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Abstract 

Steinernema infective juveniles (IJs) carry cells of symbiotic bacteria in their intestine 

and release these bacteria upon entry into insect-haemolymph. The bacteria kill the insect, 

providing ideal conditions for development and reproduction of the nematodes. About three 

Steinernema generations can develop within one insect cadaver leading to the production of 

thousands of IJs.   

Steinernema longicaudum is the first nematode for which intraspecific male-male 

fighting behaviour was observed (O'Callaghan, 2006). Placing 2 males in a drop of haemolymph 

resulted in injurious or paralysing fighting within the hour in 20% of the drops. Not lethally 

injured males were less successful at siring offspring. 

S. longicaudum males only produce sperm after several hours with a female (Ebssa et al, 

2008). Such matured males fought, paralysed and killed at a higher speed than males that had 

not produced sperm. Previous victory also resulted in earlier fighting and paralysis and in 

longer fights with new partners. Prior residency, reproductive value of or presence of a female 

didn’t have measurable effects on the occurrence of paralysis and death. A well-established 

culture of the symbiotic bacteria also enhanced fighting outcome. 

IJs experience a different developmental pathway than juveniles that develop straight 

into adults, the pathway followed is determined by environmental conditions of the parental 

generation. The level of aggression and the influence of relatedness depended on the 

developmental pathway followed: IJ-males were more aggressive than non-IJ males. 

Evidence of fighting avoidance mechanisms (e.g. assessment) could not be established 

for S. longicaudum males. 

Other Steinernema species, from different clades, were also studied, but none was more 

aggressive than S. longicaudum. Types of fighting resulting in injury and possible mechanisms 

leading to paralysis and death were also studied.   
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1. Introduction 

1.1. Introduction 

Fatal fighting is an extreme behaviour and is rare in the animal kingdom. Most animal 

conflicts are resolved using ritualised displays and assessments of each other’s capabilities. In 

case the contested resource has a major impact on the individual’s lifetime reproductive 

success, current theory predicts higher possibility of fatal fighting to occur. 

While studying the reproductive traits of the two closely related species of 

entomopathogenic nematodes, Steinernema hermaphroditum and Steinernema longicaudum, 

Dr Kathryn O' Callaghan observed fatal fighting behaviour. In her undergraduate project 

(O'Callaghan, 2000), she discovered male S. longicaudum nematodes could kill S. 

hermaphroditum hermaphrodites when direct contact was possible. Expanding on these 

experiments in her PhD thesis (O'Callaghan, 2006), she noted that interspecific killing 

behaviour towards females was also performed by males of other Steinernema species. 

However, female S. longicaudum nematodes would not kill any Steinernema female. 

O'Callaghan (2006) also reported that Steinernema males attacked and killed hetero-specific 

and even conspecific males. The proportion of encounters resulting in dead nematodes varied 

between species in both the intra- and interspecific encounters. In interspecific encounters 

some species were more prone to be the victim than other species or would even not attack 

females of a particular different species. 

This thesis aims to further explore the intraspecific killing behaviour of different 

Steinernema species, specifically, to shed light on the specific mechanisms of paralysis and kill, 

the evolution of this fighting behaviour in the Steinernema genus and the circumstances that 

lead to the development of such an extreme behaviour that is fatal fighting, or to less extreme 

alternatives. 
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1.2. The Family Steinernematidae 

Steinernematidae and Heterorhabditidae are the 2 families that are termed 

entomopathogenic nematodes (EPNs). These are obligate, lethal parasites of insects and are 

soil inhabitants only in their infective stage. Steinernematidae are ubiquitous (recovered from 

all continents except Antarctica (Griffin et al, 1991) and can infect a broad range of insect 

species. These characteristics make them effective biological control agents of insect pests in a 

variety of crops. The species comprising these families differ in infectivity, host ranges, 

suitability for commercial culturing and environmental limitations. 

1.2.1. Life Cycle 

Heterorhabditidae and Steinernematidae are characterised by a similar life cycle (see 

Figure 1.1) that only differs in the type of sexual reproduction. With the exception of S. 

hermaphroditum, Steinernema species are diœcious, produce sexually dimorphic adults and 

reproduce through cross-fertilisation or amphimixis. Heterorhabditis species reproduce initially 

by self-fertilisation (automixis) of the hermaphrodites of the first generation. The following 

generation’s hermaphrodites are joined by males and females and reproduction is both 

amphimictical and automictical. 

The free-living, soil dwelling, invasive stage of Steinernema is the infective or dauer 

juvenile stage (IJ or DJ) (Figure 1.1-a) (Nguyen & Smart, 1992). This is a developmentally 

arrested form of the 3rd juvenile stage that carries symbiotic bacteria in an intestinal vesicle 

(Goodrich-Blair, 2007) (see below). Upon entry in the insect host, mainly through natural 

openings (Renn, 1998), the nematode releases these bacterial cells into the haemocoel  

(Figure 1.1-b,c) (Snyder et al, 2007). The bacteria rapidly multiply and within 24-48 h post-

infection kill the insect by septicaemia or toxaemia. The infective juveniles recover and start 

feeding on the bacteria and degrading insect tissue. They develop through the 4th juvenile 

stage to adults of the 1st generation (Figure 1.1-d,e) (Nguyen & Smart, 1992). The females lay 

most of their fertilised eggs after mating, but some are retained in the female and develop into 

the first juvenile stages while still in the parental body, a process known as endotokia 

matricida (Baliadi et al, 2001;Baliadi et al, 2004;Nguyen & Smart, 1992). Dependent on the 

available resources in the host cadaver, one or more generations may occur. A low nutrient 

status and/or overcrowding of the cadaver prompt(s) the production of infective juveniles 

(Burnell et al, 2005). These emerge from the cadaver into the moist soil (Figure 1.1-f) and are 
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able to survive without feeding for several months until a suitable host is found or passes by 

(Griffin et al, 2005). 

 

Figure 1.1 Simplified life cycle of entomopathogenic nematodes (Source: 
http://www.sipweb.org/nematodes). 
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In order to infect a suitable insect host, infective juveniles use a foraging strategy along a 

continuum between ambush and cruise foraging (Lewis et al, 2006). Ambushers raise most of 

their body off the substrate and attach to passing insects whereas cruisers actively move 

through the soil in search of a suitable host. S. glaseri is an example of a cruise foraging 

species, S. carpocapsae is an ambusher species and S. feltiae uses an intermediate strategy, 

the latter lift part of their bodies from the substrate but only for periods a few seconds long 

(Lewis, 2002). 

1.2.2. Association with Xenorhabdus 

The success of entomopathogenic nematodes as a biocontrol agent owes a lot to the 

unique association of a host-seeking nematode (Steinernematidae and Heterorhabiditae) and 

a lethal insect-pathogenic bacterium (Xenorhabdus spp. and Photorhabdus spp., respectively) 

(Forst et al, 1997). 

The nematodes transport the bacteria between a depleted insect cadaver and a new host, 

protecting the bacterium against the external environment and impeding insect immune 

responses. The bacteria ensure the rapid death of the host insect, provide suitable nutritive 

conditions for the nematode and curtail competing organisms through the production of 

antibiotics and toxins. There are several species of Xenorhabdus known (Tailliez et al, 2006). 

Although the association is not obligate, both partners thrive better in terms of development 

and reproduction when occurring together with their natural symbiont (Sicard et al, 2003). The 

special intestinal vesicle of a Steinernema IJ can only be colonized by its natural symbiont. Even 

closely related Xenorhabdus species are unable to colonize the vesicle and thus can’t be 

retained in the IJs of non-natural symbionts (Sicard et al, 2004). But different nematode 

species can have the same species of bacterium as natural symbiont (Fischer-Le Saux et al, 

1999;Lee & Stock, 2010a;Tailliez, 2006). The Steinernema species used in this study are 

presented with their respective natural bacterial symbiont in Table 1.1. 

As motile, Gram-negative, facultatively anaerobic rods, Xenorhabdus spp. are currently 

assigned to the Enterobacteriaceae. Xenorhabdus are however negative for nitrate reductase 

and catalase which are 2 major positive characters of the Enterobacteriaceae family (Akhurst, 

1986;Forst et al, 1997). Xenorhabdus show phenotypic or phase variation. Only the Phase I 

variant has been isolated from the wild nematode and is characterized by specific dye 

absorption and the production of antibiotics. In in vitro subcultures of the bacteria, a 

proportion of Phase II cells occur that are different for a range of phenotypic characters 
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amongst which the 2 mentioned before. So far, there is no consistent ecological explanation 

for the role of Phase II variants (Griffin et al, 2005). In the stationary phase of phenotypic 

Phase I cells, metabolites are secreted into the insect haemolymph. These include 

exoenzymes, like lipase and protease, insecticidal and nematicidal toxins and several broad 

spectrum antibacterial and antifungal antibiotics (Brown et al, 2004;Brown et al, 

2006a;Crawford et al, 2010;Mahar et al, 2008;Maxwell et al, 1994;Ribeiro et al, 2003;Webster 

et al, 2002). These antibiotics and toxins help to deter scavengers, bacteria and other species 

of nematodes, leading to a virtual monopolisation of the insect cadaver by the Steinernema 

nematode and its associated bacterium. 

Table 1.1 Steinernema species used in this study and their corresponding symbiotic 
bacteria 

Steinernema species Xenorhabdus species 

S. longicaudum Shen and Wang, 1992 
X. ehlersii Tailliez, Pages, Ginibre and 

Boemare 2006 

S. bicornutum Tallosi, Peters and Ehlers, 1995 X. budapestensis Lengyel et al., 2005 

S. feltiae Filipjev, 1934 X. bovienii Akhurst, 1983 

S. glaseri Filipjev, 1934 X. poinarii Akhurst, 1983 

S. kraussei Steiner, 1923 X. bovienii Akhurst, 1983 

 

1.2.3. Taxonomy & phylogeny 

Despite the many similarities between the Heterorhabiditae and Steinernematidae, it is 

more likely that their shared unique characteristics have developed through convergent 

evolution. The Steinernematidae (Chitwood & Chitwood, 1937) family currently contains 2 

genera: Neosteinernema (Nguyen & Smart, 1994) and Steinernema (Travassos, 1927). 

Currently about 61 species of Steinernema have been described (Nguyen et al, 2010), 

however, many isolates remain to be fully characterised (Stock, 2005). Many morphological 

characters of species in the Steinernema genus are similar in structure and shape, but not 

origin (homoplasy). The use of combined phylogenetic analysis of 3 genes over 25 described 

species (with both a Chinese and an American isolate for S. longicaudum) put forward well-

resolved and highly similar phylogenetic trees of the genus Steinernema shown in Figure 1.2 
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(Nadler et al, 2006). Although with reservations, Nadler et al. (2006) believe the best working 

phylogenetic hypothesis is yielded by a combined analysis (several molecular approaches plus 

morphology). On the basis of morphological features and different ITS alignments, Spiridinov 

et al. (2004) identified 5 major clades that are in general mostly recognised (Lee & Stock, 

2010a;Lee & Stock, 2010b;Nadler et al, 2006;Nguyen, 2007). There are however different 

opinions on morphological characteristics that form the basis for these clades e.g. colour of the 

spicules and the gubernaculum (Nadler et al, 2006;Spiridonov et al, 2004;Stock et al, 2001a). 

Of great interest are future studies regarding co-evolution of Xenorhabdus and Steinernema. 

Speciation of 1 partner in a symbiotic relationship can lead to speciation in its symbiotic 

partner. Such cospeciation(s) can lead to mirrored phylogenetic relationships of the partners. 

Lee and Stock (2010) have proposed cophylogenetic hypotheses for Xenorhabdidae and 

Steinernematidae. Cophylogenetic methods can also resolve incompatibilities of unresolved 

phylogenies in one of the partners (Lee & Stock, 2010a;Lee & Stock, 2010b;Maneesakorn et al, 

2011). 
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Figure 1.2 Phylogenetic tree of Steinernema: Most parsimonious tree inferred from 
combined molecular data ( three genes, 1,639 characters, 565 parsimony informative) . MP 
boot strap clade frequency values ≥70% mapped above internal nodes. This tree is taken 
from Nadler et al. (2006). Roman numerals represent clades enumerated by Spiridonov et al. 
(2004). The species studied in relation to this thesis are highlighted in yellow. Highlighted in 
red is a species used in O’Callaghan (2006) but not in this work. 
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Figure 1.3 Comparison of the molecular typing profiles of 76 Xenorhabdus strains 
and isolates studied in Tailliez et al. (2006). One ERIC profile and three RAPD profiles were 
obtained (primers P1, P2 and P3, used in independent reactions), were combined for each 
strain. The combined molecular typing profiles were compared using Pearson’s similarity 
coefficient. The corresponding similarity matrix was used to generate a dendrogram using 
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the UPGMA module of the GelCompar software (Applied Maths). Type strains are 
highlighted in bold. When known, the Steinernema species of the corresponding nematode 
host is indicated. This figure is taken from Tailliez et al. (2006). The species studied in 
relation to this thesis are highlighted in red boxes. 

1.2.4. Reproductive biology 

In Steinernematidae, sex is most likely determined by the X-O type chromosomal 

mechanism (Poinar, 1967) where females are of the homogametic XX-type (3-5 bivalent 

chromosomes) and males are of the heterogametic XO-type with 2-4 bivalent chromosomes 

and a single univalent chromosome (Curran, 1989). The main non-reproductive related 

morphological difference between the sexes is the difference in size. This size difference 

depends on the generation, but healthy females are always the bigger sex (Nguyen, 2007;Stock 

et al, 2001b).  

Males have a single reflexed testis opening into a seminal vesicle, a vas deferens (glandular 

and ejaculatory part) and finally into the cloaca. In pouches in the cloaca is a pair of copulatory 

spicules. The spicules are made up of hardened cuticle with a cytoplasmic core through which 

a nerve runs ending in sensilla at the tip of the spicule (Lee & Atkinson, 1976;Liu & Sternberg, 

1995;Sood & Kaur, 1983). The spicules are used for sperm transfer during copulation. The 

gubernaculum is another sclerotized structure which guides the spicules during copulation so 

that they do not pierce the cloacal wall. Spicules and gubernaculum are 2 of the characteristics 

that differ between males from the first generation and males from the subsequent 

generations. Morphological variations of the spicules and the gubernaculum are also used as 

important characteristics in the taxonomy of nematodes (Nguyen, 2007). 

Females have 2 ovaries each opening into a seminal receptacle, then an oviduct and 

uterus; the uteri join and open via the vulva. Males of some species (particularly S. 

longicaudum) need the presence of a conspecific female to produce sperm (Ebssa et al, 2008). 

Since the males don’t need to be in direct contact with the female, this is likely mediated 

through a pheromone produced by the females. Spermatozoa are only activated within the 

female’s gonoduct (Spiridonov et al, 1999); activation involves bipolarisation, a reorganisation 

of organelles and the formation of pseudopods (Yushin et al, 2007). Male S. carpocapsae are 

attracted to virgin and not to mated females through female produced sex attractants (Lewis 

et al, 2002;Neves et al, 1998). The male attractant produced by hermaphrodite C. elegans are 

ascarosides (ascr), whereas hermaphrodite C. elegans are attrackted by indole ascarosides 

(icas) (Macosko et al, 2009;Sokolowski, 2010;Srinivasan et al, 2012). P. redivivus males produce 
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an ascaroside, identified as dhas#18, a dihydroxy derivative of ascr#18, which strongly attracks 

female P. redivivus (Choe et al, 2012a). Male C. elegans also produce ascarosides, but with a 

profile markedly different from the hermaphrodite produced ascarosides (Izrayelit et al, 2012). 

This. Ascarosides are also produced by both juvenile and adult Steinernematidae and also have 

an attractive or repelling action (Choe et al, 2012b).So far however, no pheromone production 

by male Steinernema has been reported. 

When mating, the male coils its tail around the middle of the female’s body and while 

moving up and down along the female, it searches for the vulva with its spicules. Having found 

the vulva, the spicules are inserted and sperm is transferred (Lewis et al, 2002). In other 

Nematoda, males might leave a copulatory plug in the vulva in attempt to prohibit subsequent 

mating with another male (Barker, 1994). So far, this has not been reported for 

Steinernematidae (Lewis et al, 2002). Male Steinernema longicaudum CB2B can start mating 

successfully from as early as 2 days old (Ebssa et al, 2008). The ages of 4-6 days are the optimal 

ages for reproduction for this species (Ebssa et al, 2008). 

Sperm morphology varies between species of Steinernema with a group of species even 

showing sperm dimorphism (Spiridonov et al, 1999;Yushin et al, 2007). Steinernema tami and 

S. longicaudum are two such species having megaspermatozoa (diameter: 25-30 up to 110 µm) 

that carry microspermatozoa (1.5-3 µm diameter) (Spiridonov et al, 1999;Yushin et al, 2007). 

The immature microspermatozoa are attached to the surface of the immature 

megaspermatozoon by gap junctions. Mature microspermatozoa are immotile and can be 

found free in the uterus lumen or attached to the main cell body of the amoeboid 

megaspermatozoa. Species like S. feltiae have only 1 type of spermatozoa, amoeboid cells 

about 6-12 µm in diameter forming chains (Spiridonov et al, 1999;Yushin et al, 2007); typical 

Rhabditida spermatozoa. 

Sperm competition has been observed in other Nematoda including C. elegans (Lamunyon 

& Ward, 1999;Lamunyon & Ward, 2002) and might be present in Steinernema as is suggested 

by the occurrence of sperm dimorphism in some species, but has not yet been proven (Yushin 

et al, 2007). 

1.2.5. Fighting in Steinernema 

In 2006, O’Callaghan reported the novel phenomenon of intraspecific male killing in 

Steinernematidae. Killing was observed both in vitro and in vivo and its frequency varied 

between species with Steinernema longicaudum being the most frequent killer, followed by S. 
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carpocapsae and S. feltiae brought up the rear with little or no killing reported (1 pair out of 19 

had a dead male after 24-48 h) (O'Callaghan, 2006). 

The observed fighting showed a male approaching another male and curling its tail around 

the victim upon which the latter immediately curled in on itself but soon appeared paralysed 

(O'Callaghan, 2006). Victims of fights also often looked injured: they were shrunken in size, had 

a damaged cuticle or showed a kink in their body (O'Callaghan, 2006). The rapid paralysis 

might indicate the involvement of a toxin, either produced by the nematodes or present in the 

medium in which case it might be produced by the symbiotic bacteria. 

1.3. Fatal fighting 

When a resource is limited, competition for this resource is likely to arise. Competition 

between individuals of the same species is called intraspecific competition. One direct way of 

competing over a resource is fighting over it. The essence of fighting is to harm, or threaten to 

harm, the other contestant so that it will leave the resource to the winner of the fight. In most 

animals behaviours and/or physiological adaptations have evolved that diminish the chance 

for actual harm to occur. The reason for this is that each individual is not only the potential 

winner of the fight, but also the potential loser. In case the loser possesses a technique to 

recognize itself as the loser and to retreat before it gets hurt, the loser has not lost all it could 

have if it had proceeded with the fight. The antagonists may test each other’s fighting 

capabilities prior to a fight through assessment. Animals can size each other up on the basis of 

external traits like the height of the casque (head ornament) of male Cape dwarf chameleons 

(Stuart-Fox et al, 2006) or in harmless contests like the bellowing contests of red deer stags 

(Cluttonbrock & Albon, 1979). Assessment and display relate to the contestant’s own resource 

holding power (RHP, the ability to win the fight)(Jennings et al, 2004), his perception of the 

opponent’s RHP (Arnott & Elwood, 2009;Briffa & Elwood, 2009;Humphries et al, 2006;Hurd, 

2006) and the value of the contested resource for each contestant (Subjective Resource Value) 

(Elias et al, 2010;Humphries et al, 2006). Escalation will occur when the opponents are 

matched in their RHP or when their perception of the value of the resource is very high (Brown 

et al, 2006b;Keil & Watson, 2010). The perceived value of the resource is likely to be different 

for the owner of a resource and the intruder wanting the former’s resource (Leimar et al, 

1991). A resident might have a higher motivation because he knows value of the contested 

resource and the intruder does not (Buena & Walker, 2008;Takeuchi & Honda, 2009), or the 
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owner might have put a lot of effort into preparing the territory for a certain use e.g. solving 

boundary disputes or building nests (Arnott & Elwood, 2008;Parker, 1974). 

Even though fatal fighting is an extreme behaviour and is fairly rare in the animal kingdom, 

it still occurs (Cook et al, 1999;Enquist & Leimar, 1990;Piper et al, 2008;Stevens, 1993;van 

Wilgenburg et al, 2005). The existence of fatal fighting and the circumstances leading to its 

evolution are described by Enquist and Leimar (1990). The most important determinant of the 

occurrence of fatal fighting is the balance between the value of the future for each contestant 

and the subjective value of the resource for each contestant (Enquist & Leimar, 1990). When 

the subjective value of the resource is equal to or greater than the value of the future, 

assessment will be of no use and the contestant in question will be prepared to fight until 

serious injury or death occurs (Cook, 2005). In case the value of the future is close to nothing, 

the contestant will never give up and the fight will always end in the death of one of the 

combatants (Enquist & Leimar, 1990). This happens most when the restricted resources 

contested are mating opportunities since these have a very high impact on lifetime 

reproductive success (Fromhage & Schneider, 2005;West et al, 2001). 

The phylum Arthropoda contains the two groups that have been most reported in the 

literature with highly lethal fighting: the Insecta and the Arachnida (Enquist & Leimar, 1990). 

Examples of species with a high occurrence of fatal fighting are fig wasps ((Bean & Cook, 

2001;Cook et al, 1999;Cook, 2005;Greeff & Ferguson, 1999;Pereira & Do Prado, 

2005;Reinholdt, 2003)), parasitoid wasps (Innocent et al, 2007;Reece et al, 2007), ants 

(Anderson et al, 2003;Batchelor & Briffa, 2010;van Wilgenburg et al, 2005) and spiders 

(deCarvalho et al, 2004;Leimar et al, 1991). Several species of fig wasps have been well studied 

and given their confinement to a fig mirroring the confinement of entomopathogenic 

nematodes to an insect cadaver, they make a good reference group for this study. In most of 

the taxa cited above, fighting is a sexually dimorphic character that is only displayed by one of 

the sexes. Fig wasps are sexually dimorphic and the males of fighting species use their huge 

mandibles as weapons in intraspecific fighting (Frank, 1987;Hamilton, 1979). Hamilton (1979) 

even notes the possibility of the use of venom in the fighting of some Idarnes species having 

regularly observed quick paralysis after a bite leaving only a mere puncture in the body of the 

victim. 

Male fig wasps can be very closely related to each other within a fig (Moore et al, 

2006;Nelson & Greeff, 2009;Reinholdt, 2003;West et al, 2001). Local mate competition is a 

term given by Hamilton to the process where the competition between highly related males 

for females leads to the selection of a female biased sex ratio (Abe et al, 2005;Bailey & Zuk, 
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2009). Fig wasps show both the highly female-biased sex ratios (Nelson & Greeff, 2009) and a 

high likelihood of competition between brothers (Hamilton, 1979;Moore et al, 2006;Nelson & 

Greeff, 2009;Reinholdt, 2003;West et al, 2001). 
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1.4. Homosexual encounters & cost of mating on 

lifespan 

In quite a lot of arthropod species (mainly insects) but also in lizards, mating can reduce 

the lifespan of females (Chapman et al, 1995;Fowler & Partridge, 1989;Maklakov & 

Bonduriansky, 2009;Rankin et al, 2011;South & Lewis, 2011). In Drosophila melanogaster, it is 

a toxin in the seminal fluid that shortens the lifespan of mated females (Chapman et al, 

1995;Wigby & Chapman, 2005). Mating also reduces the lifespan of hermaphrodite C. elegans, 

as do homosexual interactions between male C. elegans (Gems & Riddle, 1996;Gems & Riddle, 

2000). Homosexual mating in the AB2 wild isolate of C. elegans consists of the deposition of a 

mating plug over another male’s excretory pore occurring most probably after attempted 

copulation. 

Homosexual behaviour is also widespread in the animal kingdom (Abele & Gilchrist, 

1977;Bailey & Zuk, 2009;Gems & Riddle, 2000;Levan et al, 2009;Switzer et al, 2004). 

Explanations for the occurrence and persistence of same-sex sexual behaviour are social 

bonding (Connor & Mann, 2006), intrasexual competition (Abele & Gilchrist, 1977;Preston-

Mafham, 2006) and practice for intersexual mating (Dukas, 2010;Vervaecke & Roden, 2006). 

Non-adaptive explanations have also been explored, including weak sex recognition 

(perception error hypothesis) (Ryne, 2009) and deprivation of intersexual mating behaviour 

due to the absence of the opposite sex (Field & Waite, 2004). Homosexual behaviour can also 

be associated with a reduction of male life span as has been recorded inter alia in Musca 

domestica (Ragland & Sohal, 1973), Tribolium (Spratt, 1980), Cimicidae (Ryne, 2009) and C. 

elegans (Gems & Riddle, 2000). 
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1.5. Objectives 

The objectives of this thesis were: 

1. to describe fighting behaviour and related agonistic behaviours in a focus species 

(Steinernema longicaudum) that has fairly high rates of fighting and subsequent 

paralysis and death. Related agonistic behaviours include assessment and 

defensive behaviour. (Chapter 3). Additional objectives were pursued using the 

focus species S. longicaudum and included in Chapter 3; 

2. to determine factors influencing the resource holding potential of a male, such as 

age, sexual maturity and prior residency in a haemolymph drop (Chapter 3); 

3. to explore the essential features that elicit fighting behaviour, using normal, 

incapacitated and dead males, and inert male-sized objects (Chapter 3) 

4. to vary the value of the contested resource (e.g. presence of virgin or mated 

female ) and study the effect of its value on male-male competition (Chapter 3); 

5. to study the distribution of fighting behaviour and its evolution in the Steinernema 

genus, using species from different clades (Chapter 4); 

6. to describe the effects of fighting and investigate the mechanisms behind 

paralysing and killing (Chapter 5). 

 

All experiments were carried out in vitro, in drops of insect blood.  
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2. General Materials and Methods 

2.1. Origin of nematodes 

All strains that were used for this thesis and its related studies came from the NUIM 

culture collection and had been maintained in culture since they were isolated or obtained 

from other sources. 

Steinernema longicaudum strain CB2B was originally isolated from the Shandong province 

in China (Shen and Wang, 1992) and obtained from CABI Biosciences, UK. This was the only 

tropical species used in this study. 

Steinernema bicornutum strain IRA7 was isolated in Iran and obtained from Naser Eivazian 

Kary, University of Azerbaijan. 

Steinernema feltiae isolate 4CFMO was isolated from County Mayo, Ireland by Aoife Dillon, 

NUI Maynooth, Ireland. 

Steinernema glaseri (NC1 strain) was isolated from North Carolina and obtained from 

Albrecht Koppenhofer, Rutgers University, USA. 

Steinernema kraussei was isolated from the UK and obtained from Becker Underwood UK. 
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2.2. Cultivation and storage of nematodes 

The cultivation of Steinernema nematodes comprehends the infection of an insect host for 

which late instar larvae of Galleria mellonella (greater wax moth) were used. These larvae 

were obtained from the Mealworm Company, Sheffield, UK. Prior to use, the wax moths were 

stored at 15 °C in sawdust filled plastic containers with air holes. 

2.2.1.  Infection 

A sheet of 9 cm filter paper was placed on the bottom and on the lid of a 9 cm Petri dish. 

The filter paper was moistened with a suspension of infective juveniles (approx. 1000 IJs/ml). 

Five to eight Galleria mellonella larvae were placed on the filter paper in the Petri dish and 

covered with the lid and its moist filter paper. These Petri dishes were inverted and placed in 

an incubator (temperature and period depending on the species, see Table 2.1). This 

incubation period allowed the nematodes to develop and multiply in the insects. 

Table 2.1 The conditions for incubation, harvest and storage of the different 
Steinernema species used. 

Steinernema species 

Incubation 

temperature 

(°C) 

Incubation period for 

the production of adults 

(days) 

Storage 

temperature 

(°C) 

Trap used 

for harvest 

S. bicornutum 20-23 3-4 9 White trap 

S. carpocapsae 20 3-4 9 White trap 

S. feltiae 20 4-6 9 White trap 

S. glaseri 20 4-6 9 Modified 

White trap 

S. kraussei  15 4-6 (adult: 3-4) 9 White trap 

S. longicaudum 

strain CB2B 

27 2-3 20 Modified 

White trap 
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2.2.2. Harvest 

After a nematode species specific period, the successfully infected larvae were placed on 

White traps (Kaya & Stock, 1997;White, 1927) or on modified White traps based on the model 

of Woodring & Kaya (1988). These traps allowed the infective juveniles to leave the host and 

migrate into water. This water was periodically harvested and the trap was then replaced in 

fresh water. The infective juveniles were cleaned before storage at a nematode specific 

temperature. 

Modified White traps were used to harvest infective juveniles from S. longicaudum and S. 

glaseri, as the nematodes emerge as pre-IJs and entry directly into water may impede 

development to IJ. About 5-7 days after infection, the infected larvae were placed on moist 

filter paper in the lid of a 9 cm Petri dish. The lid was then placed in the base of a 15 cm Petri 

dish. The base of the big Petri dish was covered with tap water (up to 50% of the height of the 

base). Small pieces of Blu Tack attached to the side of the lid kept it away from the side of the 

dish and hence prevented wicking of water into the lid. The 15 cm Petri dish was covered with 

its lid and placed into the appropriate incubator. 

White traps were used to harvest infective juveniles from all other species. An inverted lid 

of a 9 cm Petri dish was placed in the base of a 15 cm Petri dish and covered with a piece of 

filter paper (approx. 12 cm diameter). This filter paper was then moistened with a couple of 

drops of tap water. The infected wax moth larvae (about 5-7 days after infection) were placed 

on this filter paper. The base of the big Petri dish was covered with tap water (up to 50% of the 

height of the base) while making sure the 9 cm Petri dish lid did not start to float. The 15 cm 

Petri dish was covered with its lid and placed at 15 – 27 °C depending on the species (Table 

2.1). 

The traps were checked every other day until infective juveniles appeared in the water. 

They were left to aggregate (without overcrowding) for about 2 days after which the infective 

juvenile suspension was poured into a clean jar. The nematodes were left to settle and washed 

4 times with tap water. White traps were harvested from more than once, so the dish was 

covered again with water and put back at the appropriate temperature. Different harvests 

were kept separate. 
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2.2.3. Storage 

The infective juveniles were stored at a concentration of approx. 1000 IJs/ml in 40 ml 

aliquots in re-sealable plastic tubs (9 cm diam.) at 9 or 20 °C depending on species (Table 2.1). 

2.3. Cultivation of nematodes in hanging drops 

Nematodes were cultured in vitro using the hanging blood drop method (Figure 2.1; 

Poinar, 1967) as follows: 

2.3.1. Surface sterilisation of infective juveniles 

Infective juveniles were surface sterilised in 0.1% (0.4 mM in H2O) Hyamine® 1622 solution 

(51126, Aldrich). One ml of 1% Hyamine® and 9 ml of nematode suspension were added to a 

50 ml graduated cylinder. The cylinder was sealed with Parafilm and inverted 3 times. When 

the nematodes had settled (no more than 15 min), the cylinder was opened in a sterile bench 

environment (by use of a Bunsen burner) and the excess liquid was poured off. The nematodes 

were then washed by sedimentation with sterile tap water at least 4 times and then used. 

Alternatively, these surface sterilised juveniles were stored in sterile plastic tubs at the 

appropriate temperature (Table 2.1) for 2-3 days. 

2.3.2. Extraction of Galleria mellonella haemolymph 

Galleria mellonella late instar larvae were surface sterilised with 70% (v/v) alcohol before 

they were used for the collection of haemolymph. While holding the larva taut between the 

thumb and index finger, it was pierced with a 25 g needle (25 Gauge, 0.5 mm diameter, 16 mm 

length) on the ventral side just below the last 2 prolegs. Slight pressure was applied so that a 

haemolymph drop formed but no other contents (intestine or fat body) burst out. The 

haemolymph from 8-10 larvae was collected in a 1.5 ml sterilised eppendorf and was used 

straight away before melanisation occurred. The used larvae were submerged in 70% (v/v) 

alcohol to ensure quick death. 
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2.3.3. Construction of hanging haemolymph drops 

On the lid of a 3.5 cm Petri dish, 3 drops of about 25 µl haemolymph each were pipetted 

using a P200 Gilson pipette with a cut off tip. The lid was then inverted and placed on top of 

the base that was filled with ± 0.5 ml distilled water. 

2.3.4. Inserting a sterile IJ into a drop 

A drop of about 40 µl surface sterilised IJ-suspension was used to pick individual IJs. Using 

a mounted platinum wire (0.10 or 0.20 mm diameter) with a hook, and observing with a 

dissecting microscope, 1 infective juvenile was lifted out of the drop and inserted individually 

in a drop of haemolymph. Instead of using a mounted platinum wire, a microcapillary tube 

(pulled in a flame until the desired width was achieved) attached to an aspirator was also 

sometimes used to pick up a single infective juvenile in a minimum of water (≤5 µl) and 

transfer it to a haemolymph drop. The lid with the infected haemolymph drops was then 

inverted and placed back on the water containing dish. This 3.5 cm Petri dish was placed in a 

larger Petri dish that was sealed with Parafilm and incubated at the species appropriate 

temperature (Table 2.1). 
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Figure 2.1 Infective juvenile of Steinernema longicaudum in a hanging haemolymph 
drop. 

2.3.5. Incubation and identification of the sex of adult worms 

Depending on the species, Steinernema nematodes incubated at the species appropriate 

temperature, had developed enough in 2-5 days to identify the sex of the worm. Males were 

identified by the presence of spicules in the tail tip. Females were identified by the lack of 

spicules, their larger size and the presence of a vulva in the middle of the body. 

Unless the nature of the experiment did not allow it (e.g. previous fighting experience), 

Steinernema longicaudum males were put together in a drop for fighting when both had 

developed in a haemolymph drop for 3-5 days. Experiments by Lemma Ebssa (unpublished 

results) had shown that drops with 3-5 day old, same-aged males displayed more mortality 24 

and 48 h after the males had been put together than older males (ages 6-9 days). 
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2.4. Procedures used in experiments 

2.4.1. Handling nematodes in a drop 

Both juveniles and adult nematodes in a drop were manipulated with a platinum wire of 

0.10 mm or of 0.20 mm diameter mounted on a glass Pasteur pipette. The platinum wire was 

sterilised by passing it through a high temperature flame. 

When males or objects were placed together in a drop, 1 of the males was always the 

resident, unless it is specified otherwise. The resident male was lifted up and placed back in its 

drop at the beginning of the experiment, after which the intruding male or object was added 

to this drop. 

2.4.2. Observation of nematode behaviour in a hanging 

haemolymph drop 

After addition of the treatment (nematode or object), the timer was put to zero and 

observation of the first 15 min started when the drop was then placed under a dissecting 

microscope. When possible, observations were recorded on VHS video tape. For each attack, 

the following specifics were recorded when possible: start time of the attack in relation to the 

start of the specific observation period, identity of the attacker and of the victim, position of 

the attack on the body of victim, duration of the attack, intensity of the attack (did the 

attacking male perform squeezing behaviour, how much of the attackers body was used in the 

wrap around the victim), immediately visible reactions to the attack. To prevent dehydration 

of the drop during the observations the lid with the drop that was being observed was placed 

in a 9 cm Petri dish along with two 3.5 cm Petri dishes that were half filled with distilled water. 

When necessary, a small drop of sterile Ringer’s saline (full strength, made from tablets; Oxoid) 

was added to rehydrate the drop. 

Verification of paralysis or death consisted of prodding an immobile nematode gently with 

the tip of the platinum wire. When no reaction to prodding was observed, the nematode was 

lifted up and immediately placed back into the drop. When this still yielded no reaction the 

nematode was considered not capable of moving or completely paralysed. In case the 

nematode was moving, but certain parts were not moving normally, the nematode was scored 

as suffering impeded movement. A nematode was considered dead when absolute immobility 
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was accompanied by tissue disintegration, probably the result of naturally occurring bacterial 

activity. 

2.4.3. Construction of an agarose pad 

Using a Pasteur pipette, a drop of melted 2% (w/v) agarose mix was put on a microscope 

slide. A 3.2 cm round cover slip was gently placed onto the drop which flattened under the 

weight of the cover slip. The agarose was left to set for a couple of minutes taking care not to 

let it dry. When set, the cover slip was slid off making sure the agarose stuck to the cover slip 

and not to the microscope slide.  The cover slip with agarose pad was left on the bench 

overnight to dry and then stored in the original cover slip container. 

2.4.4. Artificial culture medium 

Some experiments (e.g. injection of fighting medium) needed a medium other than 

haemolymph. Based on Aguillera and Smart (1993) and Stoll (1953) a liquid medium with Brain 

Heart Infusion Broth as the main component was used. 

Brain heart infusion broth (16.65 g), liver concentrate (1.85 g), peptone (0.185 g) and 

dextrose (1.25 g) were added to 500 ml distilled water and autoclaved for 20 min at 121 °C. 

After allowing the broth to cool to about 50 °C in the laminar flow, filter sterilised cholesterol 

(0.01 g) was added under sterile conditions.  

2.4.5. Cultivation of axenic nematodes 

Xenorhabdus-free S. longicaudum nematodes were cultivated based on a protocol for 

aXenic S. carpocapsae (Mulroy-Hehir, 2008). 

Gravid 1st generation females were harvested from in vivo culturing in Galleria mellonella 

larvae, washed and chopped up in sterile M9 buffer (see below). The resulting egg-M9 mixture 

was filtered through a 70 µm cell filter (Falcon) and centrifuged (2 min at 6000xg ). The 

supernatant was removed using a Pasteur pipette and replaced with sterile M9. The eggs were 

resuspended using a vortex mixer, the eggs were washed by repeating this process several 

times until the supernatant was clear. The eggs were then sterilised with NaOCl sterilisation 

solution (1.5 ml 4 M NaOH, 500 l NaOCl and 10 ml distilled water, strictly 4 min). Working in 

the laminar flow from then onwards, the eggs were washed once more with M9. The eggs 
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were transferred to 24 well plates in glucose-M9 solution (M9 supplemented with 1% (w/v) 

glucose) for hatching. The addition of a drop of nutrient broth to 2-6 wells allowed checking for 

contamination. After 2 days in the 27 °C incubator, the plates were checked daily for signs of 

hatching. Only plates that showed no bacterial growth in the nutrient broth enriched wells 

were used to collect the 1st stage juveniles which were washed by centrifuging at 1.2 rpm (this 

was the lowest possible) for 2 min. The juveniles were then added to autoclave-sterilised 

chopped up mice liver on modified YPC agar plates (see below) and incubated at 27 °C. These 

nematodes were left to develop and reproduce and eventually gave rise to infective juveniles. 

Xenorhabdus free infective juveniles were also always surface sterilised before use as 

described in section 2.3.1. 

Mice livers were obtained from the Epithelial Immunobiology and Cellular Immunology 

Laboratory at the National University of Ireland, Maynooth. 

Growth, media and Buffers 

Modified YPC agar 

Yeast extract (1 g), soy peptone (5 g, enzymatic digest), liver digest (3 g) and agar (12.5 g) 

were added to 500 ml distilled water and autoclaved for 20 min at 121 °C. After allowing the 

agar to cool to about 50 °C in the laminar flow, filter sterilised cholesterol (0.1 g) was added 

under sterile conditions. Also under sterile conditions, about 30 ml of this agar was then 

poured into 9 cm Petri dishes. The plates were allowed to set and then stored at 4 °C. 

M9 buffer (Kaya & Stock, 1997) 

KH2PO4 (3 g), Na2HPO4 (6 g), NaCl (5 g), MgSO4.7H2O (1 M) (1 ml) were added to 1000 ml 

distilled H2O and autoclaved for 20 min at 121 °C. The solution was allowed to cool and was 

stored at room temperature. 
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2.5. Microscopy & photography 

2.5.1. Routine microscopy and photography 

Images were captured using a Canon PowerShot S45 mounted on a Nikon Optiphot 2 SMZ-

U compound microscope (objectives x4, x10, x40 and x100 with oil immersion; eyepiece 10x) 

or on a LEICA MZ9.5 dissecting microscope with cold (fibre optic) light source. Images were 

taken through the ocular tube, but without the ocular lens. The sizes of blowups comparable 

to the main image were noted. For images that needed some retouching like modifications to 

the brightness or cropping, Canon Utilities ZoomBrowser EX 6.3 version 6.3.0.7 was used.  

Specifications of the images acquired with the Canon PowerShot S45: Dimensions: 2272 x 

1704 pixels; Horizontal and vertical resolution: 180dpi; Bit depth: 24; Resolution unit: 2; Colour 

representation: sRGB; Compressed bits/pixel: 3; Metering mode: Pattern; Digital zoom 1; EXIF 

version 0220.  

2.5.2. Micro-injection microscope setup 

As shown in Figure 2.2, a Wild Heerbrugg M5 dissecting microscope was used for the 

general manipulations that did not need the use of the micro-injector. A Zeiss Axiovert 135 

microscope (Figure 2.2) with gliding stage had two micromanipulators attached to it: a 3 axis 

coarse Narashige positioner/micromanipulator was mounted on the microscope stage and a 

Narashige MO-202 joystick hydraulic micromanipulator for fine positioning was beside the 

microscope. The pressure regulator was attached to a nitrogen gas tank regulated by a 

solenoid valve timer on the bench. The microinjection needle (Eppendorf Femtotip II: 

catalogue No 5242957000= sterile glass injection capillary, 0.5 μm inner and 0.7 μm outer 

diameter) was backfilled using a freshly pulled micro-capillary pipette. The needle was screwed 

into the capillary holder and its tip was broken off by moving it against debris on the agarose. 

No injection oils were used and when buffer was added, M9 was used. Injections and stabs 

were aimed at the middle of body of the worm, more precisely at the uterus. 
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Figure 2.2 The micro-injection suite. On the left is a Wild Heerbrugg dissecting 
microscope and on the right a Zeiss Axiovert 135 inverted microscope with gliding stage. A 
Narashige micromanipulator is mounted on the microscope stage of the Zeiss Axiovert 135 
inverted microscope for course manipulation and a Narashige MO-202 joystick hydraulic 
micromanipulator is also attached for the finer positioning of the needle. 

2.6. Statistics 

Statistical analysis was performed using Minitab Release 15 for Windows (Minitab Inc.). 

The normality of data was checked using the Kolmogorov-Smirnov or Ryan-Joiner test. In case 

the data were not normal, statistical analyses using ANOVA were done on the square root 

transformed data. In graphs and tables, the untransformed data are shown. If data could not 

be transformed, Kruskal-Wallis was used as non-parametric alternative. 

A large amount of data was binomial and was thus analysed using Chi-square tests in 

Minitab. When multiple comparisons between treatments were necessary, α adjustment 

according to Bonferroni-Holm step down was used (Hochberg, 1988).  

When the expected values were too low for reliable 2 by 2 Chi-square tests, a Fisher’s 

exact test was used. 
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3. Fighting in S. longicaudum 

3.1. Introduction 

Steinernema longicaudum strain CB2B is the first nematode species in which intraspecific 

fighting behaviour was observed. Dr Kathryn O’Callaghan came upon this behaviour when 

studying the reproductive traits of 2 closely related species: S. hermaphroditum and S. 

longicaudum (O’Callaghan, 2006). Since this discovery, several Steinernema species were 

examined for fighting behaviour (see Chapter 4). The speed in which fighting can be observed 

and in which the effects of fighting are visible combined with the relative ease to culture and 

rear S. longicaudum make this an ideal basic study species. To define the different aspects of 

fighting behaviour and to examine internal and external influences on aggression and fighting 

in Steinernematidae, the research was thus focussed on S. longicaudum strain CB2B. 

3.2. Objectives 

In this chapter, the fighting behaviour of Steinernema longicaudum is studied in detail. The 

objectives of each section are specified below and the specific hypotheses can be found at the 

end of the introduction of each section. 

In 3.3, fighting between 2 male Steinernema longicaudum is described and analysed to find 

indications of assessment or defensive behaviours. Immediate and long term consequences of 

losing a fight (paralysis, death or loss of reproductive potential) are also considered in 3.3. 

Residency influences both an individual’s resource holding potential and its perception of 

the value of the contested resource (Buena & Walker, 2008;Enquist & Leimar, 1987;Haley, 

1994;Kasumovic et al, 2011;Rillich et al, 2011;Takeuchi & Honda, 2009). In order to distinguish 

between the resident and the intruder and due to the lack of appropriate markers, one of the 

2 males was matured, while the other was kept immature (Figure 3.2). Therefore, in 3.4 the 

effects of both residency and maturity on the fighting behaviour of 2 males are examined. 

First, effects of maturity on fighting behaviour are discussed (3.4.3.1 & 3.4.3.2), only then the 

influence of residency can be assessed. The effect of the presence and varying value of the 

contested resource (a conspecific female) are investigated in 3.5. 
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In 3.6, males are presented with different male-sized opponents so that the characteristics 

that elicit fighting behaviour can be studied. 

It seemed in preliminary observations that males that were constantly forced to be in close 

proximity to each other, were more inclined to fight. This is quantified in 3.7. 

Previous fighting experience influences the perception of a male’s own RHP and might 

make it more capable of assessing its opponent’s RHP (Elias et al, 2008;Hsu et al, 2006;Rutte et 

al, 2006). The effect on subsequent fighting of having already won a fight is examined in 3.8. 

In 3.9 the influence of relatedness on Steinernema male-male fighting behaviour is 

explored in both the founder generation and in subsequent generations (all other studies were 

performed on first generation males), and differences between the generations in tendency to 

fight are quantified. 
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3.3. “Normal” fighting in S. longicaudum 

3.3.1. Introduction 

Fighting probably evolved on several occasions and independently in different animal 

groups (Eibl-Eibesfeldt, 1977). Fatal fighting is however fairly rare and most animal species 

tend to avoid very costly aggressive contests by assessing the fighting abilities of the opponent 

and/or itself. This often involves ritualised displays and might escalate when the contestants 

feel equally potent of winning a fight. 

For example, the ant Cataglyphis niger settles intraspecific contests (Nowbahari et al, 

1999) using the following agonistic behaviours: escape, defensive immobility (i.e., remaining 

motionless in the nymphal position), wide opening of the mandibles (threat), biting and venom 

spraying (the gaster is flexed forward and venom is sprayed through its acidopore). Size is an 

important determinant of the outcome of a fight (Nowbahari et al, 1999) and depending on its 

size, an ant will first assess its opponent’s size and will then respond by escaping or escalating 

the aggressive encounter (Nowbahari et al, 1999). 

Other examples are Varanid (monitor lizard) contests that are made up of 5 distinct 

phases; each characterised by rituals performed in a certain sequence and with new 

behaviours emerging as the combat escalates (Murphy and Mitchell, 1974; Carpenter et al., 

1976; Vogel, 1979; Auffenberg, 1988, 1994; Thompson et al., 1992; Horn, 1994; Horn et al., 

1994). The first phase is called “display” in which the rivals engage in series of head bobs/jerks 

and exhibit intense tongue flicking (Hurd, 2004). The second phase, “encompassing” is 

characterised by the side-by-side orientation of the combatants. Lateral display, intense head-

jerking and arching-of the-back are often performed. “Clinch” is the third phase in which the 

contestants rise up and embrace each other, the bipedal stancebrachial embrace (Murphy & 

Lyndon, 1974). The “catch” phase sees the rivals twisting and tilting each other around in 

wrestling bouts. The subordinate male recognizes its defeat and is mounted 

(pseudocopulation) by the dominant, victorious male in the “suppressive” phase. Interspecific 

differences of fighting behaviour have been described for varanids: not all of these phases or 

behaviours have been recognised in the 19 observed varanid species/subspecies (Earley et al, 

2002). Similar escalating phases in fighting have been described in invertebrates such as 

spiders (deCarvalho et al, 2004;Elias et al, 2008). 
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This first section aims to describe all behavioural aspects of intraspecific male-male fighting 

of Steinernema longicaudum CB2B and to identify any assessment behaviour, escalation 

and/or ritualised aggressive behaviours. The second and third sections quantify the outcomes 

of fights in terms of paralysis, death or reduced reproductive potential. 

Hypotheses 

 Male-male fighting in Steinernema longicaudum is composed of several 

distinguishable behaviours beginning with assessment of self and/or the opponent 

and gradual escalation of fighting. 

 Paralysis and death increase over time. 

 Male-male fighting reduces the fitness of the looser and yields the winner an 

advantage in attaining a higher fitness. 

3.3.2. Materials and methods 

3.3.2.1. Description of fighting 

Over all the fighting observations in this study, the different components of fighting were 

described. This was thus not based on a single observation, but on many, of which the 

recorded fight on the attached CD is a prime example.  

3.3.2.2. Paralysis over time 

Three days after incubation of infective juveniles in haemolymph drops at 27 °C, a male 

was taken out of its drop and placed together with another male of the same age. Every hour 

for up to 8 h after the males were placed together in a drop, they were checked for paralysis 

and death. They were then checked again for paralysis about 24 and 48 h after the males were 

paired. 
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3.3.3. Results 

3.3.3.1. Description of typical fighting 

Some time after two males were put together in a drop, a fight would usually occur: one of 

the males wrapped its tail around the body of its victim. A “wrap” could be loose, where the 

attacker did not keep its victim in a hold and the victim could move out of the coil made by the 

body of the attacker, but a fight was defined as a “wrap” where the attacker took a strong hold 

of its victim and wrapped itself around the victim. Initially, the victim reacted by vigorously 

moving its whole body, but as the fight continued the movements of the victim diminished, 

until the victim did not move anymore. A male could be attacked at any place on its body. 

Depending on where the victim was grabbed by the attacker, the victim might be able to use 

its tail to counterattack the attacker (i.e. wrap around some part of its body) or to scrape its 

tail along the attacker’s body where it had wrapped the victim. Subjectively, this scraping 

looked like the victim was trying to pry off its attacker, although the victim almost never freed 

itself by doing this. When a male was grabbed close to its tail, it could no longer coil its tail and 

a counter-attack was then not possible. But when a male was grabbed in the head region, it 

was not uncommon for the victim to be able to counterattack the attacker. After a 

counterattack both males could end up with signs of paralysis, indicating that a counterattack 

could be efficient. From the time a fight had advanced a couple of seconds, the attacking male 

might lift up the anterior half of its body, and “rock” this back and forth, thus giving a 

subjective appearance of squeezing to the behaviour. Most of the time, the victim was already 

moving its body less vigorously when this behaviour occurred. A fight was over when the 

attacking male released its victim. The victim might be temporarily or permanently paralysed 

and was likely to die. Some fights resulted in visible physical damage to the victim, this is 

described in more detail in Chapter 5. For the victor, new fights were possible straight away. 

The beginning of a fight was not preceded by any obvious changes in the behaviour of 

either worm that would indicate assessment or even recognition of the presence of another 

male. Also, there were no obvious differences in behaviour between single males and paired 

males except for the wrapping and fighting described above. 

The attached CD contains a recording of a straightforward fight with immediate paralysis 

that occurred between 2 S. longicaudum males (S. longicaudum Fight.mpg). 
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3.3.3.2. Paralysis over time 

When 2 males were reared singly in haemolymph drops and put together when they were 

3-4 days old, paralysis as the outcome of a fight was highly likely to occur. The occurrence of 

paralysis and death in the drops with 2 males was significantly different to the 1-male controls 

at all time points (Χ², 1 d.f., p < 0.05). When given enough time (48 h), there was at least 1 

male paralysed in 90 % of the drops with 2 males put together (Figure 3.1). Fighting was seen 

in the first hour, and resulted in paralysis of a male in nearly 20 % of the observed drops. The 

effects of a fight (paralysis and death) became clearer as time went by (Figure 3.1). In addition, 

a total of 57 single males were observed, but none of the single males showed paralysis or 

death within the 72 h observation period. 

 

Figure 3.1  In a drop in which 2 adult males were put together at time point 0: 
paralysis and/or death of at least 1 male over time. The “Partially paralysed” refers to 
worms that were at least partially paralysed, and includes “completely paralysed and/or 
dead”. Observations were made hourly, for up to 7 h, and at about 24, 48, 72 h after the 
males were put together in a drop. In none of the 57 drops where only 1 male was put for 
the same amount of time and for which observations were made at the same time points, 
paralysis or death was observed. The number above the bar is the number of drops observed 
at each time point. 

3.3.3.3. Effect of paralysis/injury on production of offspring 

Victors and surviving victims were each put together with 2 females to test production of 

progeny. Victors and victims that had not sustained any injury or paralysis from the fights were 

able to produce progeny (44 out of 44 males tested sired offspring). Surviving victims that had 

sustained injuries or had been paralysed from the fights were significantly less able to sire 

offspring: only 6 out of 14 (43 %) produced progeny (Fisher’s exact test: p < 0.001). Differences 

in the number of offspring were not estimated. 
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3.3.4. Summary & conclusions 

Under these experimental conditions more than 50 % of paired males engaged in fights 

resulting in paralyses within 7 h which lead to death in most of the cases. Over time, the 

number of drops with paralysis and death increased, indicating that the chance of a fight 

occurring and resulting in paralysis or worse, increased as the males were in each other’s 

company for longer. 

Even when a fight did not result in death, an injured or paralysed victim was about 57 % 

less likely to sire offspring than males that were not affected by a fight or did not fight. 

Paralysis or injury that does not lead to death thus still potentially bestows the winner of a 

fight with a reproductive advantage. 

Observations of fights did not produce evidence of assessment or ritualised behaviour. 

Therefore I cannot say that any signalling of Resource Holding Potential (RHP, see section 1.3) 

or assessment before fighting took place. Defensive techniques, apart from trying to wrap and 

counterattack the opponent, have not been observed. The lack of observations of these 

behaviours in this thesis does not imply they don’t exist. One reason why these behaviours 

might not have been observed could be due to the artificial environment of the haemolymph 

drop. An insect cadaver offers a lot more possibilities to interact and react and whereas a drop 

offers almost no possibilities for hiding, the insect cadaver offers a larger space to flee in and 

many more opportunities for hiding. The amount of coiling in on itself, tail-flicking and 

scratching itself with the spicule are behaviours that were also observed in single males. These 

behaviours might be used in assessment, signalling and/or defensive behaviours. An elaborate 

study, quantifying these behaviours in multiple or coupled male drops and in single male drops 

might show differences. Analysis of the sinusoidal movements of single and multiple or 

coupled males might also reveal behavioural differences, however, due to the nature of these 

movements differences are hard to perceive. The use of a system allowing automated 

recording and analysis of nematode movement (Cronin et al, 2005) may allow analysis of 

assessment and fighting behaviour on this level. Since Steinernema do not have eyes, any 

change in movement of an opponent would be sensed either through direct contact or 

through vibrations of the medium. Nematodes are however well equipped with chemosensory 

organs and use pheromones for communication (Chasnov et al, 2007;Golden & Riddle, 

1982;Golden & Riddle, 1984;Neves et al, 1998;Reyes-Vidal & de la Torre, 2009). The possible 

involvement of pheromonal signalling in assessment and fighting was not investigated.  
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Assessment, signalling, displaying or ritualised behaviour don’t need to be part of a fighting 

behaviour repertoire (Crespi, 1988;Enquist & Leimar, 1990). All of these evasive behaviours 

still confer costs on the contestants (Just & Morris, 2003). Displaying might make the rivals 

more vulnerable to predation (Brick, 1998). However, because adult nematodes are in the 

“protective” environment inside an insect cadaver, it doesn’t seem likely that they are under a 

high predation pressure. Signalling and assessment are often seen as the evolutionary 

preferred strategies to reduce energy costs by avoiding energetically more costly fighting 

behaviour (Marden & Rollins, 1994). These evasive behaviours however still demand energy 

and thus, maybe, in fighting Steinernema species, the cost of fighting does not outweigh these 

behaviours (Crespi, 1988;Enquist & Leimar, 1990). Fight avoiding strategies like mutual 

assessment and aggressive rituals also bear time-costs: time spent on assessing or displaying is 

time not used for feeding, finding a mate or mating (e.g. sneaky males do not invest in 

displays/territorial behaviour and can steel mates from a territorial male (Arak, 1984;Byrne, 

2004;Clutton-Brock & Albon, 1979;Taborsky, 1997)). As mathematically demonstrated by 

Enquist and Leimar (1990), the balance between the value of the future and the value of the 

contested resource will determine the occurrence of fatal fighting and will also influence the 

evolutionary development of fatal or costly fighting avoidance behaviours (Krebs, 1993). In 

situations where the value of the battle outweighs the value of the future without the 

resource, contestants will have little or nothing to lose and can be expected to ignore 

asymmetries and pursue ownership of the resource at all costs, this is also called the 

“Desperado effect” (Cronin & Monnin, 2010). 
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3.4. Maturity and residency of the male 

3.4.1. Introduction 

Steinernema longicaudum CB2B males only mature sexually when they are in the presence 

of a female (Ebssa et al., 2008). It takes 6 - 48 h for males to mature. In a mature male the 

reproductive tract is more developed and macrosperm can be observed in the seminal vesicle 

(Figure 3.2 and Figure 3.3). Preliminary data indicate that when mature males were no longer 

in the presence of a female for some days, the macrosperm disappeared (Shortall, 2009). 

Because of the possibility to observe macrosperm in live males and after dissection (Figure 

3.3), maturity is a way to identify individual males. Other methods such as vital staining and 

feeding worms fluorescent latex microspheres proved unreliable (Ruth Brennan, NUIM, 

unpublished). 

Fighting is a very costly behaviour (Briffa & Elwood, 2005): all the energy and time spent on 

fighting is not spent on reproductive behaviour (e.g. looking for mates or mating) or feeding; 

healing after injury needs lots of energy and when dead, reproduction is no longer possible. 

Therefore, the fought-over resource needs to be high in quality to make up for all those 

possible costs (Enquist & Leimar, 1987;Enquist & Leimar, 1990). A male residing in a territory, 

will know this territory and the values of the resources in it better than an intruder. It can then 

be expected that a resident male will be more driven to fight and win in order to preserve its 

rights over the territory and thus the contested resource(s) (Bentley et al, 2009;Haley, 

1994;Krebs, 1993). 

To be able to distinguish between the resident male and the intruder, mature and 

immature male nematodes were used because the differences in the gonads were easily 

observed (Figure 3.2). When these experiments were started, more fights seemed to be won 

by mature males. In order to research residency, the effect of maturity on fighting thus needed 

to be investigated first. Indeed, maturity can change an individual’s willingness to fight 

(Fromhage & Schneider, 2005;Killian & Allen, 2008). Subordinate Acheta domesticus cricket 

males that were allowed to contact a female (via copulation or only through chemo-tactile 

cues) showed higher levels of aggression towards (dominant) males (Killian & Allen, 2008). 

Previous studies in which increased aggressiveness after mating was observed, explained this 

as post-copulatory mate guarding. However, the males in Killian & Allen’s experiment also 

showed elevated aggressiveness after only chemo-tactile contact with a female. It is then 
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possible that the confirmation of the presence of a female elevated the value of the resource 

was what urged them to escalation of their fighting behaviour. 

Thus, the objectives of this section are to explore the effects of both residency and 

maturity on fighting in S. longicaudum. 

Figure 3.2 The reproductive tract of 
Steinernema males is a simple tubular 
structure. A & B: immature male, note the 
reflexed testis. C & D: mature male. A & C: 
shown in red is the location of the gonad. 
D: the white arrows indicate macrosperm. 
Identification of live mature and immature 
males is possible due to differences such as 
presence of macrosperm in a mature male, 
and the reproductive tract is a lot narrower 
in the immature male. 

100µm100µm

100µm 100µm

36



  

 

Figure 3.3  Reproductive tract from a dissected mature male. 1) Detail of the 
male gonad with macrosperm in the seminal vesicle (a dilated sperm storage region 
continuous with the testis). 2) Detail of macrosperm released after dissection. White arrows 
indicate macrosperm. 

Hypotheses 

 Mature males also perform fighting and killing behaviour. 

 Mature males do not show different fighting, paralysis or killing rates than 

immature males. 

 Resident males show higher fighting, paralysis and/or killing rates than intruding 

males. 

 There is no interaction between maturity and residency on fighting parameters. 
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3.4.2. Materials and methods 

3.4.2.1. Do mature males kill?  

Until now, all experiments on fighting were done using immature worms. In this 

preliminary experiment I paired mature males to see whether they would also fight. 

After 2 days of development at 27 °C, some males were each paired with 2 females to 

induce sexual maturity, while other males were left alone in their drop. The drops were 

replaced at 27 °C for 16-20 h, after which the males were assigned to the following treatments: 

 Mature male paired with a mature male (4 drops) 

 Mature male paired with an immature male (4 drops) 

 Single mature male (7 drops) 

 Single immature male (12 drops) 

Males were only considered mature when they had sired progeny. Any male that failed 

to sire progeny was excluded from the analysis. 

In all these drops, neither male was resident, both were intruders. The males were put 

together in drops in which a male or a female had developed but had been removed. 

About 24 h after the males were put together, the drops were checked for paralysis and 

death. This set was only used to assess the occurrence of fighting between 2 mature males and 

1 mature versus 1 immature male. The identity of the victor in the mixed treatment 

(mature/immature) was not assessed. 

3.4.2.2. Comparison of fighting in 2 mature and 2 immature males 

Do mature males fight each other more often or more intensely than 2 

immature males? 

In this experiment, the behaviour of pairs of mature males was compared to the behaviour 

of pairs of immature males. 

Some individual 2-day old males that developed at 27 °C were each paired with 2 females 

of the same age to induce sexual maturity, while other 2-day old males that developed at 27 °C 

were left alone in their drop. The drops were replaced at 27 °C for 16-20 h, after which the 

males were assigned to the following treatments:  

After 24 h, males were paired in the following treatments: 
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 2 mature males  

 2 immature males 

Immediate observations were normally made for about 30 min during which fighting 

attempts were recorded. Observations were also made at the end of the observation day, and 

after 24 h and 48 h, at which point paralysis and death were recorded. Age of males at 

observations varied, but 2 males in a drop were always of the same age. Females used for the 

maturing of males were examined 3-6 days after mating and presence of progeny was noted. 

Males that had been with a female to induce maturity but did not produce any progeny - even 

when macrosperm may have been observed - were taken out of the dataset. 

3.4.2.3. Effect of maturity and residency on fighting 

Infective juveniles were reared to adults and were then assigned to mating or no mating as 

in 3.4.2.1 above. After 24 h the males were put together with another male to give the 

following treatments: 

 mature intruder versus immature resident 

 mature resident versus immature intruder 

 2 immature males 

Where the resident was a mature male, it had developed and matured in the drop used for 

fighting: the 2 females were put in its drop for mating and were relocated to its original drops 

24 h later. The drops containing females that had been used for mating were examined 3-6 

days after mating for scoring the presence of progeny. When none of the females that were 

paired up with a certain male produced offspring 6 days after mating, this male was discarded 

from the dataset so that all the mature males in the dataset were males that had produced 

offspring. 

The drops were observed for 30 min immediately after the 2 males were put together. 

About 4, 24 and 48 h after the males were put together, the drops were checked for paralysis 

and death. The drops were also checked at the end of the observation day which could range 

per drop from 5 to 8 h after the males were put together. At each examination, the identity 

(mature or immature) of the paralysed or dead male was ascertained by noting the presence 

or absence of macrosperm in the seminal vesicles. When the victim was dead or moribund, the 

males were put on a slide and examined for the presence of macrosperm under the high 

power (x40) of a Nikon Optiphot microscope. Pictures were taken using a Canon PowerShot 

S45 mounted on the microscope. 
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When possible Chi² tests with df=1 were used. In the cases where expected numbers were 

lower than 5, a Fisher’s exact test was done. 

3.4.3. Results 

3.4.3.1. Do mature males fight? 

This preliminary experiment showed that mature males fight each other (4 out of 4 drops 

had 1 male dead after 24 h), mature males and immature males fight each other (4 out of 4 

drops had 1 male dead after 24 h) and mature single males showed no death after 24 h.  

3.4.3.2. Comparison of fighting in 2 mature and 2 immature males 

It appears that the speed with which 2 mature males paralysed and killed is higher than 

the speed with which 2 immature males paralysed and killed (Figure 3.4). At the end of the 

observation day (Figure 3.4-a), there were significantly more drops with a paralysed or killed 

male when 2 mature males were put together than when 2 immature males were paired (p = 

0.01 resp. p = 0.03, Fisher's exact tests). Similarly, after 24 h (Figure 3.4-b), drops with a dead 

male were significantly higher in number for drops with 2 mature males ( Χ² (1, n = 57) = 5.90, 

p = 0.02), but after 48 h (Figure 3.4-c) this difference was no longer significant (p = 0.15, 

Fisher's exact test). 
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Figure 3.4  Effect of the maturation status of the males on paralysis and death of 
2 males. Observations were made at 3 time points: a) at the end of the observation day, b) 
about 24 h after the start of the experiment and c) 48 h after the start of the experiment. 
Within a graph, bars accompanied by no letters are not significantly different, n is the 
number of drops for that treatment. 
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3.4.3.3. Effects of maturity and residency on fighting 

I first examine the effect of maturity on fighting, thereby ignoring the residency status of the 

males (sections 3.4.3.3.1 and 3.4.3.3.1). Pairs of males where one was mature and one was 

immature are compared to pairs of males where both were immature in (3.4.3.3.1) and to two 

mature males in (0). 

Finally, in 3.4.3.3.3, I include the residency status of the males in the analysis of the results 

from the present experiment. 

3.4.3.3.1. A mature male versus an immature male compared to 2 immature 

males 

We can see from Figure 3.5-a, that pairing an immature and a mature male resulted in 84.2 

% of drops with at least 1 male paralysed in the first 4 h, whereas 2 immature males only had 

50 % of drops with at least 1 paralysed male (Fisher’s exact test: p = 0.083). At the end of the 

observation day, there were significantly more drops with at least 1 paralysed male ( Χ² (1, n = 

74) = 13.005, p < 0.001) when one male was mature (81.1 %) than when both males were 

immature (38.1 %) (Figure 3.5-b). So, when one of the males had been given the opportunity 

to mature and mate before being put together with an immature male, paralysis (number of 

drops with at least one male paralysed) tended to occur more (significant at the 10 % level) 

after 4 h and occurred significantly more (at the 5 % level) at the end of the observation day 

than when both males were immature. The difference in drops with paralysis was no longer 

significant after 24 and 48 h (Fisher's exact tests: p = 0.115 resp. p = 0.234; Figure 3.5-c & -d), 

more than 50 % of the drops had at least 1 male paralysed in both treatments. 

No deaths had occurred 4 h after 2 immature males had been put together (Figure 3.5-a), 

whereas pairing an immature and a mature male resulted in 31.6 % of drops with at least 1 

male dead after the first 4 h (Fisher's exact test: p = 0.068). At the end of the observation day, 

there were significantly more drops with at least 1 male dead (Χ² (1, n = 74) = 7.370, p = 0.007) 

when one male was mature (35.9 %) than when both males were immature (4.8 %) (Figure 3.5-

b). And this difference was still significant after 24 and 48 h (Χ² (1, n = 70) = 9.434, p = 0.002 

resp. p = 0.026 (Fisher's exact test)). When one of the males had been given the opportunity to 

mature and mate before being put together with an immature male, mortality (number of 

drops with at least one male dead) was higher than when both males were immature. This was 

significant at the 10 % level after 4 h, but was significant at the 5 % level for all 3 observation 

time points after that. 
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Figure 3.5  Paralysis and death in drops containing either 2 immature males or 
an immature and a mature male. Observations were made at 4 time points: a) 4 h after the 
males were put together in a drop; b) at the end of the observation day; c) about 24 h after 
the start of the experiment and d) 48 h after the start of the experiment. Within a graph, 
bars accompanied by no letters are not significantly different. 
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b) End of observation day: paralysed: X² (1, n = 74) = 3.01, p < 0.001
dead: X² (1, n = 70) = 7.37, p = 0.007
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c) 24 h: paralysed: Fisher's exact: p = 0.115
dead: X² (1, n =70) = 9.43, p = 0.002
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d) 48 h: paralysed: Fisher's exact p = 0.234
dead: Fisher's exact p = 0.026
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3.4.3.3.2. A mature male versus an immature male compared to 2 mature males 

Even though 64.3 % of drops with 2 mature males had at least 1 paralysed male at the end 

of the observation day (Figure 3.6-a) and a mature-immature pair had 84.6 % (Figure 3.6-a), 

there were no significant differences in the effects of fighting (paralysis or death) between 

pairs with 1 or 2 mature males (Figure 3.6) at any of the timepoints. 

 

Figure 3.6  Paralysis and death in drops containing either 2 mature males or an 
immature and a mature male. Observations were made at 3 time points: a) at the end of the 
observation day; b) about 24 h after the start of the experiment; and c) 48 h after the start of 
the experiment. Within a graph, bars accompanied by no letters are not significantly 
different. When possible Chi²-tests with df=1 were used. In the cases where expected 
numbers were lower than 5, a Fisher’s exact test was done. 
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b) After 24 h: paralysed: Fisher's exact p = 1.00
dead: Fisher's exact p = 0.74
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c) After 48 h: paralysed: Fisher's exact p = 1.00
dead: Fisher's exact p = 1.00
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3.4.3.3.3. Effect of maturity and residency on fighting 

Within the 5 min immediately following the introduction of a mature and an immature 

male in 1 drop, there was no significant difference between the number of drops with fights 

depending on whether the intruding male was mature or immature (Table 3.1; p = 0.088, 

Fisher's exact test). However, there was a trend (p < 0.10) for there to be more fighting when 

the intruder was mature and the resident immature. 

Table 3.1 The combined effect of residency and maturity on the occurrence of 
fighting in the 5 min immediately following the introduction of 2 males (1 mature, 1 
immature) in 1 drop. 

Male 1 Male 2 
No. of drops 
without a fight 

No. of drops with a 
fight 

Mature intruder Immature resident 4 5 

Mature resident Immature intruder 0 7 

Fisher's exact test: p = 0.088 

 

Subsequent data on paralysis and death were analysed in two ways: mature versus immature 

(irrespective of residency status, Figure 3.7- left graphs) and resident versus intruder 

(irrespective of the maturity of each, Figure 3.7- right graphs). 

Whether a male was resident or intruding made no significant difference in the number of 

males paralysed at the different time points (after a) 1st 5 min: p= 1.00 ; b) 4 h: p = 0.74 ; c) at 

the end of the obs. day: p = 1.00 ; e) after 48 h p = 1.00 ), except for the “after 24 h” time point 

when more intruding males than resident males were paralysed (p = 0.033)( Figure 3.7-d- right 

graph). 

The maturity status of the males had a highly significant effect (after 1st 5 min: p < 0.01; all 

other time points p < 0.001) at all the time points tested. N.B. there were more immature 

males paralysed than mature males (Figure 3.7- left graphs). 
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Figure 3.7  Paralysis and death in males classified by maturity status (left 
graphs) or by residency status (right graphs). The maturity status of the male made it 
possible to identify resident and intruding male. Observations were made at 5 time points: 
a) the first 5 min the males were in a drop together (n=16)r, b) 4 h after the males were put 
together (n=19), c) at the end of the observation day (n=50), d) about 24 h after the start of 
the experiment (n=45) and e) 48 h after the start of the experiment (n=17). Within a graph, 
bars accompanied by no letters are not significantly different. When possible Chi² tests with 
df=1 were used. In the cases where expected numbers were lower than 5, a Fisher’s exact 
test was done. 
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3.4.4. Summary & conclusions 

Residency of the male may have had an effect on winning or losing a fight, but the effect of 

maturity on winning a fight is overwhelming. Whenever at least 1 of the males had had the 

opportunity to mature, fights, paralyses and death occurred more quickly than when both 

males were immature. More detailed investigation then showed that a mature male was more 

likely to paralyse and kill its immature opponent than vice versa, regardless of the residency 

status of the males. 

Having had wrapping experience during mating, mature males might be more confident in 

their wrapping abilities and/or the wrapping might have trained the muscles used for wrapping 

and those for protrusion of the spicules. This training would also benefit fighting as this makes 

use of many of the same movements. 

In Chapter 5, the possible involvement of a toxin in fight-induced paralysis is addressed. In 

case the putative paralysing toxin is a chemical associated with the production of sperm 

and/or seminal fluid, mature males might physiologically be better prepared for paralysing and 

killing. 

Because mature males have the tendency to be bigger than immature males of the same 

age (personal observation, not quantified), they may be physically better able to fight. Size is 

often of importance in determining the contest outcome (Brown et al, 2006;Sacchi et al, 2009). 

Moreover, the energy and nutrients these males have put into developing their gonads, and 

maybe also somatic tissue, would be higher than what the immature males have invested. A 

higher investment means a higher subjective value of the resource which will result in a more 

aggressive behaviour. Female Goniozus legneri (a parasitoid wasp) owners of contested insect 

hosts, adjusted their fighting behaviour to the developmental stage of their brood in the host 

(Bentley et al, 2009). The more vulnerable the female owner’s offspring still was to conspecific 

infanticide (from female intruder offspring), the more aggressively the female owner would 

defend the host. The investment of the female’s lifetime reproductive success that it has 

connected to that particular resource makes it more valuable to her than to an intruder that 

has not yet invested in that particular insect. 

As in Killian’s observations on crickets (Killian & Allen, 2008), Steinernema males might not 

have needed actual copulation with the female to gain in aggressiveness. This was not 

investigated in this thesis, but could easily be done by maturing males through exposing them 

to females through a semi-permeable barrier (Ebssa et al, 2008). 
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3.5. Effect of presence and reproductive status of a 

conspecific female on fighting in S. longicaudum 

males 

3.5.1. Introduction 

In organisms that reproduce sexually, females are normally the physiologically most 

investing sex (Parker et al, 1972). Females produce big, energy rich eggs which are less 

numerous than the small sperm, which are basically only nuclear genetic material containing 

gametes, produced by males. Females are then expected to be more careful not to waste 

these precious eggs, and will normally mate less than males (Clutton-Brock & Parker, 1992). 

This makes females a limited resource for males (Emlen & Oring, 1977), with varying 

reproductive values depending on the occurrence of previous mating of the female. Mated 

females will have fewer unfertilised eggs and will thus produce fewer offspring of the mating 

male than a mature virgin female (Krebs, 1993). Moreover, in case females mate only once, 

virgin females become an even scarcer resource. S. carpocapsae males are only attracted to 

virgin conspecific females (Lewis et al, 2002) which makes it possible that females might only 

mate once and which will definitely elevate the competition for virgin females. It is not known 

whether S. longicaudum females mate only once, but if this is the case then there is a higher 

reproductive value to a male for virgin females. 

The presence of a female can increase intrasexual male fighting behaviour (Tachon et al, 

1999). The reproductive value of the presented female also influences fighting behaviour (Keil 

& Watson, 2010). In some species (e.g. Acheta domesticus crickets) the indication (i.e. 

chemical cues) that a female is in the vicinity suffices to elevate the fighting behaviour (Buena 

& Walker, 2008). 

Also, since fighting behaviour resembles mating (3.3.3.1), presenting a male with the 

choice between a male or a female, presents it with a choice between fighting or mating. If 

fighting occurs under these conditions the possibility that our putative “fighting” is really a 

case of frustration-mating due to lack of females can be ruled out. 
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Hypotheses 

 Male mating behaviour is dependent on the reproductive value of the available 

female: 

o males will attempt more mating when the female is of a high reproductive 

value (big virgin female) 

 Fighting behaviour between 2 males is influenced by the presence of a female. 

o more fighting and paralysis when a female is present (Buena & Walker, 

2008;Hoem et al, 2007;Kruse & Switzer, 2007;Tachon et al, 1999) 

o more fighting and paralysis when this female is of a high reproductive 

value 

3.5.2. Materials and methods 

In this experiment, pairs of mature males were put together with females of various 

reproductive status, or no female, and fighting or its outcomes were recorded. 

Individual males (2-5 days old) were either put in drops with 2 females of the same age to 

mate and mature (as in section 3.4.2.1) or were kept single in their original drop. In pairs of 

males, one was resident and one was an intruder, though the identity of each was not tracked. 

Where the male would be used as the resident male in a fight, the females were removed from 

the drop after 24 to 48 h and kept in a vacant drop. Where the male would be used as the 

intruding male, it was removed from the drop after 24 to 48 h and placed in the observation 

drop. The mature males were assigned to the following treatments: 

 2 mature males with a mated female (this was 1 of 2 females used for the 

maturing of another male, the other female from this trio was not reused but kept 

to check for progeny and thus successful mating of the corresponding male); 

 2 mature males with a large virgin female (same age as the mated females and the 

males); 

 2 mature males with a small virgin female; 

 2 mature males without a female. 

Normally, virgin females of approximately the same age as the mature males used in this 

experiment were very long, fat and visibly full of eggs. This made it quite difficult to find small 
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females of around the same age as the males to use in the category “small virgin female”. 

When a female of 3-6 days old was small, she often appeared to have suffered some 

developmental delay and did not look completely healthy. In some observation drops, these 

feeble females were used, but in most drops the females used for this “small virgin female” 

category were younger than the males and other females used in the experiment. 

Immediate observations were normally made for about 30 min during which both fighting 

and mating attempts were recorded. Observations were also made at the end of the 

observation day, 24 h after and 48 h after, at which point paralysis and death were recorded. 

Age of males at observations varied, but 2 males in a drop were always of the same age. The 

females that were only used for the maturing of males were examined 3-6 days after mating 

and progeny noted. Males that had been with females for maturing, but had not produced any 

progeny with this female- even when macrosperm may have been observed - were taken out 

of the dataset. 

3.5.3. Results 

When the presence and reproductive status of a female was varied there was no significant 

difference in the level of fighting between 2 mature males based on both the immediate 

fighting (Figure 3.8-a; Χ² (3, n = 56) = 2.367, p = 0.500) and the results of fighting in terms of 

immediate paralysis (Figure 3.8-b; Χ² (3, n = 56) = 1.718, p = 0.633) and paralysis /or death 

after a longer time period (Figure 3.9; p > 0.3 or number of drops with paralysis or death too 

low). The drops without females do show the least (though not significant) amounts of 

paralysis and fighting (Figure 3.8-a & -b) as would be expected based on resource-value 

theories (Keil & Watson, 2010). 

The wrapping of a male around a female was also recorded; this was only interpreted as an 

attempted mating when it occurred at the female’s vulva. Even though it was not significant 

(Χ² (2, n = 42) = 3.579, p = 0.167), mature males paired with a big virgin females made mating 

attempts in 70 % of the drops, only 40 % drops with a small virgin female or a mated female 

had shown mating attempts (Figure 3.8-c). 
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Figure 3.8  Effect of mating status of the female on the behaviour of 2 mature 
males: a) immediate fighting, b) paralysis of at least 1 male, c) mating. Observations were 
made over a 30 min period starting directly when all the individuals were placed together in 
the drop. 

*: 1 cell with expected counts less than 5. 

 

n = 15

n = 13

n = 14

n = 0
0

20

40

60

80

100

Mated Female Big Virgin Female Small Virgin Female No Female

%
 o

f 
d

ro
p

s 
w

it
h

 m
at

in
g

c)  Mating: X² (2, n = 42) = 3.58, p = 0.167

n = 15
n = 13 n = 14

n = 14

0

20

40

60

80

100

Mated Female Big Virgin Female Small Virgin Female No Female

%
 o

f 
d

ro
p

s 
w

it
h

 f
ig

h
ts

a) Immediate fighting: X² (3, n = 56) = 2.37, p = 0.500

n = 15 n = 13 n = 14

n = 14

0

20

40

60

80

100

Mated Female Big Virgin Female Small Virgin Female No Female

%
 o

f 
d

ro
p

s 
w

it
h

 p
ar

al
ys

is

b) Paralysis: X² (3, n = 56) = 1.72, p* = 0.633

51



  

 

Figure 3.9  Effect of presence and mating status of the female on paralysis of at 
least 1 male in a drop with 2 mature males: a) at the end of the observation day, b) after +/- 
24 h and c) after +/- 48 h. Chi²-tests with df=3 were used. 

*: 4 cells with expected counts less than 5. 
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3.5.4. Summary & conclusions 

Male-male fights occurring when a female was present implies fighting is not just 

frustration-mating (Field & Waite, 2004). 

Despite the lack of significance, fighting, paralysis and mating show the trends that are 

expected based on theory: more fighting and paralysis when a female is present (Buena & 

Walker, 2008;Hoem et al, 2007;Kruse & Switzer, 2007;Tachon et al, 1999) and more attempts 

for mating when the female is of a high reproductive value (Keil & Watson, 2010). A maximum 

sample size of 17 is very low and these female choice and female presence experiments should 

be repeated with higher numbers. 

Some of the females used for the “small virgin female” category looked rather unhealthy. 

This might have had an influence on this experiment and future experiments should aim to 

only use standard younger females for this category. 
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3.6. Characteristics of male-sized opponents that elicit 

fighting behaviour 

3.6.1. Introduction 

Some animals attack inanimate objects to various degrees. For example, ducklings 

sometimes direct forceful pecks at a nonliving target (Gaioni et al, 1977). This behaviour has 

been proven to be an aggressive behaviour (Gaioni et al, 1977). 

Paired rats are known to perform a behaviour named “reflexive fighting” when fighting 

behaviour is elicited as a reflex reaction to electric shock without any prior specific 

conditioning (Ulrich & Azrin, 1962). A second moving animal, e.g. a rat, a guinea pig or a 

hamster is a necessary condition for eliciting the fighting response from a rat stimulated by 

foot-shock (Ulrich & Azrin, 1962). A rat that was given a foot-shock did not attack a nearby 

doll, a moving inanimate object or a recently deceased rat (Ulrich & Azrin, 1962). A dead rat 

only sufficed for eliciting fighting when it was moved about the cage on a stick (Ulrich & Azrin, 

1962). 

In intrasexual aggression by male Iberian wall lizard, Podarcis hispanicus, odoriferous cues 

seem to be the more important characteristics of the opponent in eliciting an attack, at least at 

close range (López et al, 2002). 

Movement and pheromones can thus be important stimuli for eliciting aggressive 

responses. In this section, stimuli that a male Steinernema longicaudum responds to by 

performing fighting behaviour are identified. By using as an opponent a male substitute or 

males treated so that they would possess some possible fighting behaviour eliciting factors, 

but lack others, it would be possible to identify those factors that trigger fighting. 

Hypotheses 

 Non-intentionally varying factors have no effect on the number of attacks per drop 

(3.6.3.1). 

 An inanimate object of male dimensions (a suture) does not elicit fighting behaviour in 

a male (3.6.3.2.). 

 Males don’t wrap all male-sized objects to the same extent. The object needs to have 

certain conspecific male characteristics like texture (dead conspecific male), movement 
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(incapacitated conspecific male) or a certain capability to inflict injury (normal 

conspecific male) to elicit fighting behaviour (3.6.3.2.). 

 Presenting a male with a stronger “fight eliciting factor” will affect the male’s 

behaviour to the male sized object (3.6.3.3.1). 

 The presence of a male-sized object in a drop can affect fighting between 2 normal 

males depending on the characteristics of the object (3.6.3.3.2, 3.6.3.3.3 and 

3.6.3.3.4.). 

3.6.2. Materials and methods 

3.6.2.1. Male sized object 

Fourteen males were checked for width when aged 2, 5 and 9 days (see Table 3.2); 9 day 

old males were taken as the upper limit to also account for developmental and environmental 

differences between batches of males), the age range used in the objects experiments is 2-6 

days old. The mean width for males aged 2-9 was between 70-85 µm, this corresponded best 

with surgical sutures of the 6-0 or 7-0 USP1 size (see Table 3.3). The 7-0 was deemed the most 

appropriate, as this corresponded best to the width of males of 2-5 day old males that were 

used in experiments. The suture was cut to an average male size, the resulting pieces did vary 

slightly in length, which allowed for pairing up males with a suture of approximately the same 

size. A piece of the suture was placed in a drop of Ringers and then cut to the appropriate size 

with a sterile scalpel blade. Clean tweezers or insect needles were used to move the suture of 

male size into the experiment drop. 

SURGIDAC™ undyed polyester sutures were used because they are non-absorbable, sterile, 

and uncoated. The chemical impact of these sutures should be only minimal and no significant 

change in strength of the suture should occur. 

  

                                                           

1
 USP: United States Pharmacopeia, the organisation that defined suture sizes. 
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Table 3.2 Width (µm) of males aged 2, 5 or 9 days. 

Age in days 2 5 9 

Mean width in µm 69.05 70.83 85.42 

min 50.00 58.33 75.00 

max 83.34 83.34 100.00 

n 14 6 4 

SD 10.56 11.49 10.49 

SE 2.82 4.69 5.24 

Table 3.3 Diameter in (µm) of conventional USP1 sizes for nonabsorbable sutures. 
 (Source: http://www.meta-biomed.com/english/suture/mepfil.html) 

Size Diameters by USP1 methods (µm) 

USP Average value Individual value 

Minimum Maximum Minimum Maximum 

8-0 40 49 35 60 

7-0 50 69 45 85 

6-0 70 99 60 125 

 

3.6.2.2. Incapacitated male 

To produce an incapacitated male, a 2-5 day old male was taken out of its drop and was 

left to dry on a Petri dish for at least 30 sec. During these 30 s, the male was rolled back and 

forth over a very short distance (less than 1 mm) with the aim to inflict injury. Drops in which 

the incapacitated male attacked one of the normal males were excluded from the analyses as 

the purpose of the incapacitated male was to have a live male that was incapable of attacking. 

3.6.2.3. Dead male 

A dead male was produced by taking a 2-5 day old male out of its drop and leaving it to dry 

on the lid of a Petri dish for at least 2.5 h. The lid was passed over a Bunsen flame so that the 

male would suffer lethal dehydration. When the male looked sufficiently dehydrated, a drop of 

sterile Ringer’s was placed on top of it for at least 2.5 h so its body could return to the previous 

size. Special care was taken to only use males that were definitely dead as some males were 

able to recover even after repeated cycles of dehydration. 
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3.6.2.4. Effect of object/opponent 

After 3-6 days in the 27 °C incubator, males were randomly assigned to one of the 7 

treatments, which can be grouped as follows: 

 2 normal males; 

 2 normal males plus an object (dead male, incapacitated male, suture); 

 1 normal male plus an object (dead male, incapacitated male, suture). 

This experiment was done in 10 sets. A set was a group of observations that were 

performed within 3 days of each other. The difference between sets was the addition or 

exclusion of extra treatments or extra observation periods so that not all 15 min observation 

periods and observation time points were included in each set. 

Four 15 min observations were made during which the number of attacks and fights were 

recorded. These periods were (1) 0-15, (2) 16-30, (3) 31-45 min and (4) 1.75-3 h after the start 

of the experiment. After each 15 min observation period, the males present were checked for 

paralysis. This was checked again at the end of the day, after 24 h and after 48 h. 

Using a mercury thermometer that was adhered to the observation stage, the temperature 

was checked at the beginning of the 1st observation period for 3 of the 10 sets. In one set, the 

temperature on the observation stage was also checked at the 4th observation time period. 

To produce “male-scented" sutures, in 6 sets, 30 sutures were re-used after they had been 

in a drop with 1 male for at least 15 min and 3 sutures were re-used after they had been in a 

drop with 2 males for at least 15 min. Because of the possible presence of male associated 

chemical stimuli in the drop, any haemolymph that was transferred adhering to the suture 

might indicate that a male was introduced into the new drop instead of just a suture of male 

dimensions. It was expected that if male associated chemical stimuli induced fighting 

behaviour in a male, the “scented” suture would be attacked more often than the “unscented” 

suture. Scent however did not seem to have any effect on the number of attacks towards the 

suture (3.6.3.1) and therefore the rest of the sets were only given “unscented” sutures.  

The analyses were broken down into fights between 2 normal males and fights between a 

normal male and an object. The focus was on the number of attacks in a drop, since this 

encompassed the number of drops with fights, and it was expected that the number of drops 

with fights would show the same trends. The number of drops with paralysis or death at the 

end of day, after 24 and 48 h were also recorded and analysed. 
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3.6.3. Results 

3.6.3.1. “Non-target” factors 

Because of possible confounding effects of the non-intentionally varying factors (set, 

temperature on the observation stage of the microscope, age of males) and the additional 

factor “scent”, I first examined the effects of these factors on number of attacks per drop. The 

rate of development and the number of males that developed, varied a lot over the different 

sets making it too difficult to assign the same number of observations to all treatment 

combinations, especially regarding the non-intentionally varying factors. The data for analyses 

of interaction effects between all factors (controlled and non-controlled) was thus unbalanced 

and fully factorial analyses were not possible. Therefore, for each treatment, the effect of each 

of the uncontrolled factors (temperature, set, age and scent) on the number of fights per drop 

was examined separately using one-way ANOVA. The analysis was conducted separately for 

each observation time. The results of these tests are given in Appendix section 1.1. 

Scent, temperature and age had no effect on fighting in any treatment at any observation time 

(Appendix tables 1, 2, 3 and 4). Only set had a significant effect on the number of attacks per 

drop in the 1st 15 min time period for the treatment where only 2 normal males were placed 

together in a drop (p =0.035, Appendix table 1) and in the 2nd 15 min time period for the 

treatment where 1 normal male was paired with a dead male (p = 0.039; Appendix table 2). A 

post hoc Tukey’s test however, did not detect specific differences between sets within either 

of these 2 specific treatment-time point combinations. It would therefore be possible to 

conclude that there was little or no effect of the various non-target factors on the number of 

attacks in a drop and I next explore the effect of the different planned treatments on the 

number of attacks per drop and on the number of drops in which attacks occur, ignoring these 

factors. 

3.6.3.2. Attacks by 1 normal male directed against an object  

A normal male in its own drop attacked each of the objects that it was presented with. It 

did not perform a significantly different number of attacks towards the different objects (a 

dead male, an incapacitated male or an artificial male; all p > 0.1). Nor did the number of drops 

in which attacks occurred vary significantly (all p > 0.05, Figure 3.10). 

In 4 of 36 drops, a suture of conspecific male dimensions was attacked by a solitary male 

within the first 15 min (Figure 3.10-a-right graph). In the 2nd 15 min period however, the 

suture was not attacked in any of the 6 drops (See Figure 3.10-b-right graph). 
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3.6.3.3. 2 normal males plus an object 

In this section I first dealt with attacks of the 2 normal males against the object. Then I 

looked at the attacks between the 2 normal males. Next, I focussed on drops in which both the 

other normal male as the object was attacked. In the last part of this section, I investigated the 

occurrence of paralysis of at least 1 normal male. 

3.6.3.3.1. Attacks by 2 normal males directed against an object  

Again, when 2 normal males were present, each class of objects was attacked as was 

observed when there was a solitary male. This time however, there were differences between 

the classes of objects. During the 1st 15 min, the number of attacks 2 males directed towards a 

male-sized suture, was significantly less ( F (2, 90) = 4.62, p = 0.012;) than the number of times 

they attacked a treated (dead or incapacitated) male (Figure 3.11-a left graph). The number of 

drops in which attacks occurred, was also significantly lower ( X² (2, n = 93) = 9.764, p = 0.008) 

where the object was a suture (Figure 3.11-a right graph). 

During the 2nd (Figure 3.11-b) and last (Figure 3.11-c) observation periods, the number of 

drops with an attack on the object (right graphs) and the number of attacks per object (left 

graphs), were not different over the 3 treatments. However, the trend for the suture to be 

attacked less than the dead or incapacitated male seen in the first observation continued. 

3.6.3.3.2. Attacks between 2 normal males  

In drops where 2 males either were or were not presented with an object, the number of 

drops with male-male fighting and the number of times the males attacked each other during 

the 1st and 2nd 15 min observation periods (see Figure 3.12-a & -b), were not significantly 

different over the various treatments (all p > 0.05). 

In the last 15 min period (Figure 3.12-c, right graph), there were significantly (X² (3, n = 81) 

= 11.971, p = 0.007) fewer drops with fighting when 2 males were presented with a treated 

(dead or incapacitated) male than when they were left without an object. Although p = 0.05 (F 

(3, 77) = 2.72) in the last observation period (Figure 3.12-c, left graph), a post hoc Tukey’s test 

did not pick up differences in the number of attacks between the 2 normal males due to the 

presence or absence of the various objects. Figure 3.12-c (left graph) however, shows the 

same trend for number of attacks as in the number of drops with fights: 2 males fought each 

more often when they were not presented with a treated male. 

59



  

The presence of the suture did not significantly influence the number of drops with fights 

or the number of fights between the 2 normal males (Figure 3.12). 

3.6.3.3.3. Did attacks by 2 normal males directed against an object occur in the 

same drops as attacks against another male?  

In Figure 3.13, I classify drops as those in which no attack occurred, those in which only a 

normal male was attacked, those in which only the object was attacked and those where both 

normal male and object were attacked. During the first 15 min observation period 13.8 % or 

21.9 % of the drops that had attacks towards the incapacitated or dead male (respectively), 

also had attacks towards the other normal male. In the 2nd and last observation periods the 2 

normal males attacked both the object and each other in less than 3.5 - 6.3 % of drops. 

The suture was never attacked on its own, it was only attacked in a drop in which a normal 

male was also attacked. However, the number of drops in which a suture was attacked was 

low (only occurred in 1 drop). 

3.6.3.3.4. Paralysis of at least 1 normal male after the observation period 

In this section, I deal with the paralysis of a normal male at the end of each observation 

period, and paralysis and death at the end of the observation day and after 24 & 48 h. 

After the 1st and 2nd 15 min periods the proportion of drops where at least 1 male was 

paralysed, was significantly different (1st 15 min: X ²(3, n = 167) = 8.482, p = 0.037; 2nd 15 min: 

X² (3, n = 150) = 8.335, p = 0.040) over the 4 treatments (Figure 3.14-a & -b). Because of the 

low numbers of drops in which paralysis had occurred by this stage, the overall significant 

effects could not be translated into specific differences between treatments. However, 

inspection of the data showed that the incidence of paralysis appeared to be lower in the 

presence of a suture or a dead male (0 - 9.4 % of drops) than when an incapacitated male or no 

additional object was present (17.2 - 20.3 % of drops) (Figure 3.14-a & -b). By the last 

observation period 28.6 - 40.0 % of drops had a paralysed male (Figure 3.14-c), but there were 

no significant differences over the 4 treatments (X² (3, n = 81) = 0.934, p = 0.817). 

The number of drops in which 1 normal male got paralysed or died 3 - 48 h after the 

beginning of the experiment, was not influenced by the presence of an object in the drop 

(Figure 3.15, all p > 0.5). However, the incidence of death at the end of the observation day 

(Figure 3.15-a, right graph) followed the trend in paralysis seen during the earlier observations 

(Figure 3.14-a & -b), with less death in the suture and dead male treatments than in the other 

two. 
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Figure 3.10 Attacks made by 1 normal male towards the object it was placed in a 
drops with. Left: mean (+/- SE) number of attacks made in a drop; Right: % of drops in which 
attacks occurred. An object can be an incapacitated male, a dead male or a suture of male 
dimensions. Observations were made over 3 time periods: a) 0-15, b) 16-30 and c) 31-45 min 
after the worms and objects were added to the drop. n is equal on left and right graphs. *: 1 
cell with expected count less than 5. 
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Figure 3.11 Attacks made by 2 normal males towards the object they were placed in a 
drops with. Left: mean (+/- SE) number of attacks made in a drop; Right: % of drops in which 
attacks occurred. An object can be an incapacitated male, a dead male or a suture of male 
dimensions. Observations were made over 3 time periods: a) 0-15, b) 16-30 min and c) 1.75-3 
h after the worms and objects were added to the drop. Within a graph, bars accompanied by 
the same or by no letters are not significantly different. 
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Figure 3.12 Attacks made between 2 males in drops where 2 normal males were or 
were not placed together with an object. Left: mean (+/- SE) number of attacks made in a 
drop; Right: % of drops in which attacks occurred. An object can be an incapacitated male, a 
dead male or a suture of male dimensions. Observations were made over 3 time periods: a) 
0-15, b) min and c) 1.75-3 h after the worms and objects were added to the drop. Within a 
graph, bars accompanied by the same or by no letters are not significantly different, n is 
equal on left and right graphs. 
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Figure 3.13 % of drops in which the 2 normal males did not attack, attacked only the 
other normal male, attacked the other normal male and the object or only attacked the 
object they were placed in a drop with. Observations were made at the end of 3 time 
periods: a) 0-15, b) 16-30 min and c) 1.75-3 h after the worms and objects were added to the 
drop. nboth=1 is the number of drops in which both the normal male and the object were 
attacked. 
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Figure 3.14 Where 2 normal males were or were not placed together with an object: 
the % of drops in which paralysis of at least 1 of the normal males occurred at the end of the 
observation period. An object can be an incapacitated male, a dead male or a suture of male 
dimensions. Observations were made at the end of 3 time periods: a) 0-15, b) 16-30 min and 
c) 1.75-3 h after the worms and objects were added to the drop. 
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Figure 3.15 Percentage of drops in which at least 1 normal male is paralysed (left 
graphs) or dead (right graphs) at a) the end of the observation day, b) after 24 and c) 48 h. n 
is equal on left and right graphs. 
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3.6.3.4. Effect of an object and number of males on number of 

attacks in a drop 

In a drop, attacks can be directed at another normal male or at an object whenever these 

were present. The treatment can have an effect on these attacks, but also on the total number 

of attacks in a drop, regardless of the receiver (normal male or object) of the attack. In this 

section, I focus on the total number of attacks per drop (and drops with attacks), in drops with 

2 normal males, 2 normal males plus object, or 1 normal male plus object. 

During the 1st 15 min period after the start of the experiment, there was significantly less 

fighting (F (2, 243) = 9.55, p < 0.001) by 1 male with an object (suture, incapacitated or dead 

male) than by 2 males, with or without an object (see Figure 3.16-a, left graph). During the 2nd 

observation period (see Figure 3.16-b, left graph), 1 male with an object performed 

significantly less (F (2, 190) = 3.11, p = 0.047) fighting than 2 males with an object and less (but 

not significantly) than 2 males without an object. For both these observation periods, the 

proportion of drops in which attacks occurred was also significantly less (1st 15 min: X²(2 , n = 

245) = 23.534, p < 0.001; 2nd 15 min: X² (2, n = 193) = 9.470, p = 0.009) for 1 male with an 

object than for 2 males (with or without objects) (Figure 3.16-a & -b, right graphs). 

In the 3rd 15 min period, there was no difference (all p > 0.5) between treatments (1 

normal male with an object and 2 normal males) either in the number of attacks (Figure 3.16-c, 

left graph), or in the number of drops in which an attack occurred (Figure 3.16-c, right graph). 

Two normal males with an object were not included at this time period. 

When looking over time at the number of attacks per drop and the number of drops in 

which an attack occurred, there seems to be a big decline (from 0.85 to 0.27, respectively from 

41.7 % to 13.6 %) for 2 normal males without an object between the 2nd and 3rd time period 

(Figure 3.16-b & -c). However, the 22 drops that were observed in the 3rd 15 min time period 

represent just a subset of those examined in the earlier time periods. This makes it rather 

difficult to correctly analyse and interpret possible differences over time. 

For the total amount of fighting for all seven treatments for the 1st and 2nd 15 min 

observation periods see Appendix section 1.2 and Appendix figure 1. 
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Figure 3.16 All attacks, regardless of receiver. Left: mean (+/- SE) number of attacks 
made in a drop; Right: % of drops in which attacks occurred. The treatments were grouped 
into those where, in a drop, 1 male was placed together with an object, 2 normal males were 
placed together or 2 normal males were placed together with an object. An object can be an 
incapacitated male, a dead male or a suture of male dimensions. Observations were made 
over 3 time periods: a) 0-15, b) 16-30 and c) 31-45 min after the worms and objects were 
added to the drop. Within a graph, bars accompanied by the same or by no letters are not 
significantly different. n is equal on left and right graphs. 
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3.6.4. Summary & conclusions 

With only 1 male present, the nature of the object did not influence the attacks (Figure 3.10). 

When 2 males were present however, the number of attacks and the number of drops with 

attacks directed by 2 males towards a male-sized suture during the 1st 15 min (Figure 3.11) was 

significantly less (resp. F (2, 90) = 4.62, p = 0.012, X² (2, n = 93) = 9.764, p = 0.008) than the 

number of times they attacked an incapacitated or a dead male. Also, in no event, was a suture 

attacked without the occurrence of an attack between the 2 males (Figure 3.13).  

In the first half hour of the experiment, there were less attacks and less drops with attacks 

when only 1 male was present than when 2 males were present (Figure 3.16-a & -b, all p < 

0.05). Thus, a male performed fewer attacks towards an object, than towards a normal male. 

In a 15 min period 1.75-3 h after the start of the experiment, there were less drops with 

attacks between the 2 males when they were presented with an incapacitated or a dead male 

than when they were left without an object (Figure 3.12-c-right graph, p < 0.05). The presence 

of a suture did not seem to affect the number of attacks between the 2 males. At this same 

moment in the experiment, paralysis of a normal male (Figure 3.14) did not differ between the 

treatments where no object was present or where an incapacitated or dead male or a suture 

was present. Over the following 2 days, the number of drops with at least 1 male paralysed 

increased in all treatments, without any differences (Figure 3.15). This indicates that the 

difference in fights between drops with an incapacitated or dead male and drops with no 

object present might be of a temporary nature. 

N.B.: a solitary normal male attacked each of the objects with which it was presented - a dead 

or incapacitated male, or an artificial male (a suture), and it attacked each of these objects 

equally (Figure 3.10). This might suggest that any male-sized object will be attacked, or 

“wrapped”, and might call into question whether the observed “wrapping” should be 

interpreted as an attack. However, although two normal males also attacked all these three 

classes of object, they tended to attack the suture less frequently than the dead or 

incapacitated male (Figure 3.11 left graphs). This shows that not all male-sized objects are 

equally subjected to wrapping and suggests that cues associated with a real male are 

important. That the number of drops in which sutures were attacked (Figure 3.11 right graphs) 

was also reduced (not just the overall number of attacks), and that this reduction was evident 

from the start of the experiment (Figure 3.11-a), indicates that the lower attack rate on 

sutures is not a result of learning by the normal males through previous attacks. Over all the 

observational experiments made for this thesis, I observed males heading straight for the 
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other male and attacking upon first contact. This may indicate that the essential cue for 

fighting is a diffusible chemical as prior contact with the object is not a prerequisite. Dead 

males were attacked as frequently as incapacitated ones, both by solitary males (Figure 3.10) 

and by male pairs (Figure 3.11), showing that the weak movement of an incapacitated male 

does not make it more likely to be attacked. If anything, there is even a trend for a dead male 

to receive slightly more attacks than an incapacitated one.  

The next question is whether a dead or incapacitated male is attacked as frequently as a 

normal male. This can be addressed in two ways. Firstly, by comparing the number of attacks 

made by a solitary male against one of these objects to the number of attacks between two 

normal males (without an object present). There was a lower level of attack by a solitary male 

on a treated male (average about 0.3 - 0.9 attacks/drop, Figure 3.10) compared to the attack 

rate between two normal males (average 0.9 to about 1.2 attacks/drop, “nothing” category in 

Figure 3.12). However, if we assume that each of the two males is equally likely to initiate a 

fight, then we might expect two normal males to fight twice as much as a solitary one. 

Therefore, from this comparison it looks as if a normal male will attack a dead or incapacitated 

male as much as it will attack another normal male. We see a similar picture when the data for 

all three classes of object are combined for solitary males and compared with two normal 

males (Figure 3.16); the attack rate by a solitary male on an object is the same (3rd observation 

period) or about half the frequency (1st and 2nd observations) as that of two normal males.  

The second way to explore whether a normal male is more likely to attack another normal 

male than a treated (dead/incapacitated) male is to examine what happens when both options 

are presented simultaneously, i.e. compare the number of attacks between two normal males 

in the presence of an object with the number of attacks directed by them against the object. If 

we assume that either male may attack the object, and that either normal male may also 

attack the other, then the number of attacks between the two should be the same as the 

number directed against the object. The number of attacks between two males in the 

presence of an incapacitated or dead male (Figure 3.12) tends to be somewhat higher than the 

number of fights by the same male pair against the treated male (Figure 3.11), but not greatly 

so, indicating a slight preference for a male to attack another healthy male rather than a dead 

or incapacitated male, when given the choice. Thus, normal movement does not seem to be 

very important in eliciting an attack.  

There is no obviously visible difference in the nature of the “wrapping” observed around 

sutures and males. However, “squeezing” as was observed when a normal male attacked 

another normal, dead or incapacitated male was not observed when a normal male attacked a 
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suture. The attacking male thus seems to behave differently when attacking an inanimate 

object than when attacking a conspecific male. 

In conclusion, it would seem that male S. longicaudum wrap around any male-sized object, 

but that where additional cues are involved, chemical cues are more important than 

movement in eliciting an attack. In combination with O’Callaghan’s in vivo experiments 

(O'Callaghan, 2006), this shows that the artificial circumstances of a haemolymph drop are not 

the cause of fighting behaviour. 
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3.7. Effect of stimulation on fighting 

3.7.1. Introduction 

Physical stimulation has proven to elevate aggressiveness, for example: shaking a 

subordinate Acheta domesticus male cricket, increases its aggressiveness and makes it more 

likely to win the next contest (Savage et al, 2005). Also, subjecting an individual to physical 

stress (e.g. constant prodding) in the presence of a conspecific can elicit attacks towards the 

second individual. Administering an electric shock to a rat in the presence of another rat will 

induce attacking behaviour towards the other individual (Ulrich et al, 1966).  

The addition of an external controllable stimulus that augments aggression and thus 

results in more immediate and possibly more severe fighting, would speed up the study of the 

immediate effects of fighting. In the following experiment, physical stimulation in the form of 

poking and keeping the 2 opponents in each other’s immediate vicinity by moving them are 

tested as controllable factors that could be used for enhancing immediate aggression. 

Hypotheses 

 physical stimulation augments the number of attacks a prodded male directs towards a 

suture of male dimensions; 

 physical stimulation augments the number of attacks a prodded male directs towards a 

male conspecific; 

 physical stimulation only has an immediate effect on aggression resulting in an initial 

higher incidence of paralysis, but as the stimulus is not maintained the effect fades out 

with time. 

3.7.2. Materials and methods 

After 3-6 days in the 27 °C incubator, males were randomly assigned to one of the 

following 4 treatments: 

 1 male and a suture of male dimensions (see section 3.6.2.1) without physical 

stimulation 

 1 male and a suture of male dimensions with 15 min of physical stimulation 

immediately following the introduction of the suture 
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 2 males without physical stimulation  

 Two males with 15 min of physical stimulation immediately following the 

introduction of the intruding male. 

In the stimulation treatments, males that had moved more than a body length away from 

each other, were pushed closer together by the use of a platinum wire (Ø 0.05 mm). Likewise, 

when a male and a suture were more than a body length apart, the suture was pushed closer 

to the male. This stimulation was only applied during the 1st 15 min of the experiment. 

Observations were made during these 15 min and about 24 h after the introduction of the 

opponent (suture or male) into the drop. These experiments were done in 3 sets. A set was a 

group of observations performed within 3 days of each other. 

3.7.3. Results 

When a male and a suture were placed together in a drop and they were constantly put 

back in each other’s immediate vicinity, the male attacked the suture significantly more than 

when this stimulation was not added (F (1, 57) = 62.17, p < 0.001; Figure 3.17-a). When 2 

males were placed together in a drop, stimulation also caused a significantly higher number of 

attacks (F (1, 83) = 19.33, p < 0.001; Figure 3.17-b). In each case, the difference was highly 

significant (p < 0.001). 

 

Figure 3.17 The effect of stimulation on the number of attacks in a drop during the 1st 
15 min period after the male(s) were put together in a drop with (or without) an object. a) 1 
male put together with a suture of male proportions. b) 2 normal males put together in a 
drop. In each graph: bars accompanied by the same letter are not significantly different from 
each other. 
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The effect of this stimulation was only temporary however, the number of attacks per drop 

(Figure 3.17-b) and the number of drops with attacks (Figure 3.18-1) were significantly higher 

for stimulated males than for unstimulated pairs, but only for the period during which the 

stimulation was applied (n = 85, Fisher’s exact test: p = 0.002). The number of drops in which 

at least one male was paralysed (Figure 3.18-2) during stimulation was smaller, but not 

significantly, for stimulated males than for unstimulated pairs (n = 85, Fisher’s exact test: p = 

0.063). There was no significant effect of stimulation on paralysis or death at the end of the 

observation day (at least 3 h after the stimulation ended, see Figure 3.18-3) or after 24 h 

(Figure 3.18-4). 

 

Figure 3.18 The effect of stimulation during the 1st 15 min after the males were put 
together in a drop, on 1) the number of drops with fights within these 1st 15 min (Fisher’s 
exact test : p = 0.002); 2) the number of drops in which at least 1 male is paralysed after 
these 15 min; 3) the number of drops in which at least 1 male is paralysed at the end of the 
observation day; 4) the number of drops in which at least 1 male is paralysed after 24 h. Bars 
within each category accompanied by different letters are significantly different from each 
other. 

3.7.4. Summary & conclusions 

When either, a male and a suture or 2 males in a drop, were physically stimulated and kept 

in each other’s immediate vicinity, fighting during the first 15 min was higher than when no 

stimulation was added, paralysis after the first 15 min was also higher, but not significantly.  

There are 2 elements to the stimulation treatment. One is the physical touching of the 

worm by the platinum wire which might have been interpreted as a physical attack, provoking 
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the platinum wire, received the counter-attacks). The second element is that the males were 

not just physically stimulated, but were also pushed closer to each other, which may have 

increased their exposure to pheromones from each other. However, this is only a factor in the 

2-male treatment. The increase in attacks due to stimulation was even more dramatic in the 

suture treatments, where chemical cues would not be involved. Interestingly, although the 

number of attacks was lower in the unstimulated male-plus-suture treatment than in the 

unstimulated 2-male treatment (as expected from the previous experiment), the number of 

attacks in the 2 stimulated treatments, was very similar, averaging 4 attacks per drop in the 15 

min period. Mechanical stimulation is a very powerful inducer of attack behaviour. 

Augmentation of the number of attacks due to physical stimulation resulted in more drops 

with paralysis in the short-term (p < 0.10), but not in the long-term. Physical stimulation only 

has an immediate effect on fighting and doesn’t have long-term implications. 

3.8. Effect of winning a fight on subsequent fights 

3.8.1. Introduction 

In many species where conflicts are resolved by fighting, the outcome of a previous fight 

influences the outcome of future fights (Hsu et al, 2006;Hsu & Wolf, 1999;Jennings et al, 

2004). In general, a victor is more likely to succeed again, whereas a loser is highly likely to lose 

again (Rutte et al, 2006). This can be mediated by a better estimation of its own and/or the 

opponent’s fighting ability (Elias et al, 2008;Hsu & Wolf, 2001) or by changing its actual fighting 

ability (Kasumovic et al, 2010). 

The aim of this experiment is to describe the effect of a previous victory on subsequent 

fights. 

Hypotheses 

 With a victor in a drop, the number of attacks is higher than in drops containing 2 naive 

males. 

 With a victor in a drop, the number of drops with fighting is higher than in drops 

containing 2 naive males. 

 With a victor in a drop, the number of drops with paralysis is higher than in drops 

containing 2 naive males. 
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 The total duration of fighting in a drop is higher in drops containing a victor than in 

drops containing 2 naive males. 

 The duration per fight is higher in drops containing a victor than in drops containing 2 

naive males. 

 These differences diminish over time as 1 of the 2 naive males will become a victor 

after fighting (see section 3.3). 

 Drops containing 2 victors have even higher values for the hypotheses above because 

both victors perceive their own fighting ability as high and are therefore less likely to 

give up. 

3.8.2. Materials and methods 

After 2 days at 27 °C, drops with paired and single males were set up to produce victors 

(survivor of the first fight) and naïves (males that had not been in contact with a conspecific 

before) for a second round of fights. Depending on the speed with which the victim in the first 

fighting drop died, 48-72 h after the first fight, victors were put together with another victor or 

a naïve male of the same age. There were 3 treatments: 

 Victor-Victor 

 Victor-Naïve 

 Naïve-Naïve 

The second fights were always staged in a drop where no fighting had occurred previously. 

In case of the Naïve-Naïve and Victor-Naïve experiments, the males were put together in the 

drop of the naïve. Two victors were placed in a drop previously occupied by a naïve but 

removed male. 

Immediately following the pairing of 2 males for the second round of fights, the fighting 

behaviour of the males was observed for 60 min. The start time and duration of each fight 

were recorded. For drops in which no fights occurred, the duration of fighting was recorded as 

0 s. After about 24 h, paralysis and death were checked. After about 48 h, only dead or alive 

was scored. 
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3.8.3. Results 

Inspection of the data showed a similar trend for Victor-Victor and Victor-Naïve pairs: 35-

45 % of drops had paralysis after 1 h compared to just 10 % of drops with Naïve-Naïve 

(Appendix figures 2, 3 and 4). Because of the interest in the effect of previous victory on a 

fight, only 1 victor needed to be present in a drop to show the effect on fighting behaviour. 

The Victor-Victor and Victor-Naïve treatments were thus grouped into “drops with at least 1 

victor”. 

The grey bars on Figure 3.19 show that there was a trend (0.1 > p ≥ 0.05) for more fighting 

within the first hour of a battle when 1 opponent had won a fight before. This fighting then 

resulted in paralysis (Figure 3.19: blue bars) which occurred in significantly more drops with at 

least 1 victor (X² (1, n = 45) = 5.397, p = 0.020). 

 

Figure 3.19 The effect of winning a previous fight on the number of drops with 
fighting (orange) or with paralysis (blue) during the 1st hour after the 2 males were put 
together in a drop. Bars accompanied by the same, or by no letter are not significantly 
different from each other. The number of drops with 2 naïves =19, with at least 1 victor =26. 

The number of fights in a drop (Figure 3.20-a) was not significantly different (p > 0.1) 

whether 2 naïve males were opposed against each other or when at least one of the 

opponents had been victorious in a previous fight. Where at least 1 of the opponents was 

successful in a previous fight, the total amount of time spent fighting (Figure 3.20-b) and the 

mean amount of time spent in a single fight (Figure 3.20-c) were higher than when both males 

were naïve (respectively p = 0.042 and p = 0.032). 
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Figure 3.20 The effect of winning a previous fight on a) the number of attacks per 
drop; b) the total duration of attacks per drop and c) the mean duration of an attack in a 
drop during the 1st hour after the males were put together in a drop. Bars accompanied by 
the same, or by no letter are not significantly different from each other. All values shown are 
mean+/-SE. Kruskal-Wallis, DF=1. 
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The number of drops with paralysis or death after 24 h (Figure 3.21-a) or with death after 

48 h (Figure 3.21-b), were higher when at least 1 male was a victor, but this was not significant 

(all p > 0.4). 

 

Figure 3.21  The effect of winning a previous fight on the number of drops with 
paralysis or death a) about 24 h and b) about 48 h after the 2 males were put together in a 
drop. Bars accompanied by the same, or by no letter are not significantly different from each 
other. n is the number of drops used for the treatment. n is the number of drops for that 
treatment. 

3.8.4. Summary & conclusions 

Comparing the results within the first hour for drops with 2 males of which at least 1 had 

won its previous fight to drops where both males had not been in contact with a conspecific 

before, the “at least 1 victor” had significantly more drops with paralysis (p = 0.20, a trend for 

n = 13

n = 21

0

20

40

60

80

100

2 naïves At least 1 victor

%
 o

f 
d

ro
p

s 
w

it
h

at
le

as
t 

1
 m

al
e

 d
e

ad

b) after about 48 h:
dead: X² (1, n = 34) = 0.359, p* = 0.549

n = 17 n = 25

0

20

40

60

80

100

2 naïves At least 1 victor

%
 o

f 
d

ro
p

s 
w

it
h

at
 le

as
t

1
 m

al
e

 p
ar

al
ys

e
d

o
r 

d
e

ad
a) after about 24 h:

paralysed: X² (1, n = 42) = 0.514, p = 0.474
dead: X² (1, n = 42) = 0.324, p = 0.569

paralysis

death

79



  

more drops with fighting (p = 0.079 < 0.100), significantly more time spent on fighting per drop 

(p = 0.042) and a significantly higher duration per fight (p = 0.032). After 24 h, the effect of the 

presence of a victor was no longer significant. We can then conclude that the presence of a 

victor elevates the readiness to fight and to paralyse. Because of the difficulties in recognizing 

individual males and the difficulties in finding an appropriate method to identify males (see 

section 3.4.1), it was not possible in this setup to investigate whether the victor was the male 

that initiated more fights and was more able to paralyse its naïve opponent. However, 

considering the literature on the effect of victory on fighting in other animals (Hsu et al, 

2006;Jennings et al, 2004;Kasumovic et al, 2010;Rutte et al, 2006), it seems very likely that this 

is so. In general, a previous battle enables an individual a more accurate estimation of its 

resource holding potential (RHP) and a victor will then be more ready to fight again. 

3.9. Generation & Relatedness 

3.9.1. Introduction 

In the case of a colony forming insect that occupies habitats that can support a colony for 

at least a few generations before terminating events prevail (e.g. aphids), Hamilton (1979) 

suggested that when colony founding is commonly associative, the sex ratio in the first 

generation (F0, founder generation) would be about balanced and males would fight, whereas 

the subsequent generations (Fn+1) would show fewer males that are also less prone to fighting. 

Because Steinernema species (except S. hermaphroditum) are diœcious, pathological parasites 

of insects that disperse through infective juveniles when the insect cadaver can support no 

more growth, Steinernema species like S. longicaudum fit Hamilton’s prerequisites. Moreover, 

the first generation of adults in an infected insect has a balanced sex ratio (Alsaiyah et al, 

2009). The life cycle of Steinernema species entail large environmental differences for the 

different generations. The founder generation of the infection of an insect went through the 

infective juvenile stage which had dispersed from the cadavers in which they were born 

(Griffin et al, 2005) (their natal cadaver). Subsequent generations of adults have not been 

through the infective juvenile stage and are not able to disperse out of the cadaver. The size of 

the population in an insect cadaver also varies extremely with the different generations. 

Although little is known of the population biology of EPN in nature, the founder generation is 

expected to normally contain only a few individuals whereas subsequent generations can 
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number into many thousands individuals (Wang & Bedding, 1996). One of the aims of the 

following experiments was to investigate the fighting behaviour in the different generations. 

The different generations are also characterized by differences in relatedness of the 

individuals in the cadaver. The degree of relatedness in the founder generation is more likely 

to be lower than in subsequent generations. Inbreeding is likely to increase as an infection 

progresses. Fighting a close relative is best avoided as a relative’s offspring contributes to an 

individual’s inclusive fitness (West et al, 2002). The situation where relatives compete for 

mating partners in a restricted environment is called local mate competition (LMC) (West et al, 

2001). LMC is often avoided by a female biased sex ratio so that there are plenty of mating 

opportunities for each male and contests are not necessary (Nelson & Greeff, 2009). 

Recognition of close kin including nestmates from less closely related conspecifics including 

non-nestmates is, theoretically, another way to avoid fighting between relatives (Innocent et 

al, 2011;Nowbahari et al, 1999). Lethal fighting between relatives can however occur, e.g. 

sibling rivalry in ants (Heinze & Weber, 2011) and lethal fighting between sons in Melittobia 

australica (a parasitoid wasp) (Abe et al, 2005). The second aim of this section is to ascertain 

whether fighting in Steinernema longicaudum is influenced by the degree of relatedness and if 

so, in what way? 

Hypotheses 

 The number of drops with fights is higher for first generation males than for the 

subsequent generations. 

 The number of drops with paralysis is higher for first generation males than for the 

subsequent generations. 

 This difference in fighting behaviour between the generations does not drop off over 

time. 

 The number of drops with fights is higher for unrelated males than for related males. 

 The number of drops with paralysis is higher for unrelated males than for related 

males. 

 The difference in fighting behaviour associated with the level of relatedness does not 

drop off over time. 
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3.9.2. Materials and methods  

To produce bacteria-inoculated haemolymph, 3 drops in which a cadaver-produced 

infective juvenile had developed into a male - these drops should have been rich in 

Xenorhabdus - were mixed with a few drops of Ringer’s solution and about 1.25 ml fresh 

haemolymph (see section 2.3.2). This solution was thoroughly mixed and used for the 

production of 25 µl hanging drops on the lid of a Petri dish (see section 2.3.3). 

A male and a female aged 3-5 days were placed together in a drop of normal haemolymph 

so they could mate. These males and females had developed from infective juveniles and so 

are founder generation nematodes (F0), hereafter also referred to as 1st generation.  They were 

left at 27 °C for 2-3 days by which time the female had released eggs and these had developed 

into first stage juveniles. 

For the production of 2nd generation (F1) males, these early juveniles were separated so 

that each one could develop alone in its own drop, as is the standard protocol in all other 

experiments. The drop with the gravid female and her offspring was diluted with a drop of 

Ringer’s solution. This diluted drop was then split up in several smaller drops which were 

diluted even more. This serial dilution made it possible to pick up individual early stage 

juveniles with a platinum wire (0.100 mm). They were then placed in a bacteria-inoculated 

drop of haemolymph (see above) and placed at 27 °C for 3-4 days for development into adults. 

For the production of sibling 1st generation males, the early juveniles were left to develop 

in their parental drop with the female present, but the male taken out. When the nematodes 

were left to develop further like this, the drop became crowded and the production of 

infective juveniles was stimulated. After several days, infective juveniles were found in the 

drop. To extract these infective juveniles for the production of single-reared males, a similar 

serial dilution as above was used. The infective juveniles were then picked up individually with 

a platinum wire and also reared to adults in inoculated haemolymph (3-4 days). The 

production of first and second generation males of known lineage is illustrated in Figure 3.22. 

When the juveniles, both 1st and 2nd generation, had developed into males, they were 

paired with either a sibling (of the same parental drop) or a non-sibling male of the same 

generation. The worms used for this experiment came from 2 cultures of the same strain 

maintained independently for about 2 years. The two lineages did not differ in aggressive 

behaviour (data not shown). 
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In case mortality between males of the 1st and 2nd generations differed, as many males 

were left single as pairs were formed. Paralysis and death after at least 17 and 37 h were 

recorded. 

 

Figure 3.22 The origin of second and first generation males with known lineage. 

3.9.3. Results 

Because of the experimental setup, it was possible to compare the fighting behaviour of 

males that had gone through the infective juvenile stage (1st generation, founder generation, 

F0) and those that had not gone through the infective juvenile stage before developing into 

adults (2nd generation, first subsequent generation, F1). These results are given in 3.9.3.1. It 

was also possible to compare the fighting behaviour of related and unrelated males in each of 

the generations (1st generation: 3.9.3.2.1; 2nd generation: 3.9.3.2.2). 
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3.9.3.1. Generations 

Pairs of second generation males performed fighting behaviour and showed significant 

paralysis and death in their drops relative to single-male drops after 24 h (paralysis: X² (1, n = 

262) = 13.724, p < 0.001; death: X² (1, n = 262) = 9.024, p = 0.003) and 48 h (paralysis: X² (1, n = 

254) = 28.40, p < 0.001; death: X² (1, n = 254) = 28.842, p < 0.001) but significantly less 

compared to pairs of first generation males (24 h: paralysis: X² (1, n = 179) = 61.016, p < 0.001; 

death: X² (1, n = 179) = 41.049, p < 0.001; 48 h: paralysis: X² (1, n = 175) = 50.548, p < 0.001; 

death: X² (1, n = 175) = 45.592, p < 0.001; Figure 3.23). There was no difference between 

generations in paralysis and death of singles after either 24 h (paralysis and death: Fishers 

exact test: p = 1) or 48 h (paralysis: X² (1, n = 275) = 0.105, p = 0.745; death: X² (1, n = 275) = 

0.345, p = 0.557). 

 

Figure 3.23 Differences in consequences of fighting (paralysis and death) between the 
first and second generation a) about 24 h and b) 48 h after the males were put together in a 
drop. Bars accompanied by different letters were significantly different from each other. The 
capital letters refer to the differences in number of drops with at least 1 paralysed male, the 
small letters refer to the differences in number of drops with at least 1 dead male. 
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3.9.3.2. Relatedness 

3.9.3.2.1. 1st Generation 

After 24 and 48 h, there was no significant difference in the amount of paralysis (24 h: X² 

(1, n = 118) = 0.053, p = 0.818; 48 h: X² (1, n = 116) = 0.035, p = 0.852) and death (24 h: X² (1, n 

= 118) = 0.258, p = 0.612 ; 48 h: X² (1, n = 116) = 0.167, p = 0.683) occurring in drops with 1st 

generation males (males that followed the developmental pathway so that they went through 

the infective juvenile stage before becoming adults) paired with a sibling or a less closely 

related male (Figure 3.24). 

 

Figure 3.24 Differences in consequences of fighting (paralysis and death) between 
related (siblings) and unrelated (non-sibling) males of the 1st generation a) about 24 h and b) 
48 h after the males were put together in a drop. Bars accompanied by different letters were 
significantly different from each other. The capital letters refer to the differences in number 
of drops with at least 1 paralysed male, the small letters refer to the differences in number 
of drops with at least 1 dead male. 

  

A

B
B

a

b
b

0

20

40

60

80

100

single couple siblings couple unrelated

%
 o

f 
d

ro
p

s 
w

it
h

 a
t 

le
as

t 
1

 
m

al
e

 p
ar

al
ys

e
d

 o
r 

d
e

ad

a) After 24 h: paralysed: X² (2, n = 235) = 123.502, p < 0.001
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b) After 48 h: paralysed: X² (2, n = 231) = 135.239, p < 0.001
dead: X² (2, n = 231) = 122.078, p < 0.001

Paralysed

Dead

n = 35 n = 81

n = 115
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3.9.3.2.2. 2nd Generation 

After about 24 h, 2nd generation males that were put together with a sibling did not show 

any significant difference in paralysis or death (both Fisher’s exact test: DF = 1, n = 229, p = 

0.143) relative to single male controls, but after 48 h, there was significant paralysis (Fisher’s 

exact test: DF = 1, n = 222, p = 0.035) and death (Fisher’s exact test: DF = 1, n = 222, p = 0.026) 

when 2 siblings were put together in a drop. Second generation males that were put together 

with a non-sibling male, showed significant consequences of fighting (paralysis and death) 

after 24 h (paralysis: X² (1, n = 262) = 13.724, p < 0.001; death: X² (1, n = 262) = 9.024, p = 

0.003) and 48 h (paralysis: X² (1, n = 254) = 28.400, p < 0.001; death: X² (1, n = 254) = 28.842, p 

< 0.001). After 48 h, there were significantly more drops with non-sibling males that had at 

least 1 male paralysed or dead than drops with sibling males (paralysis: X² (1, n = 156) = 4.773, 

p = 0.029; death: X² (1, n = 156) = 4.199, p = 0.04), this difference was not found 24 h after the 

males were put together in a drop (paralysis: X² (1, n = 159) = 2.045, p = 0.153; death: X² (1, n = 

159) = 0.830, p = 0.362). 

Males that had developed without passing through the infective juvenile-stage showed 

more paralysis and kill when paired with an unrelated male than when paired with a sibling. 
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Figure 3.25  Differences in consequences of fighting (paralysis and death) between 
related (siblings) and unrelated (non-sibling) males of the 2nd generation a) about 24 h and b) 
48 h after the males were put together in a drop. Bars accompanied by different letters are 
significantly different from each other. The capital letters refer to the differences in number 
of drops with at least 1 paralysed male, the small letters refer to the differences in number 
of drops with at least 1 dead male. *: 1 cell with an expected count less than 5. 

3.9.4. Summary & conclusions 

Pairs of first generation males had higher paralysis and higher kill rates after 24 h (resp.: 

73% and 58%) and 48 h (resp.: 81% and 78%) than second generation males (24 h: 16% 

paralysis, 13% kill; 48 h: 28% paralysis, 27% kill). All males developed and were tested under 

similar conditions, indicating that going through the IJ pathway influences tendency to fight. 

Fighting thus occurs in both the founder generation and the first subsequent generation and it 

seems very likely that males of subsequent generations of Steinernema longicaudum will also 

perform fighting behaviour. 
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b) After 48 h: paralysed: X² (2, n = 316) = 28.432, p < 0.001
dead: X² (2, n = 316) = 28.589, p < 0.001
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a) After 24 h: paralysed: X² (2, n = 325) = 13.634, p* = 0.001
dead: X² (2, n = 325) = 8.845, p* = 0.012
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These results are in line with the expectations from Hamilton’s 1979 theory regarding 

associative colony-forming insects occupying temporary suitable habitats that can only cater 

for a few generations: the second generation males fight and paralyse, but to a lesser extent 

than the 1st generation males and this difference doesn’t fade out over time. Hamilton’s 1979 

theory is thus not only relevant for insects but can also be generalised to include other 

animals. 

Paralysis and death in the first generation male drops was not different between drops 

with related (24 h: 71% paralysis, 63% kill; 48 h: 80% paralysis, 74% kill) or unrelated males (24 

h: 73% paralysis, 58% kill; 48 h: 81% paralysis, 78% kill). This is in contrast to the amounts of 

paralysis and death within the 2nd generation that were related to the degree of relatedness 

between the 2 males. Second generation siblings showed paralysis and death only after 48 h 

(13% paralysis, 13% kill) whereas unrelated males showed paralysis and death already after 24 

h (16% paralysis, 13% kill). After 48 h, the number of drops with at least 1 male paralysed or 

dead were significantly higher when the males were not related (28% paralysis, 27% kill). 

Cataglyphis niger ants show aggressive behaviour in graded patterns as a function of their 

relatedness to the opponent (Nowbahari et al, 1999). Founder generation S. longicaudum 

males exhibit a high level of aggression independent of relatedness to their competitor, but 

the subsequent generation’s level of aggression is lower ánd depends on the level of 

relatedness between the contestants. Males of the non-founder generation of S. longicaudum 

perform less aggressive behaviour towards related than towards unrelated males. 

For differential fighting behaviour towards relatives and non-relatives to occur, 

discrimination of kin and non-kin is necessary (Innocent et al, 2011). Recognition involves the 

perception of a cue or cues signalling relatedness (kin discriminating cue(s)). This recognition 

can be based on contextual cues (e.g. spatial: female Belding’s ground squirrels, Urocitellus 

beldingi, retrieve young when they are placed at their burrow entrance as normally only her 

own young are in the immediate vicinity of their natal burrow (Mateo, 2004)), prior association 

(e.g. subordinate females of the Seychelles warbler (Acrocephalus sechellensis) assist breeding 

pairs based on the continued presence of the primary female who previously fed the 

subordinate (Komdeur et al, 2004)), phenotype matching (e.g. U. beldingi loose the memory of 

familiar non-kin after hibernation, yet, they can still discriminate kin from non-kin based on 

their own odour (Mateo, 2010)) or it can be mediated by recognition alleles (e.g. the social 

amoebae Dictyostelium discoideum rely on the polymorphic genes tgrB1 and tgrC1 to 

recognize relatives when aggregating to form multicellular fruiting bodies in which 20 to 30 % 

of the individuals altruistically die while constructing a cellular stalk (Hirose et al, 2011)) 
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(Blaustein, 1983;Brown & Eklund, 1994;Gherardi et al, 2012;Komdeur et al, 2004;Mateo, 

2004). These are not likely to be all the mechanisms for recognition and are not mutually 

exclusive. The utilised recognition mechanism can be situation dependent or even life-stage 

dependent (Beecher et al, 1981;Mateo, 2004). For example, U. beldingi mothers use spatial 

cues until just before the pups leave the nest, use phenotype matching after emergence from 

the nest to recognize individual young and use prior-association for discriminating among own 

and unfamiliar young (Mateo, 2004). 

In these generation-relatedness experiments, the link to the parental haemolymph drop 

was kept minimal: non-founder generation males were transferred individually into drops of 

new haemolymph mixed with drops of unrelated, conspecific infected haemolymph when they 

were still in a very early juvenile stage. The 2nd generation worms were thus separated at a 

very early stage in their development which makes prior association as a kin discriminating 

method unlikely. However careful the juveniles were transferred, co-transfer of some chemical 

cues or even bacteria (attained in the maternal drop) cannot be ruled out, but considering 

these amounts would be very minimal, these contextual cues are not likely to have been 

involved in kin recognition here. Both unrelated and related 2nd generation males developed in 

separate drops of haemolymph, rendering spatial cues also improbable as a means to identify 

close kin. Further investigation into the mechanism of kin discrimination would be necessary to 

confidently conclude that in an insect cadaver, 2nd generation male S. longicaudum 

differentially fight opponents based on their genetic relatedness. 
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4. Fighting behaviour in the 

Steinernematidae 

4.1. Introduction 

Not all Steinernema spp. fight, paralyse and kill to the same extent. O’Callaghan (2006) 

found that males of S. longicaudum and S. carpocapsae performed intraspecific fighting and 

killing with death of at least one male in 86 % and 79 %, respectively, of drops with 2 males 24-

48 h after pairing. For S. feltiae fights however, only 5 % of the drops had death of at least 1 

male 24-48 h after pairing in a drop of haemolymph (O' Callaghan, 2006). 

This chapter looks into the fighting behaviour of other species in the Steinernema genus in 

order to study the evolution of fighting behaviour within the Steinernematidae. The additional 

species tested were S. kraussei, S. glaseri and S. bicornutum. S. feltiae which was a non-fighter 

in O’Callaghan’s study was alsoincluded. Figure 3.2 in Chapter 3 shows the phylogenetic 

relationships in the genus and groups species into 5 clades. Apart from clade I, at least 1 

species of each of the clades was studied either by me or others in the course of this project: S. 

carpocapsae (clade II), S. kraussei, S. feltiae (both clade III), S. bicornutum (clade IV), S. 

longicaudum and S. glaseri (both clade V). This chapter includes results from projects carried 

out by undergraduate students (Everard, 2006;Foster, 2007;Igoe, 2008) under my supervision 

during the course of my PhD-study, and designed to be part of the broader study. 

4.2. Objectives 

This chapter studies the distribution of fighting behaviour within the Steinernema genus 

and thus aims to shed light on the evolutionary origins of fighting in the Steinernema genus by 

including the data from additional species. Other aims were to confirm the fighting ability of S. 

feltiae and to investigate the involvement of species specific strains of Xenorhabdus bovienii in 

paralysis and/or killing. 
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4.3. Steinernematidae symbiotic with Xenorhabdus 

bovienii: S. feltiae and S. kraussei  

4.3.1. Introduction 

In O’Callaghan (2006), S. feltiae caused paralysis in only 5 % of drops. S. kraussei, another 

species belonging to clade III, was reported to have 90-100 % of drops with at least 1 male 

paralysed or dead within 24-48 h (Igoe, 2008)(see section 4.3.3.2). Additional to the close 

genetic relationship between S. feltiae and S. kraussei (Nadler et al, 2006), both are 

symbiotically associated with X. bovienii (Adams et al, 2006). Each Steinernema species has a 

unique symbiotic association with one Xenorhabdus species, but, one Xenorhabdus species can 

be the symbiont of several Steinernema species, as is the case for S. feltiae and S. kraussei 

(Adams et al, 2006). The comparison of the fighting behaviour between these 2 nematode 

species can thus not only inform us of the level of fighting, paralysis and kill of species in clade 

III but also shed light on a possible influence of the symbiont strain on fighting behaviour. 

The tests of intraspecific fighting in S. feltiae and S. kraussei were repeated but fights by 

each of these species in drops containing the symbiont of the other were also staged, this to 

test the hypothesis that the S. kraussei symbiont facilitates killing but the symbiont of S. feltiae 

does not. 

4.3.2. Materials and Methods 

Steinernema kraussei infective juveniles were placed into fresh haemolymph drops as 

described in 2.3 and put into the 15 °C incubator for 4-6 days to develop into adults. 

Steinernema feltiae infective juveniles were placed into fresh haemolymph drops as described 

in 2.3 and put into the 20 °C incubator for 4-6 days to develop into adults. The males were 

then assigned to one of the treatments shown in Table 4.1. 
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Table 4.1 Treatments to which the 4-6 day old males were assigned in order to 
investigate the effect of the species specific strains of Xenorhabdus bovienii on paralysis and 
kill. 

Males Drop 

No. Species Prior occupant 

1 S. feltiae S. feltiae 

2 S. feltiae S. feltiae 

1 S. feltiae S. kraussei 

2 S. feltiae S. kraussei 

1 S. kraussei S. kraussei 

2 S. kraussei S. kraussei 

1 S. kraussei S. feltiae 

2 S. kraussei S. feltiae 

 

Each male was rinsed thoroughly in Ringer’s solution to reduce the amount of 

contamination from its own symbiont adhering to the cuticle: the male was taken out of the 

haemolymph drop it had developed in and was placed in a drop (30 µl) of Ringer’s solution on 

a Petri dish. The male was moved through this drop of Ringer’s solution for about 5 s and then 

lifted out of the drop and placed into a fresh drop of Ringer’s where the same washing 

procedure was repeated. Each male was washed in a total of 4 drops of Ringer’s before it was 

placed in its experimental drop. All manipulations were done with a platinum wire which was 

flamed and cooled in between the different drops. The drops were then put in an incubator 

with a temperature suitable to the nematode species, for S. kraussei this was 15 °C, for S. 

feltiae this was 20 °C. 

After about 3-5, 24 and 48 h, the drops were checked for paralysis and survival. 
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4.3.3. Results 

4.3.3.1. Steinernema feltiae in conspecific drops 

When 2 Steinernema feltiae males were put together in a drop in which they or a 

conspecific had developed, paralysis or death occurred in 22.5 % of drops within 3-5 h after 

placing them together (Table 4.2). The number of drops with at least 1 paralysed or dead male 

increased to 50 % and 55.3 % after 24 and 48 h respectively. Apart from the O’Callaghan (2006) 

study (see Table 4.3 and Table 4.4), these results are similar to those from the other studies on 

the occurrence of paralysis or death in drops with singles or couples of S. feltiae. 

Table 4.2 Summaries of all studies on the occurrence of paralysis or death in drops 
with 1 or 2 Steinernema feltiae. When possible Χ² - tests with df = 1 were used. In the cases 
where expected numbers were lower than 5, a fisher’s exact test was done. 

Study Observation 

timepoint  

Drops with at least 1 dead 

or paralysed male on total  

No. of couples 

Dead single male 

controls on total 

No. of controls 

Difference 

between singles 

and couples? 

No. % No. % χ2 p 

O' Callaghan 

(2006) 

24-48 h:  1/19 5.0 0/14 0.0 - > 0.9 

Everard (2006, 

unpublished) 

24 h: 

4 days: 

6/9 

3/6 

67.0 

50.0 

0/9 

- 

0.0 

- 

- 

- 

0.009 

- 

Foster (2007) 1 h: 

24 h: 

48 h: 

2/25 

9/25 

13/25 

8.0 

36.0 

52.0 

0/51 

2/51 

6/51 

0.0 

3.9 

11.8 

- 

- 

14.485 

0.105 

< 0.001 

< 0.001 

This study 3-5 h: 

24 h: 

48 h: 

9/40 

24/48 

26/47 

22.5 

50.0 

55.3 

0/43 

1/55 

2/54 

0.0 

1.8 

3.7 

- 

32.372 

33.411 

< 0.001 

< 0.001 

< 0.001 

Overall without O' 

Callaghan’s (2006) study 

24 h: 

48 h: 

39/82 

39/72 

47.6 

54.2 

3/115 

8/119 

2.3 

7.6 
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Table 4.3 Statistical analysis of the differences between all the studies that have 
been performed on the fighting behaviour of S. feltiae males at the 24 h timepoint. Statistics 
on the single drops were not relevant because the expected values were too low. A general 
Χ²-test on the number of coupled males drops with at least 1 paralysed male after 24 h 
showed a significant difference between the studies: χ² (3, n = 101) = 14.428, p = 0.002, 1 cell 
with exp. count < 5). After further analysis, the differences were due to differences between 
the O' Callaghan (2006) study and all other studies. When possible Χ² tests with df = 1 were 
used. In the cases where expected numbers were lower than 5, a fisher’s exact test was 
done. 

24 h Difference between these studies? 

Studies χ² p 

Foster (2007) This study 1.301 0.254 

Foster (2007) Everard (2006, unpublished) - 0.139 

Foster (2007) O' Callaghan (2006) - < 0.05 

This study Everard (2006, unpublished) - 0.476 

This study O' Callaghan (2006) 11.647 < 0.005 

Everard (2006, unpublished) O' Callaghan (2006) - < 0.005 

Table 4.4 Statistical analysis of the differences between all the studies that have 
been performed on the fighting behaviour of S. feltiae males at the 48 h timepoint. Statistics 
on the single drops were not relevant because the expected values were too low. A general 
Χ²-test on the number of coupled males drops with at least 1 paralysed male after 48 h 
showed a significant difference between the studies: χ² (2, n = 91) = 14.667, p = 0.001. After 
further analysis, the differences were due to differences between the O' Callaghan (2006) 
study and all other studies. Χ²-tests with df = 1 were used. 

48 h Difference between these studies? 

Studies χ2 p 

Foster (2007) This study 0.072 0.788 

Foster (2007) O' Callaghan (2006) 10.870 < 0.005 

This study O' Callaghan (2006) 14.024 < 0.001 

 

Over these 4 studies, the incubation temperature and period varied, as did the handling 

method (using a platinum wire or a microcapillary tube attached to a mouth respirator), the 

amount of haemolymph transferred with the nematodes and the timing of the observation 

time points. However, as these parameters also varied between the 3 studies of which the 

results are not statistically different from each other, these parameters are unlikely to be 

responsible for the statistically significant differences of these 3 studies with O' Callaghan’s 

(2006) study (Everard (2006): Fisher’s exact test, n = 28, p < 0.005; Foster (2007):Fisher’s exact 

test, n = 44,p < 0.05; this study: Χ² (1, n = 67) = 11.647, p < 0.005). The strain of S. feltiae that 

was used was different between O' Callaghan (2006), S. feltiae strain UK76, and the other 3 

studies which used the Irish 4CFMO isolate. 
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Table 4.5 The methodological differences between all the studies that have been 
performed on the fighting behaviour of S. feltiae males. 

Study Rearing and 

fighting 

temperature 

Observation 

timepoints 

Handling method Relative amounts of 

haemolymph transferred 

with the nematodes 

S. feltiae 

strain 

O' Callaghan 

(2006) 

23 °C 24-48 h Microcapillary tube attached 

to a mouth respirator 

Substantial UK76 

Everard (2006, 

unpublished) 

27 °C 24 h and 4 

days 

Microcapillary tube attached 

to a mouth respirator 

Substantial 4CFMO 

Foster (2007) 20 °C 1, 24, 48 h Platinum wire Minimal 4CFMO 

This study 20 °C 3-5, 24, 48 h Platinum wire and rinsing 

 of the nematode in 

Ringer’s solution (4x) 

Very minimal, 

almost none 

4CFMO 

 

The attached CD contains a recording of a fight between 2 S. feltiae males from the 4CFMO 

strain (S. feltiae Fight.AVI). It also contains a recording of an injured and paralysed S. feltiae 

4CFMO male from a different fighting couple (the males from Figure 4.1; S. feltiae Injured 

male.AVI). 

The occurrence of a paralysing fight between 2 S. feltiae males, could be observed h after 

the fight occurred by the consequences of the fight. These consequences are the same as for S. 

longicaudum fighting: the victim can be paralysed (varies from not being able to move a 

certain part of the body to complete immobility) and will most likely eventually die. Seven out 

of 9 paralysed S. feltiae males, showed puncture wounds or even a ruptured body wall from 

which the internal organs were protruding (see male 1 in Figure 4.1). The degree of loss of 

contents varied from only a small group of cells to almost the whole digestive tract and the 

complete gonad. Puncture wounds were also observed after fights between 2 S. longicaudum 

males (see Chapter 5), but the occurrence of ruptures and protrusion of internal organs were 

not observed as often as for S. feltiae. Male 2 in Figure 4.1, was capable of moving normally 

while male 1 was only able to move the tip of its head and had a rupture in its lower body 

through which a large part of its intestine and about one third of its reproductive tract were 

protruding. 
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Figure 4.1 Pictures A and B are taken from a timeseries about 5 h after the 2 S. 
feltiae males were placed together in a drop. Picture A was taken a couple of seconds before 
picture B. This timeseries shows movement in the bottom male (male 2: had its upper body 
coiled in A) and was in an undulating movement in B)) and the lack of movement in the top 
male. Male 1 male was only capable of moving its head a little bit and had suffered a rupture 
of its body wall through which its digestive and reproductive tract protruded. 

4.3.3.2. Steinernema kraussei in conspecific drops 

When 2 Steinernema kraussei males were put together in a drop in which they or a 

conspecific had developed, paralysis or death occurred in 35 % of drops within 3-5 h after 

placing them together (see Table 4.6). The number of drops with at least 1 paralysed or dead 

male increased to 60.8% and 61.2% after 24 and 48 h respectively. These results are 

significantly different from those in Igoe’s studies (2008) (see Table 4.6) on the occurrence of 
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paralysis or death in drops with singles or couples of male S. kraussei (Fisher’s exact test, 24 h: 

n = 63, p < 0.05; 48 h: n = 62, p < 0.05). 

Igoe (2008) reported that in 75 % of 12 drops with 2 S. kraussei males, fighting was 

observed within the first 10 min after the males were put together in a drop. 

The attached CD contains a recording of a fight that occurred between 2 S. kraussei males 

(S. kraussei Fight.AVI). The recording started with one male wrapped around the head of its 

victim with its tail. At first the coil looked rather tight and the victim was only moving its head 

a little. The coil loosened and the attacker let go of its victim. The attacker then slowly started 

to move more and increasingly showed it could move all parts of its body fluently. The victim 

however showed only slight head movement. 

The attached CD also contains a recording of a male that was injured and paralysed after a 

fight had occurred between it and another S. kraussei male (S. kraussei Injured male.AVI). The 

victim has suffered a wound in its upper body through which content of its intestine or even a 

part of its intestine has spilled out. The male moved slowly and in rather short bouts. 

Table 4.6 Summaries of all studies on the occurrence of paralysis or death in drops 
with 1 or 2 Steinernema kraussei. When possible Χ² - tests with df = 1 were used. In the cases 
where expected numbers were lower than 5, a fisher’s exact test was done. 

Study Temperature 

used for 

rearing and 

fighting 

Observation 

timepoint 

Drops with at least 1 

dead or paralysed male 

on total No. of couples 

Dead single male 

controls on total 

No. of controls 

Difference 

between singles 

and couples? 

No. % No. % χ2 p 

Igoe (2008) 15 °C 2 h: 

24 h: 

48 h: 

7/12 

11/12 

12/12 

58.3 

91.7 

100.0 

0/12 

0/12 

0/12 

0.0 

0.0 

0.0 

- 

20.308 

24.000 

< 0.010 

< 0.001 

< 0.001 

This study 15 °C 3-5 h: 

24 h: 

48 h: 

14/40 

31/51 

30/49 

35.0 

60.8 

61.2 

0/29 

1/49 

1/48 

0.0 

2.0 

2.1 

12.734 

39.360 

39.002 

< 0.001 

< 0.001 

< 0.001 

 

The occurrence of a paralysing fight between 2 S. kraussei males, could be observed h after 

the fight occurred by the consequences of the fight. These consequences are the same as for S. 

feltiae fighting: the victim can be paralysed, could suffer a puncture wound with possible 

protrusion of the internal organs and will eventually die. For S. kraussei 10 out of 14 paralysed 

males showed puncture wounds or even a ruptured body wall from which internal organs 

were protruding (see Figure 4.2). The degree of loss of content varied from only a small group 
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of cells to almost the whole digestive tract and the complete gonad protruding. Male 1 in 

Figure 4.2, was not capable of any movement and had internal organs protruding from a 

puncture wound in the tip of its tail. Male 2 was capable of all normal movements. 

 

 

Figure 4.2  Pictures A and B are taken from a timeseries about 5 h after the 2 S. 
kraussei males were placed together in a drop. Picture A was taken a couple of seconds 
before picture B. This timeseries makes it possible to see the ability of normal movement of 
male 2 (stretched in A and coiled up in B) and the lack of movement of male 1. Male 1 was 
not capable of any movement and had internal organs protruding through a wound in its tail, 
see the insert in B (2.3x the little red square). 
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4.3.3.3. Steinernema kraussei and Steinernema feltiae in each 

other’s drops 

The health (measured as “paralysis”) and mortality of single S. kraussei and S. feltiae males 

(see Figure 4.3) did not differ whether they were put in a conspecific or a heterospecific adult 

nematode’s drop. Paralysis and kill also did not differ when 2 conspecific males (see Figure 4.4) 

were put together in a conspecific or a heterospecific adult nematode’s drop. 

 

Figure 4.3  Paralysis and death in drops containing either 1 S. feltiae or 1 S. 
kraussei male, either replaced in it’s own drop or in a vacated drop of the other species. 
Observations were made at 3 time points: about 3-5 h (not shown in the figure, no single 
males died or got paralysed), a) 24 h and b) 48 h after the start of the experiment. S.f. = 
Steinernema feltiae; S.k. = Steinernema kraussei . At each time point, there were no 
significant differences found. “n” is the number of drops for that treatment. 
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b) After 48 h: Paralysis and death:

X² (3, n = 153)  = 3.965, p* =  0.265, 4 cells with expected counts < 5
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Figure 4.4  Paralysis and death in drops containing either 2 S. feltiae or 2 S. 
kraussei males and placed for fighting in one of their own drops, or in drop of the other 
species. Observations were made at 3 time points: about a) 3-5 h, b) 24 h and c) 48 h after 
the start of the experiment. S.f. = Steinernema feltiae; S.k.= Steinernema kraussei . At each 
time point, there were no significant differences found. “n” is the number of drops for that 
treatment. 

 

There were no visual differences between males that were paralysed or died in a 

heterospecific’s drop compared to males that were paralysed or died in a conspecific’s drop.  
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4.3.4. Summary & conclusion 

Both S. kraussei and S. feltiae performed fighting behaviour which could wound, paralyse 

and kill the victim. For both species, there were no drops with 2 males paralysed or dead. The 

number of drops with a dead or paralysed male increased over time, but fighting, paralysis and 

death could be observed about 3 h after the males were put together. 

Whether the males of these species were teamed up with a conspecific in the drop of a 

conspecific or in the drop of a heterospecific adult did not have an effect on paralysis or death. 

Both in a conspecific drop as in a heterospecific’s drop, a paralysed male often (7/9 for S. 

feltiae, 10/14 for S. kraussei and 3/5 in a heterospecific’s drop) showed wounds through which 

internal organs could be seen protruding.  

Paralysis and death also didn’t differ significantly between S. feltiae and S. kraussei over 

time. 
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4.4. Steinernema glaseri X  

4.4.1. Introduction 

In O’Callaghan (2006), S. longicaudum showed a high paralysis and kill rate that was not 

matched by other investigated species (S. feltiae, S. carpocapsae). The question arose whether 

this aggressiveness was also found in more closely related species. Steinernema glaseri belongs 

to the same clade as S. longicaudum. In case the level of observed fighting, paralysis and kill is 

similar to that of S. longicaudum, the “more aggressive” trait might thus be a characteristic for 

clade V. 

4.4.2. Materials and Methods 

Infective juveniles were placed into fresh haemolymph drops as described in Chapter 2.3 

and put into the 20 °C incubator for 4-6 days. Males were then either replaced in their drop 

singly or teamed up with another S. glaseri male of the same age. The drops were checked for 

paralysis and survival after about 1, 24 and 48 h. In between the observation time points, the 

drops were put in the 20 °C incubator. 

4.4.3. Results 

The development of infective juveniles into adults was poor: after 6 days at 20 °C, only 20 

males were obtained from 80 drops in which an IJ had been inserted. A second batch did not 

show more development (6 males out of 27 infected drops after 7 days of incubation). Thus, 

taking into account time constraints, further experiments with S. glaseri were abandoned. 

With regards to paralysis and death, the data from Foster (2007) (see Table 4.7) and this 

study (see Table 4.7) differ significantly at the 48 h observation time point (Fisher’s exact test: 

n = 23, 24 h: p = 0.16, 48 h: p < 0.05). In both studies, paralysis and death were already 

observed after 1 h, but only in Foster’s 2007 study did they increase over time. Contrary to 

Foster (2006), this study did not find a significant difference in the incidence of death between 

the single male drops and the paired males (see Table 4.7). Foster (2007) observed immediate 

fighting (within 10 min after the males were put together) in 29.4 % of 17 male-male couples. 

These fights lasted anywhere between 30 s and two min and resulted in paralysis or death in 

over 80 % of drops after 48 h. Over all experiments that were done with S. glaseri, paralysis 
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and kill were observed in 60.9 % of drops after 24 h and in 69.8 % after 48 h. The studies don’t 

differ significantly at the 24 h observation timepoint (Fisher’s exact test: n = 23, p = 0.16), so 

when analysing the sum of the 2 studies for the 24 h observation timepoint, 3.6 % of single 

drops contained a dead male and 60.9 % of the coupled drops, which would indicate fighting in 

S. glaseri took place and resulted in significant paralysis and death after 24 h (X² (1, n = 51) = 

19.968, p < 0.001). 

Table 4.7 Summaries of all studies on the occurrence of paralysis or death in drops 
with 1 or 2 Steinernema glaseri. When possible Χ² - tests with df = 1 were used. In the cases 
where expected numbers were lower than 5, a fisher’s exact test was done. 

Study Rearing and 

fighting 

temperature 

Observation 

timepoint 

Drops with at least 1 

dead or paralysed on 

total No. of couples 

Dead single male 

controls on total 

No. controls 

Difference between 

singles and 

couples? 

No. % No. % χ² p 

Foster 

(2007) 

20 °C 1 h: 

24 h: 

48 h: 

6/17 

12/17 

14/17 

35.3 

70.6 

82.4 

0/21 

0/21 

0/21 

0.0 

0.0 

0.0 

- 

21.665 

27.382 

< 0.010 

< 0.001 

< 0.001 

This 

study 

20 °C 1 h: 

24 h: 

48 h: 

2/6 

2/6 

2/6 

33.3 

33.3 

33.3 

0/7 

1/7 

1/7 

0.0 

14.3 

14.3 

- 

- 

- 

> 0.100 

> 0.500 

> 0.500 

Overall - 1 h: 

24 h: 

48 h: 

8/23 

14/23 

16/23 

34.8 

60.9 

69.8 

0/28 

1/28 

1/28 

0.0 

3.6 

3.6 

  

 

The attached CD contains a recording of a fight that occurred between 2 S. glaseri males (S. 

glaseri Fight.AVI). Figure 4.5.A-C shows these 2 males after the fight. The recording started 

with one male wrapped around the tail of its victim with its tail. During the fight, the victim 

was only moving the tip of its head and the tip of its tail. After the fight, most of its body 

stayed in a cramped coil (see Figure 4.5A-B, male 1). Male 2 in Figure 4.5A and B was moving 

normally and was thus the victor of the fight. Figure 4.5C is a picture of the dead victim about 

24 h after the males were put together. 
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Figure 4.5  Pictures A and B are taken from a timeseries about 5 h after the 2 S. 
glaseri males were placed together in a drop and just after a fight had ended. Picture A was 
taken a couple of seconds before picture B. This timeseries shows normal movement of male 
2 (stretched in A and coiling its tail in B) and the lack of movement of male 1 (the observed 
victim of the previous fight). C) One of the males was dead abour 24 h after they were placed 
together in a drop. 

Although only 2 drops with paralysis/death were observed, injuries as those that were 

often the results of fights in S. feltiae and S. kraussei were not observed for S. glaseri fights. 

The consequences of a serious fight were paralysis characterised by the inability to move the 

body or parts thereof. 
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4.4.4. Summary & conclusions 

Fighting in Steinernema glaseri frequently resulted in paralysis or lead to death of (at least) 

one of the 2 males. In this study 33 % of the paired male drops had at least 1 male paralysed or 

dead compared to 0-14 % in single male drops and over both studies 35-70 % of the paired 

male drops had at least 1 male paralysed or dead compared to 0-3.6 % in the single drops. In 

Foster (2007), the number of drops with a dead or paralysed male increased over time so that 

after 48 h just less than 70 % of the drops had a dead or paralysed male. Males were observed 

to start fighting within the first 10 min the males were placed together (Foster, 2007). 

Due to significant differences in the results for S. glaseri in this study and the 2007 study by 

Foster (Fisher’s exact test: n = 23, 24 h: p = 0.16, 48 h: p < 0.05), more experiments on the 

fighting of S. glaseri will need to be performed to gain insight in this species’ fighting 

behaviour.  
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4.5. Steinernema bicornutum X  

4.5.1. Introduction 

Steinernema bicornutum is a species belonging to clade IV.I used S. bicornutum strain IRA7 

which was isolated from soil samples in Iran (Kary et al, 2009;Kary et al, 2010). Igoe (2008) also 

studied this strain and a second strain 27-1 which was recovered in Ireland (Harvey, 2010). 

At the molecular level, S. bicornutum Tallosi et al., 1995, shows differences in more than 

15% of rDNA nucleotides - in a 715 bp long fragment of ribosomal gene (ITS1 + 5.8S + ITS2) - 

with the closest species of the genus, S. ceratophorum, which was described from China 

(Ivanova & Spiridonov, 2003;Tallosi et al, 1995;Jian et al, 1997;Spiridonov et al, 2004;Kary et al, 

2010). 

4.5.2. Materials and Methods 

Infective juveniles were placed into fresh haemolymph drops as described in Section 2.3. 

Drops with infective juveniles were put into the 23 °C incubator. The infective juveniles 

normally developed into adults after 3-4 days in the incubator.  

4.5.3.  Results 

In this study the development from IJ to adult nematodes in hanging haemolymph drops 

was not sufficiently high for setting up fighting experiments: fewer than 2 % of IJs developed to 

adult (see Table 4.8).  

Table 4.8 Development of S. bicornutum strain IRA7 in this study. 

Batch Nr of days of 

development 

Total number 

of drops 

Drops with an adult Drops with a male 

Number % Number % 

1 13 261 2 0.77 1 0.38 

2 8 108 5 5.00 3 3.00 

Overall 8-13 369 7 1.90 4 1.08 
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Igoe’s (2008) study did have development of the infective juveniles in hanging 

haemolymph drops and he could thus test the occurrence of fighting, paralysis and death in 

drops containing 2 males and compare it to the survival rate of single males. In 21 drops (see 

Table 4.9), over the 2 strains, he did not observe fighting within the first 10 min the males 

were put together. After 24 h, all paired and singles males were still moving normally. Only 

after 48 h together, one S. bicornutum strain IRA7 male in a two-male drop had died. Mortality 

of single males was still zero (Table 4.9). 

Table 4.9 Summary of Igoe’s 2008 study on the occurrence of paralysis or death in 
drops with 1 or 2 Steinernema bicornutum. As the expected numbers were lower than 5, a 
fisher’s exact test was done. 

Strain Rearing and 

fighting 

temperature 

Observation 

timepoint 

Drops with at least 1 

dead or paralysed on 

total No. of couples 

Dead single male 

controls on total 

No. of controls 

Difference 

between singles 

and couples? 

No. % No. % χ2 p 

27-1 20 °C 10 min: 

24 h: 

48 h: 

0/15 

0/15 

1/15 

0 

0 

6.7 

0/15 

0/15 

0/15 

0 

0 

0 

- 

- 

- 

- 

- 

> 0.5 

IRA7 23 °C 10 min: 

24 h: 

48 h: 

0/6 

0/6 

0/6 

0 

0 

0 

0/6 

0/6 

0/6 

0 

0 

0 

- 

- 

- 

- 

- 

- 

Overall 20-23 °C 1 h: 

24 h: 

48 h: 

0/21 

0/21 

1/21 

0 

0 

4.8 

0/21 

0/21 

0/21 

0 

0 

0 

- 

- 

- 

- 

- 

> 0.5 

4.5.4. Summary & conclusions 

S. bicornutum is the only species studied so far that performed no intraspecific fighting 

behaviour with serious consequences like paralysis, wounding or death (Igoe, 2008). After 48 

h, S. bicornutum had only 1 drop (4.8 %) out of 21 drops with 2 males in which at least 1 male 

was paralysed or dead (Igoe, 2008), whereas the other tested species (see Figure 4.7) had 47.6 

% to 89.6 % of drops with 2 males in which at least 1 male was paralysed or dead. Although 

this conclusion is based solely on the work of an undergraduate, he worked under my close 

supervision [Moreover, the same student also recorded high levels of paralysis/death in S. 

kraussei (Section 4.3.3.2) and so clearly was adequately familiar with the condition to record it 

if it was seen]. 
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However a total sample size of 21 is not very large, more of these experiments with S. 

bicornutum need to be performed to confirm or reject the current very low level of aggression 

status of S. bicornutum. 

4.6. Comparison of fighting in Steinernema species 

Based on the results from this study, S. longicaudum was the fiercest fighter. This was 

evident from the number of drops with at least 1 paralysed male after 24 and 48 h (Figure 

4.6Table 4.7). S. feltiae and S. kraussei showed similar levels of paralysis, but were not 

significantly different from the level of paralysis in S. glaseri (Figure 4.6). Though, given the 

statistically significant difference between this study’s S. glaseri results and Foster (2007) (see 

section 4.4.3; Fisher’s exact test: n = 23, 24 h: p = 0.16, 48 h: p < 0.05) combined with a higher 

number of drops (Table 4.7) and the absence of death in the single male drops (Table 4.7), 

more weight was given to the S. glaseri results from Foster (2007) (Table 4.10). 

Due to poor development in this study, Igoe (2008) with S. bicornutum could not be 

repeated and comparisons of the fighting behaviour other species with S. bicornutum are 

based on Igoe’s (2008) results (Table 4.10). The results on the fighting behaviour of S. kraussei 

obtained by Igoe in his 2008 study are significantly different from the results of the 

experiments in this study (Fisher’s exact test, 24 h: n = 63, p < 0.05; 48 h: n = 62, p < 0.05). 

Because this study’s sample size was a lot higher than in Igoe’s (respectively n = 51 and n = 12), 

only the results from this study were used for comparisons between species (Table 4.10). 
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Figure 4.6  Paralysis or worse in drops containing 2 conspecific males or a single 
male control over all Steinernema species investigated for fighting behaviour in this study. 
Observations were made about a) 24 h and b) 48 h after the males were put together in a 
drop. These data have already been shown earlier in this chapter or in Figure 5.22 for S. 
longicaudum (see Chapter 5). Roman numerals represent the clades enumerated by 
Spiridonov et al. (2004). Within a graph, bars accompanied by the same letters are not 
significantly different. “n” is the number of drops for that treatment. 
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Table 4.10 All studies of which data are incorporated in Figure 4.7. These results were 

already shown in Table 4.2, Table 4.6, Table 4.7 and Table 4.9. Studies significantly different 

from other studies on the same species and with a smaller sample size were rejected for 

Figure 4.7. 

Species Study 

S. bicornutum Igoe (2008) 

S. carpocapsae O’Callaghan (2006) 

S. feltiae Foster (2007), Everard (2006, unpublished) & this study 

S. glaseri Foster (2007) 

S. kraussei this study 

S. longicaudum O’Callaghan (2006), Everard (2006, unpublished) & this study (Chapter 3) 

 

Figure 4.7 summarises the results of the studies summed up in Table 4.10 and shows that 

the fighting behaviour of S. bicornutum differed significantly from all the other species 

investigated (Appendix table 5 and Appendix table 6; percentages of drops with at least 1 male 

paralysed after 24 and 48 h in 2 male S. bicornutum drops: respectively 0 and 4.8). After 24 and 

48 h together, S. feltiae proved to be significantly more pugnacious than S. bicornutum 

(Appendix table 5 and Appendix table 6) but had significantly less drops with a paralysed or 

dead male than S. carpocapsae and S. longicaudum (Appendix table 5 and Appendix table 6). S. 

glaseri only differs significantly from S. bicornutum in numbers of drops with at least 1 

paralysed after 24 and 48 h (Appendix table 5 and Appendix table 6). After 48 h, the 

significance of the difference between S. feltiae and S. glaseri depends on the view on 

application of the sequential Bonferroni adjustment (Moran, 2003) (Appendix table 5 and 

Appendix table 6). The lack of significant difference with other species (like S. feltiae) is highly 

likely an artefact of the small sample size of S. glaseri experiments (Appendix table 5 and 

Appendix table 6). The statistical difference between S. feltiae and S. carpocapsae after 48 h is 

also debatable when applying the sequential Bonferroni adjustment (Appendix table 5 and 

Appendix table 6). This could be caused by the presentation of the data in O’Callaghan’s (2006) 

study in which only combined results for 24 and 48 h are given. This combination might have 

resulted in a false increased shift for the percentage of 2-male drops with at least 1 male 

paralysed after 24 h and a false decreased shift for after 48 h. S. kraussei showed significantly 

less paralysis/death after 24 and 48 h than S. longicaudum (Appendix table 5 and Appendix 

table 6) as did S. feltiae which belongs to the same clade and even has the same symbiotic 

bacterium, X. bovienii, as S. kraussei (Appendix table 5 and Appendix table 6). S. carpocapsae 
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and S. longicaudum did not differ significantly in the amount of paralysis (Appendix table 5 and 

Appendix table 6). 
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Figure 4.7 is the basis for placing the studied Steinernema species on a gradient of 

aggression as is shown in Figure 4.8. Steinernema species in which less than 20 % of the 2-male 

drops show paralysis or death of at least 1 of the males after 48 h are almost not aggressive. 

Species with 40-60 %, 60-80 % and 80-100 % of drops with at least 1 male dead or paralysed 

after 24-48 h are respectively moderately, highly and very highly aggressive (Figure 4.8). At the 

present time, no species with a low level of fighting behaviour (20-40 % of drops with at least 1 

male dead or paralysed after 24-48 h) have been investigated/found (Figure 4.8). 

 

Figure 4.8  Aggressiveness scale of Steinernema species based upon the 
percentage of drops with at least 1 paralysed or dead male after 24-48 h. 

4.7. Conclusions 

Six species of the Steinernema genus have so far been studied for fighting behaviour, only 

one out of these showed less than 10 % of drops with signs of paralysis 48 h after 2 males were 

placed together in a drop. In order to cover as much as possible of the Steinernema genus, 

these six species were chosen out of clades II to V of the Steinernema genus (no species of 

Clade I was readily available). The occurrence of significant paralysis (p < 0.05) in more than 40 

% of 2 male drops in five out of the six studied species, covering 3 clades, reflects how 

widespread fighting behaviour is and suggests fighting, paralysis and kill are ancestral traits 

that have been conserved in most of the species. It is more likely that a “No fighting”-strategy 

developed once than that fatal fighting evolved separately in 3 different clades. Clade IV, the 

clade to which S. bicornutum (the only very low level of aggression species thus far found) 

belongs, is thus a very interesting group of species for further studies. Steinernema bicornutum 

was observed with visible sperm in its gonads even when the male was reared in complete 

isolation (personal observations), as opposed to S. longicaudum in which males only produce 

Level of  
aggression

0 20 40 60 80 100

% of drops with at least 1 paralysed or dead male after 24-48 h:

Very low Moderate High Very high

S. bicornutumE.g. S. feltiae
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large spermatozoa after several hours with a conspecific female (Ebssa et al, 2008). 

Steinernema bicornutum’s significantly different fighting behaviour (all p < 0.001, Appendix 

table 5 and Appendix table 6) might indicate a different mating strategy that allowed for and 

maybe even promoted less aggressive competition. However, the total numbers for S. 

bicornutum studied are very low and this research thus needs to be repeated for this species. 

Aiming for better development of S. bicornutum, future studies could try different S. 

bicornutum strains as they might develop better in hanging drops. Rearing S. bicornutum in 

hanging drops co-infected with infective juveniles from other Steinernema species would not 

be preferable as it would rather result in less fit adults (Sicard et al, 2003) and/or yield a lower 

number of S. bicornutum adults (Koppenhofer et al, 1995;Sicard et al, 2006). This could be due 

to interspecific fighting that would paralyse and/or kill the S. bicornutum juveniles and adults 

(O'Callaghan, 2006). Also, development of S. bicornutum with non-native symbionts could be  

detrimental to the nematode as it might not have resistance to specific virulence factors 

produced by the non-native bacteria. (Sicard et al, 2003;Sicard et al, 2004;Webster et al, 2002) 

or as the non-native symbionts produce toxins against the native symbiont (Fodor et al, 2010). 

S. bicornutum should also be observed for longer periods and under varied conditions to 

assess whether wrapping occurs but causes no paralysis or death, whether the S. bicornutum 

males need longer for the effects of fighting to become observable or whether the species 

doesn’t even fight at all. It might even be possible to see what characteristic of the fighting 

behaviour was lost first: wrapping or paralysis and killing. 

The results of this study are significantly different from the Foster (2007) study for S. 

glaseri (see section 4.4.3, Fisher’s exact test: n = 23, 24 h: p = 0.16, 48 h: p < 0.05). Both studies 

had low numbers due to poor development of S. glaseri infective juveniles in hanging drops of 

haemolymph and these experiments for S. glaseri need to be repeated. But even with this 

small sample size we can conclude that S. glaseri males fight and even do so pretty quickly: in 

both studies S. glaseri males were observed fighting within 1 h of being placed in a drop 

together with another male. Even though more evidence is needed, clade V might be a fierce 

fighter- clade. 

The comparison of species and their placing on the gradient of aggressiveness needs to be 

interpreted with caution, as it is based on data pooled from various studies. Although all were 

done in the same laboratory, and most (except O’Callaghan, 2006) were either done by myself 

or under my close supervision, there could be inter-experimenter differences. In particular, the 

differences between S. longicaudum, S. glaseri and S. carpocapsae are small and non-

significant (Appendix table 5 and Appendix table 6), so assigning them to different categories 
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of aggressiveness is done cautiously. The difference between the clade III species (S. feltiae 

and S. kraussei) and S. longicaudum is more robust, being based on significant differences in 

my own data (Figure 4.6) as well as the pooled data (Figure 4.7) (all p < 0.005; Appendix table 5 

and Appendix table 6). 

This chapter confirms the fighting ability of S. feltiae by means of three different studies. 

The 3 studies in this chapter, used the Steinernema feltiae isolate 4CFMO (Dillon, 2003;Dillon 

et al, 2006) whereas O’Callaghan (2006) reported only a very small amount of fighting in S. 

feltiae isolate UK76. O’Callaghan’s (2006) sample size for S. feltiae was however not very large 

and thus more research into a possible difference in fighting behaviour between these two S. 

feltiae strains (and perhaps other, more recently isolated strains) should be done. The strain 

used by O’Callaghan has been in laboratory culture for more than 20 years (C. Griffin, pers. 

Comm.) and may have lost the ability to fight, while the 4CFMO strain was isolated more 

recently (Dillon, 2003). Another difference between these 2 strains is the habitat-type from 

which they were isolated. S. feltiae UK76 was isolated from grassland – the most recorded 

habitat type for this species (Stock et al, 1999) – in the UK, whereas S. feltiae 4CFMO was 

isolated from woodland in Ireland (Dillon, 2003;Dillon et al, 2006). Different habitat types 

could imply different insect hosts (Mrácek & Becvar, 2000) and/or soil type (Mrácek et al, 

2005) which can influence infection behaviour (Griffin et al, 2005;Griffin, 2012).Thus, as 

habitat type can alter juvenile behaviour, it might also influence adult behaviour. 

 

Different Steinernema species might also use different methods for eliminating their 

competitor during a fight. Chapter 5 treats experiments on the mechanisms of fighting, 

paralysis and killing in S. longicaudum. In this chapter the differences in type of wounding by 

different species has already been touched upon. Victims of fighting in S. kraussei and S. feltiae 

showed ruptured cuticles combined with protrusion of internal organs in 7 out of 9 injured S. 

feltiae victims and in 10 out of 14 injured S. kraussei victims. O’Callaghan (2006) also reported 

that females/hermaphrodites that died in the presence of a heterospecific male (either S. 

longicaudum, S. Steinernema sp. INA S3 or Steinernema sp. Macau) had signs of a damaged 

and/or ruptured body wall, but did not give the frequencies of this type of injury. She also 

noted that S. longicaudum and S. carpocapsae males that had died in the presence of another 

male usually appeared shrunken in size and/or with a damaged body wall, compared to males 

that had died alone which had intact body walls. This type of injury was not seen here for S. 

glaseri fight victims, suggesting differences in fighting strategies might be possible. However, it 

is more likely that this is due to the fact that there were only two fight victims in my 
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experiments on S. glaseri, and Foster (2007) did not record the appearance of fight victims for 

this species.  

O’Callaghan (2006) reported a higher mortality rate for S. carpocapsae and S. feltiae 

females with a punctured cuticle that were placed in a drop that was previously occupied by a 

S. longicaudum nematode than those that were placed in a drop that was previously occupied 

by a conspecific. A different species of symbiotic bacteria might thus be detrimental to an 

injured nematode. Even a different conspecific strain of the symbiotic bacteria can negatively 

influence the parasitic success (emergences of juveniles) of a nematode (Sicard et al, 2004). 

Conspecific pairing of 2 S. feltiae or 2 S. kraussei males, two species with a high incidence of 

ruptured cuticle after fighting, in a drop previously occupied by the congeneric other species, 

did not affect the mortality rate. This showed the strain of the symbiotic bacteria X. bovienii 

doesn’t seem to have an effect on the incidence of paralysis or death of conspecifically paired 

S. feltiae or S. kraussei males. N.B.: the question of whether bacteria are implicated at all in 

paralysis and death is dealt with further in Chapter 5. 

Intraspecific male fighting has never been reported in the intensively studied 

Caenorhabditis elegans or in other Caenorhabditis species. (Caenorhabditis nematodes are 

placed in the order Rhabditida, like the Steinernematidae, but these 2 families are not very 

closely related to each other: Blaxter et al. (1998) place them in separate clades of the 

Nematoda]. Intraspecific male competition does exist in Caenorhabditis nematodes but is 

expressed through sperm competition (Lamunyon & Ward, 1998;Singson et al, 

1999;Timmermeyer et al, 2010). Increasing sperm competition is probably translated into 

larger sperm size (Lamunyon & Ward, 2002;Lamunyon & Ward, 1999): hermaphroditic species 

which have a low number of males and thus less opportunity for sperm competition have 

smaller sperm than gonochoristic species where males are more common and thus experience 

higher sperm competition. Variation in competition for reproduction occurs both within the 

Steinernema and Caenorhabditis genera, but respectively through intraspecific male combat 

and sperm competition.  
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5.  Cause of paralysis and death in 

S. longicaudum 

5.1. Introduction 

The cause of paralysis and death resulting from fighting in Steinernema longicaudum is the 

topic for this chapter. 

Keeping in mind that frequency of paralysis and death differs between the Steinernema 

species (Chapter 4) and that the investigations in this chapter only cover S. longicaudum, it 

might very well be that the mechanism of paralysis and/or kill differs between the different 

Steinernema spp. and that some of the items discussed here are not applicable to other 

Steinernematidae. 

This chapter starts with the examination of the injuries sustained by victims in a fight (5.3). 

Next, attempts were made to inflict similar injuries and observe the subsequent occurrence of 

paralysis and/or death (5.4, 5.5 and 5.6). In the experiments in 5.4, only locally applied 

external pressure was used to mimic the physical forces applicable when the attacker wraps its 

body around its victim, whereas in 5.5 a needle was used to mimic the possibility of stabbing 

the victim with the spicule. In 5.6 the aim was to inject worms with different media (with and 

without bacteria) to mimic the possible use of the spicules for the injection of a toxin. 

In 5.7, the involvement of bacteria and the existence of limiting requirements of the 

medium in which the nematodes fight are investigated. The symbiotic bacteria naturally 

received most attention, the interdependency between Xenorhabdus bacteria and 

Steinernema nematodes has closely linked their evolution (Adams et al, 2006;Ciche et al, 

2006;Lee & Stock, 2010b;Lee & Stock, 2010a) and might have influenced the evolution of the 

fighting behaviour. Xenorhabdus spp produce a range of bioactive metabolites into the 

medium, including molecules with antibiotical, insecticidal and nematicidal properties (see 

section 1.2.2). Xenorhabdidae also produce antibiotic factors against other Xenorhabdus 

species which are likely to be of a different nature than the antibiotics produced against 

competing bacteria from other genera (Fodor et al, 2010). X. ehlersii, the symbiont of S. 

longicaudum shows weak antibiotic activities against non-related bacteria, but is quite active 
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against related species (Fodor et al, 2010). Toxins produced by the bacteria and secreted into 

the medium could diffuse into the nematode through wounds sustained during fighting. Ehlers 

(1990) puts forward the possibility that Xenorhabdus bacteria produce chemicals toxic for 

Steinernema nematodes and combines it with the suggestion that the Steinernema species 

naturally associated with that particular Xenorhabdus species/strain is able to metabolize 

these toxins, rendering the nematode  insensitive to these particular toxins. However, lesions 

could render a nematode susceptible to these otherwise metabolised toxins. 

5.2. Definition of used terms  

 An injury is hurt, harm, damage, or loss sustained so that the worm is no longer fully 

healthy or in good condition. 

 A puncture is the small perforation, hole or wound made by piercing with a needle or 

spicule. 

 A wound is an injury to the body that typically involves laceration or breaking of the cuticle 

and usually also damage to underlying tissues. 

 A lesion denotes a localized, well defined, pathological, abnormal change in the structure 

of an organ or in tissue due to injury or disease thus including punctures, ruptures, and 

wounds. 

 A crush-rupture is used to denote a wound caused by the pressure of a wire that involved 

the tissue to be broken apart or an organ to be burst open. 
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5.3. Examination of S. longicaudum fight victims  

5.3.1. Introduction 

O’Callaghan (2006) noted that female Steinernema that died in the presence of a male of 

another Steinernema species often had “signs of a damaged and/or ruptured cuticle”. In this 

section, the victims of male-male fighting in Steinernema longicaudum are examined. 

Hypotheses 

 Within 20 min of putting 2 males together in a drop and agitating them regularly, a 

fight, whether or not with immediate paralysis, will have occurred in the majority 

of these drops. After these 20 min several 2- males drops will contain a male with 

visible injuries or paralysis as a result of fighting. 

 Within 24 h after 2 males were put together in a drop, the majority of drops will 

show at least 1 male with signs of paralysis, a damaged and/or ruptured cuticle or 

other injuries whereas the majority of the single male controls will show no injuries 

or paralysis. 

 The injuries sustained by males in 2-male drops will be visibly different from 

injuries of single control males. 

5.3.2. Material and Methods 

Infective juveniles were placed into fresh haemolymph drops as described in 2.3 and put 

into the 27 °C incubator for 4-5 days. Males were then teamed up with another S. longicaudum 

male of the same age (naïve couples) or left alone in their original drop (single male controls). 

The age of males at observations varied, but 2 males in a drop were always of the same age. 

Immediate observations in ambient room temperature and room humidity were made for 

20 min or until an attack with the possibility of injury was observed. When the observed drop 

showed signs of drying out, about 25 µl of 100 % Ringer's solution was added. During the 

observations, the males were regularly disturbed by a piece of platinum wire, used as an 

aggressor as per earlier chapter (see section 3.7), in order to keep both males within nematode 

length of each other and to keep both males active and stimulated for fighting (see section 

3.7). When a male coiled on itself it was attempted to uncurl it by stretching it with the wire. 
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Every time the wire was out of the drop for more than 10 seconds, it was passed through the 

flame of a Bunsen burner. The wire was allowed to cool before it contacted another male. 

In the case of a special event like a fight that resulted in paralysis or a possible injury of the 

victim, both males were transferred to a drop of Ringers on a microscope slide. The drop was 

placed in the middle of a square made of high vacuum grease (Dow Corning High vacuum 

grease # 5054). Efforts were made not to let the drop of Ringers touch the grease. This was 

possible most of the times. The line of grease made it possible for a cover slip to be placed 

upon the drop without crushing the nematodes. The cover slip facilitated observations at 

10x40 and 10x100 (oil immersion). Apart from 1 couple, all males were put back together in 

their original fighting drop and observed again after 24 h. 

Images were captured as specified in 2.5. 

5.3.3. Results 

5.3.3.1. Single male controls 

Eight males were left as single controls in their original drop. Of these, 2 died when they 

were 6 days old, which was 48 h after the other males from the same batch were teamed up. 

The other 6 single males survived for more than 72 h after the beginning of the fight staging 

(after this they were not checked again). The 2 single control deaths came from the same 

batch and at the age of 5 days both males showed a clear space in the tip of their tail (Figure 

5.1) which neither of them was moving. 
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Figure 5.1  Single S. longicaudum male with a clear space just before the 
spicules, observed 24 h after the other males were put together. The male was not moving 
its tail. The inset is a blowup (1.7x the main image) from a different picture. 

 

5.3.3.2. Immediate observations: 

Out of 12 couples, 9 fought within 20 min of the start of the experiment (Table 5.1). In 2 

out of these 9 couples (drops 1 and 9), immediate paralysis after a fight was observed. One of 

the males that showed paralysis immediately after an observed fight, showed no visible 

injuries (drop # 1). In 5 out of these 9 couples visible injuries were seen at the end of the 20 

min observation: 

o 1 victim had suffered a punctured body wall (drop #12; Figure 5.2); 

o 1 victim had a punctured body wall together with a punctured digestive tract at 

the same spot which allowed for loss of content of the digestive tract (drop # 8; 

Figure 5.3). The contents of the digestive tract were also clearly separated over the 
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whole width of the male at this spot. This indicated that the fighting wrap had 

caused a constriction in the internal organs. 

o 3 victims (drops # 6, 7 & 9) showed a separation of the contents of the 

digestive tract as in Figure 5.4 & Figure 5.5 (both drop # 7). No puncture wounds 

were observed. This indicated that the fighting wrap had caused a constriction in 

the internal organs, but no effective piercing had happened. One of these three 

victims (drop # 9) had shown impeded movement immediately after the fight. 

 

Table 5.1 Summary of the observations made 20 min after pairs of naïve S. 
longicaudum males were put together in a drop where they were continuously stimulated to 
elicit fighting so that injuries could be examined. 

 Did fighting or paralysis  

occur within 20 min? 

Were injuries visible after the observed fighting? 

Drop Fighting Paralysis  

1 Yes Yes No 

2 Yes No No 

3 No - - 

4 No - - 

5 Yes No No 

6 Yes No Constriction 

7 Yes No Constriction (Figure 5.4 &  

Figure 5.5). 

8 Yes No The victim had a punctured body wall, a punctured 

digestive tract with loss of content and results of a 

constriction (Figure 5.3). 

9 Yes Yes constriction 

10 No - - 

11 Yes No No 

12 Yes No The victim had suffered a punctured body wall 

(Figure 5.2). 
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Figure 5.2. S. longicaudum male with pierced body wall observed immediately 
after fighting with another male (drop # 12). The males in this drop fought after 2 min (tail 
wrapped around the head of the other male), 4 min (tail wrapped around the head of the 
other male), 4 min ( tail wrapped around the middle of the anterior body of the other male) 
and 5 min (tail wrapped around the posterior part of the other male). This last fight resulted 
in the victim coiling back onto its attacker. This fight broke up but started again immediately 
for a couple of times. After this last fight one of the males appeared to have a puncture 
wound resulting in the formation of a "bubble". This bubble was located at the place on the 
posterior body of the victim where wrapping was observed. The inset is a blowup (2.6 x) 
from the red square on the original image. 

 

123



 

Figure 5.3 S. longicaudum male with punctured body wall, punctured digestive 
tract and constricted digestive tract, observed immediately after fighting with another male 
(drop # 8). The males in this drop fought after 1 (this fight lasted 3 min), 4, 5 and 6 min. After 
this last fight, a constriction of the digestive tract of the victim was visible at low power 
magnification. Under high power magnification it became clear that the victim had also 
suffered a pierced digestive tract and body wall (left red arrow) where the constriction (2 red 
arrows on the right) was observed. The inset is a blowup (2.7 x) from the red square on the 
original image. 
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Figure 5.4 S. longicaudum male with constricted internal organs but no obvious 
puncture, observed immediately after fighting with another male (drop # 7). The males in 
this drop fought after 1 (tail wrapped around the head of the other male), 3 (the attacking 
male –upper right– squeezed the victim –bottom left–) and 21 min. The last fight showed a 
separation of the contents of the digestive and gonadal tracts of the victim at the point 
where the other male had wrapped its tail around the victim (worm on left of main image). 
The attacker is shown in the upper right of the picture. The inset is a blowup (3.4x the main 
image) from a different picture taken. 
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Figure 5.5 Another close up of the victim of the same drop (# 7) as in Figure 5.4. 
S. longicaudum male with constricted internal organs but no obvious puncture, observed 
immediately after fighting with another male. The males in this drop fought after 1 (tail 
wrapped around the head of the other male), 3 (the attacking male –upper right– squeezed 
the victim –bottom left–) and 21 min. The last fight showed a separation of the contents of 
the digestive and gonadal tracts of the victim at the point where the other male had 
wrapped its tail around the victim. The inset is a blowup (1.7x the main image) from a 
different picture. 
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5.3.3.3. Observations 24 h after the males were put together in a 

drop 

After 24 h, at least one of the males in 8 out of 11 drops was paralysed or dead (Table 5.1): 

o 3 drops had both males moving normally; 

o 1 drop had 1 male moving normally and 1 male that was alive, but not moving 

normally; 

o 1 drop had 1 male moving normally and 1 male that was barely alive; 

o 5 drops had 1 male moving normally and 1 dead male; 

o 1 drop had 1 male that was barely alive and 1 dead male. 

In 5 of these 11 drops, the victims (still) showed visible injuries 24 h after having been put 

together with another male: 

o In one of the drops in which both males were moving normally, the victim had a 

puncture wound (drop # 12; no picture; same injury as shown 20 minutes after the 

males were put together in a drop). 

o In 2 of the drops in which 1 male was moving normally and the other male was 

dead, the dead male showed a wound in its body wall and ruptured internal 

organs which allowed for loss of content of the digestive tract (drop # 6, Figure 

5.6; drop # 8, Figure 5.7). The victim in drop # 6 was previously seen only to have 

an internal constriction, but no wound in the body wall. 

o In the drop were 1 male was barely alive and the other male was dead (drop #9), 

the dead male showed separation of the contents of the intestines, but without a 

wound in the body wall, this reflects the injuries he had shown 20 min after the 2 

males were put together. 

o In the drop with 1 normally moving male and 1 living but abnormally moving male, 

the victim’s spicule and/or the surrounding tissue was damaged. The male’s 

spicules were sticking out of the cloaca and the tissue of the male’s tail looked 

unhealthy (drop # 7; Figure 5.8). A worm in this drop was previously described as 

having separated content in its intestine, but this was not observed at this time. 

o Additionally, in one of the drops where both males were able to move normally 

when touched, one male had an abnormal appearance to the outer tissues of the 

posterior part of its body and kept this part more or less rigid (drop # 11; Figure 
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5.9, Figure 5.10 and recording “S. longicaudum Fight injuries.AVI” on the attached 

CD), like the single males in 5.3.3.1. Both males of this pair came from the same 

batch as the 2 abnormal single males (5.3.3.1 and Figure 5.1) and the abnormal 

male of the pair was also observed dead 48 h after pairing. 

 

 Table 5.2 Summary of the observations made 24 h after pairs of naïve S. 
longicaudum males had been continuously stimulated for 20 min to elicit fighting in 
order to obtain injuries from fighting. 

Drop Did paralysis or death occur and were any injuries visible 24 h after the males were 

placed together in a drop? 

1 One of the males was moving normally, the other male was dead. 

No injuries were observed. 

2 One of the males was moving normally, the other male was barely alive. 

No injuries were observed. 

3 One of the males was moving normally, the other male was dead. 

No injuries were observed. 

4 One of the males was moving normally, the other male was dead. 

No injuries were observed. 

5 Both males were moving normally. No injuries were observed. 

6 One of the males was moving normally, the other male was dead. The dead male had 

suffered a wound in its body wall and ruptured internal organs (Figure 5.6). 

7 One of the males was moving normally, the other male was alive but moving 

abnormally and had suffered spicule lesion (Figure 5.8). 

8 One of the males was moving normally, the other male was dead. The dead male had 

suffered a puncture wound and loss of content of the internal organs (Figure 5.7). 

9 One of the males was barely alive, while the other male was dead. The dead male 

showed separation of the contents of the intestine, but  had no wound or rupture of 

the cuticle. 

10 The drop had fallen. 

11 Both males were able to move normally. One of the males had an abnormal 

appearance to the tissue of its posterior body and was not moving this part of its body 

much (Figure 5.9 , Figure 5.10 and recording “S. longicaudum Fight injuries.AVI” on the 

attached CD). 

12 Both males were moving normally. One male showed a puncture in its body wall. 
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Figure 5.6 S. longicaudum male with ruptured internal organs, observed 24 h 
after fighting with another male (drop # 6). These males had fought 5 min after being put 
together, when these males were then observed under high power magnification, the results 
of constriction were visible. The next day, when this picture was taken, one of the males was 
dead showing a puncture of the cuticle. He had also suffered a severe rupture of the internal 
organs witch resulted in loss of contents of the intestine into the space between the cuticle 
and the hypodermis. The inset is a blowup (2.1x) from the red square on the original image. 
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Figure 5.7 S. longicaudum male with punctured internal organs and body wall, 
observed 24 h after fighting with another male (drop # 8). This is the same victim as in Figure 
5.3. About 24 h after the start of the fight, the victim still showed a pierced digestive tract 
and body wall under high power magnification. The inset is a blowup (2.4x the main image) 
from a different picture. 
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Figure 5.8 S. longicaudum male with spicule lesions, observed 24 h after fighting 
with another male (drop # 7). About 24 h after the start of the fight, one of the males was 
moving abnormally and had sustained damage to its spicule and/or the surrounding tissue. 

A) shows the normally moving male and a detail of its posterior end. The inset is a 
blowup (3.4x) from the red square on the original image. 

B) shows the abnormally moving male and a detail of its posterior end. This is the 
same victim as in Figure 5.4 and Figure 5.5. The male’s spicules are constantly protruded 
combined with damage to the tissue surrounding the cloaca. The inset is a blowup (4.5x the 
main image) from a different picture. 
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Figure 5.9 Two still frames in sequence of 2 S. longicaudum males observed 24 h 
after fighting (drop # 11). The male in the upper left of the pictures was moving completely 
normally, but the male in the lower right corner showed an abnormal appearance to the 
tissues of its posterior body and was not moving the part of its body flanked by the red 
bracket. Also see the recording “S. longicaudum Fight injuries.AVI” on the attached CD. 

 

Figure 5.10 Another picture of the injured male of drop # 11 with more detail of 
the abnormal looking posterior part of the male’s body. 
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5.3.3.4. Comparison of injuries in different species of Steinernema 

Fighting in S. feltiae and S. kraussei (see section 4.3) resulted in similar injuries to S. 

longicaudum (see sections 5.3.3.2 and 5.3.3.3), however the incidence of a ruptured body wall 

in injured males was higher (Figure 5.11), although not significantly. Pairwise comparisons of 

the proportions of injured males that had suffered a ruptured body wall at the 12-24 h 

observation timepoint showed a significant difference between S. longicaudum and S. kraussei 

(Fisher’s exact: p = 0.044, n = 40). It needs to be noted that the S. longicaudum data below 

were obtained from drops in which the males had experienced regular agitation within the 20 

min after the males were paired, whereas the data of S. feltiae and S. kraussei were obtained 

from drops in which the males were put together and then left untouched for 24 h. 

 

Figure 5.11 The injured or dead males with a ruptured body wall as a percentage 
of the total number of injured or dead males compared between 3 Steinernema species at 2 
time points after pairing. Bars accompanied by no letter, or by the same letter are not 
significantly different from each other. Raw data and statistics in Appendix table 7.  
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5.3.4. Summary & conclusions 

Of the single male controls, none showed injuries similar to those observed after fighting in 

2-male drops. Only one 2-male drop had a male that showed injuries similar to those observed 

in the 2 single controls. The time pattern of injury and death of these 3 males was also alike 

and because all 3 males also came from the same batch, the injuries and subsequent death 

were likely caused by something unrelated to fighting. 

Stimulated fighting of 2 male S. longicaudum CB2B resulted in different types of injuries. 

The victims sustained effects resulting from physical constriction of internal organs to the loss 

of content from internal organs protruding through a wound in the body wall. Stimulated 

fighting also resulted in tissue damage, for instance damage to the tissues surrounding the 

cloaca. 

The most commonly observed injury immediately after a fight had taken place in the 

stimulated circumstances was disruption of the contents of internal organs such as the 

digestive tract due to constriction of the organ during fighting (observed in 4 worms). 

Constricted organs tended to burst within 24 h. Where the constriction was accompanied by a 

puncture of the body wall, the contents were extruded to the exterior of the worm (see Figure 

5.7), but in some cases the ruptured internal organs were contained mainly within the cuticle 

that had become separated from the epidermis (see Figure 5.6). 

About 24 h after the males were introduced to each other, the most commonly observed 

injuries were disruption of internal organs and puncture or rupture wounds of the body wall (4 

worms including drop #9). 

Perforation of the body wall alone was not followed by immediate paralysis; one male with 

a puncture wound even survived without paralysis for more than 24 h, showing that a lesioned 

cuticle or body wall does not inevitably result in entry of paralysing or lethal toxins or bacteria 

from the surrounding medium or even injection of a toxin by the attacker. The content 

protruding through this perforated cuticle or body wall still seems to be enclosed in a bubble 

by a membrane. In case diffusion through this membrane is not a possibility, this will be no 

real entry point of toxins or bacteria from the medium. 

Paralysis immediately following a fight was seen in only two worms, one of which had a 

constriction but no visible puncture, and the other had no visible injuries. Thus, the 2 victims 

that showed immediate paralysis after a fight had not sustained any visible puncture wounds 

and one of them showed only the results of constriction. It seems contradictory to the 
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hypotheses of injection of a toxin using the spicules that paralysis occurred without the body 

wall being punctured.  

It needs to be noted that the males in this experiment were constantly mechanically 

disturbed and this could have affected fighting and its resulting injury. Infliction of harm within 

the first 20 min of these stimulated fights occurred at a ratio about 5 times what would be 

expected in half an hour of normal fighting based on the results from 3.3.1 (about 10 %). 

Abnormal fighting by more agitated nematodes does not seem unlikely. In this light, 

differences between type of fighting injuries sustained by S. longicaudum, S. kraussei and S. 

feltiae will be more distinct when the frequency of ruptured cuticle injuries  resulting from 

normal male-male S. longicaudum fights will be considered. Nota bene, the significantly higher 

proportion of ruptured cuticle injuries resulting from normal male-male S. kraussei fighting 

compared to stimulated male-male S. longicaudum fighting already shows the differences in 

injuries sustained from fighting in these 2 species and suggests differences in the mechanisms 

of fighting behaviour and wounding. Repeating the comparison of injuries between S. feltiae 

and S. longicaudum with only non-stimulated fights might show a significantly higher 

proportion of ruptured cuticle injuries in S. feltiae, indicating differences in the mechanisms of 

fighting and wounding might also exist between S. feltiae and S. longicaudum. In order to 

unravel the evolution of fighting behaviour in Steinernematidae, the fighting, killing and 

paralysis mechanisms of different species should also be examined in more detail. 

Death in this experiment with stimulated S. longicaudum males could be the result of 

damaged internal organs, or entry of bacteria and/or toxins from the medium through 

puncture wounds in the body wall or by injection of a toxin by the attacker. However, four of 

the males that were dead or close to dead after 24 h had no visible lesions and one of the 

males that showed paralysis immediately after a fight did not show any visible lesions.  
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5.4. Mimicking of injuries and paralysis: Crushing 

5.4.1. Introduction 

In the previous experiment, the most common injury immediately after a fight was 

disruption of the contents of internal organs due to constriction of these organs during a 

fighting wrap. After 24 h, dead males without puncture wounds, but with these constriction 

injuries were observed. If paralysis is not caused by a toxin, either injected by the attacking 

male or originating from the medium, the pressure and constriction caused by a wrap might be 

the cause of paralysis and maybe even of subsequent death. In the following experiments, it is 

attempted to reconstruct similar constriction injuries by applying local pressure to male S. 

longicaudum. 

Hypotheses 

 Applying localised pressure on a male will cause disruption of the contents of 

internal organs in the majority of males and will lead to impeded movement of 

these males within 24 h after the pressure was applied. 

 The majority of males that showed disruption of the contents of internal organs or 

paralysis within 24 h will have died within 72 h after the pressure was applied. 

5.4.2. Material and Methods 

Male S. longicaudum CB2B were reared in separate drops as described in section 2.3. 

Single males of 5 days old were used in their own drops for these experiments. 

Several methods and instruments were tried out to produce wounds comparable to those 

that had resulted from fights between 2 male S. longicaudum CB2B. The normal movement of 

a Steinernema nematode made it quite difficult to precisely crush it. Therefore, 2 methods 

were tried out to minimise the possibilities of movement of the nematode. There were 

disadvantages associated with each method. Just placing the worm in a shallow part of the 

drop seemed not to suffice: the male could easily wriggle out from underneath the instrument 

used. Because of this, the method was changed to pulling the nematode out of its drop where 

it would stick to the surface of the Petri dish. This was effective but held the risk of desiccation 

of the nematode. This risk of desiccation was however preferred over not applying enough 

pressure or applying it to the wrong part of the body of the nematode. Adult nematodes had 

already proven to be able to survive quite a bit of desiccation (see sections 3.6.2.2 and 3.6.2.3: 
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production of incapacitated and dead males). Eight worms were treated in the shallow part of 

the drop, and five were treated outside the drop. 

The immobilised worm was then briefly subjected to pressure applied to the posterior half 

of the worm’s body. Table 5.3 lists the instruments used to apply pressure, and their 

characteristics. To reduce the risk of applying too much pressure, the pressure was applied 

only once, for 4 seconds or less. This however, enhanced the risk of not wounding the 

nematode due to incomplete contact of the wire with the nematode caused by bending of the 

wire or due to insufficient pressure or insufficient exposure to the pressure. 

Table 5.3 Instruments tried out for mimicking the lesions sustained by Steinernema 
males during fights as a result of externally applied pressure on the male. 

Material used for injuring the nematode Characteristics of the material used 

An insect dissecting needle Very hard and sturdy 

Platinum wire with diameter 0.2 mm Easily distorted 

Platinum wire with diameter 0.1 mm Even more easily distorted 

Tip of glass pipette pulled out in a flame to 

obtain a very thin glass rod. 

The thin glass rod did not distort but did yield 

under pressure so that the application of 

pressure was visible but also very variable. 

 

The immediate effects on the nematode were recorded, as were the outcomes 24 and 72 h 

after the application of local pressure. These observations were carried out as described in 

section 2.4.2. 

5.4.3. Results 

In eight out of 13 males, movement slowed down after the application of pressure (Table 

5.4). Out of these, 3 males had sustained a bend in their body; four males had suffered a 

punctured body wall through which the intestines were protruding (Figure 5.12) and two 

males showed the separation of content of the digestive tract as was observed in victims of 

stimulated male-male fighting in section 5.3.3. However, none of the treated males showed 

real paralysis defined as the inability of moving part(s) of the body. 
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Six out of 13 males were dead or in very bad shape after 24 h. The other 7 males showed 

no or very limited longer term effects despite the application of local pressure on the posterior 

part of the body. 

Table 5.4 Summary of the immediate observations and of the observations 24 h 
after the application of pressure on the posterior body of S. longicaudum males trying to 
mimic the wounding and paralysis occurring in Steinernema male-fights. 

 

Instrument used to 

apply local pressure  

No. of 

worms 

Immediate consequences Consequences 24 h later 

Platinum wire of 0.10 

mm diameter 

5 All 5 males slowed down 

in movements. 

Though 2 males were dead within  

24 h, none showed visible damage. 

Platinum wire of 0.20 

mm diameter 

4 2 males slowed down in 

movements. 

1 male showed no visible effects. 

1 male showed visible separation of 

internal organs due to constriction 

(Figure 5.14). 

2 males showed 

protruded entrails 

through a crush-

ruptured body wall 

(Figure 5.12). 

1 male was dead (Figure 5.15). 

1 male was in very bad shape 

(recording “ S. longicaudum Crush 

injuries.AVI “on attached CD; 

Figure 5.16). 

Glass rod 1 Visible separation of 

internal organs due to 

constriction. 

Moving normally after 24 h,  

but dead by 72 h. 

Dissecting needle 3 1 male showed no 

visible effects. 

No visible effects 

2 males showed 

protruded entrails 

through a crush-

ruptured body wall 

(Figure 5.13). 

Both males are dead. 
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Figure 5.12 S. longicaudum male suffering a crush-ruptured body wall and 
protrusion of its entrails through this wound immediately after the application of local 
pressure with a Platinum wire 0.20 mm diameter.The male had twisted a little under the 
pressure which might have added to the severity of the wound. The inset is a blowup (1.6x) 
from the red square on the original image. 
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Figure 5.13 S. longicaudum male suffering a crush-ruptured body wall and 
protrusion of its entrails through this wound immediately after the application of local 
pressure with a dissecting needle. 
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Figure 5.14 S. longicaudum male showing a constriction and even a twist of the 
gonad and the intestine 24 h after the application of local pressure with a 0.20 mm diameter 
platinum wire. 
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Figure 5.15 Picture of a S. longicaudum male 24 h after the application of 
pressure with a 0.20 mm diameter platinum wire during wich the male’s body wall had 
crush-ruptured (Figure 5.12). A) is focussed on the intestine that has completely come out of 
the male’s body. B) is focussed on the gonad that has also completely come out of the male’s 
body. 
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Figure 5.16 Picture of a S. longicaudum male 24 h after the application of 
pressure with a 0.200 mm diameter platinum wire during wich the male’s body wall had 
crush-ruptured (Figure 5.12). The male is in very bad shape, but is still moving as can be seen 
in the recording “S. longicaudum Crush injuries.AVI” on the attached CD. 

 

5.4.4. Summary & conclusions 

S. longicaudum males that had been subjected to local pressure in an attempt to mimic the 

wounding and paralysis occurring in Steinernema male-fights, tended to show either severe 

injuries or no visible evidence of injuries. Four out of 13 males had suffered a crush-ruptured 

body wall and ruptured intestines. Although a lot of attention was paid to keeping the duration 

of application of pressure and the applied pressure low, it is still likely that the pressure 

applied was higher than the pressure another male would apply during a fighting wrap. The 

fact that 7 out of the 13 treated males didn’t show injuries or paralysis can be explained by the 

single, short (mere seconds long) exposure to pressure, whereas the males in male-male fights, 

including those of the experiments in section 5.3, were possibly subjected to repeated attacks 

from the other male during more than 24 h. 

143



Seven out of 13 males died within 72 h of the application of localised pressure, but only 1 

of these dead males had showed disruption of the content of internal organs immediately 

after the application of pressure. Localised pressure on the body of a male didn’t lead to 

disruption of the contents of internal organs in the majority of males. Nor did the application 

of pressure lead to impeded movement of the majority of males within 24 h after the pressure 

was applied. The majority of males died within 72 h after pressure was applied, however, this 

could not be linked to injuries like disruption of content of internal organs, only to more severe 

injuries which are only occasionally seen after normal male-male S. longicaudum fights. 

The occurrence of injuries combined with the lack of proper paralysis indicates either that 

pressure alone doesn’t explain the paralysis and the deadly consequences of male-male S. 

longicaudum fighting, or that the type of pressure and/or the region of the male to which it 

was applied did not adequately mimic the pressure applied by a male S. longicaudum wrapping 

around the body of another male. 

Since the cuticle was not deliberately exposed to a sharp edge in this experiment, the 

crush-rupture of the body wall observed in 4 worms may be associated with internal pressure 

changes. This further suggests that a ruptured body wall observed after a male-male fight is 

not necessarily caused by puncturing of the body wall by the spicules. 

In S. longicaudum, ruptures of the body wall after a normal male-male fight are not as 

intense as the crush-ruptures recorded in this crushing experiment. However in S. feltiae and S. 

kraussei this kind of severely ruptured body wall whether or not accompanied by ruptured 

internal organs protruding through the wound, was more often observed after male-male 

fights (see section 5.3.3.4). This could very well indicate that the techniques of fighting differ 

between species, with some species being more dependent on mechanical facets of fighting 

(ruptured body wall and internal organs for S. kraussei for example). 
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5.5. Mimicking injuries and paralysis: Stabbing 

5.5.1. Introduction 

To mimic the effect of physical insertion of the spicule into the victim’s body, female S. 

longicaudum nematodes were stabbed. Stabbing a nematode asks for a lot of precision and 

care if the nematode is not to be accidentally cut in half. Because females are a lot bigger than 

males and expecting a stabbing wound to yield the same effect in females as in males, these 

experiments were carried out on female nematodes. 

If stabbing a nematode in a bacteria- infected haemolymph drop causes paralysis, the 

diffusion of a toxin from this medium may be the cause of the observed paralysis. In this 

section, females are stabbed in their own drops which should contain their symbiont and 

associated excreted toxins, but not any toxins produced by males. In a second experiment, 

females are stabbed in medium that had contained either one male or a pair of fighting males, 

to allow for entry of any male produced as well as bacteria produced toxins. 

Hypotheses 

 In case a paralysing toxin is secreted into the medium by the symbiotic bacteria, 

stabbing females in their own drop, in medium in which 1 male had been present 

or in medium in which 2 males had fought, will all result in a significantly larger 

proportion of paralysed or dead females in comparison to the control females. 

 In case a paralysing toxin is secreted into the medium by males, stabbing females 

in their own drop will not result in a significantly larger proportion of paralysed or 

dead females in comparison to the control females. But, stabbing females in 

medium in which 1 male had been present or in medium in which 2 males had 

fought, will result in a significantly larger proportion of paralysed or dead females 

in comparison to the control females. 

 In case a paralysing toxin is secreted into the medium by fighting males, stabbing 

females in their own drop or in medium in which 1 male had been present, will not 

result in a significantly larger proportion of paralysed or dead females in 

comparison to the control females. But, stabbing females in medium in which 2 

males had fought, will result in a significantly larger proportion of paralysed or 

dead females in comparison to the control females. 

 In case stabbing females in their own drop, in medium in which 1 male had been 

present or in medium in which 2 males had fought, doesn’t result in a significantly 
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larger proportion of paralysed or dead females in comparison to the control 

females, either no paralysing toxin is secreted into the medium (but the possibility 

of injection into the victim by the attacking male is still plausible), females are not 

as sensitive to the toxin as males or no toxin is involved in paralysis. 

5.5.2. Methods 

The S. longicaudum CB2B females were reared in separate drops as described in section 

2.3. Single females of 2 days old were immobilised so that they could be stabbed with either 

an insect dissecting needle or a micro-injection needle. 

Different methods were used for immobilisation of the nematode: 

1. The nematode was pulled out of its drop using a platinum wire. Outside of its 

drop, it was subjected to mild desiccation which slowed down its movement. This 

made it possible to more precisely stab the nematode with a sharp insect 

dissecting needle mounted on a sharpened long toothpick. About 20-40 µl of 

Ringer’s solution was placed on top of the nematode. By pulling this Ringer’s 

solution drop into the haemolymph drop the nematode was moved back into its 

hanging drop. 

2. Using a mouth suction pipette, the nematode was transferred from its drop 

onto an agarose pad. By taking off as much as possible of the co-transferred liquid, 

the nematode was immobilized by sticking to the agarose pad. This made it 

possible to more precisely stab the nematode with an Eppendorf Femtotip II 

needle (cat No: 5242957000= sterile glass injection capillary, 0.5 μm inner and  

0.7 μm outer diameter) using a micro-injection setup (see section 2.5.2). Before 

pulling the needle out of the nematode a drop of 50-70 µl of the medium to be 

tested was added. After pulling the needle out, the nematode was left 5 - 30 min 

to come apart from the agarose pad in a humid chamber, before being put back 

into a hanging drop of fresh haemolymph. The testing media were: haemolymph in 

which two males had fought resulting in paralysis; haemolymph in which one 

nematode had resided, or haemolymph from the female’s own drop. Additional 

females were treated as above but were not stabbed and were left as controls. 
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5.5.3. Results 

5.5.3.1. Stabbing females with an insect dissecting needle 

Already 3 h after the females were stabbed a significant portion of them (36.4 %) showed 

impeded movement. After 4 h, this had risen to 50 % (Figure 5.17) and a significant portion of 

the stabbed females (38.9 %) were no longer able to move (Figure 5.18). After 24 h, more than 

65 % showed impeded movement and more than 50 % were no longer able to move. These 

females showed no sign of recovery over a further 2 days and were presumed dead. 

 

Figure 5.17 The percentage of drops containing a female that suffered impeded 
movement at the specified timepoint after stabbing. Two by two Chi-Square tests were 
carried out on the stabbed females and controls at each timepoint. Those bars marked with 
an asterix (*) show the time points where the difference between controls and stabbed 
females was significant with 0.05 > p ≥ 0.01. Those bars marked with a double asterix (**) 
show the time points were the difference between controls and stabbed females was 
significant with 0.01 > p > 0.001. Raw data and statistics in Appendix table 8. 
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Figure 5.18 The percentage of drops containing a female that was no longer 
moving at the specified timepoint after stabbing. Two by two Chi-Square tests were carried 
out on the stabbed females and controls at each timepoint. Those bars marked with an 
asterix (*) show the time points where the difference between controls and stabbed females 
was significant with 0.05 > p ≥ 0.01. Those bars marked with a double asterix (**) show the 
time points were the difference between controls and stabbed females was significant with 
0.01 > p. Raw data and statistics in Appendix table 9. 

  

**

**

**

**

0

10

20

30

40

50

60

70

80

90

100

 1h  2h  3h  4h  5h  24h  48h  72h

%
 o

f 
fe

m
al

e
s 

th
at

 w
e

re
 n

o
t 

m
o

vi
n

g

No. of h after stabbing the female

Controls Stabbed

n controls  = 14 14 21 21 15 21 18 25
n stabbed  = 14 15 22 18 16 33 25 27

148



5.5.3.2. Stabbing females using a micro-injection setup 

When females were stabbed with a micro-injection needle in a drop of haemolymph, only 

few females suffered impeded movement or worse (maximum 29 % after 48 h, Table 5.5). 

There was no significant difference between all 4 treatments, including the control females 

that had not been stabbed (Table 5.5). In addition, there was no difference between the 3 

stabbed treatments, nor were there differences between any of the stabbed treatment and 

the unstabbed controls (Chi-square tests, p > 0.05). 

Table 5.5 The effect of stabbing a female with a micro-injection needle in the 
specified medium. 

The stabbing medium is 

 haemolymph in which 

No. of females after 

24 h that 

No. of females 

after 48 h that  

were 

moving 

normal 

suffered impeded 

movement or 

worse 

were 

moving 

normal 

suffered impeded 

movement or 

worse 

 2 males had fought and paralysed 7 2 7 2 

 A single male had resided 12 2 10 4 

 A female had resided 26 2 25 3 

 The female was not stabbed 10 1 9 2 

Statistics: 
χ² (3, n = 62) = 1.773, 

 p = 0.630 

χ² (3, n = 62) = 2.198, 

p = 0.532 

 

5.5.4. Summary & conclusions 

Four hours after being stabbed with an insect dissecting needle, about 50 % of the females 

showed restricted movement. More than 50 % of the females that were stabbed with an insect 

dissecting needle died within 24 h of being stabbed. This could have indicated the involvement 

of toxins and/or bacteria present in the hanging drop in the paralysis and/or killing process. 

However, it needs to be noted that the insect dissecting needle was fairly blunt, even in 

comparison to the dimensions of the female nematodes and most definitely in comparison to 

a Steinernema spicule. It is thus more likely that the massive amount of damage caused by 

stabbing the nematode with an insect dissecting needle is responsible for the impeded 

movement and following deaths. Moreover, using the much finer micro-injection needle 
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showed a significant reduction in the amount of deaths and movement restriction (maximum 

29 % after 48 h). The medium in which a female was stabbed had no significant influence on 

the occurrence of movement restriction or death, but we need to keep in mind that the total 

numbers were low. The results of the micro-injection needle stabbing experiment do not 

support the hypothesis that a toxin from the medium causes paralysis and death following 

entry through the damaged cuticle. Nor does it suggest that a small stab-wound causes 

paralysis and death of a S. longicaudum female; however, the effect may be different for a 

male. 

5.6. Mimicking injuries and paralysis: Injecting 

5.6.1. Introduction 

Merely stabbing a nematode might not allow diffusion of the putative toxin or sufficient 

amounts of the toxin into the body of the nematode. Injecting a male or female S. 

longicaudum with fractions of bacteria- infected haemolymph or with fractions of the seminal 

fluid of male S. longicaudum nematodes might reveal the origin of the toxin. Attempts to 

extract seminal fluid from S. longicaudum males were unfortunately unsuccessful. It also 

proved to be very difficult to obtain fractions of haemolymph that were injectable (i.e. did not 

clog up the micro-injection needle). Due to these difficulties an artificial medium inoculated 

with the symbiotic bacteria that supported fighting and lent itself to injection through a micro 

injection setup was used. 

Hypotheses 

 In case a paralysing toxin is secreted into the medium by the symbiotic bacteria, 

injecting males with medium in which 1 male had been present or with medium in 

which 2 males had fought, will result in a significantly larger proportion of 

paralysed or dead males in comparison to the control males that were injected 

with sterile medium. 

 In case a paralysing toxin is secreted into the medium by males, injecting males 

with medium in which 1 male had been present or with medium in which 2 males 

had fought, will result in a significantly larger proportion of paralysed or dead 

males in comparison to the control males that were injected with sterile medium. 

 In case a paralysing toxin is secreted into the medium by fighting males, injecting 

males with medium in which 1 male had been present, will not result in a 
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significantly larger proportion of paralysed or dead males in comparison to the 

control males that were injected with sterile medium. But, injecting males with 

medium in which 2 males had fought, will result in a significantly larger proportion 

of paralysed or dead males in comparison to the control males that were injected 

with sterile medium. 

5.6.2. Materials and Methods 

Media for injection were prepared as follows: on day 1 of the experiment, infective 

juveniles of S. longicaudum were put in fresh haemolymph drops (1 per drop) and stored for 

development in a 27 °C incubator. On day 2, 50 ml vials with 15 ml Brain Heart Infusion Broth 

with extra chemicals (BHIB extra; see section 2.4.4) were each inoculated with 6 loops of 

medium from haemolymph drops that had contained developing juveniles (from drops 

inoculated on day 1) and therefore the symbiotic bacteria. These vials were then incubated on 

a shaker-rotator at 27 °C for about 24 h. On day 3 the adult nematodes were sexed and placed 

into hanging drops of incubated BHIB extra. In 14 drops, the males were left single, in another 

14 drops, 2 males were placed together in a drop. In 6 of the 14 drops with 2 males, one of the 

males was highly likely to be matured because the drop it had developed in had also contained 

at least 1 female (in one drop 2 females had been present and mating was observed). 

After 18-21 h at 27 °C (day 4 of the experiment), the drops were checked for survival. All 

the single males were alive and moving normally whereas of the coupled males only 3 of the 

14 drops now contained males that were both moving normally. In the other 11 drops, at least 

1 male suffered impeded movement or worse. These 11 drops were collected in an Eppendorf 

filter and spun for 10-15 min at 14000 rpm. Ten of the single male drops went through the 

same procedure as did an equal volume of sterile BHIB extra. There were thus 3 media: BHIB in 

which 2 males had fought, BHIB in which 1 male had resided, and sterile BHIB. 

Using the micro-injection setup (see section 2.5.2) healthy looking S. longicaudum males, 2 

-3 days post infection of live Galleria mellonella larvae, were injected with the 3 different 

media. The protocol used was adapted from micro-injections in C. elegans (Evans, 2006). S. 

longicaudum nematodes do not survive desiccation as well as C. elegans, the worms had thus 

to be injected quickly which is why the flow of the needle was checked before putting the 

nematode on the agarose pad. The injection was stopped when the pseudocoel seemed to be 

filled with liquid (a few nl). The worms were returned to the dissecting microscope where a 

drop (~20 µl) of M9 -buffer was added so that it completely surrounded the worms and they 

could release off of the pad and recover. Once the worm began swimming briskly, it was 
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transferred to a hanging drop of fresh haemolymph. Nematodes that were too desiccated or 

were damaged by the injection were discarded so that only males where the injection went 

well are included in the analyses. 

Some control males were left uninjected but went through all of the other handling steps 

(move to another drop, slight desiccation on the agarose pad) so that the effect of desiccation 

could be established. 

5.6.3. Results 

More than 80 % of the males in each treatment were still moving a day after injection, and 

most (66-75 %) were moving normally (Figure 5.19). The 3 injection-media did not have any 

significantly different (Appendix table 11) effect on the survival or on the movement 

capabilities of male S. longicaudum. Impeded movement recorded 2-3 h after injection had the 

smallest p-value ( χ²(2, n = 81) = 4.802, p = 0.091, 1 cell with expected count < 5), all other 

treatments and time points were p > 0.5. Lacking male controls over a longer period of time, 

the male injection data were compared with the data of females that were not stabbed in the 

injection needle stabbing experiment in 5.5.3.2: p = 0.171 with 1 cell with an expected count 

less than 5, χ²(1, n = 72) = 1.872. 
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Figure 5.19 The percentage of males that were moving normally, suffered only 
impeded movement or were dead at the specified time point after injection. At none of the 
different observation time points were there significant differences observed (all p > 0.1). 
Raw data and statistics in Appendix tables 10 and 11. 
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5.6.4. Summary & conclusions 

There was no difference in paralysis or death after injecting a male S. longicaudum with 

artificial media differing in whether 2 males had fought and paralysed in it or not. There was 

even no difference in the effect an inoculated medium and a sterile medium had on the 

survival and movement capabilities of the males. This injection experiment further suggests 

that the main cause of paralysis and/or death of a fighting victim is not a chemical in the 

medium that enters through a wound in the victim. As the production of metabolites by 

Xenorhabdus depends on the growth medium, the artificial medium used here may not 

support the production of toxins in the same way that haemolymph does (Maxwell et al, 

1994;Wang et al, 2010). 

5.6.5. Comparison of different methods of mimicking injuries 

and paralysis 

Comparing the results of the stabbing and injection experiments (Figure 5.20), it is clear 

that stabbing a female with an insect dissecting needle resulted in significantly more impeded 

movement than stabbing a female with a micro-injection needle or injecting a male with 

various BHIB media (24 h: χ²(2, n = 165) = 28.751, p < 0.001; Pairwise comparisons: comparing 

the 2 experiments with stabbed females but with different utensils: χ²(1, n = 84) = 27.176, p < 

0.001; comparing the injection and the stabbing with micro-injection needles:  χ²(1, n = 132) = 

5.049, p < 0.05, DF = 1; comparing the stabbing with a dissecting needle to injection: χ²(1, n = 

114) = 14.375, p < 0.001; 48 h: the 2 experiments with stabbed females but different utensils: 

χ²(1, n = 75) = 38.047, p < 0.001. Raw data in Appendix table 12). This is presumably due to the 

blunt nature of the dissecting needles used relative to the micro-capillary injection tip. 

Injecting males with different media resulted in significantly more paralysis and death after 

24 h than for females that were only stabbed with a micro-injection needle. Maybe males are 

more fragile than female nematodes or the size dimorphism between males and females 

caused males to be more prone to suffer from stabbing, even with an injection needle. Or the 

significant difference in the level of paralysis and death between micro-injected males and 

micro-injection needle stabbed females is due to the media getting into the body of the 

nematode. Further experiments using the same sex in both stabbing and injecting experiments 

could clarify this. 

Mimicking injuries and paralysis with the methods used above didn’t bring insight into the 

mechanisms behind paralysis and death after male-male S. longicaudum fighting. Even the 
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involvement of a toxin in the medium or the involvement of the symbiotic bacteria could be 

clarified, however, it does seem unlikely that a medium-born toxin is involved or that the 

bacteria are necessary for paralysis and/or death. 

 

Figure 5.20 The effects of stabbing a female with an insect dissecting needle 
(blue bars), stabbing a female with a micro-injection needle (red bars) and injecting a male 
with different BHIB-media (green bar) on the movement capabilities of S.longicaudum. Bars 
marked with a different letter are significantly different from each other. No observations 
were carried out for the 48 h observation timepoint of the injected males. Raw data in 
Appendix table 12. 
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5.7. Media and bacteria 

5.7.1. Introduction 

Steinernematidae are symbiotic with Xenorhabdus bacteria which are released upon entry 

into the insect haemocoel and proliferate in this medium. The bacteria are known to influence 

their symbiotic nematode’s behaviour: e.g. IJ-recovery (Aumann & Ehlers, 2001;Hirao et al, 

2010) and cadaver attractiveness to late arriving nematodes (Grewal et al, 1997). These 

bacteria might thus also influence the fighting, paralysis and killing behaviour of the worms in 

a number of ways. This was investigated by also pairing males in drops that had only been 

inoculated with Xenorhabdus at the time point of pairing or in drops that contained no 

Xenorhabdus, through the following 2 experiments: 

1. Normal, separately reared S. longicaudum males were set up for fighting in haemolymph drops  

at different time points since inoculation with the symbiotic bacteria. 

Hypotheses 

 Drops of haemolymph in which males were setup for fighting and that were 

inoculated by the insertion of one of the males of the pair as an infective juvenile 

(normal culture), will show evidence of fighting in a normal time-pattern (see 

section 3.3.3.2.), i.e. the occurrence of paralysis and death will be significantly 

different between couples of males and single males. 

 Drops of haemolymph in which males were setup for fighting and that were 

inoculated by the insertion of both males, so at the moment the 2 males were put 

together (starting culture), might show fighting but will show no or significantly 

less fighting related paralysis and death than in the drops with a normal culture of 

the symbiotic bacteria. In essence, the number of drops with at least 1 male 

paralysed or dead will be significantly less for the starting culture 2-males drops 

than for the normal culture 2-males drops. There will also be no or almost no 

difference in paralysis or death between couples of males and single males in 

drops with a starting culture of the bacterial symbiont, especially at the earlier 

observation time points. 

 Because the bacteria in the starting culture will grow and multiply, the differences 

in the results of fighting between the 2 types of cultures will diminish over time as 
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the starting culture develops into a normal culture and the effects of fighting also 

become observable in these drops. 

 Single male death, injury or paralysis will be more likely to occur in the drops with 

a bacterial starting culture than in normal culture drops because of the activity of 

the hosts’ immunity system or contaminating bacteria. 

2. Xenorhabdus-free infective juveniles were separately reared in haemolymph drops. 

The resulting aXenic males were then staged for fighting in these Xenorhabdus-free 

haemolymph drops. Xenorhabdus-containing infective juveniles were separately reared in 

haemolymph drops. The resulting Xenic males were then staged for fighting in these 

Xenorhabdus-containing haemolymph drops. The Xenorhabdus-free infective juveniles should 

not have brought in any Xenorhabdus bacteria into the drop in which they had developed, 

however, the presence and development of other bacteria could not be prohibited. 

Hypotheses 

 Drops of haemolymph in which males were setup for fighting and that were 

inoculated with Xenorhabdus-containing IJs will show evidence of fighting in a 

normal time-pattern, see section 3.3.3.2. 

 Drops of haemolymph in which males were setup for fighting and that were 

inoculated by the insertion of Xenorhabdus-free IJs will probably show fighting, but 

significantly less paralysis or death related to this fighting, i.e. there will be no or 

almost no difference in paralysis or death between aXenic groups of males and 

single males and the occurrence of paralysis and death of at least 1 male in a 2- or 

5-males drop will differ significantly in Xenic and aXenic drops. 

 Single male death, injury or paralysis will be more likely to occur in the drops 

inoculated with Xenorhabdus-free  IJs than in drops inoculated with Xenorhabdus-

containing IJs due to contaminating bacteria or remnants of the insect’s immune 

system. 

 The differences in results of fighting between the Xenorhabdus-containing drops 

and the Xenorhabdus-free drops will not diminish over time. 
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5.7.2. Materials and Methods 

5.7.2.1. Haemolymph drops with differing incubation periods of 

Xenorhabdus 

Infective juveniles were let to develop into adults in hanging drops of fresh haemolymph as 

described in section 2.3. After 4-5 days in the 27 °C incubator, the resulting males were divided 

over the following treatments: 

 2 males of the same age paired in the drop of one of the males (normal culture); 

 single male in its original drop (controls in normal culture); 

 2 males of the same age were paired in a fresh drop of haemolymph (starting 

culture); 

 single male in a fresh drop of haemolymph (control in starting culture). 

The age of males at observations varied, but 2 males in a drop were always of the same 

age. 

Drops were examined every hour after insertion of the males for up to 7 h. They were also 

examined about 24, 48 and 72 h after the start of the experiment. 

5.7.2.2.  Haemolymph drops with and without Xenorhabdus (Xenic 

and aXenic) 

Fresh haemolymph drops were infected with 1 Xenorhabdus-free infective juvenile (see 

section 2.4.5.) (resulting drops should not have contained Xenorhabdus and are therefore 

termed aXenic, although there may have been other bacteria present) or 1 Xenorhabdus -

containing infective juvenile (should have contained Xenorhabdus and are therefore termed 

Xenic). 

The Xenorhabdus-free developed males were placed together with 1 or 4 other 

Xenorhabdus-free males or left singly in an aXenic drop. The Xenic males were placed together 

with 1 or 4 other Xenic males or left singly in a Xenic drop. 

The age of males at grouping varied from 2 to 8 days, but 2 males in a drop were always of 

the same age. 

The drops were examined about 24 and 48 h after the start of the experiment. 
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5.7.3. Results 

5.7.3.1. Haemolymph drops with differing incubation periods of 

Xenorhabdus  

There was relatively high mortality for single males placed in haemolymph drops that had 

not previously contained a nematode and its Xenorhabdus symbiont (“starting culture”; Figure 

5.21) compared to drops with a normal culture of bacteria (Figure 5.22). When males were put 

together for fighting in a fresh drop of haemolymph (starting culture), there was significantly 

more paralysis and death in the paired males than the single males, but only 24-72 h after the 

males were paired in the drop (24 h: paralysis: χ²(1, n = 88) = 28.453, p < 0.001; death: χ²(1, n 

=88 ) = 12.289, p < 0.001; 48 h: paralysis: χ²(1, n = 84) = 32.084, p < 0.001; death: χ²(1, n = 84) = 

29.685, p < 0.001; 72 h: paralysis and death: χ²(1, n = 55) = 22.214, p < 0.001; Figure 5.21). 

Whereas when the bacteria had already colonised the drop over a couple of days (normal 

culture), the difference in paralysis and death in the paired males compared to the single 

males was already significant 1 h after the males were paired in the drop (paralysis: Fisher's 

exact: n = 109, p < 0.001; death: Fisher's exact: n = 109, p = 0.0222; Figure 5.22). 

Comparing the occurrence of paralysis and death in drops with 2 males, the occurrence of 

paralysis started earlier in the drops with a normal culture of the symbiotic bacteria than in 

drops with a starting Xenorhabdus culture (2 h (χ²(1, n = 98) = 14.180, p < 0.001), 3 h (χ²(1, n = 

80) = 9.427, p < 0.005) and 4 h (χ²(1, n = 74) = 4.432, p = 0.035) (Figure 5.23). The number of 

drops with at least 1 dead male differed significantly between the drops with different 

incubation times at the 2 h observation time point only (Fisher’s exact: n = 98, p = 0.0012 

Figure 5.23). There was also significantly more paralysis and death in the drops with a normal 

culture of the symbiotic bacteria than in the drops with a starting culture 48 h after the males 

were placed together. 
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Figure 5.21 The occurrence of paralysis and death in drops with 2 males and a 
starting culture of symbiotic bacteria. Those bars marked with a triple asterix (***) show the 
time points were the difference between single controls and 2-males drops was significant 
with 0.01 > p. 
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Figure 5.22 The occurrence of paralysis and death in drops with 2 males and a 
normal culture of symbiotic bacteria. 
At all observation time points, the number of drops with at least 1 male partially paralysed 
and the number of drops with at least 1 male completely paralysed or dead, is significantly 
higher in the drops with two males than in the drops with the single male (p < 0.05). 
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Figure 5.23 The occurrence of paralysis and death in drops with 2 males 
compared between drops with a starting culture of symbiotic bacteria and drops with a well 
established culture of symbiotic bacteria. Those bars marked with a double asterix (**) show 
the time points where the difference between drops with a starting culture and drops with a 
normal bacterial culture was significant with 0.05 > p ≥ 0.01. Those bars marked with a triple 
asterix (***) show the time points were the difference between controls and stabbed 
females was significant with 0.01 > p. 
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The different treatments affected the occurrence of paralysis of at least 1 male at both 24 

and 48 h after the males were put together in 1 drop. Drops with pairs of males of Xenic or of 

aXenic origin showed more drops with paralysis than their single controls (Figure 5.24; 24 h 

Xenic: Fisher’s exact n = 214, p < 0.001; 24 h aXenic: Fisher’s exact n = 178, p = 0.001; 48 h 

Xenic: χ² (1, n = 210) = 122,627, p < 0.001; 48 h aXenic: Fisher’s exact n = 138, p = 0.001). The 

occurrence of paralysis of at least 1 male in Xenic 5-males groups was significantly higher than 

the occurrence of paralysis of at least 1 male in the Xenic 2-males drops (Figure 5.24; 24 h: χ² 

(1, n = 70) = 31.023, p < 0.001; 48 h: χ² (1, n = 71) = 8.208, p = 0.004). The occurrence of 

paralysis of at least 1 male in Xenic 5-males groups was also significantly higher than the 

occurrence of paralysis of at least 1 male in the aXenic 2- and 5- males drops, the latter only at 

24 h (Figure 5.24; 2 aXenic – 5 Xenic males: 24 h: χ² (1, n = 42) = 27.300, p < 0.001; 48 h: χ²(1, n 

= 37) = 16.306, p < 0.001; 5 aXenic– 5 Xenic males: 24 h: χ²(1, n = 52) = 21.081, p < 0.001; 48 h: 

Fisher’s exact n = 47, p = 0.158). Only 48 h after the males were put together, more aXenic 5-

males drops showed at least 1 paralysed male than aXenic 2 males-drops, but this difference 

was no longer significant when the significance levels were adjusted according to the 

sequential Bonferroni rule (Figure 5.24; 24 h: χ² (1, n = 42) = 1.292, p = 0.256; 48 h: Fisher’s 

exact n = 32, p = 0.020, sequential Bonferroni adjusted α = 0.0125). 

The different treatments affected the occurrence of at least 1 dead male at both 24 and 48 

h after the males were put together in a similar matter. Pairs of males of Xenic origin showed 

more drops with at least 1 dead male than their single controls (Figure 5.24; 24 h: Fisher’s 

exact n = 214, p < 0.001; 48 h: Fisher’s exact n = 210, p < 0.001). Even significantly more Xenic 

drops with 5-males than with 2 males showed at least 1 dead male (Figure 5.24; 24 h: χ²(1, n = 

196) = 10.432, p = 0.001) ; 48 h: χ²(1, n = 191) = 12.498, p < 0.001). Significantly more drops 

with 5 aXenic males showed at least 1 male dead than the single controls (Figure 5.24; 24 h: 

Fisher’s exact n = 188, p < 0.001; 48 h: Fisher’s exact n = 148, p < 0.001), but these numbers 

were not different from the numbers of aXenic 2-male drops with at least 1 male dead (Figure 

5.24; 24 h: Fisher’s exact n = 42, p = 0.270; 48 h: Fisher’s exact n = 32, p = 0.061). More aXenic 

couple drops showed at least 1 male dead than their single controls, but this difference was no 

longer significant when the significance levels were adjusted according  to the sequential 

Bonferroni rule (Figure 5.24; 24 h: Fisher’s exact n =178 ,p = 0.022, sequential Bonferroni 

adjusted α = 0.0125; 48 h: Fisher’s exact n = 138, p = 0.032, sequential Bonferroni adjusted α = 

0.0125 ). 
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Figure 5.24 The occurrence of paralysis and death in drops with 1, 2 or 5 aXenic 
or Xenic males in respectively aXenic and Xenic drops. Bars marked with a different letter 
indicate that the number of males in a drop had a significant influence on paralysis or death 
within the Xenic or aXenic treatments. Italic letters indiciate p-values that are significant 
according to α=0.05 but not according to sequential Bonferroni adjusted significance level. 
Asterixes (*) on top of the bars mark the treatments for which Xenicity had a significant 
influence on paralysis or death.  
*: 0.05 > p ≥ 0.01; **: 0.01>p>0.001; ***: 0.001>p. 
 Raw data and statistics in Appendix tables 13, 14, 15, 16, 17 and 18. 
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delay in fighting-related paralysis and death in haemolymph drops that were only inoculated 

with the symbiotic bacteria when the males were put in the drop together. This suggests that 

the bacteria are involved in the paralysing and killing processes, but as seen in the other 

experiments (stabbing (see sections 5.5, 5.5.4), injection (see sections 5.6, 5.6.4, 5.6.5)), the 

bacteria alone are not sufficient to elicit paralysis and death in the nematodes. In the 

symbiosis between Steinernema nematodes and Xenorhabdus bacteria, the nematode’s 

infective juvenile stage is a safe vector for the bacteria ensuring colonisation of new hosts (see 

also sections 1.2.1, 1.2.2 and 1.2.3)(Snyder et al, 2007;Goodrich-Blair, 2007). The relationship 

is beneficial for the nematode because the Xenorhabdus bacteria ensure rapid death of the 

insect host and provide the nematode with a suitable medium for development and 

reproduction (Sicard et al, 2003;Goodrich-Blair, 2007). This is mediated by toxins and 

antibiotics produced by the Xenorhabdus bacteria (Fodor et al, 2010), mainly in its stationary 

phase of growth. Dunphy (1997) even showed that a critical concentration of Xenorhabdus 

bacteria necessary before the onset of insect mortality (Dunphy et al, 1997). The relatively 

high mortality of single males in drops with only a starting culture of the symbiotic bacteria is 

very likely due to the lack of Xenorhabdus produced toxins and antibiotics making it possible 

for remnants of the insect’s immune system or for contaminating bacteria in the haemolymph 

drop to weaken the adult nematodes (Walsh & Webster, 2003;Ehlers et al, 1990). Such 

weakened nematodes might be less fit for fighting or the nematodes might lack a fighting 

stimulus produced by the bacteria. However, no or less fighting is not the only explanation for 

a delay in fighting related paralysis and death, these might also be caused by non-successful 

fighting. The abnormally low concentrations of Xenorhabdus metabolites in the drops with a 

starting culture might cause the absence of the paralysing and killing toxin. Recording the 

incidence of fighting would enable finding out if paired males in new haemolymph drops 

perform less fighting or are less able to fight successfully. 

5.7.4.2. Haemolymph with and without Xenorhabdus  

Males developed from aXenic infective juveniles fought, paralysed and killed in a 

Xenorhabdus free medium, but did so at a lower rate than Xenic males in Xenorhabdus 

containing drops. The presence of Xenorhabdus for fighting, paralysis and death is thus not 

essential, but it did enhance these events. In contrast to the experiment with different 

incubation times for Xenorhabdus in the haemolymph drop, single males suffered very little 

mortality (less than 2 % after 48 h) where there was no Xenorhabdus. This is probably due to 

the elimination of the insect’s immune system by contaminating bacteria before the IJ’s had 

developed into the more vulnerable adults. As the IJ is the only Steinerema stage that can 
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persist outside of an infected insect and is the stage that invades the living hosts, it is only 

logical that adult nematodes are more vulnerable to the insect’s immune system that is still 

active in a fresh drop of haemolymph. 

Males without Xenorhabdus may have been in poorer condition than those with their 

symbiont (Ehlers et al, 1990;Sicard et al, 2003), and thus might have fought less, as was also 

suggested in the previous experiment. Looking into the intensities and number of fights 

between drops with 2 aXenic or 2 Xenic males would clarify whether the aXenic males are less 

fit to fight or less inclined to fight resulting in a lower paralysis and death rate. As the bacteria 

are known to influence their symbiotic nematode’s behaviour (e.g. IJ-recovery (Aumann & 

Ehlers, 2001;Hirao et al, 2010) and cadaver attractiveness to late arriving nematodes (Grewal 

et al, 1997)), the symbiotic bacteria could produce a chemical enhancing the males’ 

aggressiveness. Less paralysis and death could then be explained by the absence of this 

chemical in aXenic cultures. 
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5.8. Conclusions 

Examining the victims of stimulated fights (5.3), the injuries ranged from separation of the 

content of internal organs owing to the effects of physical constriction (most common), tissue 

damage to loss of content from internal organs protruding through a wound in the body wall. 

Immediate paralysis following a fight did not occur frequently in the stimulated fights 

experiment (only 2 out of 9 injured males) and was not related to visible puncture wounds. 

Stimulated fights are probably quite different from normal fighting in S. longicaudum paired 

males: they resulted in 5 times more injuries within the first 20 min of pairing the males 

(section 3.7). 

Pressure from the tight grip from the attacker might be important in male-male S. 

longicaudum fighting, but the local pressure in the crushing experiment did not result in 

paralysis and death as seen in normal male-male fighting. These incongruities might be caused 

by differences in the type, amount and/or the area of the application of pressure. 

Perforation of the body wall didn’t necessarily result in immediate paralysis, irrespective of 

how the lesion had been inflicted: by another male in a stimulated fight (see section 5.3), by 

crushing (see section 5.4), by stabbing (see section 5.5) or by injecting (see section 5.6). 

Comparing Figure 5.17 and Figure 5.18 to Figure 5.22, the stabbing of females with an 

insect dissecting needle produced paralysis and death levels comparable to those normally 

seen for male-male S. longicaudum fighting. Due to the size of the female and the size and 

nature of the needle, stabbing a female with an insect dissecting needle looked like a 

combination of applying a crushing pressure and puncturing. Immediate paralysis was, 

however, not observed and the restricted movement of the females was very likely due to the 

ruptured body wall and internal organs. 

Stabbing males with a micro-injection needle resulted in death after 24 h in 10 % of the 

drops. Injecting a male with a medium resulted in more death (28 % after 24 h) and death rate 

was independent of the nature of the artificial medium. Normal male-male fighting (see 

section 3.3.3.2) resulted in about 70% of drops with at least 1 dead male after 24 h. Stabbing 

and injecting with a micro-injection needle resulted in lower levels of death after 24 h and 

therefore don’t reflect the normal mechanism of paralysis and death after fighting. The micro-

injection needles used in experiment 5.5.3.2 and 5.6 are thinner (0.7 µm outer diameter) than 

a spicule (median of average width of 1st generation males of several Steinernema species: 12 

µm (Nguyen & Duncan, 2002;Phan et al, 2005;Nguyen, 2010)). As the difference in width is 
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more than 10-fold, wounds made with the micro-injection needle of 0.7 µm could be too small 

to allow a sufficient amount of medium to enter the nematode’s pseudocoel. These micro-

injection stabbing and injecting experiments (see sections 5.5.3.2 and 5.6) should be repeated 

with a micro-injection needle with a larger outside diameter, preferably the same width as the 

particular species’ spicule width. In this manner the wounds caused by the injection or 

stabbing would better mimic the wounds made by the insertion of a male’s spicule. 

On the basis of the experiments recapitulated above, it is not clear how paralysis and 

death are inflicted during male-male S. longicaudum fighting. It is possible that there are 

multiple causes of both paralysis and death. Paralysis without damage to the cuticle seems to 

be more likely the result of pressure, and it is plausible to suggest that paralysis ensues when 

there is damage to the nervous system. An alternative hypothesis is that toxins released into 

the pseudocoel from damaged organs interfere with neuromuscular activity. Death might 

ensue from these injuries, or from the major disturbance to the internal environment resulting 

from tearing of the body wall and/or rupture of internal organs such as the intestine. 

The presence and quantity of the symbiotic Xenorhabdus bacteria was not essential for 

fighting, paralysis and death, but enhanced these (see section 5.7). This might be due to an 

increase in the stimulus or motivation to fight, an increase in the health and physical condition 

of the males or the bacteria might contribute to the production of a toxin by the nematode. 

The techniques of fighting probably differ between species, with some species more 

dependent on rupturing effects (e.g. S. kraussei, see sections 5.3.3.4 and 4.6) and others more 

on more subtle, not necessarily visible effects of fighting (e.g. S. longicaudum). 
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6. Discussion 

6.1. Fatal fighting of Steinernema nematodes 

Various explanations have been proposed for same-sex sexual-like behaviour, including 

weak sex recognition, social bonding, and intrasexual competition (Abele and Gilchrist, 1977; 

Connor and Mann, 2006; Dukas, 2010; Field and Waite, 2004; Preston-Mafham, 2006b; Ryne, 

2009; Vervaecke and Roden, 2006b). Even with direct access to females, male S. longicaudum 

wrap and inflict injury on or even kill other males present in a drop (Section 3.5) or in an insect 

cadaver (O' Callaghan, 2006). Because the presence of a female did not result in reduction of 

fighting behaviour (Section 3.5.3), it is very unlikely that males wrapped around another male 

due to weak sex recognition, i.e. because they were mistaken the other male for a female. The 

wrapping behaviour itself also differs: males rapidly attack and wrap around another male 

irrespective of the place on the body of the victim and remain where the wrap was initiated, 

whereas the males wrap around the females more gently and perform obvious searching 

behaviour for the female’s vulva (own observations). Not unexpectedly, females of the male’s 

own species are not at all common receivers of injurious  fighting behaviour, but a small 

number of females (less than 5 over the course of the whole study) were observed with 

puncture wounds or other fight-like injuries when they were physically abnormal (own 

observations) like dumpy females (Rahimi et al., 1993). 

Due to the reduction in reproductive output of the victims of fighting, social bonding is not at 

all a very likely explanation for the occurrence and subsistence of same-sex sexual like 

behaviour and intrasexual  competition (Abele and Gilchrist, 1977; Preston-Mafham, 2006) is a 

more likely explanation than practice for intersexual mating (Dukas, 2010; Vervaecke and 

Roden, 2006). 

Fatal fighting is rare in the animal kingdom because most animals have developed strategies to 

avoid costly escalation of fighting (Innocent et al., 2011; Pereira and Do Prado, 2005). 

Assessment, display and defensive behaviour might explain the survival of Steinernema males 

in multiple male drops or insect cadavers (O' Callaghan, 2006). Prior to wrapping, any 

particular behaviour related to fighting was not observed. Coiling in on itself as a defensive 

behaviour or the scraping of its own body with its spicule and then “flicking” it occurred in 

many different situations (with or without presence of a male or female) and taking into 
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account that these behaviours can occur at very high numbers in a short amount of time, or 

not at all, no further attempt was made to quantify these behaviours. Also, situations where 

the reproductive value of the future is near zero don’t favour the development of defensive 

behaviours or injury-avoiding assessment (Enquist and Leimar, 1990). 

The lack of obvious pre-fight assessment behaviours may partly reflect the unnatural 

conditions of the test protocol, where utilised males were reared in isolation and then placed 

together. In nature, adult male Steinernema are unlikely to encounter each other unless they 

have developed together in the same insect cadaver. Being reared in isolation affects the 

development of neuronal connectivity of C. elegans, with consequent effects on behaviour 

(Rose et al., 2005). 

O’Callaghan (2006) found differences between the intraspecific killing behaviour of group-

reared or in vivo reared males and of singly-reared males. She found that singly reared males 

were not deterred from combat with increasing numbers of male competitors whereas group-

reared males’ tendency to fight was modified by the number of males present. Group-rearing 

might allow some sort of behaviour conditioning that lessens the tendency to fight to death. 

Due to the high number of male competitors in the natal drop, males might assess their 

chances of winning a fight as not being greater than their chances of losing it which would 

deter these males from attacking each other (Reinhold, 2003). When the cadaver contained 

more than 50 males, in vivo reared males showed a decreased speed of killing (O' Callaghan, 

2006). Experiments aimed for assessment behaviour should thus be performed using group 

reared males. O’Callaghan also noted the possibility that mixed-sex rearing might be the cause 

of a lower fighting tendency of group-reared males. The presence of a female had no effect on 

the fighting behaviour of singly-reared males, but the effect of female presence might play its 

influence at the developmental stages which was not investigated in this work. 

When taking into account the above rationale that group-rearing of Steinernema males might 

allow for some sort of assessment, the closed system of the insect cadaver and that 

Steinernema males fight before mating, all assumptions for Reinhold’s theoretical model on 

conflict over mating partners in a closed system are met (Reinhold, 2003). An important 

conclusion from this model is the expectation that the frequency of fatal fighting will decrease 

with increasing male numbers, just like it did in O’Callaghan’s (2006) in vitro and in vivo group-

reared males experiments. 

 

The observation that solitary S. longicaudum males attacked each of the male-like objects -a 

dead or incapacitated male, or an artificial male- with which they were presented in a drop of 
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haemolymph equally (Section 3.6.) may point to a lack of discrimination in these animals. 

However, the fact that two normal males when together did not attack all male-sized objects 

equally, but attacked real males (incapacitated, dead or alive) more than the suture indicates 

that they can at least distinguish between worms and inanimate objects. Attacking an 

incapacitated male may be adaptive, as a temporarily incapacitated worm might recover; 

attacking all incapacitated worms, rather than attempting to distinguish between those that 

would and those that would not recover is a reasonable strategy, as attacks on an 

incapacitated opponent are unlikely to be costly except in time. Similarly, recently killed males 

may be difficult to distinguish from temporarily incapacitated ones. What was recorded as 

attacks may have included assessments of viability. It is reasonable to assume that attacks on 

dead or incapacitated worms were shorter than those on live ones, but these data have not 

yet been analysed. The fact remains that S. longicaudum males do “attack” (or wrap around) 

an inanimate object, a suture, which might suggest that wrapping behaviour is a thigmotactic 

response to any approximately worm-sized object, followed by assessment of contact chemical 

cues which would lead them to modulate their subsequent behaviour (search for vulva;  

squeeze and  pierce, or let go). Male nematodes have chemoreceptors located at the tail (Bird 

and Bird, 1991; Emmons and Sternberg, 1997).  

 

Due to the use of haemolymph drops as the test arena, males in the experiments in this study 

did not have any possibility to flee and hide in insect tissue. This particular setup might have 

caused less aggressive and more defensive behaviours to be overlooked in this thesis.  

6.2. Factors influencing the fighting behaviour of males 

of Steinernema longicaudum. 

Resource holding potential (RHP) and resource value (RV) have been identified as important 

determinants of the escalation of intraspecific competition. The resource holding potential of a 

contestant reflects this contestant’s ability to win a fight when it occurs (Connor and Mann, 

2006; Jennings et al., 2004). 

Residency and previous fighting experience are common factors influencing perceived RHP. 

Typically, residents are more likely to win mainly because they value the resource more than 

an intruder (Bentley et al., 2009; Haley, 1994). For Steinernema longicaudum, residency might 

have an effect, but lacking a good way to identify single males, this could not be independently 
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studied in this thesis. Previous fighting experience determines fight outcomes in many animal 

contests: a winner is more likely to win again in a new contest, even when it is against a 

different opponent (Hsu and Wolf, 1999; Hsu and Wolf, 2001; Jennings et al., 2004; Rutte et 

al., 2006). In S. longicaudum the winner of a fight was identified by the injuries or paralysis of 

the loser. This made it impossible to stage new fights with the loser. However, new fights with 

a previous winner did result in more aggression (measured in drops with a paralysed male) in 

the first hour the males were put together (Section 3.8). Even though it was not possible to 

identify the individual males in this thesis, it is more likely that the male who had fought 

previously was the more aggressive opponent in the new fight. The practical fighting 

experience it had acquired might make the winner more skilled in fighting, but it could also 

have boosted the winner’s perception of its RHP and thus given him an edge. An accurate way 

to identify males would shed more light on the factors influencing the likelihood of winning or 

losing a fight. During the course of this thesis, undergraduate student research projects 

experimented with natural dyes and fluorescent micro-beads for the identification of 

individual males but these methods proved ineffective for staining live nematodes for more 

than 24 hours after contact with the dye (Brennan, 2009). 

Maturity had a very substantial effect on the fighting of S. longicaudum: the speed of fighting, 

paralysis and kill were higher when one of the contestants was able to mature before the 

males were paired (Section 3.4). Forty-eight hours after the pairing of the competitors, these 

differences were no longer detected. Immature males were also more likely to be the victim of 

a fight. This might be due to biological effects like size: mature males are wider (Ebssa et al., 

2008). Size or weight of an animal or the size of certain body parts are often related to 

resource holding power (Batchelor and Briffa, 2010; Brown et al., 2006; Jennings et al., 2004; 

Jenssen et al., 2005). A mature male had also already mated which would have given him 

experience in wrapping and might thus have prepared him better for other behaviours 

involving wrapping. Maturity might also give a male a chemical advantage for winning a fight. 

In case there is a paralysing toxin associated with the production of sperm and/or seminal fluid 

(discussed below), matured males might be physiologically better equipped for fighting, 

paralysing and killing by having more of the toxin. In the experiments in this thesis, males were 

given complete access to females in order to mature. Males can however also mature without 

physical contact with a female (Ebssa et al., 2008) so that any possible wrapping experience a 

male gains by mating or attempting to mate with a female can be one variable less. Further 

experiments could aim to untangle how maturity can physically benefit a male for fighting. 

 

172



Maturity of a male also changes the subjective value of available females. A S. longicaudum 

male needs the presence of a female to mature (Ebssa et al., 2008), so his experience indicates 

that a female is present somewhere in “its” cadaver (even if it is no longer detected in the drop 

used as a fighting arena). This may make the value of the resource (a drop presumed to house 

a female) higher for a mature male than for an immature male and will increase the former’s 

willingness to fight. Moreover, the matured male has already invested in the production of 

spermwhich is comparable to the higher value of a host to a female parasitoid Eupelmus 

vuilleti with a higher egg-load (Mohamad et al., 2010). Speed is of importance here to the 

matured male, because in case the competition is not eliminated as soon as possible, an 

opponent may have had the opportunity to mate with the female, or an immature male could 

have become mature. An already mated male could also be expected to be more aggressive to 

prevent a female he has mated with from being mated again. However, in section 3.5, the 

results indicated that whether a female had already been mated or was big or small did not 

influence the fighting or mating behaviour of the mature males, this argues against the 

hypothesis that a male’s tendency to fight is affected by the value of the current resource 

(when taking the female present as the current resource). If the current resource value has no 

effect, it is also unlikely that prior experience of resource value affects fighting tendency. 

The above paragraph also brings up the issue of whether a male can distinguish male juveniles 

from female juveniles. For an adult male Steinernema nematode, attacking a juvenile male 

implies a higher chance of winning and a much lower probability of sustaining injuries than 

fighting another adult male. Further experiments could be done with males that are not 

matched for age.  

6.3. Sequential male polymorphism and kin recognition 

in fighting behaviour of S. longicaudum 

This thesis suggests that Steinernema longicaudum exhibits a strategy with 2  behaviourally 

different male varieties that are sequential in time and arise from conditional strategies where 

the environmental conditions of the parental generation determine the strategy followed 

(Cook, 2005). 

 

First generation males were more aggressive than males of subsequent generations (Section 

3.9.3.1). This difference between the founder generation and subsequent generations 
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translates into sequential male polymorphism with “fighter” 1st generation males versus 

“peaceful” subsequent generation males. First generation males develop from infective 

juveniles and have thus followed a different developmental pathway compared to adults from 

subsequent generations, analogous to development through the dauer juvenile stage in C. 

elegans (Hall et al., 2010). This differing developmental pathway of founder adults may entail 

differences in the gene expression leading to phenotypic differences of these 1st generation 

adults compared to subsequent generations developing within the host, which do not pass 

through the IJ stage. In C. elegans, expression of thousands of genes was affected by 

developmental pathway, including genes that alter direct fitness such as the number of 

progeny and mean adult life span (Hall et al., 2010). 

The second generation adults in this thesis were separated very early in their development, 

but the initial group-rearing (discussed in Section 6.1) might still have had an effect. Males that 

developed from IJs did not experience this group rearing in my experiments, though would 

have developed to the IJ stage surrounded by conspecifics within the cadaver, some weeks 

earlier. O’Callaghan’s (2006) results suggest that speed of fighting rather than overall tendency 

to fight was affected. Still, future research with group rearing of males would be needed to 

take the group-rearing effect out of possible explanations for the differences seen between 

founder and subsequent generations. 

 

A second difference between generations was that relatedness of the contestants did not 

influence the occurrence of fighting in the post-dauer males, but it did influence the 

occurrence of fighting between males in the subsequent generation (Section 3.9.3.2). The 

latter were less aggressive towards siblings than towards less closely related males which also 

means non-founder generation males are able to discern kin from unrelated males. These 

results show both a reduction of detrimental competitive behaviour when relatedness is high 

(second generation) and the absence of an effect of relatedness on fighting (first generation) 

within the same species. It would be very interesting to find out whether male Steinernema 

nematodes of the 1st generation will also attack their own male offspring. If they don’t fight 

their male offspring, 1st generation males possess some kind of mechanism to distinguish own 

offspring from related and unrelated males from the second generation. 

 

A noteworthy difference between the generations is that males of the first generation develop 

from infective juveniles that have dispersed from the natal cadaver and so are much less likely 

to encounter siblings than males of the second generation that develop within the  cadaver. 
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The latter are much more likely to experience competition for mating opportunities between 

relatives in a restricted environment (Local mate competition, LMC). LMC has received a lot of 

attention and many (though often interrelated) factors accommodating the development of 

fighting between relatives or favouring brother (or sister) competition-avoidance behaviour 

have been identified, including number of valuable females (Anderson et al., 2003), dispersal 

possibilities (Nelson and Greeff, 2009; West et al., 2001), kin recognition (Reinhold, 2003), 

level of relatedness (Cronin and Monnin, 2010), and male variance in fighting strength 

(Reinhold, 2003). 

Highly female biased sex ratios have been put forward as an avoidance mechanism for brother 

competition (Abe et al., 2005; Hamilton, 1963; Hamilton, 1967; Hamilton, 1979), but the 

different effects of number of females and males, the operational sex ratio and the 

relatedness between the males and between the males and the females are hard to 

disentangle (Nelson and Greeff, 2009). Many brother competition studies used fig wasps to 

untangle the confounding effects of competition and relatedness which are both increased in 

closed environments. Steinernema spp. are characterised by slightly female-biased sex ratios 

(Alsaiyah et al., 2009; Hirao et al., 2010). The operational sex ratio (OSR) on the other hand, 

where only the sexually reproductive adults are taken into account, has not yet been 

investigated for Steinernema spp. More research on the OSR of Steinernema spp. could give 

more insight into the competition pressure the male nematodes experience and explain why 

Steinernema species show both slightly female biased sex ratios and high levels of competitive 

behaviour, even between related males. 

Dispersal is another means of avoiding local mate competition between relatives. In fig wasps, 

at least 1 of the sexes is capable of dispersing from the natal fig. As noted above, in 

entomopathogenic nematodes infective juveniles destined to become either of both sexes 

disperse; adults, however, are not able to survive outside the host cadaver. Thus several 

generations of adults and their progeny are restrained to the same host cadaver. The life cycle 

of diœcious Steinernema species thus poses different opportunities and constraints to the 

different generations. Non-founder generations of diœcious Steinernema spp. have more 

potential mating partners, but also have a much higher likelihood to compete with related 

males. A male from such a generation will have the highest reproductive outcome if all its 

female siblings reproduce; the male fertilises all of the available females (both related and 

unrelated) to the extent of its capacity, and the remaining females are fertilised by its siblings. 

A 1st generation male however might only get 1 mating opportunity (depending on the number 

of co-infecting conspecific females). However, each first generation female can produce a 

higher number of progeny than those of subsequent generations (Baliadi et al., 2001). A first 
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generation male that succeeds in being the only male reproducing in that insect has a high 

potential number of offspring; for example, Ebssa et al. (2008) showed that S. longicaudum can 

fertilise multiple females in just a few hours, and a single first generation female can produce 

several hundred juveniles (Baliadi et al., 2001). Moreover, all of this progeny are direct 

descendants which have a much higher impact on the male’s reproductive success than 

indirect progeny from related males. In summary, if 1 Steinernema founder generation male is 

able to inseminate all the first generation females in “its” cadaver, his direct descendants 

(from all generations) would amount to hundreds of thousands of directly related infective 

juveniles. Competition to be this male could be intense and explain the evolution of fatal 

fighting in Steinernema spp. 

6.4. Fighting behaviour in the Steinernema genus 

Most of the other Steinernema species tested showed at least some evidence of fighting: 

fighting was seen in clades II, III and V, but not IV (Table 6-1). According to the phylogenetic 

tree shown in Section 1.2.3, Clade IV is not ancestral and so it would appear likely that fighting 

evolved early in the genus and was lost in S. bicornutum (and possibly other Clade IV species). 

The other Steinernema species displayed varying levels of fighting, but not one was more 

aggressive than S. longicaudum CB2B. Table 6-1 depicts differences between the studied 

Steinernema species that might be associated with competition including fighting in these 

species. 

Steinernema species are classified as ambush, cruise or intermediate foragers (Section 1.2.1). 

Foraging behaviour of infective juveniles is often used as a phylogenetic characteristic 

(Campbell et al., 2003; Lewis et al., 2006; Nadler et al., 2006) and has been linked to the 

patchiness of populations of species (Campbell et al., 1995; Puža and Mrácek, 2010; Stuart and 

Gaugler, 1994) and to the sex ratios in infected insects (Lewis and Gaugler, 1994). The results 

of this thesis combined with those of O’Callaghan (2006) do not indicate a correlation between 

IJ foraging behaviour and the level of intraspecific male-male competition (Table 6-1). After all, 

the ambusher species S. carpocapsae shows higher levels of aggression than S. kraussei, but 

lower levels than S. longicaudum which are both cruisers (Table 6-1). 

S. longicaudum is very closely related to S. hermaphroditum (Nadler et al., 2006). 

Hermaphroditism in this latter species might have arisen under conditions in which IJs disperse 

widely and find themselves in hosts with few other conspecifics (Griffin et al., 2001). In case 

these same conditions apply to S. longicaudum, the frequent occurrence of a low number of IJs 
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infecting an insect would favour a high fighting tendency due to a lower number of males one 

male might have to compete with (Reinhold, 2003). The opposite, higher population densities, 

could eventually lead to situations where males would benefit more from mating with as many 

as possible of the available females than trying to defeat the large number of competitors 

(Emlen and Oring, 1977; Reinhold, 2003). Ecological factors leading to high natural infection 

rates could thus promote lower levels of fatal fighting. 

 

Sperm competition is another possible means of competition for reproduction within 

Steinernematidae and could for some species have triumphed over fighting as the main mode 

of intrasexual  competition. Insemination plugs have not been observed for Steinernematidae, 

but this is a sperm competitive strategy often used in other Nematoda (Barker, 1994; Cutter, 

2008). Studies on different Caenorhabditis species have shown that larger sperm cells are likely 

to outcompete smaller spermatozoa (Geldziler et al., 2006; Lamunyon and Ward, 1998; 

Lamunyon and Ward, 1999; Lamunyon and Ward, 2002). Four of the species tested here (S. 

longicaudum, S. glaseri, S. bicornutum and S. carpocapsae) show sperm dimorphism (see Table 

VI-1) where macrospermatozoa are giant (20-60µm) amoeboid cells (ACs) that transport 

microspermatozoa (±2µm) into the female’s seminal receptacle where the latter can fertilise 

the oocytes (Spiridonov et al., 1999; Yushin et al., 2007).  The significance of this sperm 

dimorphism in Steinernema is unclear, but such dimorphism is typically associated with sperm 

competition in other taxa (Gomendio and Roldan, 2008; Lamunyon and Ward, 1999; 

Lamunyon and Ward, 2002; Murray et al., 2011). S. kraussei and S. feltiae are 2 of the 

Steinernema species that don’t show this sperm polymorphology, instead, the males produce 

spermatozoa of medium size (5-16µm) that can form chains inside the female’s uterus 

(Spiridonov et al., 1999; Yushin et al., 2007). Killing cannot be easily correlated one way or 

another with sperm size as had been suggested by O’Callaghan (2006), since both the most 

and the least aggressive species (S. longicaudum and S. bicornutum) show dimorphic sperm. 

However, S. bicornutum males that had not been in contact with a conspecific female or 

another conspecific worm, were observed to contain large spermatozoa in their seminal 

vesicle (own observation, data not shown). This is in sharp contrast with S. longicaudum which 

is a very aggressive species in which the males only show large spermatozoa when they had 

been in contact with a female for at least 6 hours (Ebssa et al., 2008). The delay in production 

of sperm in S. longicaudum males until a female is present is likely to be associated to the costs 

of the formation of competitive macrospermatozoa. Earlier maturation would risk the decay of 

valuable sperm cells in the case no females arrive soon after. The occurrence of giant 

spermatozoa in S. bicornutum males that have not been in contact with a conspecific female is 
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thus quite puzzling but might give an indication of the explanation of the very sharp contrast in 

aggressiveness between these 2 species. 

Female reproductive structure also differs between species (see Table 6-1) with S. bicornutum 

showing the most aberrant female gonoduct system (Zograf et al., 2008). The female’s sexual 

structures may influence sperm competition (not addressed by Zograf et al., 2008) and might 

thus also be related to the male’s fighting behaviour.  The low level of aggression observed in 

S. bicornutum might thus in some way be related to the female gonoduct structure and the 

male’s giant megaspermatozoa. However, it should be noted that Zograf et al. (2008) 

described sperm of 6-7 µm diameter in the uterus of S. bicornutum, instead of the giant cells 

described by Spiridonov et al. (1999) for this species, throwing doubt on the identity of the 

species with the unusual gonoduct. 

Spicules and gubernaculum morphology are phenotypic characteristics often used in 

phylogenetic analyses of Steinernematidae and might also be of great importance in the 

evolution of fighting behaviour of Steinernematidae. In case the spicule is used during fighting 

for stabbing and maybe also for injection of a toxin, the shape of the spicules and the 

gubernaculum might be of great importance during a fight. Differences in these Steinernema 

males’ weapons could then be translated into fighting advantages or disadvantages. Which 

characteristics might have an important influence on paralysis and kill, is of course dependent 

on the mechanism behind paralysing and killing, i.e. injection of a toxin, diffusion of a toxin or 

no toxin involved in paralysis and kill. Illustrations of the spicules in Nguyen (2007) show that 

Steinernema spicules vary considerably in both sharpness and angle. The spicules of S. 

longicaudum, S. glaseri and S. carpocapsae are relatively sharp compared to those of S. 

kraussei and S. feltiae, corresponding to the greater frequency of injury in the first three 

species.  The spicules of S. bicornutum are intermediate in sharpness, indicating inferior 

weaponry is not the reason why this species does not cause injuries.  
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Table 6-1  Summary of aggressiveness of the Steinernema species studied in 
this thesis and summaries of phenotypic characteristics possibly influencing fighting 
behaviour. 

Species S. bicornutum S. feltiae S. kraussei S. carpocapsae S. glaseri S. longicaudum 

Clade IV III III II V V 

Level of 
Aggression 

Very low1 Moderate Moderate High High Very high4 

Bacterial symbiont: Xenorhabdus spp. (Tailliez et al., 2006) 

 X. budapestensis X. bovienii X. bovienii X. nematophila X. poinarii X. ehlersii 

IJ foraging strategy (Campbell et al., 2003) 

 Intermediate Intermediate Cruise Ambush Cruise Cruise 

Sperm morphology in the ♀’s uterus (Spiridonov et al., 1999) 

Number of 
amoeboid cells 5-6 

Chains of 
up to 16 

Chains of 
3-8 Up to 24 

Few, 
elliptical Few 

Length (µm) 50 7-14 8-16 40-50 30 50-60 

Ø (µm) 20-40 5-8 6-9 30-35 20 30 

♀ gonoduct structure (Zograf et al., 2008) 

Ovarial sac Single Several - Several Single - 

Oviduct length  Extremely short 
(25-30 µm) 

Very long 
(>180 µm) 

 Short 
(<70 µm) 

Medium 
(100-150 µm) 

- 

Uterus 2 unequal 
parts 

Spermatheca-
uterus complex 

 – no constriction – 

 rest of uterus 

- No uterine sac Spermatheca-
uterus complex  

– sphincter-like 
constriction –  

rest of uterus 

- 

1 Very low level of aggression: <20% of drops with at least 1 paralysed or dead male 
after 24-48hrs; 2 Moderate level: 40-60% of drops with at least 1 paralysed or dead male 
after 24-48hrs;3 High level: 60-80% of drops with at least 1 paralysed or worse male after 24-
48hrs; 4 Very high level: ≥80% of drops with at least 1 paralysed or worse male after 24-
48hrs. 5 ACs = amoeboid cells; 6 More than 1000 ACs per branch observed; 7 Completely 
sealing the gonad lumen.  
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6.5. Mechanism of paralysis and kill 

Victims of fights frequently showed massive physical trauma including lacerations of the 

cuticle and damage to internal organs. The scale of damage is such as might account entirely 

for paralysis (e.g. nerve damage) or death. The possible additional involvement of toxins, 

produced either by the bacteria or the nematode, is less clear. Even though  some worms that 

had fought showed paralysis independent of visible injection wounds (Section 5.3), which 

would appear to show that paralysis is not always (if ever) due to entry of a toxin, small 

punctures may have been overlooked, and other experiments point to possible involvement of 

a toxin. Already fought and thus possibly injured aXenic males transferred singly to Xenic drops 

did not show higher degrees of incapacitation (own observations, data not shown). This 

suggests that a possible toxin does not enter the nematode from the medium through an open 

wound, but in case any paralysing toxins are involved, they would need to be injected by the 

male victor. 

Although there is no evidence that the bacteria are directly responsible for paralysis or death 

by production of a toxin into the medium that enters wounded males, the nematodes do 

appear to need the bacteria for normal fighting behaviour. AXenic nematodes performed 

fighting behaviour, but did not show the same amount of paralysis or incapacitation as normal 

Xenic males (Section 5.7). AXenic males transferred to Xenic drops for fighting (own 

observations, data not presented) showed paralysis and killing comparable to the level of 

paralysis and kill that Xenic males achieve in a Xenic drop, which is significantly higher than 

aXenic males achieve in an aXenic drop over the same time period. The symbiotic bacteria 

provide the most efficient development of their associated nematodes (Han and Ehlers, 2000; 

Sicard et al., 2004). Thus the presence of the symbiotic bacteria implies better physical 

condition of the worms which could be the main cause for differences in fighting behaviour 

and fighting outcome. In addition, they or their products may influence the motivation of the 

nematodes to fight, just as they can stimulate recovery of juveniles from the arrested IJ stage 

to resume development (Aumann and Ehlers, 2001; Strauch and Ehlers, 1998). A nutritionally 

more suitable environment would be a more valuable resource worth fighting for. 

Haemolymph drops and insects successfully infected with S. longicaudum CB2B often show a 

blue-green colouration (O' Callaghan, 2006). Haemolymph drops infected with any of the other 

Steinernema species used in this thesis did not show a specific coloration. When culturing the 

symbiotic bacteria of S. longicaudum CB2B on Nutrient agar, a blue-green colour originating 

from the bacterial colonies diffused through the agar (own observations, data not shown). 

Literature doesn’t report on coloration of Nutrient agar when cultivating other Xenorhabdidae 
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(Akhurst, 1983; Akhurst, 1986; Boemare, 2002b; Lengyel et al., 2005; Lengyel et al., 2007). All 

this indicates that X. ehlersii produces a blue-green metabolite when cultured on Nutrient agar 

or in haemolymph. Even though the experiments looking into the involvement of the bacteria 

didn’t show that Xenorhabdus ehlersii or its secondary metabolites are necessary for fighting 

behaviour or for paralysis and killing, the presence of the bacteria did enhance the effects of 

fighting (paralysis and death). No investigation into a possible link of paralysis, death and 

fighting behaviour to the coloration of the drop was done in this thesis. 

Pyocyanin, a blue-green phenazine-derived secondary metabolite produced by some 

Pseudomonas aeruginosa strains, was linked to rapid paralysis of C. elegans nematodes (Darby 

et al., 1999; Mahajan-Miklos et al., 1999). This neuromuscular paralysis involved spasmodic 

twitching of the nematode followed by a kinked body posture indicating aberrant 

hypercontraction of body wall muscles (Darby et al., 1999; Liu and Nizet, 2009). This is very 

similar to the rapid paralysis that can occur in a Steinernema longicaudum male-male fight 

(described in 3.3.3.1). During such a fight the victim’s initial frantic movements slowed down, 

until the nematode kept a kinked posture and was only capable of slight head movements 

(also see the attached CD for the recording “S. longicaudum Fight.mpg”). Even though at 

present there is no evidence that X. ehlersii is responsible for producing a diffusible toxin in the 

media causing the rapid paralysis during a fight, further research into the occurrence of rapid 

paralysis during a fight with aXenic males and the circumstances that allow for this to happen, 

might reveal the necessity of X. ehlersii in that specific type of rapid paralysis and it might even 

be linked to the production of the blue-green colorant. 

 

The effects of the bacteria on fighting were also examined through pairing S. longicaudum 

males in haemolymph drops  that differed in the time since inoculation with symbiotic bacteria 

(Section 5.7.2.1, 5.7.3.1 and 5.7.4.1). The time of inoculation influences more than only the 

amount of bacteria in a drop. It also determines the growth phase of the bacteria and it might 

also influence which phenotypic phase variant of Xenorhabdus will occur or will be dominant. 

Different growth phases in the bacteria’s growth cycle allow for the production of different 

chemicals (Maxwell et al., 1994; Webster et al., 2002). Phenotypic phase I and phase II cells 

produce different substances and it has also been shown that Steinernema nematodes develop 

best on phase I bacteria (Boemare, 2002a). Growth phase and phase variant are thus 2 factors 

which might influence fighting behaviour or its outcome and which could also contribute to 

the differences between the founder and subsequent generations. 
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The time since inoculation influences the metabolites excreted by the bacteria and the number 

of bacterial cells available as a food source to the nematode. The bacteria also play a vital role 

in overcoming the insect’s immune system (Fodor et al., 2010; Goodrich-Blair, 2007; Sicard et 

al., 2003). Information on the timing of the bacteria’s growth cycle and the occurrence of the 2 

intraspecific phenotypic variants within an insect cadaver or within a haemolymph drop is 

scarce and what is available, shows that the stationary phase is probably the only growth 

phase of the bacteria that the adult nematodes come in contact with (Maxwell et al., 1994; 

Webster et al., 2002). More research could shed light on whether the condition of the bacterial 

culture ( e.g. the metabolites produced and phase variation) affects nematode behaviour such 

as fighting.  

 

As the hypothesis of a toxin present in the media diffusing into an open wound is not 

supported by the results in 5.5 and 5.6, rapid paralysis might be caused by a toxin injected by 

the male. Since the spicule is very likely used for wounding during fighting, glands associated 

with the spicule and thus with sperm or seminal fluid might produce a toxin responsible for 

rapid paralysis. Drosophila melanogaster females’ lifespan is shortened by mating owing to a 

toxin in the seminal fluid (Chapman et al., 1995; Wigby and Chapman, 2005). 

Laser ablation of specific cells or groups of cells (Garcia et al., 2007), could help elucidate the 

involvement of male glands or structures like spicules in the mechanism of fighting.  

 

This thesis confirmed fatal fighting that was first noted by O’Callaghan (2006). More species 

than only those observed in O’Callaghan (2006) perform fatal fighting behaviour and variation 

in the level of lethal fights within the genus has been probed. 

Knowledge of the effect of factors influencing fighting, paralysis and killing has been extended: 

generation, maturity, previous victory and the symbiotic bacteria have definite effects, but no 

obvious impact of the value of the resource present and residency have been found. 

Steinernema longicaudum CB2B males perform different fighting behaviour depending on their 

development. Males that had passed through the infective juvenile stage showed a higher 

level of fighting behaviour than subsequent generations and did not alter their behaviour 

depending on their relatedness with the opponent whereas following generation males fought, 

paralysed and killed related males less than unrelated males.  

The physical injuries sustained in fighting were described and their effect on reproductive 

success was evaluated. The prevalence of types of injuries differed between species. 
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Many questions remain unanswered, including the involvement of a toxin and the mechanism 

behind rapid paralysis. Technical difficulties regarding the production of a medium that is both 

suitable for development and normal behaviour but that does not contain the Xenorhabdus 

symbiont hampered progress. Injecting males also revealed difficulties regarding fluids that are 

viscous or containing particles and clogged up the micro-injection needle. 
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Appendix 

1. Intraspecific fighting by S. longicaudum males 

(Chapter 3) 

1.1. Characteristics of male sized opponents that elicit 

fighting behaviour 

Appendix table 1 The statistical details of the effect of non-target factors 
(temperature, age, set and scent) on the no. of attacks per drop during the 1st 15 min time 
period. 

Treatment Temperature Age Set Scent 

2 normal males p = 
DF = 

F = 

0.128 
12 

1.77 

0.860 
3 

0.25 

0.035 
9 

2.18 

- 

no. of drops with fight /total n 38/74 38/74 38/74  

A post hoc Tukey’s test showed no significant differences in no. of attacks per drop between the different 
sets. 

1 normal male plus an incapacitated male p = 
DF = 

F = 

- 0.205 
2 

1.81 

0.071 
1 

3.87 

- 

no. of drops with fight / total n  2/15 2/15  
1 normal male plus a dead male p = 

DF = 
F = 

- 0.642 
3 

0.57 

0.150 
3 

2.27 

- 

no. of drops with fight / total n  10/29 10/29  

1 normal male plus a suture of male proportions p = 
DF = 

F = 

- 0.144 
3 

1.95 

0.305 
3 

1.26 

0.252 
1 

1.36 
no. of drops with fight / total n  4/34 4/34 4/34 

2 normal males plus an incapacitated male p = 
DF = 

F = 

0.675 
11 

0.76 

0.082 
3 

2.47 

0.502 
2 

0.71 

- 

no. of drops with fight / total n 18/29 18/29 18/29  

2 normal males plus a dead male p = 
DF = 

F = 

0.960 
10 

0.33 

0.379 
2 

1.01 

0.578 
2 

0.56 

- 

no. of drops with fight / total n 20/31 20/32 20/32  

2 normal males plus a suture of male proportions p = 
DF = 

F = 

0.168 
12 

1.62 

0.406 
2 

0.93 

0.821 
2 

0.20 

- 

no. of drops with fight / total n 13/32 13/32 13/32  
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Appendix table 2 The statistical details of the effect of non-target factors (age and 
set) on the no. of attacks per drop during the 2nd 15 min time period. 

Treatment  Age Set 

2 normal males p = 
DF = 

F = 
no. of drops with fight / total n 

0.727 
3 

0.44 
25/60 

0.593 
6 

0.77 
25/60 

1 normal male plus an incapacitated male no. of drops with fight / total n 1/10 1/10 

1 normal male plus a dead male p = 
DF = 

F = 
no. of drops with fight / total n 

0.409 
3 

1.01 
5/24 

0.039 
3 

3.37 
5/24 

 A post hoc Tukey’s test showed no significant differences in no. of attacks per drop between the 
different sets. 

1 normal male plus a suture of male proportions no. of drops with fight / total n 0/6 0/6 

2 normal males plus an incapacitated male p = 
DF = 

F = 
no. of drops with fight / total n 

0.725 
2 

0.33 
12/29 

0.475 
2 

0.77 
12/29 

2 normal males plus a dead male p = 
DF = 

F = 
no. of drops with fight / total n 

0.820 
3 

0.31 
19/32 

0.426 
2 

0.88 
19/32 

2 normal males plus a suture of male 
proportions 

p = 
DF = 

F = 
no. of drops with fight / total n 

0.187 
2 

1.77 
7/32 

0.891 
2 

0.12 
7/32 

 

Appendix table 3 The statistical details of the effect of non-target factors (age and 
set) on the no. of attacks per drop during the 3rd 15 min time period. 

Treatment  Age Set 

2 normal males p = 
DF = 

F = 
no. of drops with fight / total n 

0.207 
2 

1.71 
3/22 

0.112 
3 

2.30 
3/22 

1 normal male plus an incapacitated male no. of drops with fight / total n 1/4 1/4 

1 normal male plus a dead male p = 
DF = 

F = 
no. of drops with fight / total n 

0.310 
3 

1.31 
4/18 

0.539 
2 

0.65 
4/18 
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Appendix table 4 The statistical details of the effect of non-target factors 
(temperature, age and set) on the no. of attacks per drop during the 4th 15 min time period. 

Treatment  Temperature Age Set 

2 normal males p = 
DF = 

F = 
no. of drops with fight / total n 

0.836 
7 

0.46 
9/14 

0.606 
2 

0.52 
14/21 

0.904 
1 

0.02 
14/21 

2 normal males plus an incapacitated 
male 

p = 
DF = 

F = 
no. of drops with fight / total n 

0.685 
7 

0.69 
7/13 

0.726 
2 

0.33 
10/21 

0.121 
1 

2.65 
10/21 

2 normal males plus a dead male p = 
DF = 

F = 
no. of drops with fight / total n 

0.182 
9 

3.23 
5/13 

0.946 
2 

0.06 
8/19 

0.544 
1 

0.38 
8/19 

2 normal males plus a suture of male 
proportions 

p = 
DF = 

F = 
no. of drops with fight / total n 

0.136 
9 

4.10 
5/13 

0.549 
2 

0.62 
8/19 

0.811 
1 

0.06 
8/19 

 

1.2. The effect of all 7 treatments on total amount of 

fighting in drops with or without an object: 

The 7 treatments: 

 2 males without an object 

 1 male with an incapacitated male 

 1 male with a dead male 

 1 male with a conspecific male sized suture 

 2 males with an incapacitated male 

 2 males with a dead male 

 2 males with a conspecific male sized suture 

When all seven treatments were analysed for total no. of attacks in a drop, 

significant differences between the no. of attacks depending on the nature of the 

object were found for both the 1st as the 2nd time periods (1st 15 min: p = 0.000; F= 

5.42; DF=6b, 2nd 15 min: p =0.007; F=3.05; DF=6). 
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1.3. The effects of winning a previous fight: 

 

Appendix figure 2 The effect of winning a previous fight on the no. of drops with 
fighting (orange) or with paralysis (blue) during the 1st h after the 2 males were put together 
in a drop. Bars accompanied by the same, or by no letter  are not significantly different from 
each other. The trend for differences in no. of drops with paralysis in the 1st h of the battle 
could not be translated into differences between the different treatments by a Bonferroni-
Holm step down test. The no. of drops with 2 naïves =19, with 1 naïve and 1 victor =17, with 
2 victors =9.  
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Appendix figure 3 The effect of winning a previous fight on a) the no. of attacks per 
drop; b) the total duration of attacks per drop and c) the mean duration of an attack in a 
drop during the 1st h after the males were put together in a drop. Bars accompanied by the 
same, or by no letter  are not significantly different from each other. All values shown are 
mean+/-SE. Kruskal-Wallis, DF=2. 

0

1

2

3

2 naives victor vs naïve victor vs victor

N
o

. o
f 

fi
gh

ts
/d

ro
p

a) Mean no. of fights per drop:
H (2, n = 71) = 1.27, p = 0.530

0

100

200

300

2 naives victor vs naïve victor vs victor

To
ta

l d
u

ra
ti

o
n

o
f

fi
gh

ti
n

g
/d

ro
p

 (
se

c)

b) Total duration of fighting per drop:
H (2, n = 71) = 3.92, p = 0.141

0

100

200

300

2 naives victor vs naïve victor vs victor

M
e

an
 d

u
ra

ti
o

n
 o

f 
a

fi
gh

t 
in

 a
 d

ro
p

 (
se

c)

c) Mean duration of a fight per drop:
H (2, n = 71) = 4.35, p = 0.098 

212



 

Appendix figure 4 The effect of winning a previous fight on the no. of drops with 
paralyis or death a) about 24 h and b) about 48h after the 2 males were put together in a 
drop. Bars accompanied by the same, or by no letter are not significantly different from each 
other. n is the no. of drops used for the treatment. 
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2. Fighting behaviour in the Steinernematidae 

(chapter 4) 

2.1. Comparison of fighting in Steinernema species 

Appendix table 5 Differences between species in no. of 2-male drops with at least 
1 male paralysed after 24 h using sequential χ²-tests. Special attention is paid to differences 
in significance depending on the application of no adjustment (significance level α=0,05) or 
the sequential Bonferroni adjustment (significance level α’). 

24 h  Sequential Bonferroni 

adjustment 

No 

adjustment 

Species χ² p  Rank α’ p < α’ p < 0.05 

S. carpocapsae S. longicaudum 0.238 0.626 1 0.050 No No 

S. carpocapsae S. glaseri - 0.517 2 0.025 No No 

S. kraussei S. glaseri 0.527 0.468 3 0.017 No No 

S. glaseri S. longicaudum - 0.322 4 0.013 No No 

S. feltiae S. kraussei 2.205 0.138 5 0.010 No No 

S. feltiae S. glaseri 2.989 0.084 6 0.008 No No 

S. kraussei S. carpocapsae 3.706 0.054 7 0.007 No No 

S. kraussei S. longicaudum 8.36 0.004 8 0.006 Yes Yes 

S. feltiae S. carpocapsae 11.99 0.001 9 0.006 Yes Yes 

S. bicornutum S. feltiae 16.07 0.000 10 0.005 Yes Yes 

S. bicornutum S. kraussei 22.42 0.000 11 0.005 Yes Yes 

S. bicornutum S. carpocapsae 36.26 0.000 12 0.004 Yes Yes 

S. bicornutum S. glaseri 21.67 0.000 13 0.004 Yes Yes 

S. bicornutum S. longicaudum 54.72 0.000 14 0.004 Yes Yes 

S. feltiae S. longicaudum 24.92 0.000 15 0.003 Yes Yes 
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Appendix table 6 Differences between species in no. of 2-male drops with at least 
1 male paralysed after 48 h using sequential χ²-tests. Special attention is paid to differences 
in significance depending on the application of no adjustment (significance level α=0.05) or 
the sequential Bonferroni adjustment (significance level α’). 

48 h  Sequential Bonferroni 

adjustment 

No 

adjustment 

Species χ² p  Rank α’ p < α’ p < 0.05 

S. carpocapsae S. glaseri - 1.000 1.00 0.050 No No 

S. feltiae S. kraussei 0.441 0.441 2.00 0.025 No No 

S. glaseri S. longicaudum - 0.411 3.00 0.017 No No 

S. kraussei S. glaseri 2.535 0.111 4.00 0.013 No No 

S. carpocapsae S. longicaudum 3.093 0.079 5.00 0.010 No No 

S. kraussei S. carpocapsae 3.484 0.062 6.00 0.008 No No 

S. feltiae S. glaseri 4.536 0.033 7.00 0.007 No Yes 

S. feltiae S. carpocapsae 7.431 0.006 8.00 0.006 = Yes 

S. bicornutum S. feltiae 16.19 0.000 9.00 0.006 Yes Yes 

S. bicornutum S. kraussei 18.99 0.000 10.00 0.005 Yes Yes 

S. bicornutum S. carpocapsae 32.21 0.000 11.00 0.005 Yes Yes 

S. bicornutum S. glaseri 23.67 0.000 12.00 0.004 Yes Yes 

S. bicornutum S. longicaudum 65.02 0.000 13.00 0.004 Yes Yes 

S. feltiae S. longicaudum 27.1 0.000 14.00 0.004 Yes Yes 

S. kraussei S. longicaudum 16.31 0.000 15.00 0.003 Yes Yes 
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3. Cause of paralysis and death (chapter 5) 

3.1. Examination of S. longicaudum fight victims: 

Comparison of injuries in different species of 

Steinernema  

Appendix table 7 No. of injured and dead males showing a ruptured body wall 
wound. Numbers are given for the observations made on the same day of, or straight after 
fighting and also at the timepoint of about 24 h after the fighting. Percentage of total injured 
males is put between brackets. 

 

Males with a ruptured body wall whether 

or not accompanied by ruptured internal 

organs protruding through the wound 

Otherwise injured 

or paralysed males 

Species 

20 min - 5 h 

 after fighting 

about 24 h 

 after fighting 

20 min - 5 h 

after fighting 

about 24 h 

after fighting 

S. feltiae 7 (77.8%) 14 (58.3%) 2 (22.2%) 10 (41.7%) 

S. kraussei 10 (71.4%) 23 (74.2%) 4 (28.6%) 8 (25.8%) 

S. longicaudum 2 (33.3%) 3 (33.3%) 4 (66.7%) 6 (66.7%) 

20 min - 5 h after fighting: χ² (2, n = 29) = 3.566, p = 0.168; 

4 cells with expected counts < 5. 

About 24 h after fighting: χ² (2, n = 64) = 5.253, DF=2. p = 0.072; 

1 cell with expected counts < 5. 

S. feltiae compared to S. kraussei:  χ² (1, n = 55) = 1.546, p = 0.214 

S. feltiae compared to S. kraussei:  Fisher’s exact: , DF = 1, n = 33, p = 0.259  

S. kraussei compared to S. longicaudum: Fisher’s exact: DF = 1, n = 40, p = 0.044 
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3.2. Stabbing females with an insect dissection needle 

Appendix table 8 The no. of drops containing a female that suffered impeded 
movement at the specified timepoint after stabbing. 

No. of h 

after 

stabbing 

No. of control females 

that 

No. of stabbed 

females that 

Statistics: 2 by 2 χ²test 

were 

moving 

normal 

suffered 

impeded 

movement 

were 

moving 

normal 

suffered 

impeded 

movement 

p  χ² 

No. of cells 

with expected 

counts < 5 

1 13 1 11 3 0.28 1.167 2 

2 13 1 10 5 0.08 3.027 2 

3 20 1 14 8 < 0.05 6.484 2 

4 20 1 9 9 < 0.01 10.403 1 

5 13 2 6 10 < 0.01 7.888 0 

24 20 1 11 22 < 0.01 20.113 0 

48 16 2 2 23 < 0.01 18.135 0 

72 24 1 1 26 < 0.01 44.297 0 

Appendix table 9 The no. of drops containing a female that was no longer moving 
at the specified timepoint after stabbing. 

No. of h 

after 

stabbing 

No. of control 

females that 

No. of stabbed 

females that 

Statistics: 2 by 2 χ²test 

were 

moving  

were not 

moving 

were 

moving  

were not 

moving 
p χ² 

No. of cells 

with expected 

counts < 5 

 1 13 1 12 2 0.54 0.373 2 

 2 13 1 11 4 0.16 1.934 2 

 3 20 1 18 4 0.17 1.883 2 

 4 20 1 11 7 < 0.01 6.923 2 

 5 13 2 10 6 0.12 2.362 2 

 24 20 1 15 18 < 0.01 13.947 0 

 48 16 2 3 22 < 0.01 25.087 0 

 72 24 1 1 26 < 0.01 44.297 0 
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3.3. Mimicking injuries and paralysis: Injecting 

Appendix table 10 The effect of injecting a male with spun down media (BHIB extra) 
that had contained a fighting male couple or a single male or was sterile and had contained 
no nematodes. 

Injection 

medium: 

Time after 

injection 

No. of injected males that 

were moving 

normal 

suffered impeded 

movement 

were 

moving 

were not 

moving 

2 males had 

fought & 

paralysed 

2-3 h 24 5 28 1 

± 1 day 21 8 25 4 

2-3 days 7 16 8 15 

a single 

nematode 

had resided 

2-3 h 19 9 27 1 

± 1 day 21 7 24 4 

2-3 days 7 10 9 8 

sterile, no 

nematodes  

2-3 h 22 2 24 0 

± 1 day 16 8 21 3 

2-3 days 9 12 9 12 

Appendix table 11 χ²-statistics on the effects of injecting a male with spun down 
media (BHIB extra) that had contained a fighting male couple or a single male or was sterile 
and had contained no nematodes. DF=2. 

 

Time after 

injection 

Statistics: 3 by 2 χ²test 

p χ² No. of cells  with expected counts less than 

Movement 

impeded 

2-3 h 0.09 4.802 1 5 

± 1 day 0.79 0.456 - - 

2-3 days 0.66 0.842 - - 

Not moving 2-3 h - 0.864 3 1 

± 1 day 0.98 0.037 3 5 

2-3 days 0.517 1.319 - - 
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3.4. Comparison of stabbing and injection experiments 

Appendix table 12 Comparing the effects of stabbing a female with an insect 
dissection needle. stabbing a female with a micro-injection needle and injecting a male with 
different BHIB-media. 

Treatment 

After 24h: 

No. of nematodes that 

after 48h  

No. of nematodes that 

were 

moving 

normal 

suffered impeded 

movement or 

worse 

were 

moving 

normal 

suffered impeded 

movement or 

worse 

Stabbed with an insect 

dissection needle 
11 22 2 23 

Stabbed with a micro-

injection needle 
45 6 42 8 

Injected with various 

BHIB media 
58 23 - - 

Statistics χ² (2, n = 165) = 28.751, 

p < 0.001 

χ² (1, n = 76) = 38.047, 

 p < 0.001 

3.5. Media and bacteria: Fighting in haemolymph drops 

with and without Xenorhabdus (Xenic and aXenic). 

Appendix table 13 Raw data and statistics of observations of paralysis and impeded 
movement made about 24 h after aXenic or Xenic males were paired or grouped respectively 
with other aXenic or Xenic males.  

Type of drop and male No. of males 

 per drop 

No. of drops with 

all males moving 

normally 

at least 1 male with 

impeded movement 

Xenorhabdus containing single 167 3 (2%) 

pair 30 14 (32%) 

group of 5 0 26 (100%) 

Xenorhabdus-free singles 160 2 (1%) 

pair 12 4 (25%) 

group of 5 15 11 (42%) 
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Appendix table 14 Raw data and statistics of observations of death made about 24 
h after aXenic or Xenic males were paired or grouped respectively with other aXenic or Xenic 
males.  

Type of drop and male No. of males 

per drop 

No. of drops in which 

all males alive at least 1 male dead 

Xenorhabdus containing single 169 1 (1%) 

pair 31 13 (30%) 

group of 5 8 18 (69%) 

Xenorhabdus-free singles 161 1 (1%) 

pair 14 2 (12%) 

group of 5 18 8 (31%) 

Appendix table 15 Raw data and statistics of observations of paralysis and impeded 
movement made about 48 h after aXenic or Xenic males were paired or grouped respectively 
with other aXenic or Xenic males. 

Type of drop and male No. of males 

per drop 

No. of drops in which 

all males moving 

normally 

at least 1 male with 

impeded movement 

Xenorhabdus containing single 164 1 (1%) 

pair 15 30 (67%) 

group of 5 1 25 (96%) 

Xenorhabdus-free singles 124 3 (2%) 

pair 7 4 (36%) 

group of 5 4 17 (81%) 
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Appendix table 16 Raw data and statistics of observations of death made about 48 
h after aXenic or Xenic males were paired or grouped respectively with other aXenic or Xenic 
males. 

Type of drop and male  

No. of males 

per drop 

No. of drops in which 

all males alive at least 1 male dead 

Xenorhabdus containing single 165 0 (0%) 

pair 22 23 (51%) 

group of 5 2 24 (92%) 

Xenorhabdus-free singles 125 2 (2%) 

pair 9 2 (18%) 

group of 5 9 12 (57%) 
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Appendix table 17 Differences in no. of drops with paralysis or death in 
Xenorhabdus-free and/or Xenorhabdus containing drops and males after 24 h.  

 Type of drop and male Statistics Sequential Bonferroni 

adjustment 

No 

adjustment  Xenorhabdus 

 - free 

Xenorhabdus 

containing  χ² p α’ p < α’ p < 0.05 

P
a

r
a

l
y

s
i

s
 

single single - 1 0.050 No No 

pair pair - 0.76 0.025 No No 

5 males 5 males 21.081 < 0.001 0.0056 Yes Yes 

single – pair - - 0.001 0.0125 Yes Yes 

single – 5 males - - < 0.001 0.0063 Yes Yes 

pair – 5 males - 1.292 0.26 0.0167 No No 

- single – pair - < 0.001 0.0100 Yes Yes 

- single – 5 males - < 0.001 0.0083 Yes Yes 

- pair – 5 males 31.023 < 0.001 0.0071 Yes Yes 

        

D
e

a
t

h
 

single single - 1 0.0500 No No 

pair pair - 0.31 0.0167 No No 

5 males 5 males 7.692 < 0.01 0.0250 Yes Yes 

single – pair - - 0.022 0.0083 No Yes 

single – 5 males - - < 0.001 0.0056 Yes Yes 

pair – 5 males - - 0.27 0.0125 No No 

- single – pair - < 0.001 0.0071 Yes Yes 

- single – 5 males - < 0.001 0.0063 Yes Yes 

- pair – 5 males 10.432 0.001 0.0100 Yes Yes 
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Appendix table 18 Differences in no. of drops with paralysis or death in 
Xenorhabdus-free and/or Xenorhabdus containing drops and males after 48 h.  

 Type of drop and male Statistics Sequential Bonferroni 

adjustment 

No 

adjustment  Xenorhabdus-

free 

Xenorhabdus 

containing  χ² p α’ p < α’ p < 0.05 

P
a

r
a

l
y

s
i

s
 

single single - 0.321 0.0500 No No 

pair pair - 0.089 0.0167 No No 

5 males 5 males - 0.158 0.0250 No No 

single – pair - - 0.001 0.0083 Yes Yes 

single – 5 males - - < 0.001 0.0056 Yes Yes 

pair – 5 males - - 0.020 0.0125 No Yes 

- single – pair 122.627 < 0.001 0.0071 Yes Yes 

- single – 5 males - < 0.001 0.0063 Yes Yes 

- pair – 5 males 8.208 < 0.005 0.0100 Yes Yes 

        

D
e

a
t

h
 

single single - 0.188 0.0500 No No 

pair pair - 0.088 0.0250 No No 

5 males 5 males - < 0.01 0.0100 Yes Yes 

single – pair - - 0.032 0.0125 No Yes 

single – 5 males - - < 0.001 0.0056 Yes Yes 

pair – 5 males - - 0.061 0.0167 No No 

- single – pair - < 0.001 0.0083 Yes Yes 

- single – 5 males - < 0.001 0.0071 Yes Yes 

- pair – 5 males 12.498 < 0.001 0.0063 Yes Yes 
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Content of the attached CD 

Steinernema feltiae  

 S. feltiae Fight.AVI 

 S. feltiae Injured male.AVI 

Steinernema glaseri 

 S. glaseri Fight.AVI 

Steinernema kraussei: 

 S. kraussei Fight.AVI 

 S. kraussei Injured male.AVI 

Steinernema longicaudum 

 S. longicaudum Crush injuries.AVI 

 S. longicaudum Fight.mpg 

 Fight-induced Injuries of a victim from a continuously stimulated pair:  

S. longicaudum Fight Injuries.AVI 
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