -

the Ubiquitin - Proteasome (UPS) and Autophagy

Systems

The importance of the proteasomal system to unstressed nematodes is also ap-

parent from its abundant representation in the P. superbus EST dataset, which

contains 44 UPS unigenes comprising 68 ESTs. In contrast, autophagy genes are

not well represented in unstressed P. superbus. Only two P. superbus homologs of

the 19 core C. elegans autophagy genes were detected (Kovacs & Zhang, 2010).

2.3.11 A Comparison of the P. superbus EST Unigene

Dataset with EST Datasets from other Anhydro-

biotic Nematodes

The 3,982 P. superbus unigenes were compared to EST unigene datasets from three

other species of anhydrobiotic nematodes (Karim et al., 2009; Adhikari et al., 2009)

and (Haegeman et al., 2009) to identify putative homologous protein families which
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may reveal some of the core anhydrobiotic processes shared by these nematodes.

Plectus murrayi is an Antarctic soil nematode adapted to survive desiccation and

freezing (Adhikari et al., 2009). A. avenae is a slow desiccation strategist soil

dwelling fungiverous nematode. D. africanus is an endoparasite of plants with

peanut as its primary host. It migrates to the pods and seeds of the ground nut

and can survive in an anhydrobiotic state in the seeds (Adhikari et al., 2009). The

phylogenetic relationships of these nematodes are indicated in Chapter 1.

The combined dataset from the four anhydrobiotic nematodes comprised 10,791

unigenes. All against all BLASTP analyses of the predicted peptide sequences for

these unigenes, followed by their classification into putative homologous groups us-

ing the TRIBE Markov clustering algorithm as implemented in the MCL software

package, has identified 7,063 unigene families, where 6,308 consist of singletons.

The distribution of these unigene families across the four nematode species is sum-

marised in Figure 2.8. A total of 67 unigene families contain transcripts from all

four anhydrobiotic nematodes. While the analysis is based on an incomplete cov-

erage of the transcriptomes of all four nematodes, these 67 families provide a first

indication of subsets of genes common to the four species, some of which may

be involved in anhydrobiotic processes. These families include representatives of

several of the anhydrobiotic and stress response proteins discussed in the previ-

ous section. Among these are protein kinases and HMG proteins; glutathione

S-transferase; sHSP, HSP70; HSP90; peptidyl-prolyl cis-trans isomerase; several

components of the UPS system and RIC1, a poorly characterised family which

encodes plasma membrane proteins that are expressed in response to high salt

or low temperature conditions in plants (Navarre & Goffeau, 2000). Members of

the nematode specific transthyretin-related ttr family (Jacob et al., 2007) are also

included among the 67 unigenes. The function of ttr genes remains elusive; so far,

the function of just one nematode ttr gene product has been discovered (TTR-52
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mediates the recognition and engulfment of apoptotic cells in C. elegans (Wang

et al., 2010a)). Since this analysis is based on partial transcriptomes of the four

nematodes the results need to be interpreted conservatively; however, the data

shows that these four anhydrobiotic nematodes express a great diversity of stress

responsive genes. Surprisingly, none of the 13 LEA unigenes were common to

all four nematode datsets, and 8 LEA sequences were found only in P. superbus.

This may indicate that constitutive expression of LEA transcripts is higher in P.

superbus than in the three other anhydrobiotic nematodes. When more complete

coverage of the transcriptomes of anhydrobiotic nematodes and other anhydro-

biotic animals becomes available, comparative transcriptomic analyses will be a

powerful tool for the identification of candidate genes and processes required for

successful anhydrobiotic survival.
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2.3.12 Analysis of Novel Transcripts

Of the 3,982 unigenes in the dataset, 2,059 (51.7%) have no significant similarity

to any sequences in the Genbank or NEMBASE4 databases. The Prot4EST algo-

rithm was used to translate these novel unigenes into putative peptides. Analysis

of the physical properties of these putative peptides reveals that 149 of them are

predicted to lack a fixed tertiary structure (100% intrinsically disordered), while

an additional 296 peptides are predicted to be 50-99% disordered. Intrinsically

disordered proteins (IDPs) are hydrophilic, being characterised by a high propor-

tion of polar and charged amino acids and low sequence complexity; they also have

a low content of the hydrophobic amino acids which would normally form the core

of a folded globular protein (Dyson & Wright, 2005). These physical features also

occur in LEA proteins. A plot of the hydropathy (Kyte & Doolittle, 1982) of P.

superbus putative novel peptides and the 13 predicted P. superbus LEA proteins

against their predicted degree of disorder (determined using the IUPred program

(Dosztányi et al., 2005)) shows that there are 225 P. superbus peptides with a

GRAVY (Grand Average of Hydropathy) value of � -1 and � 50% disordered

(Figure 2.9).

Garay-Arroyo et al. (Garay-Arroyo et al., 2000) proposed that LEA proteins

are contained within a larger group of proteins called ’hydrophilins’ that accumu-

late in response to osmotic stress in prokaryotes and eukaryotes. The characteris-

tics that define this group are a glycine content of greater than 6% and hydropathy

index of less than -1. This dataset contains 170 novel putative peptides that meet

these criteria (Figure 2.10). The P. superbus unigenes predicted to encode LEA

proteins were identified on the basis of BLAST searches. Analysis of their physical

properties reveals that all of these putative LEA proteins are hydrophilic, having

GRAVY values ranging from -0.62 to -1.42; six are predicted to be 100% unstruc-

tured, a further three are largely (77-99%) unstructured, but three putative LEA
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unigenes: PSC01853, PSC00514 and PSC00416 are predicted to be only partly

disordered (9, 10 and 18% disorder, respectively). Eleven of the 13 putative LEA

sequences also have a glycine content of greater than 6%.

Many IDP proteins function by molecular recognition: either by transient, or

permanent binding to a structured partner molecule (Tompa, 2005). However, the

functions of some IDPs depend directly on the extended random coil conformation

of the disordered state - the so-called entropic chain effect (Dunker et al., 2002).

Entropic chain effects are likely to be central to many of the functions of LEA

proteins. The elongated, natively unfolded conformation of LEA proteins may

help to form a ”molecular shield” (Chakrabortee et al., 2007), preventing protein

aggregation and denaturation. These hydrophilic, proteins also have the capacity

to bind and retain water molecules and, at later stages of the dehydration process,

an abundance of charged amino acids may enable some LEA proteins to replace

water at the hydrogen bonding sites of dehydrated proteins. Although LEA pro-

teins are natively unfolded when fully hydrated, some LEA proteins, including

AavLEA1 (Goyal et al., 2003), have been shown to develop a secondary structure

as they become desiccated (Hand et al., 2011), leading to the suggestion that some

LEA proteins might function as intracellular space-filler molecules which prevent

the collapse of cells as they become desiccated (Tunnacliffe & Wise, 2007). The

combined group of putative hydrophilic proteins identified in Figure 2.10 contains

294 individual novel sequences. These sequences represent an important group of

candidate anhydrobiotic genes, meriting further investigation.
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2.3.13 Expression of Putative Stress Related Genes upon

Desiccation

P. superbus is capable of surviving exposure to a dry atmosphere in desiccation

chambers containing silica gel without the need for prior pre-incubation to mild

desiccation stress (Shannon et al., 2005). However, it is likely that in its natural

habitat P. superbus would experience more gradual change from a condition in

which its cells and tissues are fully hydrated to one of extreme dehydration. In ad-

dition, intrinsic behavioural (coiling/clumping) responses or morphological adap-

tations (such as surface lipids (Wharton & Marshall, 2009) or possibly SXP/RAL-2

cuticular proteins) may slow the rate of water loss in P. superbus and allow time

for inducible molecular protection mechanisms to be put in place. Dr Trevor Tyson

used qPCR to investigate the inducible expression of several unigenes that repre-

sent homologues of stress related genes in other organisms. The expression of five

of the 19 genes tested was upregulated in P. superbus following exposure to 98%

RH for 12 hours.

Three antioxidant genes gpx (glutathione peroxidase), dj-1 and prx (which en-

codes a 1-Cys peroxiredoxin) were upregulated in response to desiccation stress in

P. superbus. ROS accumulation is triggered by cellular dehydration and the qPCR

data show the importance of enzymatic antioxidant defense systems during the in-

duction of anhydrobiosis. Glutathione peroxidases (GPx) catalyse the reduction

of Hydrogen Peroxide, and GPx have been previously found to be upregulated in

A. avenae and in P. murrayi, in response to desiccation (Reardon et al., 2010;

Adhikari et al., 2010). DJ-1 is a multifunctional protein associated with familial

Parkinson’s disease (Bonifati et al., 2003; Shendelman et al., 2004). One of its

proposed functions is a redox-dependent molecular chaperone activity (Shendel-

man et al., 2004) and a role for DJ-1 as an atypical peroxiredoxin-like peroxidase

in inactivating mitochondrial hydrogen peroxide has also been proposed (Andres-
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Mateos et al., 2007). From Figure 2.11 it can be seen that the expression of dj-1

is upregulated 9-fold in P. superbus in response to desiccation stress. This gene is

also upregulated in response to desiccation stress in the anhydrobiotic nematode

Aphelenchus avenae (Reardon et al., 2010). Peroxiredoxins (Prx) comprise two

classes: 1-Cys Prx and 2-Cys Prx, based on the number of cysteinyl residues di-

rectly involved in catalysis (Wood et al., 2003). Animal Prx sequences comprise

3 clades (Dubreuil et al., 2011): clades A and B contain 2-Cys Prx, while 1-Cys

Prx occur in clade C, which also contains plant 1-Cys Prx sequences (Dubreuil et

al., 2011). In plants 1-Cys Prx are seed-specific (Aalen, 1999): they accumulate

during seed maturation and their expression declines during germination, an ex-

pression pattern is also characteristic of many LEA genes. A seed-specific 1-Cys

Prx, was found to be abundantly expressed during desiccation in the leaves of the

resurrection plant Xerophyta viscosa (Mowla et al., 2002) and transcripts encod-

ing a 1-Cys Prx are also upregulated during rehydration of the anhydrobiotic moss

Tortula ruralis (Oliver, 1996). A 1-Cys Prx is upregulated in response to desicca-

tion in P. superbus, revealing a further parallel between the desiccation tolerance

mechanisms of anhydrobiotic nematodes and plants.

Only one of the three LEA sequences tested was upregulated, but this sequence

(PSC01853) was upregulated 9.8 fold in response to desiccation stress. Of the four

P. superbus HSP sequences assayed only one, an sHSP sequence, was upregulated

in response to desiccation. The genes encoding HSP70 and HSP90 are constitu-

tively expressed in the Antarctic nematode P. murrayi and are not upregulated

further by desiccation (Adhikari et al., 2009). Similarly only 2 of 6 HSP70 par-

alogues show higher expression levels in diapausing eggs of the rotifer Brachionus

plicatilis than in other metabolically active life stages (Denekamp et al., 2011).

sHSP are the major holding chaperones which prevent the irreversible aggregation

of unfolding proteins (Stengel et al., 2010; Eyles & Gierasch, 2010). They have been
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shown to accumulate in anhydrobiotic encysted larvae of the brine shrimp A. fran-

ciscana (Liang et al., 1997) and they are also abundantly expressed in diapausing

eggs of B. plicatilis (Denekamp et al., 2011). These expression profiles for represen-

tatives of different HSP classes in anhydrobiotic animals from three different phyla

suggest that sHSP proteins, in particular, have an important role in maintaining

the integrity of the proteome during anhydrobiosis. The following transcripts

were tested: PSC03116: sHSP family member; PSC01018 sHSP family member;

PSC02842 HSP40/DNaJ protein family member; PSC00673 HSP70 family mem-

ber; PSC02695 cyclophilin family member; PSC00740 protein disulfide isomerase;

PSC00782 LEA3 protein; PSC01853 putative LEA3 protein; PSC00514 LEA3 pro-

tein; PSC02304 DJ-1; PSC03895 1-Cys peroxiredoxin; PSC02494 gluthatione per-

oxidase; PSC04819 gluthatione peroxidase; PSC02624 glutathione S-transferase

(sigma class); PSC04040 glutathione S-transferase (kappa class); PSC01063 alde-

hyde dehydrogenase; PSC01095 aldehyde dehydrogenase; PSC01029 aquaporin;

PSC01468; RIC1 putative stress responsive protein. The reference genes were the

P. superbus 60S ribosomal protein L32 and ama-1 genes. Statistically significant

differences (Student’s t test) are indicated, **p < 0.001.
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2.4 Discussion

P. superbus appears to utilise a strategy of combined constitutive and inducible

gene expression in preparation for entry into anhydrobiosis. The apparent lineage

expansion of LEA genes, together with their constitutive and inducible expres-

sion, suggests that LEA3 proteins are important components of the anhydrobiotic

protection repertoire of P. superbus. The finding that 51% of these unigenes cor-

respond to novel sequences is consistent with previous metagenomic analyses of

nematode EST datasets, and is a reflection of the diversity of nematode gene space.

Functional annotation of the P. superbus unigenes has identified 187 constitutively

expressed consensus sequences encoding putative stress-related genes that may

have a role in anhydrobiosis. Among these were: MAP-kinases; members of the

jumonji family of transcription activators; antioxidant enzymes; molecular chap-

erones; components of the ubiquitin-proteasome system; DNA damage response

proteins and LEA proteins.

Thirteen P. superbus unigenes encode predicted LEA proteins, all members of

Group 3, as is typical of animal LEA proteins. The relative abundance of LEA

genes in P. superbus, as compared to C. elegans, along with their constitutive

expression (34 LEA-encoding ESTs were detected), suggest that LEA proteins are

an important component of the anhydrobiotic protection repertoire of P. superbus

and that the LEA gene family may have undergone lineage-specific expansion in

this species. Five of the 19 putative P. superbus stress response genes tested were

upregulated in response to desiccation. Three of the upregulated genes encoded

antioxidant enzymes, an indication of the importance of enzymatic antioxidant

defense systems during the induction of anhydrobiosis. One of the upregulated

genes encoded a 1-Cys Prx, revealing a parallel between the desiccation tolerance

mechanisms of plant seeds and resurrection plants with those of anhydrobiotic

nematodes. Of the four P. superbus HSP sequences assayed, only one, an sHSP
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sequence, was upregulated in response to desiccation. This is consistent with the

expression profiles for representatives of different HSP classes in anhydrobiotic

animals from other phyla and suggests that sHSP proteins have an important role

in maintaining the integrity of the proteome during the dehydration phases of

anhydrobiosis.

A large number of P. superbus unigenes are homologous to human disease

genes, particularly those implicated in neurodegenerative diseases. Many neurode-

generative diseases are associated with the dysfunction of the protection systems

responsible for repairing or degrading damaged proteins and macromolecules, thus

some gene products that have roles in anhydrobiotic protection in P. superbus may

have human homologs that are required for neural survival. Therefore, in addi-

tion to providing candidate genes for use in anhydrobiotic engineering experiments,

knowledge of the molecular mechanisms responsible for anhydrobiotic protection of

macromolecules may also provide insights into some of the gene products required

for the integrity of neural tissues.

Analysis of the physical properties of the putative peptides encoded by the

2,059 novel P. superbus unigenes reveals that 149 of them are predicted to be 100%

IDPs and that 170 novel sequences meet the criteria used to define ’hydrophilin’

molecules which accumulate in response to osmotic stress in prokaryotes and eu-

karyotes. These IDPs and putative hydrophilins represent a key group of potential

stress-related genes. The most highly expressed P. superbus sequence belongs to

the nematode specific family of SXP/RAL-2 proteins, which had previously been

identified as a class of secreted and surface associated antigens in diverse animal

parasitic nematodes. The abundant representation of the SXP/RAL-2 in P. su-

perbus may be indicative of a role for this protein in stabilising the nematodes’

integument and slowing the rate of water loss during evaporative desiccation.

Panagrolaimus is an excellent model system for the study of anhydrobiosis and
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cryobiosis. Panagrolaimid nematodes can be readily cultured in the laboratory and

have a short generation time. The anhydrobiotic and cryobiotic species and strains

of Panagrolaimus described to date belong to a single clade, which will facilitate

comparative transcriptomic analyses of the molecular basis of anhydrobiosis in

a single genus. This study is the first investigation of the putative molecular

mechanisms involved in anhydrobiosis in Panagrolaimus. In addition to providing

cDNA clones and sequence data for candidate anhydrobiotic genes, the dataset

presented here has provided anchor sequences important for the assembly of the

genome and transcriptome of P. superbus from high-throughput sequence data as

described in Chapters 3, 4, 5 and 6.
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Chapter 3

Transcriptome Assembly

3.1 Introduction

Currently, technology has caught up with, and indeed surpassed, the thirst for

sequence data to be produced. Therefore, the focus must now be on meaningful

interpretation of the data through functional annotation. The launch of the first

next generation sequencing platform by Roche in 2005 led the way for advanced

sequencing technologies, which now dominate the field, ahead of more traditional

methods. The cost of sequencing has dropped significantly, meaning it has now

become accessible to most research groups. Indeed, some researchers have found

that in order to study a mutant of interest it is simply easier and more efficient to

sequence the whole genome than to isolate and sequence the gene itself (Shen et

al., 2008).

The human genome project took upwards of $10 million to complete (Lander

& International, 2001) and now, with the advent of new cheaper sequencing tech-

nologies, the goal of a $1,000 genome is not too far in the future. In fact, some

companies (as of July 2012) are offering human exome sequencing at a coverage

of 30X for $698 for new customers with 1st sample only (www.otogenetics.com).
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This could mean huge advances in the field of personalised medicine and the area

of pharmacogenomics (where a person’s genes could predict how their body will re-

spond to a drug treatment) is quickly gaining mass approval, not only from those

in the research domain. The true power of pharmacogenomics is in the area of

prediction. For example, if sequencing their genome indicates that a person may

have a predestined risk of developing a skin cancer, such as melanoma, then the

application of a high SPF sunscreen should feature in their day to day routine.

Transcriptome sequencing, where only messenger RNAs are sequenced, has

been used extensively in research since the first next-generation transcriptome

was published shortly after the technology was launched in 2005 (Margulies et

al., 2005). This technology has begun to replace microarray technology for gene

expression studies. The speed and cost efficiency of next-generation technologies

are continuously being updated to produce longer, more accurate and cheaper

reads in less time. Once these reads are produced, they undergo quality control

and are then assembled into longer contiguous sequences, so-called contigs. The

assembly of the transcriptome shall be the focus of this chapter, while functional

annotation of the resulting dataset produced post-assembly will be discussed in

Chapter 4.

The Newbler assembler, or GS De Novo Assembler as it is referred to in the

literature, is a de novo assembler developed by Roche for use specifically with 454

reads. Both FLX and longer Titanium reads can be assembled alongside traditional

Sanger reads. In the most simplistic view, the assembly process works by taking

all the reads and aligning them to one another. Overlapping reads can then be

merged, and there may be multiple iterations of this process before contigs are

produced. Ideally, these contigs represent the complete repertoire of full-length

transcripts from expressed genes.

There are problems associated with assembly. For example, with P. superbus,
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as it is grown on a lawn of Esherichia coli, there is the potential that the contigs

generated from the sequencing of P. superbus could actually originate from E.

coli or other bacteria in the food source. This can be remedied by removing

any sequences with high similarity to bacterial genes. However, it is possible

that some of these bacterial sequences may be bona fide components of the P.

superbus genome, such as remnants from horizontal gene transfer events. Primers

and adapters need to be removed before any analysis is done, as otherwise these

sequences would cause a large number of reads from different transcripts to overlap.

As with any sequencing technology, there may be a certain degree of sequencing

error. This is remedied by using quality scores and filtering at a pre-defined quality

cutoff point. Homopolymer errors may occur when using the 454 pyrosequencing

technology (Balzer et al., 2010). These errors have been detected when the target

sequence contains runs of five (or more) of the same base. Challenges associated

with sequencing also include repeat regions and AT-rich regions. The possibility

of chimera formation needs to be considered and abundantly expressed ribosomal

RNA reads need to be identified.

The aim of this transcriptome analysis was to assemble the best representation

of all expressed transcripts with the expectation that, by stressing the worms prior

to sequencing, the resulting transcriptome would be enriched for stress response

genes. To enrich for stress-related genes, a mixed population of P. superbus was

exposed to one of the following stresses: desiccation, cold, heat or oxidation. Both

normalised and unnormalised cDNA libraries were prepared from this population.

The reason for including a normalised cDNA library in the sequencing step was to

reduce the over-representation of abundantly expressed genes (normally associated

with housekeeping functions) in the sequencing library and hence low abundance

sequences can be identified. The aim of the work presented in this chapter was

to identify the best assembly pipeline for 454 Roche Titanium reads with a view
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to performing downstream functional annotation. This resulted in establishing a

set of metrics by which to evaluate the performance and merits of each assembler.

It should be noted at this point, as was discussed in Chapter 1, that establishing

the ‘best’ assembly is not simply a matter of choosing which performs best given

a series of test. It is necessary also to examine what is being questioned of the

sequences resulting from the assembly.
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3.2 Materials & Methods

3.2.1 Growth Conditions, Stress Treatments and RNA Ex-

traction

P. superbus was grown at 20◦C on 9cm NGM agar plates (Brenner, 1974) sup-

plemented with streptomycin (30µg/ml) and containing a lawn of Escherichia coli

strain HB101. Twenty five NGM plates, containing a mixed population of adults

and larvae, were flooded with sterile S Basal buffer (Brenner, 1974). The plates

were left shaking for 30 minutes, then the supernatant was transferred to a ster-

ile 1L beaker and the nematodes were allowed to settle for 30 minutes at 4◦C.

The supernatant containing E. coli was then removed and the nematodes were re-

suspended in sterile S buffer. This washing process was repeated three times. The

nematodes were then transferred to 50ml Falcon tubes and centrifuged at 1,000rpm

for 5 minutes. The supernatant was removed and the pellet re-suspended in sterile

S buffer. This process was also repeated three times.

The nematodes were pooled and their final concentration was adjusted to 3,000

nematodes/ml. Nine replicates were set up for each of the four stress conditions

(as can be seen in Table 3.1), each replicate containing 3,000 nematodes in 1ml of

S buffer. For the controls, 36 replicates were set up (i.e., the number of control

nematodes equalled that used in all the stress treatments combined).

With the exception of the desiccation treatments, all nematodes were incubated

with shaking at 50rpm on a Braun Centromat-R shaking platform for 24 hours. For

the desiccation treatment, individual 1ml suspensions of nematodes were vacuum

filtered onto a 2.5cm SuporR-450 filter (45µM, Pall Life Sciences). Each filter was

then transferred to a 3cm Petri dish and these were placed, uncovered, in a 1L des-

iccation chamber containing a 200ml saturated solution of potassium dichromate

(K2Cr2O7) (Winston & Bates, 1960). Following exposure to 98% RH for 24 hours
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the desiccated worms were washed off the filters using 1ml of sterile water. The

nematodes corresponding to each individual stress were pooled in a 50ml Falcon

tube, they were allowed to settle by gravity and were then transferred to a 1.5ml

Eppendorf tube, centrifuged at 5,000rpm for 5 minutes and re-suspended in 1ml

TRIzol Reagent (Invitrogen). The tubes were snap frozen in liquid nitrogen and

then stored at -80◦C until required. In the case of the paraquat treatment, an

additional washing step was included to remove the paraquat prior to the TRIzol

step.

The worms were homogenised in a mortar and pestle using liquid nitrogen.

Worms from the four stress treatments were pooled prior to homogenisation and

the control worms were homogenised separately. RNA was isolated from the ho-

mogenates following the protocol provided by the TRIzol supplier. The RNA con-

centration was measured using a Qubit fluorometer (Invitrogen) and RNA quality

was monitored by Tris-acetate-EDTA (TAE) agarose gel electrophoresis. TAE is a

buffer solution containing a mixture of Tris base, acetic acid and EDTA (Ethylene-

diaminetetraacetic acid).

3.2.2 cDNA Synthesis and Normalisation

cDNA was prepared using a MINT-Universal cDNA synthesise kit SK002 (Evro-

gen), designed to syntheses full-length enriched ds cDNA. First strand cDNA was

generated following the manufacturer’s protocol using 1µg of RNA for each reac-

tion (the completed reaction volume was 15µl). The first strand product was used

as a template for ds cDNA synthesis by PCR amplification for 20 cycles using

the M1 PCR primer in a 10µl reaction volume. The cDNA template comprised

0.5µl first strand cDNA product from stressed nematodes and 0.5µl first strand

product from the control nematodes (thus the resulting ds cDNA library contains

transcripts from both the stressed and control nematodes). The optimum number
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of PCR cycles was determined by evaluative PCR following the manufacturer’s

protocol. The ds cDNA from eight PCR amplifications was pooled and purified

using a Qiagen PCR purification kit, yielding 17.4µg of cDNA in total. One half

of this cDNA was retained for sequencing as an unnormalised cDNA library (li-

brary PS1) and the remainder was used to prepare a normalised library using a

TRIMMER-DIRECT cDNA normalisation kit NK002 (Evrogen). In the TRIM-

MER normalisation protocol, ds cDNA is denatured and allowed to re-anneal; the

ds-fraction formed by abundant transcripts during re-annealing is degraded using

Kamchatka crab duplex-specific nuclease (DSN) enzyme as described by Zhulidov

et al. (Zhulidov et al., 2004) and the normalised cDNA fraction is PCR amplified.

The optimal concentration of DSN (0.21 Units) and optimum number of PCR

cycles (19) were determined experimentally following the Evrogen protocol using

300ng of non-normalised cDNA. This process yielded 5.9µg of normalised cDNA

(library PS2) for sequencing. cDNA concentrations were measured using a Qubit

fluorometer (Invitrogen) and cDNA quality was monitored by TAE agarose gel

electrophoresis.

3.2.3 454 Titanium Pyrosequencing

The samples were nebulised, adapter ligated and pyrosequenced using the GS-FLX

Titanium single end reads platform (Roche) at the GenePool DNA Sequencing

Centre, University of Edinburgh. MINT SMART adapters, low complexity and

low quality sequences were trimmed and filtered, also removing the poly-A tails.

3.2.4 Sequence Assembly

Following filtering, these sequences were used as input into a variety of commer-

cial and freely available assembly programs using the Stokes and Stoney computing

clusters at the Irish Centre for High-End Computing (ICHEC, 2013). Independent
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assembler software packages used were Newbler (Roche, 2012) (www.454.com),

MIRA (Chevreux et al., 2004) (www.chevreux.org/projects mira.html), CLCBio

(Knudsen et al., 2010) (www.clcbio.org), Celera (Myers, 2000) (www.jcvi.org) and

iAssembler (Zheng et al., 2011) (www.bioinfo.bti.cornell.edu/tool/iAssembler/).

Their command line execution parameters are shown in Table 3.2. Several dif-

ferent versions of Newbler were examined as newer ones were released during the

investigation. The sample referred to as PS1 is the unnormalised pooled sam-

ple of control and stress worms whereas PS2 represents the normalised sample of

pooled control and stress worms. PS1 read count was 444,453 and PS2 read count

was 414,248 for assembly. Read statistics can be seen in Table 3.3. As discussed

in Chapter 2, 7,606 P. superbus ESTs that were sequenced using conventional

Sanger sequencing were also annotated. These sequences were also included in the

assembly steps to maximise the amount of data for assembly.
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Table 3.3: Post-filtering read statistics for the two P. superbus cDNA libraries
obtained by 454 Titanium FLX pyrosequencing.

PS1 PS2
Number of reads 444,453 414,248
Average length 320.52 284.14

Standard deviation 130.13 133.66
GC% 36 33

Number of bps (Mb) 142.5 117.7
Longest read length(bps) 668 693

Also investigated was the use of hybrid assemblers using output from inde-

pendent assemblers (see Figure 3.1). The CAP3 software package 1 was used on

the output from MIRA and Newbler to produce the CAP3 assembly. Given this

dataset, further processing was carried out according to the Partigene pipeline

(Parkinson et al., 2004), which involved the use of two extra steps: CLOBB 2

and Phrap 3, producing what will now be referred to as the Phrap assembly. The

command line execution parameters used for these hybrid assemblers are shown in

Table 3.2.

1www.seq.cs.iastate.edu
2www.nematodes.org/bioinformatics/Clobb2
3www.phrap.org
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Figure 3.1: Steps used in the generation of hybrid pipeline showing CAP3 and
Phrap assemblies.
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3.2.5 BLAST Homology Searches

The databases used for the homology searches are shown in Table 3.4.

Table 3.4: Databases used for homology searching.

Database URL
BLAST (NR) www.blast.ncbi.nlm.nih.gov

CEG version 2.4 www.korflab.ucdavis.edu/datasets/cegma
Nembase 4 www.nematodes.org/nembase4
UniRef100 www.ebi.ac.uk/uniref/
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3.3 Results

3.3.1 General Assembly Statistics

General information on the sequences from each assembly was generated using a

custom script. Initially, contigs which were less than 150bp were filtered out from

further analyses. The percentage of assembly removed at this filtering stage varied

drastically depending on the assembler. The assemblers which had most sequences

removed were iAssembler and Celera along with the Newbler contigs datasets. The

other assemblies lost relatively few sequences at this filtering stage, as can be seen

in Tables 3.5 - 3.8.

Newbler assembles reads into contigs, isotigs and isogroups. Respectively, these

correspond to exons, splice variants and gene sequences. However, there are po-

tential anomalies in this classification. For example, while the number of isogroups

should correspond to the number of expressed genes identified, some large isogroups

may cluster together transcripts from different genes due to a highly conserved

domain. Another potential issue is that different parts of a transcript may be

classified into two un-related isotigs due to low sequencing coverage. It is also

important to note that some level of untranslated regions (UTRs) and introns (in

case of primary transcripts) may be represented among the reads.

Various metrics were used to select the most appropriate assembly for down-

stream annotation. These metrics will be discussed in the following sections. The

assemblies discussed will be divided into Newbler assemblers and other assem-

blers. The objective of all assembly programs is to reassemble sequencing reads

into longer contigs which accurately reflect the underlying transcriptome from

which the reads were derived. The data in Tables 3.5 - 3.8 present the key metrics

obtained for all the assembly programs and hybrid assemblies used in this project

with the 454 Titanium FLX cDNA sequences. These metrics describe the num-
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ber of sequences (contigs and singletons) generated by each assembly program,

the average sequence length, the number of contigs ≥1,000bp and the size of the

assembled transcriptome in Mb.

The mean contig length ranges from 450bp (Celera) and 481bp (iAssembler)

(Table 3.5) to 1,032bp (Newbler version 2.6 without URT isotigs) (Table 3.8).

Figure 3.2 shows that different assembly programs and strategies generate a wide

diversity of mean contig lengths. The optimum assembler will ideally assemble all

the reads corresponding to a transcript into a single contig, thus the mean contig

length is an important criterion. However, it is important that maximisation of

contig length does not lead to the introduction of assembly errors, such as the

generation of chimeric sequences.

As expected, the mean contig length tends to be inversely proportional to the

number of contigs generated by the assembly. The highest number of sequences

in any assembly was found in the iAssembler dataset, 105,156 sequences, while

the CAP3 v2012, Phrap and the Newbler assemblies had fewer sequences (range

17,934 - 27,470 for Newbler - see Table 3.8), with 31,836 sequences for Phrap and

31,836 for CAP3 v2012.

The size of the assembled transcriptome provides an indication of redundancy.

Although animal genome sizes vary greatly in magnitude, transcriptome sizes fall

into a relatively narrow size range. Thus, for P. superbus a transcriptome which

is greater than ∼25Mb (size of the C. elegans transcriptome) is likely to contain

redundant contigs. To a certain extent some redundancy is to be expected as

splice variants need to be taken into account and some assemblers, most notably

Newbler Isotigs, will include variations on the same sequences. This can be seen

in Figure 3.3 which shows the total size of the assemblies in relation to the C.

elegans transcriptome (He et al., 2007). It shows that the large transcriptome

sizes generated by the iAssembler, CAP3 v2010 and Mira assemblies are likely to
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contain redundant sequences, whereas some of the early versions of the Newbler

software and the Celera program are liable to generate transcriptome assemblies

that could under-represent the full repertoire of the P. superbus transcriptome.

A common metric used to establish the quality of an assembly is the N50

statistic. It is the length of the smallest contig in the set that contains the fewest

(i.e., largest) contigs whose combined length represents just over half the size of

the assembly. Genes in C. elegans were found to be between 1 and 1.5Kb long.

Therefore, an assembly with an N50 in this range, would indicate that full length

genes have been sequenced. The CAP3 assemblies, Phrap, and all of the Newbler

Isotigs assemblies fall in this range, as seen in Figure 3.4, and the corresponding

information in Table 3.9. While it is often tempting to use the N50 statistic

as a determinant of the quality of an assembly, i.e., higher N50 values indicate

better representation by long, potentially full-length, sequences in the assembly,

it is also important to examine other criteria to ensure that the contigs are not

over-assembled, i.e., chimeric sequences.

Figures 3.2 - 3.4 present some of the key metrics for the P. superbus transcrip-

tome obtained with the different assembler programs.
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Table 3.9: Transcriptome assemblies compared on the basis of N50 values.
Assembler N50 (bps)

Newbler 2.3 without URT Contigs 1,096
Newbler 2.3 without URT Isotigs 1,203

Newbler 2.5 pre release with URT Contigs 975
Newbler 2.5 pre release with URT Isotigs 1,198

Newbler 2.5 without URT Contigs 975
Newbler 2.5 without URT Isotigs 1,192
Newbler 2.5 with URT Contigs 909
Newbler 2.5 with URT Isotigs 1,196

Newbler 2.6 without URT Contigs 1,042
Newbler 2.6 without URT Isotigs 1,184
Newbler 2.6 with URT Contigs 923
Newbler 2.6 with URT Isotigs 1,136

CLCBio 844
Celera 450

Mira version 3.2.0rc1 841
Mira version 3.4.0.1 791
Cap3 version 2010 1,008
Cap3 version 2012 1,036

Phrap 1,138
iAssembler 545
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3.3.2 Similarity Searches to Establish Quality of the P.

superbus Datasets

Other important criteria which can be used to evaluate the quality of a genome,

or transcriptome assembly, from a eukaryotic organism are whether the assembly

in question contains transcripts similar to gene/transcript sequences from other

organisms, i.e., the extent to which one is able to recover homologs from each

assembly. BLAST analyses were carried out, comparing the P. superbus tran-

scriptomes generated by the different assembly programs to different databases

containing sequences that represent (a) highly conserved eukaryotic genes, and (b)

genes from closely related nematode species.

Assembly Quality Control using the Core Eukaryotic Genes (CEGs)

Dataset

The CEG genes are a set of 248 highly conserved genes found in a wide range of

organisms (Parra et al., 2007, 2009). This gene set has previously been used as a

measure of the quality of de novo genome assembly data (Parra et al., 2009). It is

derived from a set of low copy number conserved genes from six model organisms:

Saccharomyces cerevisiae; Schizosaccharomyces pombe; Arabidopsis thaliana; C.

elegans ; Drosophila melanogaster and Homo sapiens. In selecting this gene set,

the authors chose conserved genes which were present in the KOG (euKaryotic

Orthologous Groups) database (Tatusov et al., 2003) in single copy for at least

four of the six model organisms (Parra et al., 2009).

Due to their conservation among the eukaryotes, the CEG genes should be well

represented in the P. superbus transcriptome. Hence the ability to retrieve CEG

homologs can be used as a basic ‘litmus’ test for the output of an assembly. Each

assembly was searched using BLAST for the presence of CEG homologs. The
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results are shown in Table 3.10, where it can be seen that, apart from CLCBio, 97-

98% of all CEG genes have homologs in each assembly, i.e., all assemblies passed

this first quality control test, apart from CLCBio.

114



Results Transcriptome Assembly

T
ab

le
3.

10
:

B
L

A
S
T

se
ar

ch
es

ca
rr

ie
d

ou
t

u
si

n
g

th
e

C
E

G
ge

n
es

fr
om

si
x

m
o
d
el

or
ga

n
is

m
s

ag
ai

n
st

th
e

d
iff

er
en

t
P

.
su

pe
rb

u
s

tr
an

sc
ri

p
to

m
e

as
se

m
b
li
es

.
A

B
L

A
S
T

cu
t-

off
of
>

60
b
it

s
w

as
u
se

d
.

*:
T

B
L

A
S
T

N
se

ar
ch

u
si

n
g

C
E

G
as

th
e

q
u
er

y.
**

:
B

L
A

S
T

X
se

ar
ch

u
si

n
g

C
E

G
ge

n
es

as
th

e
d
at

ab
as

e.

T
ra

n
sc

ri
p
to

m
e

A
ss

e
m

b
ly

C
E

G
(q

u
e
ry

)
*

%
C

E
G

(d
b
)

*
*

%
C

L
C

B
io

89
8

60
36

6
1

N
ew

b
le

r
2.

5
w

it
h

U
R

T
Is

ot
ig

s
1,

44
4

97
83

4
3

P
h

ra
p

1,
44

5
97

84
3

5
N

ew
b

le
r

2.
5

p
re

re
le

as
e

w
it

h
U

R
T

C
on

ti
gs

1,
44

7
97

64
5

4
N

ew
b

le
r

2.
6

w
it

h
U

R
T

Is
ot

ig
s

1,
44

9
97

74
8

3
M

IR
A

ve
rs

io
n

3.
2.

0r
c1

1,
45

0
97

66
5

4
C

ap
3

ve
rs

io
n

20
10

1,
45

0
97

65
9

4
N

ew
b

le
r

2.
5

p
re

re
le

as
e

w
it

h
U

R
T

Is
ot

ig
s

1,
45

1
98

69
6

5
C

el
er

a
1,

45
1

98
86

0
5

M
IR

A
ve

rs
io

n
3.

4.
0.

1
1,

45
1

98
83

5
4

C
A

P
3

ve
rs

io
n

20
12

1,
45

1
98

81
7

4
N

ew
b

le
r

2.
6

w
it

h
ou

t
U

R
T

Is
ot

ig
s

1,
45

3
98

1,
36

3
3

N
ew

b
le

r
2.

6
w

it
h

U
R

T
C

on
ti

gs
1,

45
5

98
1,

40
4

3
iA

ss
em

b
le

r
1,

45
5

98
1,

88
2

2
N

ew
b

le
r

2.
5

w
it

h
ou

t
U

R
T

Is
ot

ig
s

1,
45

6
98

72
0

3
N

ew
b

le
r

2.
6

w
it

h
ou

t
U

R
T

C
on

ti
gs

1,
45

7
98

1,
12

7
4

N
ew

b
le

r
2.

5
w

it
h

ou
t

U
R

T
C

on
ti

gs
1,

45
9

98
78

8
3

N
ew

b
le

r
2.

3
w

it
h

ou
t

U
R

T
Is

ot
ig

s
1,

46
0

98
71

4
3

N
ew

b
le

r
2.

3
w

it
h

ou
t

U
R

T
C

on
ti

gs
1,

46
1

98
95

0
3

N
ew

b
le

r
2.

5
w

it
h

U
R

T
C

on
ti

gs
1,

46
3

98
1,

36
6

3

115



Results Transcriptome Assembly

3.3.3 Homologues to other Nematode Genes and Tran-

scripts

NemBase4 is a set of Sanger sequenced nematode EST sequences curated by the

GenePool at the University of Edinburgh (Elsworth et al., 2011). As of July 2012,

it contained 62 species of nematodes including the EST sequences from P. superbus

discussed in Chapter 2. NemBase4+ dataset was created by removing the P. super-

bus sequences (to avoid hits to these sequences) and adding EST cDNA sequences

for the following species: Plectus murrayi, Ditylenchus africanus, Aphelenchus ave-

nae, Trihinella spiralis, Wuchereria bancrofti, Loa loa and Pristionchus pacificus.

This resulted in a total of 213,570 sequences which were compared against the as-

semblies using TBLASTN. The results are shown in Table3.11, where it can be seen

that 39-41% of Nembase4+ sequences are consistently represented by the assem-

blies. The exception to this is the Celera assembly where only 25% of Nembase4+

sequences are represented, indicating potential issues with this assembly.

Complementary BLASTX analyses were also carried out (using Nembase4+ as

the database and different assemblies as queries) to examine what proportion of

each assembly was similar to Nembase4+ sequences (results shown in Table 3.11).

Assuming that the ideal transcriptome assembly would have a fixed proportion of

transcripts that are similar to the Nembase4+ database, significantly higher/lower

proportions may indicate over- and under- assembly issues respectively. Congru-

ent with the previous finding of under-representation by Nembase4+ sequences,

the Celera assembly has a low proportion of its transcripts (35%) with signifi-

cant similarity to the Nembase4+ dataset. Other assemblies have 41-59% of their

respective transcripts with similarity to 39-41% of Nembase4+ sequences. The ex-

ception to this is the iAssembler assembly where it has the lowest proportion of its

transcripts having similarity to Nembase4+ sequences. This is despite having the

highest number of transcripts overall (28,060), 86,773 or 41% of these have a hit
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to Nembase4+ sequences (consistent with most other assemblers). One obvious

explanation lies in the fact that iAssembler produced the highest total number

of transcripts. However, these sequences are shortest when compared to others,

i.e., it may be subjected to under-assembly issues where transcripts are overly

fragmented.
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While the Nembase4+ database is a rich resource for gene sequences repre-

senting the diversity of nematode gene space, many of the 62 nematode species

represented in the database have less than 100 ESTs. The sequences in Nembase4

are predominantly from parasitic nematodes and the database does not contain

EST data from either C. elegans or C. briggsae. Thus, analogous BLAST searches

were carried out using transcriptome data from nematodes whose genomes are

fully sequenced and annotated. The nematode species selected for this experiment

were the free living nematodes C. elegans, C. briggsae and P. pacificus and the

parasitic nematodes B. malayi and M. hapla. Although it is a parasite with a

small transcriptome (Ghedin et al., 2007), the B. malayi dataset was included

because of its phylogenetic relatedness to P. superbus (see Figure 1.1). Again, the

different assemblies were used as queries and databases compared against each of

the nematode transcriptomes. The results are shown in Tables 3.12 to 3.15. They

show that when the transcriptome datasets from the five nematodes are used as

BLAST queries against the P. superbus assemblies, C. elegans is most significant

in similarity to P. superbus (45-51%). Here the CLCBio assembly is again an

outlier with only 39% of the P. superbus transcriptome represented. The trend

can also be seen where the iAssembler has the largest number of contigs but the

lowest proportion of its transcripts with significant similarity to other nematodes

(Tables 3.14 and 3.15), indicative of under-assembly issues.
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3.3.4 Quality Evaluation of P. superbus Assemblies by As-

sessing 5’ to 3’ Coverage of Individual CEG Genes

The analyses in Sections 3.3.4 to 3.3.7 were carried out in collaboration with

Dr. Chris Creevey, Teagasc, Grange, Dunsany, Co. Meath. The data in Tables 3.5

to 3.8 show that different assembler programs generate transcriptome assemblies

which differ substantially in numbers of contigs, mean contig length and transcrip-

tome size. Very high numbers of contigs and low mean contig size in an assembly

are possible indicators of under-assembled contigs, where most likely the assembler

has failed to merge overlapping reads from the same transcript. Under-assembly

of reads results in contigs which may not contain the full sequences of individual

genes and leads to inflated estimates of transcriptome size. From Table 3.5 it can

be seen that the P. superbus transcriptome assemblies generated by iAssembler

are likely to have generated under-assembled contigs.

The data in Section 3.3.2 shows that, with the exception of the CLCBio as-

sembly, all of the other assemblies had greater than 60 bit hits to 97-98% of the

CEG (Core Eukaryotic Genes) genes. Thus these conserved core genes are very

well represented in the P. superbus transcriptome. This is an indication that the

high-throughput 454 Titanium FLX sequencing does provide a good representa-

tion of genes expressed in the P. superbus transcriptome. Although the differ-

ent assemblies generally provide a good representation of the gene space in the

P. superbus transcriptome, another very important quality criterion is whether

full length transcripts are represented. Where a closely related reference species

is available, sequence alignment strategies can be used to identify the assembly

whose genes have the most complete coverage of individual genes in the reference

transcriptome. Lacking access to a closely related reference transcriptome for P.

superbus, the strategy used here was to compare the alignment of the P. super-
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bus CEG homologues against their full length counterparts from C. elegans. The

results obtained are presented in Figure 3.5 and they show that for all the P. su-

perbus assemblies there is a lower transcript coverage of the CEG genes at the 5’

end of the P. superbus contigs. This analysis also shows that the genes from the

CAP3 v2010 hybrid assembly and Newbler 2.6 without URT isotigs and contigs

have a higher percentage coverage at each point along the matched C. elegans

CEG genes than those from any of the other P. superbus assemblies. (At the time

this analysis was carried out the CAP3 v2012 hybrid assembly was not available

for inclusion in this study).
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3.3.5 Quality Evaluation of P. superbus Assemblies by Iden-

tifying Under-assembled Contigs and Chimeras

In Section 3.3.3 it was found that when full transcriptome datasets from four nema-

todes (C. elegans, C. briggsae, P. pacifcus and B. malayi) were used as a BLAST

query against the P. superbus transcriptome assemblies, a higher proportion of hits

was recovered for the C. elegans sequences than for the other nematode datasets

tested. So even when only 50% of the C. elegans genes had homologues in the

P. superbus assemblies (Table 3.13), the C. elegans transcriptome was selected as

the reference to investigate the number of under-assembled contigs and chimeric

contigs in the different P. superbus transcriptome assemblies.

To investigate the number of under-assembled contigs in different P. superbus

assemblies, the number of P. superbus contigs that had reciprocal best BLAST

hits to the same non-overlapping region of a C. elegans gene was obtained (see

Figure 3.6). The number of under-assembled contigs is then expressed as a per-

centage of the total number of contigs with significant similarity to any C. elegans

gene.
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Chimeras are mis-assembled contigs where the contig in question is made up of

what should be two independent contigs (see Figure 3.7). These are identified by

looking at the reciprocal best BLAST hits to C. elegans genes for each contig, and

where two non-overlapping regions in the same contig are similar to different C.

elegans genes. The number of chimeric contigs is then expressed as a percentage

of the total number of contigs with significant similarity to any C. elegans gene.

The percentage of under-assembled and chimeric contigs found in each assembly

are presented in Table 3.16. The results obtained show that Newbler 2.6 without

URT Isotigs had the least number of putative under-assembled contigs (5.85%),

followed by CAP3 version 2012 (7.16%), while the iAssembler transcriptome had

the highest number of putative under-assembled contigs (18.52%). Conversely, the

iAssembler dataset had the lowest number of putative chimeras (1.67%). Overall,

it seems that for most assemblers the generation of chimeras occurs less frequently

than the under-assembly of contigs. The highest number of putative chimeras

observed was 5.43% for the Phrap assembly.
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3.3.6 Quality Evaluation of P. superbus Assemblies by As-

sessing Length Coverage of Individual C. elegans

Genes

Figure 3.8 uses variable width box plots to show the distribution of the percentage

gene coverage of C. elegans genes matched by transcripts from each P. superbus

assembly. Ten P. superbus assemblies were investigated in this experiment and

the results obtained show that the Newbler 2.6 assemblies and both CAP3 hybrid

assemblies perform better than the other assemblies in terms of their percentage

coverage of individual C. elegans genes. The assemblies generated with the earlier

versions of the Newbler assembly software were not included in this analysis.
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Figure 3.9: Venn diagram showing the break-down of the C. elegans genes where
its homologues have been identified in up to five different P. superbus assemblies.
The assemblies were as follows: Newbler without URT Isotigs; CAP3 v2012; MIRA
v3.4.0.1 (7,465); Phrap and iAssembler.

Figure 3.9 is a Venn diagram that shows the break-down of the C. elegans

genes where its homologs have been identified in up to five different P. superbus

assemblies. The assemblies selected and the number of homologous C. elegans

sequences contained in each assembly were as follows: Newbler 2.6 without URT

Isotigs (5,899); CAP3 v2012 (6,761); MIRA v3.4.0.1 (7,465); Phrap (7,364) and

iAssembler (8,854). This diagram shows that there are 3,909 C. elegans genes
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which had homologous sequences in all five P. superbus transcriptome assemblies.

It can also be seen that each P. superbus assembly had hits to C. elegans genes

which were unique to that assembly alone: Newbler 2.6 without URT Isotigs (111);

CAP3 v2012 (117); MIRA v3.4.0.1 (319); Phrap (249) and iAssembler (1,647). In-

terestingly, the iAssembler transcriptome, which has the largest number of contigs

with the smallest mean contig size, had the largest number of homologous C.

elegans sequences uniquely present in that assembly. This raises the possibility

that the iAssembler may have recovered or assembled transcriptome P. superbus

sequences that were not assembled by the other assemblers.

From Figure 3.10 it can be seen that for the dataset from the Venn diagram

(Figure 3.9), the P. superbus genes which are assembled by all five assemblers

have the highest average transcript coverage in length. The lowest average length

coverage is detected for genes that are present only in one assembly. Figure 3.11

breaks it down further, showing length coverage for C. elegans genes where its

homologs are found only in one assembler. The results show a clear trend where

uniquely identified homologs (from each assembly) are generally not full length

transcripts but only represent partial gene sequences. So, while the iAssembler

dataset contain the largest number of C. elegans homologues, the data in Figure

3.11 show that its contigs that uniquely match a C. elegans gene cover on average

less than 20% of that gene. This observation also extends to other assemblies

(Figure 3.11) where unique C. elegans gene coverage is typically less than 20% of

that C. elegans gene.
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Figure 3.10: Variable width boxplots showing the percentage coverage of C. ele-
gans by P. superbus homologs based on the number of P. superbus transcriptome
assemblies that contain the gene. The circles at the top and bottom are outliers
to the main distribution, and the dark bars are the medians.
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Figure 3.11: Variable width boxplots showing the percentage coverage of C. ele-
gans by P. superbus homologs when the P. superbus genes are found by only one
assembler. The circles at the top and bottom are outliers to the main distribution,
and the dark bars are the medians.

3.3.7 Ranking P. superbus Transcriptome Assemblies us-

ing Unweighted Quality Criteria

To select the assembly for downstream analyses, each assembly was scored based

on the unweighted sum of its rankings for a number of quality criteria, mentioned

above, i.e., the lower the total score the better. Some of these criteria are likely
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not to be independent and may be positively correlated (e.g., number of contigs,

and percentage of under-assembled contigs; coverage of C. elegans genes, C. ele-

gans gene length coverage ≥80% and coverage of the 5’ end of C. elegans genes;

number of C. elegans BLAST hits) or negatively correlated (e.g., number of con-

tigs and mean contig length; N50 length and number of contigs in N50). The

assembly metrics and ranked scores are presented in Table 3.17. Transcriptome

size is included in Table 3.16, but was not used as a ranking criterion. It appears

to be inflated in the iAssembler, and possibly also in MIRA, but it is difficult to

decide among the other assemblies because the target transcriptome size is not

known. The results obtained show that two assemblies, CAP3 v2012 and Newbler

2.6 without URT isotigs, achieved a substantially better rank score than the other

four assemblies which were evaluated. Thus, either of these transcriptomes could

be recommended/selected for downstream annotation of the P. superbus transcrip-

tome. Analysis of their contig metrics show that the main difference between these

two assemblies is the larger number of contigs in the CAP3 assembly (31,836) as

compared to the Newbler isotigs assembly (14,960); the mean contig length is

longer for the Newbler isotigs assembly, but the number of contigs > 1kb is larger

for the CAP3 assembly (9,350) than for the Newbler isotigs assembly (6,866) and

the coverage of the 5’ end of the C. elegans genes is slightly higher for the CAP3

assembly (56%) than for the Newbler isotigs assembly (52%).
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3.4 Discussion

This chapter showed the transcriptome experiment from the early stages of sam-

ple preparation and normalisation through to the sequencing and assembly. The

functional annotation is a significant step which could not be undertaken without

a good deal of effort being put into choosing the best assembly for the dataset

and the type of biological questions being asked. It was decided to establish a set

of tests or metrics by which to evaluate the performance of the assemblers and

that way a ‘best’ or set of ‘best’ assemblies could be chosen for the downstream

functional annotation analysis discussed in the next chapter. These metrics were

chosen on the basis that they had been used previously in other publications, but

this evolved into choosing them based on discussion and analysis of previous met-

ric results. What had previously been thought to be an initial routine stage in the

annotation process, became a study in its own right.

As expected, there was a greater number of reads generated from the unnor-

malised rather than the normalised sample. This is expected, because the nor-

malisation step functions to reduce the amount of housekeeping genes. It can be

assumed that these housekeeping genes would also be present in a high copy num-

ber. Default parameters were used with the assemblies, as it was felt that there

were so many different assemblies having to also identify the different parameters

on offer, it would place unsustainable time constraints on the project.

An interesting observation to note was that different assemblers generated con-

tigs of different lengths and thus, post-filtering by length (>150bp) meant more

data was lost at this stage for some assemblies than for others. It was deemed

that the Newbler Isotigs performed best in this way, as very few sequences were

removed through size filtering and thus resulted in minimal data loss. Further-

more, an examination of the number of base pairs in the finished assembly showed

that Newbler contigs and Celera are perhaps too strict when choosing which reads
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are deemed acceptable for assembly.

Comparing assemblies based on N50 length is an interesting metric. This was

the popular metric of choice to be optimised in the early stages of next-generation

sequencing. This metric does give a good estimate of whether or not full-length

transcripts have been achieved. If the gene size in C. elegans is used as a compar-

ison, any assemblies with an N50 of 1,000-1,500bps could be deemed reasonable.

These are the CAP3s, Phrap and the newer Newbler contigs and isotigs. Complet-

ing the pattern, Celera, CLCBio, Mira and iAssembler don’t generate comparable

N50 values. An argument could be made here that this is due to the stringency of

their alignments and a further investigation into the parameters on offer for these

assemblers could lead to better results.

P. superbus homologs to other organisms from different assemblies were identi-

fied by similarity searches using BLAST (see Section 3.3.2). While this is primarily

done for the purpose of annotation, i.e., functional inference, it also proved useful

for assessment of assembly quality. For example, the recovery of CEG genes acted

as a basic ‘litmus’ test for the assemblies (Section 3.3.2); all assemblies passed this

test, apart from CLCBio, by virtue of having almost all CEG genes represented.

The extent to which genes from other nematodes are represented in each assem-

bly (by homologs) also provide clues to quality (Section 3.3.3), e.g., the Celera

assembly has significantly lower hits to other nematode sequences relative to oth-

ers. In the case of iAssembler, nematode homologs tend to be as well represented

as in the other datasets, but this is achieved through exceptionally high numbers

of iAssembler transcripts compared to others, i.e., indication that the iAssembler

dataset may be under-assembled.

Other information has also been gleaned from the BLAST analyses involving

other nematode genomes/transcriptomes. For all assemblies, C. elegans came out

consistently as the closest to P. superbus in terms of homologous sequences, with
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about 50% of its genes having homologs in the P. superbus assemblies (Section

3.3.3). P. pacificus was found to be least similar to P. superbus, where around

35% of its genome have P. superbus homologs. This is surprising as P. pacificus

is a free-living nematode and it is more closely related phylogenetically to P.

superbus than is C. elegans as shown in Figure 1.1. One likely explanation for this

discrepancy is that the P. pacificus dataset is probably not as extensively curated

as that of the model organism C. elegans.

Finally, evaluation of the quality of the different P. superbus assemblies was

performed by assessing contig coverage of individual CEG genes and C. elegans

genes and by estimating the proportion of chimeras and under-assembled contigs

in each assembly as shown in Sections 3.3.4, 3.3.5 and 3.3.6. This analysis also

shows that the genes from the CAP3 v2010 hybrid assembly and Newbler 2.6

without URT Isotigs and contigs have a higher percentage coverage at each point

along the matched C. elegans and CEG genes than those from any of the other P.

superbus assemblies. It was also found that Newbler 2.6 without URT Isotigs had

the least number of putative under-assembled contigs (5.85%), followed by CAP3

v2012 (7.16%), while the iAssembler dataset had the highest number of putative

under-assembled contigs (18.52%). Overall, it seems that for most assemblers the

generation of chimeras occurs less frequently than the under assembly of contigs.

The highest number of putative chimeras observed was 5.43% for the Phrap as-

sembly.

To select the assembly for downstream analyses, each assembly was scored

based on the unweighted sum of its rankings for a number of quality criteria (Sec-

tion 3.3.7). The results obtained show that two assemblies, CAP3 v2012 and

Newbler 2.6 without URT Isotigs, have a substantially better rank score than the

other four assemblies which were evaluated. Thus, either of these transcriptomes

could be recommended/selected for analysis an annotation of the P. superbus tran-
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scriptome. Analysis of their contig metrics show that the main difference between

these two assemblies is the larger number of contigs in the CAP3 assembly (31,836)

as compared to the Newbler isotigs assembly (14,960); the mean contig length is

longer for the Newbler isotigs assembly, but the number of contigs >1kb is larger

for the CAP3 assembly (9,350) than for the Newbler Isotigs assembly (6,866).

Transcript coverage at the 5’ end of C. elegans genes is also higher for the CAP3

assembly (56%) than for the Newbler Isotigs assembly (52%).

Taking into account all of the metrics used and the aim of this transcriptome

study, it was deemed that it would be wise to immediately exclude iAssembler,

CLCBio, Celera and early Newbler versions from inclusion in any further studies.

Since Phrap, CAP3, and MIRA neither shone nor performed exceptionally badly it

was clear that the best performance on all metrics were the Newbler without URT

Isotigs and CAP3 v2012 assemblies. Newbler is a specific assembler developed by

454(Roche) to accommodate the types of reads coming from their own in-house

sequencer and it is clear that the most recent version of the Newbler software

performs very well relative to the earlier versions of Newbler.
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Chapter 4

Transcriptome Annotation

4.1 Introduction

Assembly and generation of a dataset is crucial to the success of any transcriptome

project. Further downstream, functional annotation of the dataset allows for a

comprehensive picture of the quantification of genes and their isoforms. This is

very computationally intense and leads to many challenges, both of time and

resources. It is, however, a necessary step in the establishment of expression

levels, function and novel components yet to be explored. Using transcripts of

organisms stressed in different ways, we can reach a deeper understanding of how

that organism is affected by stress versus how it normally functions. While we

don’t have a clear picture as to the function of most genes, those that are known

can be used to annotate transcriptome datasets. This is done using comparison

methods, and can be used to generate a ‘best guess’ as to the function of that

gene. All cells contain the same genomic sequence, but what differentiates them is

their expressed genes (Nicol et al., 2012), thus the transcriptome provides valuable

insight into gene expression and was used to investigate gene expression in response

to environmental stress (desiccation, cold, heat and oxidation) in this study.
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4.2 Methods & Materials

4.2.1 Functional Annotation using the BLAST2GO Tool

BLAST2GO is a functional annotation tool and pipeline that was used on the

transcriptome assembly (Conesa et al., 2005). BLAST2GO allows homologous

mapping using BLAST. It also integrates the Gene Ontology database, Enzyme

Commission database, InterPro database and KEGG database, and allows an ex-

tensive annotation of novel datasets. BLAST2GO PRO was used on an iMac 3.33

GHz Intel Core 2 Duo with 8Gb of RAM. BLAST2GO runs took approximately

30 days per run of 20,000 sequences and the software was found to need constant

monitoring as it had a tendency to crash when it became overloaded (Conesa et

al., 2005). The pipeline used is outlined in Figure 4.1. The BLAST analysis took

about seven days to complete using BLAST2GO. GO, KEGG and EC were quick

to run in the PRO mode and the remaining time was spent running InterProScan.
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Figure 4.1: BLAST2GO annotation pipeline beginning with sequences in FASTA
format and resulting with an annotated dataset.
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4.3 Results

4.3.1 Summary

Version 2.6.3 of BLAST2GO was used to functionally annotate the transcriptome.

BLAST2GO is an extensive tool for annotating and data mining sequences using

Gene Ontology (GO). It integrates visualisation and statistical software, including

InterPro, enzyme codes, KEGG pathways, GO direct acyclic graphs (DAGs) and

GOSlim (Conesa et al., 2005). The annotation step is based on homology transfer.

As has been outlined previously, the Newbler 2.6 Isotigs without URT was deemed

one of the most suitable assemblies and was chosen for annotation. Firstly, a

BLASTX against the NCBI NR database was performed. This was followed by

GO mapping and downstream annotation. The number of sequences found at

each length is shown in Figure 4.2. The majority of sequences in the P. superbus

assembly were found to be of length 750-1,500bps, which is the average length of

a nematode gene.

Figure 4.2: Number of sequences in the P. superbus transcriptome assembly in
proportion to length of sequence.
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Following the removal of sequences shorter than 150bps, 14,960 post filtering

sequences were put through the pipeline. Of these sequences, 6,140 (41%) did

not generate a BLAST hit. 712 (4%) generated a BLAST result, but no further

downstream annotation, and the remaining 8,170 (55%) were annotated. These

results can be seen in Figure 4.3.

Figure 4.3: Data distribution of the BLAST analysis of the P. superbus tran-
scriptome dataset post BLAST2GO annotation. Graph is colour coded to
match BLAST2GO output as can be seen on the accompanying CD. (File:
BLAST2GO output transcriptome.dat).

4.3.2 BLAST Results

BLASTX using NR as a database with a cutoff of 1e-3 was used. The top 20

resulting BLAST hits were retained by BLAST2GO and used for annotation. The

e-value depends on three parameters: the alignment itself, the length (and com-

position) of the query sequence, and the total length (and composition) of the

sequences in the database (Altschul et al., 1990). The e-value distribution can be

seen in Figure 4.4. An e-value of 0.0 indicates a perfect or self-hit. As the e-value
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decreases, the probability of a hit by chance also decreases; as a result, there are

less hits.

Figure 4.4: e-value distribution of the P. superbus transcriptome sequences which
returned BLAST hits following BLASTX against NR with a cut off of 1e-3.

An analysis of the species distribution of the BLAST hits was carried out, and

the majority of sequences had hits to the Caenorhabditis, A. suum, L. loa and

B. malayi species. Some other species include the model organisms (H. sapiens,

M. musculus and D. rerio) and insects, including the D. melanogaster and Apis

mellifera. The distribution by species can be seen in Figure 4.5.
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The top hits were predominantly to A. suum followed by the eye worm L.

loa. The Caenorhabditis species and B. malayi were also represented in the top 7

species. This is not surprising, as although A. suum is a Clade III nematode, it

is in the class Rhabditia, as are P. superbus and the Caenorhabditis species. The

top BLASTX hit distribution by species can be seen in Figure 4.6.

The sequence similarity goes from 40% to 60%, before decreasing. Any hits of

100% could be “self-hits” or sequence pattern of 100% similarity. Figure 4.7 shows

the similarity of the query set (transcriptome dataset) and the selected database

(NR).
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Figure 4.7: Sequence similarity distribution of the P. superbus transcriptome se-
quences to the sequences of top BLAST hits following BLASTN against the NCBI
NR database with a cutoff of 1e-3.

Evidence codes are used to distinguish the method used by the GO cura-

tor to associate a GO term with a specific reference. However, while evidence

codes reflect the type of experiment which supports the GO term to gene prod-

uct association, they are not a classification of types of experiments/analyses

(www.geneontology.org). Evidence codes should be used alongside GO terms. The

evidence codes found in this dataset are as follows:

• Experimental Evidence Codes:

IMP: Inferred from Mutant Phenotype,

IDA: Inferred from Direct Assay,

IPI: Inferred from Physical Interaction,

EXP: Inferred from Experiment,

IGI: Inferred from Genetic Interaction,

IEP: Inferred from Expression Pattern,
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• Computational Analysis Evidence Codes:

ISO: Inferred from Sequence Orthology,

ISS: Inferred from Sequence or Structural Similarity,

ISA: Inferred from Sequence Alignment,

RCA: inferred from Reviewed Computational Analysis,

• Author Statement Evidence Codes:

TAS: Traceable Author Statement,

NAS: Non-traceable Author Statement,

• Curator Statement Evidence Codes:

ND: No biological Data available,

IC: Inferred by Curator,

• Automatically-assigned Evidence Codes:

IEA: Inferred from Electronic Annotation,

Experimental evidence codes indicate that a physical characterisation of the

gene or gene product was carried out and subsequently published. Computa-

tional analysis evidence codes indicate that the experimentation was done in silico

on the gene sequences and then published. Author Statement Evidence Codes

indicate that the annotation was done based on a piece of text in a published

reference. Curator Statement Evidence Codes indicate that a GO curator made

the judgement when it did not fit into any of the other evidence code categories.

Automatically-assigned Evidence Codes indicate that annotation has been given

based on sequence similarity, database records and keyword mapping files. This is

the only evidence code where a curator is not involved. This, for example, will be

used when a dataset has not yet been published. As can be seen in Figure 4.8, the
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majority of evidence codes in this dataset fell into the “inferred from electronic

annotation” category.

Figure 4.8: Evidence code distribution for the P. superbus transcriptome BLAST
hits.

Annotations came predominantly from the UniProt Knowledgebase (UniPro-

tKB) which is a collection of accurate and consistent functional annotation of

proteins. This can be seen in Figure 4.9.
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4.3.3 InterProScan

More than half the sequences (8,000) had an InterProScan hit, while just over

3,000 sequences were annotated using GO terms. Each InterProScan hit is given

a category to help identify what the annotation infers (www.ebi.ac.uk/interpro).

These categories are:

• Family:

The sequences belong to a group of proteins with a common evolution-

ary origin. This is identified by their functions, similarities in sequence, or

similarity in primary, secondary or tertiary structure.

• Domain:

Domains are distinct functional, structural or sequence units that may

exist in a variety of biological contexts.

• Repeat:

A short sequence that is typically repeated within a protein.

• Site:

A short sequence that contains one or more conserved residues. These

could include active sites, binding sites, post-translational modification sites

and conserved sites.

An overview of the breakdown of InterProScan results found can be seen in

Figure 4.10.
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Figure 4.10: Summary of the InterProScan hits for the P. superbus transcriptome.

4.3.4 Gene Ontology Annotations

GO is comprised of three vocabularies used in the annotation of genes and gene

products (www.geneontology.org). These vocabularies are:

• Molecular Function:

Molecular function describes activities that occur at a molecular level.

Terms in this vocabulary include activities rather than entities and molecules

and complexes that carry out these activities. No location for these activities

is given. These activities are usually performed by individual gene products,

but some may be in complexes.

• Biological Process:

Biological processes are those in which the molecular functions are in-

volved. To be part of this vocabulary, a process must have more than one

distinct step or series of events, but it is not the same as a pathway.

• Cellular component:
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Cellular component is the area or place that the molecular function acts

in. It may be some part of a larger cellular compartment or a gene product

group.

Figure 4.11 shows the distribution GO terms in the annotations. Just over

9,000 sequences had no annotation, while there were 1 - 5 annotations for at least

2,500 sequences. As the number of annotations found increases, the number of

sequences decreases.
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Annotation is most likely found for sequences of between 2,200-3,200bp, as

shown in Figure 4.12. Longer sequences, in the 5,000bp plus range, were also

substantially annotated. Sequences from 150-2,200bps became increasingly more

frequently annotated as length increased, suggesting longer sequences (or those

closer to full length genes) are easier to annotate. The top 30 longest contigs were

annotated with both GO and InterProScan. There is a dip in annotation success

between lengths 4,000-5,400bps as there were no sequences of that length in the

dataset.

Figure 4.12: Percentage of P. superbus sequences versus sequence length that were
annotated using GO.

Combined graphs can be generated showing the far-reaching scope for annota-

tion. Different levels of annotation can be identified from the graph, and these lev-

els of annotation, as well as their abundancy of terms for that level, are recorded in

Figure 4.13. GO follows the true path rule, meaning annotation at a term implies

annotation to all its parents’ terms. GO has a Directed Acyclic Graph (DAG)

structure where some categories have more than one parent category (Li et al.,

2005).
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Figure 4.13: P. superbus transcriptome dataset distribution showing the abun-
dance of terms for each vocabulary at each level.

Molecular Function

Molecular functions describe the action of a gene at a molecular level. Each gene

may have one or more functions. The combined graph for molecular function shows

that in this dataset there are 9 levels of annotation (see Figure 4.14).

For the molecular function vocabulary, the majority of the annotations fall in

level 3. These are summarised in Figure 4.15. Protein binding, organic cyclic

compound binding and hydrolase activity make up just over 50% of the GO terms

associated with this level of molecular function annotation. The top 10 GO cate-

gories for overall molecular function are shown in Figure 4.16.
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Cellular Component

The combined graph for cellular components found in this dataset shows that

there are 15 levels of annotation, as shown in Figure 4.17. Level 6 in the cellular

component category has most annotations, and these are summarised in Figure

4.18. Intracellular non-membrane and membrane bound organelles make up 39%

of the annotations found at this level. The top 10 GO categories overall for cellular

component are shown in Figure 4.19.
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Biological Process

The combined graph for Biological Process is extensive and shows how integral the

DAG structure is to the algorithm. There are 17 levels of annotation, as shown in

Figure 4.20.

The top 10 GO categories for biological processes are identified in Figure 4.21.
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4.3.5 EC and KEGG Annotations

Enzyme Commission (EC) numbers are based on the recommendations of the

Nomenclature Committee of the International Union of Biochemistry and Molecu-

lar Biology (IUBMB) (Bairoch, 2000). Each enzyme is described using four figures.

The first figure represents one of six classes that the enzyme belongs to: Oxidore-

ductases, Transferases, Hydrolases, Lyases, Isomerases and Ligases. The second

figure indicates the subclass, the third figure indicates the sub-subclass, and the

fourth the serial number of the enzyme in its sub-subclass. Part of the BLAST2GO

pipeline allows for a matching of the sequences to EC numbers to further the an-

notation. This is beneficial, as on occasion some P. superbus sequences were not

identified through BLAST but did result in an EC hit.

The Kyoto Encyclopedia of Genes and Genomes (KEGG) (Kanehisa & Goto,

2000) is a collection of pathways representing all of the major interactions and

reactions in molecules. BLAST2GO uses the EC numbers identified during the

EC step of the pipeline to map against KEGG, and identify which components of

various pathways are located in the dataset. KEGG maps are used in conjunction

with EC numbers to return which sequence IDs correspond to that pathway. Those

found are identified and highlighted in colour in the various pathways. Showing

the full scope of this analysis is beyond a hard copy version of the thesis, so all

data collected are located on the accompanying CD. To give an overview of the

analysis, the two pathways whose components are most represented in the dataset

are discussed.

The pathway showing purine metabolism is shown in Figure 4.22. Purines,

including Adenine and Guanine are essential six sided rings which are an integral

part of both DNA and RNA. Purine nucleotides give humans their energy and

repair cell membranes (Zollner, 1982). The purine metabolism pathways includes

32 enzymes, which are present in this dataset. These are represented in colour
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in Figure 4.22. These enzymes are represented by 141 sequences in the dataset.

In this pathway, most P. superbus sequences matched EC number 3.6.1.3, which

is Adenosine triphosphatase. This functions in the conversion of ATP to ADP in

metabolism. When ATP is broken down to ADP by Adenosine triphosphatase,

energy is released (Mader, 2001).

The oxidative phosphorylation pathway is shown in Figure 4.23. Oxidative

phosphorylation refers to the generation of ATP due to energy release during the

electron transport chain. ATP production is vital for the cell as it is later converted

to ADP which, as previously described, gives cells their energy. In this pathway, 8

of the enzymes involved are represented in the dataset by 53 sequences, the most

common being EC number 3.6.3.6 or H+− exporting ATPase.

GO:0006950 response to stress is described as “Any process that results in a

change in state or activity of a cell or an organism (in terms of movement, se-

cretion, enzyme production, gene expression, etc.) as a result of a disturbance in

organismal or cellular homeostasis, usually, but not necessarily, exogenous (e.g.,

temperature, humidity, ionising radiation)” (www.geneontology.org). This is a

high level biological process term with multiple child terms such as GO:0006979

(response to oxidative stress), GO:0009409 (response to cold), GO:0009414 (re-

sponse to water deprivation) and GO:0009408 (response to heat). In this dataset,

465 sequences were identified as having a hit to GO:0006950 or one of its child

terms. This is just over 5% of all annotated sequences and is subsequently more

than the 187 unigenes identified in Chapter 2 in the P. superbus EST dataset

(Table 2.4). Functional analysis resulted in just over 250 sequences with unique

descriptors. These could be genes induced by the stress the nematodes were sub-

jected to prior to sequencing. Among these were: MAP-kinases; members of the

jumonji family of transcription activators; antioxidant enzymes; molecular chap-

erones; components of the ubiquitin-proteasome system; DNA damage response
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proteins and LEA proteins. Some of these are summarised in Table 4.1.

Table 4.1: Stress response genes found in the transcriptome of P. superbus

Description Number of Sequences
Ubiquitin family protein 17

DNA Damage Response Proteins 15
HSP70 family 11

Serine/threonine protein kinases 10
Glutathione peroxidase 7

HSP90 family 7
Proteasome subunit alpha family 5
NADP Isocitrate dehydrogenase 4
Transcription factors/activators 4

Ubiquitin-conjugating enzyme E2 4
Aldehyde dehydrogenase 3

Mitogen-activated protein kinases 3
Protein tyrosine kinases 3

Thioredoxin 3
Derlin-1 2

Casein kinases 1
HSP60 family 1

Late Embryogenesis Abundant Proteins (LEA) 1
Mitochondrial prohibitin complex protein 1 1

Protein disulfide isomerase 1
Small heat shock protein/α-crystallin family 1
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4.4 Discussion

Annotation is an extensive task involving many factors. First, a comprehensive

search for the best assembler must be performed to ensure the dataset is as accu-

rate and representative as it can be. In this dataset the Newbler assembler with

the following parameters was used: Version 2.6 without URT Isotigs. At 14,900

contigs, it is believed that this assembly allows for a conservative estimate of gene

numbers without the doubt of over-assembly and thus false positives. This as-

sembly was chosen given various metrics identified in Chapter 3. Transcriptome

sequencing, using next generation techniques, can be employed to address ques-

tions that were difficult when using previous techniques. Transcriptome sequencing

allows a glimpse of expressed genes during a particular point in the life cycle of

an organism. In this study, an investigation of genes expressed during stress are

presented. The following sections describe some of the identified sequences found

in the P. superbus transcriptome believed to be involved in stress.

4.4.1 Heat Shock Proteins

Heat shock proteins (HSPs) are some of the most highly conserved genes in exis-

tence. HSPs can be induced by heat as well as other stresses (Lindquist, 1988).

They are proteins essential for the correct folding and maturation of a great diver-

sity of client proteins, and for protecting proteins from stress-induced unfolding

and aggregation (Morimoto, 2008; Richter et al., 2010). Eukaryotic HSP families

contain multiple genes, which may be either constitutively expressed or stress-

inducible and targeted to specific cellular compartments (Kabani & Martineau,

2008; Vos et al., 2008). The HSP expression repertoire of an anhydrobiotic or-

ganism may thus be very important in maintaining the integrity of the proteome

during the dehydration and recovery phases of anhydrobiosis (Sales et al., 2000;
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Jonsson & Schill, 2007; Cho & Choi, 2009; Hu et al., 2003). The generated dataset

contains all the heat shock protein classes including HSP20, which acts as a chap-

erone protecting other proteins against heat induced denaturation and aggregation

(Groenen et al., 1994) and HSP70, which aids in oxidative stress by preventing

partial proteins from becoming aggregated and thus non-functional (Tavaria et al.,

1996).

4.4.2 Removal of Damaged Proteins - The Ubiquitin-pro

teasome (UPS) and Autophagy Systems

When the HSP chaperone system fails to correctly fold a denatured protein, the

misfolded protein is polyubiquitinated. The 26S proteasome, a large multipro-

tein complex, then translocates polyubiquitinated proteins into the inner prote-

olytic chamber where they are hydrolysed (Kubota, 2009). If the generation of

misfolded proteins exceeds the proteolytic capacity of the ubiquitin proteasomal

system (UPS), misfolded proteins accumulate into aggregates which are degraded

by autophagy (Salomons et al., 2009; Lamark & Johansen, 2010). A whole genome

RNA interference (RNAi) screen in C. elegans identified 40 genes that are essential

for survival during acute hypertonic stress (Choe & Strange, 2008). Half of these

genes encode proteins that function to detect, transport, and degrade damaged

proteins. Ubiquitin is well represented in this dataset with 21 sequences identified

with this description.

4.4.3 DNA Damage Response Proteins

DNA extracted from anhydrobiotic stages of the plant parasitic nematode D. dip-

saci was intact, showing no increase in the frequency of double-strand DNA breaks

(DSBs) as compared with hydrated worms (Barrett & Butterworth, 1985). Data
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from the anhydrobiotic chironomid P. vanderplanki (Gusev et al., 2010) and an-

hydrobiotic tardigrades (Neumann et al., 2009; Rebecchi et al., 2009) show that

DSBs accumulate with time in the dry state in these organisms. DSBs also accu-

mulate during desiccation in the anhydrobiotic and radiation resistant bacterium

Deinococcus radiodurans. Similar to P. vanderplanki (Gusev et al., 2010) and

anhydrobiotic tardigrades (Neumann et al., 2009; Rebecchi et al., 2009), D. radio-

durans has acquired the ability to rapidly repair DNA damage when rehydrated

(Mattimore & Battista, 1996). DNA repair and DNA polymerase are represented

in the dataset by 25 sequences.

4.4.4 Signal Transduction, Protein Kinases and Transcrip-

tion Factors

Transduction of environmental stress signals is achieved in eukaryotes through a

conserved cascade of sequentially acting stress activated protein kinases (SAPKs)

which form a branch of the mitogen-activated kinase (MAP-kinase) system (Jonak

et al., 1996; de Nadal & Alepuz, 2002; Cuenda & Eousseau, 2007; Whitmarsh,

2010). In S. cerevisiae the SAPK pathway is activated by osmostress and the

terminal kinase Hog1 (Brewster et al., 1993), when phosphorylated, translocates

to the nucleus (Ferrigno et al., 1998). Here it phosphorylates several transcription

factors, and associates at stress-responsive promoters through such transcription

factors (Ferrigno et al., 1998), resulting in the expression of osmotic response genes.

These were also represented in the dataset.

4.4.5 Other Putative Anhydrobiotic Genes

Other transcripts whose products may play a role in the anhydrobiotic response of

P. superbus include two putative aquaporins; an ERM (ezrin, radixin, and moesin)
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family member; an an1-like Zinc finger sequence; a thaumatin-like transcript; two

copies of lon-1 which encodes a protease that selectively degrades oxidised mito-

chondrial proteins (Ngo & Davies, 2009) and a homolog of the Ric1 family (van

West et al., 1999), which encodes plasma membrane proteins that are expressed in

response to high salt or low temperature conditions in plants (Navarre & Goffeau,

2000). ERM proteins are activated by osmotic shrinkage (Rasmussen et al., 2008)

and they are thought to function as cross-linkers between plasma membranes and

actin-based cytoskeletons (Sato et al., 1992). Thaumatin-like proteins are induced

in plants in response to pathogens, cold, drought and osmotic stress (Liu et al.,

2010). The an1-like multigene family is involved in plant abiotic stress responses

and in inflammation responses in mammals (Jin et al., 2007).

The analysis described was carried out on a P. superbus transcriptome assembly

derived from a combination of an unnormalised (PS1) and a normalised (PS2)

cDNA library and a Sanger sequenced EST dataset. It would be very informative

to map the individual sequencing reads from the PS1 and PS2 libraries onto the

combined assembly as this would give an insight into the stress-response genes of

the P. superbus. The cDNA libraries were derived from pooled cDNA’s extracted

from control nematodes and nematodes which have been exposed to one of the

following stresses: heat, cold oxidation or desiccation.
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Chapter 5

Assembling the Nuclear Genome

of P. superbus

5.1 Introduction

Genome annotation is the process by which we extract meaningful information

from sequences of genomic DNA (gDNA). This can be done using laboratory or

computational techniques. The vast advances being made in the field of generation

of genomic data have meant that when it comes to their bioinformatic analysis it is

a challenging task; however, the number of tools available for this task are rapidly

increasing in number. The suggested pipelines and exploration avenues available

are shown in Figure 5.1.

The generation of good quality DNA in a large enough quantity poses the first

challenge in genomic sequencing. Once the gDNA has been extracted, the next

potential stumbling block is the generation of a library at the sequencing centre,

but, by far, one of the greatest challenge lies in the assembly step of the pipeline.

Genomes can be difficult to assemble because they contain biological anomalies

such as heterozygosity and repeat regions. It is also difficult to be accurate with
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the assembly when it is a de novo assembly of a genome without a closely related

reference available. Three main focus points should be considered when trying to

create a good assembly. These are:

• Coverage: a large oversampling of the genome needs to be carried out to

ensure there are long overlaps between the reads and that all parts of the

genome are represented. From a mathematical point of view, having low

coverage is not practical for a genome annotation project;

• Read length: read length and mate pairs must be longer than the repeat

regions to avoid having false overlaps, the longer the reads the easier to

assemble contigs;

• Quality: The better the quality score of each base the more accurate the

assembly will be (Schatz et al., 2012).

Assembly difficulties can include incomplete coverage due to gaps of unknown

size between contigs. Sequencing errors increase in proportion to the length of the

read generated and the reads are sequenced in an unknown orientation so these

may need to be reverse-complemented in order to establish the correct reading

frame. All of these difficulties add to the challenge of generating a draft genome,

let alone a completely sequenced genome. To try to minimise these challenges as

much as possible, a hybrid approach is often employed. In this research project

two sequencing platforms were used: Roche 454 Titanium and Solexa Illumina.

In addition, the Solexa Illumina platform was used three times to maximise the

technology available at that time. A work flow diagram of the 454 platform can

be seen in Figure 5.2, and a workflow diagram of the Solexa Illumina platform can

be seen in Figure 5.3.

Once the genome assembly has been established to a satisfactory level, gene

finding can be done in several ways. Sequence similarity to known genes from

184



Introduction Assembling the Nuclear Genome of P. superbus

Figure 5.2: 454 Titanium workflow for genomic sequencing focusing on crop
genomes (DNA Sequencing Core, 2013).
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other organisms is one technique that can be used. This is known as an extrinsic

approach. More commonly, this would integrate some form of the BLAST algo-

rithm. The method allows identification of approximately 50% of the genes in the

genome as shown in the EST dataset discussed in Chapter 3. The use of ESTs

in this way can be useful for the identification of exons. Transcriptome data can

be used in this way to identify exons and alternative splicing. Comparison of a

genome with itself can identify repeat regions, transposons and retrotransposons

as well as abundantly expressed gene families.

Alternatively, protein prediction could be used to identify potential protein

coding regions. This ab initio approach can be used to identify these potential

gene regions. Codon usage frequency can be used as synonymous codons are not

utilised equally. Hexamer frequency can be used in the same way and is perhaps

a more sensitive way of measuring codon frequency. Another method that could

be used is a sliding window of the GC%. GC count in a gene will differ from that

outside of a gene. Two main algorithms are used in gene finding. These are:

• Statistical-based methods:

1. Hidden Markov Models,

2. Neural Networks,

3. Integration of various different approaches.

• Homology-based methods:

1. Local Alignment methods,

2. Pattern-based Alignments.

There are difficulties with each method. Statistical-based methods tend to

over-predict and so, lead to false positives. They also cannot predict alternative

splicing. Homology-based methods are time-consuming and require report parsing.
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A pattern must also be chosen and maintained, which is challenging. Gene finders

can run into difficulties if the exon regions are small and the introns are big.

They can fuse neighbouring genes or split genes. They can miss genes or overlap

genes. Pseudogenes, alternative splicing and non-canonical splice sites can also

cause difficulty.

Subsequently, annotation of the genome begins. Annotation involves identify-

ing the function of a gene given its sequence. Biological questions such as:

• When and where is this gene expressed?

• What genes does this gene interact with?

• Does it contain functional domains?

can then be asked. These questions and the one previously discussed are extensive

and generally require a genome sequence analysis workbench to assist in answering

them (The Blaxter Lab, 2013).

There are three categories of genome annotation. These are:

• Nucleotide level Annotation:

Mapping to known genes, genetic markers, tRNAs, rRNAs, repeat ele-

ments, ancient duplications, ORFs. etc.,

Gene Finding,

Non coding RNAs and regulatory regions,

Identifying repetitive elements,

Mapping segmental duplications,

Mapping variations.

• Protein level Annotation:

Define the category of proteins, name them and assign a function,
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Classify on the basis of domains, folds and motifs.

• Process level Annotation:

Molecular function,

Biological process,

Cellular component.

In this chapter extraction of gDNA and sequencing of various samples is dis-

cussed. Assembly and initial annotation is reported and future work is identified.
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5.2 Materials & Methods

5.2.1 Chemicals

Chemicals were obtained from Sigma-Aldrich Co. Ltd. (Gillingham, UK), Thermo

Fisher Scientific Ltd. (Massachusetts, US), Novagen Division of Merck/EMD

(Wisconsin, US), Invitrogen Ltd. (Paisley, UK), Promega UK Ltd. (Southampton,

UK), Fermentas (Maryland, US), and Pierce Division of Thermo Fisher Scientific

Ltd. (Cramlington, UK). Enzymes were purchased from New England Biolabs

(NEB) (Beverly, MA, US) or Roche (Clarecastle, IRE), Promega or Novagen.

Oligonucleotide primers were ordered from Eurofins MWG Operon (Edersberg,

DE). Sterile plasticware was purchased from Sartorius AG (Goettingen, DE).

5.2.2 Nematode Collection and Care

P. superbus was first isolated in 1970 on Surtsey Island, Iceland from a gulls nest

as described in Chapter 1. P. superbus DF5050 was used in this study. Nematode

growth medium (NGM) plates were prepared by dissolving 3g Sodium Chloride,

2.5g peptone, 17g agar and made up to 1L with distilled water. The solution

was autoclaved, and once cooled, 1ml cholesterol in ethanol (5mg/ml), 25ml 1M

potassium phosphate buffer pH6, 1ml 1M Calcium Chloride, 1ml 1M magnesium

sulphate was added to the solution and supplemented with the antibiotic Strepto-

mycin to a final concentration of 30µg/ml. The media was poured into 9cm plates

and left to set. Upon setting, 40µL of E. coli HB101 culture was spread on the

plates and left to grow overnight at 37◦C. A 1cm2 piece of an established NGM

nematode culture was transferred using a sterile scalpel onto the new plates. The

plates were cultured in the dark at 20◦C until the nematodes reached a large mixed

population (∼14 days depending on strain). These methods were developed for

the model nematode C. elegans (Brenner, 1974). To confirm the Panagrolaimus
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strain identity, the rDNA D3 expansion region was PCR amplified and cloned into

the TOPO pCR 2.1 vector and transformed into E. coli TOP10 cells. The DNA

sequences obtained for the cloned DNA fragment were identical to the P. superbus

rDNA D3 sequence in GenBank (Accession No. AY878376.1) thus confirming the

strain.

Nematodes were washed off the NGM plates using sterile water and left to

gently agitate on a shaker for 20 minutes in order to digest any bacteria present

in the nematode gut. The liquid was poured off the plates into sterile 50ml Falcon

tubes and left to settle at 4◦C for 20 minutes. The supernatant was removed and

sterile water was added. This process was repeated a total of three times in order

to obtain bacteria free nematodes. The supernatant was removed and the resulting

pellet was snap-frozen in liquid nitrogen prior to storage at -80◦C. The nematodes

for gDNA sequencing were re-suspended in Nematode Lysis buffer (20mM Tris

pH 7.5, 50mM EDTA, 200mM NaCl, 0.5% SDS (w/v)) before freezing. For every

100µL of nematode pellet, 500µL of Lysis buffer was used.

5.2.3 gDNA Extractions

Nematodes were cultured and harvested as described previously. The tubes were

defrosted at room temperature and ground into a fine powder (at least three times)

using an autoclaved pestle and mortar and liquid nitrogen. The supernatant was

then placed into a 1.5ml Eppendorf tube and proteinase K (10mg/ml in water) was

added to a final concentration of 2mg/ml. The mixture was then incubated at 56◦

C for 1 hour 30 minutes (with inversion every 20 minutes) or until no nematode

carcasses could be identified on examination under a microscope. The solution

was cooled to room temperature, RNase A was added to a final concentration

of 1.2mg/ml and the tube was incubated for 15 minutes. The solution was then

extracted with 2.5 volume of phenol:chloroform:isoamyl alcohol (24:24:1) at room
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temperature for 10 minutes. The tubes were spun in a pre-cooled microcentrifuge

(Eppendorf) at 4◦ C at 12,000 x g for 10 minutes . The aqueous layer was trans-

ferred to a new tube and a second phenol:chloroform:isoamyl alcohol extraction

was performed. The solution was spun as previously described and the super-

natant transferred to a new tube. A final 10 minute chloroform:isoamyl alcohol

(24:1) extraction was carried out to remove any residual phenol and the sample

was centrifuged as previously described. The aqueous layer was then transferred

to a new tube and 1/30th volume of 3M sodium acetate and 2.5 volume of ice-cold

100% ethanol were added. The solution was stored at -20◦ C for 1 hour. The DNA

was pelleted by centrifugation at 12000 x g for 20 minutes at 4◦ C. The super-

natant was removed and the pellet washed with 1ml of 70% Ethanol and spun for 5

minutes at 7,500 x g. The supernatant was removed and the pellet air-dried. The

pellet was then resuspended in 30µL sterile water and the DNA concentration and

integrity was determined by using a Qubit DNA assay kit with the Qubit 2.0 Flu-

orometer. DNA was also visually compared to standards of known concentration

on ethidium bromide stained gels.

Electrophoresis was carried out using 0.7% agarose gels in 1X Tris Acetate

EDTA buffer (TAE): 40mM Tris, 20mM acetic acid and 2mM EDTA, pH 8.1.

Agarose powder was dissolved by heating in 1X TAE buffer. Upon cooling to

60◦C ethidium bromide was added (10mg/ml). The solution was then poured

into a casting tray and allowed to solidify. Samples were mixed with loading

buffer (5mg/ml bromophenol blue, 5mg/ml xylene cyanol, 50% glycerol) at a ratio

of 5:1. 5µL of 1kb bench top DNA ladders (Promega) was loaded on each gel.

Gels were typically run at 100V using BioRad electrophoresis equipment. The

ethidium bromide stained DNA gels were visualised under UV light using a UV

transilluminator at 365nm. Gels were photographed using an AlphaDigiDoc gel

documentation system (Alpha Innotech).
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5.2.4 Karyotyping

Karyotyping using DAPI stain was performed on C. elegans, P. davidi and P.

superbus to establish chromosomal number. The karyotypes were determined us-

ing unfertilised oocytes as these contain the haploid chromosome number. Firstly,

young adult males and females were isolated from a six-day-old culture grown

on NGM media. A 1cm2 agar section containing a high concentration of nema-

todes was transferred to a 3cm Petri dish containing M9 buffer: 6g Na2HPO4, 3g

KH2PO4, 5g NaCl, 0.25g MgSO4 and distilled water to a volume of 1 litre. Using

an aspirator, six individual nematodes were removed from the buffer and placed

in 6cm Petri dish 4’, 6-diamidino-2-phenylindole (DAPI) to a final concentration

of 2µg/ml (Catalog No. S4651). Using a 0.2mm insect needle mounted on a 10cm

wooden stick, the nematodes were dissected below the pharynx to release the go-

nads. The gonads were transferred to a silane-prep microscope slide (Sigma catalog

No. S4651) containing 40µL DAPI and left to incubate at room temperature for

15 minutes in a moisture chamber.

Embryos were also examined. NGM plates were flooded with M9 buffer and

stirred gently for two minutes. The supernatant was transferred to a new 9cm

Petri dish and stirred gently to concentrate the embryos in the middle. Using the

aspirator, some eggs were removed to a clean 3cm Petri dish and washed with

40µL M9 buffer. These eggs were then removed into DAPI and left to incubate at

room temperature for 15 minutes in a moisture chamber.

At this point, for both adults and embryo samples, a cover slip was then

mounted on the sample and gently pressed to spread the cells to make the vi-

sualistion of the cellular contents easier. The slides were then examined using a

confocal microscope with the assistance of Dr. Ilora Dix, Confocal Microscopy

Unit, NUI Maynooth.
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5.3 Results

5.3.1 Preparation of P. superbus gDNA for

High-Throughput Sequencing

A large number of samples preparations were carried out. It took some time to

establish the best procedure for procurement of the nematodes and extraction of

gDNA. Various factors hindered this process including contamination of plates,

which meant the culture had to be restarted from an egg stage, significantly slow-

ing up the progress. The successful sample preparations sent for sequencing are

outlined below.

The first sample preparation will be referred to as 454 gDNA. The gel elec-

trophoresis images for this sample are shown in Figure 5.4 (pre RNAse step) and

Figure 5.5 (post RNAse step). Samples 1, 2 and 9 were pooled (now referred to as

sample 1). Samples 5, 6, 7 and 8 were pooled (now referred to as sample 2). Sam-

ples 3, 4 and 10 were pooled (now referred to as sample 3). These samples were

re-run on an electrophoresis gel using ethidium bromide staining and are shown in

Figure 5.6. Concentration of sample 1 was calculated to be 13µg/30µL. Concen-

tration of sample 2 was calculated to be 13µg/12µL as shown in Figure 5.7. The

purity of the samples was 1.78 for sample 1 and 1.58 for sample 2. The purity of

the third sample was not deemed to be of a satisfactory standard for sequencing

and was excluded. Samples 1 and 2 were sent to The Gene Pool, University of Ed-

inburgh, Scotland, for sequencing using Roche 454 Titanium platform. 709.5Mb

of data were generated representing an estimated 7.9X coverage of the P. superbus

genome.
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Figure 5.4: P. superbus gDNA sample for 454 sequencing (pre RNAse treatment).

Figure 5.5: P. superbus gDNA sample for 454 sequencing (post RNAse treatment).
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Figure 5.6: P. superbus gDNA sample for 454 sequencing (post pooling). Letters
indicate a 1

10
dilution of the previously labelled sample.
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Figure 5.7: An absorbance spectrum for a P. superbus gDNA sample obtained
using a Qubit 2.0 Fluorometer, indicating the A260/A280 ratios used to assess
DNA quality.

A second sample preparation was carried out (Figure 5.8). This will be referred

to as 50bp Illumina. Samples 2, 6, 7, 8, 9, 12 were pooled and became sample 1 and

samples 3, 4, 5, 8, 10, 11, 12 were pooled and became sample 2. Concentration of

sample 1 was calculated at 351ng/20µL and 254ng/20µL. Purity was calculated at

1.83 for sample 1 and 1.89 for sample 2. These samples were sent for sequencing

by Illumina Solexa 50bp paired end read sequencing. 3,539.6Mb of data or an

estimated 39X coverage of the genome was achieved.

A third sample prep as shown in Figure 5.9 was performed and will be referred

to as 100bp Illumina. Concentration was calculated at 11.2µg/135µL and sample

purity was estimated at 1.8. This was sent for 100bp Illumina Solexa paired end

sequencing and 3,600Mb were generated with an estimated 40X coverage of the

genome. The technological advances in high-throughput sequencing techniques are

ever expanding and thus the project changed over time to accommodate this.

A fourth and final set of sample preps were attempted to procure enough gDNA
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to send for mate paired sequencing using the Illumina Solexa platform. This was

attempted by traditional phenol chloroform methods, using commercial kits, in

large batches and in pooled smaller batches. The gDNA concentration was esti-

mated at a high enough level to be sent for sequencing but the various different

batches either failed quality control in Scotland or passed quality control but failed

to generate enough usable data. This whole process took a significant amount of

time. As a hybrid assembly was to be attempted when all data was returned

and it was believed that the mate-paired library would add significantly to the

project, the progress on the assembly of the already generated gDNA data was

put on hold. The protocol for generating mate libraries for P. superbus was never

successfully accomplished, so the genomic work on the project was not focused on

for long periods while the transcriptome work was prioritised. Some suggestions

for future work would be to use gene finding and alignment tools to known anno-

tated genomes to establish homologs as well as further downstream annotation. A

substantial review of the available software was performed and this is present on

the accompanying CD with a filename of software.xls.
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Figure 5.8: P. superbus gDNA sample for 50bp Illumina sequencing (pre RNAse
treatment).

Figure 5.9: P. superbus gDNA sample for 100bp Illumina sequencing (post RNAse
treatment).
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5.3.2 Genome Assembly and Statistics

The mean read length from 454 gDNA was 332bps and over two million reads were

generated. These were assembled using the 454 Newbler assembler, and statistics

and can be seen in Table 5.1. These contigs were filtered to remove bacterial

contaminants. This was done by BLASTing against NR and removing any reads

contained in contigs that returned a hit to a bacterial sequence.

Table 5.1: Genome sample 454 gDNA which was sent for sequencing by 454 Roche
Titanium platform and assembled using the Newbler 2.3 assembler.

Total number of base pairs generated (Mbps) 707
Total number of base pairs assembled (Mbps) 87

N50 (bps) 2,275
Max contig length (bps) 33,510
Min contig length (bps) 94

Mean contig length (bps) 1,005
Number of bps in all contigs 87,977,093

Total number of contigs 87,354
Number of contigs longer than 1kb 22,638

The 50bp Solexa Illumina sequences generated from six lanes of sequencing

were assembled using the Velvet assembler. This is presented in Table 5.2.

Table 5.2: First Velvet assembly of 50bp Solexa Illumina genome sequences.

N50 1,373
No. of contigs in N50 19,971

No. of contigs greater than 1Kb 28,648
Max contig length (bps) 97,629

Average contig length (bps) 409
Number of bps in all contigs 121,236,604

Total number of contigs 295,912

The sequences were searched, using the BLAST algorithm against a bacterial
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subset of NR with e-value of 1e-4 and only including top hits using BLAST pa-

rameters of b=1 and v=1. The contigs that showed any bacterial hit were taken

out and raw reads were aligned against these contigs. The reads that didn’t match

the contigs were filtered out. The total number of filtered reads remaining was

53,247,304. The longest contig still showed a bacterial hit when BLASTed against

NR so the BLAST searches were redone by lowering the e-value to a default e-

value. 45,226 contigs were shown to have hits to bacteria. To avoid the possibility

that these results might be sequences that could be common to both nematodes

and bacteria, the contigs were BLAST against a subset of NR, including the nema-

todes. The unique contigs hitting bacteria and nematodes were compared. If the

bit score of nematode BLAST hit was greater than the score of bacterial BLAST

hit, the contig was considered to be coming from nematode and bacteria. As a

result, 33,855 contigs were deemed to be bacterial. The reads that aligned to gen-

erate these contigs were filtered out and the remaining reads (69,405,012) were

reassembled using Velvet. A summary of this is shown in Table 5.3. The 100bp

Solexa Illumina was also assembled independently using Velvet. A summary of

this is shown in Table 5.4.

Table 5.3: Second Velvet assembly of 50bp Solexa Illumina genome sequences
following removal of putative bacterial sequences from the Solexa reads.

N50 1,433
No. of contigs in N50 18,091

No. of contigs greater than 1Kb 27,527
Max contig length (bps) 65,323

Average contig length (bps) 446
Number of bps in all contigs 118,718,696

Total number of contigs 266,030

The two sets of Solexa Illumina reads were assembled together using the com-

mercially available hybrid assembler ClcBio. The resulting summary is shown in
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Table 5.4: Velvet assembly of the 100bp Solexa Illumina genome sequences.

N50 365
No. of contigs in N50 79,577

No. of contigs greater than 1Kb 20,612
Max contig length (bps) 17,790
No. of bps in all contigs 140,886,927

No. of contigs 748,365

Table 5.5.

Table 5.5: CLCBio assembly of the 50 and 100bp Solexa Illumina genome se-
quences.

N50 1,058
No. of contigs in N50 18,994

No. of contigs greater than 1Kb 20,745
Max contig length (bps) 85,445

Average contig length (bps) 769
Number of bps in all contigs 95,487,185

Total number of contigs 124,097

Following post-filtering of the independent datasets for bacterial sequences, it

was decided to reassemble all post-filtered reads from 454 genome, 50bps Illumina

and 100bps Illumina in a series of hybrid assemblers. Velvet had previously suc-

ceeded with the volumes of data involved, so this was attempted. A summary of

the results are shown in Table 5.6.

CLCBio, the commercial assembler was also attempted for the hybrid cross

platform assembly. This was approached in two ways. Initially, the assembler was

fed the reads as ‘non paired end’ reads. A summary of this is shown in Table 5.7.

Subsequently, the CLCBio assembler was given the reads as ‘paired end’ reads

to see if this would improve the performance as the N50 recorded was quite low.

Summary results are seen in Table 5.8. Table 5.9 shows that the longest contigs
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Table 5.6: Hybrid assembly, using Velvet, of the 454 genome reads, 50bps Solexa
Reads and 100bp Solexa Illumina reads post-filtering to remove for bacterial con-
taminants.

N50 1,686
No. of contigs in N50 20,484

No. of contigs greater than 1Kb 37,106
Max contig length (bps) 78,636

Average contig length (bps) 660
Number of bps in all contigs 159,666,933

Total number of contigs 241,903

Table 5.7: CLCBio assembly of the 50 and 100bp Solexa Illumina reads(using the
sequences as non paired end reads) and the 454 Titanium gDNA reads.

N50 987
No. of contigs in N50 32,908

No. of contigs greater than 1Kb 32,318
Max contig length (bps) 69,511

Average contig length (bps) 709
Number of bps in all contigs 142,513,835

Total number of contigs 200,973
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were obtained from the assembly of the 454 gDNA sequences and as expected the

assemblies of the shorter Solexa Illumina reads generated assemblies with lower

contig sizes. But, surprisingly, the hybrid assembly of the Solexa Illumina and 454

reads returned an assembly with a smaller N50 than either of the single platform

assemblies derived for these sequences. It was hoped that the larger insert paired

reads would resolve this problem but, due to technical and time constraints, these

reads were not obtained.

Table 5.8: CLCBio assembly of the 50 and 100bp Solexa Illumina (using the
sequences as paired end reads) and the 454 Titanium gDNA reads.

N50 945
No. of contigs in N50 34,211

No. of contigs greater than 1Kb 31,544
Max contig length (bps) 64,318

Average contig length (bps) 692
Number of bps in all contigs 142,873,836

Total number of contigs 206,215
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5.3.3 Further Analysis of 454 gDNA

A BLASTX of the top 20 longest contigs from the 454 assembly was carried out

against UniRef and these results are shown in Table 5.10. All of the longest contigs,

except one had hits to nematodes. Eleven of the twenty longest contigs had hits to

B. malayi with five to C. elegans and four to C. briggsae. The lack of bacterial hits

would infer that the filtering step was sufficiently thorough as bacterial genomes

would be expected to assemble more readily and yield longer contigs than their

nematode counterparts.

These contigs were annotated using BLAST2GO, as previously described, and

the breakdown of biological processes can be seen in Figure 5.10. Under this

category, almost 40% of the contigs gave a hit to regulation of biological process or

multicellular organismal development with significant number of hits to metabolic

process also.

Molecular functions are outlined in Figure 5.11. A significant portion of the

hits (56%) were to binding, with a large portion to catalytic activity (11%).

In terms of cellular component, the majority of hits were to the intracellular

region, with almost one third of the additional hits to the membrane as can be

seen in Figure 5.12.
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Figure 5.12: 454 gDNA assembly using cellular component categories breakdown.
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5.3.4 The Karyotypes of P. superbus and P. davidi

C. elegans and P. davidi were used as controls in this experiment as the chromoso-

mal number of each was known. C. elegans was shown to have n = 6 chromosomes

as was expected (Hillier et al., 2005).

Confocal images of the C.elegans chromosomes can be seen in Figure 5.13. The

karyotype of P. davidi was investigated as it is also a freezing tolerant nematode

and a sister species of P. superbus. It had previously been shown that the chromo-

some number of P. davidi was n = 7 (Goldstein & Wharton, 1996). It is clearly

shown in Figure 5.14 of the P. davidi oocyte and in particular in Figure 5.15 of

the P. davidi egg that the chromosome number is actually n = 12.
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The chromosome number in P. superbus was investigated as thoroughly as

possible with testis, egg, oocyte, ovary and egg cells all examined. Each confirmed

the chromosome number of the other with a total of 4 chromosomes. This is shown

in Figures 5.16, 5.17, 5.18 and 5.19.

215



Results Assembling the Nuclear Genome of P. superbus

F
ig

u
re

5.
16

:
P

.
su

pe
rb

u
s

sp
er

m
ce

ll
fo

ll
ow

in
g

D
A

P
I

st
ai

n
in

g
as

se
en

th
ro

u
gh

a
co

n
fo

ca
l

m
ic

ro
sc

op
e.

P
an

el
C

sh
ow

s
th

e
ov

er
la

p
of

P
an

el
A

an
d

P
an

el
B

to
sh

ow
th

at
th

e
4

ch
ro

m
os

om
es

li
e

w
it

h
in

th
e

sp
er

m
ce

ll
.

216



Results Assembling the Nuclear Genome of P. superbus

F
ig

u
re

5.
17

:
P

.
su

pe
rb

u
s

eg
g

ce
ll

fo
ll
ow

in
g

D
A

P
I

st
ai

n
in

g
as

se
en

th
ro

u
gh

a
co

n
fo

ca
l

m
ic

ro
sc

op
e.

P
an

el
C

sh
ow

s
th

e
ov

er
la

p
of

P
an

el
A

an
d

P
an

el
B

to
sh

ow
th

at
th

e
4

ch
ro

m
os

om
es

li
e

w
it

h
in

th
e

eg
g

ce
ll
.

217



Results Assembling the Nuclear Genome of P. superbus

F
ig

u
re

5.
18

:
P

.
su

pe
rb

u
s

eg
g

ce
ll

fo
ll
ow

in
g

D
A

P
I

st
ai

n
in

g
as

se
en

th
or

ou
gh

a
co

n
fo

ca
l

m
ic

ro
sc

op
e.

P
an

el
C

sh
ow

s
th

e
ov

er
la

p
of

P
an

el
A

an
d

P
an

el
B

to
sh

ow
th

at
th

e
4

ch
ro

m
os

om
es

li
e

w
it

h
in

th
e

eg
g

ce
ll
.

218



Results Assembling the Nuclear Genome of P. superbus

F
ig

u
re

5.
19

:
P

.
su

pe
rb

u
s

o
o
cy

te
ce

ll
fo

ll
ow

in
g

D
A

P
I

st
ai

n
in

g
as

se
en

th
ro

u
gh

a
co

n
fo

ca
l

m
ic

ro
sc

op
e.

P
an

el
C

sh
ow

s
th

e
ov

er
la

p
of

P
an

el
A

an
d

P
an

el
B

an
d

th
e

4
ch

ro
m

os
om

es
li
e

w
it

h
in

th
e

eg
g

ce
ll
.

219



Discussion Assembling the Nuclear Genome of P. superbus

5.4 Discussion

5.4.1 Genome

Genome statistics pre- and post-filtering for bacterial contamination show the im-

portance of a filtering step in the assembly process. As the nematodes are free-

living and consume bacteria, the washing stage is not enough to ensure they have

fully digested the bacteria in their gut. The stringent checks used to ensure re-

moval of all bacterial sequences may appear over-zealous, but they ensure that

no bacterial sequences are misassembled as nematodes sequences. The Newbler

assembler has been shown in previous chapters to work well; this is also noted in

the genome assembly of the 454 dataset. The longest N50 was recorded using this

assembler at almost double what was achieved with either Velvet or ClcBio. The

length of the reads generated by the 454 Titanium platform are significantly longer

in length than those generated with Solexa Illumina. Given the difficulties in both

generating a library and assembling the mass of data generated by Solexa Illumina

the 454 Titanium platform holds its weight in the argument. The custom-made

assembly software would also be an important metric to consider, as shown by the

statistics generated. The examination of the top 20 hits produced and annotated

using UniRef give confidence to the dataset as almost all hits were to nematode

species.

The previously published nematode genomes, as of February 2013, are shown

in Table 5.11. The free living nematodes have genomes over 100Mb while the

plant parasitic nematodes have smaller genomes. This gives confidence that the P.

superbus will be over 100Mb. Using the assemblies, an estimate could be made that

the P. superbus genome is between 100-150Mb which fits well with the estimates

from other data available. An N50 size of around 1-1.5Kb, as was generated, means

that potentially full length genes have been assembled. Future work could include
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gene finding and use of a scaffolding technique to link the sequences together.
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5.4.2 Karyotyping

Most nematodes have a haploid chromosome number of between n=4-12, but kary-

otype variation has been shown across the species studied. The smallest chromo-

some number was found in Parascaris univalens with just n=1, and the largest

to date is M. hapla where n=12. Most of the Rhabditida have n=5 or 6, as was

confirmed with the study of the C. elegans chromosomes (Coghlan, 2005). P. da-

vidi was previously reported as having n=7 chromosomes. As the study on P.

davidi was published in 1996 the method of visualising these chromosomes may

not have been as effective as if performed using a confocal microscope (Goldstein

& Wharton, 1996). It was evident from all images taken that P. davidi has n=12

chromosomes. As it was found that P. superbus has just 4 chromosomes, it could

be suggested that there has been a substantial amount of gene duplication in P.

davidi and that P. davidi may, therefore, have a longer genome size.
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Chapter 6

The Mitochondrial Genome of

Panagrolaimus superbus

6.1 Introduction

Mitochondrial research began in the 19th century where the term symbiosis was

first used in 1879 (De Bary, 1879). In Latin, symbiosis means “living together”

and draws on a theory that two organisms can coexist together and, even, perhaps

create a single organism which combines both original organisms. This theory

is incorporated into the endosymbiotic hypothesis for the origin of mitochondria.

Mereschkowski (1903) published a very influential paper on the theory that there

was a double origin for living organisms. Wallin (1927) later suggested that mito-

chondria were descendants of endosymbiotic bacteria. The endosymbiotic theory

lost popularity until the mid 1960’s (Sagan, 1967). Advances in technology, such

as the electron microscope in the 1950’s (Scheffler, 2000), the identification of

the central dogma of biology in 1953 (Watson, 1953), together with progress in

biochemistry, lead to a better understanding of the structure and functions of mi-

tochondria and to the discovery of mtDNA in the 1960’s (reviewed by Mounolou
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Introduction The Mitochondrial Genome of Panagrolaimus superbus

& Lacroute (2005)). In 1970 Lynn Margulis published Origin of Eukaryotic Cells,

an influential book which revitalised the endosymbiotic hypothesis for the origin

of mitochondria and chloroplasts.

The belief that mitochondria originated from bacterial cells stems from the

many similarities between them (Margulis, 1981). Mitochondrial and bacterial

DNA is circular, while eukaryotic nuclear DNA is linear; mitochondrial and bacte-

rial ribosomes are of similar size and structure (70S), whereas eukaryote ribosomes

are larger (80S). Mitochondrial protein synthesis starts with N-formyl methionine,

as in bacteria whereas in eukaryotes protein synthesis is initiated by methionine

(Kozak, 1983). Members of the rickettsial subdivision of the α-Proteobacteria are

considered to be the closest eubacterial relatives of mitochondria (Yang et al.,

1985). The past few years have seen advances in sequencing technology and re-

duced costs and as a result many mitochondrial genomes have been sequenced.

This led to an interesting study on the mitochondrial genomes of protists which

revealed compelling evidence towards a single protomitochondrial ancestor (Gray,

1999).

6.1.1 Structure and Functions of the Mitochondria

Mitochondria are bounded by a double-membrane system, consisting of inner and

outer membranes. Folds of the inner membrane (cristae) extend into the matrix.

The matrix contains the mitochondrial genetic system as well as the enzymes

responsible for the central reactions of oxidative metabolism. Mitochondria play a

central role in metabolism and bioenergetics, with over one thousand mitochondria

found in each cell. The mitochondria are the site of oxidative phosphorylation

which synthesises ATP from the oxidative breakdown of glucose and fatty acids.

Mitochondria have also been identified as performing a role in programmed cell

death, or apoptosis (Scheffler, 2000).
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6.1.2 Mitochondrial Genome Structure

In 1981, complete mtDNA genome sequences of humans (Anderson et al., 1981)

and mice (Bibb et al., 1981) were published. These were followed by full se-

quence data for the mtDNA genomes of several other vertebrates. In 1985 the

mtDNA sequence of Drosophila yakuba was completed by Clary & Wolstenholme

(1985) and Okimoto et al. (1992) published the mtDNA genomes of the nema-

todes C. elegans and A. suum. These early mtDNA datasets revealed that animal

mtDNAs were small molecules (∼14-16Kb) which encoded relatively few protein

coding genes (13 in mammals), along with 22 transfer RNA (tRNA) and 2 riboso-

mal RNA (rRNA) genes. The structure of these animal mtDNA genomes, being

circular and compact, was very different from nuclear DNA. The mtDNA genes

were very densely packed, with their coding sequences running directly into each

other, leaving very little room for regulatory DNA sequences, except for a single

large non-coding region thought to contain elements that regulate replication and

transcription (Shadel & Clayton, 1997). There are only 22 tRNA species to trans-

late the mitochondrial mRNAs, whereas at least 30 tRNA species are required to

translate the universal genetic code (Crick et al., 1961). Translation of the mtDNA

genetic code is accomplished by an extreme form of wobble in which U in the anti-

codon of the tRNA can pair with any of the four bases in the third codon position

of mRNA, allowing four codons to be recognised by a single tRNA (Barrell et al.,

1980). In addition, some codons specify different amino acids in mtDNA than in

the universal code.

As more mtDNA molecules were sequenced from a greater diversity of eukary-

otes, it was found that many mtDNA molecules were considerably larger than

those of animals (Figure 6.1).

For example, mtDNA from the protozoan Acanthamoeba castellanii is 41.5Kb

(Burger et al., 1995); that of the yeast Saccharymyces cerevisiae is 85.8Kb (Foury
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Figure 6.1: The sizes of mtDNA genomes compared with an α-Proteobacterial
(Rickettsia) genome. Circles and lines represent circular and linear genome shapes,
respectively. For genomes >60Kb, the DNA coding for genes with known func-
tion (red) is distinguished from that coding for unidentified ORFs and intergenic
sequences (blue) (Gray, 1999).
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et al., 1998), while the mtDNA genome of the plant A. thaliana is 336.9Kb (Un-

seld et al., 1997). Comparisons of mtDNA genome structures and sequences have

shown that there are two basic types of mtDNAs, designated ancestral and derived

(Gray, 1999). Ancestral mtDNA genomes retain clear evidence of their eubacterial

ancestry and are characterised by:

• The presence of many extra genes, as compared with animal mtDNA, in-

cluding additional nad, atp, and especially ribosomal protein genes (rps and

rpl),

• rRNA genes that encode eubacteria-like LSU (23S), SSU (16S), and 5S

rRNAs,

• A complete or almost complete set of tRNA genes,

• A tight packing of genetic information in a genome that consists mostly of

coding sequences, with no or few introns

• A standard “universal” genetic code.

The small derived mtDNA genomes which are found in animals and fungi are

characterised by:

• Extensive loss of both protein-coding and tRNA genes,

• A highly modified rRNA structure ; there is a severe truncation of rRNA

sequences and modified secondary structure,

• Adoption of a highly biased codon usage strategy in protein genes, including

the elimination of certain codons,

• Introduction of nonstandard codon assignments such as the use of alternative

start codons and abbreviated stop codons.
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6.1.3 Why have Mitochondria Retained a mtDNA

Genome?

The difference in gene content between all mtDNA genomes and present day α-

Proteobacteria, both ancestral and derived, is considered to be the result of gene

loss in the transition from bacterial symbiont to cellular organelle, combined with

horizontal gene transfer of the symbiont genes to the host nucleus (Blanchard

& Lynch, 2000; Gray, 1999). Similarly plant chloroplasts have retained some of

their ancestral bacterial genome, but the majority of genes required for chloroplast

function have been transferred to the nuclear genome. The products of these

organellar genes, which now reside on the nuclear genome, are translated on nuclear

ribosomes and are imported in to the organelles as completed polypeptide chains.

Studies in the mouse estimate the mitochondrial proteome comprises 940 proteins,

with the vast majority of these proteins encoded by the nuclear DNA (Zhang et

al., 2008). This raises two questions:

• Why have the organelle genes been translocated to the nucleus? (Blanchard

& Lynch, 2000), and

• If most genes have been transferred to the nuclear genome during evolution,

why have some genes and their translation apparatus (rRNAs) and tRNAs

been retained by the organelles? (Race et al., 1999; Wright et al., 2009).

Concerning the translocation of mitochondria genes to the nucleus, it is hypoth-

esised that mutations accumulate more rapidly in asexually propagated genomes

than in sexually propagated genomes because mutations can’t be removed through

recombination (Lynch & Blanchard, 1998). In addition, respiratory electron trans-

port in mitochondria generates high concentrations of mutagenic reactive oxygen

species (ROS). Thus, since mitochondria are maternally inherited, a genetic load
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should build up rapidly in mtDNA genes, providing a very strong selective pressure

for these genes to be transferred to the nucleus (Lynch & Blanchard, 1998). Nev-

ertheless, mitochondria (and chloroplasts) do retain a small proportion of their an-

cestral genes, which implies that the location of these genes on organellar genomes

is likely to carry a selective advantage. mtDNA genes encode proteins with key

roles in electron transport and energy coupling. Mitochondrial electron trans-

port chains are extremely harmful when short circuits occur, leading to enhanced

production of ROS. Allen (2003) proposed that organelle genomes have persisted

because the structural proteins of bioenergetic membranes must be synthesised

rapidly when and where they are needed, to minimise the unavoidable side effects

of electron transport.

6.1.4 Nematode Mitochondrial Genomes

To date, 63 complete mtDNA genomes from nematodes have been published (Sul-

tana et al., 2013). Nematode mtDNA genomes typically comprise 12 -14 Kb and

contain 12 protein coding genes, 22 transfer RNA and 2 ribosomal RNA genes

(Jex et al., 2008). The proteins encoded by nematode mtDNA are as follows:

cytochrome oxidase subunits I-III (COXI, COXII and COXIII), cytochrome B

apoenzyme (COB), NADH dehydrogenase subunits 1-6 and NADH4L (NADH1,

NADH2, NADH3, NADH4, NADH4L, NADH5 and NADH6) and ATP synthase

subunit 6 (ATP6). Unlike most other animal mtDNA, nematodes lack ATP syn-

thase 8 (Boore, 1999). While mtDNA genes have a relatively conserved sequence

amongst members of the phylum, the order of these genes in the circular genome

varies between different nematode genera, even among closely related species (Hy-

man et al., 2011). This makes each nematode mtDNA genome sequencing project

a challenge. mtDNA is very AT rich, with only 30.7% GC content. This adds to

the challenge of finding suitable primers and achieving successful PCRs.
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Apart from the intrinsic interest in the evolution of mtDNA genes and genomes,

mtDNA genes have also been used extensively for phylogenetic studies and as

molecular markers for systematic and population genetic studies across a broad

range of animal groups. In this research project the P. superbus mtDNA genome

sequence was assembled and the gene order will now be discussed.
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6.2 Materials & Methods

6.2.1 Traditional Approach (PCR Amplification of mtDNA

Gene Fragments)

A set of universal PCR primers have been developed for the amplification, in two

fragments, of complete mtDNA genomes from diverse nematode species as shown

in Figure 6.2 (Hu, 2002). This technique which utilises the Expand 20Kb PCR

system (Roche) was attempted with the P. superbus mtDNA genome using the

universal primers shown in Table 6.1.

Table 6.1: Nematode mitochondrial ‘universal primers’ tested in this study.

Primer Name Primer Sequence
39F TAAATGGCAGTCTTAGCGTGA
42R CCCAATAAATGACGCTCATA
38R AGAAAAAGCAATCTCATAAGAA
5F TATGAGCGTCATTTATTGGG

40R GAATTAAACTAATATCACGT
44R TCACGCTAAGACTGCCATTTA
58R CTATAATTACGGCCATCTTGTTG

However, after many attempts including trouble-shooting to changing reagents,

length of PCR steps, fresh gDNA, and other long PCR kits, a long mtDNA genome

fragment was not achieved. It was decided to amplify smaller fragments of the

mtDNA genome. This was done by designing custom-made primers using the

sequences that had been identified in the EST study as being of mtDNA origin

(Chapter 2). The primers were designed to be strictly between 18-22bps and have

a primer melting temperature of between 52-58◦C. GC content was kept to a level

of 40-60%. Repeats and runs of any one particular base were avoided and primers

were checked for cross-homology. Length, melting temperature and optimal an-

nealing temperature of primer pairs were kept as constant as possible. Fifty-eight

primers were designed and PCRs were attempted in all likely combinations.
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Figure 6.2: Universal nematode primers shown to amplify the whole genome in
two fragments (Hu, 2002).
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As the gene order varies in nematode mtDNA genomes, PCR amplification

requires the use of primers in a range of combinations to identify those primer

pairs which amplify contiguous DNA sequences. The successful primers identified

are shown in Table 6.2. The naming structure was used for identification purposes.

Sequence names containing an F indicates a forward primer and those containing

an R indicate a reverse primer. These primers were designed to annotate the

following genes: COXI, COXII, COXIII, COB, ND1, ND2, ND4, ATP6 and rnL.

Table 6.2: mtDNA primers designed using EST sequences.

Primer Name Primer Sequence Target mtDNA gene
AATP6F GTATAGGTCTTCTAAACTTATCTAG ATP6
ACX2F ATTTACAAAAGTGCTGAAACATCG COXII
ACX3F TGGATGTTGTTTGATTATTTTTATTTG COXIII
AND4R GAGCCTTAGGTAATCATAAATG ND4
ArrnLR CATGGATAACATCTGCAGAAG rrnL
CX1F GTATTAAGATTAGGTGCTGTTTTTGG COXI
CX2R GTTACTTCAAGAGCAATAGG COXII
CX2R2 CTACATAAAAGTTCTCCAAACTGATATTC COXII
CX3R GTCAATAAATAATAGCAAATTCTAAGCC COXIII
CY2R CAGCTTCAATAAATATTTCTGGATCTC COB

CYTB2F GATTAGGACAATGTTTAGTTGAAGATC COB
CYTBF TTGCATATGCTATTCTACGTGCT COB
CYTBR AAGGATCTTCAACTAAACATTGTCCT COB
ND1F GTGCACCTTTTGATTTTTCAGAAGG ND1
ND2F2 AACATTTACACAAAAAAAATTTGAAGATC ND2

PCRs were carried out in 25µl volumes. GoTaq from Promega was used for

general PCRs, while Platinum Taq from Invitrogen was used when high fidelity

was required. PCR conditions can be seen in Table 6.3 with various cycling pa-

rameters shown in Table 6.4. Denaturing, annealing and extension steps were

repeated for 25-40 cycles. The annealing temperature was estimated as 5◦C less

than the melting temperature (Tm) of the primer pairs. The extension times were

estimated as 1min/Kb of DNA to be synthesised. PCRs were done in an Eppen-
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dorf PCR Thermal Cycler or a G-Strorm GS1 Thermal Cycler. PCRs were loaded

on ethidium bromide stained DNA gels as described in Section 5.2.3. This method

resulted in a fragmented mtDNA genome which presented some initial ideas about

gene order.

Table 6.3: Reagent quantities required when using GoTaq (Promega) and Platinum
Taq (Invitrogen) to amplify P. superbus mtDNA gene fragments using PCR.

Reagent Volume per reaction

GoTaq
5X Green reaction buffer 5µl

PCR Nucleotide Mix (10mM each) 1µl
MgCl2 2.5µl

Forward primer (10pmol) 1µl
Reverse primer (10pmol) 1µl

GoTaq Polymerase 0.2µl
Template gDNA 100ng - 0.5µg / 50µl
PCR grade water Bring total volume to 25µl

Platinum Taq
10X High Fidelity buffer 2.5µl

PCR Nucleotide Mix (10mM each) 0.5µl
MgCl2 1µl

Forward primer (10pmol) 1µl
Reverse primer (10pmol) 1µl

Platinum Taq 0.25µl
Template gDNA 100ng - 0.5µg / 50µl
PCR grade water Bring total volume to 25µl
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Table 6.4: PCR cycling conditions for GoTaq (Promega) and Platinum Taq (In-
vitrogen) when amplifying P. superbus mtDNA gene fragments.

PCR Step GoTaq (temp/time) Platinum Taq(temp/time)
Denaturation/Activation 95◦C/2min 94◦C/30secs

Denaturation 95◦C/0.5-1min 94◦C/30secs
Annealing 5◦C below the Tm/0.5 − 1min 5◦C below the Tm/30sec
Extension 72◦C/1min 68◦C/1min/Kb

Final extension 72◦C/10min 68◦C/10min

6.2.2 Agarose Gel Electrophoresis

0.7% agarose gels were made by dissolving pH 8.1 agarose in 1X Tris Acetate

EDTA buffer (TAE): 40 mM Tris, 20 mM acetic acid and 2 mM EDTA, pH 8.1

and heating. Once cooled to 60◦C ethidium bromide was added (10mg/ml). The

solution was then poured into a casting tray and allowed to solidify. 1Kb bench

top DNA ladders (Promega) were loaded on the gel. Gels were run at 100V

using Sigma-Aldrich or BioRad electrophoresis equipment. The gels were visualised

under UV light using a UV transilluminator at 365nm. Gels were photographed

using an Eagle-Eye gel documentation system (Stratagene), or an AlphaDigiDoc

gel documentation system (Alpha Innotech).

6.2.3 Computational Approach

PCRs were unsuccessful in bridging all gaps in the P. superbus mtDNA molecule

so it was decided to assemble the genome using computational approaches. This

was done using the high-throughput cDNA and gDNA sequences which had been

generated for P. superbus. Forty one mitochondrial nematode genomes were down-

loaded from NCBI, which are presented in Table 6.6. These nematodes were pre-

dominately sequenced using traditional methods by first designing primers from

closely related species, then using PCR and cloning. Long PCR and primer walk-

ing strategies were regularly employed. Genomes from closely related species such
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as Strongyloides spp. and Steinernema carpocapsae were included along with other

known nematode mtDNA genomes.

The BLASTN algorithm was used to identify the most significant hits to P.

superbus datasets. These included the EST dataset as described in Chapter 2, the

Newbler 2.6 without URT Isotigs, as described in Chapter 3 and Chapter 4 and the

various genome assemblies as described in Chapter 5. Using the nematodes listed

in Table 6.6, each gene within each of the genomes was individually BLASTed

against the EST (as shown in Table 6.5), gDNA and transcriptome datasets using

BLASTN and tBLASTX. The hits returned were filtered to remove any lower than

60 bits.

Table 6.5: mtDNA gene names and their corresponding sequence IDs in the EST
dataset.

EST ID Number mtDNA Gene identified
PSC00036 ND1
PSC00067 ND4L
PSC00128 CX1
PSC00166 ND5
PSC00814 CX3
PSC00957 ND4
PSC01122 CX2
PSC01234 ATP6
PSC01888 COB

PSC01968 2 ND2
PSC03880 ND4L
PSC00194 rrnL

PSC00065 1 rrnS

The hits found most commonly across all the queries to a particular gene were

aligned and the longest sequence was used as a match for that gene. On occasion,

for example, with COXI and COXII the same sequence from a gDNA contig was

identified as being the best hit for both COXI and COXII. This method was used
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to establish that COXI and COXII can be found next to each other in the genome.

When COXI and COXII from C. elegans aligned to this contig it was found that

COXI aligned to one part of the contig and COXII aligned to another. In this way

the largest contigs found in the dataset were identified and when aligned it was

found that they overlapped each other, eventually leading to a complete mtDNA

molecule.

Once a complete mtDNA sequence had been established, individual genes were

found by doing alignments with known genes from other nematodes and thus the

gene order was established.
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Table 6.6: Nematode mitochondrial genomes used in this study

Species Name NCBI ID. Length Genes tRNAs
Agamermis species BH2006 NC 008231 16,561 nt 12 28

Ancylostoma caninum / dog hookworm NC 012309 13,717 nt 12 24
Ancylostoma duodenale NC 003415 13,721 nt 12 24

Anisakis simplex / herring worm NC 007934 13,916 nt 12 24
Ascaris suum / pig roundworm NC 001327 14,284 nt 12 24

Brugia malayi NC 004298 13,657 nt 12 24
Bunostomum phlebotomum / cattle hookworm NC 012308 13,790 nt 12 24

Caenorhabditis briggsae NC 009885 14,420 nt 12 24
Caenorhabditis elegans NC 001328 13,794 nt 12 24

Chabertia ovina / large-mouth bowel worm NC 013831 13,682 nt 12 24
Cooperia oncophora NC 004806 13,636 nt 12 24
Cucullanus robustus NC 016128 13,972 nt 12 24

Dirofilaria immitis / dog heartworm nematode NC 005305 13,814 nt 12 24
Enterobius vermicularis / human pinworm NC 011300 14,010 nt 12 24
Haemonchus contortus / barber pole worm NC 010383 14,055 nt 12 24

Heliconema longissimum NC 016127 13,610 nt 12 24
Heterorhabditis bacteriophora NC 008534 18,128 nt 12 24

Hexamermis agrotis NC 008828 24,606 nt 14 26
Metastrongylus pudendotectus NC 013813 13,793 nt 12 24

Necator americanus NC 003416 13,605 nt 12 24
Oesophagostomum dentatum NC 013817 13,869 nt 12 24

Onchocerca volvulus NC 001861 13,747 nt 12 24
Romanomermis culicivorax NC 008640 26,194 nt 14 34

Romanomermis iyengari NC 008693 18,919 nt 13 27
Romanomermis nielseni NC 008692 15,546 nt 12 27

Setaria digitata NC 014282 13,839 nt 12 24
Steinernema carpocapsae NC 005941 13,925 nt 12 24

Strelkovimermis spiculatus NC 008047 18,030 nt 12 29
Strongyloides stercoralis NC 005143 13,758 nt 12 24

Strongylus vulgaris NC 013818 14,301 nt 12 24
Syngamus trachea NC 013821 14,647 nt 12 24

Teladorsagia circumcincta NC 013827 14,066 nt 12 24
Thaumamermis cosgrovei NC 008046 20,013 nt 12 28

Toxocara canis / dog roundworm NC 010690 14,322 nt 12 24
Toxocara cati / cat roundworm NC 010773 14,029 nt 12 24

Toxocara malaysiensis NC 010527 14,266 nt 12 24
Trichlinella spiralis NC 002681 16,706 nt 13 24

Trichostrongylus axei NC 013824 13,653 nt 12 24
Trichostrongylus vitrinus NC 013807 13,800 nt 12 24

Wellcomia siamensis NC 016129 14,128 nt 12 24
Xiphlinema americanum NC 005928 12,626 nt 12 21
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6.3 Results

6.3.1 PCR Amplification of mtDNA Fragments

The PCR primers which were successfully used to amplify P. superbus mtDNA

fragments were presented in Table 6.2. Figures 6.3 to 6.10 show images of the

successfully amplified PCR products when visualised on a 0.7% agarose gel. The

successful PCR primer pairs and the estimated fragment sizes are presented in

Table 6.7. For each of these PCR reactions the primer pairs were selected such

that the forward and reverse primers annealed to different mtDNA genes and in the

case of COB, the two ends of the gene. Thus, a successful amplification indicated

that the two genes corresponding to these primers were located at contiguous

positions on the circular mtDNA molecule of P. superbus.

Table 6.7: The PCR primer pair combinations which were successfully used to
amplify P. superbus mtDNA fragements.

Forward Primer Reverse Primer Band size Figure No.
AATP6F ACOBR ∼ 1300bps 6.3

CX2F RLR ∼ 600bps 6.4
ACX3F AND4R ∼ 500bps 6.5
BND1F BATP6R ∼ 800bps 6.6

CYTB2F CX3R ∼ 850bps 6.7
CYTBF CYTBR ∼ 200bps 6.8
CX1F CX2R2 ∼ 800bps 6.9
ND2F2 CY2R ∼ 1000bps 6.10

Figure 6.11 is a diagram of the mtDNA molecule with typical gene order as

found in many species including C. elegans showing the locations of the successful

PCR amplifications for the P. superbus mtDNA genome. This figure shows that

the following genes are located in sequence on the P. superbus mtDNA molecule:

ND1, ATP6, ND2, COB, COXIII, ND4 and that the following genes are located
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Figure 6.3: PCR product (∼1,300bp) obtained from P. superbus using the primer
pairs AATP6F/ACOBR and confirming the ATP6/COB border. The marker DNA
shown in the left lane is the Promega 1Kb marker.

in sequence, COXI, COXII, rrnL failed to generate a band. However, PCR ampli-

fications using primer pairs in various combinations for ND3, ND4L, ND5, ND6

and rrnL. Thus a computational approach utilising the high-throughput cDNA

and gDNA sequences was attempted as previously described.

A diagrammatic representation of a 9,661bp fragment of the genome can be

seen in Figure 6.12. This shows an alignment of three sequences, isotig04908 from

the Newbler 2.6 without Isotigs transcriptome dataset, contig1203 from the Velvet

assembly of the 100bp Solexa Illumina genome dataset and contig08802 from the

454 gDNA dataset. The relevant ESTs used to find the overlapping sequences are

shown in green. The identified tRNAs can be seen in pink.

Using this method the genome was assembled and found to be 13,970bps long
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Figure 6.4: PCR product (∼600bp) obtained from P. superbus using the primer
pairs CX2F/RLR and confirming COXII/rrnL gene border.

Figure 6.5: PCR product (∼500bp) obtained from P. superbus using the primer
pairs ACX3F/AND4R and confirming ND4/COXIII gene border.
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Figure 6.6: PCR product (∼800bp) obtained from P. superbus using the primer
pairs BND1F/BATP6R and confirming ND1/ATP6 gene border.

Figure 6.7: PCR product (∼850bp) obtained from P. superbus using the primer
pairs CYTB2F/CX3R and confirming COB and COXIII gene border.
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Figure 6.8: PCR product (∼200bp) obtained from P. superbus using the primer
pairs CYTBF/CYTBR and confirming the COB gene presence.

Figure 6.9: PCR product (∼800bp) obtained from P. superbus using the primer
pairs CX1F/CX2R2 and confirming the COXI and COXII gene border.
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Figure 6.10: PCR product (∼1,000bp) obtained from P. superbus using the primer
pairs ND2F2/CY2R and confirming the NADH2 and COB gene border.

(see file on the attached CD called mtDNA.fas) and the following genes were iden-

tified in contigs from the EST, transcriptome or genomic datasets, or by running

tRNAscan:

• Protein coding genes:

COXI, COXII and COXIII, COB, NADH1, NADH3, NADH4, NADH4L,

NADH5, and ATP6.

• Ribosomal RNA genes:

rrnL and rrnS.

• tRNAs:

Cys, Met, Asp, Gly, His, Ala, Pro, Val, Trp, Glu, Tyr, Lys, Leu, Ile, Arg,

Gln, Phe, Leu2 and Asn.

No homologous sequence was found to either NADH2 or NADH6. The result-

ing genome was found to have the same gene order as S. carpocapsae. It was thus

inferred that NADH2 and NADH6 were in the same position in the genome as in
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Figure 6.11: Nematode mtDNA molecule showing the locations of the successful
PCR amplifications for the P. superbus mtDNA genome.
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S. carpocapsae but were significantly different in gene sequence, thus, no homol-

ogous hits found. A diagrammatic representation of the genome can be seen in

Figure 6.13.

Figure 6.13: The mtDNA genome of P. superbus with protein coding genes shown
in pink, rRNA genes shown in green and tRNAs shown in blue.
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6.4 Discussion

The similarity in the gene order of P. superbus and S. carpocapsae fits with the

evolutionary proximities of these two nematodes on the phylogenetic tree, as can

be seen in Figure 1.1. It is interesting that Strongyloides species are placed on

the same branch as Panagrolaimus, but yet, in terms of gene order, they differ

significantly from that of the other two nematode species. While Panagrolaimus

is free-living, Strongyloides is a vertebrate parasite and Steinernema is an ento-

mopathogen. This could be a suggested reason for the changes in gene order.

Enoplean nematodes usually have unpatterned gene orders while chromadorea ne-

matodes like Panagrolaimus, usually have fixed gene orders (Montiel et al., 2006).

The various gene orders can be seen in Figure 6.14. P. superbus has a G6/G7

formation while S. stercoralis has a G3 formation. A suggested reason for this

is that the phylogeny was constructed using partial genomes or singular genes so

the order in which the phylogeny is presented may need further analysis to con-

firm true positioning (Hyman et al., 2011). With advances in high-throughput

next-generation sequencing, and the copy number of mitochondria in the cell, full

mitochondrial genomes are being assembled amongst genomic datasets, and so a

more thorough and complete phylogeny may soon be available.

When the completed genome was assembled, the primer sequences were aligned

and the bases between primers were counted. Fifty percent of the genome had been

verified by PCR, which thus establishes the computational approach as a more

thorough, money-saving and time-saving method to establish the DNA sequence

of mtDNA genomes. In this chapter, the complete mtDNA genome of P. superbus,

which has a gene order most similar to that of S. carpocapsae, was presented. Fu-

ture work could include phylogenetic studies of individual genes and whole genome

alignment with other nematodes to establish a more complete phylogenetic tree

of mitochondrial nematode genomes. Additional PCRs should be attempted to

249



Discussion The Mitochondrial Genome of Panagrolaimus superbus

F
ig

u
re

6.
14

:
T

h
e

b
re

ak
d
ow

n
of

ge
n
e

or
d
er

s
fr

om
n
em

at
o
d
e

m
it

o
ch

on
d
ri

al
ge

n
om

es
w

it
h

P
.s

u
pe

rb
u

s
sh

ow
n

in
a

re
d

b
ox

.
M

o
d
ifi

ed
fr

om
H

e
et

al
.

(2
00

5)
.

250



Discussion The Mitochondrial Genome of Panagrolaimus superbus

resequence the NADH6 and NADH2 genes to confirm the hypothesis about their

position with the genome.

This study is unique in that a predominantly bioinformatics based approach

was used to find the genes of interest and, using alignments, these sequences were

mapped to other previously sequenced nematodes and a gene order was thus es-

tablished.
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Chapter 7

General Discussion

7.1 Discussion

Next generation high-throughput sequencing has revolutionised several areas of

biological research with particular advances being made in genomics and tran-

scriptomics, cell biology and molecular medicine. Beginning with the sequencing

of model organisms (Lander & International, 2001; The C. elegans Sequencing

Consortium, 1998), the advances that have been made in the subsequent 15 years

are substantial: new ways of generating samples for sequencing, the sequencing

technologies themselves and, of course, the computational methods developed to

investigate the sequences generated.

The high-throughput sequencing technology offered by 454(Roche) was first

released in 2005, followed by the Illumina sequencing platform, released in 2006.

Initially the Illumina reads were short, but accurate. However the current Illumina

technology can generate reads up to 200 bp 1. The demand for high throughput,

low cost “second generation” sequencing machines has led to several other biotech

companies entering the market. The SOLiD short read system (released 2006)

1(http : //www.illumina.com/Documents/systems/hiseq/datasheet hiseq systems.pdf)
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and Ion Torrent mid read system (released 2010) are both from Applied Biosys-

tems/Life Technologies (reviewed by Liu et al. (2012)). Recently, a TGS technol-

ogy capable of much longer reads has become available. The PacBio RS system

can yield reads of average length over 2,500 bp and some longer reads can reach

10,000bp (Mason & Elemento, 2012). However, these continuous long reads tend

to have a high error rate of up to 15% (Au et al., 2012). According to Eisenstein

(2012) the current generation of 454 FLX machines are still being used in many

sequencing centers, generating individual sequence reads that “routinely exceed

those generated by most other sequencers”. However, Eisenstein estimates that Il-

lumina “now controls roughly 60% of the multibillion dollar sequencing technology

sector”.

With high-throughput technologies now capable of sequencing billions of bases

in a single run, these technologies present computational challenges. Reliable com-

putational tools and infrastructures are required to accurately assemble genomes

and transcriptomes from these high throughput reads and to interpret the assem-

bled sequence data. The relatively low cost and ready access to high throughput

sequencing have greatly increased the applications and scope of DNA sequenc-

ing enabling researchers to investigate a great diversity of phenomena in human

disease, organismal and cellular biology and environmental science (reviewed by

Shendure et al. (2004)). Although basic research is still the major market for

high-throughput sequencing, it is generally expected that the clinical diagnostics

market is soon likely to be the biggest consumer of this technology. For example,

sequencing based characterisation of cancer genomes and transcriptomes can aid

in the identification of specific cancer types (Slack & Gascoyne, 2013) and this

can be used to guide patient treatment. Transcriptome profiling of an individual

adenocarcinoma found that the pattern of gene expression suggested the tumor

cells were driven by the RET oncogene. This led to the successful clinical decision
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to treat the patient with RET inhibitors (Jones et al., 2010).

An important application of high-throughput sequencing technologies is in the

area of de novo sequencing of the transcriptomes and genomes of non model or-

ganisms, the subject of this thesis. The cost of the technology is gradually decreas-

ing, making it possible to sequence the genome or transcriptome of any organism

of choice. While model organisms, and previously sequenced species have their

own set of challenges, non-model de novo sequencing can be particularly difficult.

Without a completed reference genome to align high throughput reads, it can be

challenging to know how much of the complete sequence has been generated. High-

throughput sequencing allows for mass over sequencing of a dataset to ensure a

good chance of sequencing all bases at least once. A large number of previously

unstudied genomes and transcriptomes have been published in the last three years

and there is an increasing emphasis on development of new technologies and algo-

rithms to deal with the ever expanding databases of sequencing information being

generated.

The advances in next generation technology now allow nematologists to inves-

tigate a variety of topics such as nematode diversity, parasitism and evolution.

The data being generated for the Phylum is expanding rapidly, with a strong em-

phasis on data from parasitic nematodes. Recent publications include the genome

sequences of the pinewood nematode Bursaphelenchus xylophilus (Kikuchi et al.,

2011), the heart-worm Dirofilaria immitis (Godel et al., 2012) and the free-living

nematode Panagrellus redivivus (Srinivasan et al., 2013). Recently published ne-

matode transcriptomes include those from the following parasitic nematodes: Tri-

chostrongylus colubriformis (Cantacessi et al., 2010), Pratylenchus coffeae (Haege-

man et al., 2011), Trichuris suis (Cantacessi et al., 2011), Ascaris suum (Ma et al.,

2011), Dirofilaria immitis (Fu et al., 2012), Trichinella spiralis (Liu et al., 2012)

and Strongyloides venezuelensis (Nagayasu et al., 2013). Thus far, there have been
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no publications of de novo assembled transcriptomes of free living nematodes.

In this study four datasets for the free living nematode Panagrolaimus superbus

are presented. In Chapter 2, a Sanger sequenced EST dataset was discussed. This

dataset offers a highly annotated summary of some P. superbus genes with po-

tential roles in anhydrobiosis. Chapter 3 gives an account of the high throughput

sequencing of the P. superbus transcriptome following exposure of the nematodes

to various environmental stresses (heat, cold, oxidation and desiccation). A great

deal of time and effort was put into choosing the best assembly for the data set and

it was found that different assembly programs generated widely varying assembly

and “quality” metrics. During the time these transcriptome sequences were being

assembled, new assembly algorithms were being developed and the frequency with

which new versions of assembly software (particularly Newbler software) were re-

leased delayed the generation of the final version of the P. superbus transcriptome

assembly. Two assemblies, CAP3 v2012 and Newbler 2.6 without URT Isotigs,

achieved a substantially better rank score than the other assemblies which were

evaluated. Thus, either of these transcriptomes could be recommended/selected

for downstream annotation of the P. superbus transcriptome. Analysis of their

contig metrics show that the main difference between these two assemblies is the

larger number of contigs in the CAP3 assembly (31,836) as compared to the New-

bler isotigs assembly (14,960); the mean contig length is longer for the Newbler

isotigs assembly, but the number of contigs >1kb is larger for the CAP3 assembly

(9,350) than for the Newbler isotigs assembly (6,866) and the coverage of the 5’

end of the C. elegans genes is slightly higher for the CAP3 assembly (56%) than

for the Newbler isotigs assembly (52%).

Transcriptome sequencing allows a glimpse of expressed genes during a partic-

ular point in the life cycle or adaptive state of an organism. Chapter 4 presents

an overview of the stress transcriptome of P. superbus. The Newbler assembly
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comprising 14,960 isotigs was selected for this analysis because it was considered

that this assembly allows for a conservative estimate of gene numbers without the

doubt of over assembly and thus false positives. In this dataset, 465 sequences

were identified as having a hit to the Gene Ontology term GO:0006950 (“response

to stress”). This is slightly over 5% of all annotated sequences and is subsequently

more than the 187 unigenes identified in Chapter 2 in the P. superbus EST dataset.

In Chapter 5, the nuclear genome following sequencing by 454 (Roche) and Illu-

mina platforms was put forward as a dataset to allow future assembly and annota-

tion. From the genome assemblies generated in this project, an estimate could be

made that the P. superbus genome is between 100 - 150Mb, which fits well with

the other data available for other nematode genomes. The haploid chromosome

number of P. superbus was determined as n=4. Chapter 6 describes the work

done to obtain the complete mtDNA genome of P. superbus. A combination of

conventional PCR experiments was used together with computational approaches

employing high-throughput cDNA and gDNA sequences. While nematode mtDNA

genes have a relatively conserved sequence amongst members of the phylum, the

order of these genes in the circular genome varies between different nematode gen-

era, even among closely related species (Hyman et al., 2011). This makes each

nematode mtDNA genome sequencing project a challenge. The mtDNA genome

is very AT rich, with only 30.7% GC content and this adds to the challenge of

finding suitable primers and achieving successful PCRs. The mtDNA genome of

P. superbus, when assembled was found to have a gene order most similar to that

of Steinernema carpocapsae. This fits with the evolutionary proximities of these

two nematodes on the phylogenetic tree, as can be seen in Figure 1.1.

The datasets presented here can be used as a stepping stone towards generating

a fully annotated and complete genome sequence for P. superbus. These current

draft assemblies are already suitable as references in gene discovery studies using
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RNA Seq and high throughput proteomics as described below.

7.2 Future Work

The EST dataset described in Chapter 2 has been published Tyson et al. (2012)

and these sequences are freely available to download as a complete dataset, or to

search having particular queries in mind 2. This dataset has been used to select

target genes for further downstream RNAi work in the laboratory.

The transcriptome dataset described in Chapter 4 is currently being prepared

for publication and the associated sequences and assemblies will also be made

freely available to the research community. The generation of an unnormalised

and normalised transcriptome dataset can potentially answer the question as to

whether or not it is beneficial to normalise the dataset when studying a particular

treatment, condition or stress. We intend to map the individual reads from the

PS1 (unnormalised) and PS2 (normalised) libraries onto the main assemblies to

identify up-regulated putative stress response sequences within the PS1 dataset.

The transcriptome dataset is being used in a separate project in the laboratory

in an RNA-Seq experiment (using Illumina/Solexa reads) to identify genes up

regulated in response to cold and desiccation stress. In this experiment the P.

superbus de novo transcriptome was used as the reference to which the Illumina

short reads were aligned and the statistical tests using the DESeq program (Anders

& Huber, 2010) were used to identify up-regulated genes. The transcriptome

assembly is currently being used to generate a protein reference database for the

mass spectrometry based identification of the proteome of control and desiccated

P. superbus. The possibility that the current draft genome assembly could also be

used to generate a P. superbus protein reference database is also being investigated.

2(www.nematodes.org/nembase4/species info.php?species = PSC)
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The mtDNA genome is not yet ready for submission to the NCBI database.

Further PCR experiments are required to verify the computational work. Long

PCR could again be attempted, this time with primers designed from P. superbus

sequences. Completion of a mtDNA genome, from a free living nematode, from

clade IV will greatly add to phylogenetic studies within the phylum and would also

have applications in phylogenetic population genetics analyses within the genus

Panagrolaimus.

Due to technical difficulties in generating the mate pair libraries at the sequenc-

ing centre and the large size of the Illumina datasets, the genome assemblies need

to be reviewed and possibly reassembled. The computational challenges faced due

to large quantities of data mean that software needed for assembly will have to be

thoroughly investigated and refined to give optimal performance. It is hoped that

the EST, transcriptome and RNA-Seq datasets can be used to aid in scaffolding

and generation of a high N50 value for the genome contigs. Downstream annota-

tion for gene finding will result in a valuable nematode genome resource for study

of stress biology and comparative genomics.
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