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Abstract

Thiabendazole (TBZH) reacts with iron(III) nitrate causing protonation of the ligand to yield the nitrate salt [TBZH2NO3] (1).

Reaction of TBZH with copper(II) acetate results in the deprotonation of the ligand yielding [Cu(TBZ)2 � (H2O)2] (2). Reactions of

TBZH with the chloride, nitrate and butanedioate salts of copper(II) yields [Cu(TBZH)2Cl]Cl �H2O �EtOH (3), [Cu(TBZH)2(NO3)2]

(4) and [Cu(TBZH)(O2C–CH2CH2–CO2)] (5), respectively. The TBZH acts as a neutral chelating ligand in 3–5. Molecular struc-

tures of 1 and 3 were determined crystallographically. In 1, the asymmetric unit contains one TBZHþ
2 cation and one NO�

3 anion.

The structure of 3 comprises a five coordinate copper centre with the metal bound to two chelating TBZH ligands and one chloride.

The geometry is best described as trigonal bipyramidal. Hydrogen bonding connects the complex cation with the uncoordinated

chloride anion and the water and ethanol solvate molecules. Compound 1 and the copper complexes 2–5, the metal free ligands and

a number of simple copper(II) salts were each tested for their ability to inhibit the growth of Candida albicans. The metal free TBZH

and its nitrate salt (1) exhibited very poor activity. Complex 2, in which the TBZH is present as an anionic ligand (TBZ�), exhibits
moderate activity towards the pathogen. Chelation of the neutral TBZH to copper centres (complexes 3–5) results in potent anti-

candida activity. The dimethyl sulphoxide (DMSO) soluble complexes 3 and 4, along with metal free TBZH were assessed for their

cancer chemotherapeutic potential towards two human epithelial-derived cancer model cell lines. Complexes 3 and 4 displayed

similar dose-dependent cytotoxicity in both cell lines with IC50 values of approximately 50 lM, which were found to be significantly

lower than that for metal free TBZH.
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1. Introduction

Candida albicans is a commensal of the human

body and is considered to be an important fungal

pathogen. Opportunistic infection can lead to the de-
velopment of systemic candidosis which is often fatal in
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Fig. 1. The structure of thiabendazole.
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immunocompromised patients [1–4]. Existing therapies

for systemic fungal infections rely on the use of polyene

and azole anti-fungal drugs, such as nystatin and keto-

conazole. Resistence to these drugs has been reported [5]

and this reduces the efficacy of the therapy and can ul-
timately lead to the death of the patient. Mechanisms

that confer antifungal drug resistence in yeast include an

increase in the expression of drug efflux pumps which

remove the drug from the cell before a toxic concen-

tration can be reached [6], alterations in the target of the

drug and variations in the ergosterol biosynthetic

pathway [7]. The problems associated with the polyene

and azole drugs have resulted in a search for possible
alternative anti-fungal agents [8]. Reports have ap-

peared in the literature describing the anti-fungal ac-

tivity of metal complexes [9]. Due to the possibility of a

difference in mode of anti-fungal activity metal-based

drugs may represent a novel group of anti-mycotic

agents which could have potential applications as

pharmaceuticals.

Recently, we have shown that a range of carboxylate
and dicarboxylate complexes incorporating transition

metal centres and including the N,N0-donor ligand 1,10-

phenanthroline (phen) are potent in vitro inhibitors of

the growth of C. albicans [10–16].

Furthermore, we have shown that by changing the

structural nature of the chelating phenanthroline mole-

cules it is possible to generate complexes that are very

active at much lower concentrations [17]. Experiments
with 1,7-phenanthroline and 4,7-phenanthroline dem-

onstrated that ligands with chelating ability appeared to

be desirable for anti-fungal activity [18]. However, when

the 1,10-phenanthroline is replaced by the structurally

similar N,N0-donor ligand 2,20-bipyridine (bipy) com-

plexes devoid of anti-candida activity are obtained [16].

Significantly, when the 1,10-phenanthroline itself is tes-

ted against the candida it generally exhibits superior
activity to that of the metal complexes and activity

comparable to the prescription drugs. Other workers

have recently reported very good anti-candida activity

for several new organic 1,10-phenanthroline derivatives

[19]. We believe that the so-called ‘‘metal free’’ 1,10-

phenanthroline is probably coordinating to metal ions

that are present in trace amounts in the growth medium

and that it is these resulting metal–phenanthroline
complexes that are responsible for the high anti-candida

activity.

The mode of action of 1,10-phenanthroline and a

number of our potent anti-candida metal complexes

{M¼Cu(II), Mn(II) or Ag(I)} [20] was examined. The

phen and its metal complexes had minimum inhibitory

concentrations (MICs) in the range 1.25–5 lg/ml and at

concentration of 10 lg/ml they displayed some fungi-
cidal activity.

Yeast cells exposed to these drugs showed a dimin-

ished ability to reduce 2,3,5-triphenyltetrazolium chlo-
ride (TTC), indicating a reduction in respiratory

function. Treating exponential and stationary phase

yeast cells with phen and the Cu(II) and Mn(II) com-

plexes caused a dramatic increase in oxygen consump-

tion. All of the drugs promoted reduction in levels of
cytochrome b and c in the cells, whilst the Ag(I) com-

plex also lowered the level of cytochrome aa. Cells

treated with phen and the Cu(II) and Ag(I) species

showed reduced levels of ergosterol whilst the Mn(II)

complex induced an increase in the sterol concentra-

tion. The general conclusion was that phen and its

Cu(II), Mn(II) and Ag(I) complexes damage mito-

chondrial function and uncouple respiration. The fact
that these drugs were not uniformly active suggests that

their biological activity has a degree of metal-ion de-

pendency. The effect of these drugs on the structure of

yeast and mammalian cell organelles and the integrity

of cellular DNA was also studied [21]. The conclusion

was that phen and the metal–phen complexes have the

potential to induce apoptosis in fungal and mammalian

cells. 1,10-Phenanthroline and its metal complexes
represent a novel set of highly active anti-fungal agents

whose mode of action is significantly different to that of

the state-of-the-art polyene and azole prescription

drugs. In an effort to extend this class of novel drug, we

have been studying metal complexes containing benz-

imidazole-based ligands. Benzimidazole and many of its

derivatives exhibit a variety of biological actions, in-

cluding antibacterial, antiviral, anticancer and anti-
fungal activity [22].

2-(40-Thiazolyl)benzimidazole{thiabendazole (TBZH)}

(Fig. 1) is a well-known anthelmintic which is non-toxic

to humans [23] and it also has applications as a fungicide

in agriculture [24]. Because of its structural similarity to

the chelating agents 2,20-bipyridine and 1,10-phenan-

throline, we were prompted to try and generate metal

complexes of it. Further interest is derived from TBZH
as it can act as both an acid and a base making it pos-

sible to generate inorganic compounds in which it can be

either neutral, anionic or cationic. Reports of the bio-

logical activity of metal complexes of this potential

N,N0-donor chelating ligand are quite rare. In the pres-

ent paper, we report the synthesis, characterisation and

the fungitoxic activity of inorganic derivatives of TBZH.

To date TBZH is the first N,N0-donor ligand we have
studied that, in vitro, exhibits poor anti-candida activity

on its own but when complexed to a copper(II) centre

becomes a relatively potent drug. In light of the fact that
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very little is known about the biological properties of

metal complexes of TBZH, we also investigated the

chemotherapeutic potential of the free ligand and two of

the novel complexes towards two tumourigenic human

model cell lines.
2. Experimental

2.1. Chemistry

Chemicals were purchased from commercial sources

and used without further purification. IR spectra were
recorded in the region 4000–400 cm�1 on a Nicolet-400

Impact spectrometer. Magnetic susceptibility measure-

ments were made using a Johnson Matthey Magnetic

Susceptibility balance. [HgCo(SCN)4] was used as a ref-

erence. Satisfactory microanalytical data for the com-

plexes were reported by the Microanalytical Laboratory,

University College Cork, Ireland. [Cu(O2C–CH2CH2–

CO2)]{HO2C–CH2CH2–CO2H¼ butanedioic acid} was
synthesised using a method previously published [12].
2.1.1. [TBZH2NO3] (1)
To a solution of Fe(NO3)3 � 9H2O (0.5 g, 1.24� 10�3

mmol) in ethanol (100 cm3) was added thiabendazole

(TBZH) (0.5 g, 2.47� 10�3 mmol) and the resulting dark

red solution was refluxed for 3 h. Upon standing col-

ourless crystals of the product formed which were fil-
tered and air-dried. Yield: 0.1478 g (45.3%). Calc: C,

45.62; H, 2.68; N, 21.28. Found: C, 45.45; H, 3.02; N,

21.18%. IR (KBr): 3408, 3084, 1635, 1586, 1385, 1347,

1304, 1043, 825, 739, 535 cm�1. Solubility: soluble in

ethanol and methanol.
2.1.2. [Cu(TBZH)2 � (H2O)2] (2)
To a solution of thiabendazole (TBZH) (2.01 g, 10.00

mmol) in ethanol (100 cm3) was added [Cu2(CH3CO2)2 �
2H2O] (1.00 g, 5.00 mmol) and the resulting dark green

solution was refluxed for 4 h. The dark green solid which

deposited was filtered off, washedwith water and ethanol,

and then air-dried.Yield: 2.40 g (96%). Calc: C, 48.03; H,

3.22; N, 16.81. Found: C, 48.99; H, 2.60; N, 16.74%. IR

(KBr): 3427, 3082, 1605, 1474, 1409, 1359, 1294, 1269,

1228, 1015, 933, 908, 875, 834, 744 cm�1. leff : 1.64 B.M.
Solubility: insoluble in water, ethanol, methanol, acetone

and trichloromethane.
2.1.3. [Cu(TBZH)2Cl]Cl �H2O �EtOH (3)
To a solution of thiabendazole (TBZH) (3.14 g, 7.40

mmol) in ethanol (100 cm3) was added CuCl2 � 2H2O (1

g, 7.40 mmol) and the resulting light green solution was

refluxed for 4 h. The light green solid which deposited
was filtered off, washed with water and ethanol, and
then air-dried. Yield: 2.70 g (64%). Calc: C, 43.12; H,

3.17; N, 13.98. Found: C, 43.12; H, 3.28; N, 13.91%. IR

(KBr): 3443, 3328, 3221, 3074, 2967, 2828, 2764, 1630,

1597, 1513, 1491, 1466, 1441, 1326, 1294, 1228, 1189,

1080, 1048, 1015, 998, 933, 875, 842, 744, 670 cm�1. leff :
1.57 B.M. Solubility: insoluble in water, ethanol, meth-

anol, acetone and trichloromethane.
2.1.4. [Cu(TBZH)2(NO3)2] (4)
To a solution of thiabendazole (TBZH) (1.80 g, 9.02

mmol) in ethanol (100 cm3) was added

Cu(NO3)2 � 2H2O (1.00 g, 4.29 mmol) and the resulting

lime green solution was refluxed for 4 h. The lime green
solid which deposited was filtered off, washed with

water and ethanol, and then air-dried. Yield: 2.57 g

(98%). Calc: C, 40.68; H, 2.37; N, 18.48. Found: C,

40.54; H, 2.39; N, 18.51%. IR (KBr): 3098, 2360, 1593,

1517, 1441, 1409, 1384, 1329, 1289, 1228, 1015, 998,

933, 875, 842, 769, 744 cm�1. leff : 1.71 B.M. Solubility:

insoluble in water, ethanol, methanol, acetone and

trichloromethane.
2.1.5. [Cu(TBZH)(bda)] (5)
To a solution of thiabendazole (TBZH) (0.60 g, 3.00

mmol) in ethanol (50 cm3) was added [Cu(O2C–

CH2CH2–CO2)] (0.50 g, 1.53 mmol) and the blue sus-

pension was refluxed for 4 h. The resulting blue solid

which deposited was filtered off, washed with water and

ethanol, and then air-dried. Yield: 0.62 g (69%). Calc: C,
44.15; H, 2.91; N, 11.03. Found: C, 44.38; H, 2.85; N,

11.67%. IR (KBr): 3427, 3115, 2918, 2352, 1557,

1425,1409, 1285, 1228, 1187, 1015, 974, 941, 875, 834,

777, 637 cm�1. leff : 1.74 B.M. Solubility: insoluble in

water, ethanol, methanol, acetone and trichloromethane.
2.2. X-ray crystallography

The two data sets were collected at 150�(2) K on a

Bruker SMART 1000 diffractometer using Mo Ka ra-

diation (k ¼ 0:71073 �A). Each was solved by direct

methods and refined by full-matrix least-squares on F2.
All the non-hydrogen atoms were refined with aniso-

tropic atomic displacement parameters and hydrogen

atoms bonded to carbon were inserted at calculated

positions using a riding model. In 1, the hydrogen atoms

bonded to nitrogen were located in the difference map

but then inserted at calculated positions using a riding

model. In 3, the hydrogen atoms bonded to nitrogen

were located from difference maps and not further re-
fined; that bonded to the ethanol oxygen atom in 3 was

treated in the same way. Hydrogen atoms bonded to

water molecules were not included in the models. Details

of the collection and refinement are given in Table 1 . All

programmes used in the structure solution and refine-

ment are contained in the SHELXTLSHELXTL package [25].



Table 1

Crystal data and structure refinement for 1 and 3

Compound [TBZH2NO3] (1) [Cu(TBZ)2Cl]Cl �H2O �EtOH (3)

Empirical formula C10H8N4O3S C22H22Cl2CuN6O2S2

Formula weight 264.26 601.02

Crystal system Monoclinic Monoclinic

Space group P21=n P2=c
a (�A) 4.8074(7) 16.2813(8)

b (�A) 13.812(2) 11.3482(6)

c (�A) 16.619(3) 15.6061(8)

b (�) 97.779(2) 118.075(1)

Volume (�A3) 1093.4(3) 2544.1(2)

Z 4 4

Density (calc) (Mg/m3) 1.605 1.569

Absorption coefficient (mm�1) 0.303 1.266

F ð000Þ 544 1228

Crystal size (mm3) 0.42� 0.17� 0.09 0.20� 0.15� 0.15

Crystal description Yellow block Green needle

h range (�) 1.92–25.00 1.42–28.92

Index ranges �56 h6 5, �166 k6 15, �196 l6 19 �216 h6 22, �156 k6 14, �206 l6 20

Reflections collected 7359 29,636

Independent reflections [Rint] 1926 [0.0275] 6164 [0.0484]

Tmax; Tmin 1.00000, 0.771000 0.928078, 0.762571

Data/restraints/parameters 1926/0/163 6164/0/316

Goodness-of-fit on F 2 1.060 1.013

Final R indices ½I > 2rðIÞ� R1 ¼ 0:0376, wR2 ¼ 0:0987 R1 ¼ 0:0484, wR2 ¼ 0:1321

R indices (all data) R1 ¼ 0:0434, wR2 ¼ 0:1035 R1 ¼ 0:0820, wR2 ¼ 0:1534

Largest difference peak and hole (e�A�3) 0.481 and )0.537 0.820 and )0.561
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2.3. Anti-candida testing

Candida albicans isolate was obtained commercially

from Oxid Culti-loops (ATCC 10241). The isolate was

stored on Sabouraud dextrose agar (SDA) plates at

4 �C. Culture conditions and measurement of drug

minimum inhibitory concentrations (MICs) were as

previously described [11].

2.4. Cytotoxicity testing

Dimethyl sulphoxide (DMSO) and all cell culture

reagents and media were purchased from Signa–Aldrich

Ireland, Ltd, unless otherwise stated.

2.5. Cell lines and cell culture

Cytotoxicity assays were performed using two human

model cell lines in order to assess the cancer chemo-

therapeutic potential of metal free TBZH and complexes

3 and 4 (the other complexes were not soluble in

DMSO). The human malignant melanoma (melanocyte)

skin cell line (SK-MEL-31) and squamous carcinoma

tongue cell line (CAL-27) were purchased from the
American Type Culture Collection, Manassas. SK-

MEL-31 cells were grown as a monolayer in Eagle�s
minimum essential medium, supplemented with 2 mM

LL-glutamine and Earle�s balanced salt solution, con-

taining 1.5 g/L sodium bicarbonate, 0.1 mM non-es-
sential amino acids, 1.0 mM sodium pyruvate, 100 U/ml

penicillin and 100 lg/ml streptomycin supplemented to

contain 15% (v/v) foetal bovine serum (Flow laborato-

ries, Herts, UK). The CAL-27 cells were grown in

Dulbecco�s modified Eagle�s medium, supplemented

with 4 mM LL-glutamine, containing 1.5 g/L sodium bi-

carbonate, 0.1 mM non-essential amino acids, 1.0 mM

sodium pyruvate, 100 U/ml penicillin and 100 lg/ml
streptomycin supplemented to contain 15% (v/v) foetal

bovine serum. Both model cells were grown at 37 �C in a

humidified atmosphere, in the presence of 5% CO2 and

were in the exponential phase of growth at the time of

assay.

2.6. Assessment of cytotoxicity, using MTT assay

Test compounds were dissolved in DMSO, diluted in

culture media and used to treat the two model cells over

a drug concentration range 0.1–1000 lM for a period of

96 h. SK-MEL-31 and CAL-27 cells were seed at a

density of 3.5� 104 and 5� 103 cells/well, respectively,

into sterile 96 well flat-bottomed plates (Falcon Plastics,

Decton Dickinson) and grown in 5% CO2 at 37 �C. A
miniaturised viability assay using 3-(4,5-dimethylthia-
zol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) was

carried out according to the method described by

Mosman [26]. The IC50 value was calculated for each

drug and used as a means for comparing the toxicity of

each of the derivatives tested. Consequently, IC50 was
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defined as the drug concentration causing a 50% re-

duction in cellular viability. Each assay was carried out

using five replicates and repeated on at least three sep-

arate occasions. Viability was calculated as a percentage

of solvent treated control cells, and expressed as per-
centage of control. The significance of any reduction in

cellular viability was determined using one-way ANO-

VA (analysis of variance). A probability of 0.05 or less

was deemed statistically significant.
3. Results and discussion

3.1. Synthesis and characterisation of the compounds

Five inorganic derivatives of TBZH in which the li-

gand is protonated {[TBZH2NO3] (1)}, deprotonated

{[Cu(TBZ)2 � (H2O)2] (2)} and neutral {[Cu(TBZH)2-

Cl]Cl �H2O �EtOH (3), [Cu(TBZH)2(NO3)2] (4) and

[Cu(TBZH)(bda)] (5)} were generated in moderate to

good yield using the reactions shown in Scheme 1. The
non-metal-based nitrate salt [TBZH2NO3] (1) was the

major product of a reaction between TBZH and

Fe(III)(NO3)3. Attempts to generate this salt using a

direct method involving nitric acid and TBZH have so

far been unsuccessful and the mechanism of the for-

mation of the salt is unknown. Hydrated Fe(III) salts

are known to act as aqua acids, a fact which could ex-

plain the protonation of the TBZH molecule during this
reaction. Failure to isolate any iron complex formed

during the reaction may well be due to the fact that

Fe(III) compounds are not particularly stable.

The formulation of the compounds was assigned on

the basis of their elemental analysis, IR spectra and X-

ray analysis (for 1 and 3). In the respective IR spectra

the majority of the ligand absorption bands, some of

them with changed intensity, appear again in the
compounds. In 1, the N–H stretching band at 3093

cm�1 has shifted to 3084 cm�1 and has become more

intense. Furthermore, the band associated to the imi-

dazolic m(C@N) at 1577 cm�1 in the free ligand has

completely disappeared in the cationic TBZHþ
2 due to

protonation on the benzimidazole imine nitrogen, re-
TBZH

[Cu(TBZH)(Bda)]  (5)

{Cu(Bda)(H2O)}n

[TBZH2NO3]  (1)
Fe(NO3)2 Cu(NO3)2.2H2O

[Cu(TBZH)2(NO3)2]  (4)

CuCl2.2H2O

[Cu(TBZH)2CL]Cl.H2O.EtOH  (3)

[Cu2(CH3COO)4.2H2O]

[Cu(TBZ)2(H2O)2]  (2)

Scheme 1.
sulting in delocalisation of the double bond over the N–

C–N section. A strong absorption band at approxi-

mately 1385 cm�1 in the spectrum of 1 (which does not

appear for the ligand) is characteristic of a nitrate

group [27].
The anionic nature of the ligand in 2 is evident when its

spectrum is compared to that of TBZH. The prominent

bands at 3093 cm�1 (N–H stretching) and at 1093 cm�1

(N–H vibration) for the free ligand were absent in the

spectrum of 2. Also for 2, the band associated to the im-

idazolic m(C@N) at 1577 cm�1 in the free ligand has

shifted to 1605 cm�1 due to deprotonation of the imi-

dazolic nitrogen. In the spectra of complexes 3 and 4 the
m(C@N)imidazolic and m(C@N)thiazolic bands (1577 and 1480

cm�1, respectively) are shifted (to 1597 and 1513 cm�1 for

3; 1593 and 1517 cm�1 for 4) indicating that the ligand is

coordinated through the imidazolic and the thiazolic ni-

trogens. The asymmetrical carboxylate stretching band

precludes a similar assignment in the spectrum of 5. For

all four complexes 2–5 the C–S stretching band (at 1228

cm�1 for the free ligand) remains essentially unchanged
suggesting that the sulphur atom in the thiazole ring is

uncoordinated. New bands in the spectrum of 4 at ap-

proximately 1441 and 1289 cm�1 are assigned to an un-

coordinated nitrate group whereas a new band at 1329

cm�1 is indicative of the presence of a coordinated nitrate.

As well as the bands that have been assigned to chelating

TBZH ligands the spectrum of 5 has bands that are

characteristic of carboxylate anions {m(OCO)assym at 1557
cm�1 and m(OCO)sym at 1409}. The calculated D(OCO)

value {m(OCO)assym ) m(OCO)sym} of 148 cm�1 is typical

for a carboxylate group bound to a metal in a chelating

coordination mode [28]. Whereas the room temperature

magnetic susceptibility values for 4 and 5 are close to

those expected for simple copper(II) species (i.e., those

lacking Cu–Cu interactions) the values for 2 and 3 are

slightly lower and some form of antiferromagnetic inter-
action may be taking place in these complexes [29]. With

the exception of the nitrate salt all of the complexes are

effectively insoluble in common solvents. Complexes 3

and 4 were found to be soluble in DMSO.

Crystals suitable for X-ray analysis were isolated for

compounds 1 and 3. The structure of [TBZH2NO3] (1) is

shown in Figs. 2 and 3, and bond lengths and angles are
Fig. 2. The asymmetric unit of [TBZH2NO3] (1).



Table 2

Bond lengths (�A) and angles (�) for [TBZH2NO3] (1)

C(1)–C(3) 1.364(3)

C(1)–S(1) 1.698(2)

S(1)–C(2) 1.7209(19)

C(2)–N(1) 1.303(3)

N(1)–C(3) 1.379(2)

C(3)–C(4) 1.441(3)

C(4)–N(2) 1.338(2)

C(4)–N(3) 1.341(2)

N(2)–C(5) 1.385(3)

C(5)–C(6) 1.390(3)

C(5)–C(10) 1.398(3)

C(6)–C(7) 1.379(3)

C(7)–C(8) 1.407(3)

C(8)–C(9) 1.378(3)

C(9)–C(10) 1.389(3)

C(10)–N(3) 1.381(3)

N(11)–O(13) 1.235(2)

N(11)–O(11) 1.254(2)

N(11)–O(12) 1.258(2)

C(3)–C(1)–S(1) 110.24(15)

C(1)–S(1)–C(2) 89.13(10)

N(1)–C(2)–S(1) 115.73(15)

C(2)–N(1)–C(3) 109.33(16)

C(1)–C(3)–N(1) 115.57(18)

C(1)–C(3)–C(4) 124.90(18)

N(1)–C(3)–C(4) 119.53(16)

N(2)–C(4)–N(3) 109.24(17)

N(2)–C(4)–C(3) 125.10(17)

N(3)–C(4)–C(3) 125.66(17)

C(4)–N(2)–C(5) 108.96(15)

N(2)–C(5)–C(6) 131.75(17)

N(2)–C(5)–C(10) 106.31(17)

C(6)–C(5)–C(10) 121.94(18)

C(7)–C(6)–C(5) 116.20(18)

C(6)–C(7)–C(8) 121.90(19)

C(9)–C(8)–C(7) 121.87(19)

C(8)–C(9)–C(10) 116.41(18)

N(3)–C(10)–C(9) 131.64(17)

N(3)–C(10)–C(5) 106.68(16)

C(9)–C(10)–C(5) 121.68(18)

C(4)–N(3)–C(10) 108.80(16)

O(13)–N(11)–O(11) 120.53(17)

O(13)–N(11)–O(12) 119.37(16)

O(11)–N(11)–O(12) 120.09(16)

Table 3

Hydrogen bonds for [TBZH2NO3] (1) (�A and �)

D–H���A d(D–H) d(H� � �A) d(D���A) \(DHA)

N(2)–H(2A)���O(12)#1 0.88 1.91 2.785(2) 175.3

N(2)–H(2A)���O(13)#1 0.88 2.58 3.213(2) 129.7

N(3)–H(3)���O(11)#2 0.88 1.98 2.856(2) 170.9

Symmetry transformations used to generate equivalent atoms: #1

Fig. 3. A view of the p–p stacking in [TBZH2NO3] (1).
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listed in Table 2. The asymmetric unit contains one

protonated TBZH2 cation and one nitrate anion. The

TBZH is protonated on the benzimidazole imine nitro-

gen, resulting in delocalisation of the double bond over

the N–C–N section (Table 2). The cations are hydrogen

bonded (Table 3) to nitrate anions via each of the NH

groups, resulting in a chain along which adjacent
TBZH2 units are oriented at approximately right angles

to each other. There is significant pp-stacking between

adjacent TBZH2 cations with an interplanar distance ca.

3.3 �A.

The structure for [Cu(TBZH)2Cl]Cl �H2O �EtOH (3)

is shown in Figs. 4–6 and selected bond lengths and

angles are listed in Table 4. The copper ion is five-co-

ordinate, bound to two TBZH ligands via a-diimine
units and to one chloride anion (Fig. 4). The geometry at

copper is irregular but perhaps best described as trigonal

bipyramidal with the benzimidazole nitrogen atoms N2

and N12 as apical donors (N2–Cu–N12 171.9(1)�). The
benzimidazole NH groups N1 and N11 are hydrogen

bonded to Cl1 of a neighbouring cation and to Cl2,

respectively (Table 5 and Fig. 5). The OH protons of the

solvate water and ethanol molecules are also involved
on hydrogen bonding (Fig. 4), resulting in a 3D network

of hydrogen bonding extending through the lattice and

supported by p–p-interactions (Fig. 6).

�xþ 1=2; y þ 1=2;�zþ 3=2 and #2 �x;�y þ 1;�zþ 1.
3.2. Biological activities

The nitrate salt of TBZH (1), all of the copper com-

plexes {2–5 and [Cu(O2C–CH2CH2–CO2)]}, the free li-
gands and a selection of simple copper salts were each

tested for their ability to inhibit the growth of C. albicans
(Table 6). Butanedioic acid (HO2C–CH2CH2– CO2H)

and the simple copper salts are essentially inactive against

the pathogen. Furthermore, coordination of butanedioic

acid to a copper center {[Cu(O2C–CH2CH2–CO2)]} does

not result in any significant improvement in the activity



Table 4

Selected bond lengths (�A) and angles (�) for [Cu(TBZ)2Cl]Cl �H2O �
EtOH (3)

Cu–N(2) 1.972(3)

Cu–N(12) 1.975(3)

Cu–N(3) 2.076(3)

Cu–N(13) 2.153(3)

Cu–Cl(1) 2.3050(11)

N(2)–Cu–N(12) 171.91(13)

N(2)–Cu–N(3) 80.75(12)

N(12)–Cu–N(3) 95.98(12)

N(2)–Cu–N(13) 95.27(11)

N(12)–Cu–N(13) 79.98(11)

N(3)–Cu–N(13) 120.82(12)

N(2)–Cu–Cl(1) 95.22(9)

N(12)–Cu–Cl(1) 92.34(10)

N(3)–Cu–Cl(1) 134.35(9)

N(13)–Cu–Cl(1) 104.82(9)

Table 5

Hydrogen bonds for [Cu(TBZ)2Cl]Cl �H2O �EtOH (3) (�A and �)

D–H� � �A d(D–H) d(H���A) d(D���A) \(DHA)

N(1)–H(1)���Cl(1)#1 0.91 2.37 3.209(3) 152.2

N(11)–H(11)���Cl(2)#2 0.88 2.18 3.050(3) 168.3

O(21)–H(21)���O(1W) 0.88 1.89 2.732(7) 161.4

N(1)–H(1)���Cl(1)#5 0.91 2.77 3.398(3) 126.6

O1W���Cl2#3 3.187(5)

O1W���Cl2#4 3.158(4)

Symmetry transformations used to generate equivalent atoms: #1

x;�y þ 1; zþ 1=2, #2 �x;�y;�z, #3 x;�y; zþ 1=2, #4 �x; y;�zþ 1=2

and #5 �xþ 1;�y þ 1;�zþ 1.

Fig. 6. The packing diagram in [Cu(TBZH)2Cl]Cl �H2O �EtOH (3).

Fig. 5. Hydrogen bonding in [Cu(TBZH)2Cl]Cl �H2O �EtOH (3).

Fig. 4. The structure of the cation in [Cu(TBZH)2Cl]Cl �H2O �EtOH

(3).

Table 6

Anti-candida activitya

Test compound % Cell growth

Control 100

Ketoconazole 20

1,10-Phenanthroline 15

CuCl2 95

CuNO3 98

Cu(OAc)2 94

HO2C–CH2CH2–CO2H 98

[Cu(O2C–CH2CH2–CO2)] 95

TBZH 76

[TBZH2NO3] (1) 60

[Cu(TBZ)2(H2O)2] (2) 54

[Cu(TBZH)2Cl]Cl �H2O �EtOH (3) 29

[Cu(NO3)2(TBZH)2] (4) 30

[Cu(TBZH)(O2C–CH2CH2–CO2)] (5) 19

a The compounds were tested at concentrations of 10 lg/ml of

aqueous RPMI medium. Complexes 2–5 were insoluble in water and

were used as suspensions. Yeast cells were grown for 24 h at 37 �C.
Results are presented as % cell growth and the effectiveness of the

compounds are compared to the growth of the control (no drug

added).
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of the dicarboxylic acid. Themetal free neutral TBZH is a

very poor inhibitor of the growth of the pathogen.

Compound 1 and complex 2 (in which the ligand is found
in its cationic and anionic states, respectively) are

both moderate anti-candida agents. Significantly when

the neutral TBZH is coordinated to a copper center
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Fig. 8. Effects of TBZH, 3 and 4 on the viability of SK-MEL-31 cells

following continuous incubation with increasing drug concentration

(0.1–1000 lM) for 96 h. Bars indicate standard error of the mean

(SEM) and results were statistically significant from control at

p < 0:05.

Table 7

The chemotherapeutic potential of TBZH 3 and 4

Test compound Toxicities (IC50, lM)

CAL-27

(means� SD)

SK-MEL-31

(means� SD)

TBZH 676.7� 12.0 453.3� 66.0

[Cu(TBZH)2Cl]Cl �H2O �EtOH (3) 55.0� 0.0 49.5� 7.7

[Cu(NO3)2(TBZH)2] (4) 54.0� 2.5 46.7� 5.0

Cancer chemotherapeutic potential of complexes 3 and 4 along

with metal free TBZH in CAL-27 and SK-MEL-31, following con-

tinuous incubation for 96 h in the concentration range 0.1–1000 lM,

using MTT assay. A graph of viability as % of solvent treated control

verses drug concentration was used to calculate IC50 values (lM),

(means�SD; n ¼ 5).
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(complexes 3–5) very potent anti-candida drugs are pro-

duced. Complex 5 exhibits the greatest fungitoxic activity

and indeed is comparable to the prescription drug keto-

conazole at this concentration. Preliminary studies on the

mode of action of the copper TBZH complexes have re-
vealed that they cause a reduction in the ergosterol con-

tent of the fungal cells [30] which was also found to be the

case for the phenanthroline complexes previously re-

ported [20].

The chemotherapeutic potential of TBZH and the

DMSO soluble complexes 3 and 4 was determined by

calculation of IC50. Calculation of this value allows a

direct comparison of the cytotoxicity of each of the
test agents. The IC50 values were calculated using the

data presented in Figs. 7 and 8. The values were

obtained for each compound and in each cell line

(Table 7). TBZH was capable of killing both cancer-

derived cell lines only at higher concentrations with

IC50 value of 453 and 677 lM (equivalent to 91.7 and

136.9 lg/ml), for the tongue and skin cell line, re-

spectively. In the case of compounds 3 and 4, the IC50

values were very similar across the two human model

cell lines. They had almost identical IC50 values of 55

and 54 lM (equivalent to 33.1 and 31.9 lg/ml), re-

spectively, in the CAL-27 cell line and 50 and 47 lM
(equivalent to 39.1 and 30.7 lg/ml), respectively in the

SK-MEL-31 cell line. Although the activities of 3 and

4 do not fall within the accepted activity parameters

adopted for in vitro screening (i.e., IC50 values not
exceeding 4 lg/ml) [31] the results suggest the che-

motherapeutic potential of TBZH is significantly en-

hanced upon coordination to a metal centre.

Furthermore, the cytotoxic activity of all three com-

pounds is concentration dependent for both cell lines

(Figs. 7 and 8).
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Fig. 7. Effects of TBZH, 3 and 4 on the viability of CAL-27 cells

following continuous incubation with increasing drug concentration

(0.1–1000 lM) for 96 h. Bars indicate standard error of the mean

(SEM) and results were statistically significant from control at

p < 0:05.
4. Conclusion

Neutral thiabendazole (TBZH) when uncoordinated

to a metal centre is a poor anti-Candida agent and has

very little chemotherapeutic potential. Protonation of

TBZH to form the nitrate salt 1 and its deprotonation to

yield the complex 2 results in only moderate improve-

ment in its anti-candida activity. Complexes 3–5, in
which the TBZH is present as a neutral chelating ligand,

are all potent anti-candida agents with five possessing

activity comparable to the prescription drug ketocona-

zole. Coordination of neutral TBZH to a copper centre

in complexes 3 and 4 resulted in a significant increase in

its chemotherapeutic potential.
5. Supplementary data

Crystallographic data have been deposited with the

CCDC (12 Union Road, Cambridge, CB2 1EZ, UK)
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and are available on request quoting the deposition

numbers 219675 and 219676, respectively.
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