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1. Introduction

In this paper we study G-manifolds, that is, smooth manifolds admitting a smooth effective action from a Lie group G .
We will further assume that the manifolds and groups we consider are always compact. The local nature of such actions is
then determined by the Slice Theorem ([9, p. 32] or [7, Corollary VI.2.4]). In particular, there is a unique maximal orbit type:
the principal orbit. Other orbits are either ‘exceptional’, that is, non-principal but having the same dimension as a principal
orbit, or singular. Singular orbits have a strictly lower dimension than a principal orbit (see [7, Theorems IV.3.1 and IV.3.2]).
In this paper we will study manifolds with Lie group action for which the non-principal orbits are finite in number, and
pay special attention to the case where all the non-principal orbits are singular. The motivation for studying this family of
manifolds comes primarily from Geometry, which we will now explain.

The most studied families of (Riemannian) manifolds are almost certainly those which display a great deal of symmetry.
The homogeneous spaces (equipped with homogeneous metrics) are the most symmetric family of all. These are manifolds
admitting a smooth (isometric) Lie group action which is transitive. Put another way, a homogeneous space is a manifold
admitting a Lie group action for which the space of orbits consists of a single point.

The next most symmetric families of manifolds are those which admit a smooth action from a compact Lie group for
which the dimension of the space of orbits, that is, the cohomogeneity of the G-manifold, is one. Such manifolds have
a simple topological description. For a compact cohomogeneity one manifold, the space of orbits is either a circle or an
interval. In the first case, the manifold is just a homogeneous space bundle over the circle, and all orbits are principal. In
the second case, there are two non-principal orbits corresponding to the ends of the interval, and the manifold is a union of
two disc bundles for which the non-principal orbits form the zero-section. The boundary of each disc bundle (indeed every
distance sphere, given an invariant metric) is a principal orbit, and therefore a homogeneous space. The entire manifold
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can be described by a group diagram, involving the main group, the principal isotropy and the two non-principal isotropy
subgroups (see [10, Section 1] or [1]).

The topology and geometry of manifolds of cohomogeneity 0 or 1 are for the most part well understood. For instance,
by [2] and [11], a compact G-manifold of cohomogeneity 0 or 1 admits an invariant metric of positive Ricci curvature if and
only if its fundamental group is finite. In a previous paper [5], the authors studied the topology and geometry of manifolds
of cohomogeneity two, three and four, in the case where the G-action is asystatic and the singular orbits are fixed points.
In [6] we have a construction of positive Ricci curvature metrics on G-manifolds with finitely many non-principal orbits as
studied here.

The present work begins with the observation that a cohomogeneity one manifold has at most finitely many non-
principal orbits, namely zero or two. Thus it seems natural to ask about manifolds of higher cohomogeneities which share
the feature of having finitely many non-principal orbits. The current paper can therefore be viewed as an outgrowth of the
study of cohomogeneity one manifolds.

We will show that the behaviour of cohomogeneity one manifolds is quite different from that of G-manifolds with
finitely many non-principal orbits in higher cohomogeneity, in that the isotropy of the latter manifolds is much more
tightly constrained. It is a consequence of this constraint that we are able to describe the possible orbit spaces which arise.

The construction in Definition 1 below is fundamental. In this definition, and throughout this paper, we will use the
notation P to denote a real, complex or quaternionic projective space, the complex projective space quotient defined in (12),
or the quotient of an odd-dimensional sphere by a free linear action of a finite group.

Definition 1. For a compact Lie group W , let P W → B be a W -principal bundle over a manifold B with boundary ∂ B =
P1 ∪ · · · ∪ Ps , s ∈ N. For i = 1, . . . , s let αi : Li → W be an injective homomorphism from a compact Lie group Li which acts
freely and linearly on the sphere Sri with quotient Pi . Also assume that the restriction of P W to a boundary component Pi
is associated to the Li -principal bundle Sri → Pi = Li \ Sri ,

P W |Pi = Sri ×αi W = ∂
(

Dri+1 ×αi W
)

where Sri ×αi W (respectively Dri+1 ×αi W ) is the quotient of Sri × W (respectively Dri+1 × W ) obtained by identifying
(x, w) ∼ (zx, wαi(z)−1) for all z ∈ Li , x ∈ Sri (respectively x ∈ Dri+1), w ∈ W .

We then define a W -manifold

M(P W ,α1, . . . ,αs) := P W ∪∂ B

(
s⋃

i=1

Dri+1 ×αi W

)
(2)

by gluing the principal bundle P W with the disc bundles Dri+1 ×αi W along their common boundary components.

It is immediate that M(P W ,α1, . . . ,αs) is a W -manifold with s isolated non-principal orbits, with W acting freely on
the principal orbits. The non-principal orbits are the homogeneous spaces W / imageαi and the disc bundles Dri+1 ×αi W
are W -invariant tubular neighbourhoods. In Section 2 we will show that all G-manifolds of cohomogeneity at least 2 with
isolated non-principal orbits arise from this construction:

Theorem 3. Let G be a compact Lie group and K ⊂ G be a closed subgroup. Let NG K be the normaliser of K in G and W = NG K/K
be the Weyl group. Let s ∈ N, and let M be a G manifold of cohomogeneity at least 2 with s non-principal orbits and principal isotropy
group K . Then there is a W -principal bundle P W → B, injective homomorphisms αi : Li → W , and a manifold M(P W ,α1, . . . ,αs)

as in Definition 1, for which there is a G-equivariant diffeomorphism

M ∼= M(P W ,α1, . . . ,αs) ×W G/K .

Here, the right hand side is the quotient of M(P W ,αi)× G/K by identifying (m, g K ) ∼ (wm, g K w−1) for all m ∈ M(P W ,αi), g ∈ G,
w ∈ W .

Furthermore, for each i = 1, . . . , s, the following hold.

1. The group Li is isomorphic to U(1), SU(2), NSU(2)U(1) or is finite.
2. The bundle Sri → Pi is one of the universal bundles S2k+1 → CPk, S4k+3 → HPk, S4k+3 → X

k = CP2k+1/τ with an involution
τ defined in (12), or a finite covering.

The orbit space is homeomorphic to the space obtained by gluing B with cones over each boundary component,

G \ M ≈ B ∪∂ B

s⋃
i=1

cPi .
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Note the significance of the Weyl group W here: the G-equivariant diffeomorphisms of G/K are precisely the maps
defined by right multiplication by elements of W .

If one of the non-principal orbits is singular, the corresponding boundary component is even-dimensional. Hence the
space of orbits must be odd-dimensional. As this dimension is precisely the cohomogeneity, we deduce:

Corollary 4. If M is a compact G-manifold with at least one isolated singular orbit, then the cohomogeneity of the G-action must be
odd.

We believe that this class of manifolds is both rich and interesting, and worthy of further study from both a topo-
logical and a geometric perspective. To illustrate this richness, we construct several infinite families of examples whose
non-principal orbits are certain Aloff–Wallach spaces. Firstly, we study manifolds with precisely two singular orbits, as this
is the situation which most closely resembles cohomogeneity one. The Aloff–Wallach spaces are a 2-parameter family of
7-dimensional homogeneous SU(3)-manifolds, whose construction and basic properties we review in Section 3.1. These
spaces are a particularly important family in Riemannian geometry, as almost all admit homogeneous metrics with positive
sectional curvature (see [23, p. 82]). Our results include the following theorem:

Theorem 5. Given any two Aloff–Wallach spaces W p1,p2 and Wq1,q2 , there is an 11-dimensional SU(3)-manifold M11
p1 p2q1q2

of coho-
mogeneity three with two singular orbits equal to the given Aloff–Wallach spaces.

To show the diversity within this family we also prove:

Theorem 6. From within the family M11
p1 p2q1q2

, there is an infinite sequence of pairwise non-homotopy equivalent manifolds each
of which has two non-homotopy equivalent isolated singular orbits. There is also an infinite sequence of pairwise non-homotopy
equivalent ‘doubles’, that is, manifolds with two identical singular orbits.

Unlike cohomogeneity one, it is possible to have manifolds in higher cohomogeneities which have more than two, or
precisely one non-principal orbit. Given that there are plentiful examples of manifolds with precisely one and two non-
principal orbits, this suggests the question of which numbers of non-principal orbits are possible.

Theorem 7. For each m, c ∈ N, c ≡ 0 mod 2, given compact Lie groups G ⊃ K with U(1) ⊂ NG K/K , there is a G-manifold of cohomo-
geneity c with precisely m exceptional orbits.

For each m, c ∈ N, c ≡ 3 mod 4, given compact Lie groups G ⊃ K with SU(2) ⊂ NG K/K , there is a G-manifold of cohomogeneity
c with precisely m singular orbits.

For each m, c ∈ N, c ≡ 1 mod 4, m ≡ 0 mod 2, given compact Lie groups G ⊃ K with U(1) ⊂ NG K/K , there is a G-manifold of
cohomogeneity c with precisely m singular orbits.

Taking G = SU(n) with n � 2 and K trivial in the above theorem, we deduce:

Example 8. For any m, c,n ∈ N with c ≡ 3 mod 4 and n � 2, there is an SU(n)-manifold of cohomogeneity c with precisely
m singular orbits.

This paper is laid out as follows. In Section 2 we prove Theorem 3 and establish the basic structure of compact G-
manifolds with finitely many singular orbits, focusing on the space of orbits and on issues which arise when we try to
construct examples. In Section 3 we study manifolds with two singular orbits and construct two explicit infinite families in
Theorems 5 and 26. We show that each of these families contains infinitely many homotopy types. In Section 4 we study
the existence of unique singular orbits and construct the manifolds for Theorem 7. We also list the possible non-principal
orbits of G-manifolds with one non-principal orbit and cohomogeneity from 2 to 7.

2. The structure of G-spaces with finitely many non-principal orbits

Let M be a compact smooth G-manifold, G a compact Lie group and K ⊂ G the principal isotropy group. We assume
that all non-principal orbits of the G-action are isolated, in the sense that within any suitably small G-invariant tubular
neighbourhood of a non-principal orbit, all other orbits are principal.

Let q ∈ M be such that Gq is a non-principal orbit and let H = Gq be the isotropy at q. The restriction T M|Gq of the
tangent bundle T M to Gq contains the tangent bundle T Gq as a subbundle. By Theorem VI.2.1 in [7] we can endow M with
a G invariant Riemannian metric. The normal bundle of Gq in M is then the orthogonal complement of T Gq in T M|Gq , i.e.
its fibre νx(Gq, M) at a point x ∈ Gq is the orthogonal complement of TxGq in Tx M with respect to the scalar product on
TxM coming form the Riemannian metric (see [7, Chapter VI.1]).
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Now since the group H fixes q and acts on Gq, we have an isometric linear action H → O(νq(Gq, M)) of H on the vector
space νq(Gq, M), the slice representation. In particular H acts on the normal sphere

Sνq(Gq, M) := {
v ∈ νq(Gq, M)

∣∣ ‖v‖ = 1
}

where ‖v‖ denotes the norm of a vector v ∈ νq(Gq, M) ⊂ Tq M induced from the Riemannian metric on M . If r + 1 is the
codimension of Gq in M , then there is a linear isometry R

r+1 ∼= νq(Gq, M) mapping the standard sphere Sr to Sνq(Gq, M).
By means of this isometry we obtain an orthogonal representation H → O(r + 1).

The crucial observation is that in our situation all H orbits on Sνq(Gq, M) ∼= Sr have the same type.

2.1. Lie group actions on spheres with only one orbit type

Group actions with only one orbit type on a sphere are rather restricted.

Theorem 9. ([7, p. 192, Thm. 6.2]) Let L be a compact Lie group of positive dimension acting locally smoothly, effectively and with one
orbit type on Sn. Then L acts transitively or freely. If L acts freely, we must have L ∼= U(1), NSU(2)U(1) or SU(2). (If dim L = 0 then
Sn → L \ Sn is the universal covering, so L must also act freely.)

A non-principal isotropy group H acts transitively on the normal sphere Sr ∼= Sνq(Gq, M) if and only if the cohomogene-
ity of the G-action on M is one. As this situation is well understood, let us assume that G acts with cohomogeneity � 2.
Under this assumption, Theorem 9 has an immediate corollary for our situation.

Corollary 10. Let H → O(r + 1) be a representation of a compact Lie group H with only one orbit type on Sr . Assume that H does not
act transitively on the sphere Sr . Then the kernel of this action coincides with the isotropy group K ⊂ H (so K � H) and we have one
of the following cases:

1. r = 2k + 1 and the action is via complex multiplication, H/K ∼= U(1) and the quotient space H \ Sr is CPk = S2k+1/U(1);
2. r = 4k + 3 and the action is via complex multiplication, H/K ∼= NSU(2)U(1) the normaliser of the maximal torus in SU(2), and

the quotient space N \ Sr is

X
2k+1 := CP2k+1/Z2 = CP2k+1/τ = S4k+3/NSU(2)U(1) (11)

where τ is the involution of CP2k+1 given by

τ
([z1 : z2 : z3 : z4 · · ·]) = [−z2 : z1 : −z4 : z3 · · ·]; (12)

3. r = 4k + 3 and the action is via quaternionic multiplication, H/K ∼= SU(2) and the quotient space is HPk = S4k+3/SU(2);
4. H/K is finite and acts freely on Sr . If r is even, the quotient must be RPr .

Proof. By Theorem 9 we have L := H/K ∼= U(1), NSU(2)U(1), SU(2) or finite, and L acts freely on Sr ⊂ R
r+1. We will show

that R
r+1 is the sum of standard representations of L in the first three cases, and therefore the possible actions that occur

must be as listed in 1, 2 and 3. Let V ⊂ R
r+1 be an irreducible submodule for L. Since L acts freely on Sr it must also act

freely on the sphere S(V ) of V .
In the first case, the real irreducible representations of L = U(1) = SO(2) are equivalent to R with the trivial action, or

to R
2 = C with z ∈ U(1) acting by complex multiplication with zk , for some k ∈ N, which is effective only in the case k = 1.

Thus we must have V equivalent to C with U(1) acting by complex multiplication.
In the second case, U(1) � NSU(2)U(1) acts freely on S(V ) and as above, we must have V ∼= C

s with U(1) acting by
complex multiplication. Now, NSU(2)U(1) is generated by U(1) (seen as diagonal matrices in SU(2)) and an element τ =( 0 −1

1 0

)
subject to the relations τ 2 = −1 ∈ U(1) and zτ = τ z−1 for all z ∈ U(1). If x ∈ V , x �= 0, we must have τ x /∈ span{x}.

By irreducibility, V = span{x, τ x} ∼=C
2 = H with the standard action of NSU(2)U(1).

In the third case, by the classification of the irreducible complex modules for SU(2) in [3, Propositions II, 5.1 and 5.2],
the only irreducible complex representation of SU(2) with free action on the sphere is the standard one, i.e. the one
with A ∈ SU(2) = S(H) acting on C

2 = H by quaternionic multiplication. It follows that V ⊗R C ∼= H
2s . By the equivalence

between real modules and complex modules with structure homomorphism as in [3, p. 94], V is isomorphic to the +1-
eigenspace of the structure homomorphism of H2s (which is SU(2)-equivariant). Since V is irreducible, and the irreducible
submodules of the standard representation of SU(2) on H

2s are all isomorphic to H, we must have V ∼= H as an SU(2)-
module.

In the last case, L = H/K ⊂ O(r + 1) is finite and acts freely on Sr . If γ ∈ L \ {1} then γ cannot have +1 as an eigenvalue.
If r = 2k is even, then γ ∈ O(2k + 1) must have −1 as an eigenvalue, as can be seen from writing the matrix in canonical
block diagonal form, given that 1 is not an eigenvalue. In this case γ 2 has an eigenvalue +1 and therefore γ 2 = idS2k , since
γ 2 ∈ L and γ 2 /∈ L \ {1} by the above. It follows that γ = −idS2k . �
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From this the quotient P= H \ Sr is a projective space or a discrete quotient. We have the following possibilities for P:

dimP singular exceptional

4k HPk , CP2k
RP4k

4k + 2 CP2k+1, X2k+1
RP4k+2

2k + 1 none L \ S2k+1

(13)

We can now prove Theorem 3.

Proof of Theorem 3. Let Gqi , i = 1, . . . , s be the non-principal orbits and let Hi = Gqi . Since the principal isotropy group lies
in suitable conjugates of any isotropy group [7, Theorem IV.3.1], there are xi ∈ G such that K ⊂ xi Hi x

−1
i = Gxiqi . Replacing

qi by xiqi and Hi by xi Hi x
−1
i , we can therefore assume that the K ⊂ Hi = Gqi .

By the Slice Theorem ([9, p. 32] or [7, Corollary VI.2.4]) the normal bundle of the orbit Gqi is associated to the principal
Hi-bundle G → Gqi ,

ν(Gqi, M) ∼= νqi (Gqi, M) ×H G.

Furthermore, the non-principal orbit Gqi has an invariant tubular neighbourhood

Ni
∼= Dν(Gqi, M) ∼= Dνqi (Gqi, M) ×H G

equivariantly diffeomorphic to the disc bundle of the normal bundle. Since the non-principal orbits are isolated, all G-orbits
in Ni \ Gqi are principal. It follows that all Hi -orbits on the normal sphere Sνqi (Gqi, M) are principal and equivariantly
diffeomorphic to Hi/K . In particular K contains the kernel of the slice representation,

ker
[

Hi → O
(
νqi (Gqi, M)

)] ⊂ K ⊂ Hi .

Since by Theorem 9 the quotient Hi/ker[Hi → O(νqi (Gqi, M))] acts freely on Sri , we must have

K = ker
[

Hi → O
(
νqi (Gqi, M)

)] � Hi ⊂ NG K .

Define the Weyl group W := NG K/K .
We first study the structure of the manifold away from the non-principal orbits. Let Ni be G-invariant tubular neigh-

bourhoods of the singular orbits as before and M0 = M \⋃
i=1...s Ni . The quotient B = G \ M0 is a manifold whose boundary

is a disjoint union of sphere quotients Pi as listed in (13). The G-invariant self-diffeomorphisms of G/K are precisely those
maps defined by right multiplication by elements of W . As a consequence, M0 is the total space of a G/K -bundle over B
with a global G-action and structure group W . In other words we have

M0 = P W ×W G/K

for some W -principal bundle P W → B .
We next study the structure of non-principal orbit neighbourhoods. From Corollary 10 we have isomorphisms

αi : Li → Hi/K ,

where Li = U(1), NSU(2)U(1), SU(2) or a finite subgroup of O(ri + 1). Therefore the boundaries Ti of the G-invariant tubular
neighbourhoods Ni are G-equivariantly diffeomorphic to G/K -bundles associated to the standard Li -bundle Sri → Pi , where
the action of Li on G/K is given by (z, g K ) �→ g Kαi(z−1) for z ∈ Li . We will write this as

Ti
∼= Sri ×αi G/K .

Similarly, we can write

Ni
∼= Dri+1 ×αi G/K . (14)

(Equivalently, we could view Ti and Ni as being the Sri -bundle (respectively Dri+1-bundle) associated via α−1
i to the Hi/K -

bundle G/K → G/Hi = Gqi .)
It follows from (14) that the space of orbits in Ni , G \ Ni is simply the cone cPi , and thus G \ M = B ∪∂ B

⋃s
i=1 cPi .

Composing the isomorphism αi with the inclusion Hi/K ↪→ W gives an injection Li → W , which by abuse of notation
we will also call αi . Using this new map we can re-express Ti as

Ti
∼= (

Sri ×α W
) ×W G/K ,
i
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that is, the G/K -bundle associated to the W -principal bundle Sri ×αi W , where as before, the action of W on G/K is given
by right multiplication. In particular, this means that

P W |Pi
∼= Sri ×αi W .

We similarly have

Ni
∼= (

Dri+1 ×αi W
) ×W G/K .

Finally, we are now in a position to deduce the global structure of M . Combining the last two observations we obtain

M ∼= M(P W ,α1, . . . ,αs) ×W G/K ,

where

M(P W ,α1, . . . ,αs) := P W ∪∂ B

(
s⋃

i=1

Dri+1 ×αi W

)
.

The W -manifold M(P W ,α1, . . . ,αs) has the same orbit space as the G-manifold M , and W acts freely away from the
non-principal orbits. �
2.2. Prescribing the non-principal orbits—cobordism

The question of which non-principal orbits can occur for G-manifolds with principal isotropy group K and cohomogene-
ity k can now in principle be decided by calculations in the non-oriented cobordism group of maps into the classifying
space BW for W = NG K/K -bundles. General references for cobordism are [4,19] or [21] for instance.

Recall that two maps f i : Mi → Y , i = 0,1 from n-manifolds Mi to a topological space Y are bordant if there is a map
F : W → Y defined on an (n + 1)-manifold W with boundary ∂W = M0 � M1 which extends f0 � f1. The cobordism group
Nn(Y ) of n-manifolds in Y is the set of such bordism classes with group structure defined by disjoint union. These groups
are well understood. We have isomorphisms

Nn(Y ) ∼=
n⊕

i=0

Hi(Y ;Z2) ⊗Nn−i(∗)

where N j(∗) is the bordism group of j-dimensional manifolds (see the second theorem on p. 107 of [19]). Also we have
that f i : Mi → Y , i = 0,1, are bordant if and only if all twisted Stiefel–Whitney numbers coincide, i.e. if

w I (M0) f ∗
0 (y)[M0] = w I (M1) f ∗

1 (y)[M1] (15)

for all y ∈ Hk(Y ;Z2) and all partitions I of n − k (see the second corollary on p. 108 of [19]).
Let ιi : Pi → BLi be the classifying map of the standard Li -bundle Sri → Pi . Then given embeddings αi : Li ↪→ W , i =

1, . . . , s, a manifold M(P W ,α1, . . . ,αs) exists if the map

fα1,...,αs :
∐

i

Pi

∐
i ιi−→

∐
i

BLi

∐
i Bαi−→ BW (16)

is a boundary, that is, if all its twisted Stiefel–Whitney numbers vanish.
A necessary condition for (16) to be a boundary is of course that

∐
i Pi be a boundary. By [16, Lemma 5], HPn is non-

oriented cobordant to CPn × CPn and by [8, proof of Theorem 22.3], or [20], CPn is non-oriented cobordant to RPn ×
RPn . Now RP2k+1 is naturally homeomorphic to the (real) projectivisation of the universal bundle over CPk , hence it is
a bundle with fibre RP1 = S1 and bounds the corresponding disc bundle. Similarly, CP2k+1 is naturally homeomorphic to
the (complex) projectivisation of the universal bundle over HPk , and therefore a bundle with fibre CP1 = S2 bounding the
corresponding disc bundle of a 3-dimensional vector bundle Ek → HPk . Finally, X2k+1 is the (real) projectivisation of Ek ,
hence an RP2-bundle over HPk . By the Leray–Hirsch Theorem and the corresponding definition of Stiefel–Whitney classes
(see [12, Theorem 2.5 and Definition 2.6 on p. 248]), its Z2-cohomology ring is

H∗(
X

2k+1,Z2
) = H∗(

HPk,Z2
)[x]/〈w3(Ek) + w2(Ek)x + w1(Ek)x2 + x3〉

where x corresponds to the generator of H∗(RP2,Z2) and wi(Ek) are the Stiefel–Whitney classes of Ek . Since H∗(HPk,Z2) =
Z2[u]/uk+1 with u of degree 4, we have

H∗(
X

2k+1,Z2
) = Z2[x, u]/〈x3, uk+1〉, deg u = 4, deg x = 1
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which is isomorphic to that of the product HPk × RP2. The Stiefel–Whitney classes of the tangent bundle T F along the
fibre of π : X2k+1 → HPk restrict to the Stiefel–Whitney classes of (the tangent bundle of) RP2, i.e. to w(T F ) = (1 + x)3 =
1 + x + x2. Now TX2k+1 = T F ⊕ π∗THPk has Stiefel–Whitney classes

w
(
X

2k+1) = w(T F ) ∪ w
(
π∗THPk) = (1 + x)3(1 + u)k+1.

Thus there is an isomorphism H∗(X2k+1,Z2) ∼= H∗(HPk × RP2,Z2) preserving the Stiefel–Whitney classes. It follows that
X2k+1 and HPk × RP2 have the same Stiefel–Whitney numbers and are therefore non-oriented cobordant. Since the even-
dimensional real projective spaces RP2k are not boundaries, among the above, precisely HP2k+1, CP2k+1, X4k+3 and RP2k+1

are boundaries and can appear in G-manifolds with precisely one non-principal orbit.

3. Manifolds with precisely two singular orbits

As noted in the Introduction, studying manifolds in higher cohomogeneities with precisely two singular orbits is of
interest as it can be viewed as a direct generalisation of the most interesting case in cohomogeneity one.

As before, let M denote the manifold. Removing a small tubular neighbourhood of the two singular orbits gives a mani-
fold with two boundary components, which is the total space of a G/K -bundle over some manifold B . The manifold B also
has two boundary components ∂ B = P1 ∪ P2 with P1, P2 as in (13). Computing the Stiefel–Whitney numbers shows that
there are the following possibilities for ∂ B , up to interchanging the components:

P1 = P2, L1 = L2, (17)

∂ B = CP2k+1 ∪X
2k+1, k odd, L1 = S1, L2 = NSU(2)U(1), (18)

∂ B = RP2 ∪RP2, L1 = NSU(2)U(1), L2 = Z2, (19)

∂ B = L1 \ S2k+1 ∪ L2 \ S2k+1, L1, L2 ⊂ O(2k + 2) discrete. (20)

The third case (19) is the only possibility of mixing an isolated singular with an isolated exceptional orbit due to the
coincidence X

1 = RP2. A simple example in the fourth case (20) is the join

M = S3 = S1 ∗ S1 = [0,1] × S1 × S1/∼
where we identify (0, z0, z1) ∼ (0, z′

0, z1) and (1, z0, z1) ∼ (1, z0, z′
1) for all z0, z′

0, z1, z′
1 ∈ S1. For m,n ∈ Z, m,n � 2, coprime,

let G = Zmn ∼= Zm ×Zn . We define a G-action on M by([k], (t, z0, z1)
) �→ (

t, e2π i k
m z0, e2π i k

n z1
)
, k ∈ Z, t ∈ [0,1], z0, z1 ∈ S1.

Now G has two exceptional orbits on M corresponding to t = 0 respectively t = 1, with isotropy groups isomorphic to Zm

respectively Zn .
The simplest case of (17) is that where B = P× I and the quotient space G \ M = ΣP is the suspension of P. For a given

pair (G, K ) the manifold M is then

M = M
(

P W (φ),α1,α2
)

where

α1,α2 : L = L1 = L2 → W

are such that there exists an isomorphism of W -bundles

φ : Sr ×α1 W → Sr ×α2 W

and P W (φ) is the mapping cylinder of φ. Equivalently, the induced maps P → BL
Bαi−→ BW must be homotopic and P W is

induced from such a homotopy P× I → BW .
We will focus on this case, in part because of its simplicity, and in part because it is the case which most closely

resembles the cohomogeneity one situation. It is important to note that unlike the cohomogeneity one case, these products
are not the only candidates for the manifold B . Given a choice of product, take any manifold without boundary of the same
dimension. Now form the connected sum between the latter manifold and the product (avoiding the boundary components).
The resulting manifold is clearly also a candidate for B .

The simplest example of this is the double

M
(

P W (id),α,α
) = Dr+1 ×α G/K ∪id Dr+1 ×α G/K

obtained by gluing a tubular neighbourhood of a non-principal orbit with itself.
The next examples illustrate that many non-doubles are possible.
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3.1. Aloff–Wallach spaces

Let G = SU(3) and let K be trivial. Then H1 and H2 can be any subgroups of SU(3) isomorphic to U (1) or SU(2), as
NG(K ) = SU(3). For p1, p2,q1,q2 ∈ Z with (p1, p2) and (q1,q2) coprime, let α1,α2 : U(1) ↪→ SU(3) be given by

α1(z) = diag
(
zp1 , zp2 , z−p1−p2

);
α2(z) = diag

(
zq1 , zq2 , z−q1−q2

)
where z ∈ U(1). The resulting homogeneous spaces SU(3)/α(U(1)) are the 7-dimensional Aloff–Wallach spaces W p1,p2 and
Wq1,q2 . The topology of Aloff–Wallach spaces is well understood. They have been classified up to homeomorphism and
diffeomorphism in [14]. We also refer to [14] for the computation of the cohomology of the Wa,b . In particular, we have

H4(Wa,b;Z) ∼= Za2+ab+b2

which already shows that among the Aloff–Wallach spaces there are infinitely many homotopy types. We can therefore
choose p1, p2, q1, q2 so that W p1,p2 and Wq1,q2 are not homotopy equivalent.

For the proof of Theorem 6 we quote the homotopy classification of the Aloff–Wallach spaces.

Theorem 21. ([13, Theorem 0.1]) The Aloff–Wallach spaces W p1,p2 and Wq1,q2 have the same homotopy type if and only if p2
1 +

p1 p2 + p2
2 = q2

1 + q1q2 + q2
2 and p1 p2(p1 + p2) ≡ ±q1q2(q1 + q2) mod (p2

1 + p1 p2 + p2
2).

Corollary 22. If p2
1 + p1 p2 + p2

2 �= q2
1 + q1q2 + q2

2 , then W p1,p2 and Wq1,q2 have different homotopy types.

3.2. Some infinite series of G-manifolds with 2 non-principal orbits

We will now construct some infinite series of G-manifolds of cohomogeneity 3 and 5, whose singular orbits are Aloff–
Wallach spaces. First we show that any two Aloff–Wallach spaces can be equivariantly embedded as singular orbits in an
SU(3)-manifold of cohomogeneity 3.

Proof of Theorem 5. Let φ : S3 ×α1 SU(3) → S3 ×α2 SU(3) be any W = SU(3)-bundle isomorphism. To see that such
an isomorphism exists, note that S3 ×αi SU(3) is an SU(3)-bundle over CP1 = S2, and these bundles are classified by
π2 BSU(3) ∼= π1SU(3) = 0. Now set M11

p1 p2q1q2
= M(PSU(3)(φ),α1,α2). �

As non-double examples exist, this suggests investigating the conditions under which non-double examples can arise.
This is of course a very broad question. So as to give further examples, and in particular to indicate the richness of the
non-double family, we study one situation in some detail. The situation in question is the case where the space of orbits is
the suspension of CPm , and where the Weyl group W = SU(n).

Recall that the cohomology of CPm is H∗(CPm;Z) = Z[x]/xm+1, where x is the first Chern class of the universal U(1)-
bundle S2m+1 → CP. Since maximal tori in W are conjugate, any injective homomorphism α : U(1) → W , W = U(n) or
SU(n), is conjugate to

α(p) : U(1) → W , z �→ diag
(
zp1 , zp2 , . . . , zpn

)
(23)

for some p = (p1, . . . , pn) ∈ Z
n coprime. The total Chern class of α(p) (i.e. the total Chern class of the W -bundle pulled

back via the composition CPm →CP∞ = BU(1)
Bα(p)−→ BW ) is

c =
n∑

k=0

σk(p)xk (24)

where σk(p) denotes the elementary symmetric polynomial of degree k in p (see [15, §8]). In the case W = SU(n) we have
p1 + · · · + pn = 0 and the first Chern class vanishes.

Proposition 25. Let W = U(n) or SU(n) and α1,α2 : U(1) → W be injective homomorphisms. Then the W -bundles S2m+1 ×α1 W ,
S2m+1 ×α2 W over CPm are isomorphic if and only if they have the same Chern classes.

Proof. In the “stable range” n > m this holds for general W -bundles (i.e. bundles not necessarily associated to the universal
bundle), and if n � m then the Chern classes of S2m+1 ×α(p) W determine p up to permutation (see [17, p. 114] or [22]). �
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We now use the above analysis to construct non-double examples of G-manifolds with two singular orbits. We will again
take G = SU(n) and K to be trivial, so that NG(K ) = G = SU(n) = W .

Theorem 26. Given Aloff–Wallach spaces W p1,p2 and Wq1,q2 , there is a 13-dimensional SU(3)-manifold M13
p1 p2q1q2

of cohomo-

geneity 5, orbit space ΣCP2 , and two singular orbits equal to the given Aloff–Wallach manifolds if and only if p2
1 + p1 p2 + p2

2 =
q2

1 + q1q2 + q2
2 .

Proof. Since −σ2(p1, p2,−p1 − p2) = p2
1 + p1 p2 + p2

2, the condition guarantees that the second Chern classes of
α(p1, p2,−p1 − p2) and α(q1,q2,−q1 − q2) coincide. Since the first Chern class of an SU(3)-bundle vanishes and the
third is in H6(CP2;Z) = 0, we have from Proposition 25 that there is an SU(3)-bundle isomorphism

φ : S5 ×α(p1,p2,−p1−p2) SU(3) → S5 ×α(q1,q2,−q1−q2) SU(3).

Now let M13
p1 p2q1q2

:= M(PSU(3)(φ),α(p1, p2,−p1 − p2),α(q1,q2,−q1 − q2)). �
We now have two infinite families of SU(3)-manifolds with precisely two singular orbits, one family in dimension 11

and the other in dimension 13. As remarked earlier, there are infinitely many homotopy types of Aloff–Wallach manifolds,
so it follows that both our families contain infinitely many equivariant diffeomorphism classes. However, if we ignore equiv-
ariance, this still leaves the question of how many diffeomorphism or homeomorphism or homotopy types occur in these
families.

For the proof of Theorem 6 we will need two number-theoretic results.

Theorem 27. ([18, 3.4]) A positive integer n is representable in the form n = a2 + ab + b2 with (a,b) = 1 if and only if the following
conditions hold:

1. if 3t divides n then t � 1, and
2. if r �= 3 is prime and r divides n, then r ≡ 1 mod 3.

The second of these number-theoretic results is a classical theorem of Dirichlet about arithmetic sequences:

Theorem 28. Given integers a and d with (a,d) = 1, there exist infinitely many natural numbers n such that a + nd is prime.

Proof of Theorem 6. By Theorem 28 there is an infinite monotonically increasing sequence of primes r1, r2, r3, . . . all of
which are congruent to 1 modulo 3. From Theorem 27 we deduce that there is a sequence of integers a1,b1,a2,b2, . . . such
that for all natural numbers i:

1. (ai,bi) = 1;
2. a2

2i−1 + a2i−1b2i−1 + b2
2i−1 = r2i−1;

3. a2
2i + a2ib2i + b2

2i = r2i−1r2i .

By Corollary 22, we see that the resulting Aloff–Wallach spaces Wai ,bi are pairwise non-homotopy equivalent. To complete
the proof, we will show that the manifolds Mi := M11

a2i−1b2i−1a2ib2i
are pairwise non-homotopy equivalent. We will show that

the fourth cohomology groups of the Mi are non-isomorphic for different i.
We begin this analysis by observing that Mi is the union of two disc bundles (specifically D4-bundles over Wa2i−1b2i−1

respectively Wa2ib2i ) along their common boundaries S2 × SU(3). The Mayer–Vietoris sequence for this union includes the
following portion:

· · · → H3(Wa2i−1b2i−1) ⊕ H3(Wa2ib2i ) → H3(S2 × SU(3)
) → H4(Mi)

→ H4(Wa2i−1b2i−1) ⊕ H4(Wa2ib2i ) → H4(S2 × SU(3)
) → ·· · .

The cohomology of the Aloff–Wallach spaces has been computed in [14, p. 466], and the cohomology of S2 × SU(3) follows
from the Künneth formula. Filling in these groups in the sequence yields the following short exact sequence:

0 → Z → H4(Mi) → Zr2i−1 ⊕Zr2i−1r2i → 0.

Taking tensor products with Zrl is right-exact, hence

→ Zrl → H4(Mi) ⊗Z Zrl →
⎧⎨
⎩

0 l < 2i − 1 or l > 2i
Z

2
rl

l = 2i − 1
Z l = 2i

⎫⎬
⎭ → 0
rl
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is exact. In particular, for l odd, we have

dimZrl
H4(Mi) ⊗Z Zrl

{
� 2, l = 2i − 1,

� 1, l �= 2i − 1.
�

Theorem 29. Consider the family of manifolds M13
p1 p2q1q2

in Theorem 26. If M13
abcd and M13

a′b′c′d′ are two members of this family for
which

r = a2 + ab + b2 = c2 + cd + d2 �= r′ = a′2 + a′b′ + b′2 = c′2 + c′d′ + d′2,

then these manifolds have different homotopy types. Consequently, the family contains infinitely many homotopy types.

Proof. We show that H4(M13
abcd)

∼= Za2+ab+b2 . As in the proof of Theorem 6, we decompose M = M13
abcd into two disc bun-

dles, this time D6-bundles over Aloff–Wallach spaces Wab and Wcd and apply the Mayer–Vietoris sequence. The common
boundary X of these bundles is an SU(3)-bundle over CP2. The relevant portion of the Mayer–Vietoris sequence is

· · · → H3(X) → H4(M)
χ∗

−→ H4(Wab) ⊕ H4(Wcd)
π∗+π̃∗−→ H4(X) → ·· · . (30)

Since X also is the total space of an S5-bundle over Wab the Gysin sequence shows that the projections π : X → Wab ,
π̃ : X → Wcd induce isomorphisms H4(X) ∼= H4(Wab) ∼= H4(Wcd) ∼= Zr and H3(X) ∼= H3(Wab) ∼= 0. Under these isomor-
phisms the homomorphism π∗ + π̃∗ corresponds to the addition map Zr × Zr → Zr . Thus χ∗ in (30) induces an isomor-
phism H4(M) ∼= ker(π∗ + π̃∗) ∼= Zr . �
4. Manifolds with one or many non-principal orbits

It is interesting to compare manifolds with finitely many singular orbits in cohomogeneity at least two with those of
cohomogeneity one. Compact cohomogeneity one manifolds are of two basic types: those with no non-principal orbits, in
which case the manifold is the total space of a bundle over S1 with the principal orbit as fibre; and those with precisely
two non-principal orbits (see [10, Section 1]). In this latter case, the space of orbits is an interval. The non-principal orbits
correspond to the end-points in the orbit space. No cohomogeneity one manifold with precisely one non-principal orbit can
exist, because a point is not a boundary. For similar reasons, no connected cohomogeneity one manifold with more than two
non-principal orbits can exist. In cohomogeneity at least two, however, the situation is very different. As noted in Section 2,
HP2k+1, CP2k+1, X4k+3 and RP2k+1 are all boundaries. Thus in these higher cohomogeneities, unique non-principal orbits
are possible.

The orbit space of a G-manifold M with precisely one non-principal orbit must be of the form

G \ M = B ∪P cP

where B is a manifold with boundary ∂ B = P = L \ Sr , P is one of manifolds listed in (13) and cP is the cone over P. As
discussed at the end of Section 2, the condition for a G-manifold with principal isotropy K with only one non-principal
orbit G/H , K ⊂ H ⊂ G , to exist is that the classifying map

fα : P ι−→ BL
Bα−→ BW (31)

extends to a map B → BW , that is, if and only if the bordism class of fα vanishes. For this we need to look at the twisted
Stiefel–Whitney numbers (15). Note that the map ι : P → BL induces an injection in cohomology Hq , q = 0,1, . . . , r, because
its homotopy fibre is Sr .

4.1. G-manifolds with one non-principal orbit and low cohomogeneity

Cohomogeneity 2. In cohomogeneity 2, a non-principal orbit must be exceptional. For such a manifold we must have P = S1

and an injective homomorphism α : L = Zk → W . The map (31) is the composition

fα : S1 ι−→ BZk
Bα−→ BW ,

and by considering twisted Stiefel–Whitney numbers (see Section 2.2) together with the fact that w1 S1 = 0, we see that fα
bounds if and only if it induces the zero map on H1(· ;Z2). By the Hurewicz Theorem and the Universal Coefficient Theorem,
the functors H1(· ;Z2) and Hom(π1(·),Z2) are naturally equivalent. Because of the long exact sequence of the homotopy
groups of the fibration W → EW → BW , we have a natural isomorphism π1(BW ) ∼= π0(W ) ∼= W /W0 where W0 is the
connected component of the identity in W . Under these equivalences the map induced by Bα in H1(· ;Z2) corresponds to
the map
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Hom(W /W0,Z2) → Hom(Zk,Z2),

β �→ β ◦ q ◦ α

where q : W → W /W0 is the quotient map.
Thus the map fα bounds (equivalently, there is a manifold M(P W ,α)) if and only if for all β the map

Zk
α−→ W

q−→ W /W0
β−→ Z2

is zero. This always holds if k is odd, as Hom(Zk,Z2) = 0. In this case, the k-fold covering S1 z �→zk−→ S1 bounds.

Cohomogeneity 3. In cohomogeneity 3, by (13) we can have P = S2 and L = H/K = U(1) or P = X
1 =RP2 with H/K = U(1)

or Z2. However, since RP2 does not bound a 3-manifold, the last two cases are ruled out. The map (31) bounds if and only
if the map U(1) → W induces the zero map on H1(· ;Z2). This is automatic if, for instance, the fundamental group of W
has odd order.

Cohomogeneity 4. The non-principal orbit must be exceptional and we must have P = L \ S3 with L ⊂ O(4) finite. Since L
acts freely, it preserves the orientation and therefore w1(P) = 0. Note that w2(P) = 0 and w3(P) = 0, since these Stiefel–
Whitney classes vanish for all 3-dimensional manifolds. It follows that the map fα , with α : L → W , bounds if and only if
Bα : BL → BW induces 0 in H3(· ;Z2).

Cohomogeneity 5. The non-principal orbit must be singular and we must have P = HP1 = S4 with L = SU(2). Since all
Stiefel–Whitney classes of P vanish, the map fα , with α : L → W , bounds if and only if Bα : B SU(2) → BW induces 0 in
H4(· ;Z2).

Cohomogeneity 6. The non-principal orbit must be exceptional and we must have P = L \ S5 with L ⊂ SO(6) finite, and
therefore w1(P) = 0. In order that the map fα , with α : L → W , bounds we must have that Bα : BL → BW induces 0 in
H5(· ;Z2) but this is generally not sufficient as the example P = RP5 shows: in this case, the non-trivial Stiefel–Whitney
classes of P are w2 and w4 = w2

2. It follows that fα , with α : Z2 → W , bounds if Bα : BZ2 → BW induces 0 in Hq(· ;Z2)

for q = 1,3,5.

Cohomogeneity 7. The non-principal orbit must be singular and we must have P =X
3, L = NSU(2)U(1) or P =CP3, L = U (1).

The cohomology of X
3 is H∗(X3;Z2) = Z2[x, u]/(x3, u2) with deg x = 1, deg u = 4. (This can be computed via the Leray–

Hirsch spectral sequence, using the fact that X
3 is an RP2-bundle over HP1.) The non-trivial Stiefel–Whitney classes are

w1 = x, w2 = x2. It follows that the map fα , with α : NSU(2)U(1) → W , bounds if and only if Bα : BL → BW induces 0 in
Hq(· ;Z2), q = 4,5,6.

In the second case, P = CP3, L = U (1), all Stiefel–Whitney classes of P vanish and therefore the map fα , with
α : U(1) → W , bounds if and only if Bα : BL → BW induces 0 in H6(· ;Z2).

4.2. Proof of Theorem 7

Proof of Theorem 7. We first construct W -manifolds for W = U(1) and W = SU(2) with a single non-principal orbit.
In the case W = U(1), pick p ∈ N, p > 1, and take the join

MU(1) := S2k+1 = S2k−1 ∗ S1

where U(1) acts freely on S2k−1 ⊂ C
k via the standard representation, and via U(1) � z �→ zp on S1. This gives a U(1)-

manifold of cohomogeneity 2k having a single exceptional orbit with isotropy Zp .
In the case W = SU(2) put

MSU(2) := S4k+2 = S4k−1 ∗ S2

where SU(2) acts freely on S4k−1 ⊂ C
2k = (C2)k via the standard representation and on S2 = CP1 with isotropy U(1). This

gives an SU(2)-manifold of cohomogeneity 4k − 1 having a single singular orbit with isotropy U(1).
For the general case, given G ⊃ K such that U(1) ⊂ NG K/K = W respectively SU(2) ⊂ W , we can form the manifolds

MU(1) ×ι1 G/K and MSU(2) ×ι2 G/K , where ι1 respectively ι2 denotes the inclusion of U(1) or SU(2) into W . These are
G-manifolds of cohomogeneity 2k and 4k − 1, with precisely one exceptional respectively singular orbit. By taking fibre
connected sums of copies of these G-manifolds with one non-principal orbit one can realise any number of non-principal
orbits as required for the first two claims of Theorem 7.

For the final statement, take m/2 copies of any G-manifold with space of orbits ΣCPc , as described in Section 3. Now
perform fibre connected sums as before. Note that although the CPeven are not boundaries, any even number of disjoint
copies bound. �
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