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a  b  s t  r  a  c t

A  reliable  method of  directly measuring  endogenously generated  nitric  oxide  (NO) in  real-time  and in

various  brain regions is  presented.  An  extensive  characterisation  of a  previously  described  amperometric

sensor  has  been  carried  out in  the  prefrontal cortex  and  nucleus accumbens of  freely  moving rats.  Systemic

administration  of saline caused  a  transient increase  in  signal  from baseline levels  in  both the  prefrontal

cortex  (13  ± 3 pA, n  =  17) and  nucleus  accumbens (12 ±  3 pA, n  = 8).  NO levels in  the  prefrontal cortex

were  significantly increased  by 43 ± 9  pA  (n  = 9)  following administration of  l-arginine. A  similar  trend

was  observed  in  the nucleus accumbens,  where  an  increase  of  44  ±  9 pA (n  = 8)  was  observed  when  com-

pared  against  baseline  levels. Systemic injections  of  the  non-selective  NOS inhibitor  l-NAME  produced a

significant  decrease in  current  recorded  in  the prefrontal  cortex  (24  ± 6 pA, n  = 5)  and nucleus  accumbens

(17  ± 3 pA, n  =  6). Finally  it  was  necessary  to validate the sensors functionality in vivo by investigating

the  effect  of  the  interferent ascorbate on  the  oxidation  current.  The  current  showed no variation in  both

regions  over  the  selected  time interval of  60  min,  indicating  no  deterioration  of  the  polymer  membrane.

A  detailed comparison identified significantly greater affects  of administrations on  NO sensors  implanted

in  the striatum than those inserted in  the prefrontal  cortex  and  the nucleus  accumbens.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Since its emergence as a  signalling molecule in the brain 20

years ago, nitric oxide (NO) has been implicated in  many different

functions that are determined by the source of the nitric oxide syn-

thase (NOS) enzyme used in its synthesis. Three isozymes have so

far been identified; endothelial NOS (eNOS), neuronal NOS (nNOS)

and inducible NOS (iNOS) (Alderton et al., 2001; Bruckdorfer, 2005;

Kelm, 1999; Kiechle and Malinski, 1993). Endothelial cells are prob-

ably the major, if  not the sole, location of eNOS in  the brain with

emerging evidence of its  role in regulating brain function, inde-

pendent of its role in the vasculature (Garthwaite, 2008). Neuronal

NOS is the most abundantly present isoform in the brain and is

tightly associated with NMDA receptor function on post-synaptic

membranes. The inducible form, which is Ca2+ independent and

produced in large amounts in response to  an external stimulus such

as infection or inflammation, carries out its role following release

from macrophages (Bruckdorfer, 2005).

NO’s diverse functions include a neurological function in

synaptic plasticity, neurotransmission, learning and memory

(Garthwaite, 2008; Wass et al., 2006a,b), in addition to having a
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primary role in non-specific immunity (Bruckdorfer, 2005), penile

erection (Escrig et al., 1999; Mas  et al., 2002) and platelet aggrega-

tion inhibition (Radomski et al., 1990). While NO is responsible for

normal synaptic transmission, excess levels of NO  have been por-

trayed  as being neurotoxic (Barth et al., 1997; Espey et al., 2002).

Glutamate neurotoxicity is hypothesised to occur primarily due to

release of NO from glial cells, via activation of the ionotropic glu-

tamate NMDA receptor (Dawson et al., 1996). Barth et al. (1997)

found that NO produced in  response to ischaemia and mediated

by glutamate release can cause neuronal cell death, effects which

were largely prevented by  use of NOS inhibitors.

It  is hypothesised that the prefrontal cortex serves a specific

function in cognitive control in  the brain; impairments of this brain

region have been implicated in  schizophrenia giving rise to neg-

ative  symptoms and cognitive dysfunctions associated with the

disease (Fejgin et al., 2008; Miller and Cohen, 2001; Tzschentke,

2001).  The nucleus accumbens which is part of the ventral stria-

tum is assumed to play a  role in reward, emotion and addiction

(Saul’skaya and Fofonova, 2009; Saul’skaya et al., 2008; Saulskaya

and  Fofonova, 2006; Savel’ev and Saul’skaya, 2007; Yananli et al.,

2007) and it too is postulated to have a  function in the pathophys-

iology of schizophrenia. Recent findings have postulated that the

NO pathway may constitute an interesting target for novel phar-

macological therapies in schizophrenia and possibly play a  role

in  the pathophysiology of the disorder. However, this contention
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rests on indirect evidence as suitable tools for the real-time detec-

tion of NO in vivo have, until recently, been lacking (Palsson et al.,

2009). This has also been highlighted recently by Garthwaite, who

expressed a great need for  a  reliable method of directly measuring

endogenously generated NO in tissues with the necessary sensi-

tivity or spatial and temporal precision (Garthwaite, 2008). We

have previously reported the in vitro (Brown et al., 2009; Brown

and Lowry, 2003) and in vivo (Finnerty et al., 2012) character-

isation of a Nafion®-modified Pt sensor designed for real-time

monitoring of brain extracellular NO. In vitro findings confirmed

that the Nafion®(5/2) sensor had a response time suitable for in  vivo

monitoring, linearity over the relevant concentration range for

NO,  freedom from protein and lipid fouling, and minimal inter-

ference from a variety of endogenous species, including ascorbic

acid, dopamine and serotonin over physiologically relevant con-

centration ranges. A  detailed in  vivo characterisation was  carried

out in the striatum of wistar rats and significant NO changes were

recorded against baseline following administrations of stock NO,

l-arginine and l-NAME. Ascorbate selectivity studies confirmed

minimal deterioration of the Nafion®-modified surface and the

stability of the sensor was analysed over 8 days confirming no sig-

nificant change in baseline. We  investigated the application of the

NO sensor in a study carried out utilising the psychotomimetic drug

phencyclidine hydrochloride (PCP), which was found to  induce

a dose-dependent increase in prefrontal cortex NO  levels, thus

corroborating previous indirect evidence of this effect of PCP. In

addition, the PCP-induced elevation of NO could be counteracted

by  pretreatment with the NOS inhibitor, l-NAME, in a dose that has

previously been shown to block the behavioural effects of PCP in

translational animal models of schizophrenia (Klamer et al., 2004a,

2001; Palsson et al., 2009; Wass et al., 2006a,b). This study has pro-

vided the first direct biochemical evidence for an  involvement of

NO in the effects of the NMDA receptor antagonist PCP.

In  the present study an extensive characterisation of the

Nafion®(5/2)-modified Pt sensor was carried out in  the prefrontal

cortex and nucleus accumbens of awake freely moving rats. These

two brain regions were chosen due to their high density of NMDA

receptors (Monaghan and Cotman, 1985) and their hypothesised

roles in the pathophysiology of schizophrenia (Fejgin et al., 2008).

Secondly, a comparative analysis was undertaken between the

Nafion®(5/2)-modified Pt sensors implanted in the prefrontal cor-

tex, nucleus accumbens and striatum.

2. Materials and methods

2.1. Chemicals and solutions

All chemicals used throughout the experiments were purchased

from Sigma Chemical Co. (Dublin, Ireland). A 0.9% solution of saline

was prepared by dissolving 0.9 g NaCl in 100 mL  doubly distilled

water. In all cases, unless otherwise noted all systemic admin-

istration of l-arginine (300 mg  kg−1), l-NG-nitroarginine methyl

ester hydrochloride (l-NAME, 30 mg kg−1), and sodium ascorbate

(2 g kg−1) were made up in  a solution of 0.9% saline.

2.2. NO sensor preparation

Nafion®(5/2)-coated Pt  disk electrodes were made from

Teflon®-insulated platinum/iridium (Pt/Ir 90%/10%) wire (125 �m

bare diameter 5T, Advent Research Materials, Suffolk, UK). The elec-

trodes were approximately 4 cm in length and were prepared by

carefully cutting 2 mm  of Teflon® insulation from one end of the

wire and soldering to this end a gold clip which provided rigidity

and  electrical contact. The other end of the wire acted as the active

(disk) surface. The electrode was modified as previously described

(Brown et al., 2009; Brown and Lowry, 2003; Finnerty et al., 2012).

2.3. Systemic administrations

All systemic administrations were carried out in 1 mL  saline by

intraperitoneal (i.p.) injection.

2.4. In vivo implantation and surgery protocol

Male Wistar rats (Biomedical Facility, University College Dublin,

Ireland) weighing between 200 and 300 g were housed in a tem-

perature (17–23 ◦C), humidity and light-controlled (12 h light,

12 h dark cycle) environment with access to food ad libitum

prior to surgery. NO sensors were implanted following a previ-

ously described procedure (Lowry et al., 1997). Coordinates for

the prefrontal cortex and nucleus accumbens with the skull lev-

elled between bregma and lambda, were: A/P + 3.2, M/L ± 0.8 from

bregma and D/V − 4.2 from dura and A/P +  1.85, M/L  ± 1.3 from

bregma and D/V − 6.8 from dura respectively (Paxinos and Watson,

1998). A reference and auxiliary electrode (8T Ag wires, 200 �m

bare  diameter) were placed in the cortex. The reference potential

provided by  the bare Ag wire in brain tissue is very similar to that

of  the saturated calomel electrode (SCE) used in the in vitro char-

acterisation (O’Neill et al., 1998). The electrodes and probe were

fixed to the skull with dental screws and dental acrylate (Asso-

ciated Dental Products, Swindon, UK). The rats were anesthetised

with the volatile anaesthesia Isoflurane, placed in  a Kopf stereotaxic

instrument and kept on a  heating pad to prevent hypothermia. A

1  mL/kg injection of the opioid analgesic buprenorphine is  admin-

istered subcutaneously (s.c.) 30 min  after the end of the surgery

and the animal allowed to rest. The animal is monitored for the

next few hours, before being transferred to a holding bowl where it

remains for the duration of the experiment. The animal is allowed

to recover for  at least 24 h prior to  connection to the potentiostat.

The desired potential (+900 mV vs. Ag  wire) is then applied to the

NO sensor and the current is allowed to stabilise for approximately

24 h. Following this period of stabilisation, in  vivo measurements

were commenced. All experimental procedures were performed

under license in accordance with the European Communities Regu-

lations 2002 (Irish Statutory Instrument 566/2002 and U.K. Animals

(Scientific Procedures) Act 1986).

2.5. Instrumentation and software

Constant potential amperometry was performed using pre-

viously described methods (Brown et al., 2009; Finnerty et al.,

2012). All data presented had baselines normalised to zero to show

the change in current (�I)  and reported concentration changes

are based on a previously reported protocol (Finnerty et al.,

2012). The significance of differences observed was estimated

using the Student’s t-test for paired or unpaired observations

where appropriate. Two-tailed levels of significance were used

with p <  0.05 considered to be significant. All data are presented

as  mean ± standard error (SEM), with n = number of sensors

implanted in 8 animals (saline – prefrontal cortex), 4 animals

(saline –  nucleus accumbens), 5 animals (l-arginine – prefrontal

cortex), 4  animals (l-arginine – nucleus accumbens), 5 animals

(l-NAME – prefrontal cortex), 4  animals (l-NAME – nucleus

accumbens) 6 animals (ascorbate – prefrontal cortex) and 5 ani-

mals (ascorbate – nucleus accumbens). The sample data presented

in Figs. 1–4 has been normalised and transformed to the average

response obtained for the respective treatments. This removes both

inter  electrode and inter animal variability by ensuring that the
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Fig. 1. Typical examples of  the effect of saline administration (1 mL  i.p.

injection) monitored in rat prefrontal cortex (top, average pre-injection base-

line = 317 ± 14 pA, n = 17) and rat nucleus accumbens (bottom, average pre-injection

baseline = 324 ± 37 pA, n = 8) with a Nafion®(5/2)-modified Pt sensor. Time zero indi-

cates point of injection.

presented current and concentration changes are representative

of  the data from all the animals used in  each study.

2.6. Experimental conditions

All experiments were carried out with the animal in its home

bowl. Implanted electrodes were connected to the potentiostat

through a six-pin Teflon® socket and a  flexible screened six core

cable which was mounted through a  swivel above the rats head

(Semat Technical) at least 7–8  h prior to the start of the first exper-

iment each day. This arrangement allowed free movement of the

animal.

2.7. Voltammetry techniques in vivo

All in vivo experiments utilised constant potential amperometry

which involves the application of a constant voltage. The resulting

current is directly proportional to  the concentration of the analyte

at  any given time. NO was detected by holding the implanted sensor

at  the oxidation potential of +900 mV (vs.  Ag wire) which has been

previously characterised as the optimum potential for NO  detection

(Brown, 2003; Brown et al., 2009).

3. Results and discussion

3.1. Systemic administrations

Since all administrations were by i.p. injection it was  important

to examine the effect of normal saline administrations (0.9%) on the

oxidation current. We have previously reported a  significant but

short lived change (22 ± 3 pA, p  < 0.001, n =  9) from baseline levels

in NO sensor’s implanted in  the striatum of Wistar rats following

Fig. 2.  Typical examples of the effect of l-arginine administration (300 mg kg−1,

1 mL i.p. injection) monitored in rat prefrontal cortex (top, average pre-injection

baseline = 394 ± 94  pA, n = 9) and rat nucleus accumbens (bottom, average pre-

injection baseline = 245 ± 25  pA, n  = 8) with  a Nafion®(5/2)-modified Pt sensor. Time

zero indicates point of injection.

saline injection (Finnerty et al., 2012). Similar initial and brief injec-

tion effects have also been observed for tissue O2 (Bolger et al.,

2011) and regional cerebral blood flow (rCBF) (Lowry and Fillenz,

2001) during the injection of saline, with a comparable return

to  baseline levels. A significant increase in the recorded current

(13 ± 3 pA, p <  0.001, n = 17) was observed in the prefrontal cortex,

reaching a  maximum level after 5 ± 1 min  (n = 17) and returning

to  a  baseline level after 12 ± 2 min. This short lived increase in

oxidation current corresponded to a concentration change of ca.

8  ± 2 nM.  A similar affect was  observed in the nucleus accumbens

following saline administrations. A transient increase in oxidation

current (12 ± 3 pA, n  = 8)  occurred after 4 ± 2  min. This resulted in

a  significant increase from baseline (p <  0.05) that represented a

concentration change of 7 ± 4 nM (n =  8). The current returned to

a  baseline level after 8 ± 3 min. Typical examples of the effect of

saline administration in both regions are shown in Fig. 1. The stress

of  the i.p. injection stimulates neuronal activation (Vahabzadeh

and  Fillenz, 1994), increasing rCBF and thus O2,  with the supply

of  the latter exceeding utilisation. The observed increase in  blood

flow  can be attributed to vasodilation brought about by NO through

its physiological function as the EDRF (Ignarro et al., 1987; Palmer

et al., 1987). The different roles that NO has to play in the body are

dependent on which type of NOS enzyme is used in its synthesis.

The constitutive forms (endothelial (eNOS) and neuronal (nNOS))

which are activated by  Ca2+,  followed by binding to  the protein

calmodulin, exert their effects through blood flow and neurotrans-

mission respectively (Marletta, 1993). These findings corroborate

previous reports that were carried out in  the striatum of freely

moving rats utilising the amperometric NO sensor (Finnerty et al.,

2012).
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Fig. 3. Typical examples of  the  effect of l-NAME administration (30  mg kg−1, 1 mL

i.p. injection) monitored in rat prefrontal cortex (top, average pre-injection base-

line = 311 ± 38 pA, n = 5) and rat nucleus accumbens (bottom, average pre-injection

baseline = 407 ± 107 pA, n  = 6) with a Nafion®(5/2)-modified Pt sensor. Time zero

indicates point of injection.

The reaction of l-arginine with molecular O2 in  the presence

of NO synthase results in  the formation of NO and l-citrulline

in equimolar quantities. Recent studies have demonstrated that

arginine availability is an important condition for the physiologi-

cal functioning of the nitroergic system (Do et al., 2002; Savel’ev

Fig. 4. Typical example of the effect of an i.p injection of sodium ascorbate (2 g kg−1,

average pre-injection baseline = 359 ± 56 pA, n =  13) on currents monitored in  pre-

frontal cortex with a Nafion®(5/2)-modified Pt sensor and carbon paste electrode

(CPE). Time zero indicates point of injection. Inset: Typical example of the effect of an

i.p. injection of sodium ascorbate on a 60 min  response of a Nafion®(5/2)-modified

Pt sensor implanted in the prefrontal cortex.

and Saul’skaya, 2007). Indirect reports confirm the antioxidant

effects of l-arginine in the early and late stages of ischaemia

(Maksimovich et al., 2006) and its reduction in brain edema forma-

tion and improvement of cortical blood flow in the early phase after

a brain trauma (Lundblad and Bentzer, 2007). Previously our group

has confirmed in real-time that both systemic and local l-arginine

administration significantly increased the NO sensor’s signal in the

striatum of Wistar rats compared to pre-administration baseline

levels (Brown et al., 2009; Finnerty et al., 2012). Typical exam-

ples of the effect of l-arginine injections in  the prefrontal cortex

(top) and nucleus accumbens (bottom) are detailed in  Fig. 2. A

significant increase was observed in  both the prefrontal cortex

(43 ± 9 pA, p <  0.01, n =  9) and nucleus accumbens (44 ± 9, p < 0.01,

n  = 8) in comparison to pre-injection baselines. These corresponded

to concentration changes of 27 ± 6  nM (n =  9) and 28 ± 5 nM (n  = 8)

respectively. The maximum increase was recorded at 42 ± 9 min

(n =  9) in  the prefrontal cortex before returning to baseline levels

after 136 ± 15 min  (n  = 9). In the nucleus accumbens the maximum

response was  achieved after 65 ± 10 min  (n =  8) and returned to

pre-injection levels after 153 ± 12 min  (n =  8). These observations

confirm that the NO sensor is responding to increased produc-

tion of endogenous NO in both regions validating previous findings

from other groups who reported an increase in NO current accom-

panying l-arginine perfusion, using an  amperometric NO sensor

implanted in the hippocampus of rats (Heinzen and Pollack, 2003,

2002). Previously, similar reports have detailed carbon fibre micro-

electrodes utilised for NO  measurements in the corpus cavernosum

of  urethane-anaesthetised rats recorded enhancements in  the NO

signal following arginine administration (Escrig et al., 1999; Mas

et al., 2002). Also, Carvalho et al. (2004) reported real-time in vitro

measurements of NO production in erythrocytes using a  commer-

cial NO sensor during stimulation by l-arginine.

l-NAME is a non-selective nitric oxide synthase (NOS) inhibitor

which acts by competing with l-arginine for its binding site on

the NOS enzyme (Alderton et al., 2001). Microdialysis investi-

gations have provided indirect evidence relating to decreases in

co-product l-citrulline levels in  the dorsal striatum following local

infusion of various NOS inhibitors, l-NAME (Ohta et al., 1994) and

in the nucleus accumbens following N-nitro-l-arginine (Saulskaya

and Fofonova, 2006). l-Citrulline displays much greater chemi-

cal stability than NO which has resulted in  the development of

a  series of indirect methods based on studies of citrulline syn-

thesis in the nucleus accumbens for assessing NO production

(Saul’skaya and Fofonova, 2009; Saul’skaya et al., 2008; Savel’ev and

Saul’skaya, 2007). Recently we reported a  significant decrease in

NO (91 ± 19 pA, p <  0.05, n = 4)  compared to baseline levels follow-

ing l-NAME administration in  the striatum of Wistar rats (Finnerty

et  al., 2012). A typical example of the effects of a  30  mg kg−1 i.p.

injection in both the prefrontal cortex and nucleus accumbens

are  illustrated in Fig. 3. The signal (�I)  decreased significantly by

24 ± 6 pA (n =  5, p  < 0.05) and 17 ± 3 pA (n  = 6, p <  0.01) respectively

compared to baseline levels. A  maximum response was  observed at

51 ± 12 min  (n = 5)  in the prefrontal cortex that returned to baseline

levels after 184 ± 72 pA (n =  5). A  similar observation was  reported

in the nucleus accumbens with a  maximum decrease occurring

at  60 ± 6 min  (n  = 6) and returning to pre-injection levels after

171 ± 27 min (n =  6). The current changes corresponded to concen-

tration changes of 15 ± 4 nM (n  = 5) and 11 ± 2  nM (n =  6) in  the

prefrontal cortex and nucleus accumbens respectively. These find-

ings  corroborate investigations undertaken by Escrig et al.  (1999)

in the corpus cavernosum whereby local and systemic administra-

tions of l-NAME caused a decrease in  NO levels. Indirect reports

detailing l-NAME have shown that the NOS inhibitor attenuates

or completely blocks the effects of phencyclidine hydrochloride

(PCP), an  NMDA receptor antagonist that is assumed to carry out its

actions through an  NO-mediated mechanism (Wass et al., 2006a,b;
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Wiley, 1998). A number of behavioural studies incorporating a

series of different paradigms have confirmed this, for example,

prepulse inhibition, which is the reduction in startle amplitude to

a  startling stimulus when this stimulus is immediately preceded

by  a weaker pre-stimulus (Klamer et al., 2001, 2004b). Another is

latent inhibition, which is a referral to a  phenomenon whereby pre-

exposure to a stimulus weakens the subsequent association of that

stimulus with a reinforcer in classical conditioning (Klamer et al.,

2005; Palsson et al., 2005). We  have recently reported direct evi-

dence that 10 mg  kg−1 l-NAME injections inhibit NO production

following systemic administration of PCP (Palsson et al., 2009) con-

firming the postulations of the previous behavioural investigations.

Other paradigms reported include the elevated plus-maze which is

based on exploratory behaviour of rats. NO is believed to play a role

in learning and memory and l-NAME is shown to  induce a  learning

deficit in this avoidance learning test (Da  Cunha et al., 2005). Since

nitric oxide has been characterised as the EDRF, it is very closely

associated with CBF and cerebrovasodilation. A  number of existing

reports have reported that l-NAME induced a  reduction in levels of

CBF  that were increased following a period of hyperbaric oxygen

exposure by a nitric oxide mediated mechanism (Demchenko et al.,

2000, 2001; Hagioka et al., 2005). Yan et al.  (2003) also reported

a  decrease in CBF in  response to intravenous infusion of the NO

synthase inhibitor at doses of 1, 3, 10 and 30 mg  kg−1.

3.2. Interference studies

Previously the Nafion®(5/2)-modified Pt NO  sensor demon-

strated excellent selectivity towards NO in  vitro against a wide

range of electroactive interferents (e.g. ascorbic acid, dopamine,

DOPAC, NO2
−, serotonin) found endogenously in  brain extracellu-

lar fluid (Brown et al., 2009). In vivo investigations in  the striatum

of  freely moving rats displayed excellent rejection characteris-

tics against ascorbate (Finnerty et al., 2012), the most abundantly

present interferent reported in the ECF with a hypothesised con-

centration of ca. 500 �M (Miele and Fillenz, 1996). It is  imperative

to  confirm that the Nafion® membrane has not degraded when

placed in the in vivo environment and that the sensor exhibits sim-

ilar selectivity characteristics to those recorded in  vitro (Brown

et al., 2009; Brown and Lowry, 2003). With its high concentra-

tion and ease of oxidation, ascorbate is probably the simplest

molecule to detect and monitor in brain ECF using in  vivo voltam-

metry techniques (Lowry and O’Neill, 2006; O’Neill et al., 1998). For

these reasons it was important to investigate the effect of systemic

administrations of ascorbate on the Nafion®-modified Pt sensor

current in both the prefrontal cortex and nucleus accumbens. The

current was monitored over a  60 min  period as previous inves-

tigations have reported this time frame allows for a  maximum

response to occur (Finnerty et al., 2012; Lowry et al., 1996). It is

hypothesised that any effect following ascorbate injection will have

occurred within this period. Fig. 4 (inset) illustrates this effect from

a Nafion®(5/2)-modified Pt NO  sensor implanted in the nucleus

accumbens. There was a  slight decrease in  the oxidation current

over the course of ascorbate injections in both brain regions that

can be attributed to baseline drift recorded over the 60 mins. There

was no significant difference in signal against baseline levels in

the prefrontal cortex (−8 ± 16 pA, p >  0.05, n =  13) and the nucleus

accumbens (−16 ± 17 pA, p > 0.05, n =  10) recorded over the 60 min

period. Fig. 4 displays a comparison between a typical example of

the effect of ascorbate injection (2 g kg−1)  on a  carbon paste elec-

trode and the Nafion®(5/2)-modified Pt NO sensor implanted in  the

prefrontal cortex. It is clearly evident that there is a  difference in

the signal elicited from both sensors following administration of the

interferent. This comparison provides validation that ascorbate has

reached both sensors and no increase at the Nafion®(5/2)-modified

Pt  NO sensor was observed, confirming that the NO sensor’s surface

has remained intact. A similar observation was  noted in the nucleus

accumbens. Collectively these results corroborate previous investi-

gations undertaken in the striatum of freely moving rats (Finnerty

et al., 2012).

3.3. Regional comparisons

Table 1 summarises the in vivo characterisation data for

Nafion®(5/2)-modified sensors implanted in the striatum, pre-

frontal cortex and nucleus accumbens of freely moving rats. It is

apparent from these investigations that alternative sources of NO

production may be responsible for differences observed between

brain regions. The constitutive isoforms of NOS (eNOS and nNOS)

are the primary source of NO production in the brain lending sup-

port to its hypothesised function as a signalling molecule in the

central nervous system. iNOS is  primarily linked with pathological

situations and is rarely present at tonic levels but is expressed in

various cell types such as macrophages and microglia (Garthwaite,

2008). It is imperative that we consider regional variations in

determining parameters such as NOS activity and NOS expression,

highlighting the fact that there may  be multiple sources of NO

production and inhibition within a tissue matrix. In the dorsal stria-

tum, projection neurons comprise 90% of all the cells; however,

interneurons comprise only 10% of striatal cells and are implicated

in  regulating striatal projection function. It is the interneurons that

are the primary source of nNOS in this brain region (Kawaguchi and

Emson, 1996; Marin et al., 2000).

The ventral striatum (nucleus accumbens) contains NO gen-

erating interneurons that receive excitatory glutamatergic and

dopaminergic inputs from the hippocampus and ventral tegmental

area respectively (Saulskaya and Fofonova, 2006). A  high density

of NMDA receptors has been confirmed in  the prefrontal cortex

(Monaghan and Cotman, 1985) and it is postulated that NO  exerts

strong influence on glutamatergic neurotransmission by directly

interacting with the receptor (Bernstein et al., 2005). Various other

reports have indicated that NOS activity was  decreased in  the hip-

pocampus of aged rats but not in the cortex or cerebellum (Mollace

et al., 1995; Vallebuona and Raiteri, 1995), however, alternative

investigators reported increased activity in both the hippocampus

and cerebellum of aged rats (Chalimoniuk and Strosznajder, 1998).

These findings have all been quantified by indirect methods which

is  a  major disadvantage of the vast majority of existing analyti-

cal  techniques. The Nafion®(5/2)-modified Pt NO sensor described

here  represents a major advancement in measuring physiologically

meaningful NO levels in  real-time and over extended periods.

Saline administrations resulted in transient increases from base-

line that had returned to pre-injection baselines within a 15 min

time frame across all brain regions. It is a well accepted phe-

nomenon that injection stress causes an increase in neuronal

activation which is closely linked to CBF (Vahabzadeh and Fillenz,

1994). The larger blood vessels are supplied with nitrergic nerves

that once activated, result in NO release, vasodilation and increased

blood flow (Garthwaite, 2008; Toda and Okamura, 2003). Fig. 5 (top)

compares the effect of saline injections on the oxidation current

recorded in the three regions with an elevated response observed in

the striatum. A significant difference (p <  0.05) was observed when

comparing the current changes in the striatum (22 ± 3, n = 9)  and

nucleus accumbens (12 ± 3 pA, n = 8)  following injections. No sig-

nificant difference (p >  0.05) was observed between the striatum

and  prefrontal cortex (13 ± 3 pA, n =  17) or between the prefrontal

cortex and nucleus accumbens in terms of �I  changes from base-

line levels. A number of factors must be taken into account when

interpreting these findings. The NO may  be generated from eNOS

located in the microvascular network and capillary circulation

that  can be attributed to a rise in  CBF following stress brought

about  by systemic administration. The implantation site of the
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) Nafion®(5/2)-modified Pt NO sensor’s may  be situated in closer

proximity to vasculature circuitry when inserted into the striatum

giving rise to the larger NO signals recorded in this region. This may

not be the case for the sensors implanted in  the nucleus accum-

bens and prefrontal cortex, providing a possible explanation for

the different responses following saline administrations. A similar

effect has been observed using carbon paste electrodes for real-time

measurements of oxygen whereby, the concentration of oxygen

observed can vary depending on the orientation of the electrode rel-

ative to the blood vessels and metabolically active sites, and on the

depth of penetration into the tissue (Baumgärtl et al., 1989). Since

the dimension (typically 100–200 �m)  of carbon paste electrodes

are greater than the scale of a capillary zone (ca. 70 �m) (Silver,

1965), an average tissue O2 level is detected (Bolger et al., 2011).

This may  translate across to observations reported here with the

NO sensor since the three-dimensional geometry of the capillary

circulation would be just as well suited for delivering NO  glob-

ally to the electrode as it is for delivering O2 (Garthwaite, 2008).

Other possible sources could be from postsynaptic NO production

derived from nNOS, followed by diffusion into the extracellular

space. This is a  unique property that NO possesses over conven-

tional neurotransmitters in  that being a gaseous molecule it can

diffuse freely between membranes and has functions both intra-

cellularly and extracellularly. Kennedy (2000) reported that typical

excitatory synapses in the brain could have ca.  50 NMDA recep-

tors dispersed over a  400-nm-diameter postsynaptic density. Since

NMDA receptors display a  high association with nNOS, there is a

strong possibility that they are a contributing factor to our observa-

tions. Further evidence provided by Monaghan and Cotman confirm

high NMDA densities in the striatum, prefrontal cortex and nucleus

accumbens of rats (Monaghan and Cotman, 1985).

Systemic administrations of the precursor l-arginine and the

NOS inhibitor l-NAME displayed contrasting affects in  the different

brain regions investigated. Studies in recent years have demon-

strated that arginine availability is an  important condition for the

functioning of the nitrergic system (Savel’ev and Saul’skaya, 2007).

Tsikas et al.  (2000) reported arginine saturation in cells causes the

precursor to be present at concentrations far exceeding the Km

value. A topic that instigates much discussion is why supplemen-

tation of the substrate enhances NO production in vivo. It is a well

documented phenomenon referred to as the “arginine paradox”.

In  the present study l-arginine produced long lasting effects in

both the prefrontal cortex and nucleus accumbens that returned to

pre-injection levels within a 180 min  period. There was  no signifi-

cant difference (p > 0.05) between the three brain regions following

systemic administrations as illustrated in Fig. 5 (middle), how-

ever, the striatal current returned to pre-injection levels much

faster than the prefrontal cortex and nucleus accumbens. This is

clearly evident from Table 1 and may  be attributed to differences

between brain regions. Indirect measurements of NO (nitrite and

nitrate detection) following l-arginine administration have been

well documented using the microdialysis technique. Local (1 mM)

and systemic (500 mg kg−1)  administrations sufficiently induced

an enhancement of NO production in the rat cerebellum (Yamada

and Nabeshima, 1997). However, Hara et al. reported contradic-

tory findings from the hippocampus and striatum using a similar

indirect measurement. 500 mg  kg−1 injections of l-arginine sig-

nificantly increased extracellular hippocampal nitrite and nitrate

levels in comparison to saline administrations. In complete con-

trast to our findings, they found that 500 mg  kg−1 had no effect

on the extracellular levels of the NO metabolites in the striatum

(Hara et al., 2004). Their investigations postulate that the striatum

might be less responsive to exogenous l-arginine in enhancing NO

production via NOS than the hippocampus. The direct measure-

ments using our Nafion®(5/2)-modified Pt NO sensor suggest a very

contradictory function in the striatum with sufficient detection
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of increases in NO levels (71 ± 14 pA, n =  6). Although there were

reduced responses observed in  the prefrontal cortex (43 ± 9  pA,

n  = 9) and nucleus accumbens (44 ± 9 pA, n = 8), they did not differ

significantly from the striatum suggesting that the arginine para-

dox  might not be equally applicable in all regions of the brain.

Fig. 5 (bottom) and Table 1 detail the varying effect of

l-NAME administration on the Nafion®(5/2)-modified Pt NO sen-

sor in all three brain regions. There are significant differences

(p < 0.01) reported between the striatum (−91 ± 19  pA,  n =  4) and

the prefrontal cortex (−24 ± 6 pA, n =  5)  and nucleus accumbens

(−17 ± 3 pA, n = 6)  respectively. No  significant difference (p > 0.05)

was observed between the prefrontal cortex and nucleus accum-

bens. One possible explanation for the regional variations may

be due to the heterogenous distribution of NOS in the rat brain

that affects determining parameters such as NOS expression and

NOS inhibition within the tissue matrix. Various groups have pro-

vided indirect evidence of the effect of the NOS inhibitor on NO

levels in the prefrontal cortex using microdialysis investigations

(Laitinen et al., 1994, 1997; Pepicelli et al., 2004). l-NAME and

another NOS inhibitor l-NARG failed to diminish cGMP levels in

the frontal cortex of rats, however, these findings are difficult to

interpret as they provide indirect evidence of NO  activity in the

region. They may  provide some corroboration with our investi-

gations since significantly reduced NO inhibition was  observed

in  the prefrontal cortex in  contrast to  the striatum. Contrasting

evidence provided by Fedele and Raiteri (1999) in the rat cerebel-

lum and hippocampus reported that reterodialysis administration

of  NOS inhibitors markedly decreased extracellular cGMP in  both

regions. Collectively this evidence postulates that NOS inhibition

in the rat prefrontal cortex is controlled in  a different way from

what occurs in other brain regions, such as the cerebellum and

hippocampus. Citrulline monitoring is extensively utilised as an

alternative method of determining NO fluctuations indirectly in

various brain regions. Ohta et al. (1994) have reported decreases

in  citrulline in the striatum following local infusion of l-NAME, a

finding which lends further support to our observations. Saulskaya

and Fofonova (2006) extend these observations by demonstrating

that local administrations of a NOS inhibitor (l-NA) in  the nucleus

accumbens reduces citrulline levels suggesting that there may  be

tonic levels of NOS present in the nucleus accumbens, that initiate

the formation of the co-product of NO  production during homeo-

stasis.

Considering that the NO sensors were implanted bilaterally

in left and right hemispheres of the nucleus accumbens, it  was

of interest to compare the effect of injections on contralateral

placement in this brain region. Saline injections resulted in tran-

sient increases in  NO signal in both the left (19 ± 1 pA, n = 2) and

right (10 ± 4 pA, n =  6) hemispheres. There was no significant dif-

ference (p > 0.05) recorded between the two. A  similar observation

was reported for l-arginine injections. There was no significant

difference (p > 0.05) between responses from the Nafion®(5/2)-

modified Pt sensors implanted in  the left (53 ± 9  pA, n =  2) and

right (44 ± 11 pA, n =  6) sides of the nucleus accumbens. l-NAME

administrations produced similar findings from sensors situated

contralateral to each other in this region. NO  signals in  the left

hemispheres (−16 ± 3 pA, n = 2)  displayed no significant difference

(p > 0.05) from those situated in  the right hemisphere (−18 ± 4  pA,

n  = 4) of the accumbens. These findings confirm that there are no

significant differences observed between NO signals recorded in

opposite hemispheres confirming the viability of the Nafion®(5/2)-

modified Pt sensors in contralateral investigations in the rat brain.

All  of the aforementioned illustrate the complexity of NO deter-

minations utilising both direct and indirect analytical methods.

However, it is our understanding that this report provides the

first extensive and in depth comparison of real-time investigations

detailing the variations in endogenous NO determined in  a  variety

Fig. 5. Comparison of the effect of  saline (top), l-arginine (middle) and l-NAME

(bottom) on  Nafion®(5/2)-modified Pt sensor signal recorded in striatum, prefrontal

cortex (PFC) and nucleus accumbens (NA). Data is expressed as  mean �I ±  SEM as

compared to baseline. (top) � denotes a significant difference between striatum

and nucleus accumbens (p < 0.05) and (bottom) �� denotes a significant difference

between striatum and prefrontal cortex (p < 0.01) and between striatum and  nucleus

accumbens (p  < 0.01).

of brain regions. The Nafion®(5/2)-modified Pt NO sensor detailed

within  possesses the necessary sensitivity, spatial and temporal

precision for specific applications in animal model studies.

4.  Conclusion

We  have reported the in vivo characterisation of a  Nafion®(5/2)-

modified Pt NO sensor in  the prefrontal cortex and nucleus accum-

bens of freely moving rats. Previously we have demonstrated the

efficacy of the NO sensor in the striatum using local and systemic

administrations. Saline injections caused transient increases in oxi-

dation current in both the prefrontal cortex and nucleus accumbens

against baseline levels which was  attributed to the stress of the

i.p. injection stimulating neuronal activation. l-Arginine injections

produced significant increases in  the NO signal in  both regions.

Systemic administrations of the non selective NOS inhibitor l-
NAME resulted in significant decreases in the recorded current

measured using the Nafion®(5/2)-modified Pt NO sensor. Ascorbate

selectivity studies confirmed minimal deterioration of  the Nafion®
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modified surface. A critical comparison of the in  vivo characteri-

sation undertaken in the striatum, prefrontal cortex and nucleus

accumbens identified significantly greater affects of administra-

tions on NO sensors implanted in the striatum than the other

two regions. However, no definitive explanation can be provided

for these interregional differences. In summary we have exten-

sively characterised a  highly selective and sensitive NO sensor in

three different regions that is capable of measuring physiologically

meaningful NO signals in real-time in  the brain extracellular fluid.
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