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Abstract— This paper presents the results of a short study
into utilising wind farm supervisory control and data acqui-
sition (SCADA) system data for performance monitoring of
large utility-scale wind turbines. The general approach taken
is to model the turbine power output of each turbine during
fault-free operation and to subsequently use the trained model
to identify performance degradation by analysing the residual
between the predicted and observed power values for each
turbine. Historical data from a large wind farm is used to
train and test the turbine models. The trained models are
then tested on historical turbine failure examples. The results
suggest that the data collected by wind farm SCADA systems,
which are typically installed as standard on most modern wind
farms, can be exploited for gaining an insight into wind turbine
performance and maintenance condition.

I. INTRODUCTION

Over the past decade, the deployed wind power generat-
ing capacity worldwide has increased rapidly. By the end
of 2010, wind generating capacity reached approximately
196,630 MW [9]. In addition, the size and generating capac-
ity of individual wind turbines also continues to increase,
with increasing numbers of wind turbines with >5MW
generating capacity becoming standard in offshore wind
farms. For offshore wind farms, studies have suggested that
maintenance costs are about 20 to 25% of the total income
generated, and that a considerable percentage of these costs
are due to unexpected equipment failure, which require
corrective maintenance [6].

In an effort to reduce the maintenance costs for wind
turbines, wind farm operators are increasingly embracing
condition-based maintenance philosophies in an effort to
reduce maintenance costs, increase turbine reliability, and re-
duce turbine downtime and associated loss of revenue. Most
modern turbines incorporate onboard supervisory control and
data acquisition (SCADA) systems for control and monitor-
ing. As these system are already installed as standard, wind
farm operators are increasingly interested in better exploiting
this data for condition monitoring, fault diagnostics, and fault
prognostics.

In this paper, the development of a wind turbine perfor-
mance monitoring algorithm using SCADA system measure-
ments from a large wind farm is described. The general prin-
ciple of the approach is to model the fault-free behaviour of
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each individual turbine. The specific behaviour modelled is
the relationship between input variables, comprising weather
measurements and turbine sensor measurements, and the
mean power generated by each turbine. By modelling the
fault-free behaviour of each individual wind turbine, each
trained model can then be used to monitor the performance
of each respective turbine going forward. By monitoring the
characteristics of the residual signal, which represents the
difference between the predicted and observed power pro-
duced by the turbine at each time-step, it may be possible to
identify subsequent turbine performance degradation which
impacts upon the power generated by the turbine.

Wind turbine power curve analysis is a common method
for providing a universal measure of wind turbine perfor-
mance and as an indicator of overall wind turbine health [8].
The wind power curve, for a specific wind turbine device,
relates the turbine power output for a given wind speed.
Given the current wind conditions, differences between the
expected power output, as estimated by the power curve, and
the actual power output are identified and have previously
been used to indicate potential operational issues, such as
the overall blade condition [2] and gearbox faults [8]. The
use of turbine SCADA information has also become more
widespread with authors exploiting such data for gearbox,
generator, and bearing component fault detection and pre-
diction applications [10], [4], [1].

The layout of the remaining sections of this paper are as
follows: Section II presents some details on the proposed
wind turbine performance monitoring algorithm. Section III
describes the data filtering process necessary to identify
suitable data samples for analysis. Section IV describes the
use of Gaussian process models to model turbine power
output. Section IV-B describes the process of identifying
suitable model inputs for modelling turbine power output.
Finally, Section V presents some results of the algorithm
tested on historical turbine failure examples.

II. A WIND TURBINE PERFORMANCE
MONITORING ALGORITHM

In this study, historic SCADA system data from a large
wind farm was made available. For each turbine in the wind
farm, the complete history of sensor information and turbine
status information, for a period of 24-months, was available.
The onboard SCADA system for each turbine records 10-
minute averages of each monitored sensor variable.

Figure 1 presents a flow chart describing the proposed
wind turbine performance monitoring algorithm. At 10-
minute intervals, the latest SCADA measurements are gen-
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Fig. 1. Proposed wind turbine performance monitoring algorithm

erated at each turbine. The first step is a filtering step to
select only those samples which satisfy a number of status
requirements. Section III describes this filtering step in more
detail. If the turbine operating status requirements for the
latest SCADA measurement are satisfied, then the latest
SCADA data sensor measurements are passed as inputs to
the Turbine Model, which generates a prediction of the
mean power generated for the latest 10-minute period. A
residual signal is then computed which describes the differ-
ence between the observed mean power generated and the
predicted mean power generated over that 10-minute period.
The process of estimating the mean power generated using
the Turbine Model and computing the residual between the
actual and estimated mean power output is known as the
residual generation stage.

During testing, the residual values generated at 10-minute
intervals are combined to form a time series of residual
values, which is then analysed in a two-step process known
as residual evaluation. In the first step, any predictions gen-
erated by the turbine which have a high-level of uncertainty
are identified and ignored. This first-step is known as residual
processing and is described in further detail in Section IV and
Section V. The processed residual signal is then analysed by
a decision logic routine to determine if certain conditions, or
characteristics, of the processed residual signal are satisfied,
which might be indicative of a fault condition. This second-
step is known as the decision logic step. If any of the
relevant fault conditions are satisfied, an alarm is generated.
Otherwise, the algorithm continues to iterate. Examples of
this algorithm applied to historical turbine failure examples
are presented in Section V.

III. DATA FILTERING
The development of a performance monitoring system for

wind turbines represents a difficult task, for a variety of rea-
sons. The primary difficulty presented is the large variability
in turbine operating conditions which are determined by the
weather conditions at any instant in time and subject to daily
and seasonal variations. This variability in operating condi-
tions means that it is first necessary to identify frequently

occurring conditions at which times power output can be
reliably and robustly estimated, and where it is not influenced
by internal or external factors which are not modelled. This
section describes the specific weather and turbine conditions
which must be satisfied at each sample time to consider
a data sample suitable for use in the turbine performance
monitoring algorithm. The filtering tasks outlined in this
section describe the functionality implemented by the Status
Check block in Figure 1.
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Fig. 2. Scatter plot of all ten-minute average wind speed and power
measurements recorded for a single turbine over a 1-year period

Consider Figure 2 which presents a scatter plot of all
measurements of wind speed and power recorded for a ran-
domly selected turbine over a 1-year period (Note, for data
sensitivity reasons, all variables in figures presented have
been scaled to the range [0,1]). As Figure 2 demonstrates,
many recorded measurements of wind speed and power fall
well outside the range of the typical power curve and present
challenges from a modelling perspective. To generate a more
suitable data set for each turbine, only those data samples
for which the wind speed remained inside the range of the
sloping power curve were selected. A benefit of the wind
range restriction is that it also removes all those samples at
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the top of the power curve. This is beneficial as the general
objective of the modelling process is to identify differences
between the predicted and actual power output. The hard
limit on the power output at the upper end of the power curve
means that it will be very difficult to identify differences
between the estimated and actual power output at the upper
end of the wind range.

Further restrictions were also placed on the blade pitch
limits and a novelty detection method for identifying frozen
anemometer values and outlier wind speed values, not de-
scribed here, were also implemented. Figure 3 illustrates
the data samples from Figure 2 which were identified as
suitable for use in the wind turbine performance monitoring
algorithm. Analysis of historical data for each wind turbine
has demonstrated that typically 60-70% of all data sam-
ples recorded by the SCADA system for each turbine are
identified as suitable for use in the performance monitoring
algorithm.
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Fig. 3. Scatter plot of filtered ten-minute average wind speed and power
measurements recorded for a single turbine over a 1-year period

IV. TURBINE MODELLING
To model the relationship between model inputs and

turbine power production, Gaussian process (GP) models
were used. A motivating factor for using GP models is that
this technique describes each model prediction in terms of
a Gaussian distribution, described by a mean and a variance
value. The mean value provides a point estimate of the power
generated which can be used to compute the power residual.
The variance estimate can be used to compute the confidence
limits on each prediction. The availability of a confidence
limit on each model prediction is of particular benefit for
this application for residual processing, as described in
Section II. The width of the confidence limit generated
by a GP reflects how well the training data describes the
relationship between the model inputs and model output. In
regions of the input space where a large number of training
data lie, the confidence limits will generally be smaller. In
other regions of the input space, with few training data
samples available to describe the input-output relationship,
the confidence limits can be expected to widen, reflecting

the GP models uncertainty over the relationship between
the input-output data in this region of the input space. The
uncertainty predictions generated by the GP model were used
to remove predictions with high uncertainty when analysing
the residual signal. This capability proves useful in situations
were limited historical data exists to train a model describing
fault-free behaviour. Such situations can arise due to a recent
turbine installation or following major turbine maintenance
overhaul. In situations where significant durations of fault-
free historical data exists, as illustrated by the historical data
plotted in Figure 3, this capability is less useful. Section IV-
A presents some background information on Gaussian pro-
cesses and Section IV-B describes the process of identifying
suitable turbine model inputs.

A. GAUSSIAN PROCESSES FOR REGRESSION
A Gaussian process can be viewed as a set of random

variables that have a joint multivariate Gaussian distribution
and represent the value of the function f(x) at location x.
f(xi) is a random variable corresponding to the single input-
output pair {xi, yi}, where i here denotes sample i in the
data set available for modelling. For simplicity, a zero-mean
process is assumed such that

f(x1), f(x2), · · · , f(xn) ∼ N(0,Σ), (1)

where Σ is the process covariance matrix such that Σij gives
the value of the covariance between f(xi) and f(xj), and is
a function of xi and xj , Σij = k(xi, xj). A one-dimensional
input-output process is assumed for simplicity.

The covariance function specifies the covariance between
pairs of random variables. The most commonly used co-
variance function in GPs is the squared-exponential (SE)
covariance function

Σ = k(xi, xj) = α2exp(−|xi − xj |
2

2λ2
) (2)

Two hyperparameters, α and λ, govern the properties of the
SE covariance function and their values can be varied to best
suit the training data. Hyperparameter α controls the typical
amplitude and λ controls the typical lengthscale of variation
[7]. Informally, λ can be thought of as roughly the distance
you have to move in the input space before the function value
changes significantly.

Because the observed data in a realistic system typically
includes noise, it is assumed that the underlying function
of the data being modelled is described by y = f(x) + ε,
where ε is a Gaussian white noise term with variance σ2

n

such that ε ∼ N(0, σ2
n). A Gaussian process prior is put

on the range of possible underlying functions f(x) with
covariance function as exemplified in Equation (2) with
unknown hyperparameters.

Hence, for this function,

y1, y2, · · · , yn ∼ N(0,K) (3)

K = Σ + σ2
nI (4)

where σ2
nI represents the covariance between outputs due

to white noise, where I is the n × n identity matrix, and
yi = f(xi) + εi.
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The aim is to use the set of training data points {xi, yi}ni=1

to find the posterior distribution of y∗, given input x∗, that
is p(y∗|x∗,xtr,ytr), where {x∗, y∗} denotes an unseen test
data point and xtr ∈ Rn×1 and ytr ∈ Rn×1 denote the input
and output training data.

Before the posterior distribution of y∗ is found, the un-
known hyperparameters of the covariance function in Equa-
tion (2), α, λ, and the noise variance σ2

n, must be optimised
to suit the training data. This is typically performed via
maximisation of the log marginal likelihood, which is given
by

log(p(ytr|xtr)) = −1

2
yT
trK

−1ytr−
1

2
log(|K|)− n

2
log(2π).

(5)
When the hyperparameters are optimised, the GP model

can be used to predict the distribution of y∗ for the input x∗
(for a single input dimension). The predictive distribution
of y∗, p(y∗|x∗,xtr,ytr), can be shown to be Gaussian with
mean and variance

µ(y∗) = kT
∗ K−1ytr (6)

σ2(y∗) = k∗∗ − kT
∗ K−1k∗ + σ2

n (7)

respectively, where k∗ =
[k(x∗, x1)k(x∗, x2) · · · k(x∗, xn)]

T is a column vector
of covariances between the test and training data points
and k∗∗ = k(x∗, x∗) is the autocovariance of the test input.
In Equation (6), the mean prediction µ(y∗) is a linear
combination of the observed outputs ytr, where the linear
weights are given by the vector kT

∗ K−1. The variance of
the predicted value σ2(y∗), defined in Equation (7), is given
by the prior variance k∗∗, which is a positive term, minus
the posterior variance kT

∗ K−1k∗ which is also positive.
The posterior variance will be inversely proportional to the
distance between the test point and the training points in
the input space, since it depends on k∗.

The above arguments can be expanded to the multi-
dimensional input case by including the extra input di-
mensions in xi and xj . Although xi and xj become
vectors with multiple dimensions xi ∈ R1×p, xj ∈ R1×p,
k(xi,xj) remains a scalar value and the remainder of the
calculations remain the same. The GP covariance function
can be extended to many input dimensions by introducing
individual hyperparameters for each dimension. For example,
in a multi-dimensional application of the SE covariance
function, a separate length scale is employed for each input
dimension [5].

B. INPUT SELECTION

To model turbine power output, a variety of available
inputs were considered. The final set of inputs was selected
based upon performance testing and comprised the following
two variables.

• Wind speed (ten-minute average)
• Air density (ten-minute average)

The choice of wind speed as a model input is obvious. The
choice of air density as an input was suggested in a recent
publication by Farkas [3], who identified a 16% reduction in
the root mean squared error when modelling turbine power
output using both wind speed and air density, versus using
only wind speed as a model input. Visual evidence for the
importance of considering air density when modelling wind
turbine power output is also illustrated in Figure 4. Figure
4 illustrates the same data set used to generate Figure 3.
However, in Figure 4, each data sample has been coloured
according to the air density value at that sample time. Figure
4 clearly illustrates how, for the same wind speed, the output
power generated increases as the air density value rises.
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Fig. 4. Scatter plot of filtered ten-minute average wind speed and power
measurements recorded for a single turbine over a 1-year period where color
indicates the air density value at the sample time

V. ALGORITHM TESTING & RESULTS
To demonstrate the performance of the developed al-

gorithm, two test examples are presented in this section.
For each test case presented, a turbine model was first
trained using 1-year of historical data to model the fault-
free behaviour of each turbine. A total of 5000 samples
were chosen randomly from the suitable historical training
data samples to generate the GP covariance matrix for each
model. The GP hyperparameter values were then optimised
using a gradient descent approach. The trained models were
then tested on historical data recorded after the training data
period.

To identify performance degradation in turbines, the cu-
mulative sum of the power residual, generated at each time
step, was computed over time for the test period. Assuming
the turbine remains fault-free during testing, then it might
be expected that the cumulative sum of the residual signal
would be stationary and would oscillate around a mean value
of zero. Alternatively, if a turbine suffered an event resulting
in a deterioration in performance, then it might be expected
that the residual signal would have a bias toward negative
values, indicating the that the model is over estimating power
produced and resulting in a decaying cumulative residual
signal.
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A. Example 1: Turbine Remaining Fault-Free

Figure 5 shows an example of the wind turbine per-
formance monitoring algorithm tested on a turbine which
remained fault-free for the entire test period. Figure 5 illus-
trates how the cumulative sum of the residual signal remains
stationary and oscillates about a value of zero, indicative of
a turbine which has not suffered performance degradation.
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Fig. 5. Cumulative sum of residual for turbine which remained fault-free
for all of 12 month test period

B. Example 2: Main Bearing Failure

Figure 6 demonstrates the wind turbine performance mon-
itoring algorithm tested on a turbine which suffered a main
bearing failure during the test period. Figure 6 clearly shows
that the cumulative sum of the residual oscillated about zero
for about 3-4 months into the test period. After month 4,
the residual appears to have attained a negative bias which
appears to increase in magnitude, resulting in an accelerated
decay in the cumulative sum of the residual. The results
suggests that a developing fault in the main bearing was
degrading the performance of turbine and that the level of
degradation accelerated as failure approached. In addition,
Figure 6 suggests that it may have been possible to identify
significant performance degradation in this turbine in the
months before failure, which could have been highlighted
to maintenance personnel so that corrective remedial action
could be taken.

Another interesting observation in Figure 6 is that follow-
ing the main bearing replacement, turbine recommissioning,
and return to service at the start of month 10, the repaired
turbine now appears to demonstrate improved power pro-
duction performance versus the previous period of fault-free
behaviour. This improved power production performance is
illustrated by the positive increasing value of the cumulative
sum of the residual signal. This observation suggests that
this performance monitoring approach may also be useful
in evaluating the efficacy (in terms of turbine performance
improvement) of major maintenance overhauls, or equipment
replacement, on individual turbine performance.
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Fig. 6. Cumulative sum of residual for turbine which suffered main bearing
failure and replacement during test period.

VI. CONCLUSIONS

This paper has demonstrated the potential for wind farm
operators to better exploit already available SCADA system
data for wind turbine performance monitoring. In particu-
lar, this paper has demonstrated how modelling the fault-
free behaviour of each turbine enables future performance
degradation to be identified using only SCADA system data.
However, significant work remains to determine the validity
of the approach including testing on both historical fault-
free and faulty examples. The derivation of appropriate alarm
limits on the cumulative sum of the power residual must also
be considered so that results can be presented to operators,
allowing them to make informed maintenance decisions.
Another key enabler to further progressing this work will
be obtaining comprehensive maintenance records so that
observations in the data and algorithm outputs can be related
to specific events and maintenance actions. This would also
allow for easier identification of fault-free data periods for
turbine model training and for determining appropriate alarm
limits.
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