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Abstract. We characterise polynomials f with integer coefficients such that
a ring with unity R is necessarily commutative if f(x) is central for all x ∈ R.
We also solve the corresponding problem without the assumption that the ring
has a unity.

1. Introduction

In [4] and [1], characterisations were given for the polynomials f with integer
coefficients such that a ring R is necessarily commutative whenever f(x) = 0
for all x ∈ R. Here we characterise those polynomials f such that a ring R is
necessarily commutative whenever R satisfies the weaker condition that f(x) is
central for all x ∈ R. The fact that these two classes of polynomials are different
follows from the observation that a ring satisfying the identity x2 − 2x = 0 is
necessarily commutative, while there are easy examples to show that there are
non-commutative rings where x2 − 2x is central for all x.

Throughout this paper, f(X) =
∑n

i=1 aiX
i ∈ XZ[X]. Given a ring R, we

write f(R) = 0 if f(x) = 0 for all x ∈ R, and we write f(R) ⊂ Z(R) if
f(x) ∈ Z(R) for all x ∈ R; here Z(R) is the centre of R. For us, a ring does not
necessarily have a unity, unless this is assumed.

Given a class F of rings, we denote by C0(F) and CZ(F) the sets of poly-
nomials f ∈ XZ[X] that force a ring R ∈ F to be commutative whenever f(x)
always lies in {0} or Z(R), i.e.,

C0(F) = {f(X) ∈ XZ[X] : (R ∈ F and f(R) = 0) =⇒ R commutative} ,
CZ(F) = {f(X) ∈ XZ[X] : (R ∈ F and f(R) ⊂ Z(R)) =⇒ R commutative} .

We are mainly interested in two classes F : the class of all rings R, and the

class of all rings with unity R̃. For each prime p, we also define the class Rp of

rings such that pkR ⊂ Z(R) for some k ∈ N, and the class R̃p := R̃ ∩ Rp. We
refer to polynomials in CZ(R) as Z-polynomials, and polynomials in C0(R) as
C-polynomials.

A well-known result of Jacobson [3, Theorem 11] shows that for n > 1, Xn−X
is a C-polynomial. More generally, Herstein [2] showed that if a1 = ±1, then f
is not just a C-polynomial, but also a Z-polynomial. In view of that result, we
call f a Herstein polynomial if a1 = ±1.
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Using Herstein’s result, the second author and Laffey [4] showed that f is a
C-polynomial if and only if f is either a Herstein polynomial, or f satisfies the
following set of three conditions: a1 = ±2, a2 is odd, and

∑n
i=2 ai is odd. We

will see that Z-polynomials form a more restrictive class than C-polynomials. In
fact Z-polynomials coincide with Herstein polynomials; see Proposition 4.

Our characterisation of CZ(R̃) is not as simple to state as that of CZ(R). It
involves the following family of conditions indexed by a prime p:

There is at least one non-multiple of p among the numbers

Tp := {a1} ∪ {bj | 0 ≤ j < p− 1} ,
where

bj =
∑

1≤i≤n
i ≡ j (mod p−1)

iai , 0 ≤ j < p− 1 .

Whenever the above condition holds, we say that f satisfies the Tp condition.

Theorem 1. Suppose f(X) =
∑n

i=1 aiX
i ∈ Z[X]. Then f ∈ CZ(R̃) if and only

if the greatest common divisor of the numbers {ai}ni=1 is 1, and f satisfies the Tp
condition for all primes p ≤ n that divide a1.

By comparison, we note that the main result in [1] states that a polynomial

f(X) ∈ XZ[X] lies in C0(R̃) if and only if the greatest common divisor of the
numbers {ai}ni=1 is 1, and f satisfies the Sp condition for all primes p ≤ n/2 that
divide a1, where the Sp condition involves a set Sp is defined by:

Sp := Tp ∪ {cj | 0 ≤ j < p− 1} ,
where

cj =
∑

1≤i≤n
i ≡ j (mod p−1)

ai , 0 ≤ j < p− 1 .

After reducing the problem to understanding CZ(R̃p) for all primes p in Sec-
tion 2, we prove the main results in Section 3.

2. Reduction to prime powers

There is one rather obvious necessary condition for f ∈ CZ(R̃p): given any
prime p, the ring GL2(Fp) is non-commutative and of characteristic p, so if every

coefficient of f is divisible by p then f /∈ C0(R̃p) ⊃ CZ(R̃p). Thus every a

polynomial in CZ(R̃) (or in
⋂

p prime

CZ(R̃p)) is primitive, i.e. the greatest common

divisor of its coefficients is 1.

The rest of this section is dedicated to proving the following lemma which

reduces the task of characterizing CZ(R̃) to that of characterizing CZ(R̃p) for
all primes p.
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Lemma 2. CZ(R̃) =
⋂

p prime

CZ(R̃p).

As a first step, the following simple lemma shows that commutativity of a
ring R such that mR ⊂ Z(R) follows from commutativity of its subrings Rp

satisfying pkRp ⊂ Z(R) for some k ∈ N and prime factor p of m.

Lemma 3. Suppose mR ⊂ Z(R), where m ∈ N has prime factorisation m =
∏
p|m

pkp.
For each prime factor p of m, let mp := m/pkp and Rp := mpR. Then

(a) Rp is an ideal in R, and pkpRp ⊂ Z(R).
(b) Every x ∈ R can be written in the form

x = z +
∑
p|m

xp , z ∈ Z(R), xp ∈ Rp .

(c) xy = yx whenever x ∈ Rp, y ∈ Rq, and p, q are distinct prime factors of
m.

(d) R is commutative if and only if each Rp is commutative.

Proof. Part (a) is immediate. As for (b), since the greatest common divisor of
the numbers {mp : p | n} is 1, we can choose np ∈ Z such that

∑
p|m npmp equals

1 mod m, and then x−
∑

p np(mpx) ∈ Z(R).

We next prove (c). Let x = mpx
′, y = mqy

′. Since m divides mpmq, we can
use distributivity repeatedly to get

xy = ((mpmq)x
′)y′ = y′((mpmq)x

′) = yx .

Finally for (d), the “only if” part is trivial. Conversely, suppose that each of
the rings Rp is commutative. Given x, y ∈ R, we write

x = z +
∑
p|m

xp , y = w +
∑
p|m

yp ,

where z, w ∈ Z(R), and xp, yp ∈ Rp for p | m. Using distributivity we expand xy

into a sum of products of pairs of elements from the set {z, w}∪
(⋃

p|m{xp, yp}
)

.

Bearing in mind (c), we see that the factors in each of these products commute,
and so xy = yx. �

The degree deg(f) and codegree codeg(f) of a nonzero polynomial f(X) =∑n
i=1 aiX

i are the largest and smallest i ∈ N, respectively, such that ai 6= 0.

Proof of Lemma 2. Clearly CZ(R̃) ⊂
⋂

p primeCZ(R̃p), so we need only prove

the reverse implication. Suppose therefore that f ∈
⋂

p primeCZ(R̃p), so f is

necessarily primitive. Suppose also that f(R) ⊂ Z(R) for some given unital ring
R. f must be of degree at least 1. We write f(X) =

∑n
i=1 aiX

i ∈ Z[X], where
an 6= 0 and n ∈ N, so 1 ≤ codeg(f) ≤ deg(f) = n.
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If codeg(f) < deg(f) then g(X) := 2nf(X)− f(2X) defines another nonzero
polynomial such that codeg(g) = codeg(f) and deg(g) ≤ deg(f)− 1. In fact

g(X) =
n−1∑
i=1

(2n − 2i)aiX
i .

Also note that g(R) ⊂ Z(R). Iterating this reduction procedure we eventually get
a nonzero monomial such that h(R) ⊂ Z(R). If deg(h) > 1, then simply replace
h by H(X) := h(X + 1) − h(1). Then deg(H) = deg(h) and codeg(H) = 1,
so if we again repeat the reduction procedure we eventually get a polynomial
F (X) = mX, m ∈ N, such that F (R) ⊂ Z(R). Thus mR ⊂ Z(R).

Define mp and Rp as in Lemma 3, and let

R′p = {mpx+ b · 1 | x ∈ R , n ∈ Z} .

Then for each prime factor p of m, R′p is a subring of R, 1 ∈ R′p, and pkR′p ⊂
Z(R), so R′p ∈ R̃p. Since also f(R′p) ⊂ Z(R) ∩ R′p = Z(R′p) for all p, and f ∈
CZ(R̃p), each R′p is commutative. Thus also each Rp is commutative, and so R is
commutative by Lemma 3. But R is an arbitrary ring satisfying f(R) ⊂ Z(R),

so we deduce that f ∈ CZ(R̃), as required. �

3. Proofs of results

We first state and prove our characterisation of CZ(R).

Proposition 4. The classes of Z-polynomials and Herstein polynomials coincide.

Proof. The fact that Herstein polynomials are Z-polynomials is Herstein’s main
result in [2]. Conversely, as mentioned in the Introduction, it is shown in [4]
that if f(X) =

∑n
i=1 aiX

i ∈ Z[X] is a C-polynomial, then either it is a Herstein
polynomial or a1 = ±2. Thus to establish our result, it suffices to exhibit a
non-commutative ring R such that f(R) ⊂ Z(R) whenever a1 is even.

This is rather easy to do: we simply take (R,+, ·) to be the ring of 3 × 3
matrices over Z2 of the form 0 a b

0 0 c
0 0 0


This ring is not commutative since, for instance,0 1 0

0 0 0
0 0 0

0 0 0
0 0 1
0 0 0

 6=

0 0 0
0 0 1
0 0 0

0 1 0
0 0 0
0 0 0

 .

However 2x = x3 = 0 for all x ∈ R, Moreover since xyz = 0 for all x, y, z ∈ R,
it follows that x2 ∈ Z(R) for all x. Thus if a1 is even, then f(x) = a2x

2 ∈ Z(R)
for all x ∈ Z(R). �
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We now turn to the proof of Theorem 1. The main step is the following

characterisation of CZ(R̃p).

Theorem 5. Suppose f(X) =
∑n

i=1 aiX
i ∈ Z[X], and let p be a prime. Then

f ∈ CZ(R̃p) if and only if f satisfies the Tp condition.

Proof. We prove sufficiency of the Tp condition. We may assume that R ∈ R̃
is such that pkR ⊂ Z(R) for some k ∈ N. When considering f(R) ⊂ Z(R) for
such rings, we may treat the coefficients of f as being either elements of Zpk , or
elements of Z, as suits us.

If p - a1, then a1 is a unit mod pk, so g(X) := a−11 f(X) ∈ Zpk [X] has the form
X +

∑n
i=2 diX

i, and so it is a Herstein polynomial when we view its coefficients
as being integers. In particular the condition g(R) ⊂ Z(R) forces characteristic

pk rings R ∈ R̃ to be commutative. We may therefore assume that p | a1.
Suppose that there exists i, 0 ≤ i < p − 1, such that p - bi. We treat f(X)

as a polynomial in Zpk [X], but let us also write fp(X) for f(X) when instead
viewed as an element of Zp[X]. Expanding fp(X + t) for t ∈ Zp, we see that the

coefficient of X is sp(t) :=
∑n

i=1 iait
i−1. Let Sp(X) :=

∑p−1
i=0 biX

i ∈ Zp[X]. By
Fermat’s Little Theorem, sp(t) = Sp(t) for all t ∈ Zp. The fact that p - bi for
some i means that Sp is not the zero polynomial, and so it has at most p − 1
roots. Thus there exists t ∈ Zp such that sp(t) 6= 0. It follows that the coefficient
of X in the expansion of f(X + t · 1) is coprime to p for some t ∈ Zpk . Fixing
this value of t and picking k ∈ Zpk which is equivalent to t mod p, we get a
polynomial g(X) := f(X + k)− f(k) ∈ Zpk [X] such that g(R) ⊂ Z(R) and such
that the coefficient of X in g is a unit mod pk. This implies the commutativity
of R as before.

We now prove the converse. Suppose therefore that the Tp condition fails for
a given function f . Let R be the ring of matrices

x =

α β δ
0 α γ
0 0 α

 ,

where α, β, γ, δ ∈ Zp. For brevity, let us call α, β, γ, δ, the first, second, third,
and fourth coordinates of x, respectively.

Given such a matrix x, it can be verified inductively that for all i > 1,

(1) xi =

αi iαi−1β ∗
0 αi iαi−1γ
0 0 αi

 ,

where ∗ equals iαi−1δ +
(
i
2

)
αi−2βγ (and α0 is defined to be 1, even for α = 0),

but the actual value does not affect subsequent calculations.

Consider now f(x). Because tp = t for all t ∈ Zp, it follows from (1) that the

second coordinate of f(x) equals a1β +
∑p−2

i=0 diα
p+i−2β, where d1 = b1 − a1 and
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di = bi for every other index in this sum, and the numbers bi are as in the Tp
condition. Now Tp fails to hold, so ai and all the bis are divisible by p, and so
p|di for 0 ≤ i < p− 1. It follows that the second coordinate of f(x) equals zero,
and similarly we see that the fourth coordinate of f(x) is 0. Thus f(x) has the
form ε 0 ζ

0 ε 0
0 0 ε

 ,

for some ε, ζ ∈ Zp. But it is readily verified that all such matrices lie in the
centre of R, so we have shown that f(x) ∈ Z(R) for all x ∈ R whenever Tp fails.

Now R ∈ R̃p, and it is non-commutative regardless of p, since for instance0 1 0
0 0 0
0 0 0

0 0 0
0 0 1
0 0 0

 6=

0 0 0
0 0 1
0 0 0

0 1 0
0 0 0
0 0 0

 .

Thus f /∈ CZ(R̃p) if the Tp condition fails. �

Proof of Theorem 1. Since

CZ(R̃) =
⋂

p prime

CZ(R̃p) ,

it follows that the polynomials in CZ(R̃) are precisely those for which the Tp
condition holds for all primes p. If the gcd of the coefficients is not 1, then all
coefficients ai are divisible by some prime p, and certainly f does not satisfy the

Tp condition. Thus by Theorem 5, f /∈ CZ(R̃).

For the converse direction, since Tp trivially holds when p does not divide a1,
it suffices to show that the Tp condition holds for all primes p > n as long as
the gcd of the coefficients is 1. Because p > n, all the sums in the Tp condition
involve at most one term. Thus, since the gcd of the coefficients is 1, there exists
i ≤ n < p such that p - iai = bi. �

The characterisation for quadratic polynomials is particularly simple, and
follows immediately from Theorem 1.

Corollary 6. Suppose f(X) = a1X + a2X
2 ∈ Z[X]. Then f ∈ CZ(R̃) if and

only if a1 is odd.

According to [4], a polynomial f lies in CZ(R) if and only if it is a Herstein
polynomial. Comparing this with Corollary 6 or Theorem 1, it is easy to give

examples of polynomials in CZ(R̃) \CZ(R), for instance 3X +X2 or 5X + 2X3.

Comparing Theorem 1 with the characterisation of C0(R̃) in [1], it is easy to give

examples of polynomials in C0(R̃) \ CZ(R̃), for instance 3X2 + 2X3 or X2.

Lastly we note that the examples proving necessity in Theorem 5 (and so also
in Theorem 1) involve only finite rings of prime characteristic. Thus if F is the
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set of all finite rings with unity, then CZ(F) = CZ(R̃), while if F consists of

all finite rings with unity and characteristic p, then CZ(F) = CZ(R̃p). This is
analogous to the fact that if F is the set of all finite rings (without the assumption
of unity), then CZ(F) = CZ(R) because the proof in [4] uses only finite rings to
prove necessity.
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