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a b  s  t  r  a  c t

The use  of high  throughput  strategies  is  of acknowledged  relevance since  the  rational  use  of  small-scale

reactors, coupled  with  suitable  analytic  tools,  is contributing  to  the  acceleration  of  process  development  in

several areas  of  biotechnology.  These  small-scale reactors are  available  in  different working  volumes  and

configurations, being useful  in  a  wide array  of  applications,  from  cell  screening  to process  optimization.

The present  work was  focused  on the  development  of  a high-throughput  strategy,  combining  microtiter

plates and analytic  methodologies,  to  screen an in-house library  of  environmental bacteria  in  order  to

identify good  siderophore  producers.  From  a  library  of roughly  500  marine  microorganisms,  it  was  possi-

ble to  ultimately  obtain  11 bacterial  strains  with  high  production  capabilities.  Two  of  them had  not been

previously identified  as siderophore  producers.  The bioprocess  was  scaled-up  from  microtiter  plates  to

a 5 L stirred  tank reactor,  while  maintaining  the  overall  volumetric  productivity,  using the kLa similarity

as scale-up  criterion.

This  novel approach  is a suitable  alternative  to traditional  screening  tools.

© 2011  Elsevier  Ltd.  All  rights  reserved.

1. Introduction

Bacteria synthesize a  vast diversity of  chemical compounds,

with applications ranging from the pharmaceutical to the food

industries, e.g. therapeutic steroids [1],  biofuels [2] and terpenoids

[3].  The combination of the natural diversity with further synthetic

modifications provides an unlimited resource for complex com-

pounds unmatched by chemical synthesis [4,5].

These biochemical and/or semi-biochemical routes are desir-

able in industry since they occur under mild conditions, reduce

waste and require in general less toxic compounds, when compared

to similar chemical routes. However, the potentially interesting

compounds are usually produced by microorganisms in low quanti-

ties. Nonetheless, under suitable growth and/or reaction conditions

the yield can be increased in most cases [6].

Traditional bioprocess development encompasses the identifi-

cation of the envisaged biological activity on a  given microorgan-

ism, and occasionally the use of a  suitable expression system. The

screening of the desired compound, as well as the optimization

of  operational and environmental conditions for its production,
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typically demands an intensive amount of experimental work. This

can be performed either in agar plates or  in shaken flasks and

more recently in microtiter plates (MTP). The availability of pro-

cess intensification platforms is  therefore a  great asset to such a

challenging task and a  fundamental resource that allows for the

successful and timely development of  bioprocesses.

Process intensification to improve selectivity, yields, process

control, safe operation modes, flexible production and cost effec-

tiveness can be achieved by microreactor technology [7].  Both

screening of production conditions (including selection of strains

and  medium composition) and downstream processes can be

assessed within these reactors [7,8]. In this case, sub-optimal condi-

tions of heat and mass transfer, in particular oxygen transfer, must

be avoided by using proper engineering strategies [9].  The design

of  the bioreactors, modelling and prediction of operational con-

ditions is  thus of vital importance. The recent trend is to further

miniaturize milliliter-scale reactors to the microliter scale, with the

introduction of  microstructured reactors [10].  Although all these

platforms are clearly fit for high-throughput applications, limita-

tions can be pointed out within them, such as: (i) limited culture

volumes,  (ii) medium evaporation and (iii) difficult process control.

Furthermore, engineering characterization of these miniaturized

devices is still far from being fully established [11].

Once  appropriate operational modes are selected, a  larger scale

process is envisaged. This can be accomplished by two  ways: (i)

extrapolation by combination, e.g. assembling a  large number of
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micro-reactors [10] or (ii) the process can be volumetrically scaled-

up  using suitable criteria, e.g. constant oxygen transfer rate (kLa),

maintenance of geometric parameters and constant volumetric

power consumption (P/V) [12].  The former method enables high

production volumes at  relatively low cost as it is based on economy-

of-mass manufacturing while the latter is  economy-of-scale based

[10].  The study of  the limiting steps will allow the full understand-

ing of the economic viability of the process [8].

In  the present case, a high-throughput strategy was used to

develop a siderophore production process. Siderophores are high-

affinity, low-molecular mass, iron-chelators, synthesized in nature

by  bacteria and fungi in very low quantities and, in industry, they

are  presently produced through chemical synthesis only [13]. In

bacteria, the production of metal chelators is a survival strategy in

environments presenting metals in ionization states (e.g. Fe3+) that

are sparingly soluble and/or in a form that cannot be metabolized

(e.g.  iron hydroxides). High-affinity metal chelators can (i) decrease

the  concentration of metal ions when they are in excess [14], and (ii)

increase the bioavailability of metal ions when they are scarce [15].

Examples of application of the former case include treatment of iron

overload observed in transfusion dependent anaemic patients [14]

and of accidental exposure to toxic metals [16].  Presently, there

is  an increased interest in metal chelators as therapeutic agents

for  diseases involving metal ion imbalance, such as, Friedreich’s

ataxia, and Wilson’s and  Alzheimer’s diseases [17].  Furthermore,

metal chelators have a  wide field of applications in the industry

and in metal remediation of contaminated sites [18].

In  this work a  combined high-throughput strategy was

employed to screen a  library of environmental bacteria for the

assessment of high siderophore producers in order to shorten the

gap  among the early stages of process development and design. The

results obtained in small-scale were scaled-up to lab scale stirred

tank reactors (STR). To guarantee the industrial compatibility and

viability of this bioprocess, three pre-established conditions were

chosen: (i) overproduction of siderophore compared to the labora-

tory reference strain, (ii) production capabilities at  28–30 ◦C and pH

6–8 and (iii) ultimately the bacterial strain must be non-pathogenic.

2. Materials and methods

2.1. Materials

Chrome azurol S (CAS), hexadecyltrimethylammonium bromide (HDTMA), 8-

hydroxyquinoline, 5-sulfosalicylic acid and piperazine were purchased from Sigma

(St Louis, MO,  USA). Tryptic Soy Agar (TSA) was purchased from Fluka (Deisenhofen,

Germany). Iron free Milli-Q water (Millipore, MA,  USA) was  prepared using 1% (w/v)

8-hydroxyquinoline in chloroform to  perform a liquid–liquid extraction [19]. This

iron free water was used to prepare all media and reagents. Glassware was acid-

washed with 3 M HCI. The SensorDish® Reader, HydroDish® and OxoDish® MTP

were from PreSens GmbH (Regensburg, Germany). HydroDish® plates presented a

measurement range of pH 6–8.5 with a resolution of ±0.05 and accuracy of ±0.1 at

pH 7. OxoDish® had a measurement range of 0–250% air saturation with a resolution

of ±2% and accuracy of ±5% at  100% air saturation. All other chemicals were of

analytical or high-performance liquid chromatography (HPLC) grade, and purchased

from various suppliers.

2.2. Bacterial isolation

Marine sediments samples were taken along the coast of Portugal during the

months of May  and June 2010 until a depth of 20 m  with appropriate gear under

sterile conditions. A  volume of 100 �L, both from the liquid phase and sediments,

was  plated onto TSA plates (prepared according to  manufacturer). Incubation was

performed at 30 ◦C for 24 h. The grown microorganisms were further isolated in TSA

plates and incubated at  30 ◦C  for 24 h.

2.3. Growth conditions

2.3.1. Inoculum preparation

Bacterial growth was  carried out in defined medium containing per liter of

Milli-Q water the following: 15 g Casein peptone, 5 g Peptone, 24 g  NaCl, 6.5 g

MgSO4·7H2O, 5 g MgCl2·6H2O, 0.7 g KCl and 0.1 g CaCl2·2H2O  (final pH 7). The growth

of  inocula was  performed at  30 ◦C  in 100 mL Erlenmeyer flasks, with a headspace of

80%, placed in orbital shakers (Agitorb, Aralab, Portugal) with 25 mm shaking diam-

eter, at  a shaking frequency of 200 rpm. A  volume corresponding to  10% (v/v) of the

final  volume, was  transferred to  the  growth/production medium, once an optical

density (OD) of roughly 0.7 (640 nm) was  reached. Stock cultures were prepared by

adding 250 �L of the  previous cultured bacteria to  250 �L glycerol in 96 deep well

microtiter plates which were stored at  −80 ◦C.

2.3.2. Siderophore production

Runs in microtiter plates were carried out in 24-well SensorDish® Reader

HydroDish® (for pH monitoring) and OxoDish® (for dissolved oxygen moni-

toring) from PreSens GmbH (Germany). Each well was filled with 0.5 mL  of

growth/bioconversion media, and sealed with tapes (Excel Scientific, CA, USA). The

filling volume already includes the volume of inocula. Shaking frequency was set at

200 rpm in Agitorb orbital shakers (Aralab, Portugal) with a 25 mm  shaking diame-

ter.

Bench-scale batch runs were carried out in a 5  L  stirred tank reactor (Biostat

B, B. Braun, Germany) with two Rushton turbines. Growth and/or production were

performed in the defined medium listed previously under the following general con-

ditions: medium volume 4  L, aeration rate of 1 vvm, and stirring speed of 475  rpm.

Temperature, initial pH, medium composition and inoculation volume (10% v/v),

were similar to  the shaken systems.

Growth was followed off-line by OD (640 nm) and dry weight, applying a sacri-

ficial well approach in the  case of the MTP  [20].

2.3.3. Siderophore detection

Siderophores were detected in CAS agar plates, prepared according to Schwyn

and Neilands [21], by inoculating the stock bacteria with the aid of the  Cryo-

replicator press (EnzyScreen BV, The Netherlands). Additionally to the 95 bacteria

strains inoculated, a reference strain (Mycobacterium smegmatis) was added to  the

plate. The plates were incubated at 30 ◦C  and monitored by image analysis every

24 h.

In liquid cultures, the bacterial cells were recovered by centrifugation and the

supernatant was analysed for the presence of siderophore [21]. Simultaneously, the

SideroTec kit (Maynooth, Ireland; http://www.emergenbio.com/)  was used, accord-

ing  to the  manufacturers’ instructions, as an alternative high-throughput detection

and quantification method.

2.4. High  throughput image analysis

At least 3 pictures of the CAS plates were taken with a Nikon Coolpix P5100 cam-

era  every 24 h. The camera had a 7.5–26.3 mm  (1:2.7–5.3) zoom lens and was set  at

the macro function. Lens aperture was set to have as little depth-of-field as possible.

All  images were taken at the  same magnification in the red–green–blue (RGB) sys-

tem after white calibration to the local light conditions. Image analysis was  carried

out using the  software Image-Pro Plus (Media Cybernetics, Inc., USA). The initial

RGB image was segmented into the  respective Red, Blue and Green channel images

which were adjusted in terms of brightness and contrast. The Red and Blue channel

images were used to  assess siderophore and bacterial presence, respectively. Object

size  in images was  measured after calibration and conversion of the  pixel size to the

metric system, using the measurements command.

2.5. Bacterial identification

Bacterial strains were identified using the  Sherlock® Microbial ID System (MIS)

from MIDI, Inc. (Newark, DE, USA). Cellular fatty acids, from cells grown on TSA plates

at 30 ◦C, were extracted and methylated using the Instant FAMETM procedure. The

fatty acid methyl esters (FAMEs) were analysed on a 6890N gas chromatograph (GC)

from Agilent Technologies (Palo Alto, CA, USA), with a FID  and a 7683 B series injec-

tor, equipped with a 25 m long Agilent J&W Ultra 2 capillary column from Agilent.

The GC was programmed and controlled by the MIDI  Sherlock software package,

version 6.1. The FAMEs were identified by the MIDI software using MIDI calibration

standards.

2.6. Oxygen mass transfer coefficients

Oxygen mass transfer coefficients (kLa) in the  reactors used were obtained by

using  the gassing-out method. In the STR, deaeration was accomplished by flushing

the reactor with nitrogen and in the MTP  by applying the sulfite method according

to John et  al. [22].

In the MTP, kLa  was determined for a shaking diameter of 25 mm at shaking

frequencies ranging from 0  to 300 rpm and 0.5 mL  filling volume. In the STR, stirring

frequencies ranged from 150 to 600 rpm with the distances between the two Rush-

ton turbines being 8.8 cm and a filling volume of 4 L  with aeration rate of 1  vvm was

used.

2.7. Statistical analysis

Data were analysed using statistical analysis software (SPSS 14.0). The statistical

treatment was obtained by one-way ANOVA, which was used to  detect differences

among variables. Statistical confidence was set  at 95%.
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Fig. 1. (A) Image analysis of CAS plate in RGB, Red (siderophore) and Blue (bacteria) channels. (B) Correlation between the diameter of the  area corresponding to siderophore

production and the diameter of the colony of strain SD4 (solid line) and reference strain (dashed line). (For interpretation of the references to  color in  this figure legend, the

reader is referred to the web version of the  article.)

3. Results and discussion

3.1. Screening for siderophore production capability

In  order to select the desired siderophore producers, the sam-

ples  collected along the Portuguese Coast were initially plated

into  TSA medium. This medium assured the growth of all envi-

ronmental bacteria at the pre-established conditions (30 ◦C, pH

7.0). Samples from both the sediments and the aqueous phase

were plated for microbial isolation, and the ratio of the number

of  colonies observed in the sediments: aqueous phase was  roughly

5:1 (not taking into account fungi and algae growth). In total, c.a.

500  microorganisms were isolated.

The first selection step assured the elimination of fungus and

microalgae. The colonies corresponding to bacteria were spread

in TSA plates for isolation and were analysed according to the

Sherlock® Microbial ID System from MIDI, Inc. [23,24].  After iden-

tification, bacteria with risk factor higher than 1  were discarded. At

the  end of this procedure, 136 bacterial candidates were obtained.

Strains belonging to the same species according to the MIDI sys-

tem were maintained in the candidate list since intrinsic metabolic

characteristics can be responsible for different capabilities.

The bacterial candidates were plated onto CAS agar plates with

the aid of a cryo-replicator press. This assured a uniform spatial

distribution of the samples as well as standardized plating, so criti-

cal for image analysis. It is of paramount importance to incorporate

into the CAS plate a  reference strain. This will insure the uniformity

of all data collected from this platform. In  the present work, the ref-

erence strain used was Mycobacterium smegmatis an  exochelin MS

producer [25] regularly used in our laboratories.

The plates were photographed every day and evaluated by

image analysis. Similar strategies for high throughput determina-

tion  had been performed previously [26] where biomass growth

was assessed in microtiter plates by correlating the area occupied

by biomass with the optical density (OD) of  the cell  suspension.

Combining this with the conclusions taken by Shin and co-workers,

who evidenced that there is  a  linear relationship between the con-

centration of siderophores and the diameter of haloes obtained by

diffusion, the throughput of the CAS agar test was increased signif-

icantly [27]. Nonetheless, despite the large number of assays, the

traditional CAS agar test gives only qualitative results in terms of

siderophore production.

The initial pictures were taken in the RGB colour system

(Fig.  1A). By isolating the images of the Red and Blue channels,

the visualization of, respectively, the siderophore haloes and the

bacterial colonies was significantly improved. By computing a

Table 1
Siderophores producers identified by the Sherlock® Microbial ID System from MIDI,

Inc.

Code Identified strain Sampling location

AA1, AA2 Pseudomonas putida Aveiro lagoon

AB1, AH3 Pseudomonas fluorescence Aveiro lagoon

AD3 Serratia odorifera Aveiro lagoon

CA3 Bacillus megaterium Carcavelos beach shore

SA2 Staphylococcus sciuri Tagus River delta – Seixal

SD1 Micrococcus lylae Tagus River delta – Seixal

SD2, SD3 Brevibacillus laterosporus Tagus River delta – Seixal

SD4 Kocuria rhizophila Tagus River delta – Seixal

relationship between both diameters is  was  possible to compare

our  reference strain with the library strains in terms of siderophore

production (Fig. 1B). A  library strain was considered to have over-

production capabilities if  the correlation between diameters was

higher than 10% compared to the reference strain. The combined

use of the image analysis and the high throughput CAS platform

allowed the reduction of the 136 initial candidate strains to

only 11 strains which were able to produce higher amounts of

siderophores than the reference strain. The siderophore producers

are listed in Table 1.

For some of these strains, this work is  the first evidence that they

are siderophore producers. In fact, and to our knowledge, Serratia

odorifera and Micrococcus lylae had not been previously identified

as able to produce siderophores. Further studies are envisaged to

fully characterize siderophore production in these strains.

Although the traditional CAS assay is  a reliable and established

method, a new high throughput quantification method is  neces-

sary for reducing both time and sample volume required and also

to improve the sensitivity of analysis. This is  of vital importance in

a  screening process where, in most cases, the volumes employed

are often in the range of  the �L  [7].  The SideroTec assay tested in

the present study allowed to obtain quantification data in roughly

15 min  (with no previous preparation of samples) while the stan-

dard CAS assay [21] can  provide results after at  least 3 h [28] with

volume of samples higher than 50 �L.

When the SideroTec kit was compared to the standard liquid

CAS assay, two  distinct regions were observed in the plot (Fig. 2).

For  low concentrations of siderophores (0–0.15 mg  mL−1) the kit

gives more reliable results than the traditional CAS method, since

the traditional CAS method can not distinguish siderophore con-

centrations in the range of 0.1 ml mL−1. This could be observed

by the divergent curve behaviour of the calibrations (data not
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Fig. 2. (A) Correlation between the SideroTec assay and the  traditional CAS quantification method. (B) Quantification of siderophore production of different bacteria strains

using the SideroTec kit.

shown). Concerning the region of concentrations between 0.15 and

1.0  mg mL−1 the two methods give similar results (Fig. 2).

3.1.1. Assessing growth

The growth and production conditions of the isolated strains

selected by the high throughput CAS agar method were evaluated

by using the SensorDish® Reader system. This system comprises

microtiter plates with incorporated sensors in the wells for pH and

dissolved oxygen measurements. Nonetheless, quantification of

most analytes requires off-line analysis. Accordingly, in this partic-

ular study and set-up, siderophore production was  assessed off-line

by the SideroTec assay. Particular attention was given to the vol-

umes of the samples due to the already small volume of the growth

media used. Sealing tapes were used to prevent evaporation of

media and a sacrificial well approach was employed.

Regarding the dissolved oxygen concentration during growth,

there are clearly three different regions along the bacterial growth

curves, corresponding to the lag, exponential growth and station-

ary phases (Fig. 3A). These phases can vary in duration depending

on the selected strain and growth conditions. A  longer lag phase

indicates possibly longer adaptation towards medium stress condi-

tions (e.g. lack of iron). The exponential growth phase can be easily

identified in the microtiter plate system by the corresponding fast

oxygen depletion observed, its  duration depending on the oxygen

demand of the individual strains. Afterwards, the stationary phase

can be observed by an increase in dissolved oxygen (DO).

Similarly, three different growth phases could be observed in the

biomass profile (Fig. 3B). Previously, other authors have shown cor-

respondence between DO profiles and biomass production [29–33],

suggesting that bacterial growth may  be followed without the need

for sampling or for interfering with the system. However, there

were some discrepancies in the observed trends in biomass and DO

in  the case of M. smegmatis (Fig. 3)  although a mandatory calibration

between pO2 measurements and biomass production (measured

by OD or dry weight) was previously performed. Phenomena like

medium evaporation or low oxygen uptake rates, dependent on

bacterial metabolism, can be in the origin of these discrepancies.

In the end of process development, if the siderophore produc-

tion data and the data collected with the monitored microtiter

plates are overlapped, the bioprocess itself can be tuned to, e.g.

type of siderophore, production titer or  overall production time.

3.2. Scale-up of  bioproduction

Bioproduction runs were performed in pH- and oxygen-

monitored MTP  and  in a 5-L stirred reactor maintaining the same

kLa value in both systems (Fig. 4). This criterion is  regularly used

for scaling-up bioprocess as shown in recent reviews and references

therein [11,34,35] and  was chosen since the bioprocess tested was

based on aerobic growing bacterial cells in a simple aqueous sys-

tem.  The kLa was set at 0.044 s−1 which corresponds to a shaking

frequency of 200 rpm in the MTP  system and to 475 rpm in the

STR. No significant alteration in kLa profiles (<10%) were observed

when compared to similar studies carried out previously [29,30].

These stirring speeds were maintained along the bioproduction

runs. Moreover, since (i) the runs were performed using a  low vis-

cosity medium, (ii) no high bacterial density values were reached

and (iii) no out-of-phase conditions were observed [36],  it was con-

sidered that kLa was  maintained at 0.044 s−1 in both reactors along

the runs.
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On-line data for oxygen consumption were collected for MTP

and compared to data gathered with the 5-L bench-scale reac-

tor. Comparative data from the two scales are given for strain

AD3 (Serratia odorifera) since it is  the first reference, as far as

the authors’ knowledge, of siderophore production and  biopro-

cess monitoring for this strain. The scale-up of the bioproduction

allowed the production of the siderophore at the mg  scale thus

providing enough quantity for further chemical characterization

studies. Concerning DO, there was an initial decay of  oxygen in the

5  L stirred tank reactor, which was not  observed in the MTP  system

(Fig.  4A). Still, the two DO profiles are not fully superimposable,

a  feature already observed previously when miniaturized reactors

are compared to larger reactors [30,33,37]. Despite the evidences,

justifications in the literature for these discrepancies are scarce.

Previously, Micheletti et al. [38] showed the same divergence in cell

growth curves when shaken systems (MTP and shaken flasks) were

compared to STR in fermentation runs for the production E. coli

JM107:pQR706 cells overexpressing transketolase. In shaken sys-

tems, a lag phase was also observed in the growth curves which

was  not visible in the STR.

Possibly heterogeneous environments (e.g. DO gradients) are

involved since bacteria cells are continuously exposed to fluc-

tuating conditions, that consequentially, subjected them to local

environmental stresses causing different metabolic responses

[39–41].

Siderophore titration (Fig. 4B) shows that scale-up strategy fol-

lowed allowed identical production between the MTP  and the 5  L

STR.  The proposed bioprocess development strategy allowed an

efficient and rapid manner to screen for siderophore producers

from a library of environmental bacteria. This strategy was  based

on  the production of undifferentiated siderophore types. If a spe-

cific  siderophore is desired, an extra step of characterization must

be performed.

Further studies are envisaged to incorporate a  high-throughput

purification and characterization step into this Process Intensifica-

tion Platform. This would increase the application of the approach,

making it suitable to other molecules of therapeutic interest.

4. Conclusions

Eleven bacterial strains able to produce siderophores in sig-

nificant quantities were identified from an initial library of 500

bacteria. The proposed high-throughput CAS agar plate analysis

allowed the screening of siderophores from 96 bacterial strains

simultaneously. Moreover, the use of microtiter plates with on-line

measurement of oxygen allowed the rapid evaluation of produc-

tion conditions, mimicking runs performed at bench-scale. Similar

results were observed in MTP  and STR in terms of specific product

yields, while reducing costs related to equipment, reagents and

handling in the MTP. Further improvements should include fully

automated platforms with monitoring and control devices.
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