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Abstract

Model-driven engineering has been recognised as an effective way to manage the complex-
ity of software development. Model transformation is widely acknowledged as one of its
central ingredients. Among different paradigms of model transformations, we are specifi-
cally interested in relational model transformations.

Proving the correctness of relational model transformations is our major concern. Typ-
ically “correctness” is specified by MTr developers using contracts. Contracts are the an-
notations on the MTr which express constraints under which the MTr are considered to be
correct. Our main objective is to develop an approach to designing a deductive verifier in a
modular and sound way for a given target relational model transformation language, which
enables formal verification of the correctness of MTr.

To this end, we have developed the VeriMTLr framework. Its role is to assist in de-
signing verifiers that allow verification (via automatic theorem proving) of the correctness
of relational model transformations. VeriMTLr draws on the Boogie intermediate verifica-
tion language to systematically design modular and reusable verifiers for a target relational
model transformation language. Our framework encapsulates an EMF metamodels library
and an OCL library within Boogie. The result is reduced cost and time required for a ver-
ifier’s construction. Furthermore, VeriMTLr includes an ASM and EMFTVM bytecode
library, enabling an automated translation validation approach to ensuring the soundness of
the verification of the designed verifier. We demonstrate our VeriMTLr framework with the
design of verifiers for the Atlas Transformation Language and the SimpleGT graph trans-
formation language.
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Chapter 1

Introduction

In the late 20th century, the Object Management Group (OMG) envisioned a new paradigm,
called Model Driven Engineering (MDE), to address the full life cycle of software develop-
ment [93]. MDE is seen as an evolution from the earlier object management architecture or
component-oriented technology. It focuses on accurately modelling the problem rather than
programming it, which allows the problem to be well-comprehended before generating an
implementation. In addition, MDE unifies some of the best practices in software architec-
ture, including modelling, meta-data management and model transformation technologies.
Thus, it allows a user to model once and to target multiple technology implementations by
using precise model transformations. MDE is often discussed in conjunction with several
closely related concepts such as models, metamodels and transformations (e.g. relational,
operational and graph model transformations).

Models and Metamodels. A model is a simplification of a system built with an intended
goal in mind, which should be able to answer questions in place of the actual system [14].
The simplification (or abstraction) is the essence of the modelling: depending on a specific
task, many unnecessary aspects from the original system are abstracted away, and only a few
are preserved in the resulting model. Thus, understanding the model of the system should
be easier than understanding the original system.

A metamodel is the specification for a model [14]. The metamodel introduces the struc-
ture for expressing the models (as in a context-free grammar for programming languages).
One could say a model conforms to its metamodel when the model meets its specification.
A well-known metamodelling language is the Unified Modelling Language (UML) which
was proposed by the OMG group [102]. UML emphasises the idea of using different views
to model different aspects of complex systems, as no single view can capture all aspects
of the system completely. Therefore, it includes several languages which describe different

1



1.1 Research Objective

aspects of the system, e.g. the class diagram for structural modelling or the activity diagram
for behavioural modelling.

These modelling and metamodelling concepts are brought into practice through the
Eclipse Modelling Framework (EMF). EMF draws on the facilities provided by Eclipse,
to link modelling with programming [109]. Not only does EMF provide tools and run-
time support to translate the model into a Java implementation, but also brings with it other
facilities that enable viewing and editing of the models.

Model Transformation. Model transformation is widely acknowledged as one of the
central ingredients of MDE. A model transformation is the automatic generation of a target
model from a source model, according to a transformation specification [69]. Three main
paradigms for developing model transformations are the operational, relational and graph-
based approaches [38]:

• Operational model transformations, such as Kermeta [65] and operational QVT [94],
are imperative in style, and focus on imperatively specifying how a model transfor-
mation should progress.

• Relational Model Transformations (MTr), such as Atlas Transformation Language
(ATL) [66] and ETL [70], have a “mapping” style, and aim to produce a declarative
transformation specification that documents what the model transformation intends to
do. Typically, a declarative specification is compiled into a low level transformation
implementation and is executed by the underlying virtual machine.

• Graph transformations (GT), such as SimpleGT [118] and Henshin [4], use a rewriting
style, which applies transformation rules recursively until no more matches can be
found.

1.1 Research Objective

Our overall objective in this research is:

To develop an approach to design a deductive verifier in a modular and sound way for a

given target MTr language, which enables formal verification of the correctness of MTr.

Some explanation of our objective is in order. First, the correctness of MTr is our major
concern in this research. Typically “correctness” is specified by MTr developers using con-
tracts. Contracts are the annotations on the MTr which express assumptions under which
condition the MTr are considered to be correct.

2



1.1 Research Objective

With the increasing complexity of model transformation (e.g. automotive industry [107],
medical data processing [117], aviation [12]), it is urgent to develop techniques and tools
that prevent incorrect model transformations from generating faulty models. The effects
of such faulty models could be unpredictably propagated into subsequent MDE steps, e.g.
code generation, to produce further errors.

We are specifically interested in MTr. Because of its declarative nature, a MTr is gen-
erally easier to write and understand than an operational transformation. Both graph trans-
formations and relational transformations can be declarative. However, they are essentially
different in their rule matching and execution semantics [38]. In addition, deciding the
confluence and termination of graph transformations has been proven undecidable [95, 96].
This extra layer of complexity promotes the applicability of MTr over the graph transfor-
mations.

Second, the purpose of verifying MTr correctness is to ensure that the MTr is built in a
way that matches the assumptions of developers [17]. In contrast to validation, verification
does not involve reasoning about the validity of assumptions of developers.

Third, formal verification ensures that the verification tasks are guided by formal meth-
ods of mathematics, which distinguishes itself from informal approaches such as testing.
In addition, we strive for sound formal verification in order to prevent false negatives.
Ab.Rahim and Whittle, in their survey, find that one of the main challenges in the research
on model transformation verification is reasoning about the soundness of the proposed ver-
ification approach, which is an under-researched area in MDE [1].

Fourth, we aim for deductive formal verification. This emphasises the use of logic to
prove the correctness of MTr. Thus, it distinguishes itself from other formal verification
approaches (e.g. model-based, or type-based formal verification). Typically, a verifier needs
to be designed for this task. The verifier will be guided by the chosen logic (e.g. Hoare Logic
[58]) to translate the MTr which is to be verified, as well as its contracts, into a set of logical
formulas known as Verification Conditions (VCs). These formulas are then interpreted and
processed by a theorem prover. A failed proof indicates a mismatch between the MTr and
its contracts, whereas a successful proof indicates the correctness of the MTr in terms of its
contracts. Consequently, the users of the verifier are able to verify the correctness of MTr
without actually running it, thereby reducing the time for quality assurance and enhancing
productivity. Moreover, there is no need to test the MTr against a particular source model
after deductive verification, since its correctness is proved in general, thereby holding for
all the possible source models. However, we will gradually show in the following chapters
that deductive verification is a challenging task, which requires experience and creativity to

3



1.2 Research Problems

build the proof.
Finally, building a verifier is a non-trivial task [8]. That is why we are interested in

modular design, to allow the effort or knowledge to be reused.

1.2 Research Problems

Based on the overall objective of our research, we identify two research problems.

Research Problem 1. Our quest is to investigate whether using an Intermediate Verifi-

cation Language (IVL) is the most suitable approach to systematically designing mod-

ular and reusable verifiers for a target MTr language.

Previous program verifier designs have already established the usefulness of an IVL
in decomposing the complex task of generating VCs for general high-level programming
languages into two steps [7, 50, 82]: a transformation from the program and its proof obli-
gations into the program written in an IVL, and then a transformation from an IVL program
into logical formulas. Thus, the IVL bridges between the front-end high-level programming
language and the back-end theorem prover. The benefit is that it allows us to focus on gen-
erating proof obligations that prescribe what correctness means for the front-end language
in a structural way, and then to delegate the task of interacting with theorem provers to the
IVL.

The two most widely used IVLs are Boogie [7], and Why3 [52]. Both of them are based
on First Order Logic (FOL) with polymorphic types, and have mature implementations to
parse, type-check, and analyse programs. We concentrate on Boogie in this research, but
we believe all results can be reproduced in Why3 (a coarse roadmap is demonstrated in
Appendix E) or other IVLs with comparable functionality.

At the time of this thesis being written, verifier designs for high-level programming
languages that target Boogie exist for C# [8], C [39], Dafny [82], Java [80], and Eiffel
[114]; verifier designs that target Why3 exist for Java [90], C [36], Ada [57], and B [45].

However, we find that it is difficult to design a new verifier based on the effort and
knowledge obtained from the existing verifier designs. We think this is mainly because the
paradigms and support features of general high-level programming languages differ from
each other.

Thus, the intuition behind our first research problem is that by limiting our focus to a
set of more task-specific programming languages (i.e. MTr languages), we should be able

4
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to verify the program correctness in an integral way, taking into account the modularity and
reusability of the verifier design.

Research Problem 2. We investigate whether the translation validation approach from

compiler verification can be automated to ensure the soundness of the verification, i.e.

to be able to check consistency between the execution semantics of each transformation

specification and the runtime behaviour of its corresponding transformation implemen-

tation.

Translation validation is a technique used in compiler verification to ensure each individ-
ual compilation is followed by a validation phase which verifies that the compiled program
correctly implements the source program [97].

For MTr, recall that to be executable, the transformation is usually compiled into low-
level bytecode. We believe it is intuitive and feasible to adopt the translation validation
approach to ensure the soundness of the verifier.

However, as our second research problem suggests, we also anticipate changes to be
made while adopting the translation validation approach. This is mainly because of the
domain-specific properties that are only present in compiling an MTr, e.g. the bytecode
instructions that are specifically designed for model handling. In addition, another layer
behind the second research problem is that we aim to automate the translation validation
approach in the domain of MTr, since translation validation is usually interactively proved
for general programming languages (e.g. the Compcert project, a verified compiler for a
large subset of C [86]).

Our systematic literature review in Chapter 2 suggests that both identified research prob-
lems have not been addressed before. Thus, it is our desire to provide answers to them
through this research.

1.3 Overview of Contributions

The contributions of this thesis are split into four parts. First, we detail the semantics of the
EMF metamodels and Object Constraint Language (OCL) in Chapter 3 [32]. Both of these
are encoded in the Boogie IVL as libraries and intended for reuse across different verifier
designs for MTr. In particular:

1. We adapt the formalisation of Object Oriented (OO) programs (specifically its mem-
ory model) to formalise the semantics of EMF metamodels for expressing the meta-
models involved in a MTr. This is based on the observation that the concepts of
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metamodelling share many similarities with OO programming language constructs,
but with subtle differences. The implications of our adaptation are twofold. First, be-
cause of the shared similarities with OO constructs, the metamodel formalisation will
be easy to comprehend and reuse. Second, the chosen memory model has been used
by several program verifiers (e.g. Spec# [8], KIV [110]). Therefore, it will enhance
interoperability between verifiers.

2. We extend the existing Boogie libraries from the Dafny verification language [82], to
develop the semantics of OCL for expressing transformation contracts. This further
demonstrates reusability due to adopting an IVL, i.e. we are able to build on top of
an existing Boogie library, and the libraries we developed are also made available to
others for reuse.

The second part of this thesis focuses on the design of the VeriATL system using the
Boogie IVL to enable the verification of partial correctness for the ATL language (Chap-
ter 4) [32]. This shows the feasibility of using an IVL to systematically design modular and
reusable verifiers for a target MTr language. The core component of VeriATL is the execu-
tion semantics of ATL, which is formalised based on the two modular Boogie libraries for
the semantics of EMF and OCL. The details were far from obvious to us, and articulating
them is one of the main challenges of developing VeriATL. In particular:

1. We experiment with the use of separate memory models to simplify the encoding for
the execution semantics of ATL.

2. Furthermore, we illustrate the use of frame conditions at field granularity to precisely
capture how the states of MTr are evolved.

The third part of this thesis is motivated by a potential unsoundness in our encoded
execution semantics of ATL. Therefore, we present an automated translation validation ap-
proach to ensure the encoding soundness (Chapter 5) [32]. This is achieved by certifying
that the encoded execution semantics for ATL soundly represents the runtime behaviour of
its corresponding ATL Stack Machine (ASM) bytecode implementation. Consequently, we
are confident that the verification of partial correctness of ATL that is based on our sound
encoding will be sound too. Our translation validation approach is modular. We composi-
tionally verify the soundness of our Boogie encoding for the execution semantics of each
ATL matched rule. This is based on the semantics of the ASM bytecode language:
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1. We give a translational semantics of the ASM language via a list of translation rules.
Each rule encodes the operational semantics of an ASM bytecode in Boogie. Conse-
quently, we are able to use such translation semantics to precisely explain the runtime
behaviour of ASM implementations. The challenge is to handle the versatility of the
ASM language against different model management systems. Our strategy is to fo-
cus on the EMF model management system (which represents a de facto standard for
modelling nowadays), and to investigate the source code that is specific to it.

2. We observe the characteristics of loops inside the ASM implementation. Thus, we are
able to automatically generate variant expressions inside loops to ensure the termina-
tion of ATL transformation at runtime, thereby ensuring its total correctness.

Finally, the fourth part of this thesis is dedicated to investigating the possibility of
reusing our previous efforts to design a modular and reusable verifier for a GT language,
namely SimpleGT (Chapter 6) [33]. In particular:

1. We demonstrate the differences between the execution semantics of relational and
graph transformations, and quantify how the differences would affect their verifier
designs.

2. We also illustrate how to develop the semantics of the EMF Transformation Virtual
Machine (EMFTVM) language by extending the semantics of the ASM language,
enabling translation validation for a wider range of model transformation languages,
especially for those with explicit memory deallocation.

We have captured the semantics of the EMF metamodel, OCL, ASM and EMFTVM as
libraries in the Boogie IVL. These libraries are under the hood of our VeriMTLr framework
(Fig. 1.1), which allows them to be reused to provide rapid verifier construction for MTr
languages.
Nomenclature. We refer to the annotations that are explicitly made by transformation de-
velopers to express transformation correctness as contracts. This is because in the context
of MDE, the term specification usually refers to a transformation program [69].

Throughout the thesis, we do not make any distinction between the terms verifier, and
verification system. Each refers to software that performs deductive verification tasks. We
use these terms interchangeably.

Boogie is the name of an IVL and a verifier. To avoid name conflict, we use Boogie to
refer to the Boogie IVL, and use Boogie verifier to refer to the verifier for Boogie.
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1.3 Overview of Contributions

Fig. 1.1 The architecture of our VeriMTLr development framework

To improve the readability of the Boogie code in this thesis, we use a list of symbols
to denote the sequence operations. Specifically, let S represents a sequence. |S| denotes the
length of S. e ∈ S denotes e is contained by S. [] denotes a sequence constructor, e.g. [] is an
empty sequence, and [e] is a sequence that contains e. S[i] denotes the element at the index
i of S.
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Chapter 2

Literature Review

The goal of this chapter is to find the most reliable and practical approach to enable formal
verification of MTr. First, we identify four literature review questions related to the formal
verification of MTr (Section 2.1). Next, we systematically review and analyse the literature
to provide answers to these questions (Section 2.2 and Section 2.3). By answering these
questions, we obtain a clear perspective of the advantages and disadvantages of the state of
the art (Section 2.4). This will guide us to propose our approach for the formal verification
of MTr (Section 2.5).

2.1 Literature Review Questions

Although some literature reviews have been conducted to analyse the state of the art in the
field of model transformations verification [1, 2, 26], these studies are broad and general,
and do not specially fit the focus of our research: they neither restrict the analysis to those
approaches applied over MTr, nor focus on reviewing the utilisation of different formal
methods/formalisation techniques to verify model transformations. Moreover, these studies
do not categorise how to express transformation contracts. Thus, we propose the following
four literature review questions, and will analyse them in the next sections:

• LRQ1: What formal methods are employed in MTr verification?

• LRQ2: What formalisms are employed in MTr verification?

• LRQ3: What transformation contracts are verified? How are they expressed?

• LRQ4: To what extent are the existing approaches supported by a tool?
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2.2 Exploration Method

To answer the identified literature review questions, we adopt a snow-ball approach to sys-
tematically retrieve references related to the formal verification of MTr published before
2014 [119]. Specifically, we identify three literature reviews that analyse the research on
model transformation verification published before 2012 [1, 2, 26]. Then, from the refer-
ences of the identified literature reviews, the following steps are applied in order to filter out
the references that are not specific to the formal verification of MTr.

1. Delete duplicate references.

2. Delete references with no author.

3. Pruning by title.

4. Pruning by keyword.

5. Pruning by abstract.

The following inclusion and exclusion criteria are used in the pruning steps:

• (Inclusion) Specific to MTr.

• (Inclusion) Specific to formal methods.

• (Exclusion) Specific to testing.

• (Exclusion) Not written in English.

If a reference remains unclear for its relevancy to the formal verification of MTr after
the pruning steps, it is thoroughly read. In this way, we identify a initial set of references
that are specific to the formal verification of MTr. Next, the Google Scholar search engine1

is used to find new references published after 2012 that refer to any references in the initial
set. Google Scholar is chosen as it indexes most of the digital reference libraries. The
same inclusion and exclusion criteria are applied to the newly found references. The whole
process is iterated until no more new references that were published before 2014 are found.

Limitations. Admittedly, our literature review has the possibility of missing some rele-
vant references due to the following limitations:

1Google Scholar search engine. http://scholar.google.com.
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• First, our exploration method focuses on international workshops/conferences/jour-
nals whose communication is typically via English. It is possible that we miss ref-
erences that are not written in English, e.g. references that are presented at national
workshops/conferences/journals, or presented as technical reports in native languages.

• Second, we chose the Google Scholar search engine to enrich the references rather
than the digital reference libraries. It is not guaranteed that every reference indexed
by the digital reference libraries will be also indexed by Google Scholar.

• Third, the three identified literature reviews together present a relative complete study
about works regarding model transformation verification published before 2012. How-
ever, it is still possible that certain references are not included in these literature re-
views.

In spite of the limitations identified here, we are confident that we did not miss a large
number of relevant references, and the conclusions we derive in this chapter are still valid.

2.3 Data Extraction

Our exploration yields 30 references regarding formal verification of MTr. We are now in
the position to answer the posed literature review questions LRQ1-LRQ4. In addition, we
summarise the answers to our literature review questions in Table 2.1 at the end of this
section.

2.3.1 LRQ1: What Formal Methods are Employed in MTr Verifica-
tion?

From all the studies analysed, we conclude that there are three kinds of formal methods
applied in MTr verification.

• Simulation [56, 113, 120].

• Model checking and model finding [3, 9, 22–24, 47, 63, 87, 88, 105, 106, 111].

• Theorem proving [21, 25, 28, 35, 49, 72–79, 98, 99].

Simulation. The first category of MTr verification builds on simulation techniques.
Simulation techniques generally require a mathematical model to be developed. This math-
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ematical model represents the key characteristics of the MTr (e.g. source and target meta-
models, the behaviour of the MTr transformation). Next, a simulation tool is used to sim-
ulate the mathematical model against a particular input (which is developed from a given
source model). Depending on the chosen tool, certain kinds of correctness can be expressed
as contracts, and can then be verified for the chosen input (Section 2.3.3).

Model checking and model finding. The second category concerns the model checking
and model finding techniques. Similar to simulation techniques, model checking and model
finding techniques also require a mathematical model to be developed (from the metamodels
and the MTr transformation). However, compared to simulation techniques, no particular
input is needed when the model checking/finding is running.

Generally, model finding techniques are very similar to model checking techniques.
However, a subtle difference between them is the way in which the developed mathematical
models are used [61]. The former starts with a mathematical model described by the user,
and it discovers whether the contracts asserted by the user are valid on the mathematical
model. The latter finds mathematical models which form counter-examples to the contracts
made by the user.

Model finding techniques consist of three main sub-categories: bounded Boolean Satis-
fiability (SAT)-based, Satisfiability Modulo Theories (SMT)-based and Constraint Satisfac-
tion Problem (CSP)-based model finding. The general idea of SAT-based model finding is
to reduce the model transformation verification problem into a SAT problem2. The source
and target metamodels, the transformation, and the transformation contracts are encoded
into a SAT formula. Then, this formula is sent to a SAT solver, along with a predefined
search space. The goal is to ask a SAT solver to find a counter-example (i.e. a case where
transformation contracts do not hold on the given transformation) within the given search
space. If any counter-example is found, the model transformation is not verified. However,
if no counter-example is found, no conclusion can be drawn (e.g. a counter-example could
be found in a larger search space).

SMT-based model finding is another important technique for performing MTr verifica-
tion. The general idea is to use a SMT solver in the model finding process. SMT solvers are
an extension to SAT solvers with built-in background theories for real numbers, integers,
data structures (e.g. bit vectors and arrays) and so on. The major advantage of SMT solvers
is the enhanced expressiveness (i.e. FOL with equality) to handle constraints over infinite
domains.

2The SAT problem is to determine whether the variables of a given Boolean formula can be consistently
replaced by the values TRUE or FALSE in such a way that the formula evaluates to TRUE.
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CSP-based model finding is an alternative to SAT-based and SMT-based model find-
ing, where a CSP solver (that is neither SAT-based nor SMT-based) is used as the model
transformation verification engine.

Theorem proving. Theorem proving is a deductive formal verification approach. It
focuses on formalising both the MTr transformation and its contracts into formulas. Verifi-
cation consists of applying deduction rules (of an appropriate logic) to incrementally build
the proof. Theorem proving can be performed by using either pen and paper or specific
proving tools (e.g. Coq [13]). It also does not require a specific source model during the
proof.

In conclusion, simulation, model checking and model finding are model-based verifica-
tion techniques, whereas theorem proving is proof-based [61]. In the model-based approach,
the metamodels and MTr are formalised into a mathematical model for an appropriate logic.
The contracts are formalised into a formula of a compatible logic. Then, the verification
consists of computing whether a mathematical model satisfies its contracts in the prover
that supports reasoning in the chosen logic. This computation is usually automatic for fi-
nite mathematical models. In contrast, the proof-based approach formalises both the MTr
and its contracts as a formula. The verification consists of applying deduction rules (of an
appropriate logic) to incrementally build the proof for the derived formula, which usually
requires guidance and expertise from the user.

2.3.2 LRQ2: What Formalisms are Employed in MTr Verification?

In all analysed references, formalisation is used when transforming metamodels, transfor-
mation and optionally transformation contracts into the formalism that is used to perform
MTr verification. In this regard, the most typical formalism used in MTr verification is to use
a logical representation. FOL is the most popular one [21–24, 47, 72, 75–78, 105]. Other
logical representations have also been used, but are less common, e.g. relational logic (i.e.
FOL plus additional relational operators) [3], and rewriting logic [113]. Contract languages
like B and Coloured Petri-nets (CPN) are alternative formalisms used in MTr verification
[56, 79, 120]. Finally, it is also possible to encode MTr verification by means of mathemat-
ical notations such as graph theory [63, 87, 88, 106], type theory [28, 49, 98, 99] and game
theory [111].
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2.3.3 LRQ3: What Transformation Contracts are Verified? How are
they Expressed?

The transformation contracts verified by all the identified references fall into 6 categories:

(C1) Syntactic correctness of MTr ensures that every valid source model generates a valid
target model. The validity is usually given by syntactic constraints, e.g. constraints
on the multiplicity of associations [3, 21–25, 47, 49, 63, 72, 75–79, 87, 88, 98, 99,
105, 106].

(C2) Semantic correctness of MTr ensures that semantic constraints (e.g. constraints on
the uniqueness of associations) defined on the source metamodel, can be preserved on
the target metamodel after executing the MTr [21–23, 35, 47, 49, 72, 75–79, 98, 99,
105, 106, 111].

(C3) Semantic preservation of MTr ensures that the formalised execution semantics of
a MTr soundly represents the runtime behaviour of its corresponding transformation
implementation.

(C4) Confluence of MTr ensures that a MTr generates the same target models from the
same source models [56, 87, 113, 120].

(C5) Termination of MTr ensures that a MTr terminates under valid source models [56,
87, 120].

(C6) Transformation quality of MTr ensures that the MTr is specified with certain quali-
ties [56, 113, 120], such as:

– Absence of rule conflict, which ensures that the same source model elements are
not handled by more than one transformation rule in the MTr.

– Rule injectivity, which ensures that each target model element is generated by
exactly one transformation rule in the MTr.

Existing MTr verification approaches express these transformation contracts in two ways:

• In a contract language which does not consider the formalism used during the verifi-
cation process. The most popular contract language is OCL [3, 21–25, 47, 72, 75–78,
105]. An alternative is a visual contract language such as that used in the DSLTrans
approach [87].
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• In a formalism that is also used in the verification, e.g. FOL [49, 63, 98, 99], CPN
[56, 120].

2.3.4 LRQ4: To What Extent are the Existing Approaches Supported
by a Tool?

To answer this question, we extract information about the tool (if provided) used by each
reference, including the tool’s name, its input, the reasoning engine, the soundness, and the
level of automation (in the sense that user intervention is not required to steer the verification
process). These tools are categorised by the formal methods they use.

Simulation

Wimmer et al. have designed the TROPIC tool to encode a Query/View/Transformation
relational (QVTr) MTr into CPN [120]. It allows existing CPN execution engines to auto-
matically simulate QVTr transformations against a specific source model. The simulation
is checked for various CPN properties, where each property implies certain criteria of the
given model transformation.

Guerra and Lara translate a QVTr model transformation and EMF models into CPN
using their CPNTools system [56]. Compared to the work of Wimmer et al., the principal
differences are the encoding of certain QVTr concepts (e.g. check-before-enforce seman-
tics, model matching and check-only scenarios of QVTr). Moreover, their encoding allows
more simple Petri nets but increases the encoding complexity in certain circumstances. For
instance, TROPIC encodes classes and attributes in separate places, which produces more
complex CPN. However, it avoids data duplication when handling metamodels with inheri-
tance.

Troya and Vallecillo give a detailed operational semantics for the ATL language in terms
of rewriting logic using the Maude system [113]. The models and metamodels are encoded
using different user-defined terms. Each ATL transformation rule is encoded as a rewriting
rule to indicate how the state of model transformation is updated (where the state consists
of source and target models and traces between them). The goal is to produce an alternative
implementation of ATL in Maude, which allows for automatic input-driven simulation and
reachability analysis of a given ATL transformation.
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Model Checking and Model Finding

DSLTrans is a simple visual language with primitive constructs [9]. The transformation
rules in DSLTrans are organised into layers, and any constructs which imply unbounded re-
cursion or non-determinism are avoided. Due to this reduction in expressiveness, Lücio et al.
argue that the confluence and termination of designed model transformations can be guar-
anteed by construction [87]. Therefore, they enumerate the state space of a given DSLTrans
model transformation and represent it as a tree, where each node corresponds to a possible
execution of transformation rules for an equivalent class of inputs. They formally prove that
the state space of DSLTrans model transformations is always finite (which implies termina-
tion). Such finiteness is the key to designing a practical model checker for DSLTrans. As a
proof of concept, Lücio et al. also develop an off-the-shelf model checker in SWI-Prolog to
automatically check the syntactic correctness of target models by walking through the state
space of a DSLTrans model transformation [87, 88]. This model checker is extended by
Selim et al. to check commonly occurring properties, e.g., multiplicity invariants [106].

Anastasakis et al. have designed the UML2Alloy tool to perform automatic model find-
ing [3]. The novelty of their work is in the use of Alloy, which is a verification language
for SAT-based model finding [62]. Anastasakis et al. use Alloy as an IVL to ease (i) the
encoding of metamodels (enriched with syntactic correctness contracts expressed in OCL)
and MTr to Alloy; (ii) the generation of SAT formulas from Alloy. Anastasakis et al. also
demonstrate how to use UML2Alloy to check whether the model transformation can pro-
duce well-formed target models. The case study is described in a general form and is not
specific to any particular model transformation language. Later, Bütter et al. demonstrate
the UML2Alloy tool for a declarative subset of the ATL model transformation language
[22]. They show how to verify an ATL model transformation against syntactic and semantic
correctness contracts written in OCL. However, the main problem in UML2Alloy is that
Alloy does not naturally support numeric constraints. Thus, it has poor performance when
solving arithmetic constraints [122].

The USE validator is another model finding tool that is based on SAT-solving. It supports
a larger subset of OCL compared to UML2Alloy (e.g. multiple inheritance, OCL sequence
and bag datatypes) [71]. It has been used to check model transformation refinement [23],
verify model transformation in the automotive domain [105], and verify legitimate delega-
tions in security-critical systems [47].

Jackson et al. have designed the Formula framework for SMT-based model finding
[63]. The framework is based on the Z3 SMT solver [44]. The main contribution is that
they systematically encode metamodels and MTr using algebraic data types. The contracts
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are given by FOL. Consequently, they can use their framework to find models that witness
violations of syntactic correctness in the given MTr.

UML2CSP is a standalone Java application capable of verifying metamodels with OCL
constraints. It is not specifically designed for MTr verification. However, Cabot et al. pro-
pose a method to derive OCL invariants from QVTr MTr in order to enable their verification
and analysis in UML2CSP [24]. Their approach is also applicable to verify Triple Graph
Grammar (TGG)-based graph transformations, which shows its generality. Cabot et al. send
a transformation model and OCL transformation contracts to UML2CSP. Here, the transfor-
mation model refers to a unified structural description of the source metamodel, the target
metamodel, and the relationship between them that is established by a model transformation
[15]. Then, UML2CSP allows the user to set the search space, and select the transforma-
tion contracts to be verified. Finally, it runs the CSP solver to automatically find a legal
model instance without user intervention. If the verification process succeeds, the output of
UML2CSP is a graphical representation (i.e. a UML object diagram) of the found model
instance as a proof. Otherwise, no output is provided.

Stevens presents a novel usage of game theory to verify the semantic correctness of
QVTr [111]. The idea is that the verification tool consists of a verifier and a refuter. The
verifier confirms the semantic correctness of QVTr transformations, whereas the refuter’s
objective is to disprove it. Then, the semantics of each QVTr transformation is encoded into
the verification tool to determine how the game should progress. Finally, the verification
of its semantic correctness succeeds if the verification tool finds a winning strategy for the
verifier, and fails otherwise. However, no details are given about how to implement such a
verification tool.

Theorem Proving

Combemale et al. present a pen and paper bi-simulation proof to show that the ATL MTr
generates a Petri nets model that preserves the operational semantics of an executable SPEM
model [35]. The goal of their work is to define a translational semantics for the source
metamodel, i.e. defining the behavioural semantics of the source metamodel by translating
to a target metamodel that has an existing formally defined semantics. This would enable
reliable verification of source domain properties on the target domain.

Ledang and Dubois formalise metamodels and declarative transformation rules into the
B formalism [79]. They perform model transformation verification on a specific formalised
source model. The corresponding target model is incrementally built with respect to the
transformation rule formalisation. Their focus is to interactively prove semantics preserva-
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tion (encoded as invariants) while building the target model.
Calegari et al. encode the ATL MTr and its metamodels into inductive types [25]. The

contracts for semantic correctness are given by OCL, which are translated into logical pred-
icates. As a result, they can use the Coq proof assistant to interactively verify that the MTr
is able to produce target models that satisfy the given contracts.

Inspired by the proof-as-program methodology [60], there is a line of research which
develops the concept of proof-as-model-transformation methodology [28, 49, 72, 98, 99].
At its simplest, the idea is to represent the metamodels as terms. Then, each MTr and its
contracts are encoded together as a ∀∃ type. Type theory (for the lambda-calculus) provides
the basis of a proof system to verify the encoded ∀∃ type. Finally, a model transformation
can be extracted from the proof.

The proof-as-model-transformation methodology is first seen in Chan’s work [28]. How-
ever, few details are given regarding the kind of properties verified. Later, Poernomo out-
lines a method for representing metamodels and models as types. He follows the classical
approach in type theory to formally specify each model transformation rule as a ∀∃ type
[98]:

∀ x: PIL • I ( x ) =⇒ (∃ y: PSL • O( x , y ) )

Specifically, (i) PIL and PSL are source and target metamodel types, and (ii) I(x) specifies
a pre-condition on the input model x for the transformation to be applied, and (iii) O(x,y)

specifies required properties of the output model y. Moreover, each ∀∃ type is then proven
using the typing rules of PVS to obtain an inhabiting term [108], where a function program
can be extracted from the inhabiting term to represent the model transformation.

However, Poernomo’s work does not consider the scheduling of transformation rules.
This is addressed by Poernomo and Terrell using partial order contracts to link rules together
[99]. The approach is similar to the previous work of Poernomo himself. However, the
transformation is given as a series of mapping rules, defined over metamodels via a partially
ordered traversal of the source metamodel from a given initial root element:

∀ x: PIL • I ( x ) =⇒ (∃ y: PSL • O( x , y ) ∧ t r a v e r s e s ( x ) )

Notice the introduced traverses(x) predicate stands for the sub-transformations of source
elements that are below the root element x under a pre-defined partial ordering. Then, the
proofs are carried out interactively in the Coq theorem prover.

Fernández and Terrell extend Poernomo and Terrell’s work [49]. They show how to as-
semble the proof of a potentially large totally ordered model transformation, by decompos-
ing it into a number of smaller proofs which are easier to prove. In addition, the metamodels
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are defined as Coq co-inductive types to allow bi-directionality and circular references.
The Reactive System Development Support of UML (UML-RSDS) is a tool-set for de-

veloping correct model transformations by construction [73, 78]. The UML-RSDS is first
introduced by Lano in 2006 [72]. It uses a combination of UML and OCL to create a model
transformation design, instead of using types. UML use-case diagrams and activity dia-
grams are used to graphically create a MTr. The OCL contracts can be used to constrain the
source and target metamodels. Then, the MTr is verified against its contracts by translat-
ing both into the B Abstract Machine Notation. Finally, the verified model transformation
design can be synthesised to an executable transformation implementation (such as a Java
program or an ATL transformation). Developing on the UML-RSDS, Lano et al. further
apply design patterns to model transformation to design modular and verifiable model trans-
formations [76, 78]. As a result, the model transformation constructed using design patterns
produces its model transformation implementation in a straightforward manner and can be
more easily verified against model transformation contracts. Examples of these transfor-
mations are demonstrated by multiple model transformation designs written in UML-RSDS
(e.g. model migration of activity diagrams, UML to relational schema and state machine
slicing) [75, 76].

Finally, Büttner et al. automate the process of theorem proving by a novel use of SMT
solvers [21]. The built-in background theories of SMT solvers give enhanced expressive-
ness to handle constraints over an infinite domain. Specifically, Büttner et al. translate a
declarative subset of the ATL and OCL contracts (for syntactic and semantic correctness)
directly into FOL formulas. These formulas represent the execution semantics of the ATL
transformation, and are sent to the Z3 SMT solver to be discharged. The result implies the
partial correctness of an ATL transformation in terms of the given OCL contracts. Later,
Lano et al. also adapt the Z3 SMT solver to automate theorem proving within UML-RSDS
[77].

The answers to our literature review questions are summarised in Table 2.1. The first
column shows the related references (the references in the same line indicates that they
apply the same tool to perform the MTr verification). The second column indicates the
formal method applied (where SI for simulation, MC for model checking, MF for model
finding and TP for theorem proving). The third and fourth column shows respectively the
formalisation applied and type of contracts verified (Section 2.3.3) by each approach. The
remaining columns characterise the tool (if any) provided by each approach.
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2.4 Conclusion from our Literature Review

2.4 Conclusion from our Literature Review

In this section, we discuss a number of findings developed from doing this literature review
that, in our opinion, are worth noticing.

2.4.1 Bounded and Unbounded Verification

Essentially, simulation, model checking and model finding approaches are bounded. This
means the MTr will be verified against its contracts within a given search space (i.e. using
finite ranges for the number of models, associations and attribute values). Bounded ap-
proaches are usually automatic, but no conclusion can be drawn outside the search space.
However, the result of bounded verification is a strong indication of MTr correctness if wide
enough bounds are chosen for the search.

Theorem proving approaches are unbounded. This is preferable when the user requires
that contracts hold for MTr over an infinite domain. However, most of the theorem proving
approaches require guidance and expertise from the user [25, 28, 35, 78, 98, 99]. This can
be ameliorated by a novel use of SMT-solvers such as that presented by Büttner et al [21].

2.4.2 Lack of an Intermediate Verification Language

The most common way to implement MTr verification tools is using a 2-phase design. The
first phase is to formalise the source and target metamodels, the model transformation to
be verified, the transformation contracts (if any) into a mathematical model (model-based
verification) or the chosen formalism (proof-based verification). The second phase is to
reason about the generated mathematical model or formula. This is usually conducted with
the help of solvers or tools that are specialised for reasoning in the chosen formalism, or
performed in a theoretical way using pen and paper.

We conjecture that the missing piece in this 2-phase design is an IVL that bridges be-
tween the front-end MTr language and the back-end solver/tool. It allows the designer focus
on encoding verification tasks for the front-end MTr language, and delegates the communi-
cation with the back-end solver/tool to the IVL. In addition, various encodings (e.g. seman-
tics of transformation contracts, metamodels) can be encapsulated as modules or libraries.
These modules or libraries can be reused when designing verification tools for different
MTr languages. In conclusion, we believe the reusability and modularity of the designed
verification tool can be enhanced by using an IVL.

To our knowledge, UML2Alloy is the only verification tool that draws on an IVL. In its
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2.4 Conclusion from our Literature Review

design, Alloy has been used as an IVL for SAT-based model finding [3]. However, the IVL
has not yet been adopted in theorem proving approaches for MTr.

2.4.3 Choosing an Intermediate Verification Language

Boogie is a procedure-oriented IVL based on Hoare-logic [7]. The Boogie programs are
verified by the Boogie verifier. The Boogie verifier uses an efficient SMT solver, i.e. the Z3
theorem prover, at its back-end [44]. If a Boogie program is not verified, the Boogie verifier
will represent the result from Z3 as program traces, to help locate the error in the Boogie
program.

A Boogie program consists of imperative constructs (e.g. variables, expressions, proce-
dures, or procedure implementations), which we believe are suitable to formulate the proof
obligations for the correctness of MTr. It also consists of mathematical constructs (e.g. type,
constant, function and axiom declarations), which we believe are suitable to modularise the
design of verification tools.

At the time of this thesis being written, translations into Boogie exist for several lan-
guages, including C# [8], C [39], Dafny [82], Java [80], and Eiffel [114], which show its
applicability.

Another widely used IVL is Why3 [52]. Both Boogie and Why3 are based on FOL with
polymorphic types, and have mature implementations to parse, type-check, and analyse
programs. Verifier designs that currently target Why3 exist for Java [90], C [36], Ada [57],
and B [45].

Modularisation of Why3 is introduced by the concept of a theory. A theory is a unit
to organise related declarations (functions, constants, axioms, lemmas and etc.), e.g. the
theory of sets. It can be imported by a Why3 program or by another theory to reuse its
declarations. At the time of this thesis being written, Why3 already has a rich set of built-in
theories.

An advantage of Why3 is that it is able to target multiple theorem provers [51]. One
benefit is that it is able to assign a specific verification task to the suitable theorem prover.
For example, for arithmetic problems, CVC4 is more efficient than other theorem provers;
whereas Vampire is more efficient for first-order formulas [27]. Another benefit is to enable
cross verification to enhance the credibility of verification results. The only side-effect we
can think of is when the theorem provers do not agree on the verification result:

• It could be due to the deficiency of a theorem prover for a specific verification task.
For example, choosing a SAT solver for SMT-oriented tasks.
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2.4 Conclusion from our Literature Review

• It could also be due to the unsound translation from Why3 to the target theorem prover.
For example, due to the lack of documentation for the Yices theorem prover, the
theory of Euclidean division (on negative numbers) was erroneously translated in the
early version of Why3 [55].

However, the Why3 users can always choose a set of theorem provers to prove specific veri-
fication tasks, or choose to define a high success criteria for verification (e.g. the verification
must succeed on all the targeted theorem provers).

We concentrate on Boogie in this research, as Boogie was the IVL that we were most
familiar with when we commenced our research. However, we believe all results can be
reproduced in Why3 (a coarse roadmap is demonstrated in Appendix E) or other IVLs with
comparable functionality.

2.4.4 Transformation Contracts

Another observation is that OCL is one of the most popular languages for expressing the
transformation contracts. This could be because the design of OCL is intrinsic to navigate/-
manipulate metamodels and models, and it is widely accepted by the MDE community.

However, OCL can sometimes be verbose, and difficult to read/write [116]. Moreover,
the verifier designer needs to decide how to formalise the semantics of OCL into the rea-
soning engine. This adds an extra complexity to the verifier implementation.

Thus, some of the existing approaches chose the formalism that is understood by the
reasoning engine to directly express the transformation contracts, e.g. FOL [49, 63, 98, 99].
However, as OCL is widely accepted by the MDE community, using another formalism to
express contracts becomes counter-intuitive, and could increase the learning curve when
working with MTr verification.

We are convinced that an IVL can provide a flexible solution to express transformation
contracts. First, the semantics of OCL can be built into an IVL as libraries in an incremental
and modular way. These libraries can be reused to ease the development of OCL semantics
in the reasoning engine. These libraries can also be imported on demand to avoid semantic
differences among OCL formalisations (e.g. null value of OCL). Second, since most IVLs
have an a easy-to-learn syntax and semantics, the users can also work directly with an IVL
to express transformation contracts if they prefer.
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2.4.5 Verifier Soundness

All the approaches we found rely on deriving a formula/mathematical model to represent
the execution semantics of MTr. However, the reliability of this derivation has not been
considered [1]. If the derivation incorrectly represents the execution semantics of the MTr,
then the soundness of the verifier is compromised. It means the user of a verified MTr could
experience unexpected runtime behaviour even if the verifier concludes that the MTr met its
expectation.

Translation validation is a technique used in compiler verification to ensure each indi-
vidual compilation is followed by a validation phase. The validation phase verifies that the
compiled program produced on each run correctly implements the source program [97]. Its
essential idea is to find a semantic framework that can faithfully represent both the source
and compiled program. Then, a formalisation of the notion of “correct implementation”
needs to be defined. Finally, a proof needs to be developed to show the compiled program
correctly implements the given source program.

For MTr, recall that to be executable, the transformation is usually compiled to low-level
bytecode. We believe it is feasible to adopt the translation validation approach to ensure
the soundness of the verifier, i.e. to be able to check consistency between the execution
semantics of each transformation and the runtime behaviour of its corresponding bytecode.
However, we also anticipate that certain changes will need to be made while adopting the
translation validation approach. This is mainly because of the domain-specific properties
that only reside in the compilation of MTr, e.g. the bytecode instructions that are specifically
designed for model handling.

2.5 Summary

In conclusion, through analysing the literature, we choose theorem proving over bounded
techniques to allow deductive formal verification of MTr that quantifies over an infinite do-
main. Most IVLs have an easy-to-learn syntax and semantics. They bridge between the
front-end MTr language and the back-end solver, and are capable of encapsulating compo-
nents of the verification tool as modules or libraries. Thus, we are convinced that using an
IVL is the most suitable approach to systematically designing modular and reusable verifiers
for the given MTr language. The same reasons convince us that using an IVL can contribute
to flexibly express transformation contracts. In this research, the IVL we choose to con-
centrate on is Boogie. Finally, the soundness of the designed verifier is very important. It
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2.5 Summary

shares similarities to compiler verification. Thus, we suggest adapting the translation vali-
dation approach from compiler verification to ensure the soundness of the designed verifier.
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Chapter 3

A Modular Semantics for EMF
Metamodels and OCL in Boogie

In this chapter, we describe a semantics for EMF metamodels (Section 3.2), and a semantics
for OCL (Section 3.3). They form the main results of this chapter. We encode both of them
in the Boogie IVL as libraries (Section 3.1). These libraries can be reused across different
verifier designs for MTr. This chapter concludes with a discussion of the consistency and
completeness issues for our encoded Boogie libraries (Section 3.4).

3.1 Introduction to the Boogie Intermediate Verification
Language

A standard technique in theorem-prover-based program verification is to transform a given
program and its proof obligations (i.e. what conditions need to hold for the program to
be considered correct) into a set of logical formulas (a.k.a VCs) whose validity implies the
program correctness. The VCs are then processed by the theorem prover, where a successful
proof implies the correctness of the program (with respect to its proof obligations), and a
failed proof may give an indication of a possible error in the program.

Previous automatic program verifier designs suggested that the complex task of generat-
ing VCs for high-level programming languages can be managed by separating the task into
two steps [7, 50, 82]: a transformation from the program and its proof obligations into a
program written in an IVL, and then a transformation from the IVL program into logical
formulas.

The IVL bridges between the front-end high level programming language and the back-
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3.1 Introduction to the Boogie Intermediate Verification Language

end theorem prover. The benefit is to focus on generating proof obligations that prescribes
what correctness means for the front-end language in a structural way, and to delegate the
task of interacting with theorem provers to the IVL.

Boogie is a procedure-oriented IVL based on Hoare-logic [7]. The verification of Boogie
programs is performed by the Boogie verifier which uses the Z3 theorem prover at its back-
end [44]. If the Boogie program is not verified, the Boogie verifier will represent the result
from Z3 as program traces, to help locate the error in the Boogie program. At the time of
this thesis being written, translations into Boogie exist for several languages, including C#
[8], C [39], Dafny [82], Java [80], and Eiffel [114], which shows its applicability.

A Boogie program consists of declarations for types, functions, constants, axioms, ex-
pressions, variables, procedures, or procedure implementations.

Imperative statements (such as assignment, if and while statements) are provided by
Boogie to structure the procedure implementations. FOL contracts (i.e. pre/postconditions
expressed by Boogie expressions) are supported to specify procedures. A Boogie program
is considered verified if its procedure implementations satisfy their corresponding contracts.

1 procedure Mc91 ( n: i n t ) r e t u r n s ( r : i n t ) ;
2 ensures 100 < n =⇒ r = n − 1 0 ;
3 ensures n ≤ 100 =⇒ r = 9 1 ;
4

5 implementat ion Mc91 ( n: i n t ) r e t u r n s ( r : i n t )
6 { i f (100 < n ) {
7 r := n − 1 0 ; }
8 e l s e {
9 c a l l r := Mc91 ( n + 1 1 ) ;

10 c a l l r := Mc91 ( r ) ; }
11 }

Fig. 3.1 Boogie encoding of the McCarthy-91 function

To demonstrate what a Boogie program looks like, we show the Boogie encoding of the
McCarthy 91 function in Fig. 3.1 [89]:

• First, the signature of the Boogie procedure specifies that the McCarthy-91 function
takes one input n and one output r of type int (line 1).

• Then, the postconditions that establish the relationship between the input and output
are specified by two ensures clause (line 2 - 3). That is if the input is greater than 100,
return the input minus 10 as the output; otherwise always return 91.

• The procedure implementation uses a Boogie if statement to form a case distinction
according to the input value (line 5 - 11). That is if the input value is greater than 100,
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3.2 Library for the Semantics of EMF Metamodels

the output is assigned the input minus 10. Otherwise, two recursive calls are invoked
sequentially to compute the output.

Although the formal proof of McCarthy 91 can be done manually, the Boogie verifier can
prove it automatically by applying basic principles for verifying recursive calls (e.g. inlining
the contracts of the recursive call).

In addition, Boogie allows type, constant, function and axiom declarations, which are
mainly used to encode libraries that define data structures, background theories and lan-
guage properties. These features are used in this chapter to encode Boogie libraries that
define semantics for EMF Metamodels and OCL.

Notice that we do not intend to give a full semantics of the Boogie IVL in this chapter,
since a comprehensive manual for Boogie has been presented by Leino [81].

3.2 Library for the Semantics of EMF Metamodels

Metamodelling concepts share many similarities with OO programming language constructs.
Thus, the Boogie encoding of OO programs can be adapted to encode the semantics of EMF
metamodels. However, because of the subtle semantic differences between metamodelling
concepts and OO constructs, such adaptation requires certain customisations. These cus-
tomisations are the focus of this section.

The abstract syntax of supported features of the EMF metamodels is shown in Fig. 3.2.
Each classifier should belong to a metamodel and must have a name. Optionally, it can
have a list of structural features. It could be inherited from other classifiers. However,
cyclic inheritance is not allowed [63]. Moreover, declaring a classifier to be abstract or an
interface is allowed. A structural feature (also known as a member field) of a classifier must
have a name. It is declared to be of a given type, i.e. type of bool, int, string, or a reference
to (the elements of) a classifier. A structural feature is called an attribute if its type is
bool, int or string. It is called an association if its type is a reference type. In addition, the
multiplicity can be specified to indicate the cardinality of the structural feature. It is denoted
by lower..upper, where lower and upper are the bounds of the multiplicity.

In the following sections, we introduce the semantics of supported features of the EMF
metamodels. The semantics of these features are given by their corresponding Boogie en-
coding.
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3.2 Library for the Semantics of EMF Metamodels

⟨Metamodel⟩ ::= MM(name: string)

⟨Classifier⟩ ::= Clazz(mm: ⟨Metamodel⟩, name: string, fields: seq⟨StructuralFeature⟩,
parents: seq⟨Classifier⟩, isAbstract: bool, isInterface: bool)

⟨type⟩ ::= bool | int | string | ref(cl: ⟨Classifier⟩)

⟨StructuralFeature⟩ ::= Field(owner: ⟨Classifier⟩, id: string, ty: ⟨type⟩,
lower: int, upper: int)

Fig. 3.2 Abstract syntax of the supported features of EMF metamodels

3.2.1 Semantics of EMF Classifiers

Our library for the semantics of the EMF metamodels declares a non-primitive Boogie type
ClassName to type each constant that represents a classifier name:

type ClassName ;

Example 3.2.1. The classifiers Entity and Relship from the ER metamodel (shown in Ap-
pendix B.1) can be declared in Boogie as follows:

c o n s t unique ER$Ent i ty : ClassName ;
c o n s t unique ER$Relship : ClassName ;

Some explanation is in order. First, each classifier is prepended with its metamodel name
to avoid name conflicts between source and target metamodels, and followed by a separator
symbol $ for readability. Second, each constant is declared with the unique modifier that
shows the constant has a value that is different from the values of other unique constants of
the same ClassName type.

An inheritance relationship can be defined via a partial order relationship (i.e. reflexive,
transitive, and antisymmetric relationship) between a classifier and a set of parent classifiers
(the set can be empty).

Example 3.2.2. Provided that there are two classifiers Entity and its sub-classifier Spe-

cialEntity, their declarations in Boogie can be encoded as follows:

c o n s t unique ER$Ent i ty : ClassName ex tends ;
c o n s t unique E R $ S p e c i a l E n t i t y : ClassName ex tends ER$Ent i ty ;

The first line simply conveys that Entity does not have any parents. The second line
conveys that SpecialEntity inherits from Entity.
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3.2 Library for the Semantics of EMF Metamodels

Multiple-inheritance is allowed. Its encoding can be tricky since immediate parent mod-
ifiers can be involved among constants. Being an immediate parent y of constant x means
that there does not exist any other constants any such that x extends any and any extends y.

The following example is a violation of the immediate parent declaration, which intro-
duces Entity in the middle of SpecialEntity and NamedElement, and should be avoided in
encoding.

c o n s t unique NamedElement : ClassName ex tends ;
c o n s t unique ER$Ent i ty : ClassName ex tends NamedElement ;
c o n s t unique E R $ S p e c i a l E n t i t y : ClassName ex tends ER$Ent i ty , NamedElement ;

Finally, a subtle but important encoding is to use a complete modifier on every classifier.
This is to convey that the complete set of classifiers that extends from a given classifier is
known. This is quite useful when quantifying over an abstract classifier, when the quantifi-
cation needs to know exactly which sub-classifiers are inherited from an abstract classifier.
We have not seen any OO verifier with a mature implementation which enforces such con-
straints on the classes. The reason could be that in the context of OO programming, the
complete set of classes that extends from a class is generally not yet fixed during program
development.

Example 3.2.3. We show the complete classifier encoding of the ER metamodel in Fig. 3.3.

c o n s t unique ER$Ent i ty : ClassName ex tends complete ;
c o n s t unique ER$Relship : ClassName ex tends complete ;
c o n s t unique ER$ERSchema: ClassName ex tends complete ;
c o n s t unique ER$ERAt t r ibu te : ClassName ex tends complete ;
c o n s t unique ER$RelshipEnd : ClassName ex tends complete ;

Fig. 3.3 Boogie encoding of classifiers in ER metamodel

3.2.2 Semantics of EMF Structural Features

To facilitate typing the structural features in the library for the semantics of EMF metamod-
els, bool and int types are primitively supported in Boogie, and the string type is modelled
as a sequence of int. A nullary type constructor ref models the reference type:

type r e f ;
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To distinguish between associations of different classifiers, a dtype function that maps
each association to its allocated classifier is declared:

f u n c t i o n d t y p e ( r e f ) r e t u r n s ( ClassName ) ;

Different multiplicities on an association are distinguished by the result of evaluating
the result of their dtype function:

• An association with upper bound 1 will return its allocated classifier.

• An association with upper bound * will always return the classifier System.array.

Most OO languages support the concept of multiplicity indirectly, e.g. Java, C#. Thus, the
concept of multiplicity is usually not reflected in their verifier design. However, multiplicity
is commonly used in MDE, which makes its encoding important for MTr verification to
work in practice.

In the library for the semantics of the EMF metamodels, a unary type constructor is used
to type the structural features:

type F i e l d α ;

Example 3.2.4. The classifier ERSchema from an ER metamodel with the structural features
name, relships and entities is declared as follows:

c o n s t unique ER$ERSchema . name: F i e l d S t r i n g ;
c o n s t unique ER$ERSchema . r e l s h i p s : F i e l d r e f ;
c o n s t unique ER$ERSchema . e n t i t i e s : F i e l d r e f ;

Some explanation is in order. First, each structural feature is mapped to a unique con-
stant of type Field α , where α is of primitive type (i.e. int, bool and string) for each attribute,
and is of ref type for each association. Second, all the constants generated for attributes or
associations are extended with the corresponding classifier name to ensure their uniqueness.

3.2.3 Burstall-Bornat Memory Model

The Burstall-Bornat memory model is commonly used in OO verifier design to represent
the runtime heap [20]. Its general idea is to use an updatable array heap to organise the
relationships between runtime objects. Such an array is defined with the following Boogie
type:

type HeapType = <α >[ ref , F i e l d α ] α
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The HeapType is a type synonym to abbreviate the map type that is defined on its right
hand side. Such a two-dimensional map type is defined in a polymorphic manner (i.e.
parametrised by the bound type identifier α). It allows the mapping of memory locations
(identified by a runtime object and a field) to values of type α .

In our library for the semantics of the EMF metamodels, the Burstall-Bornat memory
model is used to organise the relationships between runtime elements of classifiers, which
allows the mapping of memory locations (identified by an element of a classifier, and a
structural feature) to values.

The domain of the heap includes allocated as well as unallocated elements. To distin-
guish between these two, it is useful to add a structural feature alloc of type Field bool and
set it to true when an element is allocated. To ensure safe memory access, certain operations
should only operate on the allocated elements.

A memory access expression o.f is now seen as the expression read(heap,o,f). An as-
signment o.f:=x is understood as the expression update(heap,o,f,x), i.e. changing the value
of the heap at the position given by the element o and structural feature f, to the value of x.

There are several advantages of adopting the Burstall-Bornat memory model to express
the semantics of the EMF metamodels:

• One is that it organises runtime model elements in a single updatable array, which can
be flexibly passed as an argument to the places where it is needed (e.g. as in the read

and update function) [81].

• Another advantage is that it allows quantification over fields [81]. This is convenient
when expressing the semantics of ATL (see the frame problem in Section 4.2.1).

• A further advantage is the enhancement of verifier interoperability. Verifiers that
are built using the same IVL and share the same memory model form a verification
ecosystem, which allows information to seamlessly flow between them.

3.3 Library for the Semantics of OCL

A major advantage of adopting Boogie for verifier design is reusability. That is the verifier
designers can draw on the existing Boogie libraries to implement their verifiers, and then
the libraries that they develop can be made available to others.

This is the case while developing our library for the semantics of OCL. In particular,
we encode a subset of OCL data types that are supported in ATL, i.e. OCLType, OCLAny,

32



3.3 Library for the Semantics of OCL

Primitive (OCLBool, OCLInteger, OCLString) and Collection (OCLSet, OCLOrderedSet,
OCLSequence, OCLBag). Overall, 78 OCL operations are supported on the chosen data
types. This encoding is based on a Boogie library for the theory of set, sequence and
bag provided by the Dafny verifier [82]. Twenty-three Boogie functions from this library
are directly reused in our encoding. On top of these, we further introduce the theory for
OCLOrderedSet collection data type (with 3 OCL operations) in Boogie, and 8 OCL itera-
tors on OCLSequence and OCLOrderedSet data types (i.e. exists, forall, isUnique, one, any,
select, collect and reject iterators).

3.3.1 Semantics of OCLType

The data type OCLType corresponds to the definition of each type instance specified by
OCL. For example, ERSchema from the ER metamodel is an OCLType. It corresponds to
the Boogie type ClassName.

Each OCLType is associated with an allInstances operation (written as operand.all-

Instances()), which returns a list of the currently allocated instances whose classifier is the
kind of the specified OCLType. The allInstances operation is encoded into Boogie by the
following function:

f u n c t i o n OCLType# a l l I n s t a n c e ( heap : HeapType , c l : ClassName ) : Seq r e f ;
axiom (∀ heap : HeapType , c l : ClassName , r : r e f •

Seq# C o n t a i n s ( OCLType# a l l I n s t a n c e ( heap , c l ) , r ) ⇐⇒
r ̸= n u l l ∧ r e a d ( heap , r , a l l o c ) ∧ d t y p e ( r ) < : c l ) ;

The semantics of Boogie functions are usually given as axioms. The axioms are expressed
using Boogie expressions (i.e. FOL expressions such as variables, arithmetic and equality
as well as ordering relations, boolean connectives, simple arithmetic operators and logical
quantifiers). For example, the axiom indicated here is the main axiom for the allInstances

operation. It specifies that the function returns a sequence of ref where each ref is a non-null
reference, and has to be allocated on the given heap, and is a subtype of cl.

It is possible to write inconsistent axioms in Boogie (e.g. “axiom false;”), which trivially
renders any proof obligations valid. Therefore, it is the verifier designers’ responsibility to
make sure that all the declared axioms are consistent. We will further discuss the state of
the art that prevents the inconsistent axiomatic system in Section 3.4.

3.3.2 Semantics of OCLAny

OCLAny behaves as a super-type for all the data types. It does not correspond to any Boogie
constructs. OCL supports a set of operations for OCLAny that are common to all existing
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data types (written as operand.operation_name(parameters)). In our library for the seman-
tics of OCL, the supported operations are:

• comparison operators: =, <>;

• OCLIsUndefined() returns a boolean value stating whether the operation’s operand is
undefined;

• OCLIsKindOf(t : OCLType) returns a boolean value stating whether the operation’s
operand is either an instance of t or of one of its subtypes;

• OCLIsTypeOf(t : OCLType) returns a boolean value stating whether the operation’s
operand is an instance of t.

• OCLType() returns the OCLType of operation’s operand;

The polymorphic function is used to encode these operations on OCLAny. The signature
of a polymorphic function is parametrised by type identifier(s), which are replaced by the
concrete data type(s) while axiomatizing the function.

Example 3.3.1. The OCLIsUndefined operation is encoded as follows:

f u n c t i o n OCLAny# i s U n d e f i n e d <α >( h: HeapType , elem : α ) : bool ;
axiom (∀ h: HeapType , i : i n t • ¬OCLAny# i s U n d e f i n e d ( h , i ) ) ;
axiom (∀ h: HeapType , b: bool • ¬OCLAny# i s U n d e f i n e d ( h , b ) ) ;
axiom (∀ h: HeapType , s : s t r i n g • ¬OCLAny# i s U n d e f i n e d ( h , s ) ) ;
axiom (∀ h: HeapType , r : r e f • OCLAny# i s U n d e f i n e d ( h , r ) ⇐⇒ ( r=n u l l ∨ ¬ r e a d ( h , r , a l l o c ) ) ) ;

Some explanation is in order. First, all of our polymorphic functions are axiomatised
over certain data types (i.e. bool, int, string and ref ). Axiomatisation for other data types
needs to be introduced on demand by the user of the verifier (which has rarely happened in
our experience).

Second, one subtlety in our encoding is how to handle the two Undefined values for ref

(i.e. null and invalid) [11]. The null value is modelled in Boogie as follows:

c o n s t n u l l : r e f ;

The invalid value is modelled in Boogie by checking whether it is an allocated ref on the
given heap.
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3.3.3 Semantics of Primitive Data Types

Our library for the semantics of OCL supports three OCL primitive data types (OCLBool,
OCLInteger and OCLString). The first two have native support in Boogie. The OCLString

is mapped to an OCLSequence of integers. The operations supported on the primitive data
types have an intuitive mapping to the Boogie constructs (Table 3.1). The first column lists
the three primitive data types. The second column details the supported OCL operations on
each primitive data type, whose behaviour is commented in the third column. The fourth
column indicates their coarse mapping to Boogie (see Appendix A for a detailed mapping).

Data Type OCL Operation Comment Boogie
OCLBool and, or, implies, not logical operators. Default

OCLInteger
<, >, >=, <=, =, <> comparison operators.

Default*, +, -, div(), mod() binary operators.
abs() unary operators.

OCLString

s.size() returns the number of
characters contained in s.

theory ofs.concat(s2:OCLString) returns a string in which
the string s2 is concate-
nated to the end of s.

(where s is a string) s.substring
(lower:OCLInteger,
upper:OCLInteger)

returns the substring of s
starting from the charac-
ter indexed by lower to
the character indexed by
upper.

sequence

s.toUpper(),
s.toLower()

respectively return an
upper/lower case copy of
s.

s.startsWith(s2:OCLString),
s.endsWith(s2:OCLString)

respectively return a
boolean value stating
whether s starts/ends
with s2.

Table 3.1 Semantics of OCL primitives
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3.3.4 Semantics of Collection Data Types

OCL defines four collection data types. These collection data types differ in the way that
they store elements:

• OCLSet is a collection without duplicate elements, and its elements are not indexed;

• OCLOrderedSet is a collection without duplicates, and its elements are indexed;

• OCLBag is a collection that has duplicates, and its elements are not indexed;

• OCLSequence is a collection that has duplicates, and its elements are indexed;

To model these data types, the following Boogie types are introduced:

type S e t T = [ T ] bool ; / / OCLSet , membership o f e l e m e n t s
type O r d e r e d S e t = Seq T ; / / OCLOrderedSet
type M u l t i S e t T = [ T ] i n t ; / / OCLBag , no . o f o c c u r r e n c e o f e l e m e n t s
type Seq T ; / / OCLSequence

Data Type OCL Operation Comment Boogie

OCLSet

s.union(s2:OCLSet),
s.intersection(s2:OCLSet),
s-s2

returns union/intersec-
tion/difference of two
sets.

theory of

(where s is a set) s.including(o:OCLAny),
s.excluding(o:OCLAny)

returns a new set that is
the same as s except in-
cluding/excluding o.

set

s.includes(o:OCLAny),
s.excludes(o:OCLAny)

returns whether the ob-
ject o is included/ex-
cluded in/from s.

s.isEmpty(),
s.notEmpty()

returns whether s is/not
empty.

OCLBag
s.including(o:OCLAny),
s.excluding(o:OCLAny)

return a new bag that
is the same as s ex-
cept the occurrence o in-
creased/decreased by 1.

theory of

(where s is a bag) s.includes(o:OCLAny),
s.excludes(o:OCLAny)

returns whether the ob-
ject o is included/ex-
cluded in/from s.

multiset

s.isEmpty(),
s.notEmpty()

returns whether s is/not
empty.

Table 3.2 Semantics of OCL collections
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The modelling of OCL collection data types is adapted from the theory of set, multiset

and sequence provided by the Dafny verification system [82]. The operations supported
on the collection data types have an intuitive mapping to the Boogie functions in its corre-
sponding theory provided by Dafny. These are listed in Table 3.2 (structured as in Table 3.1).
Again, the fourth column indicates their coarse mapping to Boogie. The detailed mappings
are listed in Appendix A.

Moreover, eight collection iterators are supported (i.e. exists, forall, isUnique, one, any,
select, collect and reject iterators). Notice that these iterators are only supported on the
OCLSequence and OCLOrderedSet data types, since the other collection data types do not
preserve order, and are thus not enumerable.

These iterators are encoded as Boogie functions and their meaning is encoded by ax-
ioms. We show the select iterator as an example, the encoding of other iterators is similar.
The select iterator, written as s->select(e| f ), selects the elements that evaluate the filter
expression f to true from the sequence s. Here, the iterator variable e refers to the current
element on each iteration, which can be used in the expression f.

The select iterator is encoded in Boogie as shown in Fig. 3.4.

1 f u n c t i o n I t e r a t o r # S e l e c t <T>( l o : i n t , h i : i n t , s : Seq T ,
2 h: HeapType , f : [ T , HeapType ] bool ) : Seq T ;
3 / / f o rward i n d u c t i o n axiom , when f i l t e r e x p r e s s i o n e v a l u a t e s t o t r u e .
4 axiom (∀<T> l o : i n t , h i : i n t , s : Seq T , h: HeapType , f : [ T , HeapType ] bool •
5 lo < h i ∧ f [ Seq# Index ( s , l o ) , h ] =⇒
6 I t e r a t o r # S e l e c t ( lo , h i , s , h , f ) =
7 Seq#Append ( Seq# S i n g l e t o n ( Seq# Index ( s , l o ) ) , I t e r a t o r # S e l e c t ( l o +1 , hi , s , h , f ) ) ) ;
8 / / f o rward i n d u c t i o n axiom , when f i l t e r e x p r e s s i o n e v a l u a t e s t o f a l s e .
9 axiom (∀<T> l o : i n t , h i : i n t , s : Seq T , h: HeapType , f : [ T , HeapType ] bool •

10 lo < h i ∧ ¬ f [ Seq# Index ( s , l o ) , h ] =⇒
11 I t e r a t o r # S e l e c t ( lo , h i , s , h , f ) = I t e r a t o r # S e l e c t ( l o +1 , hi , s , h , f ) ) ;
12 / / backward i n d u c t i o n axiom , when f i l t e r e x p r e s s i o n e v a l u a t e s t o t r u e .
13 axiom (∀<T> l o : i n t , h i : i n t , s : Seq T , h: HeapType , f : [ T , HeapType ] bool •
14 lo < h i ∧ f [ Seq# Index ( s , h i −1) , h ] =⇒
15 I t e r a t o r # S e l e c t ( lo , h i , s , h , f ) =
16 Seq#Append ( I t e r a t o r # S e l e c t ( lo , h i −1, s , h , f ) , Seq# S i n g l e t o n ( Seq# Index ( s , h i − 1 ) ) ) ) ;
17 / / backward i n d u c t i o n axiom , when f i l t e r e x p r e s s i o n e v a l u a t e s t o f a l s e .
18 axiom (∀<T> l o : i n t , h i : i n t , s : Seq T , h: HeapType , f : [ T , HeapType ] bool •
19 lo < h i ∧ ¬ f [ Seq# Index ( s , h i −1) , h ] =⇒
20 I t e r a t o r # S e l e c t ( lo , h i , s , h , f ) = I t e r a t o r # S e l e c t ( lo , h i −1, s , h , f ) ) ;
21 / / s p l i t t i n g axiom
22 axiom (∀<T> mid: i n t , l o : i n t , h i : i n t , s : Seq T , h: HeapType , f : [ T , HeapType ] bool •
23 l o≤mid ∧ mid≤h i =⇒
24 I t e r a t o r # S e l e c t ( lo , h i , s , h , f ) =
25 Seq#Append ( I t e r a t o r # S e l e c t ( lo , mid , s , h , f ) , I t e r a t o r # S e l e c t ( mid , hi , s , h , f ) ) ) ;
26 / / consequence axiom
27 axiom (∀<T> i : i n t , l o : i n t , h i : i n t , s : Seq T , h: HeapType , f : [ T , HeapType ] bool •
28 0≤i ∧ i <Seq# Length ( I t e r a t o r # S e l e c t ( lo , h i , s , h , f ) ) =⇒
29 f [ Seq# Index ( I t e r a t o r # S e l e c t ( lo , h i , s , h , f ) , i ) , h ] ) ;

Fig. 3.4 The Boogie encoding for the select iterator of OCL collection
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The Boogie function for the select iterator is polymorphically parametrised by the bound
type identifier T. It takes 5 parameters. The first two parameters accept the range that the
iterator works on. The third parameter receives the sequence to be iterated upon. The fourth
parameter takes the runtime heap (which is used to evaluate the filter expression). The last
parameter accepts the filter expression.

The semantics of the select iterator is encoded by axioms. The first two axioms define
how to select elements by forwardly inducting the range (line 3 - 11). The next two axioms
define how to select elements by backwardly inducting the range (line 12 - 20). Then,
another axiom states that the task of sequence selection can be decomposed by splitting the
input sequence into two using a pivot position mid (line 21 - 25). The result of selecting
on the original sequence will be the same as combining the results of selecting on the split
sequence. The last axiom states the fact that for every selected element the filter expression
f evaluates to true (line 26 - 29).

Example 3.3.2. A simple select iterator, on a sequence of ERAttribute, which selects the
element whose isKey is evaluated to true, can be expressed in OCL as:

s-> select (attr:ERAttribute|attr.isKey)

Such an iterator yields the following call to the Iterator#Select Boogie function:

I t e r a t o r # S e l e c t ( 0 , Seq# Length ( s )−1 , s , heap ,
(λ a t t r : ref , hp : HeapType • a t t r ̸= n u l l ∧ r e a d ( hp , a t t r , a l l o c ) ∧ d t y p e ( a t t r ) < : ER$ERAt t r ibu te

=⇒ r e a d ( hp , a t t r , ER$ERAt t r ibu te$ i sKey ) ) )

The first four arguments offer no surprise and correspond to the first four parameters of the
select iterator. The fifth argument is a lambda expression that evaluates whether the input
(that is non-null and allocated of subtype of ERAttribute on the given heap) has a true value
for its isKey attribute.

3.4 Consistency and Completeness of Our Libraries

In this section, we discuss our libraries for the semantics of EMF metamodels and OCL in
terms of their consistency and completeness.

Consistency. Inconsistent Boogie axioms inside a Boogie library would render every-
thing trivially verified by the back-end theorem prover and would thus compromise the
soundness of the verifier.
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The consistency of our Boogie libraries for the semantics of metamodels and OCL are
challenging theoretical problems that require well-defined and commonly accepted formal
semantics for each. To our knowledge, none of these are currently available. When one
becomes available, we can adapt existing techniques to reason about the consistency of our
encodings. For example, one approach to ensure axiom consistency is to generate proof
obligations for the axiomatic system [40, 41, 83]. A successful proof ensures the axioms of
a function are consistent. The main limitation is that the generated proof obligations are too
difficult to prove by the existing SMT solvers either manually or automatically. Moreover,
theory interpretation approaches map from axiomatic systems to mathematical structures of
a theorem prover [42, 43]. Then, the corresponding interpretation of axioms become theo-
rems to be proved by the theorem prover. The successful proof ensures axiomatic systems
are relatively consistent with the mathematical structures of the mapped theorem prover.

Two of the approaches we use while developing our Boogie libraries are “false deriv-
able” and using test oracles. The “false derivable” approach can be used to test whether
false is derivable from the axiomatic system [64, 91]. It is suitable for inconsistent axioma-
tisations that require trivial actions to reproduce. A more practical approach is to write test
oracles that specify verification scenarios and their corresponding expected outcome. This
approach is also used in the regression tests of the official development of Boogie to ensure
its consistency on each rebuild.

Completeness. Completeness prevents false positives. There are various reasons for our
Boogie libraries for the semantics of metamodels and OCL to be incomplete. One possible
reason is because their Boogie encoding poses verification challenges to the theorem prover.
Therefore, in future work we would like to evaluate the verification performance on differ-
ent encoding of our Boogie libraries. Böhme and Moskal propose a scalable benchmark
to evaluate the verification performance on different encoding of dynamic data structures
(e.g. memory models) [18]. We believe their work would provide guidance on preparing
benchmark and defining metrics for our evaluation.

Another reason could be that the generated VCs from our Boogie libraries are too com-
plex to be solved by the back-end theorem prover. In order to address this problem, Leino
and Rümmer illustrate the type system design of Boogie, and investigate how to translate
polymorphic types and expressions into VCs that are more suitable for SMT solvers to solve
[85]. Their experimental results support the idea that embedding such features in an IVL is
both desirable for both the implementation and performance of verifiers.

The completeness of our Boogie libraries could also suffer from the limitation of state
of the art theorem provers, i.e. the undecidability of FOL when the universal quantifiers
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are involved [46, 53, 81]. Boogie allows triggers (a.k.a matching patterns) that determine
how to instantiate universal quantifiers. The use of appropriate triggers is crucial to get
good performance and desirable results from the SMT solver. Leino and Monahan describe
how to use triggers effectively in the axiomatisation of summation-like comprehensions
in Boogie [84], which is the guidance we followed when encoding our iterators for OCL
collections. There are also other systematic approaches to infer triggers. Detlefs et al.
propose a syntactical approach to automatically infer the triggers at the SMT solver level
[46]. Their approach is applied in the design of the Simplify SMT solver. Ge et al. argue that
such a syntactical approach is too restrictive in certain cases [53]. For example, they think
it is not necessary to restrict a trigger to contain additional variables besides the bounded
variables of a quantifier. Their disagreements with the Simplify SMT solver are reflected in
the design of the CVC3 SMT solver.

Potential incompleteness could also be due to missing axioms in our Boogie libraries.
For example, the take and drop operations of the sequence data type in our OCL library are
encoded by just the essential axioms required to define its meaning. The auxiliary axioms
such as “taking the subsequence of the original sequence, from index zero to the length
of the original sequence minus one, is the same as the original sequence” are not in our
encoding. Consequently, Z3 is unable to figure out the outcome of the proof obligations such
as “when the subsequence takes every element of the original sequence, the first element of
the original sequence is contained in the resulting subsequence”. We believe it is better to
present the missing auxiliary axioms as lemmas and introduce them on demand to make the
verification task smaller. Moreover, presenting only the essential axioms is our strategy that
helps manual inspection and reduces the possibility of inconsistent axioms.

3.5 Summary

The main results of this chapter are two Boogie libraries for the semantics of the EMF
metamodels and OCL. The goal of their development is to be able to reuse them across
different verifier designs for MTr. In the next chapter, we evaluate the two Boogie libraries
on the verifier design for one of the most widely used MTr languages, i.e. the ATL language,
to demonstrate the feasibility of their adoption.
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Chapter 4

VeriATL: a modular and reusable
verifier for ATL

In this chapter, we introduce VeriATL, a modular and reusable verifier to ensure the correct-
ness of the ATL transformations. Its design is based on the libraries described in Chapter 3.
In Section 4.1, we present an overview of our VeriATL verifier, including the basic con-
cepts of the ATL MTr language, and a definition for its correctness. Then, we detail the
semantics of ATL (Section 4.2), which forms the main result of this chapter. The founda-
tion of its design is based on the two modular Boogie libraries for the semantics of EMF and
OCL presented in Chapter 3. We detail our implementation of VeriATL in Section 4.3. In
Section 4.4, we evaluate VeriATL on two case studies, demonstrating its performance and
feasibility. This chapter concludes with a discussion of the known limitations of VeriATL
and a summary of the lessons we have learned (Section 4.5).

4.1 Introduction to VeriATL

ATL is one of the most widely used MTr languages in both industry and academia [66].
An ATL transformation (i.e. an ATL program) is a declarative specification that documents
what the ATL transformation intends to do. The workhorses of the ATL transformation are
the ATL matched rules. These rules specify the mappings between the source metamodel
and the target metamodel, using OCL for both its data types and its declarative expressions.
Then, the ATL transformation is compiled into an ASM implementation to be executed.

Example 4.1.1. We use the ER2REL transformation as the running example to demon-
strate the ATL language [22]. ER2REL transforms the Entity-Relationship (ER) metamodel
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(Fig. 4.1 (a)) into the RELational (REL) metamodel (Fig. 4.1 (b)). Both the ER schema and
the relational schema have a commonly accepted semantics. Thus, it is easy to understand
their metamodels.

Fig. 4.1 Entity-Relationship and Relational metamodels

The ER2REL transformation is defined in a mapping style via a list of ATL matched rules
(Fig. 4.2). The first three rules map respectively each ERSchema element to a RELSchema

element (S2S), each Entity element to a Relation element (E2R), and each Relship element
to a Relation element (R2R). The remaining three rules generate a RELAttribute element for
each Relation element created in the REL model.

Each ATL matched rule has a from section where the source elements to be matched in
the source model are specified. An optional OCL constraint may be added as the guard,
and a rule is applicable only if the guard evaluates to true. Each rule also has a to sec-
tion which specifies the elements to be created in the target model. The rule initialises the
attribute/association of a generated target element via the binding operator (<-).

An important feature of ATL is the use of an implicit resolve algorithm during the target
element initialisation. It is responsible for resolving the right hand side of the binding
operator before assigning to the left hand side. For example, the binding relation <- ent in
the EA2A rule on line 15 of Fig. 4.2 assigns the Relation element that is created for ent by
the R2R rule to relation. The resolve algorithm is discussed in Section 4.2.1.

With the increasing complexity of ATL transformations, it is urgent to develop tech-
niques and tools that prevent incorrect ATL transformations from generating faulty models.
The effects of such faulty models could be unpredictably propagated into subsequent MDE
steps, e.g. code generation, to produce further errors.

The correctness of an ATL transformation is defined by transformation developers using
contracts. The contracts are the annotations on the ATL transformation to express the as-
sumptions about those circumstances when it is considered to be correct. In MDE, contracts
are usually expressed in OCL due to its declarative and logical nature.
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1 module ER2REL; create OUT : REL from IN : ER;

2

3 rule S2S {

4 from s: ER!ERSchema

5 to t: REL!RELSchema (name <- s.name, relations <- s.entities, relations <- s.relships} )}

6

7 rule E2R {

8 from s: ER!Entity to t: REL!Relation ( name <- s.name) }

9

10 rule R2R {

11 from s: ER!Relship to t: REL!Relation ( name <- s.name) }

12

13 rule EA2A {

14 from att: ER!ERAttribute, ent: ER!Entity (att.entity = ent)

15 to t: REL!RELAttribute ( name <- att.name, isKey <- att.isKey, relation <- ent ) }

16

17 rule RA2A {

18 from att: ER!ERAttribute, rs: ER!Relship ( att.relship = rs )

19 to t: REL!RELAttribute ( name <- att.name, isKey <- att.isKey, relation <- rs ) }

20

21 rule RA2AK {

22 from att: ER!ERAttribute, rse: ER!RelshipEnd

23 ( att.entity = rse.entity and att.isKey = true )

24 to t: REL!RELAttribute ( name <- att.name, isKey <- att.isKey, relation <- rse.relship )}

Fig. 4.2 ATL transformation for ER2REL model transformation

Example 4.1.2. In Fig. 4.3, two OCL contracts are given: the unique_er_schema_names

contract (i.e. all instances of ERSchema have a unique name) imposed on the ER metamodel
and the unique_rel_schema_names contract (i.e. all instances of RELSchema have a unique
name) imposed on the REL metamodel.

1 context ER!ERSchema inv unique_er_schema_names: −− unique name of ERSchemas
2 ER!ERSchema.allInstances()->forAll(s1,s2 | s1<>s2 implies s1.name<>s2.name)

3 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 context REL!RELSchema inv unique_rel_schema_names: −− unique name of RELSchemas
5 REL!RELSchema.allInstances()->forall(r1,r2| r1<>r2 implies r1.name<>r2.name)

Fig. 4.3 OCL contracts for ER and REL

Consequently, verifying that an ATL transformation is correct with respect to the given
sets of contracts can be represented as a classic Hoare-triple, i.e. assuming the contracts
imposed on the source metamodel (precondition) holds, the safe execution of an ATL trans-
formation should guarantee that the contracts are fulfilled on the generated target metamodel
(postcondition).

Based on the Hoare-triple notation, a traditional approach to designing a verifier for
ATL requires the encoding of the execution semantics of an ATL transformation in a formal
language [22, 25, 35, 113]. Combined with a formal treatment of transformation contracts, a
theorem prover can be used to verify the ATL transformation against the specified contracts.
The result of the verification will imply the correctness of the ATL transformation.
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VeriATL Verification System. While the traditional approach is practical from an ad-
hoc point of view, there is a lack of methods for verifying the correctness of ATL transfor-
mations in an integral way, which takes the modularity and reusability of the verifier design
into account. We therefore propose the VeriATL verification system (Fig. 4.4) to tackle this
problem.

Fig. 4.4 Overview of the VeriATL verification system

VeriATL aims to verify the partial correctness of ATL transformations. As its inputs it
accepts the source and target EMF metamodels, a set of specified OCL contracts and an
ATL transformation. The output is the result of the verification of the correctness of the
ATL transformation.

Specifically, VeriATL generates the corresponding Boogie code from its inputs using
three implemented code generators:

• The EMF metamodels generates Boogie types and constants using the EMF2Boogie

code generator.

• The OCL transformation contracts produce Boogie contracts using the OCL2Boogie

code generator.

• The ATL transformation generates Boogie procedures using the ATL2Boogie code
generator.

The implementation details of VeriATL are described in Section 4.3.
The generated Boogie code is driven by the three core components of VeriATL, i.e.

the semantics of EMF metamodels, OCL and ATL. The first two are modularised into two
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separate Boogie libraries (Chapter 3), which can be reused across different verifier designs.
These also produce the foundation for the semantics of ATL.

Then, VeriATL sends the generated Boogie code to the Boogie verifier, and relies on Z3
to perform automatic theorem proving. Finally, if the Boogie verifier confirms the correct-
ness of the ATL transformation with respect to the specified OCL contracts, then VeriATL
simply reports that the verification is successful. Otherwise, the trace information from
the Boogie verifier, indicating where the transformation incorrectness was detected, will be
output.

4.2 A Semantics for ATL in Boogie

Having given a brief overview of VeriATL, we introduce one of its core component in this
section, i.e. the semantics of ATL. It is based on the libraries for the semantics of EMF
metamodels and OCL that we introduced in Chapter 3. In what follows, we decompose the
semantics of ATL into the semantics of ATL matched rules and the semantics of ATL rule
scheduling, and explain each individually.

4.2.1 Semantics of ATL Matched Rules

Each ATL matched rule specifies the mapping from the source metamodel to the target meta-
model, with OCL added using both OCL data types and OCL declarative expressions. Ac-
cording to the language specification of ATL [6], the mapping defined by the ATL matched
rule is performed in two steps: an instantiation step and an initialisation step. The semantics
of each step is encoded by the Boogie procedure with a contract. The soundness of the
encoding will be verified in Chapter 5.

Basics. Before introducing the Boogie encoding for the semantics of the instantiation
step and the initialisation steps, there are three points that need to be emphasised:

• We introduce two functions to help the encoding. The getTarget function returns the
corresponding target element generated for a sequence of source elements. Its inverse
function getTarget_inverse returns the sequence of source elements used to generate
the given target element.

• Our Boogie encoding addresses the frame problem. That is, a Boogie procedure
with its contract must not only specify how it affects the transformation state, but
must also manifest what memory locations it will definitely not modify. The Burstall-
Bornat memory model (Section 3.2.3) helps us to deal with the frame problem. First,
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it allows us to quantify over all the attributes/associations, and specify the ones that
are not affected by a binding operation. Second, we use different heaps to represent
the source and target models, and axiomatise them to be disjoint (an element that is
allocated on one heap is not allocated on the other heap). This ensures, for example,
a modification made on the target heap will not affect the state of the source heap.

• Unlike most OO program verifiers [8, 80, 82, 114], all framing in VeriATL is done at
the field granularity, not the object granularity. Compared to object granularity, the
advantage of field granularity is a more detailed frame condition that specifies how
the fields of model elements are changed, at the cost of more verbose contracts.

Step 1: Instantiation. The encoded Boogie contract for the instantiation step has the
following structure:

• It requires that the source element(s) (as a sequence) matched by a rule are not
matched by any other rule.

• It specifies that the instantiation step will only affect the heap for the target model.
How the heap for the target model is affected is further specified by the following 3
postconditions.

• It ensures that after the execution of the instantiation step, for each source element(s)
matched by a rule the corresponding target element(s) are allocated (but the bindings
are not performed yet).

• It addresses the frame problem by ensuring that nothing else is modified, except the
target element(s) created by the instantiation step.

• It further addresses the frame problem by also ensuring that each target model element
that was allocated before executing the instantiation step is still allocated.

Example 4.2.1. The automatically generated Boogie encoding for the instantiation step for
the S2S rule is shown in Fig. 4.5:

• First, the precondition that specifies that the target element generated for the ER-

Schema source element is not yet allocated is expressed in the requires clause (line 2
- 4).

• Then, it specifies that the instantiation step will only affect the heap for the target
model using the modifies clause (line 5).
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• Next, it ensures that after the execution of the instantiation step, for each ERSchema

element, the corresponding RELSchema target element is allocated (line 6 - 10).

• It also ensures that nothing else is modified, except the RELSchema element created
from the ERSchema element by the instantiation step (line 11 - 15).

• Finally, it ensures that each target model element that was allocated before executing
the instantiation step is still allocated (line 16 - 17).

1 procedure S2S_matchAll ( ) ;
2 / / Not matched b e f o r e
3 r e q u i r e s (∀ s : r e f • s∈OCLType# a l l I n s t a n c e ( srcHeap , ER$ERSchema ) =⇒
4 g e t T a r g e t ( [ s ] ) = n u l l ∨ ¬ r e a d ( ta rHeap , g e t T a r g e t ( [ s ] ) , a l l o c ) ) ;
5 m o d i f i e s t a r H e a p ;
6 / / I n s t a n t i a t i o n outcome
7 ensures (∀ s : r e f • s∈OCLType# a l l I n s t a n c e ( srcHeap , ER$ERSchema ) =⇒
8 r e a d ( ta rHeap , g e t T a r g e t ( [ s ] ) , a l l o c )
9 ∧ g e t T a r g e t ( [ s ] ) ̸= n u l l

10 ∧ d t y p e ( g e t T a r g e t ( [ s ] ) ) = REL$RELSchema ) ;
11 / / Frame c o n d i t i o n
12 ensures (∀<α> o: ref , f : F i e l d α •
13 ( o= n u l l ∨ r e a d ( ta rHeap , o , f )= r e a d ( old ( t a r H e a p ) , o , f )
14 ∨ ( d t y p e ( o )= REL$RELSchema
15 ∧ f = a l l o c ∧ d t y p e ( g e t T a r g e t _ i n v e r s e ( o ) [ 0 ] ) = ER$ERSchema ) ) ) ;
16 / / Frame c o n d i t i o n
17 ensures (∀ o: Ref • r e a d ( old ( t a r H e a p ) , o , a l l o c ) =⇒ r e a d ( ta rHeap , o , a l l o c ) ) ;

Fig. 4.5 The auto-generated Boogie contract for the instantiation step of the S2S rule

Step 2: Initialisation. The encoded Boogie contract for the initialisation step has the
following structure:

• It requires that the target element(s) corresponding to source elements for a given ATL
matched rule is/are instantiated.

• It specifies that only the target model heap will be modified.

• It ensures that the structural features of each target element are fully initialised, by per-
forming associated bindings as specified in the ATL matched rule. A crucial resolve

algorithm is performed during the bindings, which is described later. In particular:

– If the structural feature to be initialised is an association and its multiplicity
has an upper-bound that is greater than one, then the pre-state of the structural
feature composed with the result of resolve algorithm is used to initialise the
structural feature.
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– Otherwise, the result of resolve algorithm is directly used to initialise the struc-
tural feature.

• It addresses the frame problem by ensuring that nothing else is modified, except the
binding performed on the structural features of each target element.

• It further addresses the frame problem by also ensuring that each model element that
was allocated before executing the instantiation step is still allocated.

Example 4.2.2. The Boogie contract automatically generated for the initialisation step of
the S2S rule is shown in Fig. 4.6:

• First, it requires that the instantiation step of the S2S rule is finished (line 2 - 5).
That is for each ERSchema element, the corresponding RELSchema target element is
allocated.

• Then, it specifies that only the heap for the target model will be modified (line 6).

• Next, it ensures that the corresponding target element is fully initialised, by perform-
ing associated bindings as specified by the S2S rule (line 7 - 26). For example, after
the initialisation step, the length of the relations for the RELSchema element equals
the sum of the length of the entities and relships for the ERSchema (line 10 - 15).
Moreover, the value of each element in the relations for the RELSchema element is
the resolved result of each element in the entities for the ERSchema element (line 16 -
20), followed by the resolved result of each element in the relships for the ERSchema

element (line 21 - 26).

• It also ensures that nothing else is modified, except the value of the name or the
relations for the RELSchema element that created from the ERSchema element (line
27 - 32).

• Finally, it ensures that each reference that was allocated before executing the instan-
tiation step is still allocated (line 33 - 34).

The Resolve Algorithm. The resolve algorithm performed during the attribute/associ-
ation binding is crucial for the contract encoding. It is defined as a Boogie function, and
axiomatised as follows (assume the binding is of the form lhs<-resolve(y)):

• If y is of a primitive type, then y is returned.

• If y is of any reference type, then one of the following is returned:
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1 procedure S2S_app lyAl l ( ) ;
2 / / I n s t a n t i a t e d
3 r e q u i r e s (∀ s : r e f • s∈OCLType# a l l I n s t a n c e ( srcHeap , ER$ERSchema ) =⇒
4 r e a d ( ta rHeap , g e t T a r s B y S r c s ( [ s ] ) , a l l o c )
5 ∧ g e t T a r g e t ( [ s ] ) ̸= n u l l ∧ d t y p e ( g e t T a r g e t ( [ s ] ) ) = REL$RELSchema ) ;
6 m o d i f i e s t a r H e a p ;
7 . . . / / t . name = r e s o l v e ( s . name )
8 . . . / / t . r e l a t i o n s ̸= n u l l ∧ t . r e l a t i o n s . a l l o c
9 . . . / / d t y p e ( t . r e l a t i o n s )= c l a s s . _Sys tem . a r r a y

10 / / l e n g t h ( t . r e l a t i o n s )= l e n g t h ( s . e n t i t i e s )+ l e n g t h ( s . r e l s h i p s )
11 ensures (∀ s : r e f • s∈OCLType# a l l I n s t a n c e ( srcHeap , ER$ERSchema ) =⇒
12 ArrayLeng th ( r e a d ( ta rHeap , g e t T a r s B y S r c s ( [ s ] ) , REL$RELSchema . r e l a t i o n s ) )
13 = ArrayLeng th ( r e a d ( srcHeap , s , ER$ERSchema . e n t i t i e s ) )
14 + ArrayLeng th ( r e a d ( srcHeap , s , ER$ERSchema . r e l s h i p s ) )
15 ) ;
16 / / t . r e l a t i o n s [ j ] = r e s o l v e ( s . e n t i t i e s [ j ] )
17 ensures (∀ s : r e f • s∈OCLType# a l l I n s t a n c e ( srcHeap , ER$Ent i ty ) =⇒
18 (∀ j : i n t • 0≤j < Ar rayLeng th ( r e a d ( srcHeap , s , ER$ERSchema . e n t i t i e s ) ) =⇒
19 r e a d ( ta rHeap , g e t T a r s B y S r c s ( [ s ] ) , REL$RELSchema . r e l a t i o n s ) [ j ]
20 =g e t T a r s B y S r c s ( { r e a d ( srcHeap , s , ER$ERSchema . e n t i t i e s ) [ j ] } ) ) ) ;
21 / / t . r e l a t i o n s [ j+l e n ( s . e n t i t i e s ) ] = r e s o l v e ( s . r e l s h i p s [ j ] )
22 ensures (∀ s : r e f • s∈OCLType# a l l I n s t a n c e ( srcHeap , ER$Ent i ty ) =⇒
23 (∀ j : i n t • 0≤j < Ar rayLeng th ( r e a d ( srcHeap , s , ER$ERSchema . r e l s h i p s ) ) =⇒
24 r e a d ( ta rHeap , g e t T a r s B y S r c s ( [ s ] ) , REL$RELSchema . r e l a t i o n s )
25 [ j + Ar rayLeng th ( r e a d ( srcHeap , s , ER$ERSchema . e n t i t i e s ) ]
26 =g e t T a r s B y S r c s ( { r e a d ( srcHeap , s , ER$ERSchema . r e l s h i p s ) [ j ] } ) ) ) ;
27 / / Frame c o n d i t i o n
28 ensures (∀<α> o: ref , f : F i e l d α •
29 o ̸= n u l l ∧ r e a d ( old ( t a r H e a p ) , o , a l l o c ) =⇒
30 ( d t y p e ( o )= REL$RELSchema ∧ ( f =RELSchema . r e l a t i o n s∨f =RELSchema . name )
31 ∧ d t y p e ( g e t T a r g e t _ i n v e r s e ( o ) [ 0 ] ) = ER$ERSchema )
32 ∨ ( r e a d ( ta rHeap , o , f )= r e a d ( o ld ( t a r H e a p ) , o , f ) ) ) ;
33 / / Frame c o n d i t i o n
34 ensures (∀ o: Ref • r e a d ( old ( t a r H e a p ) , o , a l l o c ) =⇒ r e a d ( ta rHeap , o , a l l o c ) ) ;

Fig. 4.6 The auto-generated Boogie contract for the initialisation step of the S2S rule

– y is returned, provided its reference type is from the source metamodel, and y is
not matched by any declared ATL matched rule

– y is returned, provided its reference type is from the target metamodel

– The corresponding target element is returned, provided its reference type is from
the source metamodel, and y is matched by a declared ATL matched rule1.

• If y is of a collection type, then all of the elements in y are resolved individually,
and the resolved results are put together into a pre-allocated collection col, and col is
returned.

1When more than one target element is generated by y, then the first target element generated by y is
returned. For example, assuming y is processed by a rule with the format: rule r{from y : Y to n : N, m : M},
then the n generated for y will be returned.
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4.2.2 Semantics of ATL Rule Scheduling

According to the language specification for ATL, the ATL rules are scheduled to execute
their instantiation steps before their initialisation steps, which ensures the confluence of the
transformation [6]. In addition, in order to prove the correctness of the ATL transformation,
the OCL transformation contracts, along with the ATL transformation are encoded into the
Boogie language.

Example 4.2.3. Fig. 4.7 shows encoded rule scheduling on the ER2REL transformation.
The transformation is verified against the OCL contract specified in Fig. 4.3. Some expla-
nation follows:

• First, the OCL contracts are encoded as a Boogie contract. In particular, the OCL
constraints on the source metamodels are encoded as Boogie preconditions (line 2 -
5), and the OCL constraints on the target metamodels are encoded as Boogie postcon-
ditions (line 7 - 10).

• Second, the rule scheduling of the ATL transformation is encoded as a Boogie im-
plementation (line 12 - 21). The body of this Boogie implementation is a series of
procedure calls to the encoded Boogie contracts for the instantiation step and the ini-
tialisation step of each ATL matched rule. The order of the calls are scheduled to
execute the instantiation steps before their initialisation steps.

• Finally, the Boogie contract that represents the specified OCL contracts is paired with
the Boogie implementation that represents the execution semantics of the ATL trans-
formation. Such a pair forms a verification task, which is input to the Boogie verifier.
The Boogie verifier either gives a confirmation that indicates the ATL transformation
satisfies the specified OCL contracts, or trace information that indicates where the
OCL contract violation is detected.

4.3 Our Implementation of VeriATL

To effectively evaluate VeriATL, we have implemented it using the model-to-text technol-
ogy from MDE. The general idea of model-to-text technology is to serialise the inputs as
models, then using a template-based code generation tool to produce the corresponding text.
Because the inputs of VeriATL are either models or easy to extract into models, model-to-
text technology is especially suitable for implementing VeriATL.
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1 procedure main ( ) ;
2 / * p r e c o n d i t i o n : names are u n i qu e i n t h e ER schema * /
3 r e q u i r e s (∀ s1 , s2 : r e f • s1∈OCLType# a l l I n s t a n c e ( srcHeap , ER$ERSchema )
4 ∧ s2∈OCLType# a l l I n s t a n c e ( srcHeap , ER$ERSchema ) =⇒
5 r e a d ( srcHeap , s1 , ER$ERSchema . name ) ̸= r e a d ( srcHeap , s2 , ER$ERSchema . name ) ) ;
6 m o d i f i e s t a r H e a p ;
7 / * p o s t c o n d i t i o n : names are u n i qu e i n t h e REL schema * /
8 ensures (∀ t1 , t 2 : r e f • t 1∈OCLType# a l l I n s t a n c e ( ta rHeap , REL$RELSchema )
9 ∧ t 2∈OCLType# a l l I n s t a n c e ( ta rHeap , REL$RELSchema ) =⇒

10 r e a d ( ta rHeap , t1 , REL$RELSchema . name ) ̸= r e a d ( ta rHeap , t2 , REL$RELSchema . name ) ) ;
11

12 implementat ion main ( ) {
13 / * I n i t i a l i s e T a r g e t model * /
14 c a l l i n i t _ t a r _ m o d e l ( ) ;
15 / * i n s t a n t i a t i o n phase * /
16 c a l l S2S_matchAll ( ) ; c a l l E2R_matchAll ( ) ; c a l l R2R_matchAll ( ) ;
17 c a l l EA2A_matchAll ( ) ; c a l l RA2A_matchAll ( ) ; c a l l RA2AK_matchAll ( ) ;
18 / * i n i t i a l i s a t i o n phase * /
19 c a l l S2S_app lyAl l ( ) ; c a l l E2R_applyAl l ( ) ; c a l l R2R_applyAll ( ) ;
20 c a l l EA2A_applyAll ( ) ; c a l l RA2A_applyAll ( ) ; c a l l RA2AK_applyAll ( ) ;
21 }

Fig. 4.7 Verifying the correctness of the ER2REL transformation

The template-based code generation tool we used to implement VeriATL is called Xpand

[68]. It is chosen because of:

• Readability. Xpand uses explicit delimiters to enhance the readability of its templates.

• Interoperability. Xpand is able to interact with Java for code generation tasks that are
difficult to express in Xpand, e.g. declaring and referring to a global variable.

• Modularity. The Xpand templates can be organised separately and imported on de-
mand.

• Support for evaluating OCL expressions.

Other template-based code generation tools with comparable functionality can be used to
implement VeriATL.

There are three code generators in VeriATL:

• The first code generator EMF2Boogie reads in the input EMF metamodel of VeriATL
(which is essentially a model that conforms to the ECore metamodel [109]). Then,
it generates the corresponding Boogie types and constants from the model using our
EMF2Boogie template. The template is about 70 lines of code written in Xpand.

• The second code generator OCL2Boogie reads in the input OCL transformation con-
tracts of VeriATL. Then, it serialises the input into an OCL model. This is accom-
plished by a Java program (10 lines) that we wrote in order to interact with the OCL
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extractor API (provided by the ATL compiler). Next, the corresponding Boogie con-
tracts are produced from the OCL model using our OCL2Boogie template, which is
about 400 lines of code written in Xpand.

• The third code generator ATL2Boogie reads in the input ATL transformation of Ve-
riATL. Then, the ATL extractor API (provided by the ATL compiler) is used to seri-
alise the input ATL transformation as an ATL model. Next, the ATL model generates
Boogie procedures using our ATL2Boogie template. In particular, the ATL2Boogie

template is sub-divided into a template (about 450 lines) that generates Boogie pro-
cedures for the instantiation step of each ATL rule, and another template (about 410
lines) that generates Boogie procedures for the initialisation step of each ATL rule.

The generated Boogie code is driven by the three core components of VeriATL, i.e. the
semantics of EMF metamodels, OCL and ATL. Then, VeriATL sends the generated Boogie
code to the Boogie verifier to confirm the correctness of the ATL transformation with respect
to the specified OCL contracts.

4.4 Evaluation of VeriATL

In this section, we evaluate the performance of VeriATL on two case studies, i.e. the
ER2REL and the HSM2FSM ATL transformations.

The ER2REL transformation, as shown in Fig. 4.2, translates an ER diagram to a rela-
tional schema. It is a modified version of the one originally developed by Büttner et al. [22].
The modification does not cause the ATL transformation to behave differently. However, it
contains a feature (i.e. consecutive bindings in an ATL matched rule) that is not considered
in the previous work. The HSM2FSM transformation translates a hierarchical state machine
to a flattened state machine. It was originally presented by Baudry et al. to demonstrate the
challenges in model transformation testing [10].

Table 4.1 summarises the two case studies in terms of 7 metrics which we use to quantify
the verification complexity2. Most of the metrics are straightforward, simply measuring the
quantity of certain constructs. The complexity of OCL is measured by counting the number
of leaf nodes in the abstract syntax tree of each OCL contract. For example, the OCL
expression s->select(attr : ERAttribute|attr.isKey) has a complexity measure of 3. The
last row in Table 4.1 shows the total and average number of leaf nodes in the specified
OCL contracts for each case study. The full list of the relevant metamodels, specified OCL

2The mm in the table stands for the metamodel.
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transformation contracts, and the ATL model transformation for each case study can be
found in Appendix B. Moreover, we refer to our online repository for the generated Boogie
programs of the two case studies [30].

Metric ER2REL HSM2FSM
No. of Classifiers (source mm/target mm) 5/3 6/6
No. of Attributes (source mm/target mm) 6/4 2/2
No. of Associations (source mm/target mm) 6/2 5/5
No. of ATL rules 6 7
No. of ATL rule filters 3 5
No. of OCL contracts (total/pre/post) 11/7/4 27/14/13
Complexity of OCL contract (total/average) 88/8 245/9

Table 4.1 The verification complexity metrics of ER2REL and HSM2FSM case studies

Our evaluation uses the Boogie verifier (version 2.2) and Z3 (version 4.3) at the back-
end of our VeriATL verification system. It is performed on an Intel 2.93 GHz machine with
4 GB of memory running on the Windows operating system. Verification times are recorded
in seconds.

First, the modified ER2REL transformation is verified against 4 OCL postconditions
that are specified by Büttner et al. VeriATL produces the same verification result as re-
ported by Büttner et al. with the same set of OCL contracts (pre/postconditions). Specif-
ically, 3 postconditions of ER2REL transformation are verified (i.e. unique_rel_schema_-

names, unique_rel_relation_names, exist_rel_relation_iskey). The postcondition unique_-

rel_attribute_names is not verified (which we have analysed in more detail in Appendix B.1).
Table 4.2 shows the performance of the verification of the correctness for the ER2REL

case study. The second column shows the type of the OCL postconditions (e.g. syntactic or
semantic correctness). The third column shows the size of the Boogie code automatically
generated for verifying the OCL contracts (including Boogie encodings for the metamodels,
the OCL contracts and the semantics of the ER2REL transformation). Its corresponding

OCL postcondition Type Boogie (LoC) Veri. Time (s) Automation
unique_rel_schema_names semantic 885 0.359 Auto
unique_rel_relation_names semantic 894 3.572 Semi
unique_rel_attribute_names semantic 894 0.407 N/A
exist_rel_relation_iskey semantic 892 0.343 Semi
Total 3565 4.681
Table 4.2 Performance measures for verifying the transformation correctness of ER2REL
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verification time is shown in the fourth column. In addition, we report that 2 out of 4 OCL
postconditions are verified semi-automatically. This is because of incompleteness issues
with our approach, which we analyse in Section 4.5.

Second, the HSM2FSM transformation is verified against 13 OCL postconditions that
are specified by Büttner et al. [22]. VeriATL produces a different verification result as
reported by Büttner et al. with the same set of OCL contracts (pre/postconditions). That is
12 postconditions are automatically verified except the postcondition fsm_transition_src_-

multi_lower. The unverified postcondition points out a boundary case that is not considered
in the work of Büttner et al. which we have analysed in more detail in Appendix B.2.

Table 4.3, structured in the same way as Table 4.2, shows the performance of the verifi-
cation of the correctness for the HSM2FSM case study.

Compared to the verification of the ER2REL transformation, the main challenge of ver-
ifying the HSM2FSM transformation stems from the fact that the target metamodel has ab-
stract classifiers, and the specified OCL postconditions are sometimes quantified over this
abstract classifier. The tricky part is to establish the postcondition on each sub-classifier
in order to conclude the postcondition holds on the abstract classifier. Interactive theorem
provers, such as Coq, usually perform a manual structural induction (i.e. a case analysis on
all the sub-classifiers of the abstract classifier) for this task, which is labour-intensive and
time consuming (because most of the cases are treated similarly). Our evaluation on the
HSM2FSM transformation shows that VeriATL’s underlying automatic theorem prover, i.e.
the Z3 SMT solver, is able to figure this out automatically.

OCL postcondition Type Boogie (LoC) Veri. Time (s) Automation
unique_fsm_sm_names semantic 1092 6.599 Auto
unique_fsm_state_names semantic 1092 3.386 Auto
fsm_state_multi_lower syntactic 1092 2.792 Auto
fsm_state_multi_upper syntactic 1100 2.547 Auto
fsm_transition_multi_lower syntactic 1092 3.037 Auto
fsm_transition_multi_upper syntactic 1100 2.389 Auto
fsm_transition_src_multi_lower syntactic 1092 2.613 N/A
fsm_transition_src_multi_upper syntactic 1100 2.609 Auto
fsm_transition_trg_multi_lower syntactic 1092 2.723 Auto
fsm_transition_trg_multi_upper syntactic 1100 2.527 Auto
fsm_transition_src_contain_sm syntactic 1108 3.660 Auto
fsm_transition_trg_contain_sm syntactic 1108 3.741 Auto
fsm_transition_contain_sm syntactic 1108 4.832 Auto
Total 14276 43.455

Table 4.3 Performance measures for verifying the transformation correctness of HSM2FSM
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4.5 Limitations of VeriATL

The evaluation strongly demonstrates the feasibility of VeriATL. However, VeriATL cur-
rently has some limitations.

Soundness. The soundness of VeriATL depends on the consistency of our Boogie li-
braries for the semantics of EMF metamodels and OCL (as discussed in Section 3.4). At the
moment, our Boogie libraries for the semantics of EMF metamodels and OCL are structural,
intuitive and available for inspection. In addition, we have designed a regression test suite
with test oracles that specify verification scenarios and their expected outcome. The regres-
sion test suite is executed on every modification to the Boogie libraries, or modifications
to the Boogie code compilation process (e.g. OCL compilation, ATL rules compilation to
Boogie). This is to ensure the soundness of VeriATL on each rebuild.

Completeness. The completeness of VeriATL remains one of the major concerns. The
incompleteness could be due to our encodings (as discussed in Section 3.4). It could also
be due to known limitations of SMT solvers when working with quantifiers [46, 53, 81, 84].
Our experience with VeriATL shows that Z3 is not able to efficiently handle formulas involv-
ing existential quantifiers (e.g. exist_rel_relation_iskey contract in ER2REL transformation).
When the existential quantifier cannot be automatically proved by Z3, our experience shows
that three techniques can help:

1. Rewrite the existential quantifier to its equivalent universal quantifier.

2. Encapsulate the quantifier body into a Boogie function.

3. Provide a witness for the existential quantifier.

The first technique is a general approach for all data types. The later two are especially
useful when the quantifications are over the integer domain.

Example 4.5.1. In Boogie, developers can use the assert statement to prescribe a proof at a
specific execution point of a Boogie program. If its operand evaluates to true at the execution
point to be proven, the assert statement simply reduces to no operation. Otherwise, the
Boogie program ends up in an irrecoverable error state on proof failure. The following
simple Boogie assertion statement cannot be directly proved by Z3.

procedure t e s t ( x: i n t )
{ a s s e r t (¬(∃ n: i n t • x d i v 2 = n ) ) ⇐⇒ (∀ n: i n t • x d i v 2 ̸= n ) ; }
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However, using the second technique, which encapsulates the quantifier body x div 2==

n into a Boogie function f, produces the following Boogie code, which can be automatically
proved:

f u n c t i o n f ( x: i n t , n : i n t ) : bool
{ n = x d i v 2 }

procedure t e s t ( x: i n t )
{ a s s e r t (¬ (∃ n: i n t • ¬f ( x , n ) ) ) ⇐⇒ (∀ n: i n t • f ( x , n ) ) ; }

Example 4.5.2. Consider the following Boogie program which is not verified because of
the incompleteness of the underlying theorem prover (even though the second technique is
used):

f u n c t i o n f ( x: i n t , n : i n t ) : bool
{ n = x d i v 2 }

procedure t e s t ( x: i n t )
{ a s s e r t (∃ n: i n t • f ( x , n ) ) ; }

Using the third technique, by manually providing a witness f (x,x div 2), produces the
following Boogie code, which can be automatically proved:

f u n c t i o n f ( x: i n t , n : i n t ) : bool
{ n = x d i v 2 }

procedure t e s t ( x: i n t )
{ a s s e r t f ( x , x d i v 2 ) ;

a s s e r t (∃ n: i n t • f ( x , n ) ) ; }

ATL coverage. VeriATL covers the declarative aspect of ATL, i.e. ATL matched rules.
It supports one-to-one mappings of (possibly abstract) classifiers with the default resolve

algorithm. However, VeriATL can be extended with advanced ATL features, such as lazy
rules (lazy rules are called from the other rules, which are not as frequently used as the
matched rules but are the main source of transformation non-termination) and imperative
features. For example, we have developed a small toy ATL transformation for refactoring
Java fields with certain annotations [30]. It demonstrates how to use VeriATL to verify one-
to-many ATL transformations with imperative constructs such as user-controlled resolution
resolveTemp. In the future, we would like to cover more ATL features to build upon the
current VeriATL verifier.

Expressiveness. Because of the underlying SMT solver, the expressiveness of trans-
formation contracts is based on FOL with equality. To ensure this expressiveness power is
useful in practice for MTr verification, we need to experiment with more ATL transforma-
tions that have OCL contracts specified.
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4.6 Summary

In this chapter we have introduced VeriATL, our modular and reusable verifier for verify-
ing the correctness of the ATL transformations. We have presented the semantics of ATL,
based on the two modular Boogie libraries for the semantics of EMF and OCL presented in
Chapter 3. We have evaluated VeriATL on two case studies, showing its performance and
feasibility. The limitations of VeriATL and lessons learned from its development are also
discussed.

Notice that the semantics of ATL that we encoded in this chapter is essentially an exe-
cution semantics of ATL that is abstracted at a coarse granularity. It describes what the ATL
transformations are trying to achieve. However, it supports neither its soundness proofs, nor
termination verification, both of which are important aspects of advanced verifier design.
Therefore, the missing piece of VeriATL is a fine grained semantics of ATL that explains
the runtime behaviour of ATL (i.e. how ATL actually works at runtime). In the next chapter,
we will investigate the semantics of ATL at a lower level, i.e. the compiled ASM byte code,
to realise the missing piece.
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Chapter 5

A Sound Execution Semantics for ATL
via a Translation Validating ASM
Implementation

In this chapter, we present a translation validation approach to verify that the execution
semantics of ATL, encoded by VeriATL, soundly represents the runtime behaviour of its
corresponding compiled implementation in terms of bytecode instructions for the ASM. In
Section 5.1, we introduce the basic definitions for the sound execution semantics of ATL,
and describe how to enhance VeriATL with a translation validation approach for this task.
We detail the procedure of the translation validation approach in Section 5.3. The core
component of this approach is the semantics of the ASM bytecode (Section 5.2), which is the
main contribution of this chapter. In Section 5.4, we detail our implementation for VeriATL
with a translation validation approach. Then, in Section 5.5, we evaluate our approach on
two ATL transformations, to show its performance and feasibility. This chapter concludes
with a discussion of the lessons learned from applying our translation validation approach
(Section 5.6).

5.1 Introduction

Ab.Rahim and Whittle, in their survey, identify that ensuring the semantics preservation
relationship between a declarative specification and its operational implementation is an
under-researched area in MDE [1]. They find that existing model transformation verifi-
cation approaches do not verify that the encoded execution semantics of a transformation
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specification soundly represents the runtime behaviour of a transformation implementation.
As a result, an unsound encoding will yield unsound results after verification, i.e. it will
lead to erroneous conclusions about the correctness of the ATL transformation.

Fig. 5.1 Entity-Relationship and Relational metamodels

VeriATL, presented in Chapter 4, could suffer from the same symptom. We demonstrate
this using the ER2REL transformation that was given in Chapter 4. Both the ER and REL

metamodels (Fig. 5.1), and the ER2REL transformation remain unchanged (Fig. 5.2).

1 module ER2REL; create OUT : REL from IN : ER;

2

3 rule S2S {

4 from s: ER!ERSchema

5 to t: REL!RELSchema (name <- s.name, relations <- s.entities, relations <- s.relships} )}

6

7 rule E2R {

8 from s: ER!Entity to t: REL!Relation ( name <- s.name) }

9

10 rule R2R {

11 from s: ER!Relship to t: REL!Relation ( name <- s.name) }

12

13 rule EA2A {

14 from att: ER!ERAttribute, ent: ER!Entity (att.entity = ent)

15 to t: REL!RELAttribute ( name <- att.name, isKey <- att.isKey, relation <- ent ) }

16

17 rule RA2A {

18 from att: ER!ERAttribute, rs: ER!Relship ( att.relship = rs )

19 to t: REL!RELAttribute ( name <- att.name, isKey <- att.isKey, relation <- rs ) }

20

21 rule RA2AK {

22 from att: ER!ERAttribute, rse: ER!RelshipEnd

23 ( att.entity = rse.entity and att.isKey = true )

24 to t: REL!RELAttribute ( name <- att.name, isKey <- att.isKey, relation <- rse.relship )}

Fig. 5.2 ATL transformation for ER2REL model transformation

Using the OCL contract specified in Fig. 5.3, the goal is to verify whether the unique_-

er_relship_names constraint (i.e. all instances of ERSchema have unique names for its rel-

ships) imposed on the ER metamodel, along with the ER2REL transformation, guarantees
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that the unique_rel_relation_names constraint (i.e. all instances of RELSchema have unique
names for its relations) holds on the REL metamodel.

1 context ER!ERSchema inv unique_er_relship_names: −− relship names are unique in the ER schema
2 ER!ERSchema.allInstances()->forAll(s | s.relships->forAll(r1,r2 | r1<>r2 implies r1.name<>r2.name))

3 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
4 context REL!RELSchema inv unique_rel_relation_names: −− relation names are unique in RELSchema
5 REL!RELSchema.allInstances()->forAll(s | s.relations->forAll(r1,r2| r1<>r2 implies r1.name<>r2.name))

Fig. 5.3 OCL contracts for ER and REL

Whether the ER2REL transformation is verified for the given OCL contracts depends
on how the Boogie contracts for the execution semantics of each ATL matched rule are
encoded. Our Boogie encoding of VeriATL is based on the existing documentation of ATL
[6, 66]. However, the ambiguities in the documentation increase the encoding difficulty.
For example, on line 5 of the ER2REL transformation (Fig. 5.2), the relations association
is bound twice. The ATL documentation does not explicitly specify how to encode the
execution semantics of such a case. It can be encoded by either assuming that:

• The second binding overwrites the first binding. In this case the unique_rel_relation_-

names constraint holds, since the relations of each RELSchema element will be re-
solved from the relships of the ERSchema element only; or

• The second binding is composed with the first binding. In this case the unique_-

rel_relation_names constraint does not hold, since the relations of each RELSchema

element will come from both the entities and relships of the ERSchema element. We
do not know that the names of relships are all unique for each ERSchema element, nor
that the names of entities and relships of each ERSchema element are different.

Adapted VeriATL Verification System. To resolve the ambiguity here, our quest in
this chapter is to adapt VeriATL to use a translation validation approach. The goal is to
demonstrate how to compositionally verify the termination and the soundness of the Boogie
encoding of the execution semantics of each ATL matched rule in the given ATL transfor-
mation. In this work, verifying soundness means verifying that the execution semantics of
each ATL matched rule soundly represents the runtime behaviour of its corresponding ASM
implementation.

Consequently, VeriATL can soundly verify the correctness of an ATL transformation
against its specified OCL contracts, based on the sound encodings for the execution seman-
tics of the ATL matched rules.

The adapted architecture of VeriATL is shown in Fig. 5.4. An additional translation val-
idation layer is added in VeriATL to verify the soundness of the Boogie encoding for the
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Fig. 5.4 Overview of the adapted VeriATL verification system

execution semantics of the ATL transformation. The additional layer accepts two inputs, i.e.
the source and target EMF metamodels, and an ATL transformation. The output is an execu-
tion semantics of the ATL transformation encoded in Boogie, which correctly represents the
runtime behaviour of its corresponding ASM implementation. As a result, the verification
for the correctness of an ATL transformation that is based on the output of the translation
validation layer will be sound.

Specifically, the translation validation layer generates the corresponding Boogie code
from its inputs using three implemented code generators:

• The EMF metamodels generate Boogie types and constants using our EMF2Boogie

code generator (presented in Section 4.3).

• The ATL transformation generates Boogie procedures using our ATL2Boogie code
generator (presented in Section 4.3).

• The ATL compiler is used to compile the input ATL transformation into an ASM pro-
gram. This compiled ASM program is then used to generate Boogie implementations
using our ASM2Boogie code generator.

The implementation detail of the ASM2Boogie code generator is illustrated in Section 5.4.
The generated Boogie code is driven by three core components of adapted VeriATL. That

is the semantics of the EMF metamodel, ATL and ASM. The first two have already been
presented in Chapter 3 and Chapter 4. The third one encapsulates the translational semantics
of the ASM language in a Boogie library, to precisely explain the runtime behaviour of ASM
implementations.
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VeriATL sends the generated Boogie code to the Boogie verifier to automatically prove
the soundness of our Boogie encoding. Finally, if the Boogie verifier confirms that the
execution semantics of an ATL transformation encoded in Boogie is sound, then this encod-
ing will be output by VeriATL. Otherwise, the trace information from the Boogie verifier,
indicating where the encoding unsoundness was detected, will be output.

In the next sections, we describe our translation validation approach to verify the sound-
ness of the Boogie encoding for the execution semantics of ATL transformations.

5.2 A Translational Semantics for ASM

Our translation validation approach is based on providing a translational semantics of the
ASM language in Boogie, which allows the runtime behaviour of the ASM implementation
to be represented using Boogie implementations.

We define this translational semantics of the ASM language via a list of translation rules
to Boogie. Each translation rule encodes the operational semantics of an ASM instruction
in Boogie.

Specifically, the ASM language contains 21 bytecode instructions. Apart from the
general-purpose instructions for stack handling and control flow, an important feature of
the ASM language is the model-handling-specific instructions that are dedicated to model
manipulation.

The only resource we can find to explain the operational semantics of ASM bytecode
instructions is the specification of the ATL virtual machine [6]. However, it is imprecise and
leaves many issues open (Section 5.6.1). This raises the question of how a correct translation
rule, especially for each model handling instruction, should be encoded in Boogie.

Unlike the other two categories of instructions, the model handling instructions can have
different operational semantics for different model management systems. This is because
ATL aims at interacting with a range of model management systems which offer different
interfaces for model manipulation [66].

Our strategy is to focus on the EMF model management system. Then, we can check the
ATL source code (specifically the ATL virtual machine implementation that relates to EMF)
for the operational semantics of each ASM instruction, and then design the translation rule
correspondingly.

An ASM implementation contains a list of ASM operations. Each operation has a list of
local variables, which are encoded as Boogie local variables. An operand stack is used by
each ASM operation to communicate values for local computations. This is abstracted as an
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ASM Instruction (S) Corresponding Boogie Statements ([[S]])
PUSHτ c stk := [[c]]::stk ; (where c is a constant of type τ ∈ {int,bool,string})
POP assert size(stk)>0 ; stk := tl(stk) ;
STORE x assert size(stk)>0 ; [[x]]:= hd(stk) ; stk := tl(stk) ;
LOAD x stk := [[x]]::stk ;
SWAP assert size(stk)>1 ; stk := hd(tl(stk))::hd(stk)::tl(tl(stk)) ;
DUP assert size(stk)>0 ; stk := hd(stk)::stk ;
DUP_X1 assert size(stk)>1 ; stk := hd(stk)::hd(tl(stk))::hd(stk)::tl(tl(stk)) ;

Table 5.1 Translational semantics for ASM stack handling instructions

OCL sequence data type, which is represented as a list in Boogie called stk in our encoding.
Source and target elements are globally accessible by every ASM operation, and they are
managed by the disjoint source and target heaps as described in Chapter 4.

The full translational semantics of the ASM language is given in Table 5.1 - Table 5.3,
classified by the category that each ASM instruction resides in. In what follows, we pick
a representative ASM instruction from each category, and explain the intuition behind its
corresponding translation rule1.

Stack Handling Instructions. The translational semantics of the ASM stack handling
instructions is shown in Table 5.1. The STORE instruction is one of stack handling instruc-
tions. It has one operand which is a local variable that the instruction operates on. The
stack is expected to be non-empty for the instruction to succeed, since it assigns the top of
the stack to its operand. After the assignment, the top of the stack is then dropped. Such
operational semantics for the STORE instruction is encoded by its corresponding translation
rule in Boogie as shown in Table 5.1. In our Boogie encoding, to make sure the operand
of the STORE instruction is declared before use, we generate a Boogie variable (denoted
by [[x]], and in the same scope of the encoded STORE instruction) for each local variable
of an ASM operation with unique name and equivalent type. In addition, we use the assert
statement in Boogie to prescribe a check that the current operand stack is non-empty before
executing the STORE instruction.

Control Flow Instructions. The translational semantics of the ASM control flow in-
structions is shown in Table 5.2. The conditional instruction IF is one of the control in-
structions, which formalizes a case distinction according to the popped boolean value of the
operand stack. If the popped value is true, the ASM operation continues at the instruction
identified by the operand of the IF instruction. Otherwise, the IF instruction reduces to
no operation. The presented translation rule encodes this operational semantics for the IF

instruction. In our Boogie encoding, to make sure the offset of the IF instruction is valid

1Noting that the let..in expression we used in the translational semantics of the ASM language is not
supported in Boogie, we simply use this notation for clarity.
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ASM Instruction (S) Corresponding Boogie Statements ([[S]])

IF n

var cond#: bool;
assert size(stk) > 0;
cond# := hd(stk);
stk := tl(stk);
if (cond#) goto [[n]];

GOTO n goto [[n]];

ITER Stmt ENDITER

var col#: Seq ref;
assert size(stk) > 0;
col# := hd(stk);
stk := tl(stk);
while INV (hasNext(col#))

{ stk := next(col#) :: stk;
[[Stmt]]}

PCALL sig

let n = arg_size(sig) in
let args = tk(stk, n), ctx = hd(dp(stk, n)) in
assert size(stk) > n ; call invoke(reflect(sig, ctx), args) ;
stk := dp(stk, n+1) ;

CALL sig

let n = arg_size(sig) in
let args = tk(stk, n), ctx = hd(dp(stk, n)) in
var result# : T ;
assert size(stk) > n ; call result# := invoke(reflect(sig, ctx), args) ;
stk := result# :: dp(stk, n+1) ;

(where T is the return type of the reflected method)

Table 5.2 Translational semantics for ASM control flow instructions

in its corresponding translation rule, we insert a fresh Boogie label, denoted by [[n]], at the
program point which corresponds to the offset n of the IF instruction. Furthermore, a new
Boogie variable is introduced for each IF instruction to hold the boolean value that is popped
of the operand stack. The superscript # that is attached to the introduced Boogie variable
denotes the line number of the translated IF instruction in an EMFTVM code block. This is
to avoid name collision among introduced Boogie variables.

Model Handling Instructions. The translational semantics of the ASM model handling
instructions is shown in Table 5.3. The SET instruction is one of the ASM instructions for
model handling. The parameter of a SET instruction is a structural feature f (either an
attribute or an association). Before executing the SET instruction, the top two elements on
the operand stack are an element o (second-top) and a value v (top) respectively.

The operational semantics of the SET instruction forms a case distinction according to
the instruction parameter f : if f is an association and its multiplicity has an upper-bound
that is greater than one, then compute the union of the value of o.f with v; otherwise, set o.f

to v. Finally, the top two elements are popped.
Thus, the operational semantics of the SET instruction explains the unusual behaviour

of consecutive bindings to the relations association (whose multiplicity has an upper-bound
that is greater than one) shown on line 5 of Fig. 5.2. Each binding corresponds to a SET

instruction on the ASM level. Therefore, the two consecutive bindings correspond to two

65



5.3 Translation Validation of Encoding Soundness

ASM Instruction (S) Corresponding Boogie Statements ([[S]])

NEW r

let mm = hd(stk), cl = hd(tl(stk)) in
let clazz = resolve(mm, cl) in
var r# : ref;
assert size(stk) > 1;
havoc r#;
assume r# ̸= null ∧ ¬read(heap, r#, alloc) ∧ dtype(r#) = clazz;
heap := update(heap, r#, alloc, true);
stk := r# :: tl(tl(stk));

GET f
let o = hd(stk) in
assert size(stk) > 0 ∧ o ̸= null ∧ read(heap, o, alloc);
stk := read(heap, o, [[f]]) :: tl(stk);

SET f

let o = hd(tl(stk)), v = hd(stk) in
assert size(stk) > 1 ∧ o ̸= null ∧ read(heap, o, alloc);
if (isCollection([[f]]))
{ heap := update(heap, read(heap, o, [[f]]), read(heap, o, [[f]]) ∪ v); }
else

{ heap := update(heap, o, [[f]], v); }
stk := tl(tl(stk));

FINDME
let mm = hd(stk), cl = hd(tl(stk)) in
assert size(stk) > 1;
stk := resolve(mm, cl) :: tl(tl(stk));

GETASM stk := ASM :: stk ;

Table 5.3 Translational semantics for ASM model handling instructions

SET instruction invocations. The result is a composition of two bindings.
The translation rule for the SET instruction offers no surprise from its operational se-

mantics, except for two points:

• Since we use different heaps to represent the source and target models, the heap that
the SET instruction operates on is determined by the data type of second-top element
of the operand stack. This is accomplished by the ASM2Boogie code generator (Sec-
tion 5.4).

• An isCollection function (of type Field α → bool) is encoded while mapping the
structural features of classifiers to the Boogie constants. It is axiomatised so that it
returns true when the given structural feature is an association and its multiplicity has
an upper-bound that is greater than one, and returns false otherwise.

Finally, the full translational semantics of the ASM language is encapsulated as a Boo-
gie library, which can be adapted by the verifier designer for other model transformation
languages.

5.3 Translation Validation of Encoding Soundness

Each ATL matched rule is actually compiled into two ASM operations by the ATL com-
piler, i.e. a matchAll operation (for the instantiation step) and an applyAll operation (for
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the initialisation step). The important contribution of this chapter is the verification of the
soundness of our Boogie encoding for the execution semantics of the ATL rules, i.e. that the
encoded execution semantics of each ATL rule correctly represents the runtime behaviour
of its corresponding ASM operation.

In order to verify the soundness of our Boogie encoding of the execution semantics of
each ATL matched rule, we define the execution semantics of an ATL matched rule encoded
in Boogie as being sound, if,

• the Boogie contract that represents the execution semantics of its instantiation step
is satisfied by the Boogie implementation that represents the runtime behaviour of its
matchAll operation, and

• the Boogie contract that represents the execution semantics of its initialisation step
is satisfied by the Boogie implementation that represents the runtime behaviour of its
applyAll operation.

Each of these conditions form a verification task that is processed by the Boogie verifier.
If none of the verification tasks generate any errors (from the verifier), we conclude that our
Boogie encoding for the execution semantics of the ATL matched rules is sound. Essentially,
our approach is based on a translation validation technique used in compiler verification
[97]. The benefit is that we do not need to verify that the encoded execution semantics of
ATL transformations are always sound with respect to the runtime behaviour of their ASM
implementation (which is difficult to automate). Instead, we can automatically verify the
soundness of each ATL transformation/ASM implementation pair.

Finally, we can conclude that the execution semantics of an ATL transformation encoded
in Boogie is sound when the execution semantics of all the relevant ATL matched rules
encoded in Boogie are sound.

Example 5.3.1. We demonstrate our approach on the instantiation step of the S2S rule
(Fig. 5.5).

Some explanation is in order. First, a Boogie implementation that contains loops is
difficult to verify because the users cannot generally predict how many times the loop exe-
cutes, or whether it will terminate. The key ingredient to prove the correctness of a loop is
to provide the loop invariant (using the invariant clause) that is true immediately before,
and immediately after each iteration of the loop. The general loop invariant for the Boogie
implementation is automatically generated. This is demonstrated in the verification of the
instantiation step of the S2S rule as follows (Fig. 5.5): In the Boogie implementation for
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1 procedure S2S_matchAll ( ) ; / / C o n t r a c t f o r i n s t a n t i a t i o n s t e p
2 . . .
3 ensures (∀ s : r e f • s∈OCLType# a l l I n s t a n c e ( srcHeap , ER$ERSchema ) =⇒
4 d t y p e ( g e t T a r g e t ( [ s ] ) ) = REL$RELSchema ) ;
5

6 implementat ion S2S_matchAll ( ) / / I m p l e m e n t a t i o n f o r m a t c h A l l o p e r a t i o n
7 { . . .
8 #ERSchemas := OCLType# a l l I n s t a n c e ( srcHeap , ER$ERSchema ) ;
9 c o u n t e r := 0 ;

10

11 whi le ( c o u n t e r < | # ERSchemas | )
12 . . .
13 i n v a r i a n t (∀ n: i n t • 0≤n< c o u n t e r =⇒
14 d t y p e ( g e t T a r g e t ({# ERSchemas [ n ] } ) ) = REL$RELSchema ) ;
15 . . .
16 d e c r e a s e s | # ERSchemas |− c o u n t e r ;
17 { . . . c o u n t e r := c o u n t e r +1; }
18 }

Fig. 5.5 Verification of the soundness of Boogie encodings for the instantiation step of the
S2S rule

its matchAll operation, an invariant is generated to ensure that for all the matched source
elements that have been iterated, the postcondition of the instantiation step is fulfilled (line
13 - 14). Thus, by the end of the iteration, all the matched source elements are iterated, and
therefore the postcondition of the instantiation step can be established (line 3 - 4).

Second, we also use a variant expression to ensure that the loop terminates. A default
variant expression (automatically generated) for the Boogie implementation of a matchAll

operation is the size of the iterated collection minus the corresponding loop counter (line
16). Since the counter increases on each iteration and the size of the processed collection
remains unchanged, we can deduce that there are less elements in the collection to be iterated
upon. In addition, since the loop counter has to be smaller than the length of the iterated
collection to keep the loop unrolling, this ensures the variant expression is maintained above
a bound (i.e. a lower bound of zero) so that the variant expression is not decreasing forever.
Notice that the decreases clause on line 16 is not actually supported in Boogie. It is only
used to demonstrate the concept of the variant expression. In practice, we record the old
value of the decreases clause when entering the loop. Then, right after the corresponding
counter of the loop increases, we check that: (a) it is greater than the current value of the
decreases clause; and (b) it is greater or equal to the lower bound of zero.

The verification of the soundness of Boogie encodings for the initialisation step of ATL
rules is performed in a similar way to the instantiation step.
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5.4 Our Implementation of Adapted VeriATL

To effectively evaluate our translation validation approach, we have implemented VeriATL
with an additional translation validation layer. It interacts with three code generators to
generate Boogie code for performing our translation validation approach:

• The EMF metamodels generate Boogie types and constants using our EMF2Boogie

code generator.

• The ATL transformation generates Boogie procedures using our ATL2Boogie code
generator.

• The ASM program generates Boogie implementations using our ASM2Boogie code
generator.

The first two code generators have been presented in Section 4.3. In this section, we briefly
describe our implementation of the ASM2Boogie code generator.

The ASM2Boogie code generator is implemented in Java (about 1450 lines of code).
The reason we do not use Xpand (as we did for the EMF2Boogie and ATL2Boogie code
generators) is because currently Xpand (ver. 2.1) is not able to pass the generated result as
an argument to the other Xpand templates. Consequently, tasks such as invariant generation
are made unnecessarily complicated by using Xpand (since the loop invariants of an outer
loop need to be reused by an inner loop when the loop goes deeper).

The main challenge of developing ASM2Boogie stems from the fact that each ASM op-
eration is based on a generic operand stack. This would compromise the precision of our
generated Boogie implementations. For example, a GET name instruction simply retrieves
the name attribute for the top model element on the operand stack. However, because we
use separate heaps to represent the input and output models, the type of the top model ele-
ment on the operand stack is important in order for ASM2Boogie to generate corresponding
Boogie code. Thus, we also maintain a type stack during the code generation for each ASM
instruction. For example, the PUSHI instruction has the effect of pushing an integer onto
the type stack, so that its next instruction can look up the type stack and query its state.

The generated Boogie code is driven by three core components of adapted VeriATL:
the semantics of the EMF metamodel, ATL and ASM. Then, adapted VeriATL sends the
generated Boogie code to the Boogie verifier to automatically prove the soundness of our
Boogie encoding.
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5.5 Evaluation of Adapted VeriATL

In this section, we evaluate the performance of our translation validation approach on two
case studies, i.e. the ER2REL and the HSM2FSM transformations that were used in Chap-
ter 4. We refer to our online repository for the generated Boogie programs for the two case
studies [30].

Our experiment uses the Boogie verifier (version 2.2) and Z3 (version 4.3) at the back-
end of our adapted VeriATL verification system. It is performed on an Intel 2.93 GHz
machine with 4 GB of memory running on Windows. Verification times are recorded in
seconds.

Table 5.4 shows the performance for automatically verifying the soundness of our Boo-
gie encoding for the ER2REL transformation. The second and third columns show the size
of the Boogie code generated for the instantiation and initialisation step of the ATL matched
rule respectively (shown by lines of Boogie contract/implementation). Their corresponding
verification time is shown in the fourth and fifth columns.

Rule Boogie (LoC) Veri. Time (s) Automation TerminationInst. Init. Inst. Init.
S2S 28/74 63/78 0.125 0.187 Auto Yes
E2R 22/74 50/40 0.125 0.047 Auto Yes
R2R 22/74 50/40 0.125 0.047 Auto Yes
EA2A 24/119 56/71 0.218 0.140 Auto Yes
RA2A 24/119 56/71 0.234 0.125 Auto Yes
RA2AK 24/133 57/75 0.296 0.110 Auto Yes
Total 144/593 332/375 1.123 0.656

Table 5.4 Performance measures for verifying the encoding soundness of ER2REL

Table 5.5 shows the performance for automatically verifying the soundness of our Boo-
gie encoding for the HSM2FSM transformation. It is structured in the same format as Ta-
ble 5.4. We report that all the verification tasks are verified automatically, and that the ATL
rules for both ER2REL and HSM2FSM transformations are verified as terminating.

5.6 Analysis of Our Results

The evaluation allows us to certify the soundness for our encoded execution semantics of
ATL, with respect to the runtime behaviour of its ASM implementation. In this section, we
discuss the lessons learned from applying our translation validation approach. The discus-
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Rule Boogie (LoC) Veri. Time (s) Automation TerminationInst. Init. Inst. Init.
SM2SM 22/74 50/40 0.125 0.047 Auto Yes
RS2RS 22/74 52/55 0.125 0.062 Auto Yes
IS2IS 22/87 53/55 0.109 0.078 Auto Yes
IS2RS 22/88 52/55 0.296 0.062 Auto Yes
T2TA 22/102 56/85 0.701 0.125 Auto Yes
T2TB 28/213 66/92 1.248 0.203 Auto Yes
T2TC 28/213 66/92 1.342 0.203 Auto Yes
Total 166/851 395/474 3.946 0.780

Table 5.5 Performance measures for verifying the encoding soundness of HSM2FSM

sion is categorised into: (a) the under-specification of the ATL language and (b) why the
translation validation approach is particularly suitable to ensure the encoding soundness for
VeriATL.

5.6.1 Under-specification of the ATL Language

Through the evaluation, we identify a number of under-specified cases in the language spec-
ification of ATL [6]. These cases are open to interpretation and can thus pose challenges to
verify the soundness of VeriATL. Therefore, we document and discuss these under-specified
cases in this section.

Source Pattern Matching

The first under-specified case resides in the source pattern matching. Recall that, in ATL,
the source element e to be matched of a certain type t is syntactically written as e: t. The
ambiguity here is whether a source element should be considered matched if it is exactly
of type t or if it is of kind t (i.e. OCLIsTypeOf or OCLIsKindOf : see Section 3.3 for the
difference between these two operations).

Example 5.6.1. Assuming MMA!Subtype is a classifier inherited from MMA!Type, and the
parent classifier is not an abstract classifier.

1 rule A { from s: MMA!Type ...}

2

3 rule B { from s: MMA!Subtype ... }

Fig. 5.6 Ambiguity in source pattern matching
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Recall that during the initialisation step, a compulsory requirement is that the source
pattern should not have been previously matched by other ATL rules (as described in Sec-
tion 4.2.1). A violation of this requirement is called a rule conflict, and will cause a runtime
exception [6]. The ATL transformation shown in Fig. 5.6 may or may not contain rule
conflicts depending on how the source pattern matching is interpreted:

• Interpreted as OCLIsTypeOf : the elements matched by the two rules are disjoint, and
thus contain no rule conflict.

• Interpreted as OCLIsKindOf : the elements matched by the two rules are overlapping,
since the element matched by rule A can potentially be also matched by rule B. Thus,
the ATL transformation contains a rule conflict.

Through our translation validation approach we have examined the ASM implementa-
tion of the matchAll operation, and confirm that the second interpretation is correct.

Consecutive binding

The second under-specified case arises when invoking consecutive bindings to the same
association (e.g. bind relations association twice in Fig. 5.2). As illustrated in Section 5.2,
by examining the semantics of the SET instruction, the consecutive bindings correspond to
consecutive SET instruction invocations. The result will be a composition of two bindings.

Resolve algorithm

The third under-specified case is in the resolve algorithm. The language specification of
ATL fails to specify two boundary cases:

• If y is of any reference type, y is returned, provided its reference type is from the
source metamodel, and y is not matched by any declared ATL matched rule; or

• If y is of any reference type, y is returned, provided its reference type is from the target
metamodel.

These were found in the ASM implementation of the resolve algorithm while we performed
the translation validation approach.
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5.6.2 Suitability of the Translation Validation Approach for VeriATL

The first reason for the compatibility of the translation validation approach to VeriATL is
that the translation validation approach is inherently efficient. That is, the soundness en-
coding only needs to be verified once for each compilation to ensure the encoded execution
semantics of each ATL transformation soundly represents the runtime behaviour of its corre-
sponding ASM implementation. Such soundly encoded execution semantics of ATL trans-
formations can be reused in order to verify the correctness of ATL transformations against
their specified OCL contracts, as long as the source ATL transformation does not change.

The second reason is due to the language features of ATL:

1. Each ATL rule is written in a declarative style, and has a unified deterministic goal
to achieve (i.e. mapping). Thus, it is easier to abstract the semantics of ATL rules
into FOL expressions than to abstract the semantics of an imperative program that
achieves an arbitrary goal. This feature greatly reduces the complexity of adapting
the translation validation approach, and enables its automation.

2. We consider ATL matched rules, which are always propagated on an initially empty
target model that is disjoint from the source model. Thus, we are able to use two
separate heaps to organise the source and target elements. This ensures, for exam-
ple, a modification made on the target heap will not affect the state of the source
heap. Therefore, it yields a simple encoding that contributes to the automation of the
translation validation approach.

3. For ATL matched rules, the iteration in the bytecode implementation always inter-
acts with collections. Thus, we are able to automatically infer suitable invariant and
variant expressions for loops. This feature is generally not obtainable for general
programming languages, where iteration can loop over a user-defined data structure,
e.g. a linked list. In such cases, advanced verification techniques such as abstract
interpretation are needed for invariant inference [37].

5.7 Summary

In this chapter, we have encoded a sound execution semantics for ATL transformations,
and adapted the VeriATL verifier for this task. We have explained precisely the runtime
behaviour of ASM implementations by encoding a translational semantics of the ASM
language in Boogie. We have also articulated a translation validation approach to verify
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the soundness of our Boogie encoding for the execution semantics of the ATL matched
rule. Consequently, we are able to soundly verify the correctness of an ATL transformation
against its specified OCL contracts. This is based on our sound encoding of the execution
semantics of the ATL matched rules.

We have encapsulated the semantics of the EMF metamodel, OCL, and ASM as Boo-
gie libraries in our VeriMTLr framework. Thus, we potentially facilitate verifier design for
MTr languages other than ATL. However, we have not yet quantified how useful these li-
braries are in verifier design for model transformation languages from other transformation
paradigms. In the next chapter, we will investigate the differences between the execution
semantics of relational and graph transformations, and quantify how these differences affect
verifier design. Moreover, we will demonstrate how to adapt the VeriMTLr framework to
design a sound verifier which can be used to verify the correctness of graph transformations.
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Chapter 6

A Modular and Sound Verifier Design
for SimpleGT Graph Transformations

In Chapter 3 and Chapter 5 we have presented our design of several modular and reusable
Boogie libraries. These libraries are encapsulated into our VerMTLr framework which fa-
cilitates systematic verifier construction for MTr languages such as ATL. In this chapter, we
adapt VerMTLr to design the VeriGT verifier, which allows us to soundly prove the partial
correctness of SimpleGT graph transformations. In Section 6.1, we present an overview
of the VeriGT verifier, including the basic concepts of the SimpleGT language. The main
contributions of this chapter are a semantics for the SimpleGT language and a semantics
for EMFTVM bytecode. In particular, we will demonstrate the differences between the
execution semantics of relational and graph transformations, and quantify how the differ-
ences would affect their verifier designs (Section 6.2). We will also illustrate how to de-
velop the semantics of EMFTVM bytecode by extending the semantics of ASM bytecode
(Section 6.3), to enable a translation validation approach for a wider range of model trans-
formation languages (Section 6.4). In Section 6.5, we evaluate the VeriGT verifier on the
well-known Pacman game, showing the performance and feasibility of VeriGT. Finally, we
will discuss the design of VeriGT compared to other related GT verification techniques and
tools.

6.1 Introduction to VeriGT

As already discussed, MTr is one of the main paradigms used in model transformation. It has
a “mapping” style, and aims at producing a declarative transformation specification that doc-
uments what the model transformation intends to do. GT is another model transformation
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paradigm. It uses a rewriting style, and usually represents a model transformation graphi-
cally (e.g. UML-related models) and at a high level of abstraction. Thus, it is well suited to
describe scenarios such as distributed systems or the behaviour of structure-changing sys-
tems (e.g. mobile networks). The two paradigms share some similarities (e.g. they are
both declarative in nature). However, they are fundamentally different in their execution
semantics.

SimpleGT is a experimental GT language based on double push-out semantics devel-
oped by Wagelaar et al. [118]. A SimpleGT program is a declarative specification that
documents what the SimpleGT transformation intends to do. It is expressed in terms of a
list of rewrite rules, using OCL for both its data types and its declarative expressions. Then,
the SimpleGT program is compiled into an EMFTVM implementation to be executed.

EMFTVM is a stack-based virtual machine, which aims at providing a common execu-
tion semantics for the implementation of rule-based model transformation languages [118].
It is based on EMF (which represents a de facto standard for modelling today), and uses the
EMFTVM language to implement model transformations. Existing model transformation
languages that target the EMFTVM include ATL and SimpleGT [118].

Example 6.1.1. We use the Pacman game adapted from [112] to introduce the SimpleGT
language. The game is based on the Pacman metamodel as shown in Fig. 6.1. The game
consists of a single Pacman, a ghost and zero or more gems on a game board (consisting
of more than zero grids). Each grid can hold Pacman, a ghost and a gem at the same time.
The Pacman game is controlled by the GameState, which records important attributes such
as STATE, SCORE and FRAME. It also contains a list of actions. Each action defines the
moves to be done by either Pacman or the ghost, and is executed when it has the same frame
as the GameState.

Fig. 6.1 Pacman metamodel
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We have defined the semantics of a Pacman game via 13 GT rules in SimpleGT (Fig. 6.2).
We have 10 rules to move Pacman and the ghost in different directions (5 rules for each role).
We ensure that Pacman moves before the ghost. However, the evaluation (i.e. Kill or Collect

rule) takes place after both of them have moved. Pacman collects a gem if both the gem and
Pacman share the same grid. Pacman is killed by the ghost if both of them share the same
grid. Finally, the GameState is updated by the UpdateFrame rule.

Each rule includes an input pattern (from section), a correspondence pattern, and an
output pattern (to section). The correspondence pattern is implicit, and is represented by the
intersection of the input and the output pattern. Thus, the coarse operational semantics of
SimpleGT is that the difference between the input pattern and the correspondence pattern
is deleted, the correspondence pattern is left unchanged, and the difference between the
output pattern and the correspondence pattern is created. SimpleGT uses explicit Negative
Application Conditions (NACs), which specify input patterns that prevent the rule from
matching. Optionally, the matching operator (‘=∼’) can be used to match the existence of
an edge or an attribute value in the input or output pattern.

Take the PlayerMoveLeft rule of Fig. 6.2 for example; its input pattern specifies that:

• The game is in a state s when Pacman should move (line 5), and

• The grid1 that contains Pacman has a left grid2 beside it (line 6), and

• The grid2 does not have the ghost on it (NAC, line 8), and

• An action act of move left that is to be performed by the Pacman at the current frame
(line 7).

Then, the output pattern of the PlayerMoveLeft rule specifies that:

• The game is in a state that Ghost should move (line 10), and

• Pacman moves to the left of grid1 (line 11).

The implicit correspondence graph of the PlayerMoveLeft rule is calculated as shown in
Fig. 6.3. Thus, what have to be deleted (i.e. the difference between the input pattern and the
correspondence pattern) are the value of STATE of game state s, the value of hasPlayer of
grid1, the act and all value of its structural features. What have to be created (i.e. the dif-
ference between the output pattern and the correspondence pattern) are the value of STATE

of game state s that becomes GhostMove, and the value of hasPlayer of grid2 that sets to
Pacman.
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1 module Pacman;

2

3 rule PlayerMoveLeft{

4 from
5 s : P!GameState(STATE=~PacMove, record=~rec),rec: P!Record,pac: P!Pacman,

6 grid2: P!Grid,grid1: P!Grid(hasPlayer=~pac, left=~grid2),

7 act : P!Action(DONEBY=~Pacman, FRAME=~rec.FRAME, DIRECTION=~Left)

8 not grid2: P!Grid(hasEnemy=~ghost), ghost: P!Ghost

9 to
10 s : P!GameState(STATE=~GhostMove, record=~rec),rec: P!Record,pac: P!Pacman,

11 grid2: P!Grid(hasPlayer=~pac),grid1: P!Grid(left=~grid2)

12 }

13 ... −−# another 4 rules for Pacman to move in the other direction
14

15 rule ghostMoveLeft{

16 from
17 s:P!GameState(STATE=~GhostMove,record=~rec), rec: P!Record, ghost: P!Ghost,

18 grid2:P!Grid, grid1: P!Grid(hasEnemy=~ghost, left=~grid2),

19 act : P!Action(DONEBY=~Ghost, FRAME=~rec.FRAME, DIRECTION=~Left)

20 to
21 s:P!GameState(STATE=~Eval,record=~rec),rec: P!Record,ghost: P!Ghost,

22 grid2: P!Grid(hasEnemy=~ghost), grid1: P!Grid(left=~grid2)

23 }

24 ... −−# another 4 rules for Ghost to move in the other direction
25

26 rule Collect{

27 from
28 s : P!GameState(STATE=~Eval,record=~rec),rec : P!Record,pac: P!Pacman,

29 gem: P!Gem,grid : P!Grid(hasPlayer=~pac, hasGem=~gem)

30 to
31 s : P!GameState(STATE=~Eval,record=~recNew),grid : P!Grid(hasPlayer=~pac),

32 pac: P!Pacman,recNew: P!Record(FRAME=~rec.FRAME, SCORE=~rec.SCORE+100)

33 }

34

35 rule Kill{

36 from
37 s : P!GameState(STATE=~Eval),ghost: P!Ghost,pac : P!Pacman,

38 grid : P!Grid (hasPlayer=~pac, hasEnemy=~ghost)

39 to
40 s: P!GameState(STATE=~Killed),ghost: P!Ghost,grid : P!Grid (hasEnemy=~ghost)

41 }

42

43 rule UpdateFrame{

44 from
45 s : P!GameState(STATE=~Eval,record=~rec),rec : P!Record,pac : P!Pacman

46 to
47 s: P!GameState(STATE=~PacMove,record=~recNew),pac : P!Pacman,

48 recNew: P!Record(FRAME=~rec.FRAME+1, SCORE=~rec.SCORE)

49 }

Fig. 6.2 Graph transformation rules for Pacman in SimpleGT

1 s : P!GameState(record=~rec),rec: P!Record,pac: P!Pacman,

2 grid2: P!Grid,grid1: P!Grid(left=~grid2)

Fig. 6.3 The correspondence graph of the PlayerMoveLeft rule
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1 context Pacman!GameState pre ValidBoard: −− any two grids are reachable.
2 Pacman!GameState->allInstances()->forAll(g | g.grids->forAll(g1,g2 | reachable(g1,g2)));

3

4 ... −− other well−formedness contracts of the Pacman game.
5

6 context Pacman!Grid post gemReachable: −− all grids containing a gem must be reachable by Pacman.
7 Pacman!Grid.allInstances()->forAll(g1,g2|not g1.hasPlayer.isOclUndefined()

8 and not g2.hasGem.isOclUndefined() implies reachable(g1,g2));

9

10 context Pacman!GameState post PacmanSurvive: −− exists a path where the ghost never kills Pacman.
11 Pacman!GameState->allInstances()->forAll(g |

12 g.STATE=GhostMove implies g.grids->forAll(g1|
13 g1.hasEnemy.oclIsKindOf(Pacman!Ghost) implies not g1.hasPlayer.oclIsKindOf(Pacman!Pacman)));

14

15 context Pacman!Action post PacmanMoved: −− the Pacman must move within a time interval I .
16 let acts:Sequence(Pacman!Action) = Pacman!Action.allInstances()->select(a|
17 a.DONEBY=Pacman and not a.Direction=Stay)->asSequence() in

18 Integer.allInstances->forAll(i|
19 0<=i<acts->size()-1 implies acts->at(i+1).FRAME-acts->at(i).FRAME<=I);

Fig. 6.4 OCL contracts for Pacman

In addition, unlike GT languages with explicit flow control (e.g. Henshin [4]), SimpleGT
follows an automatic “fall-off” rule scheduling, i.e. if no match is found for a GT rule, it
falls off to match the next rule.

The correctness of a SimpleGT program is specified using OCL contracts. In this work,
we specify three contracts as shown in Fig. 6.4, i.e. gemReachable, PacmanSurvive and
PacmanMoved. The rationale behind each specified contract is explained further in Sec-
tion 6.5. In addition, we enforce a list of preconditions that should hold before executing
the GT. This is to ensure the game starts in a valid game state. For example, to ensure that
no grid is isolated on the game board, we require that any two grids are reachable (defined
in Section 6.5).

VeriGT Verification System. We have designed the VeriGT verification system to en-
able sound automated verification of partial correctness for SimpleGT (Fig. 6.5). It accepts
a source EMF metamodel, a set of specified OCL contracts and SimpleGT transformation.
The output is a decision regarding the correctness of the SimpleGT transformation.

Specifically, VeriGT generates the corresponding Boogie code from its inputs using four
code generators:

• The EMF metamodels generate Boogie types and constants using the EMF2Boogie

code generator.

• The OCL transformation contracts produce Boogie contracts using the OCL2Boogie

code generator.
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Fig. 6.5 Overview of the VeriGT verification system

• The SimpleGT transformation generates Boogie procedures using the SimpleGT2Boogie

code generator.

• The SimpleGT compiler is used to compile input SimpleGT transformation into an
EMFTVM program. This compiled EMFTVM program is used to generate a Boogie
implementation using the EMFTVM2Boogie code generator.

Then, VeriGT performs translation validation to ensure the soundness of the Boogie
procedure encoding for the execution semantics of SimpleGT. If the soundness verifica-
tion passes, the generated Boogie procedures are thus verified against the generated Boogie
contracts in OCL for transformation correctness verification. If the correctness of the Sim-
pleGT transformation has been established, then VeriGT simply reports that the verification
is successful. Otherwise, the trace information from the Boogie verifier, indicating where
the transformation incorrectness was detected, will be output.

The generated Boogie code is driven by four core components of VeriGT, that is the se-
mantics of the EMF metamodel, OCL, SimpleGT and EMFTVM. The first two are directly
adopted from the VeriMTLr framework. These two are also the foundation of the seman-
tics of SimpleGT, which were one of the main challenges in developing VeriGT. Another
challenge stems from the development of translational semantics of EMFTVM, which is the
core component to enable translation validation of the soundness of our Boogie encoding.
This semantics is an extension of our previous semantics of ASM (Section 5.2). In what
follows, we first illustrate the semantics of SimpleGT.
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6.2 Semantics of SimpleGT

In this section, we describe the semantics of rule scheduling as well as the semantics of
match and apply steps for SimpleGT. In addition, we compare them with the semantics
for MTr languages to quantify how their semantic differences affect the verifier design of
SimpleGT (i.e. preventing us from reusing the Boogie libraries for the execution semantics
of MTr to design VeriGT).

6.2.1 Semantics of Rule Scheduling

The semantics of rule scheduling in SimpleGT requires that to be able to match rules with
their own output, i.e. re-matching after each apply1:

• Initially, rules are matched to find the source graph pattern as specified in the from

section of the rule (match step).

• Next, the first match is applied, i.e. deleting input elements, creating output elements,
and initializing output elements as specified in the to section of the rule (apply step).

• After each application, the rule scheduling restarts immediately.

• When all rules have been processed (i.e. there are no more matches found for any
rules), the rule scheduling stops.

The rule scheduling of SimpleGT implies that the source and target models are the same.
Thus, there will be only one heap in our Boogie encoding.

To the best of our knowledge, none of MTr languages share the same rule scheduling.
Taking the ATL language as an example, ATL is scheduled to first match each rule, and then
apply each rule. This is to ensure the confluence of an ATL transformation [6].

Example 6.2.1. In Fig. 6.6 we show part of the Boogie encoding for the execution semantics
of the Pacman game. This can be verified against the OCL contracts specified in Fig. 6.4 as
follows:

• First, the OCL contracts are encoded as a Boogie contract (line 2 - 16). For instance,
the contract PacmanSurvive of Fig. 6.4 is encoded as both a precondition (line 2 - 7)
and a postcondition (line 10 - 15).

1For simplicity we do not consider rule inheritance [118].
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• Then, the execution semantics of the Pacman SimpleGT program is encoded as a
Boogie implementation (line 17 - 33). Specifically, the rule scheduling is encoded in
a loop (line 19 - 31). During the loop, the execution semantics of the match and apply

steps of each rule are performed. If no match is found for a GT rule, it falls off to
match the next rule (line 28). This fall-off-matching is repeated until the last GT rule
exits the loop.

• Finally, we pair the Boogie contract that represents the specified OCL contracts with
the Boogie implementation that represents the execution semantics of the SimpleGT
program. Such a pair forms a verification task, which is input to the Boogie verifier.
The Boogie verifier either gives a confirmation that indicates the SimpleGT program
satisfies the specified OCL contracts, or trace information that indicates where the
OCL contract violation is detected.

6.2.2 Semantics of the Match Step

The semantics of the match step of each SimpleGT rule consists of two sub-steps:

• The first sub-step performs a structural pattern matching (by applying a search plan
strategy [115]), where all the patterns that match the specified model elements and
their structural relationship (i.e. an edge between model elements) are found. A
subtlety here is that SimpleGT requires injective matching, i.e. all the model elements
in each matched structural pattern are unique.

• The second sub-step is to iterate on the matched structural patterns for semantic pat-
tern matching, where a pattern that satisfies specified semantic constraints is found
(i.e. the constraints on the attributes of model elements given by the matching opera-
tor, and any NACs).

To the best of our knowledge, none of the MTr languages implement the same matching
algorithm. For example, ATL applies an implicit resolution algorithm while binding the
target metamodel elements, which does not exist in SimpleGT. In addition, ATL does not
enforce injective matching.

Therefore, the encoded Boogie contract for the match step has the following structure:

• It ensures that if the result is an empty sequence, then the source model does not
contain any pattern that passes the structural and semantic pattern matching.
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1 procedure main ( ) ;
2 / * i n v : PacmanSurv ive * /
3 r e q u i r e s (∀ gs1 : r e f • ( gs1∈OCLType# a l l I n s t a n c e ( srcHeap , pacman$GameState )
4 ∧ r e a d ( srcHeap , gs1 , pacman$GameState . STATE)=4) =⇒
5 (∀ g r i d 1 : r e f • g r i d 1∈OCLType# a l l I n s t a n c e ( srcHeap , pacman$Grid )
6 ∧ d t y p e ( r e a d ( srcHeap , g r i d 1 , pacman$Grid . hasEnemy )) < : pacman$Ghost =⇒
7 ¬( d t y p e ( r e a d ( srcHeap , g r i d 1 , pacman$Grid . h a s P l a y e r ) ) < : pacman$Pacman ) ) ) ;
8 . . .
9 m o d i f i e s s rcHeap ;

10 / * i n v : PacmanSurv ive * /
11 ensures (∀ gs1 : r e f • ( gs1∈OCLType# a l l I n s t a n c e ( srcHeap , pacman$GameState )
12 ∧ r e a d ( srcHeap , gs1 , pacman$GameState . STATE)=4) =⇒
13 (∀ g r i d 1 : r e f • g r i d 1∈OCLType# a l l I n s t a n c e ( srcHeap , pacman$Grid )
14 ∧ d t y p e ( r e a d ( srcHeap , g r i d 1 , pacman$Grid . hasEnemy )) < : pacman$Ghost =⇒
15 ¬( d t y p e ( r e a d ( srcHeap , g r i d 1 , pacman$Grid . h a s P l a y e r ) ) < : pacman$Pacman ) ) ) ;
16 . . .
17 implementat ion main ( ) {
18 . . . / / v a r i a b l e d e c l a r a t i o n s
19 whi le ( t rue ) . . . {
20 L a b e l _ P l a y e r M o v e L e f t :
21 Labe l_Match_P laye rMoveLef t :
22 c a l l p:=match_Playe rMoveLef t ( ) ;
23 Labe l_App ly_P laye rMoveLef t :
24 i f ( p ̸= [ ] ) {
25 c a l l a p p l y _ P l a y e r M o v e L e f t ( p ) ;
26 goto L a b e l _ r e s t a r t ; }
27 e l s e { goto L a b e l _ P l a y e r M o v e r R i g h t ; }
28 L a b e l _ P l a y e r M o v e r R i g h t :
29 . . .
30 L a b e l _ r e s t a r t :
31 }
32 L a b e l _ e x i t _ p o i n t :
33 }
34

35 procedure match_Playe rMoveLef t ( ) r e t u r n s ( r e s : Seq r e f ) ;
36 . . . / / Boogie c o n t r a c t f o r t h e e x e c u t i o n s e m a n t i c s o f match s t e p .
37 procedure a p p l y _ P l a y e r M o v e L e f t ( r e s : Seq r e f ) ;
38 . . . / / Boogie c o n t r a c t f o r t h e e x e c u t i o n s e m a n t i c s o f a p p l y s t e p .

Fig. 6.6 Boogie encoding to verify the correctness of the Pacman transformation

• It ensures that if the result is not an empty sequence, then the result is a pattern (con-
tains a sequence of source elements) in the source model that passes the structural and
semantic pattern matching.

Example 6.2.2. The Boogie encoding for the match step for the PlayerMoveLeft rule is
shown in Fig. 6.7. The encoding is self-explanatory and conforms to the structure of the
Boogie contract for the match step:

• If the result is an empty sequence, then in the source model, none of the pattern that
passes the structural pattern matching (specified by the findPatterns_PlayerMoveLeft

function) satisfies the constraints of semantics pattern matching (line 2 - 15):

– The game is in a state s when Pacman should move (line 5).
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– The action act is done by Pacman (line 7).

– The action act has the same FRAME as the game FRAME (line 9 - 10).

– The action act is to move to the LEFT (line 12).

– The grid grid2 does not have the ghost on it (line 14 - 15).

• If the result is not an empty sequence, then the result is a pattern (contains a sequence
of source elements) in the source model that passes the structural and semantic pattern
matching (line 16 - 23).

1 procedure match_Playe rMoveLef t ( ) r e t u r n s ( r e s : Seq r e f )
2 ensures r e s=[ ] =⇒
3 (∀ i : i n t • 0≤i < | f i n d P a t t e r n s _ P l a y e r M o v e L e f t ( s rcHeap ) | ) =⇒ ¬(
4 / / s : pacman$GameState ( STATE=~PacMove )
5 r e a d ( srcHeap , f i n d P a t t e r n s _ P l a y e r M o v e L e f t ( s rcHeap ) [ i ] [ 0 ] , pacman$GameState . STATE) = 3
6 / / a c t : pacman$Act ion (DONEBY=~Pacman )
7 ∧ r e a d ( srcHeap , f i n d P a t t e r n s _ P l a y e r M o v e L e f t ( s rcHeap ) [ i ] [ 5 ] , pacman$Act ion .DONEBY) = 1
8 / / a c t : pacman$Act ion (FRAME=~r e c . FRAME)
9 ∧ r e a d ( srcHeap , f i n d P a t t e r n s _ P l a y e r M o v e L e f t ( s rcHeap ) [ i ] [ 5 ] , pacman$Act ion .FRAME) =

10 r e a d ( srcHeap , f i n d P a t t e r n s _ P l a y e r M o v e L e f t ( s rcHeap ) [ i ] [ 1 ] , pacman$Record .FRAME)
11 / / a c t : pacman$Act ion ( DIRECTION=~ L e f t )
12 ∧ r e a d ( srcHeap , f i n d P a t t e r n s _ P l a y e r M o v e L e f t ( s rcHeap ) [ i ] [ 5 ] , pacman$Act ion . DIRECTION )=1
13 / / n o t g r i d 2 : pacman$Grid ( hasEnemy=~ g h o s t ) , g h o s t : P$Ghost
14 ∧ ¬ ( d t y p e ( r e a d ( srcHeap , f i n d P a t t e r n s _ P l a y e r M o v e L e f t ( s rcHeap ) [ i ] [ 3 ] , pacman$Grid . hasEnemy ) )
15 <: pacman$Ghost ) ) ) ;
16 ensures r e s ̸= [ ] =⇒
17 r e s ∈ f i n d P a t t e r n s _ P l a y e r M o v e L e f t ( s rcHeap )
18 ∧ r e a d ( srcHeap , r e s [ 0 ] , pacman$GameState . STATE) = 3
19 ∧ r e a d ( srcHeap , r e s [ 5 ] , pacman$Act ion .DONEBY) = 1
20 ∧ r e a d ( srcHeap , r e s [ 5 ] , pacman$Act ion .FRAME) =
21 r e a d ( srcHeap , r e s [ 1 ] , pacman$Record .FRAME)
22 ∧ r e a d ( srcHeap , r e s [ 5 ] , pacman$Act ion . DIRECTION )=1
23 ∧ ¬ ( d t y p e ( r e a d ( srcHeap , r e s [ 3 ] , pacman$Grid . hasEnemy )) < : pacman$Ghost ) ;
24

25 f u n c t i o n f i n d P a t t e r n s _ P l a y e r M o v e L e f t ( ) : Seq < Seq < ref > >;
26 . . . / / Boogie axioms f o r t h e s t r u c t u r a l p a t t e r n match ing .

Fig. 6.7 Boogie encoding for the match step for the PlayerMoveLeft rule

6.2.3 Semantics of the Apply Step

The semantics of the apply step of each SimpleGT rule is more straightforward than that of
the match step. One caveat here is that SimpleGT is a programming language with explicit
memory deallocation (e.g. delete model element). When this occurs, the frame condition,
that each model element allocated before executing the apply step is still allocated, no longer
holds.
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Another aspect of the semantics of the apply step is that we introduce a new Boogie
type setTable to prohibit runtime exceptions caused by certain operations on the structural
features, e.g. adding the same attribute twice for a model element:

type s e t T a b l e = <α >[ ref , F i e l d α ] bool ;
var acc : s e t T a b l e ;

Thus, checking whether o.f is set or not becomes an expression isset(acc,o,f), marking o.f

as set uses the expression set(acc,o,f,true), and marking it as not set uses the expression
set(acc,o,f, f alse).

The encoded Boogie contract for the apply step has the following structure:

• It requires that the received pattern passes the structural and semantic pattern match-
ing of its corresponding SimpleGT rule.

• It guarantees that the structural features of the received pattern, that are to be accessed
by the apply step, are all set.

• It specifies that the heap for the source model and setTable will be modified.

• It ensures that each target element is fully applied, i.e. deleting elements, creating
elements, and initializing elements as specified in the corresponding SimpleGT rule.

• It ensures the structural features for the deleted, and initialised model elements are
set/unset as specified in the corresponding SimpleGT rule.

• It addresses the frame problem by ensuring that nothing else is modified on the source
heap, except the specified application performed on each model element.

• It addresses the frame problem by ensuring that nothing else is modified in the set-

Table, except the structural features of the affected model elements.

Notice that we assume the structural features to be accessed from the received input
pattern are all set before executing the apply step, since it passes the structural and semantic
pattern matching. That is, the source elements’ structural features have been set in order
to be accessed. The NACs are an exception, because SimpleGT could use NAC to check
whether the structural features of specified source elements are set or not (which means
source elements’ structural features do not have to be set to be accessed). In addition, the
state of the setTable needs to be updated and propagated by the postconditions and the frame
condition.
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Example 6.2.3. The Boogie encoding for the apply step of the PlayerMoveLeft rule is
shown in Fig. 6.8:

• First, it requires that the input pattern passes the structural and semantic pattern match-
ing of the PlayerMoveLeft rule (line 2 - 9).

• It also guarantees that the to-be-accessed structural features of the input pattern are
all set (line 10 - 15).

• Then, it specifies that the heap for the source model, and setTable will be modified
(line 17).

• Next, it ensures that each element is fully applied, by performing associated model
manipulations as specified by the PlayerMoveLeft rule (line 19 - 26).

• It ensures the structural features for the initialised model elements are set/unset as
specified in the corresponding SimpleGT rule (line 28 - 33), and the structural features
for the deleted model element are unset (line 34 - 39).

• It also ensures that nothing else is modified in the input model, except the model
manipulations performed on the specified model element (line 41 - 47).

• Finally, it ensures that nothing else is modified in the setTable, except the affected
structural features for the deleted and initialised elements (line 48 - 53).

The Boogie contracts for the execution semantics of the match and apply steps play
an important role in verifying the correctness of a SimpleGT Transformation. Thus, the
soundness of our approach depends on the soundness of these Boogie contracts, i.e. that
they correctly represent the runtime behaviour of their corresponding EMFTVM implemen-
tations. In the next sections, we describe our translation validation approach to verify the
soundness of our Boogie encodings for the execution semantics of SimpleGT.

6.3 Translational Semantics of the EMFTVM Language

Our translation validation approach is based on providing a translational semantics of the
EMFTVM language in Boogie, which allows the runtime behaviour of the EMFTVM im-
plementation to be represented using Boogie implementations.
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1 procedure a p p l y _ P l a y e r M o v e L e f t ( r e s : Seq r e f ) ;
2 / / i n p u t p a t t e r n p a s s e s t h e s t r u c t u r a l and s e m a n t i c p a t t e r n match ing .
3 r e q u i r e s r e s ∈ f i n d P a t t e r n s _ P l a y e r M o v e L e f t ( s rcHeap )
4 ∧ r e a d ( srcHeap , r e s [ 0 ] , pacman$GameState . STATE) = 3
5 ∧ r e a d ( srcHeap , r e s [ 5 ] , pacman$Act ion .DONEBY) = 1
6 ∧ r e a d ( srcHeap , r e s [ 5 ] , pacman$Act ion .FRAME) =
7 r e a d ( srcHeap , r e s [ 1 ] , pacman$Record .FRAME)
8 ∧ r e a d ( srcHeap , r e s [ 5 ] , pacman$Act ion . DIRECTION )=1
9 ∧ ¬ ( d t y p e ( r e a d ( srcHeap , r e s [ 3 ] , pacman$Grid . hasEnemy )) < : pacman$Ghost ) ;

10 / / to−be−a c c e s s e d s t r u c t u r a l f e a t u r e s o f t h e i n p u t p a t t e r n are a l l s e t .
11 f r e e r e q u i r e s i s s e t ( acc , r e s [ 0 ] , pacman$GameState . STATE ) ;
12 f r e e r e q u i r e s i s s e t ( acc , r e s [ 1 ] , pacman$Record .FRAME) ;
13 f r e e r e q u i r e s i s s e t ( acc , r e s [ 5 ] , pacman$Act ion .DONEBY) ;
14 f r e e r e q u i r e s i s s e t ( acc , r e s [ 5 ] , pacman$Act ion .FRAME) ;
15 f r e e r e q u i r e s i s s e t ( acc , r e s [ 5 ] , pacman$Act ion . DIRECTION ) ;
16

17 m o d i f i e s srcHeap , acc ;
18

19 / / s : pacman$GameState ( STATE=~4)
20 ensures r e a d ( srcHeap , r e s [ 0 ] , pacman$GameState . STATE) = 4 ;
21 / / g r i d 2 : pacman$Grid ( h a s P l a y e r =~pac )
22 ensures r e a d ( srcHeap , r e s [ 3 ] , pacman$Grid . h a s P l a y e r ) = r e s [ 2 ] ;
23 / / g r i d 1 : pacman$Grid ( h a s P l a y e r =~ n u l l )
24 ensures r e a d ( srcHeap , r e s [ 4 ] , pacman$Grid . h a s P l a y e r ) = n u l l ;
25 / / a c t : pacman$Act ion ( a l l o c =~ f a l s e )
26 ensures ¬ r e a d ( srcHeap , r e s [ 5 ] , a l l o c ) ;
27

28 / / pacman$GameState . STATE i s s e t f o r s .
29 ensures i s s e t ( acc , r e s [ 0 ] , pacman$GameState . STATE ) ;
30 / / pacman$Grid . h a s P l a y e r i s s e t f o r g r i d 2 .
31 ensures i s s e t ( acc , r e s [ 3 ] , pacman$Grid . h a s P l a y e r ) ;
32 / / pacman$Grid . h a s P l a y e r u n s e t f o r g r i d 1 .
33 ensures ¬ i s s e t ( acc , r e s [ 4 ] , pacman$Grid . h a s P l a y e r ) ;
34 / / pacman$Act ion . DONEBY u n s e t f o r a c t .
35 ensures ¬ i s s e t ( acc , r e s [ 5 ] , pacman$Act ion .DONEBY) ;
36 / / pacman$Act ion . FRAME u n s e t f o r a c t .
37 ensures ¬ i s s e t ( acc , r e s [ 5 ] , pacman$Act ion .FRAME) ;
38 / / pacman$Act ion . DIRECTION u n s e t f o r a c t .
39 ensures ¬ i s s e t ( acc , r e s [ 5 ] , pacman$Act ion . DIRECTION ) ;
40

41 / / Frame c o n d i t i o n f o r i n p u t model .
42 ensures (∀<α> o: ref , f : F i e l d α •
43 o ̸= n u l l ∧ r e a d ( old ( s rcHeap ) , o , a l l o c ) =⇒
44 ( d t y p e ( o )=pacman$GameState ∧ f=pacman$GameState . STATE)
45 ∨( d t y p e ( o )=pacman$Grid ∧ f=pacman$Grid . h a s P l a y e r )
46 ∨( d t y p e ( o )=pacman$Act ion ∧ f=a l l o c )
47 ∨( r e a d ( srcHeap , o , f )=r e a d ( o ld ( s rcHeap ) , o , f ) ) ) ;
48 / / Frame c o n d i t i o n f o r s e t T a b l e .
49 ensures (∀<α> o: ref , f : F i e l d α •
50 ( o=r e s [ 0 ] ∧ f=pacman$GameState . STATE)
51 ∨ ( ( o=r e s [ 3 ]∨o=r e s [ 4 ] ) ∧ f=pacman$Grid . h a s P l a y e r )
52 ∨( o=r e s [ 5 ] ∧ ( f=pacman$Act ion .DONEBY∨f=pacman$Act ion .FRAME∨ f=pacman$Act ion . DIRECTION ) )
53 ∨( r e a d ( acc , o , f )=r e a d ( old ( acc ) , o , f ) ) ) ;

Fig. 6.8 Boogie encoding for the apply step for the PlayerMoveLe f t rule

The EMFTVM language supports 48 different instructions, which forms a superset of
the ASM language. Compared to ASM, the EMFTVM language adds more control-flow in-
structions to model more flexible runtime execution flow. In addition, it increases the num-
ber of model-handling instructions that are dedicated to model manipulation (e.g. DELETE,
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ADD, INSERT, REMOVE). Since SimpleGT allows explicit memory deallocation, these
additional EMFTVM instructions are extensively used in its EMFTVM implementation.

Our translational semantics for EMFTVM is given by a list of translation rules to Boo-
gie. Each translation rule encodes the operational semantics of an instruction in Boogie. Our
translational semantics of the EMFTVM language extends our translational semantics of the
ASM language. While developing the translational semantics of the EMFTVM language,
we have not found documents that precisely explain the operational semantics of EMFTVM
bytecode instructions. Our strategy is to check the EMFTVM source code for the opera-
tional semantics of each EMFTVM instruction, and then design the rule correspondingly.

Specifically, 17 instructions are shared by both the EMFTVM and ASM languages. In
these cases, translational semantics are inherited. In addition, we add translational semantics
for 9 EMFTVM instructions (Table 6.1). They are encapsulated as a Boogie library, which
can be adapted by the verifier designer for other model transformation languages. The
remaining 22 instructions are not used by the EMFTVM implementation of the SimpleGT
language. The full translational semantics of EMFTVM language is listed in Appendix D.

In what follows, we pick two representative EMFTVM instructions as our examples,
i.e. the DELETE and ADD instructions. We first give an informal description of their
operational semantics, and then explain the intuition behind the corresponding translation
to Boogie whenever it is necessary.

The DELETE instruction is one of the EMFTVM instructions for model handling. The
DELETE instruction does not have any parameters. Before executing the DELETE instruc-
tion, the top element on the operand stack is a model element o.

The operational semantics of the DELETE instruction simply deletes the element from
the source model. Two subtleties here are that:

• If the deleted element is not a collection, then the cross-references between the deleted
element and any other element in the source model are also deleted.

• If the deleted element is a collection, then all its sub-elements are moved outside the
source model.

Finally, the top element on the operand stack is popped.
The translation rule for the DELETE instruction requires some explanation in order to

describe our approach to modelling element deallocation:

• First, we prevent null or unallocated model element from being deallocated.
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ASM Instruction (S) Corresponding Boogie Statements ([[S]])
Stack Handling Instructions

AND Stmt
assert size(stk) > 0;
[[Stmt]]
stk := (hd(tl(stk)) ∧ hd(stk)) :: tl(tl(stk));

NOT assert size(stk) > 0;
stk := (¬(hd(stk))) :: tl(stk);

Control Flow Instructions

IFN n

var cond#: bool;
assert size(stk) > 0;
cond# := hd(stk);
stk := tl(stk);
if (¬cond#) goto [[n]];

RETURN goto END;
Model Handling Instructions

ALLINST cl

var col#: Seq ref;
assert size(stk) > 0;
col# := OCLType#allInstance(heap, [[cl]]);
stk := col# :: tl(stk);

DELETE

let o=hd(stk) in
var heap#: HeapType;
heap# := heap;
assert size(stk) > 0;
assert o ̸= null ∧ read(heap, o, alloc);
havoc heap;
assume (∀ r: ref, f: Field α •
r ̸=null ∧ read(heap#, r, alloc) ∧ r̸=o =⇒
read(heap, r, f) = read(heap#, r, f));

assume ¬read(heap, o, alloc);
stk := tl(stk);

ADD f

let o = hd(tl(stk)), v = hd(stk) in
assert size(stk) > 1 ∧ o ̸= null ∧ read(heap, o, alloc);
if (isCollection([[f]]))
{ heap := update(heap, read(heap, o, [[f]]), read(heap, o, [[f]]) ∪ v); }
else

{ assert ¬isset(acc, o, [[f]]);
heap := update(heap, o, [[f]], v);
acc := set(acc, o, [[f]], true); }

stk := tl(tl(stk));

REMOVE f

let o = hd(tl(stk)), v = hd(stk) in
assert size(stk) > 1 ∧ o ̸= null ∧ read(heap, o, alloc);
if (isCollection([[f]]))
{ heap := update(heap, read(heap, o, [[f]]), read(heap, o, [[f]]) - v); }
else

{ if(read(heap, o, [[f]]) = v)
{ assert isset(acc, o, [[f]]);

heap := update(heap, o, [[f]], default);
acc := set(acc, o, [[f]], false); } }

stk := tl(tl(stk));

INSERT f

let o = hd(tl(tl(stk))), v = hd(tl(stk)), i=hd(stk) in
assert size(stk) > 1 ∧ o ̸= null ∧ read(heap, o, alloc);
if (isCollection([[f]]))
{ assert -1 ≤ i ∧ i < size(read(heap, o, [[f]]));

heap := update(heap, o, [[f]], read(heap, o, [[f]])[0..i] :: v ::
read(heap, o, [[f]])[i..size(read(heap, o, [[f]]))]); }

else

{ assert ¬isset(acc, o, [[f]]);
heap := update(heap, o, [[f]], v);
acc := set(acc, o, [[f]], true); }

stk := tl(tl(tl(stk)));

Table 6.1 Translational semantics of the EMFTVM language
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• Second, we specify that the heaps before (denoted by heap#) and after (denoted by
heap) calling the DELETE instruction agree on the values of all the allocated model
elements, except the element to be deallocated. Consequently, the values of deallo-
cated model elements are “forgotten” after calling the DELETE instruction.

• Third, we arrange to set the implicit allocation field of the deallocated element to
false. The implication is that it will no longer be considered when quantifying over
allocated model elements.

As a result, our translation rule for the DELETE instruction subsumes the subtleties in
its operational semantics:

• If the deleted element is not a collection, then any other elements in the source model
that reference the deleted element will reference an inaccessible element.

• If the element is a collection, then all its sub-elements are no longer accessible after
deletion (i.e. not contained by the source model), since accessing the sub-elements of
an unallocated model element is always prohibited by our Boogie encoding.

The ADD instruction is another EMFTVM instruction for model handling. The ADD

instruction has one parameter which is the structural feature to be operated on. Before
executing the ADD instruction, the top two elements on the operand stack are a model
element o and the value v (to add to o).

The operational semantics of the ADD instruction forms a case distinction according to
its parameter f. If f is an association and its multiplicity has an upper-bound that is greater
than one, then the ADD and SET instructions agree on their behaviour. Otherwise, o.f is
checked for whether it has already been set to any value. If o.f has already been set to a
value, a runtime exception is thrown. Otherwise, the ADD instruction successfully updates
o.f to v, and marks o.f as being set. Finally, the top two elements on the operand stack are
popped.

The translation rule for the ADD instruction offers no surprise based on its operational
semantics.

6.4 Translation Validation of Encoding Soundness

Each SimpleGT rule is actually compiled into two EMFTVM implementation blocks by
the EMFTVM compiler, i.e. a match block (for the match step) and an apply block (for
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the apply step). In this section, we briefly describe our translation validation approach to
verify the soundness of our Boogie encodings for the execution semantics of SimpleGT, i.e.
that our Boogie encoding for the execution semantics of SimpleGT soundly represents the
corresponding runtime behaviour given by the EMFTVM implementation.

In order to verify the soundness of our Boogie encoding for the execution semantics of
each SimpleGT rule, we define the execution semantics of an EMFTVM rule encoded in
Boogie as being sound, if,

• the Boogie contract that represents the execution semantics of its match step is satis-
fied by the Boogie implementation that represents the runtime behaviour of its match

block, and

• the Boogie contract that represents the execution semantics of its apply step is satisfied
by the Boogie implementation that represents the runtime behaviour of its apply block.

Each of these conditions form a verification task that is sent to the Boogie verifier. If
none of the verification tasks generate any errors (from the verifier), we conclude that our
Boogie encoding for the execution semantics of the SimpleGT rules is sound. The benefit is
that we can automatically verify the soundness of each SimpleGT specification/EMFTVM
implementation pair.

We demonstrate our approach on the match step of the PlayerMoveLeft rule (Fig. 6.9).
The runtime behaviour of its corresponding match block is implemented as a Boogie imple-
mentation (Line 5 - 12). The implementation contains two important sub-steps.

The first sub-step performs a structural pattern matching (Line 8), where all the pat-
terns that match the specified model elements and their structural relationships (i.e. edges
between model elements) are found. Structural pattern matching is mainly implemented
in Java instead of EMFTVM. Thus, they are only axiomatised using Boogie axioms (Line
15), and are not validated by the translation validation approach. This is a modular ver-
ification strategy, thus initiating the verification of the implementation for the SimpleGT
transformations: we aim to verify each sub-component of the transformation implementa-
tion individually. Consequently, we can clearly state which parts of the implementation are
verified, which brings us a step closer to fully verifying the transformation implementation.

The second sub-step is to iterate on the matched structural patterns (Line 9 - 12) for
semantic pattern matching, where a pattern that satisfies the specified semantic constraint is
found (i.e. the constraint on attributes of model elements given by the matching operator).
The runtime behaviour of semantic pattern matching is given as the Boogie implementation
(Line 24 - 31) in terms of the translational semantics of EMFTVM. It is validated against
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1 procedure match_Playe rMoveLef t ( ) r e t u r n s ( p: Seq r e f ) ;
2 . . . / * Boogie c o n t r a c t f o r t h e e x e c u t i o n s e m a n t i c s o f match s t e p . * /
3

4

5 / * Boogie i m p l e m e n t a t i o n f o r t h e e x e c u t i o n s e m a n t i c s o f match s t e p . * /
6 implementat ion match_Playe rMoveLef t ( ) r e t u r n s ( p: Seq r e f ) ;
7 { . . . p:= [ ] ; i := 0 ;
8 p a t t e r n s := f i n d P a t t e r n s _ P l a y e r M o v e L e f t ( ) ;
9 whi le ( i < p a t t e r n s . Length ) . . . {

10 c a l l matched := m a t c h _ f i l t e r _ P l a y e r M o v e L e f t ( p a t t e r n s [ i ] ) ;
11 i f ( matched ) { p= p a t t e r n s [ i ] ; break ; }
12 i := i +1 ;} }
13

14 f u n c t i o n f i n d P a t t e r n s _ P l a y e r M o v e L e f t ( ) : Seq < Seq < ref > >;
15 . . . / / Boogie axioms f o r t h e s t r u c t u r a l p a t t e r n match ing .
16

17 procedure m a t c h _ f i l t e r _ P l a y e r M o v e L e f t ( p: Seq r e f ) r e t u r n s ( r : bool ) ;
18 / * Boogie c o n t r a c t f o r t h e s e m a n t i c p a t t e r n match ing . * /
19 ensures r ⇐⇒ ( r e a d ( srcHeap , p [ 0 ] , pacman$GameState . STATE) = 3
20 ∧ r e a d ( srcHeap , p [ 5 ] , pacman$Act ion .DONEBY) = 1
21 ∧ r e a d ( srcHeap , p [ 5 ] , pacman$Act ion .FRAME)=r e a d ( srcHeap , p [ 1 ] , pacman$Record .FRAME)
22 ∧ r e a d ( srcHeap , p [ 5 ] , pacman$Act ion . DIRECTION )=1 ) ;
23

24 / * Boogie i m p l e m e n t a t i o n f o r t h e s e m a n t i c p a t t e r n match ing . * /
25 implementat ion m a t c h _ f i l t e r _ P l a y e r M o v e L e f t ( p: Seq r e f ) r e t u r n s ( r : bool )
26 { . . . s , r ec , pac , g r i d 2 , g r i d 1 , a c t :=p [ 0 ] , p [ 1 ] , p [ 2 ] , p [ 3 ] , p [ 4 ] , p [ 5 ] ;
27 c a l l s t k := i n i t ( ) ; / * i n i t l o c a l s t a c k * /
28 c a l l s t k := OpCode#Load ( s t k , s ) ; / * load ( s : pacman$GameState ) * /
29 c a l l s t k := OpCode# Get ( s t k , pacman$GameState . STATE ) ; / * g e t STATE * /
30 c a l l s t k := OpCode# Push ( s t k , 3 ) ; / * push 3 * /
31 c a l l b:= N a t i v e # MatchOpera to r ( ) ; / * i n v o k e ( opName : =~) * / . . . }

Fig. 6.9 Verification of the soundness of Boogie encodings for the match step of the Player-
MoveLeft rule

the Boogie contracts for semantic pattern matching (Line 17 - 22) to ensure its encoding
soundness.

The verification of the soundness of the Boogie encodings for the apply step is performed
in a similar way to what is done for the match step.

Finally, we can conclude that the execution semantics of a SimpleGT specification en-
coded in Boogie is sound when the execution semantics of both match and apply steps of all
the relevant SimpleGT rules encoded in Boogie are sound.

6.5 Evaluation of VeriGT

VeriGT contains four code generators to generate Boogie code in order to soundly prove the
partial correctness of SimpleGT graph transformations. Two code generators, EMF2Boogie

and OCL2Boogie, are reused to produce their corresponding Boogie code for EMF meta-
models and OCL transformation contracts (Section 4.3). The code generator of SimpleGT-
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2Boogie and EMFTVM2Boogie have not yet being implemented. Thus, at the time of this
thesis being written, their corresponding Boogie code is manually encoded to demonstrate
the feasibility of VeriGT. However, we anticipate that their implementations are similar to
what we described in Section 4.3 and Section 5.4 using a mixture of model-to-text technol-
ogy and Java.

We evaluate VeriGT on the Pacman transformation, previously presented by Syriani and
Vangheluwe [112]. The Pacman transformation, as shown in Fig. 6.2, gives the operational
semantics of the Pacman game. Although the transformation is simple, it contains all the
language features that VeriGT supports for the SimpleGT language, i.e. double push-out
semantics with NAC, injective matching, and automatic “fall-off” rule scheduling. Table 6.2
summarises its verification complexity in terms of 7 metrics. The full case study, consisting
of the involved metamodels, the specified OCL transformation contracts, and the SimpleGT
transformation, can be found in Appendix C. Moreover, we refer to our online repository
for the generated Boogie programs of the Pacman transformation in SimpleGT [31].

Metric Pacman
No. Classifiers (source mm) 7
No. Attributes (source mm) 6
No. Associations (source mm) 13
No. SimpleGT rules 13
No. SimpleGT rule filter 40
No. OCL contracts (total/pre/post) 10/7/3
Complexity of OCL contract (total/average) 75/8

Table 6.2 The verification complexity metrics for the Pacman transformation

Our evaluation uses the Boogie verifier (version 2.2) and Z3 (version 4.3). It runs on an
Intel 2.93 GHz machine with 4 GB of memory running on the Windows operation system.
Verification times are recorded in seconds.

Table 6.3 shows the performance when automatically verifying the soundness of our
Boogie encoding for the Pacman transformation. The second and third columns show the
size of the Boogie code generated for the match and apply step of each SimpleGT rule re-
spectively (shown by lines of Boogie contract/Boogie implementation). Their correspond-
ing verification time is shown in the fourth and fifth columns. We report that all the verifi-
cation tasks are verified automatically.

Table 6.4 shows the performance of the verification of the correctness of the Pacman
transformation. The second column shows the size of the Boogie code generated for veri-
fying each of the transformation contracts that are specified in Fig. 6.4 (including Boogie
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Rule Boogie (LoC) Veri. Time (s) Automationmatch apply match apply
PlayerMoveLeft 20/262 28/120 0.109 0.499 Auto
PlayerMoveRight 20/262 28/120 0.109 0.499 Auto
PlayerMoveTop 20/262 28/120 0.109 0.499 Auto
PlayerMoveBottom 20/262 28/120 0.109 0.499 Auto
PlayerStay 19/180 20/86 0.062 0.250 Auto
GhostMoveLeft 17/189 27/109 0.078 0.452 Auto
GhostMoveRight 17/189 27/109 0.078 0.452 Auto
GhostMoveTop 17/189 27/109 0.078 0.452 Auto
GhostMoveBottom 17/189 27/109 0.078 0.452 Auto
GhostStay 17/180 20/86 0.062 0.250 Auto
Collect 9/92 29/119 0.046 0.234 Auto
Kill 9/86 21/57 0.032 0.140 Auto
UpdateFrame 9/79 25/115 0.031 0.234 Auto
Total 211/2421 335/1379 0.981 4.912

Table 6.3 Performance measures for verifying the soundness of the encoding for the Pacman
transformation

encodings for the Pacman metamodel, transformation contract and rule scheduling). Corre-
sponding verification times are shown in the third column.

Boogie (LoC) Veri. Time (s)
gemReachable 421 0.998
PacmanSurvive 467 1.747
PacmanMoved 439 0.109
Total 1327 2.854

Table 6.4 Performance measures for verifying the correctness of the Pacman transformation

Some explanation is in order. The first contract which we verified (gemReachable) was
that all grid nodes containing a gem must be reachable by the Pacman. The key to this task
is to define the reachable relation on grids. We define two grids to be reachable if they are
connected to each other. The reachable relation is also reflexive, symmetric and transitive.
Recall that to ensure no grid is isolated on the game board, we require that any two grids
are reachable (including all the grids that containing the gem, or Pacman) as a precondition
of the Pacman game. Since there are no rules that modify the layout of the grid, the first
contract can be automatically verified with ease.

The second contract which we verified (PacmanSurvive) is that there exists a path where
the ghost never kills Pacman. Our verification strategy is to provide a witnesses for the
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existence of such a path. First, we consider the state when the ghost starts to move. Then,
under such a state, our goal is to verify that the ghost and Pacman do not share the same
grid. Thus, the path where the ghost stays at the Pacman-free grid is our witness (recall that
the move strategy of Pacman is not to commit suicide as shown in Fig. 6.2).

The third contract which we verified (PacmanMoved) is that Pacman must move within
a time interval I. We use a contract-only variable (also known as a model field or a ghost
variable [82]) for this task. Contract-only variables do not participate in the runtime ex-
ecution of a program, as they are simply used to make the contract easier to express. In
particular, we introduce the contract-only variable acts, which is a set of actions of Pacman
that contains moves in any direction (corresponding to line 16 - 17 of Fig. 6.4). We need to
explicitly update the contract-only variable acts when the action of Pacman is updated (e.g.
delete an action as in the PlayerMoveLeft rule in Fig. 6.2), since it is not part of the runtime
execution of a SimpleGT program. After that, we can automatically verify the third con-
tract. This is due to the fact that if we assume that all the actions in acts will perform within
a time interval I as a precondition of the Pacman game, then after we remove an action from
acts, the remaining actions should not be changed and they will still be performed within a
time interval I.

6.6 Analysis of VeriGT

GT verification is an active research area [1, 2]. In this section, we will compare the design
of VeriGT to related GT verification techniques and tools.

Cabot et al. translate the rules of a GT in TGG into a set of OCL invariants that en-
code the transformation’s behaviour. These invariants can be used to check properties (e.g.
syntactic constraints) of the GT by applying bounded verification using the UML2CSP ver-
ifier [24]. Syriani and Vangheluwe propose an input-driven simulation approach using the
Discrete EVent system Specification (DEVS) formalism [112]. Bill et al. extend OCL with
Computational Tree Logic (CTL)-based temporal operators to express properties over the
lifetime of a graph [16]. Both of these approaches are bounded, which means the GT is ver-
ified against its contracts within a given search space (i.e. using finite ranges for the number
of models, associations and attribute values). Bounded approaches are usually automatic,
but no conclusion can be drawn outside the search space. Our approach is based on auto-
matic theorem proving, which is unbounded to ensure the contracts hold for the GT over an
infinite domain. However, VeriGT is based on FOL, and thus suffers the same expressibility
issue as VeriATL (Section 4.5) or any other verifiers that are based on FOL. Nevertheless,
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we show that by carefully designing the Pacman metamodel, we can use FOL to verify
temporal constraints without using formalisms such as DEVS or CTL.

There are also interactive theorem proving approaches for GT verification. Asztalos
et al. use category theory to describe graph rewriting systems [5]. This approach is im-
plemented in the VMTS verification framework, but it is not targeted to a specific graph
rewriting-based model transformation language. Schätz presents an approach to verify the
structural contracts of GT [103]. The transformation rules are given as a textual description
based on a relational calculus. The formalisations of model, metamodel and transformation
rules are based on declarative relations in a Prolog style, and target the Isabelle/HOL theo-
rem prover. These approaches rely on encoding the execution semantics of the GT language.
On top of that, we are able to address a different challenge. That is we also verify that the
execution semantics of GT encoded in Boogie correctly represents its corresponding run-
time behaviour (i.e. GT implementation), which makes our approach complementary to the
existing approaches. Our approach is inspired by the translation validation approach used in
compiler verification [97]. An earlier proposal to adapt the translation validation approach
in GT verification was also made by Horváth [59].

The most similar work to ours is Poskitt and Plump’s work on a Hoare calculus for the
correctness of so called graph programs (i.e. graph rules based on double push-out with
basic control structures) [100]. We are both following Hoare logic for program verification.
One of the main differences is that they reason about the soundness of their verification
system against the operational semantics of the GT language, which is more suitable for
GT languages that are without a transformation implementation. We chose to reason about
the soundness against the runtime behaviour of the GT implementation, which is more suit-
able for interpreted GT languages. Another main difference is that they manually prove
the soundness of their verification system by induction, whereas we chose the translation
validation approach to automatically verify the soundness of our verification system. Later
on, Poskitt and Plump identify extra properties (e.g. connectedness, existence of paths) that
cannot be proved by standard FOL [101]. Therefore, they propose to extend standard FOL
with node- and edge-set quantification, and set membership predicates to prove the iden-
tified properties. The responsibility of their FOL extension is similar to our OCL library
that enables quantification over collections. We have not checked all their identified chal-
lenges for standard FOL (e.g. absence of cycles). However, it is in principle feasible by
carefully axiomatising inductive declarations [34], which we would like to natively embed
into VeriGT in the future.
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6.7 Summary

In this chapter, we have described the design of the VeriGT verifier to soundly prove the
partial correctness of SimpleGT graph transformations. Its design demonstrates the versa-
tility of our VeriMTLr framework which facilitates verifier construction for both MTr and
GT languages. The main contributions of this chapter are a semantics for the SimpleGT
language and a semantics for EMFTVM bytecode. In particular, we have demonstrated
the difference between the execution semantics of relational and graph transformations, and
quantified how the difference would affect their verifier design. We have also illustrated
how to develop the semantics of EMFTVM bytecode by extending the semantics of ASM
bytecode from the VeriMTLr framework, to extend the translation validation approach to a
wider range of model transformation languages (particularly for model transformation lan-
guages with explicit memory deallocation). Finally, we have evaluated the VeriGT verifier
on the well-known Pacman game, which shows its performance and feasibility.

VeriGT does not support SimpleGT transformations with rule inheritance. However,
such an input transformation can be de-sugared into a behaviour-equivalent inheritance-
free transformation and then we can apply VeriGT. In addition, VeriGT cannot verify the
total correctness of SimpleGT, since we are still experimenting the details regarding graph
transformation termination.
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Conclusion

In summary, this thesis is about the correctness of MTr. We aim at making its formal veri-
fication in practice feasible and reliable, by modularly designing reusable and sound verifi-
cation systems.

The thesis validated the possibility of using an IVL to systematically design modular
and reusable verifiers for the given target MTr language. We have systematically designed
the VeriATL verifier using the Boogie IVL to verify the correctness of the ATL language. In
the process, we have modularly constructed several Boogie libraries, under the hood of our
VeriMTLr framework, that can be reused across different verifier designs.

Striving to make verification reliable, we confronted the potential unsoundness of veri-
fiers, and used a translation validation approach to solve this problem. This is not possible
without the proposed translational semantics in Boogie to precisely explain the runtime be-
haviour of the underlying transformation implementation, which is also encapsulated in the
VeriMTLr framework, facilitating reuse.

Our curiosity further drove us to extend our work to a GT language, namely SimpleGT.
We demonstrated the differences between the execution semantics of relational and graph
transformations, and quantified how the differences would affect their verifier designs.

There are lessons that we learned during the journey of our research, and there is more
work to be done before we can develop mature systems that can be routinely used by mod-
ellers. This chapter is dedicated to demonstrating them.

7.1 Observations from our Research

In this section, we discuss two observations obtained while developing the VeriMTLr frame-
work.
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7.1.1 Interoperability between Verifiers

Interoperability between verifiers allows several theorem provers to interact with each other
(e.g. share information, chain the proof obligations) so that they can collectively prove
theorems more automatically than any one of them could prove in isolation.

Kaufmann and Moore, based on their experience, suggest that what prevents interop-
erability between verifiers is that the time it takes to interact with another verifier is often
dominated by the time it takes to convert a problem into the representation used by the
“foreign” verifier [67].

Thus, verifiers that are based on the same IVL provide the foundation to enable their
interoperability. We also find that verifiers based on the same memory model further en-
hance their interoperability, since the elements in the memory model are organised in the
same fashion, and conform to the same principles to access and update the elements. Con-
sequently, it enables a natural embedding from one verifier to the other.

We have applied the Dafny and VeriATL verifiers on the ER2REL transformation to
demonstrate the possibility of interoperation between the two verifiers. Both verifiers are
based on the Boogie IVL.

Dafny. The Dafny language is designed to support the static verification of both procedure-
oriented and object-oriented programs [82]. It is imperative, sequential, and it supports
generic classes, dynamic allocation, and inductive datatypes, and built-in contract con-
structs. The contracts include pre/postconditions, frame conditions and termination met-
rics. To further support contracts, Dafny also offers ghost variables, recursive functions,
and mathematical types like sets and sequences.

The Dafny code shown in Fig. 7.1 introduces the ERSchema and RELSchema classes of
Fig. 4.1 (Line 1 - 5). Both classes encapsulate a name field, which declares the data that
the instance of each class can carry. Next, we declare a ER2REL class that encapsulates
the transformation between the two introduced classes. To enhance the readability and
modularity of the Dafny code, the precondition and postcondition of the transformation are
specified in the predicate pre and post respectively. The specified read clauses acquire the
read permission for the predicate parameters. Finally, the workhorse of the transformation
is represented as a unimplemented method (i.e. no method body) from line 23 - 26, which
we intend to build using an ATL transformation (as demonstrated in Fig. 4.2 of Chapter 4).

Next, the Dafny developer can proceed with their verification activities presuming the
eventual existence of verified ER2REL transformation. Simultaneously, the ATL developer
will develop the transformation and use VeriATL to reason about its correctness. The con-
tracts of ER2REL transformation used by the VeriATL reuse the compiled Boogie code that
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1 c l a s s ERSchema
2 { var name : s t r i n g ; }
3

4 c l a s s RELSchema
5 { var name: s t r i n g ; }
6

7 c l a s s ER2REL
8 {
9 / * p r e c o n d i t i o n o f ER2REL: un iq ue name o f ERSchema * /

10 p r e d i c a t e p r e ( e r : s e t <ERSchema >)
11 reads e r ;
12 {
13 ∀ s1 , s2 : ERSchema •
14 s1 in e r ∧ s2 in e r ∧ s1 ̸=s2 ∧ s1 ̸=n u l l ∧ s2 ̸=n u l l =⇒ s1 . name ̸= s2 . name }
15

16 / * p o s t c o n d i t i o n o f ER2REL: un iq ue name o f RELSchema * /
17 p r e d i c a t e p o s t ( r e l : s e t <RELSchema >)
18 reads r e l ;
19 {
20 ∀ r1 , r2 : RELSchema •
21 r1 in r e l ∧ r2 in r e l ∧ r1 ̸=r2 ∧ r1 ̸=n u l l ∧ r2 ̸= n u l l =⇒ r1 . name ̸= r2 . name}
22

23 / * un imp lemen ted model t r a n s f o r m a t i o n * /
24 method ER2REL( e r : s e t <ERSchema >) r e t u r n s ( r e l : s e t <RELSchema >)
25 r e q u i r e s p r e ( e r ) ;
26 ensures p o s t ( r e l ) ;
27

28 }

Fig. 7.1 Dafny classes for ER, REL and ER2REL

corresponds to the Dafny contracts of the ER2REL method (shown in Fig. 7.2). Thus, the
ATL developer does not need to rewrite the contracts again in OCL, or worry about whether
the contracts they produced represent the assumptions made by the Dafny developer. In
addition, the interoperability can go both ways, i.e. VeriATL also takes advantage of the
static verification capability of Dafny to ensure the input model satisfies the precondition of
ERSchema before executing the transformation.

However, we anticipate that contract reuse will not be as easy as it seems. The major
difficulty comes from exporting theories. To allow proof obligations to be understood by the
interoperated verifier, the caller verifier is required to export its theories to the callee verifier.
The exporting task could just require the syntactic rewritings to bridge between theories, e.g.
the Boogie expression Is(o,Ty()) from Dafny is equivalent to dtype(o) == Ty in VeriATL.

Exporting theories becomes more challenging if semantic issues are involved. For ex-
ample, the ER2REL class in Fig. 7.1 uses two arrays er and rel to distinguish the source
and target of the transformation; however, they are allocated on the same heap as shown
in Fig. 7.2. In contrast, VeriATL uses separate heaps to organise source and target models.
Thus, the differences between the theories of the caller and callee verifiers must be han-
dled carefully. We believe this can be done by providing auxiliary axioms. For example, in
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1 / / d e f i n i t i o n axiom f o r _module . ER2REL . pre ( i n t r a −module )
2 . . . (∀ s1 #0 : ref , s2 #0 : r e f •
3 I s ( s1 #0 , T c l a s s . _module . ERSchema ( ) ) ∧ I s A l l o c ( s1 #0 , T c l a s s . _module . ERSchema ( ) , $Heap )
4 ∧ I s ( s2 #0 , T c l a s s . _module . ERSchema ( ) ) ∧ I s A l l o c ( s2 #0 , T c l a s s . _module . ERSchema ( ) , $Heap )
5 =⇒ e r #0[ $Box ( s1 # 0 ) ] ∧ e r #0[ $Box ( s2 # 0 ) ]
6 ∧ s1 #0 ̸= s2 #0 ∧ s1 #0 ̸= n u l l ∧ s2 #0 ̸= n u l l =⇒
7 ¬Seq# Equal ( r e a d ( $Heap , s1 #0 , _module . ERSchema . name ) ,
8 r e a d ( $Heap , s2 #0 , _module . ERSchema . name ) ) ) . . .
9

10 / / d e f i n i t i o n axiom f o r _module . ER2REL . p o s t ( i n t r a −module )
11 . . . (∀ r1 #0 : ref , r 2 #0 : r e f •
12 I s ( r1 #0 , T c l a s s . _module . RELSchema ( ) ) ∧ I s A l l o c ( r1 #0 , T c l a s s . _module . RELSchema ( ) , $Heap )
13 ∧ I s ( r2 #0 , T c l a s s . _module . RELSchema ( ) ) ∧ I s A l l o c ( r2 #0 , T c l a s s . _module . RELSchema ( ) , $Heap )
14 =⇒ r e l #0[ $Box ( r1 # 0 ) ] ∧ r e l #0[ $Box ( r2 # 0 ) ]
15 ∧ r1 #0 ̸= r2 #0 ∧ r1 #0 ̸= n u l l ∧ r2 #0 ̸= n u l l =⇒
16 ¬Seq# Equal ( r e a d ( $Heap , r1 #0 , _module . RELSchema . name ) ,
17 r e a d ( $Heap , r2 #0 , _module . RELSchema . name ) ) ) . . .

Fig. 7.2 Boogie code for the transformation contracts, as generated by Dafny

1 axiom (∀ s1 #0 : r e f •
2 I s ( s1 #0 , T c l a s s . _module . ERSchema ( ) )
3 ∧ I s A l l o c ( s1 #0 , T c l a s s . _module . ERSchema ( ) , $Heap )
4 ∧ s1 #0 ̸= n u l l ⇐⇒
5 d t y p e ( s1 #0) = ER$ERSchema
6 ∧ r e a d ( srcHeap , s1 #0 , a l l o c )
7 ∧ s1 #0 ̸= n u l l ) ;
8

9 axiom (∀<α > , s1 #0 : ref , f : F i e l d α •
10 I s ( s1 #0 , T c l a s s . _module . ERSchema ( ) )
11 ∧ I s A l l o c ( s1 #0 , T c l a s s . _module . ERSchema ( ) , $Heap )
12 ∧ s1 #0 ̸= n u l l =⇒
13 r e a d ( $Heap , s1 #0 , f ) = r e a d ( srcHeap , s1 #0 , f ) ) ;

Fig. 7.3 Auxiliary Boogie axioms to bridge memory models between Dafny and VeriATL

Fig. 7.3, the first axiom states that all the allocated instances of ERSchema on the Heap of
Dafny are allocated with equivalent types on the srcHeap of VeriATL. The second axiom
states that the fields of all the allocated instances of ERSchema on the Heap of Dafny and
their correspondents in VeriATL agree on their values. One caveat here is that the second
axiom can be dangerous in the case of two verifiers with different type systems, which could
result in the need for more axioms to specify the type discrepancy.

In conclusion, we suggest that it will be a long, but promising journey towards witness-
ing a full verification ecosystem. The verifiers in this verification ecosystem will adapt the
same IVL using the same memory model, and aim to be orchestrated to collectively prove
the correctness of programs more automatically.
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7.1 Observations from our Research

7.1.2 Verifiability of Model Transformation Languages

In this research, one of our main goals is to design sound verifiers that are based on FOL.
We refer to the “verifiability” of a model transformation language as the degree of difficulty
in designing a sound verifier for the given model transformation language. Thus, low ver-
ifiability means it is difficult to design a sound verifier for the given model transformation
language, whereas high verifiability means it is easy to design a sound verifier for the given
model transformation language.

Through our development experience, both implicit semantics and counter-intuitive se-
mantics are two factors that compromise verifiability.

By “implicit semantics”, we mean that there are extra semantics hidden in the language
design which cannot be revealed easily (e.g. by examining the language specification). We
pick the SET instructions from the ASM language to demonstrate this phenomenon. It is
tempting to design the semantics of the SET instruction as “set the structural feature of the
given element to the given value”. What is lurking there is that the SET instruction behaves
differently when the structural feature being set is an association whose multiplicity has
an upper bound greater than one. Missing the hidden semantics of the SET instruction
has direct consequences on the soundness of verifier design (Section 5.2). However, it is
not easy to identify. We found the hidden semantics of the SET instruction by carefully
examining the Java implementation of the ASM virtual machine.

Ideally the solution would be to always have a detailed language specification at hand
while developing the verifier for the model transformation language. However, in certain
circumstances, the language design could intrinsically make the verifier design difficult. In
that case, we prefer evolving the model transformation language for higher verifiability.
For example, the SET instruction can be decomposed into two instructions to make both
aspects of its original semantics explicit (i.e. one instruction for an attribute or association
whose multiplicity has an upper bound not greater than one, and another instruction for an
association whose multiplicity has an upper bound greater than one).

By “counter-intuitive semantics”, we mean that the language semantics is counter-intuitive
to the common understanding of the majority of programmers. Take the consecutive bind-
ings in ATL for example. A Java programmer might intuitively assume that the second
binding overwrites the first binding, just like two consecutive assignments. However, when
the bound element is an association whose multiplicity has an upper bound greater than
one, ATL composes the second binding with the first binding. This can be confusing when
developing a verifier for ATL.

We believe that the counter-intuitive semantics is like an anti-design-pattern in software
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engineering, whose characteristics can be quantified. Then, they can be removed by refac-
toring. Not only will this make the transformation easier to maintain, but it will also increase
the verifiability of the model transformation language, since the counter-intuitive semantics
is diminished after refactoring. For example, Wimmer et al. propose a list of refactorings
to increase the maintainability of ATL transformations [121]. They demonstrate the symp-
toms of 24 anti-patterns in ATL transformations, and state the refactoring steps to remove
them. How to adapt their refactoring approach to remove counter-intuitive semantics in a
model transformation language, and even prove the refactoring preserves the behaviours of
the original transformation, would be interesting for further research.

Thus, our hypothesis is that avoiding implicit semantics and counter-intuitive semantics
is inevitable for a model transformation language design with a goal of high verifiability.

In our experience, whether model transformation languages are relational or functional
intrinsically increases their verifiability. Relational or functional model transformation lan-
guages prohibit imperative language constructs that yield side effects. For example, when
we designed VeriATL, we considered ATL matched rules in particular, which are always
propagated on an empty target model that is disjoint from the source model. Thus, we were
able to use two separate heaps to organise the source and target elements. This ensures, for
example, a modification made on the target heap will have no side effects on the state of the
source heap. Therefore, it yields a simpler encoding that would contribute to automating
the translation validation approach.

Languages that are domain specific also increase their verifiability, because they have
unified deterministic goals to achieve. Thus, it is easier to abstract their semantics than
abstracting the semantics of an imperative program that achieves an arbitrary goal. This
feature greatly reduces the complexity of adapting the translation validation approach and
enables its automation.

Therefore, we anticipate that relational and functional model transformation languages,
or domain specific model transformation languages will benefit most from adapting our
VeriMTLr framework to design a verifier which can verify their correctness.

7.2 Future Work

In addition to the future work that we identified in the previous chapters (i.e. evaluating
the verification performance on different encodings of our Boogie libraries for improving
their completeness, covering more ATL features to build upon the current VeriATL veri-
fier, and implementing VeriGT with the capability of termination proof and the inductive
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declarations), we also like to focus on four directions to extend our current efforts.

7.2.1 Modular and Reusable Verifier Design for other Model Transfor-
mation Languages

In this research, we use the VeriMTLr framework to design a verifier for the ATL MTr lan-
guage and the SimpleGT GT language. Other MTr languages, in principle, can exploit the
facilities provided by the framework to design their verifiers which support the verification
of partial correctness, termination analysis and other logical reasoning tasks.

On top of this adaptation, our future work will focus on enabling another form of
reusable verifier design by means of higher-order transformation (i.e. applying model trans-
formations on model transformations [15]). Higher-order transformation involves develop-
ing a transformation to translate the model transformation that is written in the language T1

into a model transformation that is written in a language T2, where the verifier of T2 already
exists (developed by our framework, or developed by a third party). For example, a MTr
can be reduced to a GT in the SimpleGT language by means of a triple graph grammar
[104]. This allows the MTr to be verified without developing a new verifier for it. How-
ever, this is not always possible due to the fundamental semantic differences of involved
model transformation languages, which is why we cannot express a SimpleGT transforma-
tion in terms of an ATL transformation to reuse VeriATL. In addition, developing high-order
transformations is also a non-trivial task, since the domain-specific properties of the model
transformation languages need to be studied carefully [54]. Therefore, we anticipate that
our future work will include the development of a new language to enable systematic and
correct high-order transformations.

7.2.2 Verifying Model Transformations for Programming Language
Transformation

The case studies we presented in this research are data-centric model transformations. In
a broader sense, programs are models as well. Therefore, a program transformation can
be viewed as a model transformation. The reason that they are usually treated separately
is because program transformation itself has a mature and dedicated community for this
specific task [1].

In [29], we show that the task of transforming Event-B programs to Boogie programs
can be written as an ATL model transformation. After we enhance the capability of VeriATL
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to handle lazy matched rules, we would like to apply it to check the correctness of Event-B
to Boogie transformations. We anticipate the main challenge will come from formulating
semantic correctness contracts. The main semantic correctness contract we would like to
prove is that the transformation always generates the target model that preserves the possible
behaviour (e.g. that the program terminates, or a trace of memory updating) of the source
model. For this verification task, there are some questions awaiting us:

• Should the transformation allow additional possible behaviour in the target model?

• Would there be a semantic framework to ease expressing the possible behaviour? e.g.
an abstract state machine [19].

We expect to prove by construction that the current version of OCL that we support is
capable of developing such a semantic framework.

7.2.3 Axiomatic System Consistency Verification

Currently, to detect inconsistency in our Boogie libraries, we predefine oracles, and use the
smoke option in Boogie [91]. However, there is no guarantee that the inconsistent axioms
will be revealed.

Given a theory with a list of axioms, one can use a theorem prover to make a realisation
of this theory. This shows the relative consistency of such an axiomatised theory by making
a connection to an existing library of the proof assistant/theorem prover. This technique is
known as the theory interpretation [48].

There already exists a variety of work on applying theory interpretation for non-trivial
existing theories. For example, realisations of Why3 theories are supported for the proof as-
sistant Coq [13] and PVS [108]. Darvas and Müller investigate the consistency of a model
class in JML [43], by exporting it to the proof assistant Isabelle [92]. Compared to the real-
isations of a Why3 theory, Darvas and Müller explicitly design additional proof obligations
to cope with the properties brought with the model class (e.g. to ensure the type of a model
class and its counterpart in the target theorem prover are compatible). Thus, existing work
would provide guidance for us to include this useful feature in our Boogie libraries.

7.2.4 Generating Counter-examples on Verification Failure

On verification failure, the trace information from the Boogie verifier, indicating where
the incorrectness (within the input Boogie program) was detected, will be output. At the
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moment, we do not perform any re-construction of such trace information, which is a dis-
advantage, since we cannot report useful feedback to a non-Boogie expert on verification
failure.

Our main concern is that the gross profit of re-constructing trace information is low. The
trace information indicates a list of execution points which can be safely reached without
violating the enforced constraints on those points, before finally reaching where the incor-
rectness was detected. In our experience, such information is very useful when debugging
the Boogie program by inserting additional assertions to understand it better, getting closer
to the exact issue that causes the verification failure. However, from the perspective of a
model transformation developer, it is unlikely that they could infer much useful information
from this trace information. What would be useful is to find a concrete counter-example to
reproduce the verification failure.

Model finding, whose goal is to find models that satisfy the given constraints, is par-
ticularly suitable for generating counter-examples. We anticipate that the main challenges
here could be to encode the domain specific properties of models (e.g. properties of EMF),
and to express a set of precise constraints that need to be satisfied by the models. For the
first challenge, Wu et al. present a model finding approach, based on the attributed type
graph, specifically tailored for MDE [123]. How to incorporate their approach within our
framework will be among our highest priorities. For the second challenge, we conjecture
that the trace information will provide the required constraints for model finding. How-
ever, how the trace information is represented as the required constraints, and whether the
trace information is all we need for finding the proposed counter-example demands further
investigation.
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The detailed Boogie encoding of the semantics of OCL primitives and collections, that
corresponds to Table 3.1 and Table 3.2 in Chapter 3, are listed in Table A.1 and Table A.2
respectively. Their first column lists the three primitive data types. The second column
details the supported OCL operations on each primitive data type, whose corresponding
Boogie encoding is listed in the third column. The Boogie encoding, that is built on top of
the existing Boogie libraries or is newly introduced, is listed in bold font.

Data Type OCL Operation Boogie Encoding
OCLBool and, or, implies, not &&, ∥∥,=⇒, !

OCLInteger
<, >, >=, <=, =, <> <, >, >=, <=, ==, !=
*, +, -, div(), mod() *, +, -, div, mod
abs() Integer#abs()

OCLString

s.size() Seq#Length(s: String)
s1.concat(s2:OCLString) Seq#Append(s1:String, s2:String)
s.substring
(lower:OCLInteger, up-
per:OCLInteger)

String#Substring
(s:String, lower:int, upper:int)

s.toUpper(), s.toLower() String#ToUpper(s:String),
String#ToLower(s:String)

s1.startsWith(s2:OCLString),
s1.endsWith(s2:OCLString)

String#StartsWith(s1:String,
s2:String),
String#EndsWith(s1:String, s2:String)

Table A.1 Detailed Boogie encoding of OCL primitives
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Appendix B

ER2REL and HSM2FSM
Transformations in ATL
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B.1 ER2REL Transformation in ATL

B.1 ER2REL Transformation in ATL

B.1.1 Entity-Relationship and Relational Metamodels

B.1.2 ATL Transformation for ER2REL

1 module ER2REL; create OUT : REL from IN : ER;

2

3 rule S2S {

4 from s: ER!ERSchema

5 to t: REL!RELSchema (name<-s.name, relations<-s.entities, relations<-s.relships} )}

6

7 rule E2R {

8 from s: ER!Entity to t: REL!Relation ( name<-s.name) }

9

10 rule R2R {

11 from s: ER!Relship to t: REL!Relation ( name<-s.name) }

12

13 rule EA2A {

14 from att: ER!ERAttribute, ent: ER!Entity (att.entity=ent)

15 to t: REL!RELAttribute ( name<-att.name, isKey<-att.isKey, relation<-ent ) }

16

17 rule RA2A {

18 from att: ER!ERAttribute, rs: ER!Relship ( att.relship=rs )

19 to t: REL!RELAttribute ( name<-att.name, isKey<-att.isKey, relation<-rs ) }

20

21 rule RA2AK {

22 from att: ER!ERAttribute, rse: ER!RelshipEnd

23 ( att.entity=rse.entity and att.isKey=true )

24 to t: REL!RELAttribute ( name<-att.name, isKey<-att.isKey, relation<-rse.relship )}
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B.1 ER2REL Transformation in ATL

B.1.3 OCL Contracts for ER2REL

1 −− PRECONDITION OF ER
2

3 context ER!ERSchema inv unique_er_schema_names: −− unique name of ERSchemas
4 ER!ERSchema.allInstances()->forAll(s1,s2| s1<>s2 implies s1.name<>s2.name)

5

6 context ER!ERSchema inv unique_er_relship_names: −− relship names are unique in ERSchema
7 ER!ERSchema.allInstances()->forAll(s | s.relships->forAll(r1,r2 | r1<>r2 implies r1.name<>r2.name))

8

9 context ER!ERSchema inv unique_er_entity_names: −− entity names are unique in ERSchema
10 ER!ERSchema.allInstances()->forAll(s | s.entities->forAll(e1,e2 | e1<>e2 implies e1.name<>e2.name))

11

12 context ER!ERSchema inv disjoint_er_entity_relship_names: −− disjoint entity and relship names
13 ER!ERSchema.allInstances()->forAll(s | s.relships->forAll(r |

14 s.entities->forAll(e | r<>e implies r.name<>e.name)))

15

16 context ER!Entity inv unique_er_entity_attr_names: −− attr names are unique in Entity
17 ER!Entity.allInstances()->forAll(e | e.attrs->forAll(a1,a2 | a1.name=a2.name implies a1=a2))

18

19 context ER!Relship inv unique_er_relship_attr_names: −− attr names are unique in Relship
20 ER!Relship.allInstances()->forAll(r | r.attrs->forAll(a1,a2 | a1.name = a2.name implies a1=a2))

21

22 context ER!Entity inv exist_er_entity_iskey: −− Entity have a key
23 ER!Entity.allInstances()->forAll(e | e.attrs->exists(a | a.isKey))

24

25 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
26 −− POSTCONDITION OF REL
27

28 context REL!RELSchema inv unique_rel_schema_names: −− unique name of RELSchemas
29 REL!RELSchema.allInstances()->forAll(r1,r2| r1<>r2 implies r1.name<>r2.name)

30

31 context REL!RELSchema inv unique_rel_relation_names: −− relation names are unique in RELSchema
32 REL!RELSchema.allInstances()->forAll(s | s.relations->forAll(r1,r2| r1<>r2 implies r1.name<>r2.name))

33

34 context REL!RELRelation inv unique_rel_attribute_names: −− attribute names unique in RELRelation
35 REL!RELRelation.allInstances()->forAll(r | r.attrs->forAll(a1,a2 | a1.name=a2.name implies a1=a2))

36

37 context REL!RELRelation inv exist_rel_relation_iskey: −− RELRelations have a key
38 REL!RELRelation.allInstances()->forAll(r | r.attrs->exists(a | a.isKey))
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B.2 HSM2FSM Transformation in ATL

B.1.4 Analysis

As discussed in Section 4.4, 3 postconditions of ER2REL transformation are verified (i.e.
unique_rel_schema_names, unique_rel_relation_names, exist_rel_relation_iskey).

The postcondition unique_rel_attribute_names is not verified. We briefly analyse the
reason for its failure in this section. By looking at the ER2REL transformation, we iden-
tify that the RELAttributes of RELRelation are generated by three ATL rules, i.e. EA2A,
RA2A, RA2AK. Each rule initialises the name of the generated RELAttribute using different
resolved values, i.e. the name of Entity’s ERAttribute (by EA2A), the name of Relship’s
ERAttribute (by RA2A), the name of RelshipEnd’s Entity’s ERAttribute (by RA2AK).

Therefore, we cannot establish unique_rel_attribute_names with the given preconditions
unique_er_entity_attr_names and unique_er_relship_attr_names (the other preconditions
are irrelevant to unique_rel_attribute_names):

• We do not know that the name of Entity’s ERAttribute and the name of Relship’s
ERAttribute are disjoint.

• It is possible that the same Entity is matched by EA2A rule and RA2AK rule. When
that happens, the name of such an Entity would be used to initialise the name of
RELAttribute generated by both rules. As a result, at least two RELAttribute will have
the same name.

B.2 HSM2FSM Transformation in ATL

B.2.1 State Machine Metamodels (HSM and FSM)
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B.2 HSM2FSM Transformation in ATL

B.2.2 ATL Transformation for HSM2FSM

1 module HSM2FSM;

2

3 create OUT : FSM from IN : HSM;

4

5 rule SM2SM {

6 from sm1 : HSM!StateMachine

7 to sm2 : FSM!StateMachine ( name <- sm1.name) }

8

9 rule RS2RS {

10 from rs1 : HSM!RegularState

11 to rs2 : FSM!RegularState ( name <- rs1.name,stateMachine <- rs1.stateMachine ) }

12

13 −− Initial states of composite states become regular states in the flattened SM
14 rule IS2IS {

15 from is1 : HSM!InitialState (is1.compositeState.oclIsUndefined())

16 to is2 : FSM!InitialState ( stateMachine <- is1.stateMachine, name <- is1.name ) }

17

18 −− Initial states of composite states become regular states in the flattened SM
19 rule IS2RS {

20 from is1 : HSM!InitialState (not is1.compositeState.oclIsUndefined())

21 to is2 : FSM!RegularState ( stateMachine <- is1.stateMachine, name <- is1.name ) }

22

23 −− Transitions between two non−composite states are mapped one−to−one
24 rule T2TA {

25 from t1 : HSM!Transition ( not t1.source.oclIsTypeOf(HSM!CompositeState) and
26 not t1.target.oclIsTypeOf(HSM!CompositeState))

27 to t2 : FSM!Transition ( label <- t1.label, stateMachine <- t1.stateMachine,

28 source <- t1.source, target <- t1.target ) }

29

30 −− This rule resolves a transition originating from a composite state
31 rule T2TB {

32 from t1 : HSM!Transition,

33 src : HSM!CompositeState,

34 trg : HSM!AbstractState,

35 c : HSM!AbstractState ( t1.source = src and t1.target = trg and c.compositeState = src and
36 not trg.oclIsTypeOf(HSM!CompositeState))

37 to t2 : FSM!Transition ( label <- t1.label, stateMachine <- t1.stateMachine,

38 source <- c, target <- trg ) }

39

40 −− This rule resolves a transition ending in a composite state
41 rule T2TC {

42 from t1 : HSM!Transition,

43 src : HSM!AbstractState,

44 trg : HSM!CompositeState,

45 c : HSM!InitialState ( t1.source = src and t1.target = trg and c.compositeState = trg and
46 not src.oclIsTypeOf(HSM!CompositeState) )

47 to t2 : FSM!Transition ( label <- t1.label, stateMachine <- t1.stateMachine,

48 source <- src, target <- c ) }

B.2.3 OCL Contracts for HSM2FSM
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B.2 HSM2FSM Transformation in ATL

1 −− PRECONDITION OF HSM
2

3 context HSM!StateMachine inv unique_hsm_sm_names: −− different state machines have different names
4 HSM!StateMachine.allInstances()->forAll(s1,s2 | s1<>s2 implies s1.name<>s2.name)

5

6 context HSM!StateMachine inv unique_hsm_state_names: −− states have unique names
7 HSM!AbstractState.allInstances()->forAll(s1,s2 | s1<>s2 implies s1.name<>s2.name);

8

9 context HSM!AbstractState inv hsm_state_multi_lower: −− a state does belong to at least one state machine
10 HSM!AbstractState.allInstances()->forAll(s | not s.stateMachine.oclIsUndefined())

11

12 context HSM!AbstractState inv hsm_state_multi_upper: −− a state does belong to at most one state machine
13 HSM!AbstractState.allInstances()->forAll(s |

14 HSM!StateMachine.allInstances()->forAll(sm1,sm2 |

15 s.stateMachine=sm1 and s.stateMachine=sm2 implies sm1=sm2))

16

17 context HSM!AbstractState inv hsm_transition_composite_upper: −− at most one compositeState
18 HSM!AbstractState.allInstances()->forAll(c1,c2 |

19 c1.oclIsTypeOf(HSM!CompositeState) and c2.oclIsTypeOf(HSM!CompositeState) implies c1=c2)

20

21 context HSM!Transition inv hsm_transition_multi_lower: −− a transition does belong to at least one state machine
22 HSM!Transition.allInstances()->forAll(t | not t.stateMachine.oclIsUndefined())

23

24 context HSM!Transition inv hsm_transition_multi_upper: −− a transition does belong to at most one state machine
25 HSM!Transition.allInstances()->forAll(t |

26 HSM!StateMachine.allInstances()->forAll(sm1,sm2 |

27 t.stateMachine=sm1 and t.stateMachine=sm2 implies sm1=sm2))

28

29 context HSM!Transition inv hsm_transition_src_multi_lower: −− a transition has at least one source
30 HSM!Transition.allInstances()->forAll(t | not t.source.oclIsUndefined())

31

32 context HSM!Transition inv hsm_transition_src_multi_upper: −− a transition has at most one source
33 HSM!Transition.allInstances()->forAll(t |

34 HSM!AbstractState.allInstances()->forAll(s1,s2 |

35 t.source=s1 and t.source=s2 implies s1=s2))

36

37 context HSM!Transition inv hsm_transition_trg_multi_lower: −− a transition has at least one target
38 HSM!Transition.allInstances()->forAll(t | not t.target.oclIsUndefined())

39

40 context HSM!Transition inv hsm_transition_trg_multi_upper: −− a transition has at most one target
41 HSM!Transition.allInstances()->forAll(t |

42 HSM!AbstractState.allInstances()->forAll(s1,s2 |

43 t.target=s1 and t.target=s2 implies s1=s2))

44

45 context HSM!Transition inv hsm_transition_src_contain_sm: −− transition and source in the same state machine
46 HSM!Transition.allInstances()->forAll(t |

47 HSM!AbstractState.allInstances()->forAll(s |

48 t.source=s implies HSM!StateMachine.allInstances()->forAll(sm1,sm2 |

49 t.stateMachine=sm1 and s.stateMachine=sm2 implies sm1=sm2)))

50

51 context HSM!Transition inv hsm_transition_trg_contain_sm: −− transition and target in the same state machine
52 HSM!Transition.allInstances()->forAll(t |

53 HSM!AbstractState.allInstances()->forAll(s |

54 t.target=s implies HSM!StateMachine.allInstances()->forAll(sm1,sm2 |

55 t.stateMachine=sm1 and s.stateMachine=sm2 implies sm1=sm2)))

56

57 context HSM!Transition inv hsm_transition_contain_sm: −− source and target in the same state machine
58 HSM!Transition.allInstances()->forAll(t |

59 HSM!AbstractState.allInstances()->forAll(s1,s2 |

60 t.source=s1 and t.target=s2 implies HSM!StateMachine.allInstances()->forAll(sm1,sm2 |

61 s1.stateMachine=sm1 and s2.stateMachine=sm2 implies sm1=sm2)))
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B.2 HSM2FSM Transformation in ATL

1 −− POSTCONDITION OF FSM
2

3 context FSM!StateMachine inv unique_fsm_sm_names: −− different target state machines have different names
4 FSM!StateMachine.allInstances()->forAll(s1,s2 | s1<>s2 implies s1.name<>s2.name)

5

6 context FSM!StateMachine inv unique_fsm_state_names: −− states have unique names
7 FSM!AbstractState.allInstances()->forAll(s1,s2 | s1<>s2 implies s1.name<>s2.name);

8

9

10 context FSM!AbstractState inv fsm_state_multi_lower: −− a state does belong to at least one state machine
11 FSM!AbstractState.allInstances()->forAll(s | not s.stateMachine.oclIsUndefined())

12

13 context FSM!AbstractState inv fsm_state_multi_upper: −− a state does belong to at most one state machine
14 FSM!AbstractState.allInstances()->forAll(s |

15 FSM!StateMachine.allInstances()->forAll(sm1,sm2 |

16 s.stateMachine=sm1 and s.stateMachine=sm2 implies sm1=sm2))

17

18 context FSM!Transition inv fsm_transition_multi_lower: −− a transition does belong to at least one state machine
19 FSM!Transition.allInstances()->forAll(t | not t.stateMachine.oclIsUndefined())

20

21 context FSM!Transition inv fsm_transition_multi_upper: −− a transition does belong to at most one state machine
22 FSM!Transition.allInstances()->forAll(t |

23 FSM!StateMachine.allInstances()->forAll(sm1,sm2 |

24 t.stateMachine=sm1 and t.stateMachine=sm2 implies sm1=sm2))

25

26 context FSM!Transition inv fsm_transition_src_multi_lower: −− a transition has at least one source
27 FSM!Transition.allInstances()->forAll(t | not t.source.oclIsUndefined())

28

29 context FSM!Transition inv fsm_transition_src_multi_upper: −− a transition has at most one source
30 FSM!Transition.allInstances()->forAll(t |

31 FSM!AbstractState.allInstances()->forAll(s1,s2 |

32 t.source=s1 and t.source=s2 implies s1=s2))

33

34 context FSM!Transition inv fsm_transition_trg_multi_lower: −− a transition has at least one target
35 FSM!Transition.allInstances()->forAll(t | not t.target.oclIsUndefined())

36

37 context FSM!Transition inv fsm_transition_trg_multi_upper: −− a transition has at most one target
38 FSM!Transition.allInstances()->forAll(t |

39 FSM!AbstractState.allInstances()->forAll(s1,s2 |

40 t.target=s1 and t.target=s2 implies s1=s2))

41

42 context FSM!Transition inv fsm_transition_src_contain_sm: −− transition and source in the same state machine
43 FSM!Transition.allInstances()->forAll(t |

44 FSM!AbstractState.allInstances()->forAll(s |

45 t.source=s implies HSM!StateMachine.allInstances()->forAll(sm1,sm2 |

46 t.stateMachine=sm1 and s.stateMachine=sm2 implies sm1=sm2)))

47

48 context FSM!Transition inv fsm_transition_trg_contain_sm: −− transition and target in the same state machine
49 FSM!Transition.allInstances()->forAll(t |

50 FSM!AbstractState.allInstances()->forAll(s |

51 t.target=s implies HSM!StateMachine.allInstances()->forAll(sm1,sm2 |

52 t.stateMachine=sm1 and s.stateMachine=sm2 implies sm1=sm2)))

53

54 context FSM!Transition inv fsm_transition_contain_sm: −− source and target in the same state machine
55 FSM!Transition.allInstances()->forAll(t |

56 FSM!AbstractState.allInstances()->forAll(s1,s2 |

57 t.source=s1 and t.target=s2 implies HSM!StateMachine.allInstances()->forAll(sm1,sm2 |

58 s1.stateMachine=sm1 and s2.stateMachine=sm2 implies sm1=sm2)))
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B.2 HSM2FSM Transformation in ATL

B.2.4 Analysis

As discussed in Section 4.4, 12 postconditions of HSM2FSM transformation are verified
except the postcondition fsm_transition_src_multi_lower. We briefly analyse the reason for
its failure in this section.

By looking at the HSM2FSM transformation, we identify that the source of FSM!Transition

is initialised by three ATL rules, i.e. T2TA, T2TB, T2TC.
Each rule initialises the source of the generated FSM!Transition using different resolved

values, i.e. the resolved result of t1.source (by T2TA), the resolved result of c (by T2TB), the
resolved result of src (by T2TC). In order to establish that the multiplicity of the source of
the generated FSM!Transition has a lower bound of one, we have to ensure these resolved
result are non-empty.

The rules T2TA and T2TC can establish this easily, since t1.source (by T2TA) and src (by
T2TC) are known to be not of type HSM!CompositionState (as shown by the rule guard).
Thus, we know they are either of type HSM!RegularState or of type HSM!InitialState, and
their resolved result will be non-empty (i.e. generated by either rule RS2RS or IS2IS or
IS2RS).

The problem stems from the rule T2TB, where we cannot ensure the type of c is not
HSM!CompositionState. Büttner et al. uses the precondition hsm_transition_composite_-

upper (i.e. at most one HSM!CompositionState) to convey this fact. Then, combining with
the guard (i.e. c.compositeState=src and the fact that src is type of HSM!CompositionState),
they can deduce the type of c is not HSM!CompositionState.

However, since ATL does not enforce injective matching (Section 6.2.2), src and c can
match the same source model element of type HSM!CompositionState. Moreover, there is
no ATL rule to process HSM!CompositionState. Thus, the resolved result of c in this case
will be empty. This is why VeriATL reports that the postcondition fsm_transition_src_-

multi_lower is not verified.
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Appendix C

Pacman Transformation in SimpleGT
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C.1 Pacman Metamodel

C.1 Pacman Metamodel

C.2 SimpleGT Transformation for Pacman

1 module Pacman;

2

3 rule Collect{

4 from
5 s : P!GameState(STATE=~Eval,record=~rec),rec : P!Record,pac: P!Pacman,

6 gem: P!Gem,grid : P!Grid(hasPlayer=~pac, hasGem=~gem)

7 to
8 s : P!GameState(STATE=~Eval,record=~recNew),grid : P!Grid(hasPlayer=~pac),

9 pac: P!Pacman,recNew: P!Record(FRAME=~rec.FRAME, SCORE=~rec.SCORE+100)

10 }

11

12 rule Kill{

13 from
14 s : P!GameState(STATE=~Eval),ghost: P!Ghost,pac : P!Pacman,

15 grid : P!Grid (hasPlayer=~pac, hasEnemy=~ghost)

16 to
17 s: P!GameState(STATE=~Killed),ghost: P!Ghost,grid : P!Grid (hasEnemy=~ghost)

18 }

19

20 rule UpdateFrame{

21 from
22 s : P!GameState(STATE=~Eval,record=~rec),rec : P!Record,pac : P!Pacman

23 to
24 s: P!GameState(STATE=~PacMove,record=~recNew),pac : P!Pacman,

25 recNew: P!Record(FRAME=~rec.FRAME+1, SCORE=~rec.SCORE)

26 }
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C.2 SimpleGT Transformation for Pacman

1 rule PlayerMoveLeft{

2 from
3 s : P!GameState(STATE=~PacMove, record=~rec),rec: P!Record,pac: P!Pacman,

4 grid2: P!Grid,grid1: P!Grid(hasPlayer=~pac, left=~grid2),

5 act : P!Action(DONEBY=~Pacman, FRAME=~rec.FRAME, DIRECTION=~Left)

6 not grid2: P!Grid(hasEnemy=~ghost), ghost: P!Ghost

7 to
8 s : P!GameState(STATE=~GhostMove, record=~rec),rec: P!Record,pac: P!Pacman,

9 grid2: P!Grid(hasPlayer=~pac),grid1: P!Grid(left=~grid2)

10 }

11

12 rule PlayerMoveRight{

13 from
14 s : P!GameState(STATE=~PacMove, record=~rec),rec: P!Record,pac: P!Pacman,

15 grid2: P!Grid,grid1: P!Grid(hasPlayer=~pac, right=~grid2),

16 act : P!Action(DONEBY=~Pacman, FRAME=~rec.FRAME, DIRECTION=~Right)

17 not grid2: P!Grid(hasEnemy=~ghost), ghost: P!Ghost

18 to
19 s : P!GameState(STATE=~GhostMove, record=~rec),rec: P!Record,pac: P!Pacman,

20 grid2: P!Grid(hasPlayer=~pac),grid1: P!Grid(right=~grid2)

21 }

22

23 rule PlayerMoveTop{

24 from
25 s : P!GameState(STATE=~PacMove, record=~rec),rec: P!Record,pac: P!Pacman,

26 grid2: P!Grid,grid1: P!Grid(hasPlayer=~pac, top=~grid2),

27 act : P!Action(DONEBY=~Pacman, FRAME=~rec.FRAME, DIRECTION=~Top)

28 not grid2: P!Grid(hasEnemy=~ghost), ghost: P!Ghost

29 to
30 s : P!GameState(STATE=~GhostMove, record=~rec),rec: P!Record,pac: P!Pacman,

31 grid2: P!Grid(hasPlayer=~pac),grid1: P!Grid(top=~grid2)

32 }

33

34 rule PlayerMoveBottom{

35 from
36 s : P!GameState(STATE=~PacMove, record=~rec),rec: P!Record,pac: P!Pacman,

37 grid2: P!Grid,grid1: P!Grid(hasPlayer=~pac, bottom=~grid2),

38 act : P!Action(DONEBY=~Pacman, FRAME=~rec.FRAME, DIRECTION=~Bottom)

39 not grid2: P!Grid(hasEnemy=~ghost), ghost: P!Ghost

40 to
41 s : P!GameState(STATE=~GhostMove, record=~rec),rec: P!Record,pac: P!Pacman,

42 grid2: P!Grid(hasPlayer=~pac),grid1: P!Grid(bottom=~grid2)

43 }

44

45 rule PlayerMoveStay{

46 from
47 s : P!GameState(STATE=~PacMove, record=~rec),rec: P!Record,pac: P!Pacman,

48 grid1: P!Grid(hasPlayer=~pac),

49 act : P!Action(DONEBY=~Pacman, FRAME=~rec.FRAME, DIRECTION=~Stay)

50 to
51 s : P!GameState(STATE=~GhostMove, record=~rec),rec: P!Record,pac: P!Pacman,

52 grid1: P!Grid(hasPlayer=~pac)

53 }

130



C.2 SimpleGT Transformation for Pacman

1 rule ghostMoveLeft{

2 from
3 s:P!GameState(STATE=~GhostMove,record=~rec), rec: P!Record, ghost: P!Ghost,

4 grid2:P!Grid, grid1: P!Grid(hasEnemy=~ghost, left=~grid2),

5 act : P!Action(DONEBY=~Ghost, FRAME=~rec.FRAME, DIRECTION=~Left)

6 to
7 s:P!GameState(STATE=~Eval,record=~rec),rec: P!Record,ghost: P!Ghost,

8 grid2: P!Grid(hasEnemy=~ghost), grid1: P!Grid(left=~grid2)

9 }

10

11 rule ghostMoveRight{

12 from
13 s:P!GameState(STATE=~GhostMove,record=~rec), rec: P!Record, ghost: P!Ghost,

14 grid2:P!Grid, grid1: P!Grid(hasEnemy=~ghost, right=~grid2),

15 act : P!Action(DONEBY=~Ghost, FRAME=~rec.FRAME, DIRECTION=~Right)

16 to
17 s:P!GameState(STATE=~Eval,record=~rec),rec: P!Record,ghost: P!Ghost,

18 grid2: P!Grid(hasEnemy=~ghost), grid1: P!Grid(right=~grid2)

19 }

20

21 rule ghostMoveTop{

22 from
23 s:P!GameState(STATE=~GhostMove,record=~rec), rec: P!Record, ghost: P!Ghost,

24 grid2:P!Grid, grid1: P!Grid(hasEnemy=~ghost, top=~grid2),

25 act : P!Action(DONEBY=~Ghost, FRAME=~rec.FRAME, DIRECTION=~Top)

26 to
27 s:P!GameState(STATE=~Eval,record=~rec),rec: P!Record,ghost: P!Ghost,

28 grid2: P!Grid(hasEnemy=~ghost), grid1: P!Grid(top=~grid2)

29 }

30

31 rule ghostMoveBottom{

32 from
33 s:P!GameState(STATE=~GhostMove,record=~rec), rec: P!Record, ghost: P!Ghost,

34 grid2:P!Grid, grid1: P!Grid(hasEnemy=~ghost, bottom=~grid2),

35 act : P!Action(DONEBY=~Ghost, FRAME=~rec.FRAME, DIRECTION=~Bottom)

36 to
37 s:P!GameState(STATE=~Eval,record=~rec),rec: P!Record,ghost: P!Ghost,

38 grid2: P!Grid(hasEnemy=~ghost), grid1: P!Grid(bottom=~grid2)

39 }

40

41 rule ghostMoveStay{

42 from
43 s:P!GameState(STATE=~GhostMove,record=~rec), rec: P!Record, ghost: P!Ghost,

44 grid1: P!Grid(hasEnemy=~ghost),

45 act : P!Action(DONEBY=~Ghost, FRAME=~rec.FRAME, DIRECTION=~Stay)

46 to
47 s:P!GameState(STATE=~Eval,record=~rec),rec: P!Record,ghost: P!Ghost,

48 grid1: P!Grid(hasEnemy=~ghost)

49 }
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C.3 OCL contracts for Pacman

C.3 OCL contracts for Pacman

1 context Pacman!GameState pre ValidBoard: −− any two grids are reachable.
2 Pacman!GameState->allInstances()->forAll(g | g.grids->forAll(g1,g2 | reachable(g1,g2)));

3

4 context Pacman!GameState pre OneGameState: −− at most one GameState.
5 Pacman!GameState.allInstances()->forAll(gs1,gs2 | gs1=gs2);

6

7 context Pacman!Record pre OneRecord: −− at most one Record.
8 Pacman!Record.allInstances()->forAll(r1,r2 | r1=r2);

9

10 context Pacman!Pacman pre OnePacman: −− at most one Pacman.
11 Pacman!Pacman.allInstances()->forAll(p1,p2 | p1=p2);

12

13 context Pacman!Ghost pre OneGhost: −− at most one Ghost.
14 Pacman!Ghost.allInstances()->forAll(g1,g2 | g1=g2);

15

16 context Pacman!Grid pre existPacman: −− at least one Pacman.
17 Pacman!Grid.allInstances()->

18 exists(g|not g.hasPlayer.isOclUndefined() and g.hasPlayer.oclIsKindOf(Pacman!Pacman));

19

20 context Pacman!Grid pre existGhost: −− at least one Ghost.
21 Pacman!Grid.allInstances()->

22 exists(g|not g.hasEnemy.isOclUndefined() and g.hasEnemy.oclIsKindOf(Pacman!Ghost));

23

24 −−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
25

26 context Pacman!Grid post gemReachable: −− all grids containing a gem must be reachable by Pacman.
27 Pacman!Grid.allInstances()->forAll(g1,g2|not g1.hasPlayer.isOclUndefined()

28 and not g2.hasGem.isOclUndefined() implies reachable(g1,g2));

29

30 context Pacman!GameState post PacmanSurvive: −− exists a path where the ghost never kills Pacman.
31 Pacman!GameState->allInstances()->forAll(g |

32 g.STATE=GhostMove implies g.grids->forAll(g1|
33 g1.hasEnemy.oclIsKindOf(Pacman!Ghost) implies not g1.hasPlayer.oclIsKindOf(Pacman!Pacman)));

34

35 context Pacman!Action post PacmanMoved: −− the Pacman must move within a time interval I .
36 let acts:Sequence(Pacman!Action) = Pacman!Action.allInstances()->select(a|
37 a.DONEBY=Pacman and not a.Direction=Stay)->asSequence() in

38 Integer.allInstances->forAll(i|
39 0<=i<acts->size()-1 implies acts->at(i+1).FRAME-acts->at(i).FRAME<=I);
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Appendix D

The Translational Semantics of
EMFTVM Language
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In this section, we illustrate the translational semantics of the EMFTVM bytecode lan-
guage in more detail. Overall, 42 out of 48 instructions are encoded by our formalisation
for the EMFTVM bytecode language. The 6 EMFTVM instructions that are not encoded
are omitted because of some technical limitations of our approach (e.g. transitive closure
cannot be described in FOL [63]).

Some of the conventions we use are:

• In general, we draw on the let..in expression to improve the readability of our formal-
isation. However, this is not standard syntax in Boogie.

• We use the superscript # to denote the line number of an EMFTVM instruction. This
superscript is attached to the declared Boogie variables to avoid name collision.

• We also use the notation of [[S]]to represent the transformation from the EMFTVM
construct S to its corresponding Boogie code.

In addition to our general encoding convention, the auxiliary notations used by our for-
malisation for stack, collection, heap, method invocation and metamodel are explained in
Table D.1.

The full translational semantics of the EMFTVM language is given in Tables D.2 through
D.4, classified by the category that each EMFTVM instruction resides in.

In general, our formalisation for the EMFTVM bytecode language is based on two main
data structures: the operand stack stk and the global memory model heap. We further
introduce an access table acc to prohibit runtime exceptions caused by certain operations
on the structural features (Section 6.2). Thus, checking whether o.f is set or not becomes an
expression isset(acc, o, f). Marking o.f as set or not uses the expression set(acc, o, f, v).

In addition to the discussion of our formalisation for the EMFTVM bytecode language
in Section 6.3, we explain six additional points:

1. In Table D.2, the operational semantics of the GET_CB instruction is to push the
code block Stmt onto the operand stack. It usually works with the INVOKE_CB_-

S instruction (Table D.3), whose operational semantics is to execute the code block
that is on top of the operand stack. Thus, in the translation rule for the GET_CB

instruction, we introduce a fresh label (denoted by LABEL) to identify the translated
EMFTVM code block, which is referred by the translation rule for the INVOKE_CB_S

instruction.
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2. In Table D.3, to make sure the offset of the GOTO, IF and IFN instructions is valid in
their corresponding translation rules, we insert a fresh Boogie label, denoted by [[n]], at
the program point which corresponds to the offset n of these instructions (Section 5.2).

3. In Table D.3, the operational semantics of the RETURN instruction is to return to the
caller code block that invokes the current code block. Thus, during the Boogie code
generation, we insert a fresh Boogie label after each code block invocation, denoted
by END as shown in the translation rules of the INVOKE_CB and INVOKE_CB_-

S instructions (Table D.3). Thus, our translation rule for the RETURN instruction
simply goes to the END label, and thus has the effect of returning the execution to the
caller code block.

4. In Table D.4, the OCLType#allInstance function used by the translation rule for the
ALLINST instruction comes from our Boogie library for OCL (Section 3.3). It returns
a sequence of the currently allocated elements on the given heap whose classifier is
as specified by the input classifier name.

5. In Table D.4, the default, referred by the translation rule for the REMOVE instruc-
tion, is a shorthand to represent the default value of EMF types in Boogie, e.g. the
default value for boolean type is false, for integer type is 0, for string type is an empty
sequence, and for any other types is null.

6. In Table D.4, the ExecEnv, referred by the translation rule for the GETENVTYPE in-
struction, is a Boogie constant of type ref that represents the execution environment
of EMFTVM. Currently, our formalisation for the EMFTVM bytecode language does
not provide axioms to encode its semantics. This technical limitation requires more
thorough examination for the source code of EMFTVM, which we are currently work-
ing on. This leads to the absence of the translation rule for EMFTVM instructions
such as MATCH and MATCH_S, since these instructions require static information
from the execution environment of EMFTVM.
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Auxiliary Notation Comment
Stack

e :: l Return the concatenation of the element e to the sequence l.
l[low..upper] Return the subsequence of l from index lower to upper.
hd(l: Sequence) Return the first element of the given sequence, which requires the input se-

quence is not an empty sequence.
tl(l: Sequence) Return the rest of the input sequence that excluding the first element, which

requires the input sequence is not an empty sequence.
tk(l: Sequence, n: int) Return a new sequence which takes the first n elements from the input se-

quence.
dp(l: Sequence, n: int) Return a new sequence which drops the first n elements from the input se-

quence.
size(l: Sequence) Return the size of the given sequence.

Collection
hasNext(c: Collection) Return true if the passed-in collection has more elements to iterate.
next(c: Collection) Return the next element of the collection in the iteration.
isCollection(f: Field α) Return true when the given structure feature is an association and its multiplic-

ity has an upper-bound that is greater than one, and return false otherwise.
c1 ∪ c2 Return a new collection that appends the collection c2 to the collection c1.
c1 - c2 Return a new collection such that every element of c2 are removed from the

collection c1.
Heap

read(h: heap, o: ref, f: Field α) Return the value of the heap h at the position given by the element o and the
structural feature f.

update(h: heap, o: ref, f: Field α ,
v: α)

Change the value of the heap h at the position given by the element o and the
structural feature f, to the value of v.

dtype(o: ref) Return the classifier of the input element.
Method Invocation

reflect(sig:String) Return the method with the given signature name.
invoke(mtd: Method, args: Se-
quence)

Return the invocation result of the input method on the given arguments.

Metamodel
resolve(mm: String, cl: String) Return the corresponding classifier resolved from the input metamodel and

classifier name.
toRef(cl: String) Return an unique Boogie constant of type ref for the input classifier name.

Table D.1 Auxiliary Notations used by the translational semantics of EMFTVM language
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ASM Instruction (S) Corresponding Boogie Statements ([[S]])
PUSH c stk := [[c]]:: stk;
PUSHT stk := true :: stk;
PUSHF stk := false :: stk;

POP
assert size(stk) > 0;
stk := tl(stk);

STORE x
assert size(stk) > 0;
[[x]]:= hd(stk);
stk := tl(stk);

LOAD x stk := [[x]]:: stk;

SWAP
assert size(stk) > 1;
stk := hd(tl(stk)) :: hd(stk) :: tl(tl(stk));

SWAP_X1
assert size(stk) > 2;
stk := hd(tl(tl(stk))) :: hd(stk) :: hd(tl(stk)) :: tl(tl(tl(stk)));

DUP
assert size(stk) > 0;
stk := hd(stk) :: stk;

DUP_x1
assert size(stk) > 1;
stk := hd(stk) :: hd(tl(stk)) :: hd(stk) :: tl(tl(stk));

NOT
assert size(stk) > 0;
stk := (¬(hd(stk))) :: tl(stk);

AND Stmt
assert size(stk) > 0;
[[Stmt]]
stk := (hd(tl(stk)) ∧ hd(stk)) :: tl(tl(stk));

OR Stmt
assert size(stk) > 0;
[[Stmt]]
stk := (hd(tl(stk)) ∨ hd(stk)) :: tl(tl(stk));

XOR
assert size(stk) > 1;
stk := ((hd(stk) ∨ hd(tl(stk))) ∧ ¬(hd(stk) ∧ hd(tl(stk)))) :: tl(tl(stk));

IMPLIES Stmt
assert size(stk) > 0;
[[Stmt]]
stk := (¬(hd(tl(stk))) ∨ hd(stk)) :: tl(tl(stk));

ISNULL
assert size(stk) > 0;
stk := (hd(stk)=null) :: tl(stk);

GET_CB Stmt LABEL: [[Stmt]]
GET_TRANS currently not supported

Table D.2 Translational semantics for EMFTVM stack handling instructions
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ASM Instruction (S) Corresponding Boogie Statements ([[S]])
GOTO n goto [[n]];
RETURN goto END;

IF n

var cond#: bool;
assert size(stk) > 0;
cond# := hd(stk);
stk := tl(stk);
if (cond#) goto [[n]];

IFN n

var cond#: bool;
assert size(stk) > 0;
cond# := hd(stk);
stk := tl(stk);
if (¬cond#) goto [[n]];

IFTE Stmt1 Stmt2

var cond#: bool;
assert size(stk) > 0;
cond# := hd(stk);
stk := tl(stk);
if (cond#) [[Stmt1]] else [[Stmt2]]

ITER Stmt ENDITER

var col#: Seq ref;
assert size(stk) > 0;
col# := hd(stk);
stk := tl(stk);
while INV (hasNext(col#))

{ stk := next(col#) :: stk;
[[Stmt]]}

INVOKE sig n

let args = tk(stk, n) in
var result# : T;
assert size(stk) ≥ n;
call result# := invoke(reflect([[sig]]), args);
stk := result# :: dp(stk, n);

INVOKE_STATIC sig n

let args = tk(stk, n) in
var result# : T;
assert size(stk) ≥ n;
call result# := invoke(reflect([[sig]]), toRef(hd(args)) :: tl(args));
stk := result# :: dp(stk, n);

INVOKE_CB Stmt n

let args = tk(stk, n) in
var stk#: Seq α;
assert size(stk) ≥ n;
stk# := stk;
stk := args;
[[Stmt]]
END:
stk := hd(stk) :: dp(stk#, n);

INVOKE_CB_S n

let args = tk(stk, n) in
var stk#: Seq α;
assert size(stk) ≥ n;
stk# := stk;
stk := args;
goto LABEL;
END:
stk := hd(stk) :: dp(stk#, n);

INVOKE_SUPER currently not supported
INVOKE_ALL_CBS currently not supported

Table D.3 Translational semantics for EMFTVM control flow instructions
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ASM Instruction (S) Corresponding Boogie Statements ([[S]])

NEW

let mm = hd(stk), cl = hd(tl(stk)) in
let clazz = resolve(mm, cl) in
var r# : ref;
assert size(stk) > 1;
havoc r#;
assume r# ̸= null ∧ ¬read(heap, r#, alloc) ∧ dtype(r#) = clazz;
heap := update(heap, r#, alloc, true);
stk := r# :: tl(tl(stk));

NEW_S mm

let cl = hd(stk) in
let clazz = resolve([[mm]], cl) in
var r# : ref;
assert size(stk) > 0;
havoc r#;
assume r# ̸= null ∧ ¬read(heap, r#, alloc) ∧ dtype(r#) = clazz;
heap := update(heap, r#, alloc, true);
stk := r# :: tl(stk);

GET f
let o = hd(stk) in
assert size(stk) > 0 ∧ o ̸= null ∧ read(heap, o, alloc);
stk := read(heap, o, [[f]]) :: tl(stk);

SET f

let o = hd(tl(stk)), v = hd(stk) in
assert size(stk) > 1 ∧ o ̸= null ∧ read(heap, o, alloc);
if (isCollection([[f]]))
{ heap := update(heap, read(heap, o, [[f]]), read(heap, o, [[f]]) ∪ v); }
else

{ heap := update(heap, o, [[f]], v); }
stk := tl(tl(stk));

GET_STATIC f
let cl = hd(stk) in
assert size(stk) > 0;
stk := read(heap, toRef(cl), [[f]]) :: tl(stk);

SET_STATIC f

let cl = hd(tl(stk)), v = hd(stk) in
assert size(stk) > 1;
if (isCollection([[f]]))
{ heap := update(heap, read(heap, toRef(cl), [[f]]),

read(heap, toRef(cl), [[f]]) ∪ v); }
else

{ heap := update(heap, toRef(cl), [[f]], v); }
stk := tl(tl(stk));

FINDTYPE mm cl stk := resolve([[mm]], [[cl]]) :: stk;

FINDTYPE_S
let mm = hd(stk), cl = hd(tl(stk)) in
assert size(stk) > 1;
stk := resolve(mm, cl) :: tl(tl(stk));

ALLINST cl

var col#: Seq ref;
assert size(stk) > 0;
col# := OCLType#allInstance(heap, [[cl]]);
stk := col# :: tl(stk);

ALLINST_IN

let cl = hd(tl(stk)), hp=hd(stk) in
var col#: Seq ref;
assert size(stk) > 1;
col# := OCLType#allInstance(hp, cl);
stk := col# :: tl(tl(stk));

Table D.4 Translational semantics for EMFTVM model handling instructions
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ASM Instruction (S) Corresponding Boogie Statements ([[S]])

DELETE

let o=hd(stk) in
var heap#: HeapType;
heap# := heap;
assert size(stk) > 0;
assert o ̸= null ∧ read(heap, o, alloc);
havoc heap;
assume (∀ r: ref, f: Field α •
r ̸=null ∧ read(heap#, r, alloc) ∧ r̸=o =⇒
read(heap, r, f) = read(heap#, r, f));

assume ¬read(heap, o, alloc);
stk := tl(stk);

ADD f

let o = hd(tl(stk)), v = hd(stk) in
assert size(stk) > 1 ∧ o ̸= null ∧ read(heap, o, alloc);
if (isCollection([[f]]))
{ heap := update(heap, read(heap, o, [[f]]), read(heap, o, [[f]]) ∪ v); }
else

{ assert ¬isset(acc, o, [[f]]);
heap := update(heap, o, [[f]], v);
acc := set(acc, o, [[f]], true); }

stk := tl(tl(stk));

REMOVE f

let o = hd(tl(stk)), v = hd(stk) in
assert size(stk) > 1 ∧ o ̸= null ∧ read(heap, o, alloc);
if (isCollection([[f]]))
{ heap := update(heap, read(heap, o, [[f]]), read(heap, o, [[f]]) - v); }
else

{ if(read(heap, o, [[f]]) = v)
{ assert isset(acc, o, [[f]]);

heap := update(heap, o, [[f]], default);
acc := set(acc, o, [[f]], false); } }

stk := tl(tl(stk));

INSERT f

let o = hd(tl(tl(stk))), v = hd(tl(stk)), i=hd(stk) in
assert size(stk) > 1 ∧ o ̸= null ∧ read(heap, o, alloc);
if (isCollection([[f]]))
{ assert -1 ≤ i ∧ i < size(read(heap, o, [[f]]));

heap := update(heap, o, [[f]], read(heap, o, [[f]])[0..i] :: v ::
read(heap, o, [[f]])[i..size(read(heap, o, [[f]]))]); }

else

{ assert ¬isset(acc, o, [[f]]);
heap := update(heap, o, [[f]], v);
acc := set(acc, o, [[f]], true); }

stk := tl(tl(tl(stk)));
GETENVTYPE stk := ExecEnv :: stk;
MATCH currently not supported
MATCH_S currently not supported
GET_SUPER currently not supported

Table D.4 Translational semantics for EMFTVM model handling instructions (cont.)
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Appendix E

VeriMTLr in Alternative IVLs
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The two most widely used IVLs are Boogie [7], and Why3 [52]. Both of these languages
are based on FOL with polymorphic types, and have mature implementations to parse, type-
check, and analyse programs. We concentrate on Boogie in this research, but we believe all
results can be reproduced in Why3, or other IVLs with comparable functionality. A coarse
semantic mapping between Boogie and Why3 is shown in Table E.1, with a focus on the
Boogie constructs used in this thesis (Boogie and Why3 constructs are shown in font and
FONT respectively).

Boogie WHY3

Type
built-in int, bool, map INT, BOOL, TUPLE

user-defined type TYPE

Function declaration function FUNCTION/PREDICATE/INDUCTIVE

Axioms
declaration axiom AXIOM

trigger e1,e2 [E1|E2]

Const declaration const CONSTANT

Expression

arithmetic +,-,*,div,mod +,-,*,DIV,MOD

relation >,<,>=,>=,==,!=,<: >,<,>=,>=,==,!=,N/A

binary connector &&,∥,⇔,⇒ &&,∥,⇔,⇒

unary connector !, old !, OLD

lamda lamda FUN

quantifier forall, exists FORALL, EXISTS

Variable declaration var VAR

Procedure

declaration procedure VAL

precondition requires REQUIRES

postcondition ensures ENSURES

modification modifies WRITES

Implementation declaration implementation LET

Statement

label id:s ’ID:S

assert assert (e) ASSERT E

assume assume (e) ASSUME E

assign id:=e ID<-E

sequencing s1;s2 S1;S2

goto goto id N/A

havoc havoc v N/A

if if (g) s1 else s2 IF G THEN S1 (ELSE S2)

while while(g)invs WHILE G DO INV S DONE

call call mtd(args) (MTD ARGS)

Table E.1 Semantic mapping between Boogie and Why3
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