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Summary

Amplified fragment length polymorphism (AFLP) markers were employed to detect genetic variation among species of

Papaver (section Oxytona ) and assess genetic fidelity between in vitro cell lines of Papaver bracteatum and mature plants

derived from the propagation of their callus cultures. Regenerated plants exhibited morphological and phytochemical

characteristics dissimilar to those of their source material. Thebaine, the dominant alkaloid produced by Papaver

bracteatum, was not detected in capsules from mature regenerated accessions, indicating that there may have been a loss of

genetic uniformity. Instead, the dominant alkaloid produced by the regenerated plant was shown to be isothebaine (by TLC

and GC/MS), a metabolic characteristic of P. pseudo-orientale. A Neighbor-Joining tree constructed from AFLP fingerprints

distinctly separates the three species of Oxytona while firmly grouping the in vitro-cultured plants with P. pseudo-orientale.

Additionally, phytochemical data and chromosome counts indicate that the seed used to initiate cultures was of hybrid

origin and that the loss in genetic uniformity was not due to somaclonal variation occurring during the in vitro culture

process. AFLP fingerprinting was therefore able to differentiate Oxytona species and investigate allopolyploidy in closely

related Papaver species.
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Introduction

The genus Papaver L. is of continuing commercial interest

because of its medicinally important alkaloids. Papaver somniferum

L. is grown for its morphine and codeine content, while Papaver

bracteatum Lindl. can be used as a source of the morphinan alkaloid

thebaine, which can be converted to a number of opiate analgesics,

including codeine, oxymorphone, and oxycodone (McNicholas and

Martin, 1984). During the 1970s, the United Nations called for

extensive studies into the utilization of P. bracteatum as a source of

thebaine and the possible replacement of P. somniferum as the major

source of morphinan alkaloids (United Nations Report, 1976).

However, the perennial nature of P. bracteatum renders it

uneconomical as a replacement to the annual P. somniferum

because it cannot be harvested until the second growing season

(Ilahi and Ghauri, 1994). This has stimulated research into the

potential of in vitro cell culture technologies for morphinane alkaloid

production (Kamo and Mahlberg, 1988), which would obviate the

need for field cultivation of poppies.

Papaver bracteatum is a member of the taxonomic section Oxytona

which comprises a polyploid series including the diploid P.

bracteatum ð2n ¼ 14Þ; the tetraploid P. orientale Fedde ð2n ¼ 28Þ;
and the allohexaploid P. pseudo-orientale Fedde ð2n ¼ 42Þ: The
three can be differentiated using morphological, cytological, and

phytochemical characters (Table 1) but the distinction is not always

clear (Goldblatt, 1974; Nyman and Bruhn, 1979). Goldblatt (1974)

reported that the morphological ranges of variation of P. bracteatum,

P. orientale, and P. pseudo-orientale, when nearing their extremes,

can often overlap, especially with P. orientale and P. pseudo-

orientale. Interspecific hybridization does occur (Goldblatt, 1974;

Milo et al., 1986; Ojala et al., 1990; Levy and Milo, 1991) and due to

phenotypic similarities, the misidentification of plant material used

to initiate cell cultures is common. The identification of species

within this section is therefore problematic and is exacerbated by the

abundance of ornamental cultivars and garden varieties of ‘oriental

poppies’ that have been developed.

Molecular techniques offer the potential to accurately differen-

tiate species before initiating cultures and bypass the reliance on

diagnostic morphological and phytochemical characters that take

time to collect, since flowering and maturity do not occur until the

second growing season for members of section Oxytona. Such

techniques involve the generation of characteristic genetic

fingerprints (or the detection of species-specific molecular markers),

which are then used to differentiate between closely related species,

varieties, and cultivars. Characteristic DNA fingerprints can be

generated using amplified fragment length polymorphism (AFLP;

Vos et al., 1995). AFLP fingerprinting is based on the selective

amplification of restriction fragments from a digest of genomic DNA.

The resulting complex fingerprints are reproducible and provide a

wide number of informative markers derived from the many loci

dispersed throughout the genome (Ridout and Donini, 1999;
*Author to whom correspondence should be addressed: Email carolaj@tcd.

ie

In Vitro Cell. Dev. Biol.—Plant 38:300–307, May–June 2002 DOI: 10.1079/IVP2001287
q 2002 Society for In Vitro Biology
1054-5476/02 $10.00+0.00

300



Hodkinson et al., 2000). AFLP has been used to detect genetic

variation in highly inbred lines of cereal crops and for the study of

clonal variation in plants (Mackill et al., 1996; Paul et al., 1997;

Waugh et al., 1997; Hodkinson et al., 2002). It has also been used for

species differentiation in a range of higher plant species such as

Phyllostachys (Hodkinson et al., 2000), but not in Papaver section

Oxytona.

Several cell cultures were developed by Hook et al. (1988) from

seeds of P. bracteatum originally supplied as ARYA II. Plants

developed from these seeds exhibited morphological and phyto-

chemical characteristics typical of P. bracteatum as described by

Goldblatt (1974). On repeated subculture one cell line exhibited

organogenesis, and subsequently differentiated into in vitro

plantlets, some of which were grown on to maturity under garden

conditions. The resulting plants did not resemble the parent,

exhibiting morphological characters similar but not identical to

those of P. pseudo-orientale. This therefore brought into question the

identity of the original seed used to initiate the cultures or indicated

that the cell culture process was not stable and had induced

morphological change possibly via somaclonal variation.

The objectives of this work were to generate characteristic

genomic fingerprints using AFLP, which could be used to

differentiate between the three species of section Oxytona and

detect their hybrids. We wished to develop a marker system capable

of identifying the genetic constitution of in vitro-generated plants

and assessing the stability and quality of repeatedly subcultured cell

TABLE 1

DIAGNOSTIC MORPHOLOGICAL CHARACTERS USED TO DEFINE THE SPECIES OF PAPAVER SECTION OXYTONA (MANY OF THE CHARACTER
STATES CAN OVERLAP AND CAUSE CONFUSION WHEN IDENTIFYING PLANTS TO THE LEVEL OF SPECIES)

Character Papaver bracteatum Papaver orientale Papaver pseudo-orientale

Dominant alkaloid Thebaine Oripavine Isothebaine
Petal characteristics Deep red, base black streak Orange no markings Orange/red black center
Ploidy Diploid 2n ¼ 2x ¼ 14 Tetraploid 2n ¼ 4x ¼ 28 Hexaploid 2n ¼ 6x ¼ 42
Flowers Bractate Ebractate Bractate/ebractate
Petals 6 rarely 4 4 rarely 6 4 or 6
Petal color Dark red, dark markings running to base Pale orange Orange, black rectangular markings near base
Leaves Dentate-bidentate Serrate Deeply pinnatisect–subcompound
Leaf margins Dentate-bidentate Dentate Irregularly dentate
Floral bracts 3–8 Absent 5–6
Bud (during development) Erect, oval, oblong before opening Pendulous Absent or present 1–4 Erect/oval
Calyx 3-valved 2-valved 2–3-valved
Bristles Thick/adpressed Slender/subpatent Slender/subpatent
Anthers Linear/dark purple Oblong/yellow or pale violet Linear/pale violet
Mean pollen diameter (mm) 25.5 27.4 28.8
Ovary Ovoid Ovoid Ovoid
Ovary disc Flat/concave or conical Slightly convex Slightly convex
Stigmatic rays 12–24 8–15 9–19
Capsule <3.0 cm wide <2.0 cm wide <2.5 cm wide

TABLE 2

PAPAVER MATERIAL USED IN STUDY

Accession
Accession

code Source/information
Chromosome
numbers

Dominant
alkaloid

P. bracteatum 22 ARYA II P.I 381605 2n ¼ 2x ¼ 14 Thebaine
P. bracteatum 30 ARYA II P.I 381605 2n ¼ 2x ¼ 14 Thebaine
P. bracteatum 31 ARYA IIS P.I 381605 2n ¼ 2x ¼ 14 Thebaine
P. pseudo-orientale 36 SoP 2n ¼ 6x ¼ 42 Isothebaine
P. pseudo-orientale 40 SoP (cv. Salmon Queen) 2n ¼ 6x ¼ 42 Isothebaine
P. pseudo-orientale 37 SoP – Isothebaine
P. pseudo-orientale 18 NBG 000341 – Isothebaine
P. pseudo-orientale 02 TCD BG – –
P. orientale 35 SoP 2n ¼ 4x ¼ 28 Oripavine
In vitro hybrid 43 Culture initiated from seed of second-generation ARYA II 2n ¼ 4x ¼ 28 Isothebaine
Regenerated hybrid 34 Micropropagated through tissue culture of accession 43 2n ¼ 4x ¼ 28 Isothebaine

NBG: National Botanic Gardens, Glasnevin, Ireland; TCD BG: Trinity College Dublin, Botanic Gardens; SoP: School of Pharmacognosy, Department of
Pharmacy, Trinity College Dublin.
Dominant alkaloids (identified by TLC and GC/MS) and chromosome numbers were counted for a selection of accessions.
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lines. The collection of basic phytochemical (dominant alkaloid) and

cytological data (chromosome counts) were to aid the interpretation

of our results.

Materials and Methods

Plant material. Plant material was obtained from a number of sources
listed in Table 2, and included four species: Papaver orientale, P. bracteatum,
P. pseudo-orientale, and P. somniferum. Capsules were collected from mature
plants from May to July 2000, 4 wk after flowering, and dried in a fan-assisted
oven at ,358C. Not all accessions were available for alkaloid analysis and
chromosome counts.

In vitro culture of Papaver bracteatum. Callus cultures were originally
established in 1984 (Hook et al., 1988) from surface-sterilized seeds plated
onto an agar-solidified (0.9%) MS salt medium (Murashige and Skoog, 1962)
containing 2,4-dichlorophenoxyacetic acid (2,4-D; 1mM ), a-naphthalene-
acetic acid (NAA; 1mM ), glycine (26.64mM ), nicotinic acid (4.06mM ),
pyridoxine HCl (2.43mM ), mesoinositol (1.10 mM ), thiamine HCl
(1.48mM ), and sucrose (3%), using Technical Agar number 3 (Oxoid Ltd.,
UK). Cultures grew as beige-colored aggregates and were subcultured every
4–6 wk onto fresh medium. Subsequently, aggregates showing organogenesis
were transferred to hormone-free MS agar where shoot and root regeneration
occurred. Regenerated in vitro plantlets were also subcultured onto fresh
medium every 4–6 wk, and maintained to the present day. For alkaloid
analysis, in vitro-grown plantlets were harvested after 6 wk growth and dried
as above. Roots formed and these were used as the material for cytological
analysis.

Cytological investigations. Seeds from identified accessions were
germinated under constant light at 258C on wet filter paper in plastic Petri
dishes. Root tips were taken when growth reached 1.5 cm. Chromosome
counts were also made on young rapidly growing roots of in vitro-cultured
plantlets. Root tips were pretreated in ice-cold water for 24 h, fixed in 3:1
absolute ethanol:acetic acid and stored at 48C until use. Root tips were
hydrolyzed in 1 N HCl at 608C for 8min, transferred into 5ml of Feulgen
solution (Feulgen solution stains exposed aldehyde groups following
hydrolysis), placed in the dark for 30min, and viewed with a light
microscope at a magnification of £ 1000.

DNA extraction. DNA was extracted from 0.5 g of silica gel (Sigma) dried
leaf material using a modification of the 2XCTAB procedure of Doyle and
Doyle (1987) and precipitated using isopropanol for 24 h at2208C. The DNA
was then pelleted by centrifugation at 2000 rpm, washed with 70% ethanol,
and stored in TE buffer (10mM Tris–HCl, pH 7.6 and 1mM EDTA) at
2808C. DNA was further purified using Concert PCR purification columns
(Gibco BRL) and ranged in quantity from 70 to 250 ngml21, as estimated by
fluorescence of ethidium bromide-stained DNA compared to known
standards.

AFLP analysis. AFLP reactions used the AFLP Plant Mapping Kit of
Applied Biosystems Inc. (ABI), following their standard protocols. Firstly, the
restriction enzymes EcoRI and MseI were used to digest total genomic DNA.
Oligonucleotide primers specific to these restriction sites were ligated to the
fragments. Secondly, a preselective amplification was used according to the
manufacturer’s instructions. Thirdly, two primer combinations MseCTC/
EcoACG and MseCAG/EcoAGC were used for the selective PCR step (each
including a fluorescently labeled primer), which amplified a subset of the
fragments, created in the initial PCR. Finally, detection of DNA fragments
was carried out on an ABI 377 Automated Sequencer with ABI Genescan
2.0.2.

Data analysis. AFLP profiles were scored using the Genotyper 1.1
software of ABI. DNA fragments ranging between 50 and 500 base pairs in
size were scored as presence/absence characters and analyzed with
Neighbor-Joining (NJ) using Nei and Li distances (Nei and Li, 1985) with
the phylogenetic analysis program PAUP 4.0 (Swofford, 1998). Internal
support for groupings was assessed using the bootstrap procedure with 1000
replicates (Felsenstein, 1985). Principal coordinates analysis (PCO) was
performed with Le Progiciel R v4.0d (Casgrain, 1999) using Dice distances
(Dice, 1945).

Alkaloid analysis. Mature, but unripe, poppy capsules were dried in a
fan-assisted oven at ,358C. The stigmatic discs, seeds, and placentae were
removed and samples were powdered, and 0.5 g of powdered capsule was
extracted twice with 5% aqueous acetic acid (50ml) by shaking on an orbital
shaker for 1 h. The combined acid extracts were made alkaline to pH 9 with
10% ammonium hydroxide and then extracted ( £ 3) with chloroform (50ml).
The chloroform extracts were dried over anhydrous sodium sulfate, combined
and evaporated in vacuo. The resultant residue was dissolved in 0.5ml
methanol and examined by thin-layer chromatography (TLC) using silica gel
plates (Silica gel 60 F254; Merck) developed in acetone:toluene:ethanol:conc.
ammonia (40:40:12:2.5). Visualization of alkaloids was with UV light and
Dragendorff’s reagent. Reference compounds were thebaine (2.0mgml21),
isothebaine (1.4 mgml21), oripavine (0.3 mgml21), and salutaridine
(2.5mgml21).

For gas chromatographic mass spectrum (GC/MS) analysis, samples were
injected in splitless mode onto a GC capillary column (30m £ 0:25mm i.d.,
Va 35MS) coupled to a Saturn 2000 MSD (EI 70 eV). The injector
temperature and the GC–MS transfer line was held at 2608C and the column
programmed from 1008C, held for 3min, rising to 3008C at 158C per min.
Helium was used as carrier gas at a flow rate of 1mlmin21

Results

AFLP analysis. The two primer combinations from ALFP

generated 254 polymorphic markers, of which 146 were shared

between individuals. A NJ tree from the AFLP analysis, that groups

accessions according to genetic similarity, is given in Fig. 1. There

are three major divisions, representing the three species of section

Oxytona, respectively (P. orientale, P. bracteatum, and P. pseudo-

orientale ). The in vitro-grown plant and the regenerated plant

FIG. 1. Neighbor-Joining (NJ) tree based on AFLP data. The NJ tree has
branches proportional to genetic distance (see scale bar ). Three groups
representing the three species of Oxytona are apparent. The in vitro plant and
the regenerated plant resolve within the P. pseudo-orientale group. 1Based on
chromosome count for accession 36. 2Based on chromosome count for
accessions 34 and 43. 3Based on chromosome count for accessions 22 and 31.
4Based on chromosome count for accession 35.
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grouped with the P. pseudo-orientale accessions. Dendrograms

produced for each set of primers separately were in congruence with

the composite dendrogram for both primers.

The results of the PCO analysis are illustrated in Fig. 2. The first

two axes cumulatively accounted for 60.4% of the data variance

(representing 38.3 and 22.1, respectively). The PCO analysis is

congruent with the NJ tree and shows that the in vitro-grown plant

and the regenerated plant were distinct from Papaver bracteatum but

shared the majority of markers with P. pseudo-orientale.

Alkaloid analysis. Alkaloid profiles for accessions where

capsules were available are given in Table 2. Reference standards

of thebaine, isothebaine, oripavine, and salutaridine had Rf values of

0.54, 0.57, 0.42, and 0.46, respectively. The in vitro-grown plant and

the regenerated plant produced isothebaine (Rf 0.57) as the

dominant alkaloid with several unidentified alkaloids present as

minor constituents. For reference, capsules from P. bracteatum

(accessions 22, 30, and 31) and P. pseudo-orientale (accessions 36

and 40) produced thebaine (Rf value of 0.54) and isothebaine (Rf

value of 0.57) as dominant alkaloids, respectively, with P. orientale

(accession 35) producing oripavine (Rf value of 0.42) as its dominant

alkaloid.

To validate the TLC data, alkaloid extracts for selected accessions

and standards were subjected to GC/MS. Their retention times and

mass fragmentation spectra are given in Table 3. Papaver bracteatum

(accessions 30 and 31) and P. pseudo-orientale (accession 40)

produced thebaine (RT 15.2min, m/z 311) and isothebaine (RT

16min, m/z 311), respectively, as their dominant alkaloids. The

extract from the P. bracteatum £ P. pseudo-orientale hybrid

(accession 43) contained isothebaine (RT 16min, m/z 311) as the

dominant alkaloid (Table 3).

Cytological analysis. Cells from root tips of in vitro-cultured P.

bracteatum contained 28 chromosomes as detected in metaphase of

mitosis. Chromosome counts for available accessions are given in

Table 2. Members of the P. bracteatum AFLP group were diploid

with 2n ¼ 14; while members of the P. pseudo-orientale group were

hexaploid with 2n ¼ 42 (excluding the hybrid). Papaver orientale

had 28 chromosomes and is tetraploid ð2n ¼ 28Þ:

Discussion

Identification of a hybrid in vitro cell line using AFLP

fingerprinting. The NJ tree generated from the AFLP markers

FIG. 2. Principal coordinates analysis (PCO) of AFLP data. The first two axes cumulatively accounted for 60.4% of the data variance
(38.3 and 22.1, respectively). The in vitro plant and the regenerated plant group separately from the P. bracteatum accessions.

TABLE 3

SELECTED IONS, RETENTION TIMES, AND ION RATIOS OF PAPAVER
ALKALOIDS: THEBAINE, ISOTHEBAINE, AND FOUR SELECTED

ACCESSIONS

Compound/accession
Retention
time (min)

Monitored
ions

Ion ratio percentage
(abundance)

Thebaine 15.2 311,296 100,75
Isothebaine 16.0 311,294 100,50
Accession 30 15.2 311,296 100,25
Accession 31 15.2 311,296 100,25
Accession 40 16.0 311,294 100,60
Accession 43 16.0 311,294 100,60
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showed three major groups, which correspond to the three species,

P. bracteatum, P. orientale, and P. pseudo-orientale. Papaver

bracteatum accessions resolved independently from a group which

contains the P. pseudo-orientale accessions. Papaver orientale

resolved as a sister group to the other two species but bootstrap

support for this position is weak (,50). The results of the PCO

analysis are congruent with these conclusions. Accessions labeled as

P. orientale shared morphological characters with P. pseudo-

orientale, having orange petals with large dark spots on each. These

two accessions (02 and 18) grouped with other P. pseudo-orientale

plants. AFLP-generated markers are therefore highly efficient when

used in conjunction with morphological, phytochemical, and

cytological characters to identify plant material.

Regenerated plantlets grown on from the P. bracteatum cultures

should group with P. bracteatum if they have remained genetically

stable before and during tissue culture. However, this in

vitro-derived plantlet did not associate with P. bracteatum and

instead grouped more closely with P. pseudo-orientale. These AFLP

groupings show that genomic material from P. pseudo-orientale is

present within the in vitro-grown plant and the micropropagated

accession, indicating that a hybridization event may have occurred

between P. pseudo-orientale and the maternal P. bracteatum, from

which seed was obtained to initiate the in vitro plants. The in vitro

plant and the regenerated accession group together but are not

identical, which suggests that somaclonal variation may have

occurred during their culture. AFLP-generated fingerprints would

therefore have the potential to detect loss of genetic uniformity due

to somaclonal variation in poppies. We are currently investigating

them further in this regard.

The results from the alkaloid analysis (Tables 2 and 3) support the

conclusion that the in vitro-grown plant is a hybrid. If the in

vitro-grown plant bred true from P. bracteatum, thebaine would be

the expected dominant alkaloid (Hook et al., 1988). Environmental

influences and the genotype £ environment interaction have

considerable effects on the quantity of alkaloids produced by

particular accessions (Bernath and Nemeth, 1998). However, for

species of section Oxytona, phytochemical spectrum and to some

extent alkaloid quantity are influenced primarily by parent genotype

and ploidy (Milo et al., 1990; Levy and Milo, 1991). For example,

hybrids between Oxytona species produce characteristic phyto-

chemical spectra dependent on the inherited genetic information

(Milo et al., 1990; Levy and Milo, 1991). The wide spectrum of

alkaloids found in the differentiated in vitro plant (including

isothebaine) demonstrates the presence of P. pseudo-orientale

genomic material and its resulting biosynthetic pathways. Hybrids

between P. bracteatum and P. pseudo-orientale have been reported to

produce both isothebaine and thebaine, inherited from the two

parental genotypes, respectively (Levy and Milo, 1991). Our results

contrast with Levy and Milo (1991), as no traces of thebaine were

recorded for the hybrid accession. The alkaloid spectrum found

within each species is congruent with the groupings of the AFLP

analysis with three groups all producing diagnostic dominant

alkaloids.

To confirm that the material used to initiate the in vitro plant arose

from hybrid seed, chromosomes were counted and compared to

counts for other studied accessions. Papaver bracteatum, P.

orientale, and P. pseudo-orientale had 14, 28, and 42 chromosomes,

respectively. The in vitro plant had 28 chromosomes and is therefore

a tetraploid. We have provided evidence to show that the cultured

plant is likely to be an allopolyploid with genomes from both P.

bracteatum and another species (probably P. pseudo-orientale ). The

hybrid clusters closer to P. pseudo-orientale than P. bracteatum (in

both NJ and PCO analyses), which indicates that it might have

inherited more chromosomes from P. pseudo-orientale than P.

bracteatum. In this case, one explanation is that it inherited seven

chromosomes from P. bracteatum and 21 from P. pseudo-orientale.

Goldblatt (1974) cites examples of Papaver (section Oxytona )

hybrids with somewhat intermediate characteristics, and stresses

that some of the diagnostic characters when used alone could lead to

misidentifications. Hybrids are not always morphologically inter-

mediate between their parents (Riesberg, 1995) and great care needs

to be taken when evaluating their characters. They are often just as

likely to exhibit the characteristics of one or other of the parental

species. The regenerated plant resembled P. pseudo-orientale more

closely in its gross morphology than P. bracteatum, having six orange

petals with faded central purple spots. Single bracts were present but

not found on all flowering stems. The two-valved calyx was borne on

a pendulous flowering stem becoming erect when mature.

Uncharacteristic fine setae were subpatent on the lower portion of

the flowering stem, becoming adpressed further up. The capsule bore

a concave stigmatic disc comprising 14 stigmatic rays. There was,

therefore, little indication from morphological data that P.

bracteatum was a parent to this particular accession. The original

P. bracteatum plant had, in fact, been garden grown in the presence

of P. pseudo-orientale and a hybridization event was possible.

Molecular AFLP data in combination with chromosome counts

confirm that such an event did occur. This is therefore an example of

a situation where a hybrid is not morphologically intermediate

between its parents as it inherited more characters from one of them.

In vitro technology and molecular markers. Genetic variation

among micropropagated plants is well documented (Rani and Raini,

2000). Somaclonal variation, whether it is at the molecular,

morphological, or the phytochemical level, must be detected and

minimized if true-to-type plants are to be produced. The use of

molecular techniques has allowed rapid detection of such variation

and helped elucidate the mechanisms that cause the loss of genetic

uniformity.

AFLP fingerprints are highly reproducible and generally produce

a large number of polymorphic markers (Becker et al., 1995; Ridout

and Donini, 1999; Hodkinson et al., 2000). We have demonstrated

that they can be applied to the study of genetic variation in poppies.

They have the potential to identify ambiguities between parent

material and regenerated plantlets and to detect somaclonal

variation in Papaver in vitro clones and propagated plants. In our

research, the rapid identification of the hybrid cell line allowed us to

review the various sources of plant material used to initiate callus

and suspension cultures.

The mass propagation of high alkaloid-producing cell lines

demonstrates one of the beneficial uses of in vitro technologies to the

successful utilization of Papaver species. Papaver bracteatum plants

are almost always self-incompatible, which makes the creation of

phytochemically pure lines through selfing very difficult to achieve.

Day et al. (1986) reported successful regeneration of micropropa-

gated plants from embryogenic callus culture with little phytochem-

ical variation occurring between micropropagated offspring and

parent plant material. The effects of somaclonal variation, however,

have the potential to diminish effectiveness of tissue culture as a

means of producing significant quantities of genetically and
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phytochemically uniform accessions. Additionally, seeds taken from

mature plants grown under garden conditions have the potential of

being of hybrid origin. If we had not established that the seeds used

to initiate cultures were of hybrid origin and proceeded with our

work on a larger scale, subculturing and mass propagation of this

particular accession would have resulted in a crop of hybrids, none

of which would have possessed thebaine, the desired phytochemical

constituent.

In vitro production of alkaloids in Papaver bracteatum. There

has been little substantial success in producing good yields of

thebaine from callus or suspension cultures derived from poppy

cells. The production of morphinan alkaloids is known to be

associated with cell differentiation and morphogenetic processes

(Constabel, 1985; Kutchan et al., 1985; Kamo and Mahlberg, 1988;

Szoke, 1998). Morphinan alkaloid synthesis is dependent on the

presence of specialized cells known as laticifers (Roberts et al.,

1983; Kutchan et al., 1985; Rush et al., 1985), which are absent in

undifferentiated poppy cultures. The detection of such alkaloids

often coincides with the development of laticifers in differentiated

plant material that develop in a similar way to young seedlings. The

majority of reported alkaloids from callus and suspension Papaver

bracteatum cultures are the benzophenanthridine type including

sanguinarine, dihydrosanguinarine, and oxysanguinarine (Table 4),

which are produced in minor quantities in intact plants of the genus

Papaver but are found as the dominant constituents of undiffer-

entiated callus and suspension cultures (Cline and Coscia, 1988).

The biosynthesis of these alkaloids occurs at loci different to the

laticifers associated with morphinan alkaloids (Kutchan et al.,

1985). The characteristic phytochemical characters often used to aid

species differentiation with species of section Oxytona are not

produced by undifferentiated in vitro tissues. The use of genetic

fingerprinting offers the potential to differentiate between closely

related species, identify hybrid material, and assess the amount of

genetic stability during the tissue culture processes.

The variability of alkaloids reportedly produced by the cell

culture (Table 4) has often been explained by differences in growth

conditions and by the degree of tissue differentiation. It is possible,

however, that such variability could also be due to misidentification

of the plant material used as the seed source (Phillipson et al., 1981).

We witnessed a departure from the expected alkaloid profile of a P.

bracteatum plant but were able to attribute this to misidentification.

Unfortunately, other studies that report high variability in alkaloid

profiles often fail to provide evidence for correct identification of

their material.

Conclusions

The most fundamental requirement for the use of any plant

species in the pharmaceutical industry is its correct identification.

Poppy species belonging to section Oxytona are not sufficiently

distinct to base identification solely on morphological characters.

Regenerated Papaver plantlets from tissue culture could be grown on

to maturity and identified using morphological characters and

chromosome numbers but a growing period of 2 yr is required to

produce flowers. AFLPs combined with cytogenetic analysis offer a

powerful way to rapidly differentiate species and identify potential

hybrids. AFLP clearly has great potential as a way of monitoring the

genetic stability of in vitro plants, particularly those that possess

superior phytochemical traits and that are multiplied by tissue

culture methods. We are also investigating the potential of flow

cytometry (Rabinovitch, 1994; Wilkinson et al., 2000) for rapidly

screening the ploidy level and genetic constitution of Papaver.

The DNA fingerprinting technique, AFLP, combined with

standard cytogenetic techniques offers the possibility to improve

the utilization of Papaver bracteatum as a pharmaceutical resource.

The markers can be used for marker-aided selection and for the

study of quantitative trait loci (Mackill et al., 1996; Paul et al., 1997;

Waugh et al., 1997). We have also demonstrated that the markers

have wider utility in the field of plant systematics for the study of

hybridization and introgression in poppies.

References

Becker, J.; Vos, P.; Kuiper, M.; Salamini, F.; Heun, M. Combined mapping of
AFLP and RFLP markers in barley. Mol. Gen. Genet. 249:65–73;
1995.

Bernath, J.; Nemeth, E. Physiological-ecological aspects. In: Bernath, J., ed.
Poppy the genus Papaver. Medicinal and aromatic plants – industrial
profiles, Chur, Switzerland: Hardwood Academic Publishers;
1998:65–91.

Casgrain, P. Le Progiciel Rv4.0d1. Development release; 1999.
Cline, S. D.; Coscia, C. J. Stimulation of sanguinarine production by

combined fungal elicitation and hormonal deprivation in cell
suspension culture of Papaver bracteatum. Plant Physiol.
86:161–165; 1988.

Constabel, F. Morphinan alkaloids from plant cell cultures. In: Phillipson, J.
D.; Roberts, M. F.; Zenk, M. H., eds. The chemistry and biology of
isoquinoline alkaloids. Berlin: Springer; 1985:257–264.

Day, K. B.; Draper, J.; Smith, H. Plant regeneration and thebaine content of
plants derived from callus culture of Papaver bracteatum. Plant Cell
Rep. 5:471–474; 1986.

Dice, L. R. Measures of the amount of ecological association between species.
Ecology 76:295–302; 1945.

Doyle, J. J.; Doyle, J. L. A rapid DNA isolation procedure for small quantities
of fresh leaf tissue. Phytochem. Bull. Bot. Soc. Am. 19:11–15; 1987.

Felsenstein, J. Confidence limits on phylogenies: an approach using the
bootstrap. Evolution 39:783–791; 1985.

Goldblatt, P. Biosystematic studies in Papaver section Oxytona. Ann. Mo.
Bot. Gard. 61(2):264–296; 1974.

Hodkinson, T. R.; Chase, M. W.; Renvoize, S. A. Characterisation of a genetic
resource collection of Miscanthus using AFLP and ISSR PCR. Ann.
Bot. (in press); 2002.

Hodkinson, T. R.; Renvoize, S. A.; Ni Chonghaile, G.; Stapleton, M. A.;
Chase, M. W. A comparison of ITS nuclear rDNA sequence data and
AFLP markers for phylogenetic studies in Phyllostachys
(Bambusoideae, Poaceae). J. Plant Res. 113:259–269; 2000.

Hook, I.; Sheridan, H.; Wilson, G. Alkaloids of the cell cultures derived from
strains of Papaver bracteatum. Phytochemistry 27:2137–2141; 1988.

Ikutsu, A.; Syono, K.; Furuya, T. Alkaloids of callus tissues and
redifferentiated plantlets in the Papaveraceae. Phytochemistry
27:2175–2179; 1974.

Ilahi, I.; Ghauri, E. G. Regeneration in cultures of Papaver bracteatum as
influenced by growth hormones and temperature. Plant Cell Tiss.
Organ Cult. 38:81–83; 1994.

Kamimura, S.; Akutsu, M. Cultural conditions on growth of the cell culture of
Papaver bracteatum. Agric. Biol. Chem. 40(5):899–906; 1976.

Kamimura, S.; Akutsu, M.; Nishikawa, M. Formation of thebaine in the
suspension culture of Papaver bracteatum. Agric. Biol. Chem.
40(5):913–919; 1976.

Kamimura, S.; Nishikawa, M. Growth and alkaloid production in the cultured
cells of Papaver bracteatum. Agric. Biol. Chem. 40(5):907–911;
1976.

Kamo, K. K.; Mahlberg, P. G. Morphinan alkaloids: biosynthesis in plant
(Papaver spp.) tissue culture. In: Bajaj, Y. P. S., ed. Biotechnology in
agriculture and forestry 4. Medicinal and aromatic plants I. Berlin:
Springer-Verlag; 1988:251–263.

Kutchan, T. M.; Ayabe, S.; Coscia, C. J. Cytodifferentiatiation and Papaver

306 CAROLAN ET AL.



alkaloid accumulation. In: Phillipson, J. D.; Roberts, M. F.; Zenk,
M. H., eds. The chemistry and biology of isoquinoline alkaloids.
Berlin: Springer; 1985:281–294.

Lecky, R. Biotechnological evaluation of Papaver bracteatum cell cultures.
PhD thesis, Trinity College Dublin; 1992.

Levy, A.; Milo, J. Inheritance of morphological and chemical characters in
interspecific hybrids between Papaver bracteatum and Papaver
pseudo-orientale. Theor. Appl. Genet. 81:537–540; 1991.

Lockwood, B. Orientalidine and isothebaine from cell cultures of Papaver
bracteatum. Phytochemistry 20:1463–1464; 1981.

Mackill, D. J.; Zhang, Z.; Redona, E. D.; Colowit, P. M. Level of
polymorphism and genetic mapping of AFLP markers in rice. Genome
39:969–977; 1996.

McNicholas, L. F.; Martin, R. New and experimental therapeutic role for
naloxone and related opiate antagonists. Drugs 27:81–93; 1984.

Milo, J.; Levy, A.; Ladizinsky, G.; Palevitch, D. Phylogenetic studies in
Papaver section Oxytona: cytogenetics of the species and
interspecific hybrids. Theor. Appl. Genet. 75:795–802; 1986.

Milo, J.; Levy, A.; Palevitch, D.; Ladizinsky, G. Genetic evidence for the
conversion of the morphinan alkaloid thebaine to oripavine in
interspecific hybrids between Papaver bracteatum and Papaver
orientale. Heredity 64:367–370; 1990.

Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays
with tobacco tissue cultures. Physiol. Plant. 15:473–497; 1962.

Nei, M.; Li, W. H. Mathematical model for studying genetic variation in terms
of restriction nucleases. Proc. Natl Acad. Sci. USA 76:5269–5273;
1985.

Nyman, U.; Bruhn, J. G. Papaver bracteatum – a summary of current
knowledge. Planta Med. 35:97–117; 1979.

Ojala, A.; Rousi, A.; Lewing, E.; Pyysalo, H.; Widen, C. J. Interspecific
hybridization in Papaver III. F1 hybrids between species of section
Oxytona. Hereditas 112:221–230; 1990.

Paul, S.; Wachira, F. N.; Powell, W.; Waugh, R. Diversity and genetic
differentiation among populations of Indian and Kenyan tea
(Camellia sinensis (L.) O. Kuntze) revealed by AFLP markers.
Theor. Appl. Genet. 94:255–263; 1997.

Phillipson, J. D.; Scutt, A.; Baytop, A.; Ozhatay, N.; Shariyar, G. Alkaloids
from Turkish samples of Papaver orientale and P. pseudo-orientale.
Planta Med. 43:261–271; 1981.

Rabinovitch, P. S. Flow cytometry. Methods Cell Biol. 41:264–496; 1994.
Rani, V.; Raini, S. N. Genetic fidelity of organized meristem-derived

micropropagated plants: a critical reappraisal. In Vitro Cell. Dev.
Biol. Plant 36:319–330; 2000.

Ridout, C. J.; Donini, P. Use of AFLP in cereals research. Trends Plant Sci.
4(2):76–79; 1999.

Riesberg, L. H. The role of hybridization in evolution: old wine in new skins.
Am. J. Bot. 82:944–953; 1995.

Roberts, M. F.; McCarthy, D.; Kutchan, T. M.; Coscia, C. J. Localisation of
enzymes and alkaloid metabolites in Papaver latex. Arch. Biochem.
Biophys. 222:599–609; 1983.

Rush, M. D.; Kutchan, T. M.; Coscia, C. J. Correlation of appearance of
morphinan alkaloids and laticifer cells in germinating Papaver
bracteatum seedlings. Plant Cell Rep. 4:237–240; 1985.

Shafiee, A.; Lalezari, I.; Yassa, N. Thebaine in tissue culture of
Papaver bracteatum Lindl. Population Arya II. Lloydia
39:380–381; 1976.

Swofford, D. L. Phylogenetic analysis using parsimony and other
methods (PAUP), version 4.0. Sunderland, MA: Sinauer
Associates; 1998.

Szoke, E. In vitro Biosynthesis of poppy alkaloids. In: Bernath, J., ed. Poppy
the genus Papaver. Medicinal and aromatic plants – industrial
profiles. Chur, Switzerland: Hardwood Academic Publishers;
1998:189–207.

United Nations Document. Scientific Research on Papaver bracteatum.
Report of the Fourth Working Group. ST/SOA/SER.J/23; 1976:6.

Vos, P. R.; Hodges, R.; Bleeker, M.; Reijans, M.; van de Lee, T.; Hornes, M.;
Frijters, A.; Pot, J.; Kuiper, M.; Zabeau, M. AFLP: a new technique
for DNA fingerprinting. Nucleic Acids Res. 23:4407–4410; 1995.

Waugh, R.; Bonar, N.; Baird, E.; Thomas, B.; Graner, A.; Hayes, P.; Powell,
W. Homology of AFLP products in three mapping populations of
barley. Mol. Gen. Genet. 255:311–321; 1997.

Wilkinson, M. J.; Davenport, I. J.; Charters, Y. M.; Jones, A. E.;
Allainguillaume, J.; Butler, H. T.; Mason, D. C.; Raybould, A. F. A
direct regional scale estimation of transgene movement from
genetically modified oilseed rape to its wild progenitors. Mol. Ecol.
9:983–991; 2000.

Zito, S. W.; Staba, E. J. Thebaine from root cultures of Papaver bracteatum.
Planta Med. 45:53–54; 1982.

GENETIC VARIABILITY OF MICROPROPAGATED PAPAVER BRACTEATUM 307


