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Abstract—For low frequency applications, transformer
model extraction has been widely investigated using both
time and frequency domain data. However, the studies for
high frequency transformers have been carried out in the
frequency domain only. The reason is due to the complications
in acquiring time domain data for high frequency transformer
model estimation. This paper presents a methodology to deal
with the numerical difficulties associated with time domain
data collection, and to obtain a frequency-dependent model
of a 3-winding flyback transformer using time domain system
identification techniques. The obtained transformer model is
experimentally verified.

Index Terms—Flyback transformers, frequency-dependent
model, time domain, system identification.

I. INTRODUCTION

Given the success of the primary-side sensing approach
to flyback converters operating in discontinuous conduction
mode [1], the extension to continuous conduction mode
(CCM) with the aim of achieving a higher performance and
a lower production cost is of significant interest. However,
the application of primary-side sensing to a converter in
CCM requires an accurate model of the flyback transformer,
particularly at high frequencies.

The topic of modeling and extracting models for a high
frequency transformer has been investigated previously [2]–
[5]. In general, most studies focus either on identifying
a frequency-dependent winding model with an ideal core
assumption using small signal excitation [4], [5], or on
estimating a dynamic core loss model of a specific magnetic
material using both high amplitude and high frequency
voltage sources [6]. In fact, the transformer model obtained
from the small signal assumption can be improved by
replacing an ideal core model with a nonlinear one [7].

In this paper, we will focus on extracting the high
frequency model of the flyback transformer using small
signal excitation. The frequency-dependent winding model,
as shown in Fig. 1, is suggested to include the core charac-
teristic (denoted by 𝑍𝑚(𝑠)) and the winding configuration
properties (the remainder of the model). The energy storage
in the core is characterized by the magnetizing inductance

I1+

V1

-

1

+

I3 +

-
V2

I2

V3

-

Z3(s)

Z2(s)Z1(s)

C12

C23
C13

Rm Lm
Cm

n2

n3

1a

1b

2a

2b

3a

3b

Zm(s)Zcm(s)

:

Im

Fig. 1. Transformer winding model with a linear core.

𝐿𝑚, while the resistor 𝑅𝑚 stands for the power losses due
to the eddy current and hysteresis effect. For simplicity,
the assumption was made that both 𝐿𝑚 and 𝑅𝑚 are
constant with frequency. The impedance {𝑍𝑖(𝑠)}3𝑖=1, which
represents the effect of the parasitic components in the 𝑖th
winding, is generally defined by,

𝑍𝑖(𝑠) = 𝑅𝑖(𝑠) + 𝑠𝐿𝑖(𝑠), for 𝑖 = 1, 2, 3 (1)

where {𝑅𝑖(𝑠)}3𝑖=1 and {𝐿𝑖(𝑠)}3𝑖=1 represent the power
losses and the leakage inductance in the 𝑖th winding, re-
spectively. As both parameters {𝑅𝑖(𝑠)}3𝑖=1 and {𝐿𝑖(𝑠)}3𝑖=1

vary significantly with frequency, the winding impedance
{𝑍𝑖(𝑠)}3𝑖=1 does not have a closed-form and depends
on the configuration of each transformer. The capacitor
𝐶𝑚 describes the electric energy storage in each winding
referred to the first winding, while the electric energy
storage between windings is symbolized by 𝐶12, 𝐶13 and
𝐶23. The transformer voltage gains 𝑛2 and 𝑛3 account
for the coupling between transformer windings. All the
capacitances 𝐶𝑚, 𝐶12, 𝐶13, 𝐶23 and the voltage gains 𝑛2,
𝑛3 are presumed constant with frequency, in this study.

For low frequency applications, transformer model es-
timation has been widely studied using both time and
frequency domain data [3], [8], [9]. However, the studies
for high frequency transformers have been carried out in
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the frequency domain only [4], [5]. The reason behind this
selection is due to the advantages of a frequency domain
approach over a time domain one. Particularly, with the
help of an impedance analyzer, the response of a system
over a wide frequency range is much easier to collect
in the frequency domain rather than in time domain. In
addition, the frequency domain data, which is returned by
an impedance analyzer, is also less noisy than the equivalent
time domain data collected by a data acquisition card.
Despite these difficulties in data collection, the time domain
approach is still preferred because it requires only a simple
measurement facility (such as digital oscilloscope) and
provides an easy way to deal with a complex transformer
model [3]. This paper presents a methodology to deal with
the numerical difficulties associated with time domain data
collection and to obtain a frequency-dependent model of a
3-winding flyback transformer using time domain system
identification techniques. The obtained transformer model
is experimentally verified.

The remainder of this paper is organized as follows; Sec-
tion II introduces the continuous time system identification
method, while the data collection and transformer param-
eter estimation are examined in Section III. The flyback
transformer model is identified and verified in Section IV.
Conclusions are drawn in Section V.

II. SYSTEM IDENTIFICATION ALGORITHMS

In general, system identification uses statistical ap-
proaches to find a mathematical model of an actual system
from discrete-time input-output data {𝑢(𝑡𝑘), 𝑦(𝑡𝑘)}𝑁𝑘=1. As
illustrated in Fig. 2, the estimator will search for the
best model parameters 𝜃 that statically minimize the error
between the measured output signal {𝑦(𝑡𝑘)}𝑁𝑘=1 and the
estimated output signal {𝑦(𝑡𝑘)}𝑁𝑘=1. A model of a dynamic
system can be in discrete-time or continuous-time form. A
fidelity continuous-time model is of primary interest in this
paper.
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Fig. 2. A generic procedure to identify a model of an actual system from
sampled data.

Various identification methods have been investigated
to estimate a continuous time model 𝐺(𝑠) from sampled

data [10]. In fact, we have implemented three different
algorithms to obtain the winding model from sampled
data. However, due to space limitation only one well
known method, named Refined Simplified Instrumental
Variable Method for Continuous Time System Identification
(SRIVC) [11], is presented here. Let the continuous time
model be

𝐺(𝑠) =
𝐵(𝑠)

𝐴(𝑠)
=
𝑏1𝑠

𝑛𝑏−1 + 𝑏2𝑠
𝑛𝑏−2 + ...+ 𝑏𝑛𝑏

𝑠𝑛𝑎 + 𝑎1𝑠𝑛𝑎−1 + ...+ 𝑎𝑛𝑎

. (2)

The prediction error between the estimated and measured
output data is

𝜀(𝑡) = 𝑦(𝑡)− 𝐵(𝑠)

𝐴(𝑠)
𝑢(𝑡) =

𝐴(𝑠)

𝐴(𝑠)
𝑦(𝑡)− 𝐵(𝑠)

𝐴(𝑠)
𝑢(𝑡). (3)

If we define a low pass filter 𝐿(𝑠) = 1
𝐴(𝑠) and substitute

filtered signals 𝑦𝑓 (𝑡) = 𝐿(𝑠)𝑦(𝑡),𝑢𝑓 (𝑡) = 𝐿(𝑠)𝑢(𝑡) into
Eq. (3), then

𝜀(𝑡) = 𝐴(𝑠)𝑦𝑓 (𝑡)−𝐵(𝑠)𝑢𝑓 (𝑡)

= 𝑦
(𝑛𝑎)
𝑓 (𝑡) + 𝑎1𝑦

(𝑛𝑎−1)
𝑓 (𝑡) + ...+ 𝑎𝑛𝑎

𝑦𝑓 (𝑡)

− 𝑏1𝑢
(𝑛𝑏−1)
𝑓 (𝑡)− ...− 𝑢𝑛𝑏

𝑢𝑓 (𝑡), (4)

where

⎧⎨
⎩
𝑦
(𝑖)
𝑓 (𝑡) = ℒ−1{ 𝑠𝑖

𝐴(𝑠)} ∗ 𝑦(𝑡), 𝑖 = 1, ..., 𝑛𝑎

𝑢
(𝑗)
𝑓 (𝑡) = ℒ−1{ 𝑠𝑗

𝐴(𝑠)} ∗ 𝑢(𝑡), 𝑗 = 1, ..., 𝑛𝑏.

Here, the symbol ℒ−1 and ∗ denote the inverse Laplace
transform and convolution product respectively. By
evaluating Eq. (4) at sampling instants {𝑡𝑘}𝑁𝑘=1, we have
𝑁 equations in 𝑛𝑎 + 𝑛𝑏 variables, which are the model
parameters 𝜃 = (𝑎1, 𝑎2, .., 𝑎𝑛𝑎

, 𝑏1, ..., 𝑏𝑛𝑏
). If 𝑁 > 𝑛𝑎+𝑛𝑏,

a unique solution of the model parameters can be found
by a least mean square method. A detailed investigation
of the SRIVC technique is documented in [11]. The
implementation of the SRIVC method is available in
CONTSID toolbox for Matlab [12].

III. TRANSFORMER WINDING MODEL IDENTIFICATION

A. Data collection

A test arrangement, as illustrated in Fig. 3, shows a
process of acquiring data for identifying the impedance
𝑍1𝑎1𝑏(𝑠) between two terminals 1𝑎 and 1𝑏 (Fig. 3(a)), and
for estimating the transfer function 𝐻12(𝑠) from port 1 to
port 2 of the three-port network T (Fig. 3(b)). 𝑉𝑅𝐵𝑆(𝑡) is
a general random binary signal having a flat spectrum over
the frequency range of interest. In the case of impedance
estimation, as presented in Fig. 3(a), a sensing resistor 𝑅𝑠

is purposely inserted into the test circuit to capture the
current information. The excitation voltage 𝑉𝑅𝐵𝑆(𝑡) and the
response voltage 𝑉0(𝑡) are collected using data acquisition
cards.

Although 𝑉𝑅𝐵𝑆(𝑡) and 𝑉0(𝑡) generally serve as input and
output data for system identification respectively, their role
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Fig. 3. Test circuits to collect time-series data for estimation of (a) an
impedance and (b) a transfer function.

can be altered depending on the objective of the system
under test. For example, referring to Fig. 3(a), a causal
impedance 𝑍1𝑎1𝑏(𝑠) can be either calculated indirectly from
the identification result with input 𝑉𝑅𝐵𝑆(𝑡) and output 𝑉0(𝑡)
(according to Eq. (5)), or extracted directly by considering
𝑉0(𝑡) as the input and 𝑅𝑠(𝑉𝑅𝐵𝑆(𝑡) − 𝑉0(𝑡)) as the output
(see Eq. (6)).

𝐺(𝑠) =
𝑉0(𝑠)

𝑉𝑅𝐵𝑆(𝑠)
=

𝑅𝑠

𝑅𝑠 + 𝑍1𝑎1𝑏(𝑠)
(5)

𝑍1𝑎1𝑏(𝑠) =
𝑉1(𝑠)

𝐼1(𝑠)
=
𝑅𝑠(𝑉𝑅𝐵𝑆(𝑠)− 𝑉0(𝑠))

𝑉0(𝑠)
(6)

The difficulties of the time domain method arise when the
magnitude response of the system varies significantly over a
wide frequency range and can not be sufficiently resolved by
the data acquisition card. The round-off error occurring will
distort the estimated result regardless of the identification
techniques used. Two options, consisting of increasing the
resolution of each sample (more expensive measurement de-
vices) and/or narrowing the observing frequency range, can
be used to reduce the round-off error. The latter approach
can be easily applied to impedance estimation by picking
an appropriate value of 𝑅𝑠.

B. Parameter extraction procedures

A set of 8 different experiments is performed to derive
all parameters for the winding model, as shown in Fig. 1.
To clarify the measurement and identification procedure,
a fixed template for each experiment, described below, is
introduced. Noted that the transformer terminals are named
in accordance with the three-port network in section III-A.

i) Test arrangement specification: presents which
structure in Fig. 3 is followed to collect the time-series
data. For example, 𝑀𝑍2𝑎3𝑎 indicates that using the
set up in Fig. 3(a) but terminal 1𝑎 and 1𝑏 are replaced
with 2𝑎 and 3𝑎. While 𝑀𝐻23 implies that the test in
Fig. 3(b) is applied with the excitation signal 𝑉𝑅𝐵𝑆(𝑡)
injected into port 2 and the response voltage 𝑉0(𝑡)
captured at port 3.

ii) Short circuit specification: describes the short circuit
connection between transformer terminals. For exam-
ple, 𝑉3𝑎3𝑏 = 0 means that making a short circuit

connection between terminal 3𝑎 and 3𝑏. Noted that
any terminals, which are not mentioned in this item,
will be left in the default configuration as depicted in
Fig. 1.

iii) The identification objective: denotes the transfer
function and/or model parameters obtained from mea-
sured data.

Experiment 1:
i) 𝑀𝑍1𝑎1𝑏

ii) No short circuit connection
iii) 𝑍𝑐𝑚(𝑠)𝑍𝑚(𝑠)

𝑍𝑐𝑚(𝑠)+𝑍𝑚(𝑠) , 𝑅𝑚, 𝐿𝑚, 𝐶𝑚

Experiment 2:
i) 𝑀𝑍1𝑎1𝑏

ii) 𝑉2𝑎2𝑏 = 0
iii) 𝑍1(𝑠) +

𝑍2(𝑠)𝑍𝑚(𝑠)
𝑍2(𝑠)+𝑛2

2𝑍𝑚(𝑠)

Experiment 3:
i) 𝑀𝐻13

ii) 𝑉2𝑎2𝑏 = 0
iii) 𝑍1(𝑠), 𝑍2(𝑠)

Experiment 4:
i) 𝑀𝑍1𝑎1𝑏

ii) 𝑉3𝑎3𝑏 = 0
iii) 𝑍1(𝑠) +

𝑍3(𝑠)𝑍𝑚(𝑠)
𝑍3(𝑠)+𝑛2

3𝑍𝑚(𝑠)

Experiment 5:
i) 𝑀𝐻12

ii) 𝑉3𝑎3𝑏 = 0
iii) 𝑍1(𝑠), 𝑍3(𝑠)

Experiment 6:
i) 𝑀𝑍1𝑎2𝑎

ii) 𝑉1𝑎1𝑏 = 0, 𝑉2𝑎2𝑏 = 0, 𝑉3𝑎3𝑏 = 0, 𝑉2𝑎3𝑎 = 0
iii) 𝑍𝐶12+𝐶13

(𝑠), 𝐶12 + 𝐶13

Experiment 7:
i) 𝑀𝑍1𝑎2𝑎

ii) 𝑉1𝑎1𝑏 = 0, 𝑉2𝑎2𝑏 = 0, 𝑉3𝑎3𝑏 = 0, 𝑉1𝑎3𝑎 = 0
iii) 𝑍𝐶12+𝐶23

(𝑠), 𝐶12 + 𝐶23

Experiment 8:
i) 𝑀𝑍2𝑎3𝑎

ii) 𝑉1𝑎1𝑏 = 0, 𝑉2𝑎2𝑏 = 0, 𝑉3𝑎3𝑏 = 0, 𝑉1𝑎2𝑎 = 0
iii) 𝑍𝐶23+𝐶13

(𝑠), 𝐶23 + 𝐶13

We define the voltage transform ratios 𝑛2 = 𝑁2

𝑁1
and

𝑛3 = 𝑁3

𝑁1
, where 𝑁1, 𝑁2 and 𝑁3 are the number of turns

in first, second and third windings. In order to explain how
to obtain the model parameters from each experiment, the
following assumptions are made:
∙ The inter-winding capacitances 𝐶12, 𝐶23 and 𝐶13 can

be identified separately from the rest of the transformer
model.

∙ The impedance 𝑍𝑚(𝑠) is typically much larger than
𝑍1(𝑠), hence we can neglect 𝑍1(𝑠) in Exp. 1.

∙ The impedance of 𝐶𝑚, say 𝑍𝑐𝑚(𝑠), is much higher
than 𝑍1(𝑠), 𝑍2(𝑠) and 𝑍3(𝑠) , therefore 𝑍𝑐𝑚(𝑠) is
neglected in Exps. 2, 3, 4 and 5.
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The derivation of the impedance 𝑍1(𝑠), 𝑍2(𝑠) in Exp. 3
requires an extra processing step. The relation between the
signals (𝑉1(𝑡) and 𝑉3(𝑡)), captured in Exp. 3, is given by

𝑉3(𝑠) =
𝑛3

𝑍2(𝑠)𝑍𝑚(𝑠)
𝑍2(𝑠)+𝑛2

2𝑍𝑚(𝑠)

𝑍1(𝑠) +
𝑍2(𝑠)𝑍𝑚(𝑠)

𝑍2(𝑠)+𝑛2
2𝑍𝑚(𝑠)

𝑉1(𝑠). (7)

Dividing both side of Eq. (7) by 𝑍2(𝑠)𝑍𝑚(𝑠)
𝑍2(𝑠)+𝑛2

2𝑍𝑚(𝑠)
, we can

rearrange Eq. (7) into the form

1

𝑍2(𝑠)
=
𝑛3

(
𝐼1(𝑠)− 𝐼𝑚(𝑠)

)

𝑛2
2𝑉3(𝑠)

, (8)

where

𝐼1(𝑠) =
𝑉1(𝑠)

𝑍1(𝑠) +
𝑍2(𝑠)𝑍𝑚(𝑠)

𝑍2(𝑠)+𝑛2
2𝑍𝑚(𝑠)

, (9)

𝐼𝑚(𝑠) =
𝑉3(𝑠)

𝑛3𝑍𝑚(𝑠)
. (10)

where 𝐼1(𝑡) and 𝐼𝑚(𝑡) denote the estimate of the primary
current 𝐼1(𝑡) and the magnetizing current 𝐼𝑚(𝑡) respec-
tively. Since 𝑍1(𝑠)+

𝑍2(𝑠)𝑍𝑚(𝑠)
𝑍2(𝑠)+𝑛2

2𝑍𝑚(𝑠)
and 𝑍𝑚(𝑠) are available

from Exps. 1 and 2, we can easily calculate 𝐼1(𝑡) and
𝐼𝑚(𝑡) from 𝑉1(𝑡) and 𝑉3(𝑡) via Eqs. (9) and (10). Using
signals 𝑛2

2𝑉3(𝑡) and 𝑛3(𝐼1(𝑡) − 𝐼𝑚(𝑡)) as data for system
identification, one can directly obtain 𝑍2(𝑠) (according to
Eq. (8)). In the case of 𝑍1(𝑠) estimation, Eq. (7) is modified
as,

1

𝑍1(𝑠)
=

𝐼1(𝑠)

𝑉1(𝑠)− 𝑉3(𝑠)
𝑛3

. (11)

where 𝐼1(𝑠) is given by Eq. (9). As can be seen in
Eq. (11), 𝐼1(𝑡) (can be computed from 𝑉1(𝑡) using Eq. (9))
and 𝑉1(𝑡)−𝑉3(𝑡)

𝑛3
are enough to extract the impedance 𝑍1(𝑠).

It should be noted that the extraction of the impedance
𝑍1(𝑠) and 𝑍3(𝑠) in Exp. 5 can be carried out in the similar
way as implemented in Exp. 3. Since the impedance 𝑍1(𝑠)
can be obtained from either Exps. 3 or 5, the similarity of
the two results will act as a validation for the estimation
technique.

In addition to the input-output data, a properly chosen
order for the transfer function is a prerequisite for a system
identification procedure. Fortunately, the transfer function
order can be computed based on the transfer function
order of the impedance that we want to determine in each
experiment. For the frequency independent parameters, say
𝐿𝑚, 𝑅𝑚, 𝐶𝑚, 𝐶12, 𝐶23 and 𝐶13, their corresponding
impedances have a fixed order. By contrast, the impedance
𝑍1(𝑠), 𝑍2(𝑠) and 𝑍3(𝑠) of the frequency dependent param-
eters defined in Eq. (12) have an undefined order.

𝑍𝑖(𝑠) =
𝑏𝑖1𝑠

𝑛𝑖𝑏−1 + 𝑏𝑖2𝑠
𝑛𝑖𝑏−2 + ...+ 𝑏𝑖𝑛𝑖𝑏

𝑠𝑛𝑖𝑎 + 𝑎𝑖1𝑠𝑛𝑖𝑎−1 + ...+ 𝑎𝑖𝑛𝑖𝑎

, 𝑖 = {1, 2, 3}
(12)

However, the relation between {𝑛𝑖𝑏}3𝑖=1 and {𝑛𝑖𝑎}3𝑖=1 in
Eq. (12) has to be followed,

𝑛𝑖𝑏 = 𝑛𝑖𝑎 + 2, 𝑖 = {1, 2, 3}. (13)

The condition in Eq. (13) is introduced to limit the orders
so that an obtained {𝑍𝑖(𝑠)}3𝑖=1 can be represented by a
Foster’s network and, hence, can be readily used in electrical
simulators [7].

IV. EXPERIMENTAL RESULTS

A. Winding model determination

The procedure, described in section III, is applied to
a 3-winding transformer designed for a flyback converter
application with a specification of an output power 90𝑊 ,
a switching frequency 100𝐾𝐻𝑧, an input voltage range
𝑉𝑖 = 113 − 373𝑉 and an output voltage 𝑉𝑜 = 32𝑉 . The
number of turns of the first, second and third windings are
46, 10 and 6 respectively. A ferrite core (EE type, Ferrox-
cube 3C95) with an air gap length of approximately 0.1𝑚𝑚
is required to provide an expected inductance of 800𝜇𝐻 .
A signal generator circuit is designed and implemented
to provide a symmetrical random binary voltage 𝑉𝑅𝐵𝑆(𝑡),
having an adjustable amplitude 0𝑉 −2𝑉 , a clock of 5𝑀𝐻𝑧
and a flat spectrum from 100𝐻𝑧 to 5𝑀𝐻𝑧. The input-
output data is acquired by an Agilent digital oscilloscope
(DSO6054A) with a preset sampling rate of 50𝑀𝐻𝑧 and
12 bits for each sample. A sensing resistor of 465.5Ω is
chosen for Exps. 1, 6, 7 and 8, while Exps. 2 and 4 use a
resistor of value 𝑅𝑠 = 6.84Ω. The transfer function orders
of the impedances 𝑍1(𝑠), 𝑍2(𝑠) and 𝑍3(𝑠) are selected
{𝑛𝑖𝑏}3𝑖=1 = 3 and {𝑛𝑖𝑎}3𝑖=1 = 1 in order to maximize the
fit between the measured and simulated data.

The estimated parameters of the winding model are sum-
marized in Table I, where the impedances 𝑍1(𝑠) obtained
from both Exps. 3 and 5 are all included for comparison. As
can be seen in Table I, the two independent estimations of
𝑍1(𝑠) are very close. This effectively confirms the accuracy
of our estimation approach.

TABLE I
WINDING MODEL PARAMETERS.

Component SRIVC Algorithm
𝐿𝑚 795.24𝜇𝐻
𝑅𝑚 87.153𝑘Ω
𝐶𝑚 8.864𝑝𝐹
𝐶12 7.8907𝑝𝐹
𝐶13 123.95𝑝𝐹
𝐶23 62.77𝑝𝐹
𝑛2 0.2174
𝑛3 0.1304

𝑍1(𝑠)
0.327 + 1.012 ⋅ 10−6𝑠+ 0.908𝑠

𝑠+4.29⋅106 from Exp. 3

0.326 + 1.009 ⋅ 10−6𝑠+ 0.834𝑠
𝑠+4.37⋅106 from Exp. 5

𝑍2(𝑠) 0.0408 + 1.224 ⋅ 10−7𝑠+ 0.125𝑠
𝑠+5.924⋅106

𝑍3(𝑠) 0.0415 + 7.399 ⋅ 10−8𝑠+ 0.0454𝑠
𝑠+3.233⋅106
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Fig. 4. A circuit structure for validating the transformer winding model
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Fig. 5. Measured and simulated results obtained from the time domain
model validation scheme in Fig. 4

B. Model verification

Both time and frequency domain tests are required to
examine the accuracy of the obtained winding model. The
time domain test circuit, as sketched in Fig. 4, is both
experimentally performed and simulated in Simulink. A
binary random voltage 𝑉1(𝑡), as plotted in Fig. 5(a), is
injected to the primary side of the transformer. Two load
resistors 𝑅𝑙2 = 3.034Ω and 𝑅𝑙3 = 1.056Ω are chosen. The
secondary and third winding voltage, which are returned
from the experiment and model simulation, are compared in
Fig. 5(b) and Fig. 5(c) respectively. The similarity and good
fit between the simulated and measured output voltages
strongly supports the time domain approach to determine
the transformer model. The comparison with different load
resistors, not presented here due to space limitation, also
shows a good agreement between modelling and experi-
mental results.

A test in the frequency domain is performed using a
HP4194A Impedance/Gain-Phase Analyzer. The primary
impedance of the transformer is measured between 500𝐻𝑧
and 15𝑀𝐻𝑧 in three different circuit configurations as
presented in Table II.

TABLE II
FREQUENCY DOMAIN TEST CONFIGURATIONS.

Test case Winding configuration
1 Open circuit both secondary and third winding

2
Open circuit secondary winding and

short circuit third winding

3
Short circuit secondary winding and

open circuit third winding

For comparison, the corresponding frequency behavior
of the primary impedance is computed in Matlab based
on the model parameters in Table I. The frequency re-
sponses resulting from the actual measurement and mod-
elling computation at different secondary and third winding
configurations (as mentioned in Table II) are described in
Figs. 6, 7 and 8. In all the three frequency-domain test
cases, the model shows very good performance in predicting
the transformer response at frequencies larger than 10𝐾𝐻𝑧.
However, the error between the measured and modelling re-
sults increases at lower frequencies (smaller than 10𝐾𝐻𝑧).
The reason for the discrepancy at low frequencies is due to
the limitation in the total data time which can be collected
by the digital oscilloscope. An oscilloscope, that can store
a longer time-series of data, is expected to bring a better
transformer model, particularly at low frequencies.

V. CONCLUSIONS

In this study, we present a time domain approach to
the identification of a frequency-dependent model for a
3-winding flyback transformer. The method requires only
simple measurement equipment (such as a digital oscillo-
scope) to acquire the time domain data. Although the round-
off error occurring during the data collection phase limits
the performance of the estimation procedure, the accuracy
can be improved by employing a high resolution data
acquisition card or focussing on a frequency or dynamic
range of interest. The latter approach has been successfully
applied to impedance estimation by picking an appropriate
sensing resistors for each experiment. As demonstrating in
the paper, the time domain approach can provide a winding
model at least as accurate as obtained with the frequency
response data. With a longer data time series record, a more
accurate transformer model is obtained, particularly at low
frequencies. The results in this paper are valid for relatively
small signal variations and represent the dynamics of the
transformer, particularly for high frequencies. Future work
will extend the operational range of the model to include a
nonlinear transformer core effect.
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Fig. 6. Primary transformer impedance, with open circuit secondary and
third windings.
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Fig. 7. Primary transformer impedance, with open circuit secondary and
short circuit third winding.
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