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Abstract

Optimisation problems are of prime importance in scientific and engineer-
ing communities. Many day-to-day tasks in these fields can be classified as
optimisation problems. Due to their enormous solution spaces, optimisation
problems frequently lie in class NP. In such cases, engineers and researchers
have to rely on algorithms and techniques that can find sub-optimal solutions
to these problems. One of the most dependable algorithms for numerical opti-
misation problems is Differential Evolution (DE). Since its introduction in the
mid 1990’s, DE has been on the fore front when it comes to applicability of op-
timisation algorithms to variety of real-parameter optimisation problems. This
popularity of DE has driven intensive research to further improve its capability
to find optimal solutions.

In this thesis we present a variant of DE to produce improved solutions
with greater reliability. In doing so, we introduce a novel strategy to incorpo-
rate ancestral vectors into the optimisation process. We show that a controlled
introduction of ancestral vectors into the optimisation process has a generally
positive influence on convergence rate of the algorithm. Evaluation of the pro-
posed algorithm forms a major part of this work, as an empirical evidence
serves to demonstrate the performance of stochastic algorithms. The resulting
implementation of the algorithm is made available as an open source software
along with its reference manual.
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CHAPTER 1

Introduction

Optimization is everywhere. Engineers and researchers are often confronted with vari-
ous optimisation problems in their day-to-day work. Application areas range from Com-
puter Science, Telecommunications, Finance, to Civil Engineering and so on. Application
servers in distributed information systems are tuned to achieve a required level of per-
formance in order to attain business goals[1]. Airlines try to optimise their schedules to
minimise resource consumptions, even civil engineers run simulations to find optimal val-
ues before proceeding to physical layout for structures, such as reservoirs [2]. NASA’s use
of an optimisation algorithm for the design of an X-Band antenna for Space Technology 5
Mission [3] adds one more example to depict the ubiquity of optimisation problems. Reli-
ability is an important aspect of such systems; which essentially traces back to how these
systems are designed and built. That is, whether trade-off between different properties of
the system has been optimally balanced or not.

In general, the objective is to find the best way to optimise certain properties of the sys-
tem without violating any imposed constraints. However, large number of such problems
remain in the class of NP [4] problems. One of the reasons for this is the enormous search
space of these problems. In this case, a compromise is to try to obtain a sub-optimal solu-
tion (i.e. what is called as "good enough" solution). Hence, the problem at hand reduces to
finding a solution that is plausible for a concerned system.

The frequent and ubiquitous nature of such problems have increased our dependence
on algorithms that can target optimisation problems efficiently with currently available
technology. It has driven intensive study to find and, or, improve optimisation techniques
and algorithms to achieve better results in a feasible time using available computational
resources|[5].

For this work we are concerned with one specific class of optimisation problems, called
numerical optimisation'. Input parameters to these problems are in real space, R. Specifi-
cally, numeric optimisation is of prime concern in engineering and scientific fields.

I'Also called continuous optimisation
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1.1 Objective

Differential Evolution (DE) is one such stochastic algorithm to solve numerical optimi-
sation problems[6]. All of the examples discussed in the outset can be solved by this
algorithm efficiently. This thesis set out to improve the quality and reliability of optimi-
sation results produced by standard DE algorithm. The specific goal of this thesis was
to improve the convergence rate’ by introducing an ancestral cache of recently discarded
solutions produced during some previous generation(s). The scope of this work also in-
cluded an investigation of the influence of ancestral vectors® on the optimisation process
and the proposal of a novel technique to improve results obtained with the standard DE
algorithm. Empirical investigation of apposite value ranges for new control parameters for
the proposed algorithm inevitably became central part of this work.

1.2 Contributions and Publication

This thesis proposes a new strategy for improving the convergence rate of differential evo-
lution. We present an analytical study of the influence of introducing ancestral vectors into
the process of evolutionary optimisation. Proposed strategy can be seen as an improve-
ment to the original DE algorithm. Hence, recently proposed methods in DE community,
that improve on DE using techniques, such as local search or "learning from experience",
for example SaDE[7], can arguably incorporate the strategy proposed here as part of their
technique to further improve their results.

The proposed algorithm, called AncDE (Ancestral Differential Evolution), primarily
improves on standard DE algorithm and also on a recently proposed DE variant, ArpDE,
by Hatton and O’Donoghue (submitted, decision pending), as observed through evaluation
results. AncDE is made available as an open source implementation with a public API
for using it in client environments. A “user guide" is also provided for using the API and
this includes information on other technical details. This user manual provides essential
information regarding the value ranges for control parameters of the algorithm; that should
be useful to practitioners.

However, we do not intend to investigate the "universal" parameter set in this work.
Finding the best possible parameter set has long been the subject of research on its own,
and can be seen as a considerable future work. Studies show that finding such parameter set
is not a trivial, if not infeasible, task since DE is very sensitive to its controlling parameters
and partly the properties of an objective function it is trying to optimise[8, 9, 10]. AncDE
essentially inherits these properties from the original DE algorithm. Hence, for this work
our approach is to find one "acceptable" parameter set with which "good quality" results
are achieved for expensive functions in a benchmark test suite[11]. This parameter set
generally varies based on dimensionality of the problem function. For this work we include
one such general parameter set for 10 dimensional problems and one for 30 dimensional
version of these problems. A reference manual also provides acceptable ranges for newly

’The rate at which an evolutionary algorithm moves towards the given target
3ist of input parameters
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proposed AncDE parameters; as they also vary based on properties of the objective function
being optimised.

Authors have published a paper on AncDE algorithm at The annual IEEE congress on
Evolutions Computation (IEEE CEC) May, 2015 held in Sendai, Japan[12]4, along with
performance results generated for a set of benchmark problems provided by CEC 2015
("Bound Constrained Single-Objective Computationally Expensive Numerical Optimisa-
tion"). These results are also presented in this thesis for evaluation purposes and for com-
parison with the original DE algorithm. Also, results produced by AncDE have been used
in an evolutionary theory paper submitted to "Frontiers in Plant Science" by Lolle et al.
(2015).

1.2.1 Evaluation

We evaluate our work using the method provided by IEEE CEC along with some other
statistical methods. The evaluation includes comparative analysis against DE and AncDE.
Proposed algorithm is applicable in all problem instances where DE is applicable, without
employing any additional constraints, hence primary comparative study is performed with
DE’s performance, with the best achieved parameter configuration. A public API made
available to the clients has been thoroughly tested for its robustness against its functional
specification documented in AncDE reference manual and source code documentation.

1.3 Thesis Outline

The structure of the thesis is as follows. Chapter 2 introduces Differential Evolution and
Numerical Optimisation. And the current state-of-the-art in the DE community is also
presented. AncDE and its implementation details are presented in Chapter 3. Chapter 4
enumerates all functions included in IEEE CEC 2015 benchmark suite and the experimental
setup. In Chapter 5 we present software engineering aspect of this project. Chapter 6 then
presents the evaluation of AncDE including results obtained with AncDE and a comparison
with DE using the CEC method and some additional statistical methods. In chapter 7 we
conclude our work with discussion on some probable future work that could be based on
the work presented in this thesis.

“The paper was in press at the time of writing this thesis

3



CHAPTER 2

Differential Evolution

This chapter introduces the evolutionary approach to numerical optimisation and also in-
troduces Differential Evolution (DE) algorithm. These topics are discussed to the level of
depth necessary to understand subsequent discussion in this thesis. The remaining part of
the chapter presents a discussion on some related work in the field.

2.1 Numerical Optimisation

What is optimisation? In general, optimisation is when one tries to find the best way to
perform some task or use available resources, without violating any constraints that are
imposed on a system. Formally, optimisation is the process of minimising or maximising a
function which is subjected to constraints on its input parameters.

Optimisation involves maximising or minimising some given objective problem[13]. It
is a quantitative measure of the performance of the system under study, such as profit, time
or any combination of quantities that can be presented by a single number. The objective
depends on problem variables (also called unknowns). These correspond to certain char-
acteristics of a system. The goal of optimisation is to find the values of these variables that
will optimise the objective. Often these variables are constrained in some way, for example,
a non-negative loan value.

2.1.1 Mathematical Formulation

We give mathematical formulation similar to the one given by Quing[5] to precisely define
optimisation as follows.

Definition 2.1.1. Find x* = [x{ x5 ... x3] € DY =D;ND,;N...Dy
where,
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fmin (k) < fmin(x), Vx = [x; xz ... xn] € DY, 1< < Npmin,
fimax(x*) 2 fimax(x), Vx € DN, 1 S i S mem,

c; (x*)=0, 1<i<Ng-,
cr(x*) >0, 1<i<Ng,
c; (x*) <0, 1<i<N,.

Here, x is a vector of variables corresponding to a list of parameters and x; indicates
the ith component of this vector. Here, x* is the optimal solution that we seek to identify
in an N-dimensional search space DV. f; is the ith objective function of x that we want to
maximise, f"**(x*), or minimise, f"(x*). ¢; are ith constraint functions, where, ¢;”(x*)
is the equality constraint function, ¢; (x*) is the positive constraint function, and c; (x*) is
the negative constraint function. In the case of numerical optimisation, the search space D;
is continuous (i.e. x € R", where n is the dimension of the problem).

An optimisation problem is thus made up of optimisation parameters x, objective func-
tions f, and constraint functions c. An objective function is what we want to optimise lies
at the heart of the problem. Frequently the objective is to minimise some "cost", and hence
most of the optimising algorithms are targeted to find a global minimum, also called global
optimum. Figure 2.1 shows sample objective function with global maximum and mini-
mum. It also has multiple local optima. In our case the global optimum always refers to
global minimum of such functions.

//"“‘ ‘\“
,}/’IO “ THAS
"‘ “

%, ‘:‘:‘“
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Figure 2.1: Function with multiple optima
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2.2 Differential Evolution

From the large list of algorithms targeting optimisation, one class of algorithms, called
Evolutionary algorithms (EA), uses mechanism inspired by the biological evolution. The
idea behind EAs is to use Drawinian Principles of "Survival of the Fittest" for automated
problem solving[14]. EAs are mathematically less complex than their deterministic counter
parts. However, EAs require relatively more function evaluations, and due to their non-
deterministic nature their results are not clonable.

Despite this fact, EAs are much more preferred in practice as they are applicable to
wider class of optimisation problems and impose less restrictions[5]. EAs are population
based stochastic algorithms being composed of the basic steps: reproduction, mutation,
recombination, and selection.

Of these four steps, reproduction, mutation, and recombination together are responsible
for producing new individuals with mixed properties from randomly chosen individuals
from the current population. In selection stage then old individuals are replaced by new
individuals, if the new ones managed to produce better results. This process mimics the
biological phenomenon called "survival of the fittest."

One such algorithm we are concerned with is Differential Evolution (DE), introduced
by Storn and Price [6] for numerical optimisation. DE has been subject of intensive study
since its inception in 1997 due to its mathematical elegance, applicability to problems in
various fields, and ease of use!.

Initialisation |~ Mutation — [ Recombination |— Selection

Figure 2.2: Basic step in Differential Evolution

Figure 2.2 shows four main steps of the DE algorithm and we shall discuss each in
turn. Basically, DE employs an evolution loop, consisting of mutation, recombination, and
selection, until the specified criteria to stop this loop is reached. As discussed earlier, opti-
misation problems, in general, have multiple input parameters. An array of such parameters
is called a vector, x, in DE terminology. DE operates on population containing NP solu-
tions each being a D-dimensional vector. One complete generation, G, is utilised in one
pass of the algorithm. A vector in a current generation is denoted as follows.

x;c where,i=1,2,....NP 2.1

19200+ Google Scholar citations were recorded at the time of writing this thesis.
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2.2.1 Initialisation

DE requires an initialisation step to fill the first generation of vectors with with random
values subject to the the given constraint of the objective function. From this point onwards
DE employs a self-referential population reproduction scheme; it mutates and recombines
vectors from within the population to produce a new (and improved) population of the same
size, NP.

2.2.2 Mutation

In its mutation step, DE generates a new vector called mutant vector, which is generated
by adding weighted difference of two random vectors, producing a temporary vector called
difference vector, to a third vector within current population. Figure 2.3 shows a snapshot
of difference vector generation.

indiama it

SigeEEs

Figure 2.3: Difference vector generated with weighted difference of two random vectors,
here vector 3 - vector 1. Show optimisation landscape is of Rastrigin optimisation problem.

The whole process to produce mutant vector is called as differential mutation. For
mutation there are many strategies proposed by Price et al.[15]. In order to discuss details
of mutation we present an equation from one of these strategies as shown in 2.2.

ViG+1 =Xr1,6+ F.(X2,6 —X13,G) (2.2)

Generally, mutant vector, v; g+1, is generated from the current population, where G + 1
denotes that it is a candidate for subsequent generation. ry,r>,r3 € 1...NP are randomly
chosen indices in the current population, and are mutually different. The scaling factor,
F € [0,1) scales a difference vector produced from x,7 ¢ and x,3 . Vector x,1 ¢ is called
as base vector and produces the mutant vector when a scaled difference vector is added to
it. Mutant vectors are generated for each individual vector in the current population. The
current vector, for which a mutant is produced, is called as rarget vector, x; ;.
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2.2.3 Crossover

In its third step, DE employs uniform crossover, also called, discrete recombination. Crossover
generates a new trial vector (also called offspring), u; g41, by randomly copying input pa-
rameters either from a target vector or a mutant vector.
vjigt1 ifrand;j[0,1] <CRor j=k
UjiGr1 = { o - ’ (2.3)

XjiG otherwise

In equation 2.3, j € 1...D and CR € [0, 1] is a crossover constant that controls the fraction
of parameters that a trial vector, u, gets from the mutant vector. rand,; [0, 1] in 2.3 indicates
the j-th evaluation of pseudo random number generator (PRNG).

2.2.4 Selection

Finally, the selection step decides who survives; the new trial vector or the existing vector
target vector in the current generation. The trial vector is evaluated to obtain new "test
cost" which is then compared against old available cost produced by target vector. If u; g1
yields smaller objective value than the target vector x; i, then u; g+ replaces x; g.

This process of mutation, recombination, and selection continues until the desired target
value is reached or specified number of evaluations are completed. Parameters NP, F, and
CR are user defined, and together they are referred to as control parameters of DE.

2.3 Related Work

Since 1997, numerous techniques and strategies have been proposed to improve DE or to
attack a specific class of numeric optimisation problems. A recent survey published by Das
et al.[16] gives a concise snapshot of advancements in DE community. Applying standard
DE to a given problem (to obtain acceptable results) requires finding the right strategy?
to be chosen for the problem under study. This involves intensive trial-and-error search
efforts with available strategies. Also, tuning control parameters of DE requires similar
search with experimental runs of the algorithm. The goal here is to find out whether there is
another optimal setting for the algorithm that can give better results than the current setting
in place. As this can expend huge amount of computation costs, techniques to automatically
learn and adapt are being investigated (e.g., EPSDE[17], CoDE[18], ESADE[19], etc).
One such popular algorithm, SaDE[7], maintains a pool of different strategies and during
execution it gradually learns which strategies to use and the values of control parameters
for them based on earlier experience. Another approach by Brest et al.[20] is to encode
control parameters, F' and CR, into individual target vectors. However, these values are
then in-turn controlled by two newly introduced parameters 7; and 7;. AncDE does not use
any learning or internal search technique to improve the convergence rate, hence required
computational resources are equivalent to original DE. Solution quality is improved by

2Strategy is an umbrella term used for denoting process of mutation and cross over together.
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the virtue of right amount of inter-generational mutation of ancestral vectors with target
vectors.

Zaharie[21] proposed another adaptive strategy, called ADE, to improve the conver-
gence rate. Zaharie’s idea is based on controlling population diversity to achieve balance
between search space exploration and exploitation®. Similarly, Das et al.[22] proposed a
topological neighbourhood based mutation scheme also to achieve a balance between ex-
ploration and exploitation. AncDE, on the other hand, introduces diversity by occasionally
re-introducing ancestral vectors during the mutation step. The age of an ancestral popula-
tion and their introduction frequency is controlled by two new control parameters proposed
for AncDE.

Finally, Zheng et al.[23] proposed JADE which uses an optional external archive of the
old population to provide information to direct the progress in solution space. Mathematical
formulation of their strategy can be represented as follows:

ViG+1 = X )+ Fi- (X, 6 —%i.6) + Fi- (61,6 — X)o 6) 24)

In equation 2.4, p € (0, 1] and xl’: est.G is a randomly sampled vector from the 100% vec-
tors of the current population. X}, . is, however, randomly sampled from PUA. Where, P
denotes current population and A is an external archive of old vectors discarded at selection
step. In a case when archive size exceeds, some vectors are randomly discarded to keep
archive at NP.

AncDE is similar to JADE in that AncDE also maintains archive of old vectors. How-
ever, archive maintained by AncDE is an ancestral archive; the i-th target vector from
current population relates to i-th vector from ancestral population. For the same reason,
AncDE does not run into ancestral archive overflow condition. Also, AncDE’s strategy is
different from that of JADE, as shall be discussed in Chapter 3. Finally, as implementations
of these algorithms were not readily available, we did not benchmark against them in this
thesis.

2.3.1 Earlier Work Employing Ancestors

The idea of introducing an ancestral population (or archive) comes from the recent study
published by O’Donoghue et al.[24]. This study performs investigations into genetic restora-
tions from non-parental ancestors. O’Donoghue et al. proposed an ancestral repair strategy
within an evolutionary algorithms to solve constraint based optimisation problems. The
same group has incorporated this strategy into standard DE, and the variant is called as
ArpDE*. This study shows that ancestral vector can have a positive influence on the op-
timisation process. The idea of occasionally using ancestral vectors during differential
mutation (making broad movements in search space) seems to produce competitive results
to standard DE.

Their algorithm modifies DE’s differential mutation process to incorporate ancestral
vectors. Inclusion of ancestors is controlled by two parameters— 1. ancestor replacement

3Here, exploration refers to broad movements through the search space seeking new regions. While
exploitation refers to small steps around the region found during exploration to find optimum
“Paper on ArpDE is submitted; decision is pending.
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probability (ARP) 2. and ancestor usage probability (AUP). During differential mutation
AUP controls the rate of producing inter-generational difference vectors. ARP, on the
other hand, controls the rate at which ancestors are replaced by vectors from the current
population. That is, with ARP one controls how old the ancestors should be. Authors note
that good results were obtained with ARP value of 0.05 and AUP value of 0.15.

The efficiency of evolutionary algorithms is generally characterised by their ability to
perform exploration and exploitation during the search process[25, 16]. Hence the optimi-
sation process of DE, and its variants, can also be divided into two aspects— 1. exploration
2. exploitation. Exploration refers to the ability of an algorithm to make broad movements
through the search space to quickly explore promising new regions. DE, and its variants,
generally start with exploration as the initial population is relatively dispersive and ran-
domly distributed in the search space. As the optimisation process matures, the population
starts to converge gradually and clusters around a global or local optima. This state of the
algorithm is called as exploitation, making smaller movements around the search space
that has been already explored. This aspect can be seen as small refinements applied to an
already discovered good solution and is based on the information gathered during explo-
ration.

The exploration power of these algorithms comes from the diversity of the population.
Due to diverse population in exploration state, the magnitude of difference vectors in dif-
ferential mutation step is relatively high, and it consequently results in broad movements
through the search space. ArpDE uses an ancestral cache to introduce additional diversity.
Its ability to utilise this diversity and produce inter-generational difference vectors between
the current and ancestral population broadens the search.

ArpDE

@ Target Vector

W Trial Vector

A Ancestor Vector

—= Ancestral Difference Vector

Figure 2.4: ArpDE search space exploration

10
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Figure 2.4 shows ArpDE’s solution space exploration mechanism with inter-generational
difference vector A;. In this case the magnitude of a vector is increased due to the diversity
between two populations. Note that JADE is different from ArpDE, as the external archive
used by JADE does not necessarily maintain any relation between two populations.

Building on previous work [24], this thesis attempts to improve the quality and relia-
bility of results produced by an ancestral extension to DE. In doing so, we propose a new
criteria for ancestor replacement and a novel strategy for differential mutation to improve
over DE. We also observe that results produced by AncDE are better in quality than ArpDE.
The challenging part of the work here was to incorporate an ancestral population into dif-
ferential mutation and to decide the right proportion of such inter-generational mutation.
The difficulty in investigation arises due to two primary reasons— 1. The sensitivity of
these algorithms to control parameters and 2. the properties of objective functions being
optimised>.

2.4 Conclusion

This chapter presented overview of numerical optimisation and Differential Evolution al-
gorithm. We also discussed related work in the field and briefly outlined how it compares
with our approach. We also focused on ArpDE which further extended by AncDE. In the
next chapter we shall look into more details how AncDE differs from ArpDE.

3Objective function properties are discussed in Chapter 5.
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CHAPTER 3

Ancestral DE

This chapter details AncDE (Ancestral DE) algorithm discussing its mutation strategy and
its ancestral cache maintenance mechanism. The algorithm is presented at a pseudo code
level of abstraction to further discuss its computational details. The chapter concludes with
a formal description of the AncDE strategy and the role of two new control parameters used
by AncDE.

3.1 Ancestral Extension to DE

The DE community is primarily focused on improving the efficiency of DE and employ-
ing new techniques more reliably identify optimal solutions[16]. To this end, AncDE’s
approach is similar to ArpDE (discussed in chapter 2). AncDE aims to achieve a funda-
mental improvement over standard DE by utilising vectors that are getting discarded after
failing the survival test. Essentially, these are the vectors that were produced during an
earlier generations, but now a new generation is better than them.

Unlike ArpDE, AncDE caches these ancestors only when its new offspring vector is
producing a good result. In doing so, AncDE requires only one additional ancestral cache,
in addition to the main population. This results in an algorithm that requires resources
(memory and time) equivalent to DE but produces better results.

3.1.1 AncDE Concept

The crux of the strategy is the controlled replacement and usage of vectors in ancestral
cache. AncDE employs ancestral vectors to generate inter-generational difference vectors
during mutation. Figure 3.1 shows a snapshot of AncDE’s mechanism to generate inter-
generational difference vector, rather than normal difference vector. We know that vectors
in the current generation are always provably better than old generations. However, though

12



Chapter 3. Ancestral DE 3.1. ANCESTRAL EXTENSION TO DE

the new population is progressing towards global optimum, it has tendency to get misdi-
rection and getting caught in local optima or stagnate'. Apart from helping in making big
jumps to explore search space rapidly, ancestral vectors help direct new offspring vectors in
the right direction towards the global optimum. In figure 3.1, for example, vector 6 denotes
an ancestral vector utilised to generate a new offspring vector, 1°, that is now progressing
in the right direction. AncDE employs a newly proposed strategy to achieve this result, as
we shall see in the next section.

AncDE Strategy

_— Search Space —___

I

Local optimum

Ancestral Population Current Population

Figure 3.1: AncDE strategy involving random antecedent from ancestral cache to generate
new trial vector

At the beginning, both ancestral and current population are identical, and this is the only
time in the evolution process they are provably same. After that point, whenever a new low-
cost vector is found, AncDE consults to the arp (ancestor replacement probability) value
to stochastically decide the replacement of a related ancestor in the ancestral cache. For
example, consider vector 1 in the current population as shown in figure 3.1. If the newly
produced vector, 1, is found to be better than 1, the former one will be discarded and the
latter one will take its place in the current population; as per the standard DE evolution
process. However, there is an additional step in AncDE, which will (stochastically) store
a copy of the (discarded) vector to the ancestral cache. This mechanism allow AncDE to
keep (stochastically) updating the ancestral cache without running into a cache overflow
situation.

I'Stagnation is a state in the evolution where no new better vector is found even though the current gener-
ation is not clustered around local optima
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We have to control the use of ancestors, as using ancestors all the time will impede the
convergence process. Controlled introduction of ancestral vectors is enabled through user
defined aup (ancestor usage probability) value. For example, the ancestral vector 6 shown
in figure 3.1, in this case, is introduced in the mutation process only because AncDE’s
aup control (stochastically) allowed this instance of mutation to generate inter-generational
difference vector.

Both, arp and aup values has to be determined empirically, and in general are directly
related to the properties of optimisation problem and other control parameter values pro-
vided to the algorithm. However, we later suggest overall "good" general purpose values
based on results of our experiments.

3.1.2 AncDE Algorithm

As discussed earlier, AncDE introduces second population of ancestral vectors (also called
ancestral cache) into the standard DE algorithm. The four steps of DE remain the same,
however, mutation step is changed to allow an occasional usage of vectors from ancestral
cache. When a vector from ancestral cache is selected, the strategy used for mutation is
also changed to use an inter-generational difference vector between a solution from the
main population and one from the ancestral cache. Pseudo code for AncDE algorithm is as
follows:

Input: D, NP, F, CR, Range, ARP, AUP, Number of Evaluations
Output: Minimum cost and vector producing that cost

1 Read D, NP, F, CR, Range, and Evaluations

2 Randomly initialise NP vectors as Gy.
Go = x; jo :=rand;[0,1].Range  i=1,..NP  j=1,..D

Where, Gop is initial population and Xijo is the 7 -th vector
in Ggp. And j denotes the parameter index of that vector.

3 Copy all vectors from current population Gy to ancestral
population AncG

4 for each vector in G, x;, from 1 to NP

4.1 Evaluate objective function with x;; as input vector.

4.2 Store fitness cost in cost;
end for
5 While evaluations count < specified Number of Evaluations do

5.1 for each vector in G, x;g, from 1 to NP
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5.1.1 Generate new mutant
vector, VG41, either using inter-generational
difference vector or using normal difference
vector as follows:

if rand;[0,1] < aup then

ViG+1 = Xi.G + F.(XrancG — XiG)
else

Vigi1 :=bestc+F.(r1ic—r2ic), such that r #ry#x;
end if

where, r denotes randomly selected vectors from
respective generations

5.1.2 Perform binomial crossover to generate new offspring vector,

ui,G+1 )
as follows:

for each j-th parameter, 1,...,D, in x;¢
if rand;[0,1] <CR || j=D then

Wi,j,G+1 -= Vi,j,G+1
else

Wi,j,G+1 -= Xi,j,G+1
end if

5.1.3 Perform selection to decide the survival of the new vector,
uiG+1, as follows:

5.1.3.1 Evaluate objective function with u;G,; as an input vector
and store the resulting testcost

5.1.3.2 if testcost < cost; then
if rand;[0,1] < arp then
copy contents of Xi.G TO XjAncG

end if
Generate x; ;41 by copying contents of vector u;gyi
to vector x;g

else
Generate x; 1 by keeping contents vector x;g
unchanged.

end if

end for

5.2 Increase generation count: G:=G+1

end while
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6 Output minimum cost obtained and the vector producing that cost.

Algorithm 3.1: AncDE Algorithm

Algorithm 3.1 works as follows. Control parameters NP, F, and, CR are externally set
parameters to the algorithm. Note that optimisation problems have a vector of parameters
as their input. AncDE operates on population of such vectors; feeding one vector at time to
the problem to evaluate and obtain the new cost. Externally set control parameters influence
how algorithm generates new trial vectors (new offspring) from the current vector popula-
tion. NP, here, corresponds to the vector population size and D represents the dimension
of each vector ( i.e., number of parameters in each vector). One pass of the algorithm, be-
ginning at 5. 1, is referred to as current generation, G. We say next generation, G + 1, has
begun when all the vectors from the population have been evaluated and generation counter
is increased at 5. 2.

Additional two control parameters for AncDE are — 1. Ancestral replacement prob-
ability, arp € [0.0,1.0], which controls the probability that an ancestor is replaced by a
vector from the current population, 2. Ancestral usage probability, aup € [0.0,1.0], which
controls the probability that an ancestor will be used produce inter-generational difference
vector with AncDE’s mutation strategy. Essentially, we want to control how many genera-
tions old the ancestors should get and how often they should be used in a mutation process.
Both aup and arp are user defined parameters.

Input parameter, Range, and input vector dimensions, D, are related to an objective
function. Range puts constraint on the values of parameters in the input vector such that,
values € [—Range,+Range|. This constraint information is generally available from the
optimisation problem itself. It is a practitioner in the field who decides the stopping cri-
teria. This decision is generally based on optimisation problem, and available time and
computational resources. Stopping criteria can be a number of evaluations or the algorithm
can be to set to run until the objective function does not produce cost within an acceptable
range”.

3.1.2.1 Initialisation

In initialisation step, specified number of vectors, NP, are created and are initialised ran-
domly within a given Range.

Py =X, jo:=rand;[0,1].Range i=1,.,NP  j=1,..D (3.1

In equation 3.1, rand;[0,1] denotes a uniformly distributed random value € [0.0,1.0] ob-
tained for each j-th evaluation of such generator, rand. Range denotes a randomly selected
value from a closed interval [—Range,+Range], where bounds on this interval are user
specified.

2AncDE can be easily modified for the second condition as well. Check user manual for configuration
details
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Figure 3.2 shows a snapshot of the initial state for the algorithm. Population for current
generation is denoted by, G, and an ancestral population by, AncG. This population size,
NP, does not change during the entire process as result of self-referential reproduction (ex-
plained in chapter 2). Note that we are not concerned about parameter values, denoted by
P1, P2, etc., as their generation is completely controlled by stochastic initialisation (within
the given constraints), and later by reproduction®. Hence, we simply show them as p with
subscript index, and distinguish ancestral population with vectors in green color.

G AncG
X1 b %) X3 X4 X1 X3 X3 X4
P1 P1 P1 P1 P1 P1 P1 P1
P2 p2 p2 P2 p2 P2 p2 p2
p3 p3 P3 p3 pP3 pP3 p3 p3
P4 P4 P4 P4 P4 P4 P4 P4
Ps Ps Ps Ps Ps Ps pPs Ps

Figure 3.2: Initial vector population with NP=4 and D=5. Both generations G and AncG
have same vectors

3.1.2.2 Mutation

After random initialisation, evolution process starts. AncDE performs differential muta-
tion*, where scaled vector difference of two random vectors is added to a third vector, to
generate a mutant vector, v; g11. In DE community there is naming convention for denoting
different DE strategies applied for mutation and crossover.

DE /x/y/z (3.2)

In equation 3.2, x denotes the vector to be mutated, also called as base vector. It can be
any random vector (rand) or the best cost producing vector in the current generation (best).
y denotes the number of vector differences to be used. Finally, z denotes the crossover
method. Crossover method can be binomial (explained later in following section) or ex-
ponential. Using this notation, one of DE’s well known strategies is called DE/best/1/bin.
Similarly, AncDE’s strategy is called as AncDE/target/1/bin, explained as follows.
AncDE Strategy. In AncDE’s evolution loop each vector in the current population
gets an opportunity to be a target vector, x; g. That means for each vector in the current
population, a new mutant vector is generated. AncDE’s strategy, however, differs from
DE’s (2.2) such that AncDE introduces aup in the process to produce inter-generational

30nly the values of final vector found by an algorithm at the end are of interest to users (practitioners).
“Explained in Chapter 2
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difference vector as follows:
Xi G+ F.(XrAncG — Xi.G) if rand;[0,1] < aup,
ViG+1 = . (3.3)
gen_bestg+F.(x;,c —x2) otherwise

In equation 3.3, v; g+ denotes a new mutant vector generated with this strategy and sub-
scripted r denotes a random vector. For generating mutant vectors, AncDE occasionally
introduces one random ancestral vector, x, 4,.G, to generate an inter-generational difference
vector. Whenever this is the case, the target vector, x; , for whom a mutant is generated, is
itself involved in the mutation process. Here, the target vector is used as a base vector and
the inter-generational difference is computed between the ancestral vector and the target
vector. Due to stochasticity, the mutation process switches between DE’s DE/best/1/bin
and AncDE’s AncDE/target/1/bin. Note that this switching between two different methods
of computation is also a part of AncDE’s strategy. Hence, an infer-generational mutation
is applied to a statistically controlled fraction of the population in each generation.

Xi,G Xr,AncG

P1 P1
P2 P2
pr3 pP3
P4 D4
Ps Ps

1

“N\|p| /T P P

p2 p2 p2

D3 il pP3 i P3

P4 D4 D4

Ps Ps D5

IDV WDV Mutant Vector

Figure 3.3: AncDE differential mutation when rand;[0, 1] < aup. (IDV= inter-generational
difference vector and WDV = weighted difference vector).

Figure 3.3 shows the process of mutant vector generation using a random ancestor, as
presented in equation 3.3. We use DE/best/1/bin in AncDE as this variant of DE is shown
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to produce robust results in various studies[26, 10, 8]. Scaling factor, F € [0, 1), controls
the rate at which population evolves by scaling the influence of a difference vector. In case
of AncDE, a good value for Fis F € [0.55,0.70], as shown in Chapter 6.

3.1.2.3 Crossover

AncDE does not make any changes to DE’s crossover mechanism. A new trial vector,
u; G+1, 1s generated by employing a binomial crossover, where the trial vector gets a frac-
tion of parameter values from mutant vector, v; g+, and the remaining fraction from the
target vector, X; G-

Vii if rand;|0,1] <CR || j=k

Mz 1 = ]713G+1 ][ ? ] ||] ) (34)

.]7 7G+ :
XjiG otherwise

In equation 3.4, the crossover probability, CR € [0, 1], influences the proportion of param-
eters that a trial vector will get from mutant vector generated in mutation step. That is,
crossover rate ultimately controls if and how much of the parameters from a mutant vector
with ancestral influence are passed on to the new offspring vector.

rand;[0,1] < CR
P P1
N P2 ) 2)
rand;[0,1] < CR
P3 P3
N P4 P4
rand;[0,1] < CR
Ps Ps
Trial vector Xi,G Mutant vector

Figure 3.4: Binomial crossover. Parameters either from target vector or from mutant vector
are copied to trial vector, based on CR. Parameters with gray color indicate they are not
copied to the trial vector

Figure 3.4 shows a binomial crossover scheme explained for equation 3.4. Newly gen-
erated trial vector at this point is also termed as a mutated child or offspring in evolutionary
algorithms terminology[5].

3.1.2.4 Selection

Survival of newly generated trial vector is decided in selection step. The objective function
is evaluated using each trial vector as an input. The cost returned for the trial vector is then
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compared with the cost of the target vector. If the new cost is better than the old one, the
trial vector replaces the target vector in the current population.

i (3.5)
Xi.G otherwise

{xi,AncG if rand;[0, 1] < arp Anewcost < mincost,
Xi AncG+1 =

As shown in equation 3.5, AncDE introduces an ancestor replacement probability in this
process. Ancestor replacement is decided on two explicit checks— 1. ancestor replace-
ment probability itself 2. replace ancestor by a target vector being discarded only if its
corresponding trial vector has produced better cost, newcost. Thus, based on arp, we occa-
sionally store the target vector that is being discarded. A high arp value yields very recent
ancestors while a low arp value produces very ancient ancestors. Later we shall explore
the “ideal” age for this ancestral cache.

The evolution loop of AncDE continues until the stopping criteria is met, for example,
until the specified number of function evaluations have been performed. Note that with
smaller NP more generations will pass quickly, that is, evolution is faster. And with higher
NP, more function evaluations occur per generation and more population diversity as well.
Hence, balanced value for NP, along with F and CR, is essential to improve the convergence
rate of AncDE. In Chapter 6 we show that AncDE performs better on smaller NP values.
That is, AncDE requires relatively less memory to produce competitive results. Also note
that the usage of inter-generational difference vectors is user defined and can be tuned
based on the properties of an objective function and population size. Hence, finding the
right ranges of values for these parameters is essential and shall be discussed along with
the results.

3.2 Conclusion

This chapter was primarily focused on the idea behind AncDE algorithm and its implemen-
tation. We discussed in detail all four steps involved in the evolution process of AncDE
algorithm. We concluded with the claim that AncDE requires relatively less memory to
produce strong results, which we show in Chapter 6.
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CHAPTER 4

Software Engineering - AncDE

This chapter presents the software engineering aspect of AncDE: the algorithm implemen-
tation, design, documentation, and its testing are all presented in this chapter. The algorithm
has been made available to be integrated in client environments, and thus its public applica-
tion programming interface (API) is discussed. We also describe how to integrate AncDE
in a client environment and how to use its logging mechanism. The chapter concludes
with a discussion on functional testing of the public API and some maintenance aspects of
AncDE.

4.1 Software Process and R&D

As test driven development was major part of this project, the software process model that
we followed was spiral. The first step in the development was the integration of IEEE CEC
benchmark suite into the design and code, and its validation. After successful integration
of this benchmark, software design was finalised and steps were taken to implement the
initial version of AncDE. Initial version implemented adapted version of the strategy used
by ArpDE. From this point onwards numerous strategies were evaluated before coming up
with rarget/1/bin.

Each time a new prototype was produced for experimenting a newly hypothesised strat-
egy to utilise ancestral vectors. Of the various strategies experimented, we briefly discuss
some of the interesting ones. Stochastically initialised ancestors — This strategy relied on
two separate initialisations, one for regular generation and one for ancestral cache. With
very low ARP, ancestral vectors can remain diverse (and distant) than the current popula-
tion. This was the idea behind the strategy; more diverse ancestors should produce larger
difference vector. Strategy showed good results for some of the simple functions, but failed
to produce even acceptable results for most of the problems. Due to stochastic initialization
and low ARP, ancestors tend to stay in initial "random directions". Therefore, most of the
times they could not reliably direct new vectors in the right direction. Scaling factor to
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change directions — Generated mutant vector is always scaled to get a new weighted differ-
ence vector. Since ancestral vectors that are too old (like in earlier discussed strategy) tend
lead offspring in the wrong direction, idea was to mitigate this problem with stochastic use
of scaling factor, which can vary in the given range. Thus, even if there is a misdirection, it
is on smaller scale. This strategy produced good results on some of the difficult problems
as well, and with a good consistency. However, the number of problems it could optimise
were still less than half. It relied on the right combination of AUP and F (scaling factor).
best one to Anc one bin — This strategy stochastically switched between ancestral strategy
to generate difference vector and normal DE strategy utilising best cost producing vector.
This strategy produced better results on 8 problems and marked the next step in our strat-
egy exploration. The idea here was that DE’s normal strategy should be able to mitigate
the misdirection caused by "bad" ancestral vectors. Continuing in this direction and after
trying other various variants, target/1/bin was decided to be the strategy of choice.

Once the strategy was finalised, the next step was to find overall "good" values for all
the control parameters. This part of the project focused on experimenting with different
value ranges and combinations of parameter values. Experiments were carried out in an
attempt to exploit results documented in DE literature for AncDE. As AncDE introduced
two new parameters, sensitivity analysis of the algorithm to these parameters was inherent
part of this project.

Finally, we extended AncDE’s strategy to introduce multiple ancestors in to the mu-
tation process - a recent ancestor and an older ancestor. These should in theory support
the calculation of stochastic second order difference vectors that might further improve
convergence. The very initial work is briefly discussed in chapter 7.

4.2 Implementation Overview

We base our implementation of AncDE on the existing open source DE implementation
made available by Storn et al. on Differential Evolution website[27]. AncDE has been
implemented in both Java and C++ programming languages, and is made available as an
open source code base. Two versions are aimed to provide a suitable implementation for
practitioners’ who wish to use AncDE. We focus on the Java version of the algorithm, since
its structure is replicated in the C++ version.

Two main components of AncDE are its strategy module and the module which imple-
ments its main evolution loop. The strategy module is responsible for implementing our
new strategy, while the latter introduces ancestor replacement scheme, both introduced in
Chapter 3. Figure 4.1 shows an excerpt from the AncDETarge1Bin class which shows how
aup is utilised in the new strategy, AncDE/Target/1/Bin.
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public class AncDETargetlBin extends AncDEStrategy {

while (counter++ < dim) {
if ((deRandom.nextDouble() < Cr) || (counter == dim)) {

// ancestral usage criterion

if (deRandom.nextDouble () < aup) {
x[i] = x[i] + F * (ancG[0]J[i] - x[i]); // inter-generational

} else { // difference vector
x[i] = gen_best[i] + F * (g0[0][i]l - go[1]1[il); // x1 - x2

}

Figure 4.1: AncDE/target/1/bin

As one can notice in listing 4.1, mutation is performed after the crossover criteria is
satisfied for the current trial vector. This, at first, seems somewhat contradicting to what
is presented in Chapter 3. For runtime efficiency purpose, however, the mutation step is
combined with the crossover step. From earlier discussions on trial vector generation in
Chapter 2 and 3, it is clear that mutant is a temporary vector, v;. Its goal is to provide
genetic information to the final trial vector, u;, produced as a result of binomial crossover.
In real-world applications, list of input parameters required for optimisation problems can
be large, resulting in large dimension vectors. Hence, rather than creating a large temporary
mutant vector for each target vector, differential mutation is performed only when crossover
is applicable for a j-th parameter. This optimisation avoids a need for creating such large
temporary vectors. In figure 4.1, resultant vector, x [1], is a trial vector generated once this
process is complete. Note that the criteria, counter == dim, makes sure that trial vector
gets at least one parameter from a mutant vector, irrespective of the crossover rate.
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public double optimize() {

/*---Apply the AncDE strategy------------------- */
targetBin.apply(F, Cr, dim, trial, genbest, rvec, randVecAnc, aup);

testcost = cecProbs.eval(trial, dim, 1, this.current_func) [0];
evaluation++;
// Better solution than target vectors cost 7
if (testcost <= cost[i]) {
// replace ancestor by soon to be an ancestor using arp:
if (deRandom.nextDouble() <= arp) {

ancG[i] = gO[il;
}
// put trial vector in new population
System.arraycopy(trial, 0, gi[il, 0, dim);

// and save the new cost value
cost[i] = testcost;

Figure 4.2: AncDE/target/1/bin

Figure 4.2 shows an excerpt from the AncDE kernel, controls the whole process of
optimisation; it implements the main evolutionary loop. It invokes the AncDE strategy
to produce new trial vectors for each (target) vector in the current population. For every
trial vector, the objective function is evaluated producing festcost that is compared against
the cost produced by the target vector, cost[i]. This is a prime criteria for deciding
who survives; the target vector or trial vector. If the target vector is getting discarded,
AncDE adds a caching criteria based on the arp replacement probability (as discussed in
Chapter 3), to decides whether to cache or not that target vector. Figure 4.2 represents
the implementation of equation 3.5 presented in Chapter 3. The AncDE kernel is also
responsible for maintaining the evaluations count, total number of generations that have
passed, monitoring if target has been reached or not, and the objective function instance
being optimised.

4.3 Design and Public API

AncDE is designed to be programmatically integrable in client applications and thus it ex-
poses a public API through that clients can configure and use for optimising their own ob-
jective functions. AncDE also integrates the IEEE CEC 2015 benchmark problem suite
on "bound constrained single-objective computationally expensive numerical optimisa-
tion"[11] for evaluation purpose.
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AncDEStrategy AncDEKernel <<interface>>
deRandom: AncDERan- - arp : double = 0.15 IAncDEProblem

dom argetBin - aup : double = 0.30 ancdeProb il douie
apply(...) : void é\o - range: double = 75.0 1 )

- evaluation: long = 1500

[ - generation:long
- mincost:double = MAXVALUE
# logger: Logger ‘\%ms
optimize() : double 1 EC15Probl
setObjectiveFunction(...):void RGBS
getAbsErrorValue(...):double
deRandom
1
AncDETarget1Bin AncDERandom
apply(...):void Random setMySeed(seed:int)
nextValue(max:int)
nextValue(range:double)

Figure 4.3: AncDE Class Diagram

Fiugre 4.3 shows the class diagram for AncDE. This design employs a structure that is
similar to builder pattern[28]. With this structure a client can set its own objective function
for optimisation without having to know anything about the internal composition of the
other components. In order to use its own objective functions, a client needs to implement
the TAncDEProblem interface and provide a definition of the eval method.

<<interface>>
TAncDEProblem

eval(double[ ] vector, int dimension, Object... data):double

Figure 4.4: IAncDEProblem Interface

Figure 4.4 shows the method signature for eval. Its input parameter, vector, is a trial
vector that should be used to evaluate a client objective function. Optional data is provided
to meet unforeseen future requirements that client objective functions may have. Defining
IAncDEProblem as an interface rather than an abstract class is a design decision adhering
to Liskov substitution principle[29]. Client function need not be a behavioural subtype of
AncDE problem. At most, what can be expected from the client function is that it should
be able to perform the role of AncDE problem (by implementing the eval method).

AncDE also employs the strategy pattern to allow different embeddable and inter-
changeable strategies to be used with AncDE. The advantage of this design is that clients
who wish to use their own evolution strategy while utilising the ancestral replacement and
usage scheme provided by AncDE, can do so by extending the AncDEStrategy abstract
class and overriding its apply method. Default strategy for AncDE is AncDETarget1Bin,
and can be unset to a use newly defined strategy through the respective API.

The performance of AncDE has been evaluated on IEEE CEC 2015 optimisation bench-
mark. Hence, this benchmark has been integrated within AncDE application. This will also
serve to compare AncDE purpose of evaluating new strategies proposed in the future that
utilise ARP and AUP scheme of AncDE. Each instance of AncDEKernel can be configured
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to run on CEC problems or client specified problems. For this purpose AncDEKernel has
been built to provide multiple constructors each targeting a specific purpose.

Public API. Exposed public API allows a client to set its own objective function, the
values of all the control parameters, the number of evaluations to be performed, and any
known value to reach. Once configured for client problems, AncDE is designed to be
used subsequently as many times as the client wishes for different objective functions and
strategies. Configurations via setting and removing objective functions and strategies are
also made available through public API. A small walk-through example on using public
API is presented in the next section.

<?7xml version="1.0" encoding="UTF-8" standalone="no"7>
<!DOCTYPE log SYSTEM "logger.dtd">
<log>
<record>
<date>2015-04-18T20:18:24</date>
<millis >1429384704304</millis>
<sequence >0</sequence >
<logger>cs.nuim.ancde_logger </logger>
<level>INF0</level>
<class>cs.nuim.ancde.AncDEKernel</class>
<method >&1lt;init&gt;</method>
<thread>1</thread>
<message>IEEE CEC 2015, SS04 function: 7</message>
</record>

Figure 4.5: AncDE logging

Logging. AncDE maintains its own configuration trace for instantiation and config-
uration. Logging is employed using its own java.util.Logger instance with default
handler specified to write to ancde_log.log file on disk. This file consists of structured
(XML) trace at java.util.logging.Level.INFO level containing information related to
current configuration of AncDE and WARNING to SEVERE level messages to indicate any-
thing that has gone wrong while configuring AncDE prior to optimisation. A snapshot of
AncDE loggin is shown in figure 4.5.

4.4 Documenting AncDE

Documenting AncDE has two aspects. First, is to document information on AncDE param-
eter tuning, and other details associated with AncDE strategy, ARP and AUP. And second
is to document the software engineering aspect of AncDE. For parameter tuning and strat-
egy details, we have developed a "user guide" to provide practitioners all the information
required to use and tune AncDE. It also includes Design and implementation details neces-
sary for integrating AncDE into the client environment. Listing 4.6 is a small example of
integration walk-through that is also presented in the mentioned "user guide".

Source listing 4.6 shows a client that is using one instance of AncDE for optimising
IEEE CEC 2015 function seven and another for its own ChebychevT4 polynomial function.
This listing also shows the use of important public API that client needs to interact with.
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import cs.nuim.ancde.AncDEKernel;

/ * *
* AncDE client
* Qauthor sawant
*

*/
public class AncDEClient {

public static void main(String[] args) throws Exception {

// AncDEKernel for IEEE CEC 2015 problems
new AncDEKernel(7, 30, 25, 0.6, 0.6).optimize();

// give you flexibility of whatever type of file handler you want to add
Handler handler = new FileHandler ("ancde_log.log");

SimpleFormatter formatter = new SimpleFormatter();

handler.setFormatter (formatter) ;

//AncDEKernel for client specified objective functions
AncDEKernel optimizer = new AncDEKernel(55, 0.6, 06);
optimizer.setAncDELogLevel (Level.INFO);
optimizer.setAncDELogHandler (handler) ;
optimizer.setARP(0.15);

optimizer.setAUP (0.30);
optimizer.setObjectiveFunction(new ChebychevT4(), 30);
optimizer.setRange (100) ;

optimizer.prepareToRun () ;

//This check is important to see if we are ready to go or not
if (optimizer.isPrepared()) {
optimizer.optimize () ;

}

Figure 4.6: AncDE client in action

Source code documentation (Javadoc), provided along with the source code, documents all
details about AncDE methods and constructors.

4.5 Testing AncDE

The main input to AncDE are its control parameters, objective function, its dimension and
the maximum evaluation count. These are fed to AncDE either through constructors or
through setter methods. To ensure robustness of public interface, it has been unit tested
using equivalence partitioning technique. While boundary value analysis (BVA) would
have been more appropriate, most input parameters for AncDE are in a real domain. Since
boundary value analysis requires to identify next immediate number after a specified value
range of a parameter, such a guess would have to be made in the case of real numbers
when producing test cases. We prefer equivalence partitioning over BVA because any
value can be selected within a specified range when using this technique. After this basic
unit testing, we perform state testing to verify the correct behaviour of AncDE instance
to client specified operations and also to ensure that instance state is not corrupted due to
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wrong method invocations on the instance.

4.5.1 Input Parameter Analysis

Table 4.1 shows the valid value ranges for all input parameters for AncDE as mentioned in
the available source code documentation for AncDE.

No. | Parameter Valid Range (as per Javadoc specification)
1 NP 8...500

2 F 0.0...Double. MAX_ VALUE
3 CR 0.0...1.0

4 range 0.0...Double. MAX_VALUE
5 arp 0.0...1.0

6 aup 0.0...1.0

7 dimension 1...150

8 evaluation 1...Double. MAX_ VALUE

9 objectiveFunction | IAncDEProblem instance
10 | cecFunc_count 1...15

Table 4.1: Valid value ranges for all input parameters

As metnioned earlier, clients are required to provide values within these ranges to An-
cDE through its programming interface. Hence, we employ equivalence partitioning tech-
nique such that for each real and discrete parameter there will be three test cases. First
one providing a value from the valid input range, second providing a value from the lower
invalid input range, and finally, one will provide a value from upper invalid input range.
These partitions for parameter, NP, are shown in table 4.2.

Parameter | Range

Integer MIN_VALUE...7
NP 8...500
501...Integer MAX_VALUE

Table 4.2: Equivalence partitions for NP

4.5.2 JUnits

JUnit tests have been written for each input partition for individual parameters. To ensure
that instantiation and instance configuration works as per specification, test cases have been
written with different combinations of each parameter input partition values. The method
isPrepared is used to test that the AncDE instance produces an expected outcome. That is,
it should produce false for any invalid combination or configuration of input parameters.
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This method returns true only if AncDEKernel instance is properly configured, either for
the CEC problems or some client specified functions, and is ready to run optimisation. The
optimiser has been implemented in such way that the optimisation will not proceed until
all the configurations as checked by isPrepared has been satisfied. Sample test cases for
parameter, NP, are as shown in table 4.3.

Case | Parameter | Range Test
1% Integer. MIN_VALUE...7 EP-2
2 NP 8...500 EP-1
3% 501...Integer MAX_VALUE | EP-3

Table 4.3: Test cases for all public interfaces with NP as input parameter

In table 4.3, x indicates error cases, and they are tested separately to avoid error hid-
ing[30]. Sample test data for test cases generated for NP is shown in table 4.4.

D Test Cases | Inputs | Expected Output
Covered NP isPrepared

EP-1 | 2 55 true

EP-2 | 1% -55 false

EP-3 | 3% 655 false

Table 4.4: Test data for test cases in table 4.3.

Test case and test data for all the other control parameters have been generated using
this same method. For state testing we want to verify consistency of AncDE’s state when
invalid values are passed to it or invalid sequence of operations are invoked during its
instance configuration. Again, isPrepared method, along with other getter methods, is
used to verify the outcome of generated test cases. State testing is performed for all public
setter methods that facilitate client specific objective function optimisation.

AncDE Correctness. isPreperd method just acts as a gateway checkpoint before the
control is handed down to the optimiser. However, validity of isPrepared and the main
method, optimise, that encompasses the AncDE algorithm, is not checked by the above
tests cases. Also, as discussed in Chapter 2, results generated by stochastic algorithms are
not cloneable. Hence, to test the correctness of AncDE algorithm we have to apply it to
some optimisation problem whose global optimum is known and it can be reached by DE.
Since results produced are real values, standard equality specified to allow error is 0.001,
advocated by IEEE CEC. With this approach we are sure that the global optimum of that
specific problem can be reached.

We decided to implement Matyas Function [31] for testing AncDE’s correctness. It is
considered as one of the artificial landscape' created to test optimisation algorithms. To
ensure AncDE’s consistency, the test has been written to execute 50 times, while verifying
that each time AncDE reaches to the global optimum or not. Therefore, if AncDE passes
this test, it shows that AncDE implementation is correct.

! An artificial landscape term refers to the artificial optimisation problem created for testing purpose.
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4.6 AncDE Application

Like other variants proposed to improve over DE, AncDE has also been evaluated over
benchmark problems provided by IEEE Congress on Evolutionary Computing (CEC) —
specifically, the "Problem Definition and Evaluation Criteria for CEC 2015 Special Ses-
sion and Competition on Bound Constrained Single-Objective Computationally Expensive
Numerical Optimisation"[11]. To facilitate our experiments and evaluation, the original
DE application with graphical user interface (GUI) has been adopted and modified to im-
plement AncDE. GUI for existing DE application provides an input panel for setting all
required control parameter. We have restructured this control panel to include arp and aup
values. It is a multi-threaded environment and has been updated to produce datasets as per
IEEE CEC 2015 specification [11]. This update makes data produced from multiple runs
available in a matrix format that is then used for subsequent data analyses. Required format
for CEC is shown in table 4.5.

0.01 x MaxFES | 0.02 x MaxFES | .. MaxFES

Run 1
Run 2

Run 20

Table 4.5: Information matrix for IEEE CEC 2015 problems

Start Pause Exit |
Problern: CEC2015Problerns 4|

| Function: : 4|
| Dimension: 30 4|
| Strategy: AncDEBest1Bin =

Evaluations: 0
Minirnurn ¢ Infinity

MP: 25
CR: 0.6

Range: 75.0

arp: 0.15

aLp 0.3

Figure 4.7: AncDE user interface

Figure 4.7 shows a snapshot of the AncDE application. Currently IEEE CEC 2015
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benchmark suite is integrated with this application, and the 15 problems from this bench-
mark can be individually set as the objective problem through the GUI. We do not discuss
updates and modifications to this application in further detail (such as, updated GUI or new
dataset producing mechanism), even though they have been made for this thesis. This is
due to the fact that they were developed as by-products to facilitate the main task: exper-
imenting and evaluating AncDE. Also, original DE application (last updated in, 1999) is
available on DE website[27], and this was the starting point for AncDE application.

4.7 Conclusion

This chapter covered software engineering aspect of the thesis. We discussed all software
development related activities performed for this project. Of the important areas, we fo-
cused on the design, documentation and testing of AncDE. We also discussed essential
contents of the user manual that will be made available to its users.
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CHAPTER 5

Experimental Setup

This chapter presents an experimental setup used to evaluate AncDE. The benchmark test
suite provided by IEEE CEC 2015 is represented here to discuss the method prescribed by
CEC to generate and record results on the given benchmark. The chapter concludes with

details on the execution environment used for performing numerical experiments in this
thesis.

5.1 Objective Functions

All optimisation problems have at least one global optimum and may have multiple local
optima.

ié \ Al
IVARSAYIRN

Figure 5.1: function with multiple local optima and one global optimum

Figure 5.1 shows a sample function with multiple local optima. Generally, f(x*), de-
notes the function value at the global optimum point!. These objective functions consist of

Note that in our case global optimum refers to global minimum of the objective function — discussed in
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various characteristic properties. Based on these properties, objective functions are divided
into different categories. Of the many properties, modality is of prime importance to us;
functions representing optimisation problems are categorised on this property.

Modality. A function is said to be unimodal if there is a path from each point x to
its optimal solution point x* along which the function is monotonous. In all other cases,
function is multimodal. In general, from statistics point of view, mode refers to the value
that tend to appear most of the times in a dataset. In case of multimodal, it is then said to be
processing more than one modes. Figure 5.1 is an example of multimodal function, while
figure 5.2 shows a unimodal function.

Figure 5.2: Simple continuous unimodal function

5.2 IEEE CEC 2015 Benchmark

Benchmark provided by IEEE CEC is considered as a prime source for evaluating variants
of DE and other optimisation algorithms. It consists of expensive optimisation problems
that try to simulate many real world problems. Generally, this benchmark tries to cover
various kinds of optimisation problem properties that a real world problems tend to have.
Hence, it consists of objective functions that are simple to optimise to various combinations
of basic functions that make these functions increasingly difficult to optimise. At the time
of development of AncDE, the 2015 version of the CEC benchmark[11] became available
and AncDE has been evaluated on this latest benchmark.

Chapter 2
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Categories No | Functions Related basic functions F*
Unimodal 1 Rotated Bent Cigar Function Bent Cigar Function 100
functions 2 Rotated Discuss Function Discuss Function 200
3 Shifted and Rotated Weierstrass Function Weierstrass Function 300
4 Shifted and Rotated Schwefel’s Function Schwefel’s Function 400
Simple 5 Shifted and Rotated Katsuura Function Katsuura Function 500
Multimodal | 6 Shifted and Rotated HappyCat Function HappyCat Function 600
functions 7 Shifted and Rotated HGBat Function HGBat Function 700
3 Shifted and Rotated Expanded Griewank’s | Griewank’s Function 200
plus Rosenbrock’s Function Rosenbrock’s Function
9 Shiftgd and Rotated Expanded Scaffer’s F6 Expanded Scaffer’s F6 Function 900
Function
Schwefel’s Function
Hybrid 10 | Hybrid Function 1 (N=3) Rastrigin’sFunction 1000
. High Conditioned Elliptic Function
functions - > :
Griewank’s Function
11 | Hybrid Function 2 (N=4) WeierstrassFunction 1100
Rosenbrock’s Function
Scaffer’s F6 Function
KatsuuraFunction
HappyCat Function
. . Griewank’s Function
12 | Hybrid Function 3 (N=5) Rosenbrock’s Function 1200
Schwefel’s Function
Ackley’s Function
Rosenbrock’sFunction
High Conditioned Elliptic Function
... 13 | Composition Function 1 (N=5) Bent Cigar Function 1300
Composition ; .
functions D¥scus Fun.c F10n . .
High Conditioned Elliptic Function
Schwefel’sFunction
14 | Composition Function 2 (N=3) Rastrigin’s Function 1400
High Conditioned Elliptic Function
HGBatFunction
Rastrigin’s Function
15 | Composition Function 3 (N=5) Schwefel’s Function 1500
Weierstrass Function
High Conditioned Elliptic Function

Table 5.1: IEEE CEC 2015 expensive optimisation test problems

Table 5.1 summarises all fifteen continuous expensive optimisation problems included
in CEC 2015 benchmark. First eight problems are composed from fundamental optimi-
sation problems by shifting their global optimum. Problems belonging to hybrid category
simulate the real world situation where different subset of variables can have different prop-
erties. In this category, variables are randomly divided into various subsets and then basic
functions that constitute to the hybrid function are used on individual subsets. On the other
hand, composition functions merge the properties of all the sub-functions and maintain the
continuity around the optima of a composed function. N, in case of hybrid and composition
functions, denotes the number of basic functions used as sub-functions. As usual, F* in the
last column denotes the known global optimum for each function.
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5.2.1 Experimental Setting

With the standard benchmark suite, IEEE CEC also specifies evaluation criteria and rules to
produce datasets, under the experimental settings section of the benchmark specification.
Benchmark problems are defined for 10D (10 dimensions) and 30D (30 dimensions) by
CEC 2015 organisers. Hence, the algorithm is evaluated for both 10D and 30D individually.
Result data is always to be collected from 20 independent runs performed for each problem.
MaxFES (Maximum number of function evaluations) are restricted to 500 for problems
with 10D runs and 1500 for functions with 30D runs.

This criteria essentially tests algorithm’s convergence ability. 1f an algorithm has a
faster convergence than DE, it should produce better results at the end. From an analytical
perspective, how an algorithm progresses towards the convergence is also taken into ac-
count. That is, we want to know whether an algorithm gets caught in local optima or not.
If it does, one may try to tune control parameters for that algorithm. With such trial-and-
error experiments “overall good” values for all control parameters, for specific optimisation
problem, are determined. Finding universal good values is a non-trivial task and has been
subject of research on its own, as discussed in chapter 1 and 2.

For this thesis we provide two sets of values, one for 10D and one for 30D, that produce
ov