
ABSTRACT

This paper investigates the feasibility of applying
reinforcement learning (RL) concepts to industrial process
optimisation. A model-free action-dependent adaptive critic
design (ADAC), coupled with sequential learning neural
network training, is proposed as an online RL strategy
suitable for both modelling and controller optimisation. The
proposed strategy is evaluated on data from an industrial
grinding process used in the manufacture of disk drives.
Comparison with a proprietary control system shows that
the proposed RL technique is able to achieve comparable
performance without any manual intervention.

1. INTRODUCTION

A learning system that identifies a model of a process
automatically and reconfigures the controller when
necessary, has been a long-standing vision of control
engineers [1]. A key requirement of such systems is to be
able to learn from previous experience and/or examples of
appropriate behaviour how to achieve long term goals, and
not just how to perform in the immediate future.
Reinforcement learning (RL) within an adaptive critic
framework is capable of meeting this requirement, but
computational and convergence issues make it difficult to
implement in practice. 

Sequential learning neural networks employ a
procedure that involves growing and/or pruning networks
iteratively as the training data is presented. Learning is
achieved through a combination of new neuron allocation
and parameter adjustment of existing neurons. New neurons
are added if presented training patterns fall outside the range
of existing network neurons. Otherwise the network
parameters are adapted to better fit the patterns. This
procedure is usually combined with pruning where neurons
which contribute little to the overall network response over
an extended period of time are removed. The seminal paper
by Platt [2], proved that sequential learning using a
constructive technique, called resource allocation networks
(RAN) is suitable for online modelling. Since then there
have been many publications on research into application of
this concept to supervised learning problems [3,4,5].

To date there have only been a handful of publications
which explore the use of sequential learning neural networks
with RL algorithms [6,7], none of which have evaluated
their applicability to industrial processes. 

In this paper a novel sequential learning model-free action
dependent adaptive critic (ADAC) design for RL is
investigated for modelling and control of an industrial
grinding process used in the manufacture of disk drive
media. The proposed sequential learning methodology
overcomes the a priori fixed network architecture limitation
normally associated with ADACs by extending the search to
the entire weight space of the neural network topology. It
also searches for a near minimal network size which suits
the complexity of the learning task, thereby increasing the
speed and efficiency of computation. 

The remainder of the paper is organised as follows.
Section 2 provides a brief description of the ADAC
framework. Section 3 gives details of the neural network
implementation and sequential learning algorithm used. The
industrial application is described in section 4 followed by
details of the ADAC simulations performed and the results
obtained in section 5. Finally conclusions are presented in
section 6.

2. PRELIMINARIES

The fundamental solution to sequential optimisation or
dynamic programming problems uses Bellman’s Principle
of Optimality [8]:... an optimal trajectory has the property
that no matter how the intermediate point is reached, the
rest of the trajectory must coincide with an optimal
trajectory as calculated with the intermediate point as the
starting point. This principle is applied by devising a
“primary” reinforcement function or reward, r(k), that
incorporates a control objective for a particular scenario in
one or more measurable variables. A secondary utility is
then formed, which incorporates the desired control
objective through time, the so-called Bellman equation,
expressed as

(1)

where γ is a discount factor (0 < γ < 1), which determines the
importance of the present reward as opposed to future ones.
The reinforcement, r(k), takes a binary form with r(k) = 0
when the event is successful (objective is met) and r(k) = -1
when it fails (when the objective is not met). Hence, the
purpose of dynamic programming is to choose a sequence of
control actions to maximise J(k), the cost-to-go.
Unfortunately, this optimisation problem is computationally
intractable due to the complexity of the backward numerical
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solution process required, i.e. as a result of the “curse of
dimensionality” for real problems. Thus, there is a need for
more tractable approximation methods. The basis for such
methods is a useful identity derived from Eq. 1, called the
Bellman Recursion equation,

(2)

Si and Wang [9] formulated a modified version of Eq. 2,
where instead of approximating J(k), they proposed that a
Critic Network be used to approximate the future
accumulated reward-to-go, defined as

, (3)

where . The resulting RL scheme, known
as an Action Dependent Adaptive Critic (ADAC), is
illustrated in Figure 1.

Fig. 1. Schematic of the Action Dependent Adaptive Critic scheme

The Critic Network is trained by using , the
previous estimate of the cost, and the current reward, r(k), to
provide a target value for the current cost estimate .
Thus,

(4)

The instantaneous error, , is then

a function of two successive values of :

, (5)

and is usually referred to as the temporal difference error. 
The objective when training the Action Network is to

maximise the future accumulated reward-to-go . This
has a maximum value of 0 for all k with the result that the
instantaneous error estimate for the network is 

. (6)

3. NEURAL NETWORKS IMPLEMENTATION

The sequential learning neural network architecture used
here to provide the Critic and Action mappings is a Radial
Basis Function (RBF) topology defined as

, (7)

where  are localised Gaussian functions given by:

. (8)

Here, ci and  are the centre and width of the ith basis
function (hidden neuron) in the network and hi is the linear

output weight that connects the ith basis function, to the
output summer. The various centre, width and height
parameters constitute the overall network weights vector, . 

Defining the Mean Squared Error (MSE) cost functions
for the Critic and Action network as  and 
respectively, stochastic gradient descent weight-update rules
can be derived on the basis of the instantaneous cost function
estimates

(9)

and
. (10)

Here a recursive Levenberg Marquardt algorithm proposed
by Ngia and Sjöberg [10] is used. This is essentially a
regularised implementation of the Recursive Prediction Error
algorithm and is defined as follows:

(11)

(12)

(13)

(14)
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 , (16)

where  is a  matrix with the first column
containing the gradient vector  and the second column
consisting of a  zero vector with a different element
set to 1 at each iteration according to ,  is a
positive scalar that controls the amount of regularisation,
matrix P(k) is the inverse of the Gauss-Newton Hessian (the
covariance matrix of weight estimate wk) and  is a scalar
forgetting factor that controls the memory of the algorithm.

The prediction error e(k) is as defined in Eq. 5 for the
Critic Network weights, , and Eq. 6 for the Action

Network weights, . The corresponding gradient vectors
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are computed by applying the chain rule and back-
propagation, that is:

(17)

The sequential learning growth criterion considered here is
an extension of the On-line Adaptive Centre Allocation
(OLACA) algorithm [11] and is as follows:

, . (18)

Here (xk, yk) is a new data point to be fitted by the RBF
network,  is the distance between the input vector, xk, and
the centre of the nearest hidden neuron, , while  is the
width of the nearest neuron. The term  defines the
maximum neuron separation allowed and is a function of
scalar  which controls the degree of overlap between
neurons (usually set equal to 1). 

If the growth criterion is not satisfied network
parameters are adapted using the RLM training algorithm.
Otherwise a new Gaussian basis function hidden neuron is
assigned as shown in Figure 2 with

,  and . (19)

The deviation from the desired goal, ek, is problem
dependent for the Action Network and is defined as Eq. 5 for
the Critic Network. The scalar , is a user-defined parameter
(usually unity) which determines the degree of overlap
between neurons.

Fig. 2.  The OLACA scheme

The dimensions of the weight vector and Pk, are also
increased accordingly, i.e.

(20)

(21)

where the dimension nw is equal to the number of new
parameters associated with the new Gaussian basis function
and O is an appropriately dimensioned null matrix.

The pruning procedure, which is based on Yingwei et al. [5],
involves eliminating the Gaussian kernels (GK) that show
the least contribution to the model output for the past M
sample instants, and can be summarised as follows;

•   Compute the output of all the Gaussian kernel functions, 
.

(22)

•   Find the largest absolute Gaussian basis function output 
value

 and   (23)

•   Determine the normalised contribution factor for each 
basis function:

 and (24)

If  ( ) for M consecutive sample instants, then

prune the jth hidden neuron and reduce the dimensionality of
 and . 

The window size, M, and threshold  are problem dependent
parameters which are particularly sensitive to the level of
system excitation and have to determined by trial-and-error.
In the industrial application of the ADAC scheme described
next  and M = 100 were found to give good results.

4. INDUSTRIAL APPLICATION

The industrial application considered is the identification and
control of a ring grinding process for aluminium substrate
disks. The disks are ground in batches of twelve between two
grindstones, as shown in Figure 3. The grindstones can be
moved apart. A pick and place unit is used to place the disks
between the grindstones and to remove them after grinding is
completed. The grindstones move in opposite directions,
causing the disks between them to move as well, which is
when the grinding takes place. The rate at which the disks
are ground, called the removal rate, is the critical variable. It
varies depending on a number of parameters.

The initial thickness of the disks varies also, although
the disks in any one batch are sorted to be approximately the
same thickness. Currently, the thickness of one disk from
each batch is measured before the batch is ground. The
system controller calculates the actual removal rate from the
previous batch and estimates the current value of removal
rate. It predicts how much material has to be removed by
subtracting the target thickness from the input thickness and
then calculates the necessary grinding duration for the
current batch. When the grinding is completed, the disk
selected is measured again. If it is within specification, then
the whole batch is passed. If the disk is too thick (above the
upper specification limit), the disks are ground again (i.e.
reworked) but if the disk is too thin (below the lower
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specification limit), the batch is rejected. When a grindstone
is newly installed (i.e. replaced due to wear), the pressure is
initially set to a low value and then gradually increased to
counteract the stone deterioration, which in turn increases the
removal rate. Subsequently the removal rate appears to fall
until the stage is reached where it is so low that the
grindstone has to be resurfaced. This is done by slicing off
the worn part of the grindstone. Once re-installed the whole
process is repeated.
 

Fig. 3.  The ring grinding process

5. SIMULATION RESULTS

An ADAC based modelling and control strategy will be
considered. The aim is to demonstrate that the action
dependent adaptive critic can be used both as a direct
controller and as a framework for process identification, an
aspect less well reported in the literature. The
implementations will now be discussed. The main aim here,
is to achieve accurate thickness control in order to minimise
the number of out-of-specification disks produced by the
grinding process. This process optimisation can be achieved
through manipulation of the grind cycle time as illustrated in
Figure 4. Here rrk, is the removal rate (an internal variable),
pk, is the current pressure, and ck is the current cycle time,
and Tk is the unloading thickness. The unknown
disturbances, dk, include factors such as machine vibration,
coolant fluctuations and operator error.

Fig. 4.  The ring grinding process block diagram

Neural network based direct inverse control has been shown,
in [12], to provide an effective solution to this problem and
was therefore chosen as the basis for the ADAC
investigation. The ADAC framework was considered for two
elements of the controller design, namely developing a
process model and optimising the final controller. A process
model is needed as this forms the basis for the direct inverse
controller implementation. The recommended model is one
which predicts the removal rate, for each grind cycle, on the
basis of the current state of the process.

The existing proprietary controller was used as a
reference for evaluating the performance of the new ADAC
controller. The accuracy of the prediction was measured in
terms of the percentage normalised mean prediction error
(MPE), defined as 

(25)

where  is the actual response while  and  are the
prediction and standard deviation of variable  respectively
and n is the number of data samples. In this case the MPE
over the life of the test grindstone was 6.8%.

5.1 ADAC Model

The process model is required to predict the grindstone
removal rate which is used to calculate the cycle time of the
grinding machine. Accurate prediction of removal rate will
therefore produce an improved cycle time estimate for the
grind process. In the ADAC framework, the Action Network
is trained to form the required process model and is
connected as shown in Figure 5.
 

Fig. 5.  Schematic of modelling strategy using the ADAC for the grinding
process

For this study a nonlinear ARX modelling strategy was
employed, where the current removal rate was estimated as a
function of previous removal rates, rrk-1, rrk-3 and rrk-5,
current pressure, pk, and the current and past cumulative
cycle times, cctk and cctk-1. The Action Network was trained
online to learn the unknown mapping

(26)

The RL learning goal was to minimise the absolute
prediction error between the desired removal rate, rrk, and
the predicted one, rrk* with the external reinforcement
signal, r(k), defined as 

(27)

Both networks were trained for 2000 samples using
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sequential reinforcement learning, after which their weights
were stored. Figure 6 shows the removal rate prediction
performance of the Action Network during and after
training. Although the network has clearly improved its
performance during training the overall prediction
capability after 2000 iterations is still quite poor. The
resulting model yields a MPE of 34% over the complete
stone life. 

Noting that much of the error was due to low-frequency
offsets in the Action Network prediction, a 1st order predict-
correct, as described in [12], was introduced to enhance the
accuracy of the model. This final ADAC trained model
yielded a MPE of 3.1% (Figure 7), which represents a factor
of two reduction in MPE compared to the proprietary
control scheme.

Fig. 6.  The removal rate prediction from the ADAC scheme during
training

Fig. 7.  The removal rate prediction from the ADAC scheme with PC

The growth of the Action and Critic Networks during
training is illustrated in Figure 8. While the size of the Critic
network had stabilised it is clear that the Action network
was still adapting significantly at the end of the training
period, an indication that further training would be
beneficial.

5.2 ADAC Control

Using the removal rate model identified in the previous
section as the basis for a direct inverse model control
(DIMC) strategy [12], the ADAC framework was explored

as a means of fine tuning the controller performance. The
reinforcement signal for this more traditional ADAC role
was defined in terms of the upper and lower control limits
(i.e. the UCL and LCL) for the unloading thicknesses of the
disks as follows.

(28)

Fig. 8.  The growth of the ADAC networks for the grinding process
identification

Figure 9 shows the variation in disk unloading thickness
obtained with the ADAC tuned controller, while Table I
summarises its performance compared with the controller
prior to tuning, an offline trained MLP direct inverse
controller developed in [12], and the proprietary control
scheme benchmark for the same grindstone data. In each
case the target unloading thickness was 3075 .

Fig. 9.  Unloading thickness performance of the ADAC tuned controller

It can be seen that the sequential learning ADAC controller
out performs the proprietary controller by 33% in terms of
the number of rejects (out-of-spec. disks) generated. It also
matches the performance of the offline trained MLP DIMC
reported in [12]. Furthermore, a comparison of the
proprietary and ADAC tuned controller unloading thickness
distributions (Figures 10) shows that the latter achieves
tighter thickness control (i.e. there is less variability in
unloading thickness).
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Fig. 10.  Unloading thickness distribution plot of the ADAC method
compared to the proprietary scheme

6. DISCUSSION AND CONCLUSIONS

A sequential learning ADAC reinforcement methodology
has been presented. This is characterised by a learning
procedure that combines on-line parameter adaptation and
network construction in one integrated routine, thereby
automatically determining Action and Critic network sizes.
In addition to increasing the autonomy of the overall
learning system, the approach also has the advantage of
reducing complexity and increasing the computational
efficiency of ADAC training, compared to fixed network
architecture implementations.

The proposed scheme has been explored as a platform
for modelling and control of an industrial grinding process.
While the sequential learning ADAC succeeded in
identifying a process model from scratch, its slow learning
rate meant that even after 2000 iterations of training there
were still significant low frequency prediction errors
present (MPE of 34%). This was addressed by introducing a
“predict correct” scheme. Incorporating the resulting model
(MPE of 3.1%) into a DIMC strategy yielded a controller
with comparable performance to the proprietary control
scheme (12 rejects). The latter is essentially an integral
controller whose gain varies as a function of removal rate.
Further online optimisation of the controller performance
was then undertaken by tailoring the ADAC reinforcement
signal to the control objectives. This produced a final
controller whose performance was comparable to an MLP
based DIMC scheme reported in [12] (8 rejects).

Thus, it may be concluded that while the ADAC learning
paradigm may not be appropriate for determining process
models and control schemes from scratch, it has the
potential of being an effective technique for fine-tuning
system performance over an extended period of time,
particularly when only limited performance feedback is
available.

Ongoing research is aimed at assessing the limitations
of ADACs for practical problems in relation to convergence
rate, the quality of system excitation needed and the
sensitively of performance to several manually-tuned
problem specific learning parameters.
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TABLE I: PERFORMANCE COMPARISON BETWEEN THE ACTUAL 
AND THE ADAC SCHEME

Controller

Unloading 
Thickness 

Mean
(µm)

Unloading 
Thickness 
Variance 

(µm)

Number of 
Rejects 

(Batches)

Proprietary 3075.85 7.10 12

ADAC-model DIMC 3075.12 7.20 12

Fixed MLP DIMC 3076.32 6.41 8

ADAC-tuned DIMC 3076.32 6.31 8
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