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ABSTRACT

Let d and 7 be positive integers. Given ¥ = (31, ...,1,) € C°(R%, R"), we consider
the unital algebra R[U] = Ry, ..., ¢,]| generated by {11,...,4,}, and its closure A(V)
in C'*° topology.

We identify the space of closed maximal ideals of A(V), we establish that it is a regular
algebra, and we show that the approximation problem, to provide an explicit description

of U, is local to the level sets of .

1. Introduction.

Let d and r be positive integers, throughout. Given ¥ = (11, ...,%,) € C°(R% R"),
we consider the unital algebra R[U] = R[t¢)y,...,1,] generated by {11,...,4,}, and its

closure A(¥) in C*° topology.



We recall that A(V) is also the closure of the algebra

C®(W)={goV:ge€ C*R",R)}

(cf. [1,2] for background).

This paper is about the properties of A(¥) qua Fréchet algebra, and the approximation
problem: describe A(W) explicitly.

We identify the space of closed maximal ideals of A(V), we establish that it is a regular

algebra, and we show that the approximation problem is local to the level sets of .

2. Associated Topologies.

We shall only use the Fuclidean topology on R", but we need to consider some other,

a priori distinct topologies on R,

Definition. We define the W hull-kernel topology on R? as that corresponding to the

Kuratowski closure operation

E+— HK(E) = {b € R*: f(b) = 0 whenever f € A(V) and f|E = 0}.

Remark. This is in general finer than the pull-back topology

{U=YU) : U open in R"},

It may happen that clos¥(E)N closW(F) # 0 for disjoint U-hull-kernel closed sets E, F.

We abbreviate W-hull-kernel topology to HK-topology when convenient. We denote
the HK—closure of a set £ by HK(FE). This is consistent with the following (more-or—less
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standard) notation:
H(F)={a€R*: f(a) =0,Vf € F},VF C A(V);

K(E)={fc A(V): f(a) = 0,Ya € E},VE C R%.

Note that
HKH(F)= H(F),VF C A(V),

KHK(FE) = K(FE),YE c R%.
In particular, H(F') is HK-closed, for each F' C A(¥).
We note that each HK-closed set is a union of level sets of U, that HK({a}) =
U~1(W(a)) (the level set through the point a), and that the minimal nonempty HK—closed

sets are these level sets of . We abbreviate HK({a}) to HK(a).

Definition. We define the W—weak-star topology on R? as the pull-back topology corre-
sponding to the weak—star topology on the dual A(W¥)* and the natural injection of R%

into A(¥)*.

In other words, the set N is a weak-star neighbourhood of the point a € R? if and

only if there exist a finite number of functions fi,...,f, belonging to A(¥), such that
{z e Re: |fi(z) — fj(a)] < 1,Vj} C N.

Since we are dealing here with real-valued functions, it is evident that it makes no difference
if we insist that n always equal 1. In fact, it is easy to see that the set N is a weak—star
neighbourhood of the point a € R? if and only if there exists a function f € A(V¥), such
that f(a) =0 and

{zreR%: f(z) <1} C N.

We abbreviate W-weak-star topology to WS-topology, when convenient.
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Unqualified topological terms (open, closed, ...) refer to the Euclidean topology. It
is clear that the WS-topology is at least as fine as the HK-topology, and the Euclidean
topology is at least as fine as the WS—topology. We shall discover more below.

We denote the closed ball with centre z € R? and radius r > 0 by B(z,r), and the

corresponding open ball by U(z,r).

Proposition 1. Let ¥ € C°(R%* R"). Suppose E and F are disjoint closed subsets of
R, UV~1U(E) = E, and V"'U(F) = F. Then there exists f € A(V) such that f =1 on

F and f =0o0n F.

PROOF. Let E and F' be as in the hypothesis. Define
B, =B(0,n), B! =V(B,),

E, =ENB,, E, = Y(E,),
F, = FNB,, Fé:qj(Fn)v

H,=DB, 1 UE,UF,  H, =U(H,)),
We observe that E! F! and H] are compact subsets of R", and
E/, NF, =0,

En+1 N Bn — En7
E,.,NB,=E,, (because E = U™1U(E))

F, . ,NB, =F,.
Choose g1 € C°(R",R) such that g; = 1 near E{ and g; = 0 near F}.

Consider the function gs : H5 — R given by
( g1(x),x € B,

g2(x) = 4 1,z € Ej,

0,z € Fy,



This is well-defined, since g; = 1 on B} N E} and g; = 0 on B} N F3. Moreover, each point
of H) has a neighbourhood to which go has a C'*° extension; indeed one of g1, 1 or 0 will
do as the extension. Since the existence of a global C*° extension is a local property, it
follows that go has an extension in C*°(R",R), and we denote such an extension by the
same symbol, go. We may choose g2 so that it is 1 near E and 0 near Fj.

Continuing in this way, we find g,4+1 € C*°(R",R) such that

gn—|—1|B;1 - gn|B;p

gn+1 = 1 near E; | and g, 41 = 0 near F},_ .

Define f: R? — R by setting

f|Bn =9n© \IJ|Bn7vn-

Evidently, f is well-defined, f € C*°(R%,R), and g, o ¥ — f in C* topology as n 1 +oo.

Thus f € A(V). Finally, it is clear that f =1 on EF and f =0 on F, so we are done. =

Corollary 2. Suppose E C R%. Then E is HK closed if and only if E is closed and

U-1(E) = E.

PROOF. The ‘only if’ part is obvious. For the converse, suppose that F is closed and
U~IW(E) = E. Let a ¢ E. Then F = ¥~'¥(a) is closed and disjoint from E, and
U-1U(F) = F. By the Proposition, there exists f € A(¥) such that f|E = 0 and
fIF = 1. Thus a ¢ HK(FE). This shows that HK(F) C E. Evidently E ¢ HK(E), so

HK(FE) = E, and we are done. =



Corollary 3. Let E C R% Then HK(E) is the least set F C R® such that E C F, F is

closed, and V"'U(F) C F. =

This fact implies that the HK-closure of a set E may be obtained by forming Fy = F,

and proceeding by transfinite induction:
Eqy1 = closU~10(E,),V ordinals a,

E, = | J Eg,V limit ordinals o,
p<a

until the first ordinal having cardinal greater than the continuum, at the worst.

Corollary 4. Let U € C°(R% R"). Then the following three conditions are equivalent:
(1) ¥ is injective.
(2) The HK—topology is Hausdorff.

(3) The HK—topology is the same as the Euclidean topology.

PROOF. Obviously (3) = (2) = (1). The only delicate point is (1) = (3), and this is

immediate from Corollary 2. =

Finally, we note that combining Proposition 1 and Corollary 2, we have:

Corollary 5. Let E and F be disjoint HK—closed sets. Then there exists f € A(V) such

that f=1on Fand f=00onF. =m

Now we consider the C°° action and its consequences.
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Proposition 6. Let h € C*°(R",RP). Then the (usually nonlinear) map

C*(R%R") = C*(R* RP),
ho :
frholf,

is continuous.
PROOF. This is immediate from Faa di Bruno’s formula [4, p.222]. =
Corollary 7. C*(R,R) acts by composition on A(V), i.e. f — ho f maps A(V) into

itself, whenever h € C*(R,R).

PROOF. Let f € A(¥). Choose g, € C°(R",R) such that g, o ¥ — f in C*°(R% R)

topology. By the Proposition,

(hhogn) oW = ho(gaoW) = hof

in C* topology. Thus ho f € A(¥). =

Corollary 8. Let h € C*°(R,R), with h(0) = 0. Then ho maps each ideal I C A(V) into

itself.

PROOF. We may factorize h(z) as xk(z), where k € C*°(R, R)[T].

Let f € I. Then, using Corollary 2, we get

hof=f-(kof)ef AW)cCI,

as required. m



Corollary 9. Let g € A(V). Then the set

U={acR¥: g(a) >0}

is HK—open.

PROOF. Choose h € C*° (R, R) such that h(z) > 0 whenever > 0 and h(z) = 0 whenever
z <0.

By Corollary 7, ho g € A(V), and evidently

R~ U =H({hog})

is HK—closed. This suffices. =

Corollary 10. The HK-topology is the same as the WS—topology.

PROOF. It follows readily from Corollary 9 that the set

{z e RY: f(z) < 1}

is HK-open, whenever f € A(V). Since the sets of this form, corresponding to f € A(V)
with f(a) = 0, form a neighbourhood base for the point a € R%, we conclude that each

WS-open set is HK—open, and this suffices. =

We summarize our characterizations of the HK-topology, adding a useful converse to

Corollary 9:



Theorem 11. Let U C R%. Then the following are equivalent:
(1) U is HK-open.

(2) U is WS-open.

(3) U is open and ¥~ 1¥(U) = U.

(4) There exists g € A(V) such that
U={zecR%: g(z)>0}.
PROOF. In view of Corollaries 2, 9 and 10, it only remains to prove that (1) implies (4).

Let F=RI~U.
Given n € N, consider B,, = B(0,n) and
. 1
E, = {x € B, : dist(z, F) > —}.
n
For each a € E,,, there exists f, € A(V¥) such that f(a) =1 and f =0 on F. Thus the set

N, = {z € R*: f,(x) > 0}

is a HK—neighbourhood of a. Since F,, is compact, we may choose ay,a9,...,a,, € F, such

that Ny, ,...,N,, cover E,. Let

gn = f2 + 4 f2

Then g, € A(V), g, =0o0n F, g, >0 on R% and g, > 0 on E,. Let
M,, = 1+ maxsup |9%g,|.
lil<n B,

Define




For any given m € N and k£ € Z,, we have

sup
B,

i gn -n .
<2 < >m.
0 <2n n)‘_ Vil <k VYn>m

Thus the series for g converges in C* topology, and g € A(V).

Evidently, g > 0 on U and ¢ =0 on F', so we are done. =

3. Maximal Ideals.

Proposition 12. Suppose f € A(¥) and f(a) # 0, Va € R%. Then 1/f € A(D).

PROOF. Fix K compact in R% and k € Z . Tt suffices to show that there exist g, €
C*(R",R) such that

9 (gn 0 ¥) — 0" (%) Vi <k,
uniformly on K.

We may assume that K is a ball, without loss in generality.
Choose h,, € C*°(R",R) such that
0" (hn 0 @) — 0'(f), V]i| <k,

uniformly on K. Since f # 0 on K, we may assume, without loss in generality, that f > 0
on K (since K is connected). Let k = infg f.

Discarding some initial terms of the sequence (if need be), we may assume that h,, >
k/2 on U(K), for each n.

Choose k,, € C*°(R",R) such that k,, = log h,, near K, and let r,, = exp(—Fk,,). Then

gn = 1/h, on ¥(K), and

. . 1 (1
? p— ? ¢ - '<
9 (g 0 1) a(hno\y)aa(f),w_k,

10




uniformly on K, as required. m

Theorem 13. Let M C A(¥). Then the following are equivalent:
(1) M is a closed maximal ideal in A(W).

(2) There exists a € R? such that M =K(a).

PROOF. It is easy to see that (2) implies (1).

To prove that (1) implies (2), fix a closed maximal ideal M. We wish to show that
M is the HK-closure of some point. Since (2) implies (1), it suffices to show that H(M) is
nonempty.

Suppose that H(M) = 0.

For each a € R%, we may choose f, € M such that f,(a) = 1. Using compactness,
as in the proof of Proposition 12, we may choose for each n € N a function g,, € M such
that g, > 0 on R? and g, > 0 on B,. Adding these up with suitable weights, we get
g €clos(M) = M such that g > 0 on R?. By Proposition 12, 1/g € A(¥), so 1 € M, so
M = A(7), contradicting the maximality of M. This contradiction shows that H(M) # (),

and we are done. =

Remark. The argument of this proof actually shows that each ideal having empty hull is
dense in A(¥). From this observation, it is not hard to deduce that the maximal closed

ideals are the same as the closed maximal ideals.

Ezample. Let ¥(x) = x, Vz € R, so that A(¥) = C*°(R,R). The subset of all functions
having compact support is an proper ideal, and hence is contained in a maximal ideal M.
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Since H(M) = (), M cannot be closed.

In fact, this A(¥) has many dense maximal ideals, corresponding to some kind of

ultrafilters.

Recall that a character of a real Fréchet algebra is, by definition, a nonzero algebra
homomorphism from the algebra to R. There is a bijective correspondence between char-
acters and maximal ideals with quotient isomorphic to R. It is known that all characters

on real Fréchet algebras are necessarily continuous [3].

Corollary 14. The characters of A(¥) are the evaluations at the points of R%.

PROOF. Since characters are continuous, the kernel of a character is a closed maximal
ideal, hence is K(a) for some a € R%. It follows easily that the character is evaluation at

a. u

Characters belong to A(¥)*, so the space of characters inherits the weak—star topology.

We may thus rephrase Corollary 5, as follows:

Theorem 15. Let E and F be disjoint weak—star closed sets of characters on A(V). Then
there exists a function f € A(W) such that ¢(f) = 1 for all ¢ € E and ¢(f) = 0 for all

peEF. =

This is the regularity referred to in the introduction.

12



4. Localness.

Segal asked in 1949 whether A(¥) has a local description analogous to the Stone-
Weierstrass Theorem. Nachbin conjectured that membership of f in A(¥) is determined
by the behaviour of f on each level set of W. This conjecture may be reformulated in
in terms of Taylor series, and some special cases have been proved by Tougeron and the
authors. For a more detailed account of the history, see [1, 2]. To date, it has not even
been established that membership in A(¥) depends only on the behaviour of f near each
level set of W. This we shall now do.

First, we establish a preliminary fact.

Lemma 16. Let E C U C R, where E is HK—closed and U is (Euclidean) open. Let K

be compact. Then there exists a HK—open set V such that E CV and KNV C KNU.

PROOF. By Theorem 11, we may choose h € A(¥) such that h = 0 on E and h > 0 off
E. Let n = infg gy h. Then 5 > 0. Take V = {z € R?: h(x) < n}. Then V is HK—open,

by Corollary 9, E C V,and KNV C K NU, as required. =

Theorem 17. Let ¥ € C*°(R%,R") and f € C*°(R% R). Then the following four
conditions are equivalent:

(1) f € A(D);

(2) Va € RY, there exists a HK-neighbourhood U of a and there exists a function g € A(¥)
such that g = f on U.

(3) Va € R, there exists a HK-open neighbourhood U of a and there exists a sequence of
gn € R[¥] such that g, — f in C*°(U,R) topology.
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(4) Va € R4, and for each compact K C R4, there exists a (Euclidean) open neighbourhood

U of KNHK(a) and there exists a sequence of g, € R[V] such that g, — f in C*°(U,R)

topology.

PROOF. It is evident that (1) implies (2), (2) implies (3), and (3) implies (4).

(4) = (1): Suppose (4). Fix K C R%, compact, and k € Z .

For each a € K, choose an open neighbourhood U, of KNHK(a) and a sequence
Ja,n € R[¥] such that g, ., — f in C*°(U,, R) topology.

For each a € K, Lemma 16 allows us to choose a HK-open set V,, such that HK(a) C V,

and KNV, C KNU,.

By Corollary 5 we may choose p, € A(V) such that p, > 0 precisely on V, and p =1
on HK(a). Let W, = {z € R?: p,(x) > 1/2}. Then W, is HK-open and HK(a) C W,,.

By compactness, we may choose aj,...,an, € K such that K C W,, U---UW, . Let
us abbreviate W,, to W, V,, to Vi, and g4, n t0 g; . Choose h; € A(¥) such that h; > 0
precisely on W;.

Let W =Wy U---UW,,. Since W is HK-open, we may choose h € A(¥) such that
h > 0 precisely on W. Since K is compact, the number n = inf g A is strictly positive. Let
F ={h >n/2}. Then F and R% ~ W are disjoint HK—closed sets, and K C F. Choose
ho € A(W) such that hg > 0 precisely on R? ~ F. Then s = hg+ -+ -+ hy;, belongs to A(¥)
and s > 0 on R%, so 1/s € A(¥), by Proposition 12. Let k; = h;/s. Then k; € A(¥),
ki >0, 0" ki =1, kg = 0 near K and sptk; C W; whenever i > 1.

Fix i, 1 <i<m. Let T; = KN {p; > 1/2}. Then T; is a compact subset of K N Uj.
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Since k; =0 on K ~ T, and g; , — f in C*°(U;, R), we see that

O (ki - Gim — ki~ f) =0

uniformly on K, for each |i|] < k, as n 1 oco. Since kg = 0 near K, we conclude that
the function 7, = >_7" kigi n, which belongs to A(V), converges uniformly, along with all
derivatives up to order k, uniformly on K, to ZT k; f, which equals f on K. This suffices

to show that (1) holds. m
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