
Improving Results of Differential
Evolution Algorithm

Rushikesh Sawant

A dissertation submitted for the degree of

Msc in Dependable Software Systems

Department of Computer Science

Faculty of Science and Engineering

National University of Ireland Maynooth

September 2015.

Head of Department: Dr. Adam Winstanley

Supervisor: Dr. Diarmuid O’Donoghue

Word Count: 20439

Contents

List of Figures v

List of Tables vii

Abstract ix

Acknowledgements x

Contributions xi

1 Introduction 1

1.1 Objective . 2

1.2 Contributions and Publication . 2

1.2.1 Evaluation . 3

1.3 Thesis Outline . 3

2 Differential Evolution 4

2.1 Numerical Optimisation . 4

ii

CONTENTS

2.1.1 Mathematical Formulation . 4

2.2 Differential Evolution . 6

2.2.1 Initialisation . 7

2.2.2 Mutation . 7

2.2.3 Crossover . 8

2.2.4 Selection . 8

2.3 Related Work . 8

2.3.1 Earlier Work Employing Ancestors 9

2.4 Conclusion . 11

3 Ancestral DE 12

3.1 Ancestral Extension to DE . 12

3.1.1 AncDE Concept . 12

3.1.2 AncDE Algorithm . 14

3.1.2.1 Initialisation . 16

3.1.2.2 Mutation . 17

3.1.2.3 Crossover . 19

3.1.2.4 Selection . 19

3.2 Conclusion . 20

4 Software Engineering - AncDE 21

4.1 Software Process and R&D . 21

4.2 Implementation Overview . 22

4.3 Design and Public API . 24

4.4 Documenting AncDE . 26

4.5 Testing AncDE . 27

4.5.1 Input Parameter Analysis . 28

4.5.2 JUnits . 28

iii

CONTENTS

4.6 AncDE Application . 30

4.7 Conclusion . 31

5 Experimental Setup 32

5.1 Objective Functions . 32

5.2 IEEE CEC 2015 Benchmark . 33

5.2.1 Experimental Setting . 35

5.3 Recording Data . 35

5.4 Execution Environment . 36

5.5 Conclusion . 36

6 Algorithm Evaluation 38

6.1 Evaluation . 38

6.1.1 Comparative Analysis: AncDE vs DE 38

6.1.2 Comparative Analysis: Population Size 42

6.1.3 Comparative Analysis: CEC Method 42

6.1.4 Algorithm Efficiency . 44

6.1.5 Comparative Analysis: ArpDE and AncDE 44

6.2 Sensitivity Analysis: ARP and AUP . 45

6.3 Discussion . 47

6.4 Conclusion . 49

7 Future Work 50

7.1 Multiple Ancestors . 50

7.2 Extending Current Analysis . 50

7.3 AncDE for Discrete Optimisation . 51

7.4 Conclusion . 51

A CEC 2013 Results 52

iv

List of Figures

2.1 Function with multiple optima . 5

2.2 Basic step in Differential Evolution . 6

2.3 Difference vector generated with weighted difference of two random vec-

tors, here vector 3 - vector 1. Show optimisation landscape is of Rastrigin

optimisation problem. 7

2.4 ArpDE search space exploration . 10

3.1 AncDE strategy involving random antecedent from ancestral cache to gen-

erate new trial vector . 13

3.2 Initial vector population with NP=4 and D=5. Both generations G and

AncG have same vectors . 17

3.3 AncDE differential mutation when rand j[0,1]< aup. (IDV= inter-generational

difference vector and WDV = weighted difference vector). 18

3.4 Binomial crossover. Parameters either from target vector or from mutant

vector are copied to trial vector, based on CR. Parameters with gray color

indicate they are not copied to the trial vector 19

v

LIST OF FIGURES

4.1 AncDE/target/1/bin . 23

4.2 AncDE/target/1/bin . 24

4.3 AncDE Class Diagram . 25

4.4 IAncDEProblem Interface . 25

4.5 AncDE logging . 26

4.6 AncDE client in action . 27

4.7 AncDE user interface . 30

5.1 function with multiple local optima and one global optimum 32

5.2 Simple continuous unimodal function . 33

5.3 CEC baseline for comparing runtime efficiency of algorithms 36

6.1 Box plots for AncDE and DE for 15 CEC benchmark problems 41

6.2 Sensitivity analysis for unimodal functions. Table shows best costs pro-

duced with each pair of ARP and AUP. 46

6.3 Sensitivity analysis for simple multimodal functions. Table shows best

costs produced with each pair of ARP and AUP. 46

6.4 Sensitivity analysis for hybrid functions. Table shows best costs produced

with each pair of ARP and AUP. 47

6.5 Sensitivity analysis for composition functions. Table shows best costs pro-

duced with each pair of ARP and AUP. 47

vi

List of Tables

4.1 Valid value ranges for all input parameters 28

4.2 Equivalence partitions for NP . 28

4.3 Test cases for all public interfaces with NP as input parameter 29

4.4 Test data for test cases in table 4.3. 29

4.5 Information matrix for IEEE CEC 2015 problems 30

5.1 IEEE CEC 2015 expensive optimisation test problems 34

6.1 Comparison with CEC method. First two columns show mean and median

values obtained using AncDE on each of the 15 problems (10D first 15 and

30D remaining). Similarly last two columns are for DE. Score indicates

application of formula stated in equation 6.1. 43

6.2 Computational complexity of both AncDE and DE. T0 denotes CEC base-

line function, T1 denotes AncDE algorithm, and T2 denotes DE algorithm . 44

6.3 Comparison with CEC method: AncDE vs ArpDE. Problems for which

AncDE is better is marked with green. 45

vii

LIST OF TABLES

A.1 AncDE vs DE with CEC 2013 Benchmark Problems: 50D 52

A.2 Comparison: AncDE vs DE on CEC 2013 100D problems. Notice that

AncDE is far better than DE. 53

viii

Abstract

Optimisation problems are of prime importance in scientific and engineer-
ing communities. Many day-to-day tasks in these fields can be classified as
optimisation problems. Due to their enormous solution spaces, optimisation
problems frequently lie in class NP. In such cases, engineers and researchers
have to rely on algorithms and techniques that can find sub-optimal solutions
to these problems. One of the most dependable algorithms for numerical opti-
misation problems is Differential Evolution (DE). Since its introduction in the
mid 1990’s, DE has been on the fore front when it comes to applicability of op-
timisation algorithms to variety of real-parameter optimisation problems. This
popularity of DE has driven intensive research to further improve its capability
to find optimal solutions.

In this thesis we present a variant of DE to produce improved solutions
with greater reliability. In doing so, we introduce a novel strategy to incorpo-
rate ancestral vectors into the optimisation process. We show that a controlled
introduction of ancestral vectors into the optimisation process has a generally
positive influence on convergence rate of the algorithm. Evaluation of the pro-
posed algorithm forms a major part of this work, as an empirical evidence
serves to demonstrate the performance of stochastic algorithms. The resulting
implementation of the algorithm is made available as an open source software
along with its reference manual.

Acknowledgements

I would like to express my deep gratitude to Dr Diarmuid O’Donoghue for being a very
kind and patient supervisor. Without his constructive guidance this thesis would not have
been completed. His numerous suggestions while reviewing this work have shaped this
thesis to its current state. I am in a great debt to him for all the efforts he took for helping
me in this work. I would also like to offer my special thanks to Dr Rosemary Monahan for
all the support, technical ideas, and suggestions regarding writing this thesis. Finally, I am
thankful to all the people I met at MU for making my stay here so enjoyable.

Contributions

Publications arising from Thesis:

An Ancestor based Extension to Differential Evolution (AncDE) for Single-
Objective Computationally Expensive Numerical Optimization, The annual
IEEE Congress on Evolutionary Computation (IEEE CEC), Special Session and
Competition on Bound Constrained Single-Objective Computationally Expensive Nu-
merical Optimization Sawant R, Hatton D, O’Donoghue D.P, Sendai, Japan, May
2015.

Acknowledgment arising from Thesis:

Susan J. Lolle and Diarmuid P. O’Donoghue, “The RNA cache hypothesis: Mech-
anistic considerations and evolutionary implications,” Frontiers in Plant Science,
2015 (submitted).

CHAPTER 1

Introduction

Optimization is everywhere. Engineers and researchers are often confronted with vari-
ous optimisation problems in their day-to-day work. Application areas range from Com-
puter Science, Telecommunications, Finance, to Civil Engineering and so on. Application
servers in distributed information systems are tuned to achieve a required level of per-
formance in order to attain business goals[1]. Airlines try to optimise their schedules to
minimise resource consumptions, even civil engineers run simulations to find optimal val-
ues before proceeding to physical layout for structures, such as reservoirs [2]. NASA’s use
of an optimisation algorithm for the design of an X-Band antenna for Space Technology 5
Mission [3] adds one more example to depict the ubiquity of optimisation problems. Reli-
ability is an important aspect of such systems; which essentially traces back to how these
systems are designed and built. That is, whether trade-off between different properties of
the system has been optimally balanced or not.

In general, the objective is to find the best way to optimise certain properties of the sys-
tem without violating any imposed constraints. However, large number of such problems
remain in the class of NP [4] problems. One of the reasons for this is the enormous search
space of these problems. In this case, a compromise is to try to obtain a sub-optimal solu-
tion (i.e. what is called as "good enough" solution). Hence, the problem at hand reduces to
finding a solution that is plausible for a concerned system.

The frequent and ubiquitous nature of such problems have increased our dependence
on algorithms that can target optimisation problems efficiently with currently available
technology. It has driven intensive study to find and, or, improve optimisation techniques
and algorithms to achieve better results in a feasible time using available computational
resources[5].

For this work we are concerned with one specific class of optimisation problems, called
numerical optimisation1. Input parameters to these problems are in real space, R. Specifi-
cally, numeric optimisation is of prime concern in engineering and scientific fields.

1Also called continuous optimisation

1

Chapter 1. Introduction 1.1. OBJECTIVE

1.1 Objective
Differential Evolution (DE) is one such stochastic algorithm to solve numerical optimi-
sation problems[6]. All of the examples discussed in the outset can be solved by this
algorithm efficiently. This thesis set out to improve the quality and reliability of optimi-
sation results produced by standard DE algorithm. The specific goal of this thesis was
to improve the convergence rate2 by introducing an ancestral cache of recently discarded
solutions produced during some previous generation(s). The scope of this work also in-
cluded an investigation of the influence of ancestral vectors3 on the optimisation process
and the proposal of a novel technique to improve results obtained with the standard DE
algorithm. Empirical investigation of apposite value ranges for new control parameters for
the proposed algorithm inevitably became central part of this work.

1.2 Contributions and Publication
This thesis proposes a new strategy for improving the convergence rate of differential evo-
lution. We present an analytical study of the influence of introducing ancestral vectors into
the process of evolutionary optimisation. Proposed strategy can be seen as an improve-
ment to the original DE algorithm. Hence, recently proposed methods in DE community,
that improve on DE using techniques, such as local search or "learning from experience",
for example SaDE[7], can arguably incorporate the strategy proposed here as part of their
technique to further improve their results.

The proposed algorithm, called AncDE (Ancestral Differential Evolution), primarily
improves on standard DE algorithm and also on a recently proposed DE variant, ArpDE,
by Hatton and O’Donoghue (submitted, decision pending), as observed through evaluation
results. AncDE is made available as an open source implementation with a public API
for using it in client environments. A “user guide" is also provided for using the API and
this includes information on other technical details. This user manual provides essential
information regarding the value ranges for control parameters of the algorithm; that should
be useful to practitioners.

However, we do not intend to investigate the "universal" parameter set in this work.
Finding the best possible parameter set has long been the subject of research on its own,
and can be seen as a considerable future work. Studies show that finding such parameter set
is not a trivial, if not infeasible, task since DE is very sensitive to its controlling parameters
and partly the properties of an objective function it is trying to optimise[8, 9, 10]. AncDE
essentially inherits these properties from the original DE algorithm. Hence, for this work
our approach is to find one "acceptable" parameter set with which "good quality" results
are achieved for expensive functions in a benchmark test suite[11]. This parameter set
generally varies based on dimensionality of the problem function. For this work we include
one such general parameter set for 10 dimensional problems and one for 30 dimensional
version of these problems. A reference manual also provides acceptable ranges for newly

2The rate at which an evolutionary algorithm moves towards the given target
3list of input parameters

2

Chapter 1. Introduction 1.3. THESIS OUTLINE

proposed AncDE parameters; as they also vary based on properties of the objective function
being optimised.

Authors have published a paper on AncDE algorithm at The annual IEEE congress on
Evolutions Computation (IEEE CEC) May, 2015 held in Sendai, Japan[12]4, along with
performance results generated for a set of benchmark problems provided by CEC 2015
("Bound Constrained Single-Objective Computationally Expensive Numerical Optimisa-
tion"). These results are also presented in this thesis for evaluation purposes and for com-
parison with the original DE algorithm. Also, results produced by AncDE have been used
in an evolutionary theory paper submitted to "Frontiers in Plant Science" by Lolle et al.
(2015).

1.2.1 Evaluation
We evaluate our work using the method provided by IEEE CEC along with some other
statistical methods. The evaluation includes comparative analysis against DE and AncDE.
Proposed algorithm is applicable in all problem instances where DE is applicable, without
employing any additional constraints, hence primary comparative study is performed with
DE’s performance, with the best achieved parameter configuration. A public API made
available to the clients has been thoroughly tested for its robustness against its functional
specification documented in AncDE reference manual and source code documentation.

1.3 Thesis Outline
The structure of the thesis is as follows. Chapter 2 introduces Differential Evolution and
Numerical Optimisation. And the current state-of-the-art in the DE community is also
presented. AncDE and its implementation details are presented in Chapter 3. Chapter 4
enumerates all functions included in IEEE CEC 2015 benchmark suite and the experimental
setup. In Chapter 5 we present software engineering aspect of this project. Chapter 6 then
presents the evaluation of AncDE including results obtained with AncDE and a comparison
with DE using the CEC method and some additional statistical methods. In chapter 7 we
conclude our work with discussion on some probable future work that could be based on
the work presented in this thesis.

4The paper was in press at the time of writing this thesis

3

CHAPTER 2

Differential Evolution

This chapter introduces the evolutionary approach to numerical optimisation and also in-
troduces Differential Evolution (DE) algorithm. These topics are discussed to the level of
depth necessary to understand subsequent discussion in this thesis. The remaining part of
the chapter presents a discussion on some related work in the field.

2.1 Numerical Optimisation
What is optimisation? In general, optimisation is when one tries to find the best way to
perform some task or use available resources, without violating any constraints that are
imposed on a system. Formally, optimisation is the process of minimising or maximising a
function which is subjected to constraints on its input parameters.

Optimisation involves maximising or minimising some given objective problem[13]. It
is a quantitative measure of the performance of the system under study, such as profit, time
or any combination of quantities that can be presented by a single number. The objective
depends on problem variables (also called unknowns). These correspond to certain char-
acteristics of a system. The goal of optimisation is to find the values of these variables that
will optimise the objective. Often these variables are constrained in some way, for example,
a non-negative loan value.

2.1.1 Mathematical Formulation
We give mathematical formulation similar to the one given by Quing[5] to precisely define
optimisation as follows.

Definition 2.1.1. Find x∗ = [x∗1 x∗2 ... x∗N] ∈ DN = D1∩D2∩ ...DN
where,

4

Chapter 1. Differential Evolution 2.1. NUMERICAL OPTIMISATION

f min
i (x∗)≤ f min

i (x), ∀x = [x1 x2 ... xN] ∈ DN , 1≤ i≤ N f min,

f max
i (x∗)≥ f max

i (x), ∀x ∈ DN , 1≤ i≤ N f min,

c=i (x
∗) = 0, 1≤ i≤ Nc=,

c+i (x
∗)> 0, 1≤ i≤ Nc+,

c−i (x
∗)< 0, 1≤ i≤ Nc− .

Here, x is a vector of variables corresponding to a list of parameters and xi indicates
the ith component of this vector. Here, x∗ is the optimal solution that we seek to identify
in an N-dimensional search space DN . fi is the ith objective function of x that we want to
maximise, f max

i (x∗), or minimise, f min
i (x∗). ci are ith constraint functions, where, c=i (x

∗)
is the equality constraint function, c+i (x

∗) is the positive constraint function, and c−i (x
∗) is

the negative constraint function. In the case of numerical optimisation, the search space Di
is continuous (i.e. x ∈ Rn, where n is the dimension of the problem).

An optimisation problem is thus made up of optimisation parameters x, objective func-
tions f, and constraint functions c. An objective function is what we want to optimise lies
at the heart of the problem. Frequently the objective is to minimise some "cost", and hence
most of the optimising algorithms are targeted to find a global minimum, also called global
optimum. Figure 2.1 shows sample objective function with global maximum and mini-
mum. It also has multiple local optima. In our case the global optimum always refers to
global minimum of such functions.

Figure 2.1: Function with multiple optima

5

Chapter 1. Differential Evolution 2.2. DIFFERENTIAL EVOLUTION

2.2 Differential Evolution
From the large list of algorithms targeting optimisation, one class of algorithms, called
Evolutionary algorithms (EA), uses mechanism inspired by the biological evolution. The
idea behind EAs is to use Drawinian Principles of "Survival of the Fittest" for automated
problem solving[14]. EAs are mathematically less complex than their deterministic counter
parts. However, EAs require relatively more function evaluations, and due to their non-
deterministic nature their results are not clonable.

Despite this fact, EAs are much more preferred in practice as they are applicable to
wider class of optimisation problems and impose less restrictions[5]. EAs are population
based stochastic algorithms being composed of the basic steps: reproduction, mutation,
recombination, and selection.

Of these four steps, reproduction, mutation, and recombination together are responsible
for producing new individuals with mixed properties from randomly chosen individuals
from the current population. In selection stage then old individuals are replaced by new
individuals, if the new ones managed to produce better results. This process mimics the
biological phenomenon called "survival of the fittest."

One such algorithm we are concerned with is Differential Evolution (DE), introduced
by Storn and Price [6] for numerical optimisation. DE has been subject of intensive study
since its inception in 1997 due to its mathematical elegance, applicability to problems in
various fields, and ease of use1.

Figure 2.2: Basic step in Differential Evolution

Figure 2.2 shows four main steps of the DE algorithm and we shall discuss each in
turn. Basically, DE employs an evolution loop, consisting of mutation, recombination, and
selection, until the specified criteria to stop this loop is reached. As discussed earlier, opti-
misation problems, in general, have multiple input parameters. An array of such parameters
is called a vector, x, in DE terminology. DE operates on population containing NP solu-
tions each being a D-dimensional vector. One complete generation, G, is utilised in one
pass of the algorithm. A vector in a current generation is denoted as follows.

xi,G where, i = 1,2, ...,NP (2.1)

19200+ Google Scholar citations were recorded at the time of writing this thesis.

6

Chapter 1. Differential Evolution 2.2. DIFFERENTIAL EVOLUTION

2.2.1 Initialisation
DE requires an initialisation step to fill the first generation of vectors with with random
values subject to the the given constraint of the objective function. From this point onwards
DE employs a self-referential population reproduction scheme; it mutates and recombines
vectors from within the population to produce a new (and improved) population of the same
size, NP.

2.2.2 Mutation
In its mutation step, DE generates a new vector called mutant vector, which is generated
by adding weighted difference of two random vectors, producing a temporary vector called
difference vector, to a third vector within current population. Figure 2.3 shows a snapshot
of difference vector generation.

Figure 2.3: Difference vector generated with weighted difference of two random vectors,
here vector 3 - vector 1. Show optimisation landscape is of Rastrigin optimisation problem.

The whole process to produce mutant vector is called as differential mutation. For
mutation there are many strategies proposed by Price et al.[15]. In order to discuss details
of mutation we present an equation from one of these strategies as shown in 2.2.

vi,G+1 = xr1,G +F.(xr2,G− xr3,G) (2.2)

Generally, mutant vector, vi,G+1, is generated from the current population, where G+ 1
denotes that it is a candidate for subsequent generation. r1,r2,r3 ∈ 1...NP are randomly
chosen indices in the current population, and are mutually different. The scaling factor,
F ∈ [0,1) scales a difference vector produced from xr2,G and xr3,G. Vector xr1,G is called
as base vector and produces the mutant vector when a scaled difference vector is added to
it. Mutant vectors are generated for each individual vector in the current population. The
current vector, for which a mutant is produced, is called as target vector, xi,G.

7

Chapter 1. Differential Evolution 2.3. RELATED WORK

2.2.3 Crossover
In its third step, DE employs uniform crossover, also called, discrete recombination. Crossover
generates a new trial vector (also called offspring), ui,G+1, by randomly copying input pa-
rameters either from a target vector or a mutant vector.

u j,i,G+1 =

{
v j,i,G+1 if rand j[0,1]<CR or j = k,
x j,i,G otherwise

(2.3)

In equation 2.3, j ∈ 1...D and CR ∈ [0,1] is a crossover constant that controls the fraction
of parameters that a trial vector, u, gets from the mutant vector. rand j[0,1] in 2.3 indicates
the j-th evaluation of pseudo random number generator (PRNG).

2.2.4 Selection
Finally, the selection step decides who survives; the new trial vector or the existing vector
target vector in the current generation. The trial vector is evaluated to obtain new "test
cost" which is then compared against old available cost produced by target vector. If ui,G+1
yields smaller objective value than the target vector xi,G, then ui,G+1 replaces xi,G.

This process of mutation, recombination, and selection continues until the desired target
value is reached or specified number of evaluations are completed. Parameters NP, F, and
CR are user defined, and together they are referred to as control parameters of DE.

2.3 Related Work
Since 1997, numerous techniques and strategies have been proposed to improve DE or to
attack a specific class of numeric optimisation problems. A recent survey published by Das
et al.[16] gives a concise snapshot of advancements in DE community. Applying standard
DE to a given problem (to obtain acceptable results) requires finding the right strategy2

to be chosen for the problem under study. This involves intensive trial-and-error search
efforts with available strategies. Also, tuning control parameters of DE requires similar
search with experimental runs of the algorithm. The goal here is to find out whether there is
another optimal setting for the algorithm that can give better results than the current setting
in place. As this can expend huge amount of computation costs, techniques to automatically
learn and adapt are being investigated (e.g., EPSDE[17], CoDE[18], ESADE[19], etc).
One such popular algorithm, SaDE[7], maintains a pool of different strategies and during
execution it gradually learns which strategies to use and the values of control parameters
for them based on earlier experience. Another approach by Brest et al.[20] is to encode
control parameters, F and CR, into individual target vectors. However, these values are
then in-turn controlled by two newly introduced parameters τ1 and τ2. AncDE does not use
any learning or internal search technique to improve the convergence rate, hence required
computational resources are equivalent to original DE. Solution quality is improved by

2Strategy is an umbrella term used for denoting process of mutation and cross over together.

8

Chapter 1. Differential Evolution 2.3. RELATED WORK

the virtue of right amount of inter-generational mutation of ancestral vectors with target
vectors.

Zaharie[21] proposed another adaptive strategy, called ADE, to improve the conver-
gence rate. Zaharie’s idea is based on controlling population diversity to achieve balance
between search space exploration and exploitation3. Similarly, Das et al.[22] proposed a
topological neighbourhood based mutation scheme also to achieve a balance between ex-
ploration and exploitation. AncDE, on the other hand, introduces diversity by occasionally
re-introducing ancestral vectors during the mutation step. The age of an ancestral popula-
tion and their introduction frequency is controlled by two new control parameters proposed
for AncDE.

Finally, Zheng et al.[23] proposed JADE which uses an optional external archive of the
old population to provide information to direct the progress in solution space. Mathematical
formulation of their strategy can be represented as follows:

vi,G+1 = xi,G)+Fi.(x
p
best,G− xi,G)+Fi.(xr1,G−X ′r2,G) (2.4)

In equation 2.4, p ∈ (0,1] and xp
best,G is a randomly sampled vector from the 100% vec-

tors of the current population. X ′r2,G is, however, randomly sampled from P∪A. Where, P
denotes current population and A is an external archive of old vectors discarded at selection
step. In a case when archive size exceeds, some vectors are randomly discarded to keep
archive at NP.

AncDE is similar to JADE in that AncDE also maintains archive of old vectors. How-
ever, archive maintained by AncDE is an ancestral archive; the i-th target vector from
current population relates to i-th vector from ancestral population. For the same reason,
AncDE does not run into ancestral archive overflow condition. Also, AncDE’s strategy is
different from that of JADE, as shall be discussed in Chapter 3. Finally, as implementations
of these algorithms were not readily available, we did not benchmark against them in this
thesis.

2.3.1 Earlier Work Employing Ancestors
The idea of introducing an ancestral population (or archive) comes from the recent study
published by O’Donoghue et al.[24]. This study performs investigations into genetic restora-
tions from non-parental ancestors. O’Donoghue et al. proposed an ancestral repair strategy
within an evolutionary algorithms to solve constraint based optimisation problems. The
same group has incorporated this strategy into standard DE, and the variant is called as
ArpDE4. This study shows that ancestral vector can have a positive influence on the op-
timisation process. The idea of occasionally using ancestral vectors during differential
mutation (making broad movements in search space) seems to produce competitive results
to standard DE.

Their algorithm modifies DE’s differential mutation process to incorporate ancestral
vectors. Inclusion of ancestors is controlled by two parameters– 1. ancestor replacement

3Here, exploration refers to broad movements through the search space seeking new regions. While
exploitation refers to small steps around the region found during exploration to find optimum

4Paper on ArpDE is submitted; decision is pending.

9

Chapter 1. Differential Evolution 2.3. RELATED WORK

probability (ARP) 2. and ancestor usage probability (AUP). During differential mutation
AUP controls the rate of producing inter-generational difference vectors. ARP, on the
other hand, controls the rate at which ancestors are replaced by vectors from the current
population. That is, with ARP one controls how old the ancestors should be. Authors note
that good results were obtained with ARP value of 0.05 and AUP value of 0.15.

The efficiency of evolutionary algorithms is generally characterised by their ability to
perform exploration and exploitation during the search process[25, 16]. Hence the optimi-
sation process of DE, and its variants, can also be divided into two aspects– 1. exploration
2. exploitation. Exploration refers to the ability of an algorithm to make broad movements
through the search space to quickly explore promising new regions. DE, and its variants,
generally start with exploration as the initial population is relatively dispersive and ran-
domly distributed in the search space. As the optimisation process matures, the population
starts to converge gradually and clusters around a global or local optima. This state of the
algorithm is called as exploitation, making smaller movements around the search space
that has been already explored. This aspect can be seen as small refinements applied to an
already discovered good solution and is based on the information gathered during explo-
ration.

The exploration power of these algorithms comes from the diversity of the population.
Due to diverse population in exploration state, the magnitude of difference vectors in dif-
ferential mutation step is relatively high, and it consequently results in broad movements
through the search space. ArpDE uses an ancestral cache to introduce additional diversity.
Its ability to utilise this diversity and produce inter-generational difference vectors between
the current and ancestral population broadens the search.

Figure 2.4: ArpDE search space exploration

10

Chapter 1. Differential Evolution 2.4. CONCLUSION

Figure 2.4 shows ArpDE’s solution space exploration mechanism with inter-generational
difference vector ∆2. In this case the magnitude of a vector is increased due to the diversity
between two populations. Note that JADE is different from ArpDE, as the external archive
used by JADE does not necessarily maintain any relation between two populations.

Building on previous work [24], this thesis attempts to improve the quality and relia-
bility of results produced by an ancestral extension to DE. In doing so, we propose a new
criteria for ancestor replacement and a novel strategy for differential mutation to improve
over DE. We also observe that results produced by AncDE are better in quality than ArpDE.
The challenging part of the work here was to incorporate an ancestral population into dif-
ferential mutation and to decide the right proportion of such inter-generational mutation.
The difficulty in investigation arises due to two primary reasons– 1. The sensitivity of
these algorithms to control parameters and 2. the properties of objective functions being
optimised5.

2.4 Conclusion
This chapter presented overview of numerical optimisation and Differential Evolution al-
gorithm. We also discussed related work in the field and briefly outlined how it compares
with our approach. We also focused on ArpDE which further extended by AncDE. In the
next chapter we shall look into more details how AncDE differs from ArpDE.

5Objective function properties are discussed in Chapter 5.

11

CHAPTER 3

Ancestral DE

This chapter details AncDE (Ancestral DE) algorithm discussing its mutation strategy and
its ancestral cache maintenance mechanism. The algorithm is presented at a pseudo code
level of abstraction to further discuss its computational details. The chapter concludes with
a formal description of the AncDE strategy and the role of two new control parameters used
by AncDE.

3.1 Ancestral Extension to DE
The DE community is primarily focused on improving the efficiency of DE and employ-
ing new techniques more reliably identify optimal solutions[16]. To this end, AncDE’s
approach is similar to ArpDE (discussed in chapter 2). AncDE aims to achieve a funda-
mental improvement over standard DE by utilising vectors that are getting discarded after
failing the survival test. Essentially, these are the vectors that were produced during an
earlier generations, but now a new generation is better than them.

Unlike ArpDE, AncDE caches these ancestors only when its new offspring vector is
producing a good result. In doing so, AncDE requires only one additional ancestral cache,
in addition to the main population. This results in an algorithm that requires resources
(memory and time) equivalent to DE but produces better results.

3.1.1 AncDE Concept
The crux of the strategy is the controlled replacement and usage of vectors in ancestral
cache. AncDE employs ancestral vectors to generate inter-generational difference vectors
during mutation. Figure 3.1 shows a snapshot of AncDE’s mechanism to generate inter-
generational difference vector, rather than normal difference vector. We know that vectors
in the current generation are always provably better than old generations. However, though

12

Chapter 3. Ancestral DE 3.1. ANCESTRAL EXTENSION TO DE

the new population is progressing towards global optimum, it has tendency to get misdi-
rection and getting caught in local optima or stagnate1. Apart from helping in making big
jumps to explore search space rapidly, ancestral vectors help direct new offspring vectors in
the right direction towards the global optimum. In figure 3.1, for example, vector 6 denotes
an ancestral vector utilised to generate a new offspring vector, 1’, that is now progressing
in the right direction. AncDE employs a newly proposed strategy to achieve this result, as
we shall see in the next section.

Figure 3.1: AncDE strategy involving random antecedent from ancestral cache to generate
new trial vector

At the beginning, both ancestral and current population are identical, and this is the only
time in the evolution process they are provably same. After that point, whenever a new low-
cost vector is found, AncDE consults to the arp (ancestor replacement probability) value
to stochastically decide the replacement of a related ancestor in the ancestral cache. For
example, consider vector 1 in the current population as shown in figure 3.1. If the newly
produced vector, 1’, is found to be better than 1, the former one will be discarded and the
latter one will take its place in the current population; as per the standard DE evolution
process. However, there is an additional step in AncDE, which will (stochastically) store
a copy of the (discarded) vector to the ancestral cache. This mechanism allow AncDE to
keep (stochastically) updating the ancestral cache without running into a cache overflow
situation.

1Stagnation is a state in the evolution where no new better vector is found even though the current gener-
ation is not clustered around local optima

13

Chapter 3. Ancestral DE 3.1. ANCESTRAL EXTENSION TO DE

We have to control the use of ancestors, as using ancestors all the time will impede the
convergence process. Controlled introduction of ancestral vectors is enabled through user
defined aup (ancestor usage probability) value. For example, the ancestral vector 6 shown
in figure 3.1, in this case, is introduced in the mutation process only because AncDE’s
aup control (stochastically) allowed this instance of mutation to generate inter-generational
difference vector.

Both, arp and aup values has to be determined empirically, and in general are directly
related to the properties of optimisation problem and other control parameter values pro-
vided to the algorithm. However, we later suggest overall "good" general purpose values
based on results of our experiments.

3.1.2 AncDE Algorithm
As discussed earlier, AncDE introduces second population of ancestral vectors (also called
ancestral cache) into the standard DE algorithm. The four steps of DE remain the same,
however, mutation step is changed to allow an occasional usage of vectors from ancestral
cache. When a vector from ancestral cache is selected, the strategy used for mutation is
also changed to use an inter-generational difference vector between a solution from the
main population and one from the ancestral cache. Pseudo code for AncDE algorithm is as
follows:

Input: D, NP, F, CR, Range, ARP, AUP, Number of Evaluations
Output: Minimum cost and vector producing that cost

1 Read D, NP, F, CR, Range, and Evaluations

2 Randomly initialise NP vectors as G0.

G0 = xi, j,0 := rand j[0,1].Range i=1,...,NP j = 1,...,D

Where, G0 is initial population and xi, j,0 is the i -th vector
in G0. And j denotes the parameter index of that vector.

3 Copy all vectors from current population G0 to ancestral
population AncG

4 for each vector in G, xi,G, from 1 to NP

4.1 Evaluate objective function with xi,G as input vector.

4.2 Store fitness cost in costi

end for

5 While evaluations count ≤ specified Number of Evaluations do

5.1 for each vector in G, xi,G, from 1 to NP

14

Chapter 3. Ancestral DE 3.1. ANCESTRAL EXTENSION TO DE

5.1.1 Generate new mutant
vector, vi,G+1, either using inter-generational
difference vector or using normal difference
vector as follows:

if rand j[0,1]< aup then
vi,G+1 := xi,G +F.(xr,AncG− xi,G)

else
vi,G+1 := bestG +F.(r1,i,G− r2,i,G), such that r1 6= r2 6= xi

end if

where, r denotes randomly selected vectors from
respective generations

5.1.2 Perform binomial crossover to generate new offspring vector,
ui,G+1,
as follows:

for each j -th parameter, 1,...,D, in xi,G
if rand j[0,1]≤CR ‖ j = D then

ui, j,G+1 := vi, j,G+1
else

ui, j,G+1 := xi, j,G+1
end if

5.1.3 Perform selection to decide the survival of the new vector,
ui,G+1, as follows:

5.1.3.1 Evaluate objective function with ui,G+1 as an input vector
and store the resulting testcost

5.1.3.2 if testcost ≤ costi then
if rand j[0,1]≤ arp then

copy contents of xi,G to xi,AncG
end if
Generate xi,G+1 by copying contents of vector ui,G+1
to vector xi,G

else
Generate xi,G+1 by keeping contents vector xi,G
unchanged.

end if

end for

5.2 Increase generation count: G := G+1

end while

15

Chapter 3. Ancestral DE 3.1. ANCESTRAL EXTENSION TO DE

6 Output minimum cost obtained and the vector producing that cost.

Algorithm 3.1: AncDE Algorithm

Algorithm 3.1 works as follows. Control parameters NP, F, and, CR are externally set
parameters to the algorithm. Note that optimisation problems have a vector of parameters
as their input. AncDE operates on population of such vectors; feeding one vector at time to
the problem to evaluate and obtain the new cost. Externally set control parameters influence
how algorithm generates new trial vectors (new offspring) from the current vector popula-
tion. NP, here, corresponds to the vector population size and D represents the dimension
of each vector (i.e., number of parameters in each vector). One pass of the algorithm, be-
ginning at 5.1, is referred to as current generation, G. We say next generation, G+1, has
begun when all the vectors from the population have been evaluated and generation counter
is increased at 5.2.

Additional two control parameters for AncDE are – 1. Ancestral replacement prob-
ability, arp ∈ [0.0,1.0], which controls the probability that an ancestor is replaced by a
vector from the current population, 2. Ancestral usage probability, aup ∈ [0.0,1.0], which
controls the probability that an ancestor will be used produce inter-generational difference
vector with AncDE’s mutation strategy. Essentially, we want to control how many genera-
tions old the ancestors should get and how often they should be used in a mutation process.
Both aup and arp are user defined parameters.

Input parameter, Range, and input vector dimensions, D, are related to an objective
function. Range puts constraint on the values of parameters in the input vector such that,
values ∈ [−Range,+Range]. This constraint information is generally available from the
optimisation problem itself. It is a practitioner in the field who decides the stopping cri-
teria. This decision is generally based on optimisation problem, and available time and
computational resources. Stopping criteria can be a number of evaluations or the algorithm
can be to set to run until the objective function does not produce cost within an acceptable
range2.

3.1.2.1 Initialisation

In initialisation step, specified number of vectors, NP, are created and are initialised ran-
domly within a given Range.

P0 = Xi, j,0 := rand j[0,1].Range i=1,...,NP j = 1,...,D (3.1)

In equation 3.1, rand j[0,1] denotes a uniformly distributed random value ∈ [0.0,1.0] ob-
tained for each j-th evaluation of such generator, rand. Range denotes a randomly selected
value from a closed interval [−Range,+Range], where bounds on this interval are user
specified.

2AncDE can be easily modified for the second condition as well. Check user manual for configuration
details

16

Chapter 3. Ancestral DE 3.1. ANCESTRAL EXTENSION TO DE

Figure 3.2 shows a snapshot of the initial state for the algorithm. Population for current
generation is denoted by, G, and an ancestral population by, AncG. This population size,
NP, does not change during the entire process as result of self-referential reproduction (ex-
plained in chapter 2). Note that we are not concerned about parameter values, denoted by
p1, p2, etc., as their generation is completely controlled by stochastic initialisation (within
the given constraints), and later by reproduction3. Hence, we simply show them as p with
subscript index, and distinguish ancestral population with vectors in green color.

p1

p2

p3

p4

p5

x1

p1

p2

p3

p4

p5

x2

p1

p2

p3

p4

p5

G

x3

p1

p2

p3

p4

p5

x4

p1

p2

p3

p4

p5

x1

p1

p2

p3

p4

p5

x2

p1

p2

p3

p4

p5

AncG

x3

p1

p2

p3

p4

p5

x4

Figure 3.2: Initial vector population with NP=4 and D=5. Both generations G and AncG
have same vectors

3.1.2.2 Mutation

After random initialisation, evolution process starts. AncDE performs differential muta-
tion4, where scaled vector difference of two random vectors is added to a third vector, to
generate a mutant vector, vi,G+1. In DE community there is naming convention for denoting
different DE strategies applied for mutation and crossover.

DE/x/y/z (3.2)

In equation 3.2, x denotes the vector to be mutated, also called as base vector. It can be
any random vector (rand) or the best cost producing vector in the current generation (best).
y denotes the number of vector differences to be used. Finally, z denotes the crossover
method. Crossover method can be binomial (explained later in following section) or ex-
ponential. Using this notation, one of DE’s well known strategies is called DE/best/1/bin.
Similarly, AncDE’s strategy is called as AncDE/target/1/bin, explained as follows.

AncDE Strategy. In AncDE’s evolution loop each vector in the current population
gets an opportunity to be a target vector, xi,G. That means for each vector in the current
population, a new mutant vector is generated. AncDE’s strategy, however, differs from
DE’s (2.2) such that AncDE introduces aup in the process to produce inter-generational

3Only the values of final vector found by an algorithm at the end are of interest to users (practitioners).
4Explained in Chapter 2

17

Chapter 3. Ancestral DE 3.1. ANCESTRAL EXTENSION TO DE

difference vector as follows:

vi,G+1 :=

{
xi,G +F.(xr,AncG− xi,G) if rand j[0,1]< aup,
gen_bestG +F.(x1,G− x2,G) otherwise

(3.3)

In equation 3.3, vi,G+1 denotes a new mutant vector generated with this strategy and sub-
scripted r denotes a random vector. For generating mutant vectors, AncDE occasionally
introduces one random ancestral vector, xr,AncG, to generate an inter-generational difference
vector. Whenever this is the case, the target vector, xi,G, for whom a mutant is generated, is
itself involved in the mutation process. Here, the target vector is used as a base vector and
the inter-generational difference is computed between the ancestral vector and the target
vector. Due to stochasticity, the mutation process switches between DE’s DE/best/1/bin
and AncDE’s AncDE/target/1/bin. Note that this switching between two different methods
of computation is also a part of AncDE’s strategy. Hence, an inter-generational mutation
is applied to a statistically controlled fraction of the population in each generation.

p1

p2

p3

p4

p5

xi,G

p1

p2

p3

p4

p5

xr,AncG

p1

p2

p3

p4

p5

IDV

p1

p2

p3

p4

p5

WDV

p1

p2

p3

p4

p5

Mutant Vector

− +

∗F

+

+

Figure 3.3: AncDE differential mutation when rand j[0,1]< aup. (IDV= inter-generational
difference vector and WDV = weighted difference vector).

Figure 3.3 shows the process of mutant vector generation using a random ancestor, as
presented in equation 3.3. We use DE/best/1/bin in AncDE as this variant of DE is shown

18

Chapter 3. Ancestral DE 3.1. ANCESTRAL EXTENSION TO DE

to produce robust results in various studies[26, 10, 8]. Scaling factor, F ∈ [0,1), controls
the rate at which population evolves by scaling the influence of a difference vector. In case
of AncDE, a good value for F is F ∈ [0.55,0.70], as shown in Chapter 6.

3.1.2.3 Crossover

AncDE does not make any changes to DE’s crossover mechanism. A new trial vector,
ui,G+1, is generated by employing a binomial crossover, where the trial vector gets a frac-
tion of parameter values from mutant vector, vi,G+1, and the remaining fraction from the
target vector, xi,G.

u j,i,G+1 :=

{
v j,i,G+1 if rand j[0,1]<CR ‖ j = k,
x j,i,G otherwise

(3.4)

In equation 3.4, the crossover probability, CR ∈ [0,1], influences the proportion of param-
eters that a trial vector will get from mutant vector generated in mutation step. That is,
crossover rate ultimately controls if and how much of the parameters from a mutant vector
with ancestral influence are passed on to the new offspring vector.

p1

p2

p3

p4

p5

Trial vector

p1

p2

p3

p4

p5

xi,G

p1

p2

p3

p4

p5

Mutant vector

rand j[0,1]<CR

rand j[0,1]<CR

rand j[0,1]<CR

Figure 3.4: Binomial crossover. Parameters either from target vector or from mutant vector
are copied to trial vector, based on CR. Parameters with gray color indicate they are not
copied to the trial vector

Figure 3.4 shows a binomial crossover scheme explained for equation 3.4. Newly gen-
erated trial vector at this point is also termed as a mutated child or offspring in evolutionary
algorithms terminology[5].

3.1.2.4 Selection

Survival of newly generated trial vector is decided in selection step. The objective function
is evaluated using each trial vector as an input. The cost returned for the trial vector is then

19

Chapter 3. Ancestral DE 3.2. CONCLUSION

compared with the cost of the target vector. If the new cost is better than the old one, the
trial vector replaces the target vector in the current population.

xi,AncG+1 :=

{
xi,AncG if rand j[0,1]≤ arp∧newcost ≤ mincost,
xi,G otherwise

(3.5)

As shown in equation 3.5, AncDE introduces an ancestor replacement probability in this
process. Ancestor replacement is decided on two explicit checks– 1. ancestor replace-
ment probability itself 2. replace ancestor by a target vector being discarded only if its
corresponding trial vector has produced better cost, newcost. Thus, based on arp, we occa-
sionally store the target vector that is being discarded. A high arp value yields very recent
ancestors while a low arp value produces very ancient ancestors. Later we shall explore
the “ideal” age for this ancestral cache.

The evolution loop of AncDE continues until the stopping criteria is met, for example,
until the specified number of function evaluations have been performed. Note that with
smaller NP more generations will pass quickly, that is, evolution is faster. And with higher
NP, more function evaluations occur per generation and more population diversity as well.
Hence, balanced value for NP, along with F and CR, is essential to improve the convergence
rate of AncDE. In Chapter 6 we show that AncDE performs better on smaller NP values.
That is, AncDE requires relatively less memory to produce competitive results. Also note
that the usage of inter-generational difference vectors is user defined and can be tuned
based on the properties of an objective function and population size. Hence, finding the
right ranges of values for these parameters is essential and shall be discussed along with
the results.

3.2 Conclusion
This chapter was primarily focused on the idea behind AncDE algorithm and its implemen-
tation. We discussed in detail all four steps involved in the evolution process of AncDE
algorithm. We concluded with the claim that AncDE requires relatively less memory to
produce strong results, which we show in Chapter 6.

20

CHAPTER 4

Software Engineering - AncDE

This chapter presents the software engineering aspect of AncDE: the algorithm implemen-
tation, design, documentation, and its testing are all presented in this chapter. The algorithm
has been made available to be integrated in client environments, and thus its public applica-
tion programming interface (API) is discussed. We also describe how to integrate AncDE
in a client environment and how to use its logging mechanism. The chapter concludes
with a discussion on functional testing of the public API and some maintenance aspects of
AncDE.

4.1 Software Process and R&D
As test driven development was major part of this project, the software process model that
we followed was spiral. The first step in the development was the integration of IEEE CEC
benchmark suite into the design and code, and its validation. After successful integration
of this benchmark, software design was finalised and steps were taken to implement the
initial version of AncDE. Initial version implemented adapted version of the strategy used
by ArpDE. From this point onwards numerous strategies were evaluated before coming up
with target/1/bin.

Each time a new prototype was produced for experimenting a newly hypothesised strat-
egy to utilise ancestral vectors. Of the various strategies experimented, we briefly discuss
some of the interesting ones. Stochastically initialised ancestors – This strategy relied on
two separate initialisations, one for regular generation and one for ancestral cache. With
very low ARP, ancestral vectors can remain diverse (and distant) than the current popula-
tion. This was the idea behind the strategy; more diverse ancestors should produce larger
difference vector. Strategy showed good results for some of the simple functions, but failed
to produce even acceptable results for most of the problems. Due to stochastic initialization
and low ARP, ancestors tend to stay in initial "random directions". Therefore, most of the
times they could not reliably direct new vectors in the right direction. Scaling factor to

21

Chapter 4. Software Engineering - AncDE 4.2. IMPLEMENTATION OVERVIEW

change directions – Generated mutant vector is always scaled to get a new weighted differ-
ence vector. Since ancestral vectors that are too old (like in earlier discussed strategy) tend
lead offspring in the wrong direction, idea was to mitigate this problem with stochastic use
of scaling factor, which can vary in the given range. Thus, even if there is a misdirection, it
is on smaller scale. This strategy produced good results on some of the difficult problems
as well, and with a good consistency. However, the number of problems it could optimise
were still less than half. It relied on the right combination of AUP and F (scaling factor).
best one to Anc one bin – This strategy stochastically switched between ancestral strategy
to generate difference vector and normal DE strategy utilising best cost producing vector.
This strategy produced better results on 8 problems and marked the next step in our strat-
egy exploration. The idea here was that DE’s normal strategy should be able to mitigate
the misdirection caused by "bad" ancestral vectors. Continuing in this direction and after
trying other various variants, target/1/bin was decided to be the strategy of choice.

Once the strategy was finalised, the next step was to find overall "good" values for all
the control parameters. This part of the project focused on experimenting with different
value ranges and combinations of parameter values. Experiments were carried out in an
attempt to exploit results documented in DE literature for AncDE. As AncDE introduced
two new parameters, sensitivity analysis of the algorithm to these parameters was inherent
part of this project.

Finally, we extended AncDE’s strategy to introduce multiple ancestors in to the mu-
tation process - a recent ancestor and an older ancestor. These should in theory support
the calculation of stochastic second order difference vectors that might further improve
convergence. The very initial work is briefly discussed in chapter 7.

4.2 Implementation Overview
We base our implementation of AncDE on the existing open source DE implementation
made available by Storn et al. on Differential Evolution website[27]. AncDE has been
implemented in both Java and C++ programming languages, and is made available as an
open source code base. Two versions are aimed to provide a suitable implementation for
practitioners’ who wish to use AncDE. We focus on the Java version of the algorithm, since
its structure is replicated in the C++ version.

Two main components of AncDE are its strategy module and the module which imple-
ments its main evolution loop. The strategy module is responsible for implementing our
new strategy, while the latter introduces ancestor replacement scheme, both introduced in
Chapter 3. Figure 4.1 shows an excerpt from the AncDETarge1Bin class which shows how
aup is utilised in the new strategy, AncDE/Target/1/Bin.

22

Chapter 4. Software Engineering - AncDE 4.2. IMPLEMENTATION OVERVIEW

public class AncDETarget1Bin extends AncDEStrategy {

...

while (counter ++ < dim) {
if ((deRandom.nextDouble () < Cr) || (counter == dim)) {

// ancestral usage criterion
if (deRandom.nextDouble () < aup) {

x[i] = x[i] + F * (ancG [0][i] - x[i]); // inter -generational
} else { // difference vector

x[i] = gen_best[i] + F * (g0[0][i] - g0[1][i]); // x1 - x2
}

}
...

Figure 4.1: AncDE/target/1/bin

As one can notice in listing 4.1, mutation is performed after the crossover criteria is
satisfied for the current trial vector. This, at first, seems somewhat contradicting to what
is presented in Chapter 3. For runtime efficiency purpose, however, the mutation step is
combined with the crossover step. From earlier discussions on trial vector generation in
Chapter 2 and 3, it is clear that mutant is a temporary vector, vi. Its goal is to provide
genetic information to the final trial vector, ui, produced as a result of binomial crossover.
In real-world applications, list of input parameters required for optimisation problems can
be large, resulting in large dimension vectors. Hence, rather than creating a large temporary
mutant vector for each target vector, differential mutation is performed only when crossover
is applicable for a j-th parameter. This optimisation avoids a need for creating such large
temporary vectors. In figure 4.1, resultant vector, x[i], is a trial vector generated once this
process is complete. Note that the criteria, counter == dim, makes sure that trial vector
gets at least one parameter from a mutant vector, irrespective of the crossover rate.

23

Chapter 4. Software Engineering - AncDE 4.3. DESIGN AND PUBLIC API

public double optimize () {

...

/* ---Apply the AncDE strategy -------------------*/

targetBin.apply(F, Cr, dim , trial , genbest , rvec , randVecAnc , aup);

testcost = cecProbs.eval(trial , dim , 1, this.current_func)[0];
evaluation ++;
// Better solution than target vectors cost ?
if (testcost <= cost[i]) {

// replace ancestor by soon to be an ancestor using arp:
if (deRandom.nextDouble () <= arp) {

ancG[i] = g0[i];
}

// put trial vector in new population
System.arraycopy(trial , 0, g1[i], 0, dim);

// and save the new cost value
cost[i] = testcost;

...
}

Figure 4.2: AncDE/target/1/bin

Figure 4.2 shows an excerpt from the AncDE kernel, controls the whole process of
optimisation; it implements the main evolutionary loop. It invokes the AncDE strategy
to produce new trial vectors for each (target) vector in the current population. For every
trial vector, the objective function is evaluated producing testcost that is compared against
the cost produced by the target vector, cost[i]. This is a prime criteria for deciding
who survives; the target vector or trial vector. If the target vector is getting discarded,
AncDE adds a caching criteria based on the arp replacement probability (as discussed in
Chapter 3), to decides whether to cache or not that target vector. Figure 4.2 represents
the implementation of equation 3.5 presented in Chapter 3. The AncDE kernel is also
responsible for maintaining the evaluations count, total number of generations that have
passed, monitoring if target has been reached or not, and the objective function instance
being optimised.

4.3 Design and Public API
AncDE is designed to be programmatically integrable in client applications and thus it ex-
poses a public API through that clients can configure and use for optimising their own ob-
jective functions. AncDE also integrates the IEEE CEC 2015 benchmark problem suite
on "bound constrained single-objective computationally expensive numerical optimisa-
tion"[11] for evaluation purpose.

24

Chapter 4. Software Engineering - AncDE 4.3. DESIGN AND PUBLIC API

AncDEStrategy
deRandom: AncDERan-
dom
apply(...) : void

AncDETarget1Bin

apply(...):void

AncDEKernel
- arp : double = 0.15
- aup : double = 0.30
- range: double = 75.0
- evaluation: long = 1500
- generation:long
- mincost:double = MAXVALUE
logger: Logger

optimize() : double
setObjectiveFunction(...):void
getAbsErrorValue(...):double

<<interface>>
IAncDEProblem

eval(...):double

Random

AncDERandom

setMySeed(seed:int)
nextValue(max:int)
nextValue(range:double)

CEC15Problems

cecProblems
1

deRandom
1

ancdeProblem
1

targetBin

1

Figure 4.3: AncDE Class Diagram

Fiugre 4.3 shows the class diagram for AncDE. This design employs a structure that is
similar to builder pattern[28]. With this structure a client can set its own objective function
for optimisation without having to know anything about the internal composition of the
other components. In order to use its own objective functions, a client needs to implement
the IAncDEProblem interface and provide a definition of the eval method.

<<interface>>
IAncDEProblem

eval(double[] vector, int dimension, Object... data):double

Figure 4.4: IAncDEProblem Interface

Figure 4.4 shows the method signature for eval. Its input parameter, vector, is a trial
vector that should be used to evaluate a client objective function. Optional data is provided
to meet unforeseen future requirements that client objective functions may have. Defining
IAncDEProblem as an interface rather than an abstract class is a design decision adhering
to Liskov substitution principle[29]. Client function need not be a behavioural subtype of
AncDE problem. At most, what can be expected from the client function is that it should
be able to perform the role of AncDE problem (by implementing the eval method).

AncDE also employs the strategy pattern to allow different embeddable and inter-
changeable strategies to be used with AncDE. The advantage of this design is that clients
who wish to use their own evolution strategy while utilising the ancestral replacement and
usage scheme provided by AncDE, can do so by extending the AncDEStrategy abstract
class and overriding its apply method. Default strategy for AncDE is AncDETarget1Bin,
and can be unset to a use newly defined strategy through the respective API.

The performance of AncDE has been evaluated on IEEE CEC 2015 optimisation bench-
mark. Hence, this benchmark has been integrated within AncDE application. This will also
serve to compare AncDE purpose of evaluating new strategies proposed in the future that
utilise ARP and AUP scheme of AncDE. Each instance of AncDEKernel can be configured

25

Chapter 4. Software Engineering - AncDE 4.4. DOCUMENTING ANCDE

to run on CEC problems or client specified problems. For this purpose AncDEKernel has
been built to provide multiple constructors each targeting a specific purpose.

Public API. Exposed public API allows a client to set its own objective function, the
values of all the control parameters, the number of evaluations to be performed, and any
known value to reach. Once configured for client problems, AncDE is designed to be
used subsequently as many times as the client wishes for different objective functions and
strategies. Configurations via setting and removing objective functions and strategies are
also made available through public API. A small walk-through example on using public
API is presented in the next section.

<?xml version="1.0" encoding="UTF -8" standalone="no"?>
<!DOCTYPE log SYSTEM "logger.dtd">
<log >
<record >

<date >2015 -04 -18 T20 :18:24 </date >
<millis >1429384704304 </ millis >
<sequence >0</sequence >
<logger >cs.nuim.ancde_logger </logger >
<level >INFO </level >
<class >cs.nuim.ancde.AncDEKernel </class >
<method ><init></method >
<thread >1</thread >
<message >IEEE CEC 2015, SS04 function: 7</message >

</record >
...

Figure 4.5: AncDE logging

Logging. AncDE maintains its own configuration trace for instantiation and config-
uration. Logging is employed using its own java.util.Logger instance with default
handler specified to write to ancde_log.log file on disk. This file consists of structured
(XML) trace at java.util.logging.Level.INFO level containing information related to
current configuration of AncDE and WARNING to SEVERE level messages to indicate any-
thing that has gone wrong while configuring AncDE prior to optimisation. A snapshot of
AncDE loggin is shown in figure 4.5.

4.4 Documenting AncDE
Documenting AncDE has two aspects. First, is to document information on AncDE param-
eter tuning, and other details associated with AncDE strategy, ARP and AUP. And second
is to document the software engineering aspect of AncDE. For parameter tuning and strat-
egy details, we have developed a "user guide" to provide practitioners all the information
required to use and tune AncDE. It also includes Design and implementation details neces-
sary for integrating AncDE into the client environment. Listing 4.6 is a small example of
integration walk-through that is also presented in the mentioned "user guide".

Source listing 4.6 shows a client that is using one instance of AncDE for optimising
IEEE CEC 2015 function seven and another for its own ChebychevT4 polynomial function.
This listing also shows the use of important public API that client needs to interact with.

26

Chapter 4. Software Engineering - AncDE 4.5. TESTING ANCDE

import cs.nuim.ancde.AncDEKernel;

/**
* AncDE client
* @author sawant
*
*/

public class AncDEClient {

public static void main(String [] args) throws Exception {

// AncDEKernel for IEEE CEC 2015 problems
new AncDEKernel (7, 30, 25, 0.6, 0.6).optimize ();

// give you flexibility of whatever type of file handler you want to add
Handler handler = new FileHandler("ancde_log.log");
SimpleFormatter formatter = new SimpleFormatter ();
handler.setFormatter(formatter);

// AncDEKernel for client specified objective functions
AncDEKernel optimizer = new AncDEKernel (55, 0.6, 06);
optimizer.setAncDELogLevel(Level.INFO);
optimizer.setAncDELogHandler(handler);
optimizer.setARP (0.15);
optimizer.setAUP (0.30);
optimizer.setObjectiveFunction(new ChebychevT4 (), 30);
optimizer.setRange (100);
optimizer.prepareToRun ();

//This check is important to see if we are ready to go or not
if (optimizer.isPrepared ()) {

optimizer.optimize ();
}

}
}

Figure 4.6: AncDE client in action

Source code documentation (Javadoc), provided along with the source code, documents all
details about AncDE methods and constructors.

4.5 Testing AncDE
The main input to AncDE are its control parameters, objective function, its dimension and
the maximum evaluation count. These are fed to AncDE either through constructors or
through setter methods. To ensure robustness of public interface, it has been unit tested
using equivalence partitioning technique. While boundary value analysis (BVA) would
have been more appropriate, most input parameters for AncDE are in a real domain. Since
boundary value analysis requires to identify next immediate number after a specified value
range of a parameter, such a guess would have to be made in the case of real numbers
when producing test cases. We prefer equivalence partitioning over BVA because any
value can be selected within a specified range when using this technique. After this basic
unit testing, we perform state testing to verify the correct behaviour of AncDE instance
to client specified operations and also to ensure that instance state is not corrupted due to

27

Chapter 4. Software Engineering - AncDE 4.5. TESTING ANCDE

wrong method invocations on the instance.

4.5.1 Input Parameter Analysis
Table 4.1 shows the valid value ranges for all input parameters for AncDE as mentioned in
the available source code documentation for AncDE.

No. Parameter Valid Range (as per Javadoc specification)

1 NP 8...500
2 F 0.0...Double.MAX_VALUE
3 CR 0.0...1.0
4 range 0.0...Double.MAX_VALUE
5 arp 0.0...1.0
6 aup 0.0...1.0
7 dimension 1...150
8 evaluation 1...Double.MAX_VALUE
9 objectiveFunction IAncDEProblem instance
10 cecFunc_count 1...15

Table 4.1: Valid value ranges for all input parameters

As metnioned earlier, clients are required to provide values within these ranges to An-
cDE through its programming interface. Hence, we employ equivalence partitioning tech-
nique such that for each real and discrete parameter there will be three test cases. First
one providing a value from the valid input range, second providing a value from the lower
invalid input range, and finally, one will provide a value from upper invalid input range.
These partitions for parameter, NP, are shown in table 4.2.

Parameter Range

NP
Integer.MIN_VALUE...7
8...500
501...Integer.MAX_VALUE

Table 4.2: Equivalence partitions for NP

4.5.2 JUnits
JUnit tests have been written for each input partition for individual parameters. To ensure
that instantiation and instance configuration works as per specification, test cases have been
written with different combinations of each parameter input partition values. The method
isPrepared is used to test that the AncDE instance produces an expected outcome. That is,
it should produce false for any invalid combination or configuration of input parameters.

28

Chapter 4. Software Engineering - AncDE 4.5. TESTING ANCDE

This method returns true only if AncDEKernel instance is properly configured, either for
the CEC problems or some client specified functions, and is ready to run optimisation. The
optimiser has been implemented in such way that the optimisation will not proceed until
all the configurations as checked by isPrepared has been satisfied. Sample test cases for
parameter, NP, are as shown in table 4.3.

Case Parameter Range Test
1*
2
3*

NP
Integer.MIN_VALUE...7
8...500
501...Integer.MAX_VALUE

EP-2
EP-1
EP-3

Table 4.3: Test cases for all public interfaces with NP as input parameter

In table 4.3, ∗ indicates error cases, and they are tested separately to avoid error hid-
ing[30]. Sample test data for test cases generated for NP is shown in table 4.4.

ID Test Cases
Covered

Inputs Expected Output
NP isPrepared

EP-1 2 55 true
EP-2 1* -55 false
EP-3 3* 655 false

Table 4.4: Test data for test cases in table 4.3.

Test case and test data for all the other control parameters have been generated using
this same method. For state testing we want to verify consistency of AncDE’s state when
invalid values are passed to it or invalid sequence of operations are invoked during its
instance configuration. Again, isPrepared method, along with other getter methods, is
used to verify the outcome of generated test cases. State testing is performed for all public
setter methods that facilitate client specific objective function optimisation.

AncDE Correctness. isPreperd method just acts as a gateway checkpoint before the
control is handed down to the optimiser. However, validity of isPrepared and the main
method, optimise, that encompasses the AncDE algorithm, is not checked by the above
tests cases. Also, as discussed in Chapter 2, results generated by stochastic algorithms are
not cloneable. Hence, to test the correctness of AncDE algorithm we have to apply it to
some optimisation problem whose global optimum is known and it can be reached by DE.
Since results produced are real values, standard equality specified to allow error is 0.001,
advocated by IEEE CEC. With this approach we are sure that the global optimum of that
specific problem can be reached.

We decided to implement Matyas Function [31] for testing AncDE’s correctness. It is
considered as one of the artificial landscape1 created to test optimisation algorithms. To
ensure AncDE’s consistency, the test has been written to execute 50 times, while verifying
that each time AncDE reaches to the global optimum or not. Therefore, if AncDE passes
this test, it shows that AncDE implementation is correct.

1An artificial landscape term refers to the artificial optimisation problem created for testing purpose.

29

Chapter 4. Software Engineering - AncDE 4.6. ANCDE APPLICATION

4.6 AncDE Application
Like other variants proposed to improve over DE, AncDE has also been evaluated over
benchmark problems provided by IEEE Congress on Evolutionary Computing (CEC) –
specifically, the "Problem Definition and Evaluation Criteria for CEC 2015 Special Ses-
sion and Competition on Bound Constrained Single-Objective Computationally Expensive
Numerical Optimisation"[11]. To facilitate our experiments and evaluation, the original
DE application with graphical user interface (GUI) has been adopted and modified to im-
plement AncDE. GUI for existing DE application provides an input panel for setting all
required control parameter. We have restructured this control panel to include arp and aup
values. It is a multi-threaded environment and has been updated to produce datasets as per
IEEE CEC 2015 specification [11]. This update makes data produced from multiple runs
available in a matrix format that is then used for subsequent data analyses. Required format
for CEC is shown in table 4.5.

0.01 x MaxFES 0.02 x MaxFES ... MaxFES
Run 1
Run 2
...
Run 20

Table 4.5: Information matrix for IEEE CEC 2015 problems

Figure 4.7: AncDE user interface

Figure 4.7 shows a snapshot of the AncDE application. Currently IEEE CEC 2015

30

Chapter 4. Software Engineering - AncDE 4.7. CONCLUSION

benchmark suite is integrated with this application, and the 15 problems from this bench-
mark can be individually set as the objective problem through the GUI. We do not discuss
updates and modifications to this application in further detail (such as, updated GUI or new
dataset producing mechanism), even though they have been made for this thesis. This is
due to the fact that they were developed as by-products to facilitate the main task: exper-
imenting and evaluating AncDE. Also, original DE application (last updated in, 1999) is
available on DE website[27], and this was the starting point for AncDE application.

4.7 Conclusion
This chapter covered software engineering aspect of the thesis. We discussed all software
development related activities performed for this project. Of the important areas, we fo-
cused on the design, documentation and testing of AncDE. We also discussed essential
contents of the user manual that will be made available to its users.

31

CHAPTER 5

Experimental Setup

This chapter presents an experimental setup used to evaluate AncDE. The benchmark test
suite provided by IEEE CEC 2015 is represented here to discuss the method prescribed by
CEC to generate and record results on the given benchmark. The chapter concludes with
details on the execution environment used for performing numerical experiments in this
thesis.

5.1 Objective Functions
All optimisation problems have at least one global optimum and may have multiple local
optima.

Figure 5.1: function with multiple local optima and one global optimum

Figure 5.1 shows a sample function with multiple local optima. Generally, f (x∗), de-
notes the function value at the global optimum point1. These objective functions consist of

1Note that in our case global optimum refers to global minimum of the objective function – discussed in

32

Chapter 5. Experimental Setup 5.2. IEEE CEC 2015 BENCHMARK

various characteristic properties. Based on these properties, objective functions are divided
into different categories. Of the many properties, modality is of prime importance to us;
functions representing optimisation problems are categorised on this property.

Modality. A function is said to be unimodal if there is a path from each point x to
its optimal solution point x∗ along which the function is monotonous. In all other cases,
function is multimodal. In general, from statistics point of view, mode refers to the value
that tend to appear most of the times in a dataset. In case of multimodal, it is then said to be
processing more than one modes. Figure 5.1 is an example of multimodal function, while
figure 5.2 shows a unimodal function.

Figure 5.2: Simple continuous unimodal function

5.2 IEEE CEC 2015 Benchmark
Benchmark provided by IEEE CEC is considered as a prime source for evaluating variants
of DE and other optimisation algorithms. It consists of expensive optimisation problems
that try to simulate many real world problems. Generally, this benchmark tries to cover
various kinds of optimisation problem properties that a real world problems tend to have.
Hence, it consists of objective functions that are simple to optimise to various combinations
of basic functions that make these functions increasingly difficult to optimise. At the time
of development of AncDE, the 2015 version of the CEC benchmark[11] became available
and AncDE has been evaluated on this latest benchmark.

Chapter 2

33

Chapter 5. Experimental Setup 5.2. IEEE CEC 2015 BENCHMARK

Categories No Functions Related basic functions F∗

Unimodal
functions

1 Rotated Bent Cigar Function Bent Cigar Function 100
2 Rotated Discuss Function Discuss Function 200

Simple
Multimodal
functions

3 Shifted and Rotated Weierstrass Function Weierstrass Function 300
4 Shifted and Rotated Schwefel’s Function Schwefel’s Function 400
5 Shifted and Rotated Katsuura Function Katsuura Function 500
6 Shifted and Rotated HappyCat Function HappyCat Function 600
7 Shifted and Rotated HGBat Function HGBat Function 700

8
Shifted and Rotated Expanded Griewank’s
plus Rosenbrock’s Function

Griewank’s Function
Rosenbrock’s Function 800

9
Shifted and Rotated Expanded Scaffer’s F6
Function Expanded Scaffer’s F6 Function 900

Hybrid
functions

10 Hybrid Function 1 (N=3)
Schwefel’s Function
Rastrigin’sFunction
High Conditioned Elliptic Function

1000

11 Hybrid Function 2 (N=4)

Griewank’s Function
WeierstrassFunction
Rosenbrock’s Function
Scaffer’s F6 Function

1100

12 Hybrid Function 3 (N=5)

KatsuuraFunction
HappyCat Function
Griewank’s Function
Rosenbrock’s Function
Schwefel’s Function
Ackley’s Function

1200

Composition
functions

13 Composition Function 1 (N=5)

Rosenbrock’sFunction
High Conditioned Elliptic Function
Bent Cigar Function
Discus Function
High Conditioned Elliptic Function

1300

14 Composition Function 2 (N=3)
Schwefel’sFunction
Rastrigin’s Function
High Conditioned Elliptic Function

1400

15 Composition Function 3 (N=5)

HGBatFunction
Rastrigin’s Function
Schwefel’s Function
Weierstrass Function
High Conditioned Elliptic Function

1500

Table 5.1: IEEE CEC 2015 expensive optimisation test problems

Table 5.1 summarises all fifteen continuous expensive optimisation problems included
in CEC 2015 benchmark. First eight problems are composed from fundamental optimi-
sation problems by shifting their global optimum. Problems belonging to hybrid category
simulate the real world situation where different subset of variables can have different prop-
erties. In this category, variables are randomly divided into various subsets and then basic
functions that constitute to the hybrid function are used on individual subsets. On the other
hand, composition functions merge the properties of all the sub-functions and maintain the
continuity around the optima of a composed function. N, in case of hybrid and composition
functions, denotes the number of basic functions used as sub-functions. As usual, F∗ in the
last column denotes the known global optimum for each function.

34

Chapter 5. Experimental Setup 5.3. RECORDING DATA

5.2.1 Experimental Setting
With the standard benchmark suite, IEEE CEC also specifies evaluation criteria and rules to
produce datasets, under the experimental settings section of the benchmark specification.
Benchmark problems are defined for 10D (10 dimensions) and 30D (30 dimensions) by
CEC 2015 organisers. Hence, the algorithm is evaluated for both 10D and 30D individually.
Result data is always to be collected from 20 independent runs performed for each problem.
MaxFES (Maximum number of function evaluations) are restricted to 500 for problems
with 10D runs and 1500 for functions with 30D runs.

This criteria essentially tests algorithm’s convergence ability. If an algorithm has a
faster convergence than DE, it should produce better results at the end. From an analytical
perspective, how an algorithm progresses towards the convergence is also taken into ac-
count. That is, we want to know whether an algorithm gets caught in local optima or not.
If it does, one may try to tune control parameters for that algorithm. With such trial-and-
error experiments “overall good” values for all control parameters, for specific optimisation
problem, are determined. Finding universal good values is a non-trivial task and has been
subject of research on its own, as discussed in chapter 1 and 2.

For this thesis we provide two sets of values, one for 10D and one for 30D, that produce
overall acceptable results for 15 optimisation problems in the benchmark. This indicates
that if AncDE produces better results for a particular problem with these settings, then its
performance can be further improved by tuning control parameters for that problem.

5.3 Recording Data
Current best function values. For analysis purpose, each algorithm’s convergence rate
is recorded after specific number of function evaluations, based on its dimensions. As
specified by CEC, we record best function values obtained after 0.01 ×MaxFES, 0.02 ×
MaxFES, ..., 0.1 ×MaxFES, 0.2 ×MaxFES, ..., MaxFES for each individual run (i.e. at
1%, 2%, 3%...of the total function evaluations). Finally all such data on 20 individual runs
is collected together in a local matrix2 for analysis. Collected dataset includes best, worst,
mean, median, and standard deviation values for 20 runs.

Algorithm Complexity. Again, IEEE CEC advocates on how to judge the efficiency of
algorithms for expensive optimisation problems. A pseudo evaluation function, shown in
figure 5.3, is provided for benchmarking running time of an algorithm. One needs to run
and record its running time within the same execution environment used for DE variant3.

2By local matrix we mean the matrix generated for collecting data on 20 individual runs for a single
optimisation problem.

3Note: although this competition was held in late May 2015, final results of the competition were not
available at the time of submitting this thesis.

35

Chapter 5. Experimental Setup 5.4. EXECUTION ENVIRONMENT

public class CecRtFunction {

public static void main(String [] args) {

compute ();
}

private static void compute () {

double x = 0;
final long startTime = System.currentTimeMillis ();
for (int i = 0; i < 1000000; i++) {

x = 0.55 + ((double) i);
x = x + x;
x = x / 2;
x = x * x;
x = Math.sqrt(x);
x = Math.log(x);
x = Math.exp(x);
x = x / (x + 2);

}
final long endTime = System.currentTimeMillis ();
System.out.println("Total execution time: " + (endTime - startTime));

}

}

Figure 5.3: CEC baseline for comparing runtime efficiency of algorithms

The complexity of the competing algorithm for each function is then measured by:
T 1/T 0. Where, time taken by function in 5.3 is T 0, and time taken by the algorithm for an
individual problem is T 1. We shall present all results in the next chapter.

5.4 Execution Environment
As mentioned in earlier chapters, evolutionary algorithms are non-deterministic, so their re-
sults not cloneable. Hence, the execution environment used for evaluation has to discussed
for completeness.

All numerical experiments for this thesis were performed on a computer with Intel®

CoreTM i7-3520M CPU @ 2.90GHz × 4 and 16 GB RAM, under Ubuntu 14.04 LTS, 64-
bit OS. The implementation of AncDE was primarily done in Java, using Java development
kit (JDK) version 1.7. Note that the results presented in this work were generated using
Java 1.7 and its native pseudo random number generator (PRNG). Because of changes to
the PRNG algorithm in Java 1.8, the results generated using AncDE on newer versions of
Java will be different.

5.5 Conclusion
This chapter presented the test-bed used for evaluating the algorithm. We enumerated all
optimisation problems provided by CEC 2015 and discussed some important properties of
these problems. We also discussed method prescribed by CEC to carry out experiments in

36

Chapter 5. Experimental Setup 5.5. CONCLUSION

order to evaluate algorithms. We concluded this chapter with the description of execution
environment used to carry out these experiments. In the next chapter we present results and
the evaluation of AncDE.

37

CHAPTER 6

Algorithm Evaluation

This chapter presents evaluation of AncDE primarily through comparative analysis of re-
sults obtained from AncDE, DE, and ArpDE. Method prescribed by IEEE CEC is primarily
used to evaluate these algorithms. We also use statical techniques to provide better a under-
standing of these results. The chapter concludes with sensitivity analysis of the algorithm
to variant in ARP and AUP control parameters, and discuss benefits and limitations of
AncDE.

6.1 Evaluation
Evaluation is major part of this thesis as new algorithms should show that they produce
better results than DE. Note that our goal for this thesis is not to win over other techniques
discovered, but to improve on DE. We want to see fundamental improvement to the original
algorithm, with as minimal changes as possible. Implication is that other techniques can
utilise this change in DE to improve themselves further.

6.1.1 Comparative Analysis: AncDE vs DE
Adopting the method prescribed by IEEE CEC, results were collected for individual prob-
lems in the benchmark suite. We use boxplots to present comparative analysis between
AncDE and DE. Boxplots, traditionally used in descriptive statistics, depicts groups of data
through their quartile. Therefore, they are more suggestive and precise for our comparative
analysis.

The box indicates the quartile range from 25% to 75% with the horizontal line in be-
tween indicating the median result. The “notch” indicates the confidence interval around
the median – so if two boxes’ notches do not overlap this often indicates the “strong ev-
idence” that their medians differ. The upper and lower whiskers adding/subtracting 1.5
times the interquartile range and finally, possible outliers are indicated by unfilled circles.

38

Chapter 6. Algorithm Evaluation 6.1. EVALUATION

39

Chapter 6. Algorithm Evaluation 6.1. EVALUATION

40

Chapter 6. Algorithm Evaluation 6.1. EVALUATION

Figure 6.1: Box plots for AncDE and DE for 15 CEC benchmark problems

Figure 6.1 shows that AncDE is far better than DE for some of the problems, such
as problem 1, 6, 7, 8, and 13. Similarly, AncDE is reasonably better than DE for other
problems, such as problem 3, 4, 15. In the remaining problems (5,9,11,12, and 14) AncDE
wins or looses only by a minuscule difference. Finally, problem 2 and 10 are the only
instances where AncDE performs far worse than DE. These results strongly suggest that
AncDE preforms better than DE. Note that, if we consider problems for which difference is
minuscule as a "tie", then DE wins over AncDE only in two problems. It also suggests that
when AncDE is not performing better than DE, it is as good as DE. Therefore these results
also indicate that the controlled introduction of ancestors do not impede the convergence
process.

The idea of ancestors helping in convergence seems counter intuitive at first, as ances-
tors produce values which are not better than values produced by current vectors. However,
form the search space point of view, occasionally generated inter-generational difference
vectors can probably help AncDE to escape local optima and stagnation.

Local optima can possibly be avoided by making big jumps (at the right time) towards
global optimum and avoiding to be directed towards local optima. On the other hand, as

41

Chapter 6. Algorithm Evaluation 6.1. EVALUATION

explained by Lampinen et al. [9], stagnation occurs when vectors in the current genera-
tion and starts producing identical offspring vectors during optimisation process. When
such a situation occurs, no progress is made towards the global optimum even though the
vector population is diverse and is not caught up in local optima. AncDE can escape stag-
nation situation with high probability by using ancestral vectors which are guaranteed to
be different than the current generation by the virtue of the algorithm itself.

6.1.2 Comparative Analysis: Population Size
It is important to take into consideration the population size with which algorithms produce
better results. After all, the more vector population is required, the more function evalu-
ations are performed per generation. Algorithms requiring larger population size can face
scalability problem when optimisation problems are costly. Therefore, it is apt to evaluate
algorithm’s capability on small population size (NP).

Wilcoxon Test.We compared the performance of the two algorithms using a Wilcoxon
Matched Pairs Signed Rank test [32] on the mean result produced for each of the 15 prob-
lems, for these small population tests using NP=8. The small population AncDE signif-
icantly outperformed the small population DE algorithm (V=117; p<0.005; two tailed).
This proves that under these conditions adding the ancestral cache significantly improves
the quality of results produced on these challenging and diverse problems.

6.1.3 Comparative Analysis: CEC Method
IEEE CEC 2015 specified its own method to evaluate algorithm performance. It requires a
global matrix representing all 15 benchmark problems. From the produced local matrix, as
explained chapter 5, best, worst and mean cost of all twenty runs, along with median, and
standard deviation, is recorded in the a global matrix. For example, the best cost recorded
in the global matrix gives the best result achieved by the algorithm from all of the twenty
best values recorded in local matrix at MaxFES (i.e. after 1500 or 500 evaluations based
on 30D or 10D). There are total two global matrix generated this way; one is for 10D and
on for 30D. As per the CEC method then mean values and median values obtained by each
algorithm on all 15 problems for 10D and 30D is summed up as the final score as shown in
equation 6.1.

Total score :=
15

∑
i=1

mean(f ∗) |D=10 +
15

∑
i=1

mean(f ∗) |D=30 +
15

∑
i=1

median(f ∗) |D=10 +
15

∑
i=1

median(f ∗) |D=30 (6.1)

CEC use this method to compare algorithms as shown in table 6.1. It shows results
achieved for AncDE and DE using CEC method. With this method as well AncDE turns
out to be better than DE, again due to the fact that for some optimisation problems, when
AncDE is better in results with DE, its result is far more better than DE. Similarly, when
DE won over AncDE, it did so by very small difference.

For 10D optimisation problems AncDE produces better results for 13 problems out of
15. That is, AncDE outperforms DE 86.87% of the times for 10D problems. Similarly,
for 30D optimisation problems, AncDE shows overall improvement by producing better
results for 11 problems out of 15. That is, in case of 30D problems, AncDE is better than
DE 73.34% of the times.

42

Chapter 6. Algorithm Evaluation 6.1. EVALUATION

Similar experiments were carried out on IEEE CEC 2013 benchmark[33] because they
are defined for 50D and 100D as well. Comparative analysis on these larger problems
showed that AncDE was better than DE 73.34% of the times. We do not present experi-
ments for CEC 2013 benchmark here due to space restrictions, but the results are added in
the appendix.

Functions AncDE Mean AncDE Median DE Median DE Mean
5.21E+008 4.45E+008 1.11E+010 1.24E+010
1.18E+005 1.15E+005 6.25E+004 6.37E+004
2.67E+001 2.59E+001 2.74E+001 2.80E+001
6.78E+003 6.81E+003 7.68E+003 7.77E+003
4.24E+000 4.27E+000 4.27E+000 4.30E+000
5.89E-001 5.58E-001 2.78E+000 2.76E+000
5.77E-001 5.43E-001 2.21E+001 2.15E+001
4.48E+002 2.43E+002 3.32E+004 1.07E+005
1.38E+001 1.38E+001 1.38E+001 1.38E+001
1.81E+007 1.83E+007 1.44E+006 2.45E+006
4.24E+001 3.42E+001 3.84E+001 5.37E+001
1.37E+003 1.33E+003 1.23E+003 1.14E+003
3.68E+002 3.66E+002 4.51E+002 4.69E+002
2.71E+002 2.66E+002 2.45E+002 2.51E+002

30D

9.71E+002 9.53E+002 1.05E+003 1.04E+003
1.78E+007 8.84E+006 3.29E+008 4.33E+008
3.53E+004 3.78E+004 1.93E+004 2.82E+004
5.73E+000 5.84E+000 7.77E+000 7.64E+000
1.63E+003 1.66E+003 1.95E+003 1.99E+003
2.60E+000 2.66E+000 2.58E+000 2.75E+000
5.50E-001 5.55E-001 1.02E+000 9.93E-001
6.35E-001 5.34E-001 1.81E+000 2.27E+000
6.26E+000 6.32E+000 1.23E+001 5.25E+001
3.97E+000 3.93E+000 4.08E+000 4.05E+000
2.62E+005 1.98E+005 8.02E+004 1.94E+005
6.65E+000 6.39E+000 6.78E+000 7.76E+000
2.24E+002 2.18E+002 2.80E+002 2.79E+002
3.25E+002 3.24E+002 3.29E+002 3.32E+002
2.04E+002 2.03E+002 2.06E+002 2.07E+002

10D

3.59E+002 4.06E+002 4.09E+002 3.68E+002
∑

15
i=1 5.57E+008 4.73E+008 1.14E+010 1.28E+010

Table 6.1: Comparison with CEC method. First two columns show mean and median values
obtained using AncDE on each of the 15 problems (10D first 15 and 30D remaining).
Similarly last two columns are for DE. Score indicates application of formula stated in
equation 6.1.

These results clearly shows that an ancestral extension to standard DE does have pos-
itive influence on the evolution process. For completeness, to match exactly with CEC
evaluation method (as stated in 6.1), results obtained at the end of the table 6.1 for simply
needs to be added (first two columns and last two columns) and compared; this does not
change the result we see in the table however.

43

Chapter 6. Algorithm Evaluation 6.1. EVALUATION

6.1.4 Algorithm Efficiency
As described in chapter 5, data to analyse computational complexity in the table 6.2 is
generated by executing algorithm on each function and then dividing its runtime by the
runtime of baseline function provided by CEC (presented in chapter 5).

Function AncDE-T1/T0 DE-T2/T0
1 2.0763888889 2.0555555556
2 1.9652777778 1.9305555556
3 1.9652777778 1.9583333333
4 2.125 2.125
5 3.3263888889 3.3194444444
6 2.0347222222 2.0138888889
7 1.9513888889 1.9513888889
8 2.1597222222 2.1527777778
9 2.0208333333 1.9861111111
10 2.2638888889 2.2638888889
11 3.5 3.5
12 2.7777777778 2.7777777778
13 3.7777777778 3.75
14 3.4097222222 3.3888888889
15 9.9791666667 9.9583333333

Table 6.2: Computational complexity of both AncDE and DE. T0 denotes CEC baseline
function, T1 denotes AncDE algorithm, and T2 denotes DE algorithm

Table 6.2 shows that computational complexity of AncDE is almost equivalent to the
standard DE algorithm. The only overhead AncDE has to bear in computation is that of
maintaining one extra cache and switching between strategies. As AncDE does add any
extra computations in the process, such as local search or learning mechanisms, it stays
lightweight as original DE, moreover, produces relatively better results.

Up to this point, our claim about convergence improvement due to occasional intro-
duction of ancestors is valid. We stated that one of the reasons of this improvement is the
faster exploration of search space by generating high magnitude difference vectors. Similar
mechanism is utilised by ArpDE1. Therefore, next we compare ArpDE and AncDE, and
observe that AncDE produces better results than ArpDE.

6.1.5 Comparative Analysis: ArpDE and AncDE
Using the same CEC method we can compare results achieved by AncDE and ArpDE.
Similar global matrices as mentioned in previous section are generated for ArpDE as well.
We present such comparison on 30D problems only.

As discussed in chapter 2 and 3, there are two prime differences between AncDE and
ArpDE – 1. AncDE algorithm makes sure that ancestors are at least one generation old.
No such guarantees can be made in case of ArpDE. Hence, AncDE is relatively better than
ArpDE when it comes to stagnation characteristic (discussed later in the next subsection).

1Discussed in Related Works section of Chapter 2

44

Chapter 6. Algorithm Evaluation 6.2. SENSITIVITY ANALYSIS: ARP AND AUP

2. AncDE has a completely different mutation strategy. It utilises target vector itself to
produce mutant vector. Mutation scheme also switches between DE’s Best/1/bin and Tar-
get/1/bin. On the other hand, ArpDE always utilises Best/1/bin strategy with one vector
from ancestral generation.

Function AncDE Mean AncDE Median ArpDE Mean ArpDE Median
1 5.21E+008 4.45E+008 1.65E+010 1.55E+010
2 1.18E+005 1.15E+005 9.76E+004 9.34E+004
3 3.27E+002 3.26E+002 3.28E+002 3.28E+002
4 7.18E+003 7.21E+003 8.06E+003 8.17E+003
5 5.04E+002 5.04E+002 5.04E+002 5.05E+002
6 6.01E+002 6.01E+002 6.03E+002 6.03E+002
7 7.01E+002 7.01E+002 7.32E+002 7.30E+002
8 1.25E+003 1.04E+003 1.61E+005 1.07E+005
9 9.14E+002 9.14E+002 9.14E+002 9.14E+002
10 1.81E+007 1.83E+007 2.73E+006 2.28E+006
11 1.14E+003 1.13E+003 1.16E+003 1.15E+003
12 2.57E+003 2.53E+003 2.05E+003 1.98E+003
13 1.67E+003 1.67E+003 1.79E+003 1.80E+003
14 1.67E+003 1.67E+003 1.66E+003 1.66E+003
15 2.47E+003 2.45E+003 2.60E+003 2.60E+003
∑

15
i=1 5.39E+008 4.64E+008 1.65E+010 1.55E+010

Table 6.3: Comparison with CEC method: AncDE vs ArpDE. Problems for which AncDE
is better is marked with green.

Table 6.3 shows that overall performance of AncDE is better than ArpDE. Problems
where AncDE performs better than ArpDE are marked in green color in the table. AncDE
outperforms ArpDE 11 times out of the 15, that is 73.34% of the times. This result suggests
that AncDE is a notable improvement over ArpDE. This completes our formal evaluation
AncDE for this thesis.

6.2 Sensitivity Analysis: ARP and AUP
AncDE’s performance depends heavily on ARP (ancestor replacement probability) and
AUP (ancestor usage probability). Right values for these two control parameters play im-
portant role in convergence rate of the algorithm. We have to evaluate algorithm’s perfor-
mance against various combinations of these two values to find a "good pair". For this
thesis we have limited our exploration range to, ARP values 0.05, 0.15 and 0.3, and AUP
values 0.1, 0.3, and 0.5. The matrix formed from combinations of ARP and AUP for each
of the 15 optimisation problems is then used to analyse the sensitivity of the algorithm to
these pairs.

For rigours evaluation of each ARP-AUP value combination, best cost produced for
each cell in the matrix is collected from average of 20 individual runs of the algorithm with
each combination.

We have to freeze other control parameter values while evaluating ARP and AUP. From
our experiments, similar to the ones carried out for finding AUP and ARP, good values

45

Chapter 6. Algorithm Evaluation 6.2. SENSITIVITY ANALYSIS: ARP AND AUP

discovered for other parameters are: N=25, F=0.6, CR=0.6 and Range=75.
We do not present experiments performed for these control parameters as they are not

newly introduced for AncDE, and extensive literature is available on finding acceptable
values for them2.

In case of ARP-AUP pair, to provide a clearer idea (using less space) on what can be
relatively good values, one matrix is presented for each set of problems having similar
properties, rather than matrices for all problems.

ARP
0.05 0.15 0.3

AUP
0.1 6.21E+008 7.30E+008 7.50E+008
0.3 6.56E+008 6.26E+008 6.59E+008
0.5 1.82E+009 1.67E+009 2.35E+009

Figure 6.2: Sensitivity analysis for unimodal functions. Table shows best costs produced
with each pair of ARP and AUP.

ARP
0.05 0.15 0.3

AUP
0.1 1.60E+003 1.77E+003 2.02E+003
0.3 1.46E+003 1.18E+003 1.35E+003
0.5 1.73E+003 1.76E+003 2.12E+003

Figure 6.3: Sensitivity analysis for simple multimodal functions. Table shows best costs
produced with each pair of ARP and AUP.

2Please refer to Chapter 2 for more details on this.

46

Chapter 6. Algorithm Evaluation 6.3. DISCUSSION

ARP
0.05 0.15 0.3

AUP
0.1 9.14E+002 9.14E+002 9.14E+002
0.3 9.14E+002 9.14E+002 9.14E+002
0.5 9.14E+002 9.14E+002 9.14E+002

Figure 6.4: Sensitivity analysis for hybrid functions. Table shows best costs produced with
each pair of ARP and AUP.

ARP
0.05 0.15 0.3

AUP
0.1 2.64E+003 2.59E+003 2.58E+003
0.3 2.47E+003 2.47E+003 2.52E+003
0.5 2.39E+003 2.39E+003 2.43E+003

Figure 6.5: Sensitivity analysis for composition functions. Table shows best costs produced
with each pair of ARP and AUP.

Figures 6.2, 6.3, 6.4, and 6.5 show that overall good values are: ARP=0.15 and AUP=0.3.
That is, when ancestor replacement rate is 15% and usage rate is 30%, AncDE tends to have
relatively better convergence rate. As mentioned earlier, we have crossover fixed to 0.6 and
NP to 25.

An effect of higher crossover rate is that there is a high probability that AncDE’s inter-
generational mutation scheme will initiate. Also, with small population size, there are more
evolution loops, and more generations are tried out with ancestors. As a result, we can see
from convergence plots that AncDE progresses either better than DE or as good as DE,
with less frequency to stagnate or get caught in local optima. However, we can say that this
analysis is still limited by the matrix size we have selected. Due to time limitations, it is
the part of the future work to analyse more exhaustive ranges for all control parameters.

6.3 Discussion
After presenting the evaluation of AncDE, it is apt to put together advantages and disad-
vantages of using AncDE. Question arises when one can use AncDE instead of using DE.

47

Chapter 6. Algorithm Evaluation 6.3. DISCUSSION

And how one can decide that the results obtained with AncDE are better than he/she could
have achieved with DE. We discuss these questions in this section.
Advantages of AncDE:

� AncDE is applicable in all the instances where DE is.

� There is no performance hit in using AncDE instead of DE.

� AncDE requires relatively smaller vector population size to achieve competitive or
better results than DE

� AncDE can stagnate relatively less frequently than DE

� Exploration capability of AncDE is relatively better than DE’s

Limitations of AncDE. By introducing changes to the original algorithm we also create
some drawbacks. In cases where these drawbacks cannot be ignored, using DE is the right
choice.

� AncDE needs to store extra cache, along with current population.

� AncDE introduces to more new control parameters; AUP and ARP.

� Naively setting new control parameter values can result in AncDE producing worst
results than DE.

� Similar to original DE, AncDE can only be applied to problems with continuous
parameters. Extending AncDE to be applicable to discrete optimisation problems is
considered as a probable future work.

� AncDE is not all the time better than DE. Results show that it is 73% of the times
better, that is 11 out of 15. In earlier section we have also observed that DE performs
far better than AncDE on problem 10 of CEC 2015 benchmark.

So when one can use AncDE? Since these are randomised algorithms, this question is of
prime importance. With our experiments it has been observed that AncDE produces ac-
ceptable results with population of 25. This is true even for the higher dimension problems
from IEEE CEC 2013[33]. Hence, appropriate approach to decide whether to use AncDE
or not would be to:

1. perform at least 5 independent runs of AncDE with NP=25

2. similarly perform same number of independent runs of DE with its best know con-
figuration for the given type of problem.

3. From the gathered data if it is evident that AncDE is producing competitive or better
results, then use AncDE.

This is because one can always improve results produced by the algorithm by further tuning
control parameters for that specific problem.

48

Chapter 6. Algorithm Evaluation 6.4. CONCLUSION

6.4 Conclusion
This chapter presented evaluation of AncDE algorithm using benchmark problems pro-
vided by IEEE CEC 2015. We showed AncDE performs better than DE with various com-
parative analyses and CEC method. We then presented convergence analysis to discuss
how AncDE has less tendency to stagnate or get caught in local optima. We also presented
ARP and AUP sensitivity analysis. This analysis showed that ARP=0.15 and AUP=0.3
along with small population and high crossover increases AncDE’s performance. Finally,
we concluded with summarising advantages and disadvantages of AncDE.

49

CHAPTER 7

Future Work

This chapter presents discussion on probable future work considering introduction of more
than one ancestral vectors in optimisation process. We also discuss how currently limited
analysis due to time constraints can be extended to cover larger data sets.

7.1 Multiple Ancestors
In this thesis we have shown that better results can be achieved with controlled introduction
of ancestral vectors. It would be interesting to investigate whether these results can be
further improved by introducing more than one ancestral vectors during mutation. Some
experiments were carried out in this direction, but due to limited time further exploration
was considered as part of the future work.

This involves two ancestral caches and finding the right strategy that can accommodate
more than one ancestral vectors along with the same number of normal vectors. Same
number of normal vectors constraint is essential to generate guaranteed inter-generational
difference vectors. Of course, the more number of ancestral vectors used, the more num-
ber of difference vectors should be produced. The strategy then should utilise all such
difference vectors, along with the base vector, to produce final mutant vector.

This task is non-trivial, since such a strategy can be discovered only with exhaustive
experiments, like the one presented in this thesis. After finding the right strategy, its sensi-
tivity to ARP and AUP needs to be analysed to find the best value combination for the new
algorithm, again similar to the one presented in this thesis.

7.2 Extending Current Analysis
Due to time constraints, we have constrained our analysis in this thesis to limited ranges on
control parameter values. Therefore, this analysis needs to be extended beyond this point.

50

Chapter 7. Future Work 7.3. ANCDE FOR DISCRETE OPTIMISATION

On the other hand, benchmark provided by CEC is not defined for more than 30 di-
mensions, hence our analysis was also limited to 30 dimensions. Given enough time, same
benchmark can be implemented to have more than 30 dimensional problems. Results ob-
tained on higher dimension can provide more insights on how AncDE’s ancestral mutation
strategy performs.

Similarly, current analysis is restricted to limited combinations of control parameter
values, including ARP and AUP. This constitutes one more direction to explore. Similar
to DE, AncDE is also sensitive to optimisation problem properties and values of its con-
trol parameters. Experiments with extended ranges of parameter values can provide more
information on how parameters can be tuned for specific class of optimisation problems.

7.3 AncDE for Discrete Optimisation
Recently DE has been extended to work on discrete optimisation problems[34]. These are
the problems that have only integer parameter vectors as their input. Since AncDE is a
direct extension of standard DE, it can also be extended to operate on discrete optimisation
problems. It would be interesting to investigate how AncDE performs on such problems
relative to discrete version of DE.

7.4 Conclusion
This chapter presented probable future work that can be carried out basing on the work
presented in this thesis. We discussed to specific directions for the future work. First is to
introduce multiple ancestral vectors in the optimisation process and measure their influence
on convergence. Second one is to extend the analysis presented in this thesis to include
large value ranges on control parameters and also to experiment with higher dimensional
problems.

51

APPENDIX A

CEC 2013 Results

Comparison results for higher dimension problems from CEC 2013.

Function AncDE Mean AncDE Median DE Mean DE Median
1 6.14E+003 5.19E+003 4.71E+004 4.61E+004
2 4.95E+008 4.71E+008 3.71E+008 3.70E+008
3 1.51E+011 1.60E+011 1.56E+012 3.05E+011
4 1.85E+005 1.92E+005 1.32E+005 1.31E+005
5 4.79E+002 4.35E+002 8.74E+003 8.00E+003
6 -2.58E+002 -3.72E+002 2.47E+003 2.37E+003
7 -5.46E+002 -5.51E+002 4.86E+001 -3.24E+002
8 -6.79E+002 -6.79E+002 -6.79E+002 -6.79E+002
9 -5.21E+002 -5.20E+002 -5.36E+002 -5.38E+002
10 1.23E+003 1.28E+003 5.31E+003 5.25E+003
11 1.69E+002 1.67E+002 4.12E+002 3.91E+002
12 3.40E+002 3.43E+002 5.84E+002 5.41E+002
13 4.60E+002 4.43E+002 8.14E+002 7.72E+002
14 1.47E+004 1.46E+004 1.41E+004 1.42E+004
15 1.60E+004 1.61E+004 1.61E+004 1.61E+004
∑

15
i=1 1.52E+011 1.60E+011 1.56E+012 3.05E+011

Table A.1: AncDE vs DE with CEC 2013 Benchmark Problems: 50D

52

Chapter 7. Future Work

Function AncDE Mean AncDE Median DE Mean DE Median
1 1.72E+004 1.19E+004 1.56E+005 1.54E+005
2 3.06E+008 2.82E+008 3.35E+009 3.21E+009
3 2.57E+012 6.14E+011 4.93E+019 3.91E+018
4 3.70E+005 3.68E+005 3.15E+005 3.11E+005
5 2.87E+003 2.79E+003 3.73E+004 3.47E+004
6 1.37E+003 1.29E+003 2.95E+004 2.89E+004
7 1.20E+002 -9.04E+001 8.80E+005 4.47E+005
8 -6.79E+002 -6.79E+002 -6.79E+002 -6.79E+002
9 -4.31E+002 -4.31E+002 -4.54E+002 -4.54E+002
10 2.24E+003 2.19E+003 2.16E+004 2.15E+004
11 5.24E+002 5.60E+002 2.29E+003 2.25E+003
12 1.17E+003 1.16E+003 2.40E+003 2.42E+003
13 1.27E+003 1.28E+003 2.56E+003 2.55E+003
14 3.09E+004 3.09E+004 2.57E+004 2.58E+004
15 3.30E+004 3.31E+004 3.25E+004 3.29E+004
SUM 2.57E+012 6.14E+011 4.93E+019 3.91E+018

Table A.2: Comparison: AncDE vs DE on CEC 2013 100D problems. Notice that AncDE
is far better than DE.

53

References

[1] M. Lesnik, B. Boskovic, and J. Brest. Performance tuning of java ee application
servers with multi-objective differential evolution. In Differential Evolution (SDE),
2013 IEEE Symposium on, pages 69–76, April 2013. doi: 10.1109/SDE.2013.
6601444.

[2] Zyed Bouzarkouna, Didier Yu Ding, and Anne Auger. Well placement optimiza-
tion under uncertainty with CMA-ES using the neighborhood. CoRR, abs/1209.0616,
2012. URL http://arxiv.org/abs/1209.0616.

[3] Jason D. Lohn, Derek S. Linden, Gregory Hornby, William F. Kraus, and Adaan
Rodriguez-Arroyo. Evolutionary design of an x-band antenna for nasa’s space tech-
nology 5 mission. In Evolvable Hardware, pages 155–163. IEEE Computer Society,
2003. ISBN 0-7695-1977-6.

[4] Garrison W Greenwood. Finding solutions to np problems: Philosophical differ-
ence between quantum and evolutionary search algorithms. arXiv preprint quant-
ph/0010021, 2000.

[5] Anyong Qing. Differential Evolution: Fundamentals and Applications in Electrical
Engineering. Wiley-IEEE Press, 2009. ISBN 0470823925, 9780470823927.

[6] Rainer Storn and Kenneth Price. Differential evolution – a simple and efficient
heuristic for global optimization over continuous spaces. J. of Global Optimization,
11(4):341–359, December 1997. ISSN 0925-5001. doi: 10.1023/A:1008202821328.
URL http://dx.doi.org/10.1023/A:1008202821328.

[7] A.K. Qin, V.L. Huang, and P.N. Suganthan. Differential evolution algorithm with
strategy adaptation for global numerical optimization. Evolutionary Computation,
IEEE Transactions on, 13(2):398–417, April 2009. ISSN 1089-778X. doi: 10.1109/
TEVC.2008.927706.

54

http://arxiv.org/abs/1209.0616
http://dx.doi.org/10.1023/A:1008202821328

Bibliography REFERENCES

[8] Roger Gämperle, Sibylle D. Müller, and Petros Koumoutsakos. A parameter study
for differential evolution. In WSEAS Int. Conf. on Advances in Intelligent Systems,
Fuzzy Systems, Evolutionary Computation, pages 293–298. Press, 2002.

[9] Jouni Lampinen and Ivan Zelinka. ON STAGNATION OF THE DIFFERENTIAL
EVOLUTION ALGORITHM. 2000.

[10] Magnus Erik Hvass Pedersen. Good parameters for differential evolution.

[11] B. Liu Q. Chen and P. N. Suganthan B. Y. Qu Q. Zhang, J. J. Liang. Problem definition
and evaluation criteria for cec 2015 special session and competition on bound con-
strained single-objective computationally expensive numerical optimization, 2015.
URL http://www.cec2015.org/. Accessed: 2015-5-20.

[12] O’Donoghue D.P Sawant R, Hatton D. An ancestor based extension to differential
evolution (ancde) for single-objective computationally expensive numerical optimiza-
tion. The annual IEEE Congress on Evolutionary Computation (IEEE CEC), 2015
(In Press).

[13] J. Nocedal and S. Wright. Numerical Optimization. Springer Series in Operations
Research and Financial Engineering. Springer, 2006. ISBN 9780387400655.

[14] Thomas Bäck. Evolutionary Algorithms in Theory and Practice: Evolution Strategies,
Evolutionary Programming, Genetic Algorithms. Oxford University Press, Oxford,
UK, 1996. ISBN 0-19-509971-0.

[15] Kenneth Price, Rainer M. Storn, and Jouni A. Lampinen. Differential Evolution: A
Practical Approach to Global Optimization (Natural Computing Series). Springer-
Verlag New York, Inc., Secaucus, NJ, USA, 2005. ISBN 3540209506.

[16] S. Das and P.N. Suganthan. Differential evolution: A survey of the state-of-the-
art. Evolutionary Computation, IEEE Transactions on, 15(1):4–31, Feb 2011. ISSN
1089-778X. doi: 10.1109/TEVC.2010.2059031.

[17] R. Mallipeddi, P.N. Suganthan, Q.K. Pan, and M.F. Tasgetiren. Differential evolution
algorithm with ensemble of parameters and mutation strategies. Applied Soft Com-
puting, 11(2):1679 – 1696, 2011. ISSN 1568-4946. doi: http://dx.doi.org/10.1016/
j.asoc.2010.04.024. URL http://www.sciencedirect.com/science/article/
pii/S1568494610001043. The Impact of Soft Computing for the Progress of Arti-
ficial Intelligence.

[18] Yong Wang, Zixing Cai, and Qingfu Zhang. Differential evolution with composite
trial vector generation strategies and control parameters. Evolutionary Computation,
IEEE Transactions on, 15(1):55–66, Feb 2011. ISSN 1089-778X. doi: 10.1109/
TEVC.2010.2087271.

[19] Haixiang Guo, Yanan Li, Jinling Li, Han Sun, Deyun Wang, and Xiaohong Chen.
Differential evolution improved with self-adaptive control parameters based on sim-
ulated annealing. Swarm and Evolutionary Computation, 19(0):52 – 67, 2014.

55

http://www.cec2015.org/
http://www.sciencedirect.com/science/article/pii/S1568494610001043
http://www.sciencedirect.com/science/article/pii/S1568494610001043

Bibliography REFERENCES

ISSN 2210-6502. doi: http://dx.doi.org/10.1016/j.swevo.2014.07.001. URL http:
//www.sciencedirect.com/science/article/pii/S2210650214000522.

[20] Janez Brest and Mirjam Sepesy Maučec. Population size reduction for the differen-
tial evolution algorithm. Applied Intelligence, 29(3):228–247, 2008. ISSN 0924-
669X. doi: 10.1007/s10489-007-0091-x. URL http://dx.doi.org/10.1007/
s10489-007-0091-x.

[21] Daniela Zaharie. Control of population diversity and adaptation in differential evolu-
tion algorithms. In Proc. of MENDEL, volume 9, pages 41–46, 2003.

[22] S. Das, A. Abraham, U.K. Chakraborty, and A. Konar. Differential evolution using
a neighborhood-based mutation operator. Evolutionary Computation, IEEE Transac-
tions on, 13(3):526–553, June 2009. ISSN 1089-778X. doi: 10.1109/TEVC.2008.
2009457.

[23] Jingqiao Zhang and A.C. Sanderson. Jade: Adaptive differential evolution with op-
tional external archive. Evolutionary Computation, IEEE Transactions on, 13(5):
945–958, Oct 2009. ISSN 1089-778X. doi: 10.1109/TEVC.2009.2014613.

[24] Amy FitzGerald, DiarmuidP. O’Donoghue, and Xinyu Liu. Genetic repair strate-
gies inspired by arabidopsis thaliana. In Lorcan Coyle and Jill Freyne, editors, Ar-
tificial Intelligence and Cognitive Science, volume 6206 of Lecture Notes in Com-
puter Science, pages 61–71. Springer Berlin Heidelberg, 2010. ISBN 978-3-642-
17079-9. doi: 10.1007/978-3-642-17080-5_9. URL http://dx.doi.org/10.
1007/978-3-642-17080-5_9.

[25] Wei-jie Yu and Jun Zhang. Adaptive differential evolution with optimization state
estimation. In Proceedings of the 14th Annual Conference on Genetic and Evolu-
tionary Computation, GECCO ’12, pages 1285–1292, New York, NY, USA, 2012.
ACM. ISBN 978-1-4503-1177-9. doi: 10.1145/2330163.2330341. URL http:
//doi.acm.org/10.1145/2330163.2330341.

[26] Efrñn Mezura-Montes, Jesús Velázquez-Reyes, and Carlos A. Coello Coello. A
comparative study of differential evolution variants for global optimization. In Pro-
ceedings of the 8th Annual Conference on Genetic and Evolutionary Computation,
GECCO ’06, pages 485–492, New York, NY, USA, 2006. ACM. ISBN 1-59593-
186-4. doi: 10.1145/1143997.1144086. URL http://doi.acm.org/10.1145/
1143997.1144086.

[27] Kenneth Price and Rainer Storn. Differential evolution (de) for continuous function
optimization (an algorithm by kenneth price and rainer storn), 1999. URL http:
//www1.icsi.berkeley.edu/~storn/code.html. Accessed: 2014-12-20.

[28] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-oriented Software. Addison-Wesley Longman Publish-
ing Co., Inc., Boston, MA, USA, 1995. ISBN 0-201-63361-2.

56

http://www.sciencedirect.com/science/article/pii/S2210650214000522
http://www.sciencedirect.com/science/article/pii/S2210650214000522
http://dx.doi.org/10.1007/s10489-007-0091-x
http://dx.doi.org/10.1007/s10489-007-0091-x
http://dx.doi.org/10.1007/978-3-642-17080-5_9
http://dx.doi.org/10.1007/978-3-642-17080-5_9
http://doi.acm.org/10.1145/2330163.2330341
http://doi.acm.org/10.1145/2330163.2330341
http://doi.acm.org/10.1145/1143997.1144086
http://doi.acm.org/10.1145/1143997.1144086
http://www1.icsi.berkeley.edu/~storn/code.html
http://www1.icsi.berkeley.edu/~storn/code.html

Bibliography REFERENCES

[29] Barbara Liskov. Keynote address - data abstraction and hierarchy. In Addendum to the
Proceedings on Object-oriented Programming Systems, Languages and Applications
(Addendum), OOPSLA ’87, pages 17–34, New York, NY, USA, 1987. ACM. ISBN
0-89791-266-7. doi: 10.1145/62138.62141. URL http://doi.acm.org/10.1145/
62138.62141.

[30] Tom Lysaght Stephen Brown, Joe Timoney. Software Testing: Principles and Prac-
tice. China Machine Press, 2012.

[31] Vashek (Vaclav) Matyas. Matyas function, 2013. URL http://www.sfu.ca/
~ssurjano/matya.html. Accessed: 2015-5-20.

[32] F. Wilcoxon. Individual Comparisons by Ranking Methods. Bobbs-Merrill Reprint
Series in the Social Sciences, S541. Bobbs-Merrill, College Division. URL https:
//books.google.ie/books?id=BSdFHQAACAAJ.

[33] P. N. Suganthan Alfredo G. Hernández-Díaz J. J. Liang, B. Y. Qu. Problem definitions
and evaluation criteria for the cec 2013 special session on real-parameter optimiza-
tion, 2013. URL http://www.cec2013.org/. Accessed: 2015-5-20.

[34] Jingqiao Zhang, V. Avasarala, A.C. Sanderson, and T. Mullen. Differential evolu-
tion for discrete optimization: An experimental study on combinatorial auction prob-
lems. In Evolutionary Computation, 2008. CEC 2008. (IEEE World Congress on
Computational Intelligence). IEEE Congress on, pages 2794–2800, June 2008. doi:
10.1109/CEC.2008.4631173.

57

http://doi.acm.org/10.1145/62138.62141
http://doi.acm.org/10.1145/62138.62141
http://www.sfu.ca/~ssurjano/matya.html
http://www.sfu.ca/~ssurjano/matya.html
https://books.google.ie/books?id=BSdFHQAACAAJ
https://books.google.ie/books?id=BSdFHQAACAAJ
http://www.cec2013.org/

	Title Page
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Acknowledgements
	Contributions
	Introduction
	Objective
	Contributions and Publication
	Evaluation

	Thesis Outline

	Differential Evolution
	Numerical Optimisation
	Mathematical Formulation

	Differential Evolution
	Initialisation
	Mutation
	Crossover
	Selection

	Related Work
	Earlier Work Employing Ancestors

	Conclusion

	Ancestral DE
	Ancestral Extension to DE
	AncDE Concept
	AncDE Algorithm
	Initialisation
	Mutation
	Crossover
	Selection

	Conclusion

	Software Engineering - AncDE
	Software Process and R&D
	Implementation Overview
	Design and Public API
	Documenting AncDE
	Testing AncDE
	Input Parameter Analysis
	JUnits

	AncDE Application
	Conclusion

	Experimental Setup
	Objective Functions
	IEEE CEC 2015 Benchmark
	Experimental Setting

	Recording Data
	Execution Environment
	Conclusion

	Algorithm Evaluation
	Evaluation
	Comparative Analysis: AncDE vs DE
	Comparative Analysis: Population Size
	Comparative Analysis: CEC Method
	Algorithm Efficiency
	Comparative Analysis: ArpDE and AncDE

	Sensitivity Analysis: ARP and AUP
	Discussion
	Conclusion

	Future Work
	Multiple Ancestors
	Extending Current Analysis
	AncDE for Discrete Optimisation
	Conclusion

	CEC 2013 Results

