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 Abstract 

Aims & Rationale: 

This study focuses on the hypothesis that every pet entering a hospital environment runs the 

potential risk of contracting a nosocomial infection. Giardia lamblia (G. lamblia) is a zoonotic 

unicellular flagellated protozoan parasite that infects both human and non-human mammals. 

The presence of pathogenic organisms in veterinary settings is a public health concern in 

relation to human and animal exposure. Veterinary clinics represent a significant risk factor for 

the zoonotic transfer of pathogens especially in cases of wound infection and the shedding of 

faecal matter. 

This study aims to provide a means of detecting veterinary relevant parasite species in bacterial 

biofilms, and to provide a means of disinfecting these parasites and biofilms. This study aims 

to breach the testing void for G. lamblia that currently exists in Ireland by using a combined in 

vitro HCT-8 cell culture-quantitative PCR assay for evaluating the efficacy of using pulsed UV 

light for treating G. lamblia parasites. This study aims to provide a source of data into novel 

disinfection mechanisms such as Pulsed UV light technologies as a potential clinical 

application in veterinary practice.  

Methods & Results:  

Biofilms were grown on veterinary relevant surfaces, i.e. stainless steel and PVC coupons using 

a CDC biofilm reactor and treated using Pulsed UV light. Pulsed light successfully inactivated 

all test species (Listeria, Salmonella, Bacillus, Escherichia) in planktonic and biofilm form 

with an increase in inactivation for every increase in UV dose.  

Biofilms were also used as part of a parasite entrapment study for this project. Giardia lamblia 

was seeded in the biofilm reactor and disinfection studies were carried out. In order to 

independently define inactivation during testing of the novel disinfection methods an in vitro 

cell culture model was adapted and used. A real time PCR assay was utilized to detect parasite 
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DNA in Bacillus cereus biofilms on stainless steel and PVC surfaces. Results show that 

Giardia attach to biofilms in large numbers (100-1000 cysts) in as little as 72 hours.    

Conclusion: 

This represents the first study on the use of a combined cell culture - real time PCR in vitro 

assay for the viability assessment of low-pressure and pulsed UV light treated Giardia lamblia 

cysts using human intestinal derived cell lines. It is envisioned that such an assay provides an 

alternative approach to that of in vivo testing by allowing for a rapid method of determining 

parasitic inactivation following UV and other disinfection processes. The observations from 

these findings further enhance the hypothesis that pulsed UV light would be an effective 

sterilization technique in a veterinary clinical setting once regular cleaning had taken place. 

Findings indicated that current Giardia detection methods are limited to using vital stains 

before and after cyst excystation are not appropriate for monitoring or evaluating cyst 

destruction post PUV-treatments. Use of the human ileocecal HCT-8 cell line was superior to 

that of the human colon Caco-2 cell line for in vitro culture and determining PUV sensitivity 

of treated cysts. The use of the in vitro HCT-8 cell culture assay may replace use of animal 

models for determining disinfection performances of PUV for treating G. lamblia. The 

extraction and amplification of the parasitic DNA via real time PCR provides a rapid 

measurement of infective parasite numbers allowing for the measurement of live or dead 

parasites. 
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1. Introduction  
1. 1. Giardia lamblia an emerging zoonotic pathogen 

Giardia lamblia (G. lamblia) is a zoonotic unicellular flagellated protozoan parasite that infects 

both human and non-human mammals. G.lamblia is considered to be the most common human 

protozoan enteropathogen worldwide (Zumla et al., 2003) as it is a major cause of 

gastroenteritis and diarrheal illness, with millions of people being infected every year (Alum 

et al., 2012) both in the developing and developed worlds. However, the incidence of 

Giardiasis, the disease caused by the protozoan G. lamblia, is generally higher in 

underdeveloped countries with approximately 15-55% cases occurring annually compared to 

that of developed countries where an incidence of approximately 5% is seen (Alum et al., 

2012).  

Despite the health significance of its incidence, G. lamblia has largely been ignored as 

a public health threat during the last century and was finally included in the ‘Neglected 

Diseases Initiative’ in 2004 (Savioli et al., 2006). Germany made giardiasis a notifiable disease 

in 2001. The main route of transmission for G. lamblia is the faecal-oral route either directly 

or indirectly. Mechanisms for such transmission include the consumption of contaminated 

water and food, animal-to-animal, animal-to-human (zoonotic) through the faecal-oral route, 

through recreational activity such as swimming and human-to-human if strict hand hygiene is 

not adhered to. Early epidemiological studies which linked giardiasis in campers in Canada 

with drinking water contaminated with Giardia cysts from beavers led to the World Health 

Organisation (WHO) listing Giardia as a zoonosis (Thompson R.C.A., 2004). 

 

1. 1. 1. Taxonomy of Giardia 

Six Giardia species are currently accepted by most researchers; Giardia agilis, Giardia ardeae, 

Giardia psittaci, Giardia microti, Giardia muris and Giardia lamblia (Ryan and Caccio., 
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2013). G. lamblia is the only species found in humans and it is also found in other mammals 

including companion animals (cat & dogs) and livestock (Feng and Xiao., 2011). Although 

there is little variation in the morphology of G. lamblia, Ryan and Caccio (2013) reported that 

there is however at least eight very distinct genetic groups/assemblages (A-H) based on DNA 

polymorphisms (Table 1.1). Furthermore, within each assemblage there are sub-assemblages 

based on genetic variation. Isolates that belong to sub-assemblages are genetically close but 

not identical (Ryan and Caccio., 2013).  
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Table 1.: The currently recognised assemblages of Giardia lamblia, their host distribution and 

proposed taxonomy (Ryan and Caccio., 2013).      

            

            

            

            

            

           

Assemblage Host Distribution Proposed species 

Name 

A Humans, other primates, Livestock, Dogs, Cats and 

some species of wild mammals 

Giaria lamblia 

B Humans, other primates, Dogs, Cats and some species 

of wild mammals 

Giardia enterica 

C Dogs and other canids Giardia canis 

D Dogs and other canids  

E Hoofed Livestock Giardia bovis 

F Cats Giardia cati 

G Rats Giardia simondi 

H Marine mammals (pinnipeds) G. intestinalis 
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1. 1. 2. Life cycle of Giardia     

G. lamblia’s life cycle is direct and involves two stages (Ryan and Caccio., 2013); infection 

and replication. Cysts are responsible for the infective stage of Giardia, leading to giardiasis, 

and the trophozoites (vegetative form), have the responsibility of replication. G. lamblia 

trophozoitess are pear-shaped and appromimately 12-15µm long and 5-9µm wide, while the 

cysts are approximately 5 X 7 – 10µm in diameter with a wall thickness of 0.3 – 0.5µm (Adam 

R.D., 2001). Giardia is usually a binuclecate organism, in which the two nuclei are apparently 

equivalent (Kabnick and Peattie, 1990). It is considered that on encystation, the binucleated 

trophozoite becomes a binucleated cyst, and thereafter each of the two nuclei within the cyst 

undergoes a single division to form a quadrinucleated cyst (Mayer., 1994). It is assumed that 

the quadrunucleated cyst establishes the infection in the host (Campbell and Wallis., 2002). 

Infection occurs when cysts are ingested through the consumption of contaminated 

water supplies, contaminated food or fecal-oral route. The acidic pH environment of the 

stomach provides the necessary stimulation for the cysts excystation and proliferation of the 

trophozoites in the duodenum (Ryan and Caccio., 2013). Trophozoites then undergo mitotic 

division in the small intestine causing symptoms such as diarrhea and malabsorption. At this 

stage, trophozoites may be free moving or attached to the lining of the intestine via their ventral 

sucking disks. Trophozoites then form cysts in the jejunum after being exposed to bile. These 

infectious cysts are then excreted in the faeces into the environment, the life cycle being 

completed once a new host is infected.  It is important to note that infected hosts may shed 

intermittently and therefore repeated samples must be taken before determining if the patient 

is disease free. 
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Figure 1.: Giardia life cycle. Image depicting the life cycle of Giardia lamblia from ingestion, 

replication in the gastrointestinal tract and excretion into the environment.(Source: Tracey J 

Lamb, 2012, Pg 140 ) 
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1. 1. 3. Giardiasis  

In mammals, including humans, giardiasis is mainly caused by Giardia lamblia. In humans, 

giardiasis is usually a self-limiting illness, characterised by diarrhoea, colic, headache, 

dehydration, malabsorption, and weight loss (Buret and Cotton, 2011). However hosts are often 

asymptomatic and shedding the parasite intermittently. Although immuno-competent 

individuals are not unknown to becoming infected with Giardia, their immune system is usually 

more adept at fighting and recovering from the infestations. Immuno-compromised, young 

children and the elderly however, are particularly vulnerable to the parasite. Sanitation, water 

supplies, population density and general husbandry conditions all affect the rate of infection.  

  The clinical signs in companion animals include diarrhoea, often light in colour, 

malodorous and steatorrhoeic, all of which results in poor weight gain and stunting in offspring. 

Giardiasis may also result in weight loss in adults but rarely in appetence is seen. (Evans, 2005). 

In Canada, a study investigating the prevalence of Giardia in dogs and cats, vomiting was 

observed in 17.1% and 16.7% of infected dogs and cats, respectively (Olsen et al., 2010). In 

agricultural animals, for instance, giardiasis can lead to morbidity and economic losses (Olson 

et al., 2004), although asymptomatic infections are common (Geurden et al., 2010).  

It has long been argued of the zoonotic potential of G. lamblia. Both zoonotic and host 

specific strains of G. lamblia can be harboured in animals (see Table 1.1) and therefore, the 

importance of molecular analysis tools cannot be over looked, nor can the risk of zoonotic 

transfer.  G. lamblia is one of the most common parasites of dogs and cats around the world 

(Bowman and Lucio-Forster., 2010). A survey in Australia found Giardia cysts in 9.3% of 1400 

canine and 2.0% of 1603 feline samples (Palmer et al., 2008). A commercial ELISA (enzyme-

linked immunosorbent assay)-based test revealed a positive antigen result in the feces of 15.6% 

of 16,114 symptomatic dogs and 10.8% of 4978 symptomatic cats in a study carried out in the 

United States (Carlin et al., 2006). 0.3-36% of dogs and cats in Europe have patent infections 
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with up to 70% of canines being infected in the first year of life (Tenter and Deplazes., 2006). 

One European study carried out by Sprong et al., in 2009 reported the detection of sub-

assemblage AI in 73% of 120 isolates and sub-assemblage AII in the remaining isolates (27%). 

Veterinarians using ELISA tests from IDEXX Laboratories have witnessed the prevalence of 

Giardia infections in ‘normal’ or non-symptomatic cats and dogs to be high: anywhere between 

10% to 40%, or higher (Bowman and Lucio-Foster., 2010). 

Little is known about G. lamblia infection in horses and there is no definitive evidence 

of the role played by infected horses as potential sources of human infection (Feng and Xiao, 

2011), however, in a recent study carried out by SantÍn et al on 195 horses in Columbia two 

horses were identified with assemblage A and 32 horses with assemblage B (Ryan and Caccio, 

2013). 

A recent study carried out by Geurden et al., (2010) at multiple centres across Europe 

(Germany, France, Italy and the UK) examining the incidence of Giardia in cattle found an 

overall prevalence of 45.4% (942/2072),  with an overall prevalence of assemblage A (43%). 

The prevalence of assemblage A ranged from 61% in France, to 41% in Germany, 29% in the 

UK and 28% in Italy. Importantly, 32% of samples had a mixed infection of assemblage A and 

E.  

There are currently no prevalence figures available for G. lamblia in Ireland. Testing for G. 

lamblia in-house is a simple ELISA based Snap test commercially available from IDEXX 

Laboratories. This test which works on an antigen detection mechanism are not ideal however 

as animals could test positive for Giardia but are not currently infected or shedding into the 

environment. This in turn may lead to animals receiving antibiotic or anthelminthic therapy 

unnecessarily. Reference laboratories in Ireland include the Regional Veterinary Laboratories, 

UCD Veterinary Laboratory and the Irish Equine Centre. However, none of these labs are using 

PCR based techniques and instead use antigen tests and faecal flotation and staining method. 
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1. 1. 4. Epidemiology: Human 

From the beginning of the 21st century up until 2004, more than 100 waterborne giardiasis 

outbreaks have been reported worldwide (Plutzer et al., 2010). The largest outbreak of 

giardiasis, caused by G. lamblia in potable water supplies, occurred in Norway in 2004, 

affecting approximately 1500 people. (Plutzer et al., 2010). Of the 45 European countries, only 

20 have published scientific research on the prevalence of Giardia in humans and in water 

samples (Plutzer et al., 2010), of which Ireland is not one with published information (see 

Table 1.2). Due to the lack of countries reporting the incidence of Giardia, and indeed the 

misdiagnosis of Giardiasis, there are major gaps in understanding its importance. In 2007, a 

total of 3651 cases of giardiasis were notified to the Robert Koch Institute, Germany (Espelage 

et al., 2010). Approximately 5% of gastroenteritis cases in developed countries are caused by 

G. lamblia compared to that of 15-55% of cases in developing countries (Alum et al., 2010). 

There is an estimated 45,000 reported cases of giardiasis each year in the United States of 

America (Alum et al., 2010), however, the true incidence is probably higher as cases go 

misdiagnosed or unreported. Although Giardia is not a notifiable disease in Ireland, it is 

emerging as an issue on pig and dairy farms and could lead to detrimental economic loss if ill 

thrift amongst young animals is found.   
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Table 1.: Prevalence of reported Giardia for humans and water supplies in Europe (Plutzer et al., 2010)  

Country

Giardia prevalance in different 

water samples and cyst numbers 

detected in water

Symptomatic Asymptomatic Sewage water Raw Water

Surface & Bathing 

water/swimming pool Drinking water

Netherlands 5.40% 3.30%

58.6%/5.9% Range: 0-

167/10l

Portugal 15.5%/57.9% Mean: 0-1-108.3/10l 25.40%

Switzerland 97.5% Range 0-216/20l

Germany 4%

63.8% Range: 0-13143/100l; Average 

88.2/100l

14.9% Range: 0-

16.8/100l;Average 

3.77/100l

Denmark 5.81% 2.97%

Norway 5.81% 2.97%

Finland 5.81% 2.97% Influent 100% Effluent 50% 33.30% 35%

Sweden 5.81% 2.97%

Greece 29.6% Range 0-3205/100l

Hungary 2%

100% Range: inflow 320-5760/l 

Outflow: 0.6-375/l 48.4%/76.9% Range: 0-1030/100l 33.3% Range: 0-0.8/l

27.2% Range: 0-

53.6/100l

Czech Republic Range: 0-485/100l

France 84.2%/93.8% Range: 0.5-180/10l

33.3%/67.8%/96.7% 

Range 0-511.5/10l

Russia 0-357/2L

Bulgaria 0-1208/2l 0-232/2l 0-255/2l

Spain

100% Mean influent: 89-8305/l Mean 

effluent: 79-2469/l 26.9%-55.5% Mean: 1-12.8l

92.3% Mean: 2-400/l 

Range 0-722/l

19.2-26.8% Mean: 

0.5-4/l

Italy 100% Mean 60-7000/l 57.1% Range:  0-8/100l 71% 0.006-80/l 0%

Poland

1-8.8% of healthy 

children and 3.1-

6.5% of healthy 

adults 2-6.9% 0%

United Kingdom

1.3% of healthy 

children Positive Positive

Albania

17.6% of 

children 11.19%

Belgium 4.01%

Giardia prevelance in human
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1. 2. Nosocomial infections  

Nosocomial infections are those that have been acquired in a hospital and specifically relates 

to one that was not present or incubating prior to the patient's being admitted to the hospital, 

but occurring within 72 hours after admittance to the hospital. The risk in veterinary hospitals 

with prevalence studies showing a 4-9% of inpatients acquiring a nosocomial infection 

(Mielke, 2010) is comparable to that in human hospitals with 5-10% of patients acquiring 

nosocomial infections (Burke, 2003). Sources of nosocomial agents within the hospital setting 

includes, but are not limited to, the patient’s own flora, staff, and inanimate objects such as 

instruments, hospital equipment and kennels (figure 2.1). A review carried out by Milton et al., 

(2015) details both the high risk areas and indeed reasons leading to a heightened risk of 

acquiring such a disease, these include: veterinary hospitals lacking hygiene, employing 

invasive devices, prolonged treatment, longer visits by health care worker and caseloads, and 

lengthy hospital stays. Given several of these risks, it is fair to assume that long-stay, immune-

compromised patients hospitalised in a high caseload hospital are at an amplified risk of 

acquiring a nosocomial disease.  

Nosocomial infections can be local infections (e.g., surgical site infection) or area specific (e.g., 

intensive care unit, neonatal unit). A leading risk of every surgical procedure is the contraction 

of a surgical site infection (SSI), with 0.8% to 18.1% reporting with complications (Milton et 

al., 2015). SSI’s quite often can be directly related to surgical implants, eg intramedullary pins, 

valves, joint replacements. This leads to further complications often resulting in the removal 

of the implant and perhaps the replacement of the implant if required, putting an emotional 

stress and a financial strain on an owner.  Furthermore, the consequences of putting a patient 

through the physiological strains of unnecessary anaesthesia, surgery and recovery is unethical 

and is placing the patient at risk. Nosocomial infections are the growing cause of morbidity 

and mortality in both human and veterinary medicine (Weese, 2008a; Weese, 2008b; Owens 
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et al., 2008; Faires et al., 2010), and this therefore could lead to a loss of confidence in the 

general public and a  hospitals client base. Undoubtedly the economic and professional 

reputation of a hospital and individual practitioner is at stake if an outbreak of a nosocomial 

disease occurs within a hospital, yet these preventable diseases are somewhat ignored in 

practice.  
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Figure 1.: Spread of Nosocomial Infections within the veterinary hospital (Milton et al., 2015). 

Image showing sources and transmission routes of infectious agents within the veterinary 

hospital setting. 
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1.3 Biofilm structure  

Dunne (2002) states that there are three basic ingredients in the formation of a biofilm: 

glycocalyx, microbes and a surface. And whilst he admits simplifying a rather ingenious 

technique developed by microbes to aid in their survival in the environment, it is also noted the 

functional degree of organisation and cooperatively that exists with biofilms to allow maximum 

interaction with the environment without exhausting resources or compromising cell survival. 

Carpentier and Cerf (1993) give a slightly more in-depth description of biofilms as “a 

community of microbes embedded in an organic polymer matrix, adhering to a surface.” while 

Costerton et al., (1999) give the rather proficient description of “a structured community of 

bacterial cells enclosed in a self-produced polymeric matrix and adherent to an inert or living 

surface.” as the definition of a biofilm. In actual fact, a biofilm cannot form if any one of the 

three components is missing.  The terms planktonic (free-floating) and sessile (surface-bound) 

are the terms used to describe microorganisms. Abiotic surfaces (inanimate) and biotic surfaces 

(living cells/tissue) are both possible sites of adhesion, colonisation and biofilm formation of 

microorganisms (Dunne., 2002). 

Biofilms are functional complex structures with varying distributions of cells and other 

essential materials that form a protective environment for the growth and support of vast 

microbial numbers. These structures can form on to many surfaces including those found in 

veterinary hospital settings and agricultural processing plants, indeed theoretically there is no 

surface that cannot be colonised by a biofilm (Bonez et al., 2013). Furthermore, the presence 

of biofilms in clinical settings and their role in pathogenicity has been well documented 

(Garvey et al., 2014). Indeed, up to 80% of bacterial infections are linked to biofilms. Microbial 

biofilms are associated with numerous infections including pseudomembranous colitis 

(Clostridium), osteomyelitis (Staphylococcus), endocarditis (Enterococcus), and bacteremia 

(Enterobacter) (Clutterbuck et al., 2007). 
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Biofilms are communities of microorganisms which live attached to surfaces 

surrounded by a matrix of extracellular polymeric substances (EPS). This extracellular 

substance is produced by the organisms and includes proteins, nucleic acids, polysaccharides, 

and amphiphilic polymeric compounds.  This matrix is involved in numerous essential 

processes including attachment to surfaces, cell-to-cell interconnection, quorum sensing, and 

exchanges between bacterial subpopulations, tolerance, and exchange of genetic material 

(Harmsen et al., 2010). Bacterial growth and diversity as well as the development of the biofilm 

matrix depend on several factors including nutrient availability and hydrodynamic conditions 

(Schwartz et al., 2009). 

1. 3. Veterinary relevant biofilms of bacterial and fungal origin  

The presence of biofilms on man-made surfaces such as piping, medical equipment, tubing etc. 

has highlighted their importance in relation to pathogenicity. The formation of biofilms in 

undesirable places leads to problems in medical, veterinary and industrial environments as 

these bacterial communities can resist host cellular immunity (phagocytosis), antimicrobial 

therapy and biocide treatment (Harmsen et al., 2010).  The major problem arises however, 

because the platonkic killing dose is much less than the biofilm killing dose (biofilm killing 

dose will be between 1000-1500 times higher than planktonic killing dose) (Costerton, 2000). 

Antibiotics can be used to kill the microorganism causing the disease, and indeed, in the 

meantime, the patient becomes asymptomatic. However, because the biofilm hasn’t been 

killed, it acts as a reservoir which starts shedding new bacteria, and thus, the illness ‘returns’. 

Studies by Momba et al., (2000) stated that for each planktonic bacterial cell detected there 

may be up to 1000 organisms present within a biofilm. It is well known that sessile bacteria are 

more resistant to treatment with antimicrobial compounds, metal toxicity, acid exposure, 

dehydration and phagocytosis than planktonic cells (Lindsay and Holy, 2006). Hydrogen 

peroxide, common household bleach, is effective at killing biofilms by dissolving the 
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polysaccharide matrix (Costerton, 2000), however, bleach is highly irritant to animal and 

human mucosa and is toxic to most, therefore the use of bleach on surfaces, feed/water bowls, 

and agricultural plant pipes etc should be avoided. The resistance of these structures to common 

disinfection agents such as chlorhexidine means that alternative decontamination methods need 

to be established. 

In the last 3 decades fungi have appeared as a major cause of human disease, 

predominantly among immunocompromised individuals, neonates, burn patients and patients 

with serious underlying illnesses (Trofa et al., 2008). Candida species are opportunistic 

eukaryotic fungal pathogens commonly associated with clinical infections resulting in deep 

tissue infection, high mortality rates and financial burden. Candida biofilms are composed of 

yeast cells and filaments which are structurally attached to biotic or abiotic surfaces and 

embedded in an extracellular matrix (Nailis et al., 2010). Biofilm formation by pathogenic 

microorganisms such as Candida plays a key role in infections resulting from indwelling 

devices in the clinical setting. Indeed, the association between Candida species biofilm 

formation and continued host infection has become more evident. Once a biofilms forms, it can 

continuously supply cells which detach from the main structure into the bloodstream acting as 

a source of infection. It has been reported by Kumamoto, 2002 that conditions with a high flow 

rate such as that encountered within the circulatory system may favour the development of 

persistent biofilms on devices placed in the bloodstream. Furthermore, Candida species 

biofilms are quite resistant to antifungals such as fluconazole, amphotericin B, nystatin and 

voriconazole (Kumanoto, 2002). In recent years there has been a marked increase in non-C. 

albicans related bloodstream infections from Candida species mainly C. parapsilosis, C. krusei 

and C. tropicalis (Trofa et al., 2008). The resistance of this species to antifungals and the ability 

of Candida biofilms to tolerate chemical disinfection suggest the need for alternative methods 

of removing this pathogen from clinical settings. Prevention of infection is a superior method 
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than infection treatment in terms of cost and patient wellbeing. An alternative or supplementary 

means of control is to minimise the extent of exposure of the patient to these fungal pathogens, 

thereby preventing an infection from occurring. Typical clinical surfaces such as plastics have 

been shown to act as reservoirs for viable pathogenic fungi such as C. albicans and C. 

parapsilosis (Neely and Orloff, 2001). Proper cleaning regimens that include the use of 

effective surface decontamination techniques can help prevent patient exposure to pathogenic 

species.   

The prevention and control of veterinary related infections is an important aspect of public 

health and safety due to the occurrence of zoonotic infections. The spread of pathogenic species 

within veterinary practices can lead to infection of both the housed animals and veterinary staff. 

Veterinary clinics are a connection of human and animal interaction, often in situations dealing 

with infected wounds or faecal matter. This is a significant concern for immunocompromised 

individuals who are animal owners. The Department of Health, Queenstown, Australia 

developed ‘The Animal contact guidelines – reducing the risk to human health’ in 2014 and 

has outlined excellent guidelines and information for people visiting/working with animals to 

reduce the risk of contracting a zoonotic disease. Suffice to say that education and training of 

veterinary staff, and demanding the highest possible hygiene standards of employees is 

imperative to the control and reduction of the risk of zoonotic transfer. Veterinary personnel 

must adopt a risk based approach when handling sick patients and develop a safe system of 

work to address any threat to human health. Changing behavioural attitudes such as hand 

hygiene, the use of isolation facilities, personal protective equipment (PPE), employing 

stringent barrier nursing protocols and changing uniforms prior to leaving the hospital setting 

are all small steps to achieving a low risk working environment. 

 Animal associated pathogens of concern to immunocompromised persons include 

Cryptosporidium, Salmonella, Listeria, Bacillus, Escherichia coli, Campylobacter and Giardia 
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(Grant and Olsen., 1999). Furthermore, many research studies have highlighted the connection 

between the spread of pathogenic organisms from surfaces to patients (Gebel et al., 2013). 

Consequently, the use of surface disinfectants for the control of pathogens in clinical and 

veterinary settings has become important due to the increase in antibiotic resistant microbial 

species and zoonotic infections. However, issues have arisen where some pathogens have 

shown resistance to commonly used chemical based disinfectants. Such pathogens include the 

protozoan species Cryptosporidium and Giardia, and bacterial biofilm structures.  Planktonic 

microbial cells are able to attach to and colonise environmental surfaces by producing an 

extracellular polymeric substance (EPS), these adherent (sessile) cells are referred to as 

biofilms. The descriptive terms sessile and planktonic are used to describe surface adherent 

and free floating bacterial cells respectively. Veterinary important species such as Listeria, 

Escherichia, Bacillus and Salmonella are capable of producing these biofilm structures 

allowing them to gain resistance to standard chemical disinfection methods.  Indeed, biofilms 

or sessile communities are believed to be the causative agent in diseases such as pneumonia, 

liver abscesses, enteritis, wound infections and mastitis infections in animals (Clutterbuck et 

al., 2007). In addition, in hosts with functioning innate and adaptive immune responses, 

biofilm-based infections are often very persistent and remain unresolved. In fact surrounding 

tissues often undergo extensive damage by immune complexes and invading neutrophils when 

trying to eradicate the infection (Stewart and Costerton, 2001).  

The prevention of biofilm formation would provide the best control measures for these 

robust structures; however, there is no agent available that will prevent cell adhesion and 

biofilm formation. Current methods rely on the use of disinfection agents and regular cleaning 

of surfaces exposed to possible pathogens.  Research has indicated that sessile communities 

can be up to 1000 times more resistant to chemotherapeutics such as chlorhexidine than their 

planktonic counterparts. Furthermore,  resistant bacteria originated in sessile communities can 
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spread from animal to animal through veterinary staff, veterinary surfaces and equipment or 

farm equipment such as feeders and water dispensers (Aguilar-Romero et al., 2010) resulting 

in extended infection problems. Biofilm structures are also capable of trapping or incorporating 

other pathogenic species including viruses and parasites such as Giardia and Cryptosporidium 

(DiCesare et al., 2012). Harbouring of such species shields them from cleaning and disinfection 

techniques, increasing their already high resistance to such treatments. Studies have shown that 

biofilms represent a significant, long-term reservoir for pathogens such as Cryptosporidium 

and Giardia which can be released back into the environment, thus, explaining the presence of 

parasites in water networks long after disinfection protocols are completed following an 

outbreak. Indeed, the continued presence of Cryptosporidium in a drinking water system 

following an outbreak in England was attributed to the presence of biofilm structures on the 

piping network (Wingender and Flemming, 2011). Such findings indicate that alternative ways 

of pathogen inactivation in the veterinary setting must be provided. Ultraviolet (UV) light is 

well known for its antimicrobial activity, due to its bacteriostatic properties preventing bacterial 

cell replication. 

1. 4. Ultra-Violet (UV) Light as a disinfection tool 

For many years, disinfection of surfaces such as surgical theatres, dental equipment etc has 

been done using many techniques including chemical, heat and continuous UV light. Residues 

from many of the chemicals used in disinfection in veterinary practices can leave residues, 

some of which can be irritant to the user and indeed inpatients hospitalised in these kennels, 

e.g. bleach. Currently there are many health concerns in relation to the long-term effects of 

using chemicals as disinfection agents and as water treatment agents. Some microorganisms 

have become highly resistant to the chemicals used for disinfection, including chlorine e.g. 

Cryptosporidium. Also, high levels of chlorine in potable water can leave an unpleasant taste 

on the water and so the necessity to use an alternative method of disinfection is required.  
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In the search for a disinfection method other than chemical, especially in potable water 

supplies, UV treatment is increasingly looking like the solution to this quest. Clancy et al 

(2000) states, “UV light is considered a viable treatment technology because it has been shown 

to effectively inactivate pathogens”. UV treatment forms limited disinfection by-products 

(Peldszus et al., 2000). It is generally known that DNA molecules absorb UV photons in a 

range of 200 nm to 300 nm, with the peak absorption at 260 nm. The damage caused to the 

DNA from the absorption of the UV light alters nucleotide base pairing linkages. If the 

organism is not capable of photo repair synthesis, the damage goes un-repaired thus resulting 

in cell death.  

1. 4. 1. Ultraviolet light 

Ultraviolet radiation/light lies between visible light and X-rays on the electromagnetic 

spectrum. Ultraviolet light (UV) is divided into UVA (400-320 nm), UVB (320-280 nm), UVC 

(280-200 nm) and vacuum UV (VUV) (200-100) Figure 1.3. UV light is produced by the sun; 

UVA and UVB are harmful to humans as both may cause sunburn and can lead to the formation 

of skin cancers. UVA is known to penetrate human skin more than UVB and is linked to 

premature wrinkling or skin aging. Due to its short wavelength UVC does not pass the ozone 

layer so it is rarely observed in nature. 
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Figure 1.: Electromagnetic spectrum, with the UV region highlighted. Garvey, M. (2009) with 

permission) 
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The inactivation of micro-organisms by UV radiation is directly related to the UV dose: 

𝐷𝑜𝑠𝑒 =
𝑇𝑖𝑚𝑒 (𝑠) 𝑋 𝑂𝑢𝑡𝑝𝑢𝑡 (𝑤𝑎𝑡𝑡𝑠)

𝐴𝑟𝑒𝑎 (𝑐𝑚2)
 

UV dose is the quantity of the energy per unit area that falls upon a surface. UV dose is written 

as mWs/cm
2

. However, UV dose is regularly expressed as millijoules per square centimeter 

(mJ/cm
2

), because 1 mWs = 1 mJ. The UV dose used in water sterilisation in Europe is between 

16 and 40 mJ/cm2 (McDonnell., 2007). 

1. 4. 2. UV induced cellular damage 

UV inactivates micro-organisms by absorption of light which causes a photochemical reaction 

that alters the molecular components required by the organism for reproduction. UV radiation 

penetrates the cell membranes to impact directly on DNA molecules.   Nucleic acid absorbs 

light energy at 240 to 280 nm with an absorption maximum at 265 nm (UVC) (Kiefer, 2007), 

when DNA or RNA absorbs this energy dimers are formed. The most regular dimers formed 

are cyclobutane dimers between nearby pyrimidines (CPD) on the same DNA strand, 

specifically thymine to thymine dimers are most common (Kiefer., 2007) that is instead of 

pairing with adenine, a thymine base pairs with another thymine (in RNA uracil pairs with 

another uracil). The thymine dimer forms a four membered cyclobutyl ring, which inhibits 

DNA replication and function. In total there are three types of pyrimidine dimers: thymine – 

thymine, thymine – cytosine and cytosine – cytosine. Thymine dimers are more often produced 

because thymine has a greater absorbance than cytosine in the germicidal range and the 

quantum yield for the formation of thymine to thymine dimers is greater than that for the 

formation of the other dimer possibilities (Giese and Darby, 2000). Higher doses of UV light 

also cause protein damage leading to a loss of structure and function and also can result in cell 

lysis (McDonnell, 2007).  UV energy is absorbed by proteins at 280 nm and there is some 
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absorption by the peptide bond within protein structures at 240 nm. Additional important 

biological molecules with unsaturated bonds e.g. hormones, coenzymes and electron carriers 

may also be vulnerable to destruction by UV. This is an important factor in larger organisms 

such as fungi and protozoa. Treatment of bacterial spores with UVC leads to the development 

of the “spore photoproduct” 5-thyminyl-5, 6-dihydrothymine, single and double strand 

breakage as well as CPD formation (Gomez-Lopez et al., 2007).  

Another damage type results from covalent linking between two pyrimidine bases 

involving the 6-position and the 4-position of the ring, this damage is referred to as “6-4-

photoproducts” or 6-4 pyrimidine-pyrimidone (6-4 PPs) adducts (Kiefer., 2007). The 

frequency with which these 6-4-photoproducts are formed depends on the base composition of 

the DNA. In E. coli lacI and lacZ genes cyclobutane pyrimidine dimers and 6-4 pyrimidine 

photoproducts form in a 2:1 ratio following UV exposure (Beggs, 2002).  
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Figure 1.: Formation of CPD as a result of UV exposure. DNA stability and integrity can be 

interfered with using ultraviolet radiation resulting in DNA lesions such as Cyclobutane-

Pyrimidine Dimers (CPD’s) (Rastogi et al., 2010)  
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1. 4. 3. Artificial sources of UV light 

The earth’s atmosphere prevents UVC also known as germicidal UV from reaching the earth’s 

surface. For this reason for disinfection purposes artificial sources of generating UVC are 

needed. Producing UV radiation requires electricity to power UV lamps. A UV lamp consists 

of a quartz tube which contains an inert gas (e.g., argon) and a small amount of liquid mercury. 

Ballasts control the power to the UV lamps. When a voltage is applied to the lamp, some of the 

liquid mercury vapourises. Free electrons and ions then collide with the gaseous mercury 

atoms, “exciting” the mercury atoms into a higher energy state. The excited mercury atoms 

return to their ground (normal) energy state by discharging energy as UV light. Mercury is 

favourable for UV disinfection because it emits light in the germicidal wavelength range (200 

– 300 nm). The UV light produced depends on the concentration of mercury atoms in the UV 

lamp, which is directly related to the mercury vapour pressure. UV disinfection uses either low 

pressure (LP) lamps at a wavelength 253.7 nm or medium pressure (MP) lamps at wavelengths 

from 180 to 1370 nm or lamps which emit high intensity pulses of light. There are numerous 

sources of UV radiation, however the most common is the electric arc and mercury lamp which 

provide continuous sources of UV light.  

 

1. 4. 4. Continuous wave UV  

Inactivation of organisms with continuous wave UV light is performed by using low-pressure 

(LP) mercury lamps designed to emit light at 254 nm i.e. monochromatic light. Due to the 

distinct disinfection method of UV (the absorption of UV energy at 254 nm by DNA) 

traditional UV disinfection systems consisted of Low pressure lamps that produce this 

monochromatic radiation. However, in the late 1990s medium pressure (MP) UV lamps were 

introduced because they emit polychromatic light including the germicidal wavelengths (200 

to 300 nm) (Gomez-Lopez et al., 2007). There is usually no difference in the disinfection ability 
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between these lamps. But there are advantages and disadvantages to each. MP lamps have a 

higher germicidal output than LP lamps, and so require fewer lamps for disinfection. However, 

LP and MP approach to UV delivery have recognised limitations including possibility of photo-

reactivation repair in treated pathogens, poor penetrability, considerable energy usage and 

possibility that mercy can be leaked to the environment if the lamp is broken.  

1. 4. 5. Pulsed power technology and the development of an alternative pulsed UV light 

approach for surface and water decontamination  

Pulsed power technology is best described as an enabling technology that finds application in 

many areas of physical and engineering research as well as industry and defence. Pulsed power 

technology requires transient generation of high voltage and high current that in turn results in 

the generation of large peak powers ranging from Megawatts to Terawatts. Depending upon 

the application, a pulse generator will deliver a large energy level on a single shot basis (or low 

repetition rate basis) or alternatively will deliver a modest amount of energy (1-10J) at a 

repetition rate from 10 to 10,000 pulses per second (Rowan et al., 2008). This repetition rate 

may be achieved either continuously (towards the lower PRF) or short bursts (towards the 

higher PRF). By accumulating energy over relatively long periods of time and by dissipating 

this energy in intense ultrashort pulses (85-100 nanoseconds), the energy remains constant but 

the peak power increases by several orders of magnitude. As the stored energy is released in 

extremely short bursts, this enables treatment times to be kept very short (seconds), where the 

average power requirements are very modest (2-4 kilowatts). During each pulse, very high 

levels of peak power are generated (10-20 MW), and treatment is achieved using the required 

number of pulses. Therefore, the power and not the energy does the work. In layman’s terms, 

say a flash-lamp uses 20J of energy per pulse and the energy is dissipated in 1s then the power 

delivered would be 20 W. However, if  the energy were to dissipate in 20 s then the power 

would be 1 MW, which is a huge difference in peak power and usability. Thus, this repetitive 



26 

 

switching pulsed-power innovation offers a radical new approach to energy delivery and is 

geared for post peak oil era. In pulsed UV light technology, stored energy is dissipated through 

a light source in pulses and disinfection/treatment is achieved through delivery of appropriate 

number of pulses for given applications.  

1. 4. 6. Pulsed UV light 

Pulsed light (PL) is a novel, non-thermal method of sterilisation and is produced by storing 

electrical energy in a capacitor and releasing it as a short high intensity pulse with duration of 

between 1 µs and 0.1 s (Elmnasser et al., 2007). A modest energy input of a few joules (J) can 

result in high peak-power dissipation of about 107-108 W. The electrical energy is applied to a 

xenon flash-lamp in which the energy ionises the gas to create plasma that expands to fill the 

lamp. Outer shell electrons are stripped away and intense pulses of UV light are emitted. The 

efficacy of the pulse system is attributed to the unique effects of high peak power and broad 

spectrum UV content coupled with the ability to control pulse duration and frequency 

(Anderson et al., 2000). The light produced by the lamp includes broad spectrum wavelengths 

form UV to near-infrared; during each pulse the system delivers a spectrum that is 20,000 times 

more intense than sunlight at the earth’s surface (Elmnasser et al., 2007). The UV dose can be 

adjusted by increasing or decreasing the frequency of the pulsing. Preliminary findings from 

other research groups suggests that  pulsed light is effective for killing bacteria, fungi, and 

viruses and the killing effect is much higher in a much shorter time than with continuous UV 

treatment (Takeshita et al., 2002). 

Therefore, pulsed light (PL) is an approach that has received considerable attention as 

a strategy for decontaminating food, packaging, water and air (Dunn et al., 1997; Gómez-López 

et al., 2007). However, PL technology is also a strong candidate for contact surface 

decontamination in the healthcare and veterinary setting. This approach kills microorganisms 

by using ultra short duration pulses of an intense broadband emission spectrum that is rich in 
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UV-C germicidal light (200-280 nm band). PL is produced using techniques that multiplies 

power manifold by storing electricity in a capacitor over relatively long times (fractions of a 

second) and releasing it in a short time (millionths or thousandths of a second) using 

sophisticated pulse compression techniques (Rowan et al., 1999; Gómez-López et al., 2007). 

The emitted flash has a high peak power and usually consists of wavelengths from 200 to 1100 

nm broad spectrum light enriched with shorter germicidal wavelengths (MacGregor et al., 

1998; Gómez-López et al., 2007). This technology has received several names in the scientific 

literature: pulsed UV light (Anderson et al., 2000; Sharma and Demirci, 2003; Wang et al., 

2005), high intensity broad-spectrum pulsed light (Roberts and Hope, 2003), pulsed light 

(Rowan et al., 1999), intense pulsed light (Gómez-López et al., 2007) and pulsed white light 

(Marquenie et al., 2003). Seminal developments pertaining to these next generation light-

flashing technologies has been the subject of recent review (Elmnasser et al., 2007; Gómez-

López et al., 2007), with emphasis strongly placed on decontamination efficacy  for food and 

water applications that aptly reflects the focus of research in this field of study to date. A strong 

advantage of using pulsed xenon lamps over continuous low to medium pressure conventional 

UV lamps is that the latter has a characteristic high peak-power dissipation which allows for 

more rapid microbial inactivation. A continuous 10 W lamp needs to be operated for 10 seconds 

to achieve the same decontamination efficacy (supplying same energy) as a pulsed lamp of 

typically 1 MW operated for just 100 µs. Otaki et al., (2003) also reported that adaptive 

microbial survival (tailing phenomenon) occurs when samples are treated in high turbidity 

solutions using continuous UV sources, whereas tailing did not occur when similar samples 

were treated with pulsed xenon lamp. 

While current findings from the literature suggests that development of a pulse light 

approach appears promising, most of the studies to date have focused on food or water 

applications using a limited range of electro-physical or biological parameters, such as use of 
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a single lamp discharge energy (J) or fluence (UV dose cm2) and/or employing a single distance 

from light source to target treatment area. These landmark in vitro and in vivo pulsed light 

studies have been recently reviewed for efficacy in terms of inactivating food-related spoilage 

organisms and potential microbial pathogens (Elmnasser et al., 2007; Gómez-López et al, 

2007), and include studies carried out using lamp discharge energies of 3 J (MacGregor et al., 

1998; Rowan et al., 1999), 7 J/cm2 (Gómez-López et al., 2005 and Marquenie et al., 2003), 

0.99J/cm2 (Krishnamurthy et al., 2004), 0.7 J/cm2 (Takeshita et al., 2003) and 1 J/cm2 (Wekhof, 

2001). These studies demonstrated that factors such as number of light pulses applied, lamp 

discharge intensity, distance from lamp to treatment surfaces, shading, microbial species, age 

and density affected the efficacy of PL decontamination performances.  
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Table 1.: Discharge voltage and corresponding energy per pulse for the SAMTECH pulsed 

UV system PUV-01. Garvey, M. (2009) with permission) 
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1. 4. 7. Factors affecting UV damage 

The germicidal effects of UV are proportional to the dose of energy absorbed by the organism 

in question. The UV dose needed to inactivate micro-organism’s increases with cell size and 

DNA or RNA content. Although the effectiveness of UV is not hindered by chemical water 

quality parameters, the presence of suspended solids in the water being treated influences UV 

disinfection; these particles reduce the amount of UV energy reaching the organisms by 

absorbing or scattering light. The turbidity of the water being treated can also affect the ability 

of UV to penetrate the water and can shield micro-organisms from the UV energy. Another 

factor known to affect UV disinfection is the presence of chemical and biological films on the 

lamps e.g. a build-up of iron and manganese will lead to staining on the UV light system and 

will interfere with the UV light transmittance into the water. Cell density and cell aggregation 

during treatment is an important factor when using light energy for disinfection purposes. Also 

the sensitivity of micro-organisms to UV radiation may differ depending on which growth 

phase they are in i.e. lag, exponential, stationary or death phase. Microorganisms are most 

sensitive to light induced damage in the exponential phase.  

Advantages and disadvantages associated with UV disinfection (Solomon et al., 1998) 

Advantages 

- UV is environmentally friendly and does not require the use of dangerous chemicals 

- UV is economical as hundreds of gallons of water may be treated  

- The effectiveness of UV is independent of factors such as pH, temperature and ionic 

strength 

- UV may not lead to the potential formation of any disinfection by products 

- Does not alter the taste or other properties of the water 

- UV is compatible with other treatment processes  
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- UV is effective and quick 

- No toxic or irritant residues for patients housed in kennels post treatment. 

Disadvantages 

Potential disadvantage of using PL technology for surface treatment or water decontamination 

relate to uncertainties surrounding photo-reactivation and possible repair of treated 

microorganisms.  

 

Repair mechanisms 

Due to constant exposure to UV from the sun, organisms have developed mechanisms to repair 

the genetic damage caused by the absorption of photons of UV energy. Conventional UV 

treatment methods largely affect DNA through mechanisms that are reversible under certain 

conditions. Micro-organisms have developed two mechanisms for repairing DNA damage 

caused by the absorption of UV energy referred to as photoreactivation (light) and dark repair.  

Photo-reactivation 

Photoreactivation is a light dependent repair mechanism. This form of DNA repair involves 

the use of a single enzyme photolyase which specifically binds to CPDs or 6-4PPs and reverses 

the damage using the energy of light.  This mechanism is a two-step process; the enzyme 

photolyse combines with the dimer in the absence of light to form an enzyme-substrate 

complex, this complex is activated by the absorption of a photon of light between 320 and 410 

nm and with the additional action of flavin adenine dinucleotide the enzyme splits the 

cyclobutane ring to restore the original structure (Beggs., 2002). Photoreactivation has been 

seen to occur in both eukaryotic and prokaryotic organisms. UVA is essential for 

photoreactivation, although it also causes DNA damage; this is referred to as concomitant 
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photoreactivation because the light energy originally causing the damage has the potential to 

repair the dimer. 

The kinetics of the photoreactivation process can be represented by the equation: 

 

 

Where [E] = enzyme, [S] = substrate, [ES] = enzyme substrate complex, [P] = repair product,   

K1 = rate constant for production of [ES], K2 = rate constant for dissociation of [ES] and K3 is 

photolytic reaction rate constant (Beggs, 2002). 

Organisms including E. coli and C. parvum are known to possess photolyase enzymes while 

viruses have no repair mechanisms that can repair UV induced DNA damage (Rochelle et al., 

2004). 

Dark repair 

UV induced lesions other than thymine dimers i.e. cytosine dimers, can only be repaired by 

dark-repair mechanisms. Dark repair mechanisms replace the damaged DNA with new 

undamaged nucleotides by a process of excision of the damaged bases from the DNA strand. 

There are two major types of excision repair; base excision repair (BER) and nucleotide 

excision repair (NER). Base excision repair is performed with the use of enzymes referred to 

as DNA glycosylases which remove damaged bases by cleavage of the N-glycosidic bond 

between the base and the 2-deoxyribose moieties of the nucleotide residues. Different 

glycosylases remove different kinds of damage. When the base is removed the site which is 

left (referred to as the apurinic/apyrimidinic (AP) site) is removed by an AP endonuclease or 

an AP lyase enzyme. 
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The nucleotide excision repair processes involves the action of proteins that organize 

the removal of the DNA damage. The enzymes identify and bind to the helical deformation 

created at the damaged site, and initiate nucleotide excision repair. A repair complex is 

assembled and cleaves the DNA at positions a few bases to either side of the lesion, leaving a 

gap. DNA polymerase then replaces the missing DNA using the bases on the opposite DNA 

strand as a template. Finally, DNA ligase reseals the repaired strand of DNA (Beggs, 2002). 

Dark repair may occur in UV-exposed drinking water after it is circulated by water supply 

systems (Morita et al., 2002). Therefore, in order to accomplish an appropriate UV disinfection 

level, it is essential to quantitatively evaluate the effects of photoreactivation and dark repair 

in pathogenic organisms (Smith et al., 2005). 

Occurrence data from developed and developing countries suggest that 

Cryptosporidium and Giardia are commonly found in raw sewage with the latter present in 

higher numbers more frequently (Garvey and Rowan., 2015).  As with parasites such as 

Cryptosporidium parvum, the removal of Giardia from water supplies has proven problematic 

due to its resistance to current water disinfection methods and the low cyst number required 

for infection to occur.  

1. 4. 8. Effects of UV on Giardia  

 Indeed it is due to the emergence of such recalcitrant chlorine-resistant pathogens that the need 

for alternative water disinfection methods has arisen. The use of UV light technology for the 

treatment of water has proven effective for numerous water borne microorganisms including 

parasitic protozoan (Craik et al., 2000, Garvey et al., 2010). The inactivation of microbial 

species by UV light involves the alteration of DNA following the absorbance of UV energy by 

the treated species which in turn inhibits the reproductive abilities of the organism. However, 

studies on the UV inactivation of organisms such as Cryptosporidium and Giardia are 
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problematic due to the infective nature of the parasites which require a live host to initiate its 

reproductive cycle. This coupled with the mode of action of UV light (inducing genetic damage 

as opposed to cell membrane damage) raises difficulties with accurately determining if Giardia 

has lost its infective abilities following UV exposure. 

 Although C. parvum oocysts are generally considered to be more environmentally 

robust than Giardia cysts, in a study carried out by (Campbell and Wallis, 2002), G. lamblia 

cysts were found to be more resistant than C. parvum oocysts to UV irradiation. The same 

study concluded that a UV dose of 10mJ cm-2 results in approximately 2 log inactivation of G. 

lamblia cysts, and a UV dose of above 20mJ cm-2 results in up to 3 log (99.9%) inactivation of 

G. lamblia cysts. 

 Research to date on the UV inactivation of Giardia has been based on the use of vital 

dyes, in vitro excystation and in vivo infection of live rodents with the former consistently 

proven to overestimate inactivation (Maux et al., 2002) and the latter raising ethical issues as 

well as the difficulties and time demands associated with animal testing.  The use of an in vitro 

cell culture model as an alternative to in vivo testing has proven successful for other parasites 

such as Cryptosporidium parvum (Garvey et al., 2010). Furthermore, as the vital dye viability 

assay significantly underestimates cyst inactivation as compared with infectivity (Campbell 

and Wallis, 2002), this suggests that the assay should not be used independently to define 

inactivation during testing of novel disinfection regimes (Campbell and Wallis, 2002). 

By providing an in vitro environment similar to that of the host intestines, the parasite 

can be stimulated to infect cells growing in culture and to initiate its life cycle. Giardia 

trophozoites strongly adhere to the epithelial surface of the intestine via a ventral adhesive disc. 

A number of parasitic surface molecules are engaged in this tight interaction, including giardins 

(primarly alpha, beta, delta and gamma giardins), as well as a complex network of contractile 

proteins which play key roles in trophozoite attachment.  The extraction and amplification of 
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parasitic DNA via real time PCR may then provide a rapid measurement of infective parasite 

numbers allowing for the measurement of live or dead parasites. Herein, the current study aims 

to examine the use of a combined cell culture - real time PCR in vitro assay for the viability 

assessment of low-pressure and pulsed UV light treated Giardia lamblia cysts using human 

intestinal derived cell lines. It is envisioned that such an assay may provide an alternative 

approach to that of in vivo testing by allowing for a rapid method of determining parasitic 

inactivation following UV and other enabling processes for water treatment. Working towards 

such methods will aid in the treatment and elimination of this pathogenic organism from water 

supplies by allowing for reproducible studies on the inactivation of Giardia cysts for effective 

water treatment and control.  
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1. 5. Aims and Objectives 

Specifically, this project seeks to:  

Aim: 

1. Explore the use of a novel surface disinfection approach (pulsed UV light) for the 

destruction of undesirable parasites, bacteria and fungi in veterinary samples thus 

avoiding or eliminating subsequent threat of community cross-infections in humans 

(owners) 

2. Complete a comparative study on the Caco-2 and HCT-8 cell lines as infectivity models 

for G. lamblia.  Viability via CC-RTPCR compared to in vitro excystation assays and 

dye uptake assays. 

Objectives: 

 Compare the use of low-pressure UV inactivation of test species to that of the pulsed 

UV approach both on surfaces and in liquid suspensions. 

 Carry out growth and sterilisation of microbial & fungal biofilms on surfaces present 

in the veterinary environment including a parasite entrapment study within such 

biofilms 
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2. Methods 
2. 1. Pulsed UV light system  

A bench-top pulsed power source (PUV-1, Samtech Ltd., Glasgow) was used to power a low-

pressure (60 kPa) xenon-filled flashlamp (Heraeus Noblelight XAP type NL4006 series 

constructed from a clear UV transparent quartz tube) that produced a high-intensity diverging 

beam of polychromatic pulsed light was used in this study as per Garvey et al., (2012).  It 

consists of two main components; a treatment chamber and a driver circuit. The driver unit 

consists of the trigger and discharge outputs, frequency control, trigger control and the 

discharge voltage control. The trigger cable connects the trigger output of the driver unit with 

the trigger electrode of the flashlamp, while the discharge cable connects the discharge output 

of the driver unit with the lamp anode and cathode. This delivery system kills microorganisms 

by using ultra-short duration pulses of an intense broadband emission spectrum that is rich in 

the UV-C germicidal wavelength. PUV is produced by storing electricity in a capacitor over 

relatively long times and releasing it as a short duration pulse using sophisticated pulse 

compression techniques. The pulsed light has a broadband emission spectrum extending from 

the UV to the infrared region with a rich UV content and its intensity also depends on the level 

of the voltage applied. The light source has an automatic frequency control function which 

allows it to operate at 1 pulse per second (pps); this setting was used throughout the study. 

Light exposure was homogenous as the xenon lamp measuring 9×0.75 cm was longer than the 

8.5 cm standard diameter.  

2. 2. Mammalian cell culture and maintenance of cell lines 

Monolayers of the human ileocecal adenocarcinoma cell line HCT-8 (ATCC CCL-244: 

American Type Culture Collection, Rockville, Md.) were grown with regular sub-culturing in 

RPMI 1640 growth media with L-glutamine and supplemented antibiotics (penicillin G, 

100,000 U/L, streptomycin, 0.5 g/L and amphotericin B, 0.5 g/L), sodium bicarbonate, 2 g/L, 



38 

 

and 10% foetal calf serum adjusted to pH7.4. Caco-2 cells (ATCC HTB-37), established from 

a human colon adenocarcinoma Caco-2 cells were maintained at 37°C in Dulbecco modified 

Eagle's medium/Ham's F-12 medium, supplemented with 20% (v/v) foetal bovine serum, 1% 

200 mM L-glutamine, 1% (v/v) non-essential amino acids, 0.5% (v/v) penicillin-streptomycin 

and 0.5% (v/v) amphotericin B (Sigma-Aldrich). Maintenance media was stored at 4°C and 

heated to 37°C prior to use. HCT-8 and Caco-2 cells were cultured and maintained in T75 cm2 

cell culture flasks in a humidified incubator at 37 °C in an atmosphere containing 5% (vol/vol) 

CO2 for circa. 24 h until 80 to 90% confluent monolayers had formed. Once confluent, cells 

were trypsinised to remove the cell monolayer from the flask and seeded into 6 well plates for 

24 h at 37oC at a seeding density of 1 x106 cells/well for use in real time pcr studies and at a 

density of 1x105 cells/well for chamber slides for infectivity studies using fluorescent stains. 

2. 3. Viability and infectivity determination of Giardia lamblia 

G. lamblia cysts (derived from experimental infected gerbils) were purchased from Waterborne 

Inc USA. Cysts were stored in sterile PBS (0.01 M phosphate buffer, containing 0.0027 M 

KCL and 0.137 MNaCl at a pH of 7.4) with 100 U of penicillin/ml, 100 μg of streptomycin/ml 

and 100 μg of gentamicin/ml at 4°C until they were used for UV treatment studies. A combined 

surrogate dye staining method comprising propidium iodide (PI) 1 mg/ml of 0.1 M sterile PBS, 

4’, 6’-Diamidino-2-Phenylindole (DAPI) 2 mg/ml in methanol and a fluorescein-labelled 

mouse-derived monoclonal antibody Giardi-a-Glo™ (having corresponding epitope on cyst 

cell wall; Waterborne Inc, New Orleans, USA) was used to confirm the viability of cysts. The 

excystation rate was determined for each batch of cysts by microscopic observation following 

sequential incubation at 37°C in acidified hanks balanced salt solution (HBSS) for 1 h as per 

method of Garvey et al., 2010. All experiments were carried out using cysts with greater than 

90% viability, as determined by in vitro excystation and the uptake or exclusion of vital dyes. 
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Cysts were counted using a haemocytometer and inverted microscope (Olympus, CKX41) with 

camera (Olympus, IX2-SLP) attached.  

Cell culture infectivity was confirmed by immunofluorescent (IF) staining of treated HCT-8 

and Caco-2 cell monolayers following exposure to viable cysts. Cell monolayers were seeded 

into each of 8 well chambered slides (Lab Tec II, Nunc) at a concentration circa.1×105 cells 

per well. Cysts were stimulated to excyst by re-suspension in acidified HBSS pH 2.7 for 1 h at 

37°C. After one washing step with sterile PBS, cysts were re-suspended in cell culture media 

containing varying concentrations of proteose and thereafter 350 μl aliquots were then added 

to each well. Samples were incubated for up to 48 h at 37°C in 5% (vol/vol) CO2 atmosphere, 

to determine optimal conditions for cell infectivity. At set times each individual well containing 

a separate monolayer was air dried at room temperature until all moisture had evaporated.Next, 

45 µl of Troph-o-Glo™ (Waterborne Inc, UK) which detects different life cycle stages of 

Giardia in vitro was added to each well for 25 mins at 37 °C. Slides were then rinsed from 

unbound stain by flooding with 100 µl SureRinse (Waterborne Inc, USA).  The inoculated cell 

monolayers were then counterstained for 1 min with C101 containing Evans blue dye 

(Waterborne Inc, USA). All slides were examined under fluorescence microscopy (Leitz 

Diaplan fluorescence microscope) at an excitation wavelength of 460 to 500 nm and an 

emission wavelength of 510 to 560 nm for Troph-o-Glo™ and an excitation wavelength of 550 

nm and emissions wavelength of 610 nm for the counterstain C101. All wells containing 

separate monolayers were examined and noted as positive or negative for sites of parasitic 

infection.  

2. 4. UV light treatment of Giardia lamblia cysts 

Petri dishes used in the tests were placed directly below the lamp source for both pulsed and 

LP UV (low pressure ultraviolet), which ensured full coverage of the plate surface and 

eliminated possible shading effects. The LP-UV lamp employed in this study is a handheld 
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model (UVGL-55) supplied by UVP Inc, UK. It produces radiations in the wavelength range 

of 254 nm-365 nm, with maximum emission at the germicidal wavelength, 254 nm. For 

standard treatments the light source was mounted at 8 cm above the treatment area, as this 

distance was shown previously to be optimal for inactivation of Cryptosporidium parvum 

(Garvey et al., 2010) for both UV methods. In this study, standard treatments involved 

suspending predetermined numbers of G. lamblia cysts in the range of 1 – 1,000,000 cysts/ml 

in sterile phosphate buffered saline (PBS) pH 7 to pulses of UV light. Samples were treated in 

petri dishes that were then subjected to lamp discharge energies of 16.2 J (900 volts) at 8 cm 

distance from the light source up to and including a fluence of 22.68 x10-3 mJ/cm2 at a rate of 

1 pulse per second for PUV studies. The UV dose was adjusted by increasing or decreasing the 

frequency of the pulsing. In order to ensure that any possible negative effects of such treatment 

was solely as a result of a UV induced change in the natural environment of the test species, 

studies were also conducted on heat inactivated (70oC) samples, which were prepared in the 

same manner. Measurement of UV fluence rate (µJ/cm2) at each applied pulse was determined 

using chemical actinometry as first described by Rahn et al., (2003), with the modifications of 

Hayes et al., (2012) as the non-continuous emitted spectrum did not facilitate use of a calibrated 

radiometer.  

UV dose is reported at mJ/cm2 for comparative analysis to that of LP-UV. LP-UV 

inactivation was conducted with a hand help lamp (UVGL-55 handheld UV Lamp) placed 8 

cm above the treatment dish, UV dose (mJ/cm2) was varied by increasing or decreasing the 

exposure time as required. All studies were conducted in an aseptic environment. Following 

treatment, treated and untreated controls were viability assessed by fluorescent staining using 

the method previously described.   Parasites were transferred to sterile centrifuge tubes and 

centrifuged at 10000 rpm for 15 mins to pellet the cysts. The supernatant was removed and the 

pellet re-suspended in 1 ml of HBSS pH 7.2 for 1h at 37oC to initiate cyst excystation. Cell 
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culture infection and real time PCR was then performed in 6 well plates containing a cell 

monolayer. 

2. 5. Combined cell culture-quantitative PCR (CC qPCR) assay for enumerating viable 

G. lamblia 

Real-time, Taqman-quantitative PCR (qPCR) was performed using primers (TIB MOLBIOL, 

Berlin, Germany) specific for the β-giardin region of DNA. Giardins are filamentous proteins 

with an alpha coiled helix structure and are a component of the attachment mechanism of G. 

lamblia trophozoites to host cells. Real-time PCR reactions are characterized by an increase in 

fluorescence emission due to probe degradation by DNA polymerase in each elongation step 

during PCR cycling. The higher the starting copy number of the nucleic acid target, the earlier 

the fluorescence will reach the predetermined threshold cycle (CT) and the smaller will Ct 

value will be. The Ct value is the fractional PCR cycle number, at which a significant increase 

in target signal fluorescence above the baseline is first detected for a sample.  Quantification 

of test samples is performed by determining the Ct value and the use of a standard curve to 

deduce the starting copy number.  Primers coding for β-giardin were used as per method of 

Bertrand et al., 2009. The Taqman probe with the following sequence: 5'-FAM 

TCACCCAGACGATGGA CAAGCCCTAMRA-3 was utilised for this study. Amplification 

reactions (20 µL) contained 5 µL of sample DNA (0.5 µM of each primer, 0.2 µM of probe) 

and 15 µL of reaction buffer (Roche Diagnostic, West Sussex, England). Both positive and 

negative controls were included in RT-PCR to validate the results. DNase–RNase free water 

was used as negative control throughout. 

Cycling parameters were initial denaturation for 10 min at 95°C followed by 65 cycles 

of denaturation for 10 s at 95°C, annealing for 40 s at 40 °C, extension for 1 s at 70°C and 

cooling for 30 s at 40°C on a Nanocycler® device (Roche Diagnostics).  Large numbers of 

cycles were used to ensure detection of low levels of infection. On completion of each RT-
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PCR run amplification curves were analyzed by Nanocycler software (Roche Diagnostics) and 

a standard curve of oocyst DNA concentration determined.  

DNA standards were prepared from fresh cysts ranging in concentration from 10 to 107 

cysts/ml by dilution in PBS following standard viable count determinations. Aliquots of cysts 

at different densities were then stimulated to infect the HCT-8 and Caco-2 cell lines that were 

seeded into 6 well plates at a concentration of circa. 1×106 cells/ml at 90% confluency. The 

latter cell line stimulation occurred by re-suspension and separate incubations for 1 h in 

acidified HBSS as previously described. 1 ml aliquots of each concentration range of excysted 

cysts were re-suspended in appropriate cell culture growth media containing varying 

concentrations of  proteose and added to one well of the 6 well plate. Following 48 h incubation 

at 37°C in a humidified atmosphere of 5% (vol/vol) CO2, the cell culture media containing the 

non-adherent G. lamblia and G. lamblia which was not internalised was removed by aspiration 

and discarded. Mammalian cells were then washed with sterile PBS and trypsinised using 1 ml 

of 0.25% (vol/vol) trypsin/EDTA (Sigma) and left for 15 min at 37 °C until complete 

detachment of the monolayer had occurred. Cells were then centrifuged at 500 rpm for 5 min 

and re-suspended in 200 μl sterile PBS, thereafter the mammalian cells and Giardia cell 

membranes were lysed using PCR template preparation kit (Roche Diagnostics, West Sussex, 

England) in order to produce DNA (template) and standard curve following infection in both 

cell lines. Real time PCR was also conducted on excysted cysts without passage through cell 

culture to determine the Ct values for serially diluted cysts numbers for comparative analysis. 

The Ct values for cell culture RT-PCR of each dilution amplified in triplicate were plotted 

against the logarithm of the starting quantity of cysts. The equation of this standard curve was 

then used to determine the inactivation of UV treated cysts. The aforementioned cell culture 

PCR procedure was then repeated to determine infectivity of cysts subjected to varying UV 

parameters or heating at 70°C for 30 min (negative control). Log inactivation of oocysts (L) is 
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defined by L=log10[Nd/N0], where N0 is the initial concentration of cysts and Nd is the 

concentration of viable infectious oocysts post disinfection treatments as detected by combined 

cell culture-qPCR assay as per method of Lee et al., (2008). 

2. 6. Pulsed light inactivation of veterinary relevant bacterial and fungal species.  

Pulsed light inactivation was conducted on test strains (Listeria monocytogenes (ATCC 

11994), Bacillus cereus (ATCC 11778), Salmonella typhimurium (ATCC 13311), Escherichia 

coli (ATCC 11775), Saccharomyces cerevisiae (ATCC 9763) Candida parapsilosis (ATCC 

22019), Candida. albicans (ATCC 10231), Candida albicans (clinical isolate NUIG 6250), 

Candida krusei (ATCC 14243), and Candida tropicalis (ATCC 13803) )in planktonic form in 

suspension and on agar surfaces for comparative studies to that of the biofilm communities on 

PVC and stainless steel surfaces. Planktonic cells of all test strains were treated by PUV for 

comparative analysis to the sessile cells. For PUV studies of fungal and bacterial strains a single 

colony of the test strain was aseptically transferred to 100 ml of sterile malt extract broth or 

nutrient broth respectively followed by incubation at 37oC for 18 hours at 125 rpm. For surface 

treatment 100 µl of an appropriate dilution was spread aseptically onto malt or nutrient agar 

surfaces. Test plates were then exposed to pulses of UV light at 16.2J at varying fluences at a 

rate of 1 pulse per second as per Garvey et al., (2014) up to a PUV fluence of 12 µJ/cm2 

(treatment time of 120 seconds) for surfaces and 11 µJ/cm2 (treatment time 100 seconds) for 

fungal suspensions. PUV studies were also conducted on samples diluted from the 18 hour 

broth in 20 ml final volumes of sterile PBS at 8 cm from the light source, after which 100 µl 

of treated liquid was transferred to suitable agar and incubated at 37oC for 24 hour for all test 

strains and 30oC for C. parapsilosis. 

2. 7. Centre of Disease Control Biofilm Reactor  

A biofilm reactor designed by Biosurface Technologies Corp, Bozeman, MT and recognised 

by the Centre of Disease Control (CDC) for biofilm studies was used in this study. The reactor, 

http://www.google.ie/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCEQFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FSaccharomyces_cerevisiae&ei=Y8srVPKUGtOu7AbQ44D4BQ&usg=AFQjCNFWDNvGg_yz-ASiU3b461oZV_e-GA&bvm=bv.76477589,d.ZGU
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which is capable of generating 24 individual biofilms is comprised of a glass vessel, a magnetic 

stirrer, and a polyethylene lid which holds 8 interchangeable polypropylene rods. Each 

individual rod has the holding capacity for 3 coupons, therefore 24 coupons and consequently, 

24 biofilms. The purpose of the magnetic stirrer is to provide a continuous flow of nutrients 

over the colonised surface of the coupons. 
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Figure 2.: Biofilm Reactor. A system allowing for reproducible conditions for the growth of 

biofilms on various surface types, e.g. stainless steel, PVC coupons etc.  
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2. 7. 1. Biofilm Growth 

Bacterial strains of veterinary relevance, namely Listeria monocytogenes (ATCC 11994), 

Bacillus cereus (ATCC 11778), Salmonella typhimurium (ATCC 13311) and Escherichia coli 

(ATCC 11775) were chosen for biofilm formation and pulsed light inactivation studies.  All 

strains were cultured and maintained in nutrient agar and nutrient broth (Cruinn Diagnostics 

Ltd, Ireland) at 37oC. Additional fungal strains Saccharomyces cerevisiae (ATCC 9763) 

Candida parapsilosis (ATCC 22019), Candida. albicans (ATCC 10231), Candida albicans 

(clinical isolate NUIG 6250), Candida krusei (ATCC 14243), and Candida tropicalis (ATCC 

13803) were also used. Biofilms were stimulated to form attached to stainless steel and 

polyvinyl chloride coupons as per Garvey et al 2014 and executed using a biofilm reactor 

recommended by the Centre for Disease Control. Although glucose was previously found to 

promote biofilm adhesion and proliferation by Garvey et al., 2014 and Seneviratne et al., 2013, 

this study was carried out without the addition of glucose to simulate a true-to-life clinical 

practice environment. The reactor was sterilised at 121°C for 15 min. The biofilm reactor was 

seeded using aseptic technique with 1ml of the 12 hour specific microbial culture (ensuring 

that cells were in the log phase of reproduction) and grown for 72 hrs under rotary conditions 

(125 RPM) at 37oC for bacterial strains and 30oC for fungal strains. Cell counts were conducted 

to determine the seeding density of the reactor before incubation. 

To allow for the enumeration of colony forming units (cfu) per microbial biofilm, all 

coupons were removed aseptically from each reactor rod and rinsed with sterile phosphate-

buffered saline (PBS) to remove any planktonic cells. Biofilms were removed aseptically from 

each coupon by scraping the coupon using a sterile cell scraper into 10 mL of sterile PBS. 

Serial dilutions were then made, and the standard plate count technique was used to determine 

the cfu/ml bacterial population in the biofilm. 

http://www.google.ie/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cad=rja&uact=8&ved=0CCEQFjAA&url=http%3A%2F%2Fen.wikipedia.org%2Fwiki%2FSaccharomyces_cerevisiae&ei=Y8srVPKUGtOu7AbQ44D4BQ&usg=AFQjCNFWDNvGg_yz-ASiU3b461oZV_e-GA&bvm=bv.76477589,d.ZGU


47 

 

2. 7. 2. UV light treatment of veterinary relevant bacterial and fungal biofilms 

Coupons were removed aseptically from the reactor rods, rinsed with sterile PBS and 

transferred to a sterile petri dish under aseptic conditions. Two control coupons, one stainless 

steel and one PVC, were left untreated. These coupons were submerged in 10 ml of sterile PBS 

and surface scraped using a sterile cell scraper to remove the untreated biofilms and to allow 

for the determination of biofilm numbers. All other coupons were exposed to pulses of UV 

light at 16.2J at one pulse per second set 8 cm from the light source at varying fluences which 

were obtained by increasing the pulse number. Once treated, coupons were submerged in 10 

ml of sterile PBS and surface scraped using a sterile cell scraper to remove the treated biofilms 

and to allow for the determination of inactivated rates. The liquid was then transferred to a 

sterile 20 ml container and centrifuged at 3000 rpm for 10 mins to pellet the cells. The sample 

was then re-suspended and agitated to ensure biofilm dispersion. Serial dilutions were made 

from the biofilms suspension (down to 106) and 100 µl spread on triplicate agar plates (malt 

extract plates for fungal strains) to determine the cfu/ml of treated samples. Plates were 

incubated at 37oC and 30oC for C. parapsilosis for 24 hours.  This process was repeated for 

coupons at varying UV doses to determine the log10 reduction obtained with increasing UV 

dose. A cell count was also conducted on the media present in the reactor vessel by spread 

plating technique. 

2. 8. Detection of Giardia cysts in biofilm structures 

The biofilm reactor was seeded aseptically with Bacillus cereus and G. lamblia cysts of 1ml 1 

X 106 using the technique outlined in Section 2.7.1. The reactor was then incubated at 37°C for 

72 h under rotatory conditions (125 rpm) as these conditions were previously shown to be 

optimal for the formation of bacteria biofilms (Garvey et al., 2014). After 72hrs incubation 

coupons were removed aseptically from each reactor rod and rinsed with sterile phosphate-

buffered saline (PBS) to remove any planktonic cells. Biofilms were removed aseptically from 
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each coupon by scraping the coupon using a sterile cell scraper into 10 mL of sterile PBS. The 

liquid was then transferred to a sterile 20 ml container and centrifuged at 3000 rpm for 10 mins 

to pellet the cells. The sample was then re-suspended and agitated to ensure biofilm dispersion. 

DNA extraction as outlined in 2.8.1 was performed and RT-PCR performed as outlined in 

2.8.2. 

2. 8. 1. DNA extraction from biofilm structures 

Scrapped coupons suspended in 10 ml volumes were centrifuged at 800g for 10 minutes to 

pellet the cells, followed by re-suspension in 200 µl of sterile PCR grade water. Target DNA 

extraction was conducted for B. cereus biofilm suspensions using a Roche DNA extraction kit 

and HP PCR template preparation kit. as per manufactures instructions (Roche Diagnostics, 

Roche, Ireland) with both treated and untreated microbial pellets suspended in 200 µl of sterile 

PBS.  

2. 8. 2. Real Time PCR 

All primers and probes were sourced from Tib Molbiol, Berlin, Germany. For B. cereus, the 

forward primer ACACACGTGCTACAATGGATG and reverse primer 

AGTTGCAGCCTACAATCCGAA with the taqman probe sequence F-

ACAAAGGGCTGCAAGACCGCG—Q coding for the phaC gene was used as per Nayak et 

al., 2013. Primers coding for β-giardin of G. lamblia were used as per previously described 

(section 2.5). Both positive and negative controls were included in RT-PCR to validate the 

results. DNA standards were prepared from fresh bacterial cells and Giardia cysts ranging in 

concentration from 10 to 108 cysts/ml by dilution in PBS following standard viable count 

determinations. All PCR cycle conditions were as previously described (section 2.5).  
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2. 9. Statistical analysis 

The log reduction for UV treated cysts was calculated as the log10 of the ratio of the 

concentration of the non-treated (N0) and UV treated (N) samples [log10 (N0/N)]. Student's t-

tests and ANOVA one-way model (MINITAB software release 16; Mintab Inc., State College, 

PA) were used to compare the effects of the relationship of independent variables on UV 

treatments. Student t-tests were used to compare infectivity in both cell lines and parasite types. 

All experiments were conducted in triplicate in three separate experiments.  
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3. Results 
3. 1. Determination of Giardia lamblia DNA content via RT PCR 

G. lamblia cysts were identity confirmed and viability stained using Giardia specific IF dyes 

(figure 3.1a and 3.1b).  Rates of excystation (figure 3.1a) were also checked for all parasite 

batches before studies commenced. Cysts with greater than 80% excystation rates and 100% 

viable (figure 3.1) were used for all studies. 
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(a)        (b) 

Figure 3.: Image (a) Giardia lamblia cysts taken with an inverted microscope; arrow indicates 

empty cysts structure after excystation (bar 6 µm) while         indicates complete cyst. Image 

(b) fluorescent staining of Giardia viable cysts using species specific dyes (Waterborne Inc, 

New Orleans, USA). 
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It was found that optimal cell infectivity of the HCT-8 and Caco-2 cell lines occurred 

in media which contained 2% proteose. The Ct readings for parasitic DNA extracted from cell 

culture were consistently higher than those extracted from cysts without cell culture indicating 

that a loss of parasite DNA occurred during this step (figure 3.2 and figure 3.3). Notably, for 

both cell lines the limit of detection was 10 cysts respectively (figure 3.3) with a detection limit 

of 1 cyst without passage through cell culture (figure 3.2). These findings were confirmed by 

the observation of multiple sites of infection via fluorescent microscopy (Figure 3.1.b) and the 

lower Ct readings obtained following PCR amplification of parasitic DNA (figure 3.3).   

Findings show that the human ileocecal HCT-8 cell line was superior to that of the 

human colon Caco-2 cell line for in vitro culture of G. lamblia (figure 3.3). This conclusion 

was drawn based on several observations including: HCT-8 cell line proved significantly more 

susceptible to infection than the Caco-2 (p <0.05), as seen via cell culture infectivity and RT 

PCR DNA amplification of target DNA (figure 3.3). The negative effect of parasitic infection 

on host cell lines was more noticeable in Caco-2 cells where cell death occurred more rapidly 

following exposure to parasites, cells detached from the culture flask following infection of the 

Caco-2 cells whereas the HCT-8 cells continued to grow vigorously. Taken together these data 

suggest that the Caco-2 host cell monolayer was unable to support heavy infection rates 

resulting in a loss of cell viability and attachment, therefore influencing the infection data by 

producing false negatives.  
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Figure 3.: DNA standard curve as determined by real time PCR analysis for Giardia lamblia 

(log10 cfu/ml) (+/-S.D) extracted from cysts without passage through a mammalian cell line 

using species specific primers.  

 

Figure 3.: Standard curve for Giardia lamblia infected HCT-8 and Caco-2 cells as detected 

via real time PCR following 48 hours incubation at 37oC (+\-S.D). 
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3. 2. Inactivation of Giardia with ultraviolet light 

In this study, standard treatments involved suspending predetermined numbers of G. lamblia 

cysts in the range of 1-106 cysts/ml in sterile phosphate buffered saline (PBS) pH 7 and 

exposing them to varying fluences of pulsed UV light and LP UV. 
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Table 3.: Log10 reduction and infectivity of treated Giardia lamblia via real time PCR and cell 

culture infectivity IF staining of the HCT-8 cell line following UV treatment (+/- standard 

deviation). 

 

 

Exposure LP-UV PUV 

time Dose RT-PCR 

Cell 

culture Dose RT-PCR Cell culture 

seconds mJ/cm2 

Log10 

reduction infectivity* 

 x10-3 

mJ/cm2 Log10 reduction infectivity* 

0 0 0 4 0 0 4 

10 5.4 1.48 (+/- 0.1) 4 1.08 0.52 (+/- 0.1) 4 

20 10.8 1.92 (+/- 0.2) 4 2.15 0.52 (+/- 0.5) 4 

30 16.35 2.04 (+/- 0.2) 3 3.24 0.6 (+/- 0.2) 4 

60 32.7 1.92 (+/- 0.1) 3 6.48 0.62 (+/- 0.1) 4 

90 49 1.84 (+/- 0.1) 3 9.72 1.2 (+/- 0.1) 4 

120 65.4 1.84 (+/- 0.3) 4 12.96 1.48 (+/- 0.5) 3 

150 81.7 1.88 (+/- 0.2) 4 16.2 2.02 (+/- 0.4) 3 

180 98.1 1.74 (+/- 0.1) 4 19.44 2.4 (+/- 0.1) 3 

210  113.4 1.74 (+/- 0.2) 4  22.68 2.82 (+/- 0.1) 2 
 

*Infectivity of cells as determined by immune-fluorescent staining of 3 separate HCT-8 monolayers exposed to 

UV treated and untreated Giardia lamblia cysts. Presence of infectivity indicates the presence of viable Giardia. 

Numbers indicate level of infectivity 4 = high, 3 = medium, 2 = low, 1 = very low 

High = excessive florescent site of infection covering the cell monolayer, impossible to determine numbers due 

to extreme infection and reproductive stages of life cycle 

Medium = visibly reduced number of florescent site of infection. Impossible to determine numbers due to large 

infection rate and reproductive life cycle stages 

Low = visibly reduced level of infection with uninfected parts of the cell monolayer. Impossible to count 

florescent sites of infection due to large number of life cycle stages infecting localised cells 

Very Low = little infectivity noted. Majority of the monolayer uninfected.  
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Table 3.: Determination of viability of UV treated and untreated Giardia lamblia (1x105 

cysts/ml) via staining with vital dyes DAPI and PI compared to the excystation and cell culture 

RT-PCR assays.  

 

LP-UV 

dose 

mJ/cm2 

Viability  

PUV 

dose 

µJ/cm

2 

Viability 

DAPI/PI 

(%)Ұ 

Excystation 

PCR* 

Log10 

CC-PCR^ 

Log10 

DAPI/PI 

(%)Ұ 

Excystation 

PCR* 

Log10 

CC-PCR^ 

Log10  

0 100 4.98 (+/-0.1) 5(+/-0.3) 0 100 5.2(+/-0.2) 5(+/-0.05) 

5.4 100 5.1(+/-0.01) 3.52 

(+/-0.05) 

1.08 100 5.1(+/-0.2) 4.48 

(+/-0.3) 

10.8 99 5.1(+/-0.1) 3.05(+/-0.2) 2.15 100 5.2(+/-0.08) 4.48 

(+/-0.1) 

16.35 100 5.1(+/-0.08) 2.9 (+/-0.1) 3.24 100 5.2(+/-0.1) 4.4(+/-0.3) 

32.7 100 5.0(+/-0.2) 3.08(+/-0.5) 6.48 99 5.2(+/-0.3) 4.38 

(+/-0.1) 

49.0 99 5.0(+/-0.1) 3.16(+/-0.4) 9.72 100 5.0(+/-0.2) 3.8(+/-

0.02) 

81.7 100 5.1(+/-0.3) 3.12(+/-0.2) 16.2 100 5.0(+/-0.01) 2.98 

(+/-0.2) 

113.4 100 5.1(+/-0.1) 3.26(+/-0.3) 22.68 98 4.6(+/-0.1) 2.18 

(+/-0.01) 

 

Ұ Viability measured by vital staining of Giardia lamblia pre and post UV exposure, score is the mean of 3 separate replicates 

of individual experiments. 100 parasite cysts were counted and marked as positive or negative for dye uptake.  

* Log10 viability as determined PCR amplification of Giardia lamblia UV treated and untreated following excystation without 

passage through a cell line.  

^ Log10 viability as determined by PCR amplification of Giardia lamblia UV treated and untreated following excystation and 

cell culture infectivity. 
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The variance in the Ct values following UV exposure allows for the determination of UV 

inactivation by comparing treated to untreated controls. The equation of the line obtained for 

the HCT-8 CC qPCR standard curve was used to calculate log10 reduction of each UV treated 

batch. Findings show that both LP-UV and PUV light successfully inactivated the test species 

(table 3.1). With 5.4 mJ/cm2 of LP-UV dose a 1.48 log10 reduction in viability was achieved 

for G. lamblia as detected via CC-qPCR. With an increase in exposure the rate of inactivation 

also increased significantly (p<0.05) up to a maximum of 1.88 log10. However, after a UV dose 

of 81.7 mJ/cm2 no further increase in Giardia inactivation was detected (Table 3.1). Therefore, 

a ca. 2 log10 inactivation rate was obtained with a UV dose of 113.4 mJ/cm2 equivalent to a 

treatment time of 210 s (3.5 min). The pulsed UV system resulted in levels of inactivation of 

G. lamblia which were greater than the LP-UV system (table 3.1) with a significantly less UV 

dose applied. Indeed, a 1.48 log10 inactivation was achieved with as little as 12.96 x 10-3 mJ/cm2 

of pulsed UV compared to 5.4 mJ/cm2 of LP-UV. Noteworthy, the inactivation plateau which 

was observed with LP-UV did not appear with PUV up to a dose of 22.68 x 10-3 mJ/cm2 

equivalent to a treatment time of 210 s. A ca. 3 log10 (99.9%) loss in cyst viability was 

determined by CC qPCR with a pulsed UV dose of 22.68 x 10-3 mJ/cm2.  
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3. 3. Pulsed light inactivation of clinical relevant veterinary test species 

 

Figure 3.: Pulsed light inactivation of a range of Gram negative and Gram positive bacterial 

test species on (a) agar surfaces and (b) in suspension (+/- S.D). n = the mean of 3 separate 

replicates of individual experiments. 
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All test strains proved susceptible to the pulsed light treatment, albeit with varying levels of 

sensitivity (figure 3.4). E. coli showed the greatest level of inactivation on agar surfaces (figure 

3.4a) with complete inactivation of an initial concentration of ca. 9 log10 with as little as 5 

µJ/cm2 of pulsed light. The order of decreasing sensitivity for test strains was E. coli, L. 

monocytogenes, B. cereus and S. typhimurium on surfaces. When treated in suspension this 

sensitivity changed with L. monocytogenes showing the highest resistance to PL treatment and 

S. typhimurium  showing the greatest sensitivity to pulsed light (figure 3.4b) for all treatment 

doses (p<0.05). Indeed a maximal 9 log10 inactivation of S. typhimurium was achieved with 5.5 

µJ/cm2 compared to a 2.5 log10 for L. monocytogenes. This same dose resulted in a 3 and 5 

log10 inactivation of B. cereus and E. coli respectively, highlighting the significant difference 

in susceptibility to pulsed light 
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Figure 3.: Pulsed light inactivation (PUV) of Candida and Saccharomyces test species on agar 

surfaces (+/-S.D). n = the mean of 3 separate replicates of individual experiments. 
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Figure 3.: Pulsed light inactivation of 20 ml fungal suspensions of Candida and 

Saccharomyces test strains (+/-S.D). n = the mean of 3 separate replicates of individual 

experiments. 
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The Candida and Saccharomyces test strains under study proved sensitive to PUV inactivation, 

albeit to varying extents. Figure 3.5 details the inactivation of test strains on agar surfaces 

following exposure to PUV irradiation. Interestingly C. albicans clinical isolate proved 

significantly (p<0.05) more sensitive to UV disinfection that the reference strain C. albicans 

(ATCC) with a 5.6 and 3.25 log10 cfu/ml inactivation obtained with a PUV fluence of 1.08 

µJ/cm2 for each strain respectively on agar surfaces. This trend of an increased sensitivity of 

the clinical isolate continued for all applied treatment fluences up to 5.39 µJ/cm2 (treatment 

time of 50 seconds). A fluence of 5.39 µJ/cm2 was needed to obtain a 5.8 log10 cfu/ml of C. 

albicans reference strain with 2.15 µJ/cm2 giving a similar inactivation rate of the clinical 

isolate (figure 1). C. albicans (ATCC) and S. cerevisiae showed similar levels of inactivation 

(ca. 3.2 log10) at 1.08 µJ/cm2 (treatment time of 10 seconds). This UV fluence resulted in a ca. 

5 log10 cfu/ml inactivation of C. albicans (clinical), C. krusei and C. parapsilosis and 4 log10 

cfu/ml inactivation of C. tropicalis. A fluence of 5.39 µJ/cm2 resulted in a ca. 5.8 log10 cfu/ml 

inactivation of S. cerevisiae, C. tropicalis and C. albicans and a ca. 7.5 log10 cfu/ml inactivation 

of C. parapsilosis, C. krusei and C. albicans (clinical). Taken together, these datas suggest that 

levels of sensitivity to treatment varied with the UV fluence on agar surfaces. The order of 

sensitivity from least to most resistant to PUV at 5.39 µJ/cm2 per pulse on agar surfaces was 

C. parapsilosis, C. krusei, C. albicans (clinical), C. tropicalis, S. cerevisiae and C. albicans 

(ATCC).  

A similar trend was observed when strains were treated in suspension wherein C. 

albicans (clinical) proved more sensitive to UV exposure than the reference strain (figure 3.6) 

at all treatment fluences. There was no significant difference between the inactivation of S. 

cerevisiae and C. albicans (clinical) at treatment fluences of 4.32, 5.39 and 7.56 µJ/cm2 in 

suspension with complete inactivation of both strains achieved with 8.64 µJ/cm2 (figure 3.6). 

Additionally, C. krusei and C. parapsilosis showed similar levels of sensitivity to PUV with C. 
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tropicalis proving significantly more resistant than both strains in suspension. Significantly 

more UV fluence was needed to obtain similar levels of inactivation with fungal suspension 

compared to surface spread for all test strains. The order of sensitivity from least to most 

resistant to PUV for fungal suspensions at 7.56 µJ/cm2 was S. cerevisiae, C. albicans (clinical), 

C. parapsilosis, C. krusei, C. tropicalis and C. albicans (ATCC). 
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3. 4. Pulsed light inactivation of clinical relevant veterinary test species biofilms 

 

 

 

Figure 3.: Pulsed light (PL) inactivation of bacterial biofilms of varying test species on (a) 

PVC surfaces and (b) stainless steel surfaces (+/- S.D). n = the mean of 3 separate replicates 

of individual experiments. 
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 All bacterial strains under study formed densely populated sessile communities on both PVC 

and stainless steel surfaces after 72 hours. Findings also demonstrate that with longer 

incubation times, exceeding 72 hours (96 hours), there was no increase in cell number of the 

biofilms as detected by plate counts. Following 72 hours, a ca. 5 and 6.6 log10 biofilm formed 

for B. cereus and S. typhimurium respectively, and a 6 log10 for E. coli and 6.5 log10 for L. 

monocytogenes on PVC surfaces. A similar level of cell density was detected on stainless steel 

surfaces, where a ca. 5 log10 to 6.6 log10 biofilm formed for B. cereus, L. monocytogenes, S. 

typhimurium and E. coli. 

 High levels of biofilm inactivation were also achieved for all test strains present on 

both surface materials (figure 3.7). For the Gram negative species E. coli and S. typhimurium 

a 4.2 and 5.1 log10 reduction in viable cell counts was obtained on PVC surfaces with 5.39 

µJ/cm2 (figure 3.7a). This same dose resulted in a significantly (p<0.05) greater level of 

inactivation of the same species on stainless steel surfaces, with a maximal 4.2 and 6.6 log10 

reduction obtained for E. coli and S. typhimurium respectively (figure 3.7b). Both Gram 

positive species tested showed increased sensitivity on stainless steel surfaces compared to 

PVC. A dose of 5.39 µJ/cm2 resulted in a 3.2 and a 4.3 log10 inactivation on PVC and 5.9 and 

4.6 log10 inactivation on stainless steel for B. cereus and L. monocytogenes respectively. A PL 

dose of 7.38 µJ/cm2 resulted in complete inactivation of L. monocytogenes and S. typhimurium 

of ca. 6.5 log10 on PVC surface 
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Table 3.: Clinically relevant Candida species biofilm cell density after 48 and 72 hours 

growth in a CDC biofilm reactor (+/-S.D). n = the mean of 3 separate replicates of individual 

experiments. 

 

 

A, B, C, D, E, F denotes significant difference in cfu/ml 

*Stainless Steel 

 

 

 

 

 

 

 

 

 

 

  

Biofilms cell density (log10 cfu/ml) 

48 hours 72 hours 

PVC SS* PVC SS* 

C. albicans 4.7 (+/-0.2)A 4.2 (+/-0.01)B 4.8 (+/-0.1)A 4.3 (+/-0.05)D 

C. albicans (clinical) 4.2(+/-0.1)B 4.2 (+/-0.05)B 5.2 (+/-0.03)F 4.0 (+/-0.1)C 

C. parapsilosis 4.2(+/-0.05)B 4.2 (+/-0.1)B 5.1 (+/-0.02)E 5.0 (+/-0.04)E 
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The CDC reactor proved an effective tool for the formation and growth of fungal biofilms. 

Sessile colony counts showed that high density biofilms formed at 48 and 72 hour incubation 

time points for both surface types in the reactor (Table 3.3). After 48 hours, a 4.7, 4.2 and 4.2 

log10 cfu/ml biofilm formed for C. albicans, C. albicans (clinical isolate) and C. parapsilosis, 

respectively, on PVC surfaces. There was a significant difference (p<0.05) in the sessile 

population density on stainless steel surfaces where a 4.2 log10 cfu/ml biofilm formed for each 

test species when compared to that of PVC surfaces. A similar trend was observed following 

72 hours incubation with a 4.8, 5.2, 5.1 and 4.3, 4.0 and 5.0 log10 cfu/ml biofilm growths for 

C. albicans, C. albicans (clinical isolate) and C. parapsilosis on PVC and stainless steel 

coupons, respectively. This data suggests that both surface types can support the formation of 

densely populated Candida biofilm structures however; PVC appears more favourable for 

growth as evidenced by  the significantly higher sessile cell count when compared to stainless 

steel surfaces. Furthermore, it was found that with further incubation (exceeding 72 hours) 

there was no significant increase in the number of sessile cells present. Biofilm cell counts 

reached a maximum at 72 hours, after which there was no increase in cell numbers on either 

surface material, a similar trend to that of Nailis et al., 2010. 
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(a) 

 

  (b) 

Figure 3.: Pulsed light inactivation of 48 hour Candida species biofilms grown on (a) PVC and 

(b) stainless steel surfaces (+/-S.D). n = the mean of 3 separate replicates of individual 

experiments. 
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 (a) 

 

 (b) 

 

Figure 3.: Pulsed light inactivation of 72 hour Candida species biofilms cells grown on (a) 

PVC and (b) stainless steel surfaces (+/-S.D). n = the mean of 3 separate replicates of 

individual experiments. 
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The PUV system used in this study repeatedly inactivated Candida species biofilms on both 

PVC and stainless steel surfaces. Significant levels of inactivation were obtained for C. 

albicans (ATCC), C. albicans (clinical) and C. parapsilosis for 48 (figure 3.8) and 72 hour 

(figure 3.9) biofilm structures. For both time points ca. 3.5 – 4 log10 cfu/ml inactivation of all 

test strains was achieved with a fluence of 6.48µJ/cm2. There was no difference in the 

inactivation rates of C. parapsilosis 48 hour and 72 hour biofilms on PVC surfaces. C. albicans 

biofilms appear more UV sensitive at 48 hours with a significant (p<0.05) increase in 

inactivation obtained for each PUV fluence. C. albicans clinical isolate showed similar or a 

slightly decreased level of inactivation at 48 hours compared to 72 hour biofilm formation. 48 

hour biofilms on stainless steel surfaces appear more UV sensitive with an increase in 

inactivation achieved for C. albicans up to a UV fluence of 4.32 µJ/cm2 and for all treatment 

fluences for C. albicans (clinical) and C. parapsilosis. At 48 hour biofilm formation, C. 

parapsilosis appears most resistant to UV pulses with both C. albicans strains showing similar 

levels of sensitivity on PVC surfaces. A similar trend was observed for biofilms grown for 48 

hours on stainless steel surfaces. The order of increasing sensitivity to UV fluence was C. 

parapsilosis, C. albicans and C. albicans (clinical) on PVC surfaces and C. albicans (clinical), 

C. parapsilosis and C. albicans on stainless surfaces for 72 hour biofilms structures.  In general 

it was found that planktonic cells are more sensitive to PUV than attached cells on either surface 

material. The order of sensitivity to UV pulses was the same for fungal suspensions and 

biofilms on stainless steel surfaces, meaning that planktonic cells treated in suspension had the 

same level of susceptibility as cells in biofilms on stainless steel surfaces to pulsed light. C. 

parapsilosis proved the most sensitive test strain on agar surfaces and PVC attached biofilms.  
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3. 5. Detection of Giardia lamblia in biofilm structures using RT-PCR 

 

 

 

 

 

 

 

Figure 3.: DNA standard curve as determined by real time PCR analysis for Bacillus cereus 

and the parasite species Giardia lamblia (log10 cfu/ml) (+/-S.D) using species specific primers. 

n = the mean of 3 separate replicates of individual experiments. 
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Figure 3.: Real time PCR Ct value for microbial test species Bacillus cereus and corresponding 

cell count in log10  cfu/ml  as determined by using the equation of the line of the standard 

curves for Giardia lamblia as detected in B. cereus biofilms on (a) PVC and (b) stainless steel 

surfaces (+/- S.D). n = the mean of 3 separate replicates of individual experiments. 
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The determination of cell number for B. cereus biofilms via PCR was slightly higher than the 

standard cell count method. A Ct value of 18.9, corresponding to a cell count of ca. 7 log10 

cfu/ml for both materials was determined by analysis of the standard curve (figure 3.10). An 

important fact to note is that PCR detects the presence of target DNA, but cannot differentiate 

between live and dead cells. In contrast, the standard cell count technique reports viable cell 

numbers only via the enumeration of colonies grown on nutrient agar. In this case a biofilm 

viable cell density of 5 log10 was formed, indicating that approximately 2 log10 of non-viable 

cells were also present in the biofilm matrix as detected by PCR.  Studies have shown that with 

greater incubation times (up to and exceeding 96 hours) no increase in cell number occurred 

for biofilms populations, suggesting the presence of a stationary phase or steady state of biofilm 

growth. PCR analyses showed the presence of non-viable cells at 72 hours, further confirming 

that incubation for 72 hours provided an optimal period of time for biofilm formation, after 

which cell death occurs to some extent. These findings correspond to that of Senevirantne et 

al., 2013, who concluded that 72 hours was also the optimal incubation time for the growth of 

Enterococcus faecalis biofilms. Therefore, the findings of this study suggest that 72 hour 

duration of incubation is sufficient to reproduce a robust, densely populated biofilms of B. 

cereus, E. coli, L. monocytogenes and S. typhimurium using a CDC reactor. Consequently, 72 

hour biofilms were used for inactivation studies for all test species.  

G. lamblia were detected in the B. cereus biofilms at a concentration of between 2 and 

3 log10 for PVC and stainless steel surfaces by PCR (figure 3.11). Additionally, PCR proved a 

more efficient reliable method of detecting Giardia than the use of specific dyes. Fluorescent 

dye staining of biofilms containing cysts greatly underestimated the number of organisms 

present. A maximal cyst count of 14 (+/-4) for G. lamblia was determined via fluorescent 

staining.   
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4. Discussion 
4. 1. Comparative study on the Caco-2 and HCT-8 cell lines as infectivity models for G. 

lamblia.   

This study investigated the efficacy of using novel pulsed UV light technology as a disinfection 

tool for G. lamblia and used a combined cell culture method - qPCR for the detection of same. 

The relevance of this study going forward bears great significance in new effective disinfection 

technologies that can be applied in clinical veterinary settings.   While there is growing interest 

in the use of in vitro cell culture assays to study the pathogenesis and infectivity of waterborne 

Cryptosporidium infection post disinfection (Hijjawi, 2010; Garvey et al., 2010), there is 

however, even with the completion of this study, a scarcity of significant information on the 

detection and efficacy of emerging technologies for disinfection of G. lamblia.  

Several comparative assays have been used to test infectivity and viability of Giardia cysts, 

including in vivo mouse infectivity and vital staining techniques (as seen in figure 3.1), the 

latter proving consistently inadequate at determining UV inactivation of these parasites (Craik 

et al., 2000). Until recently, based on viability assays as measured exclusively via excystation 

or vital dye staining (Mofidi et al., 2002), it was understood that UV light could not adequately 

inactivate G. lamblia. The importance of developing a Real Time PCR assay for the viability 

assessment of UV treated parasites is based on excluding the need for an in vivo model allowing 

for the rapid assessment of disinfection techniques used. As an essential requirement for this 

study a cell culture based assay needed to be developed to support this novel RT-PCR 

technique. Considerations in choosing the appropriate cell lines for this study included the need 

for the cells to correspond to the target area of infectivity of the host, the intestinal tract. Given 

that G. lamblia is a parasite of the intestine, HCT-8 cells were chosen to mimic the small 

intestine epithelial cells, while Caco-2 cells were chosen as a comparison to HCT-8s as they 

represent the colon. Similarly, Garvey et al., (2010) developed an in vitro cell culture assay for 
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assessing efficacy Cryptosporidium parvum detection that was capable of replacing in vivo 

mice models. By developing such an assay, inconsistencies no longer prove problematic for 

future studies e.g. age, sex, and health status of the in vivo model as well as in vitro models 

being ethically unassailable.  Until recently when Garvey et al., (2014) commenced work on 

the parasite G. lamblia, no prior study had focused on the efficacy of using new innovative 

disinfection technologies for the destruction of the pathogenic G. lamblia. This could be due 

to the fact that ethical approval is obligatory when using in vivo infectivity rodent models to 

test the efficacy of the disinfection methods or the high complexity of cell culture requirement 

for the flagellated protozoan. Studies by Garvey et al., 2014 demonstrated that the mechanism 

of Cryptosporidium cellular infectivity differed to that of Giardia where the latter was observed 

to be non-cell membrane invasive but only requiring attachment to epithelial surfaces to initiate 

and enable infection (Garvey et al., 2014). As with this study an increase or decrease in the 

amount of host cells available for Giardia trophozoites significantly affected its infection and 

subsequent intracellular proliferation and PCR detection. This is mainly attributed to the 

surface area available for parasite attachment. The loss of viability and detachment which 

occurred with the CaCo-2 cells may have led to the decrease in infectivity that was observed 

for this cell line following exposure to viable Giardia trophozoites. Exposure of Caco-2 cells 

to Giardia consistently resulted in apoptotic or early phase cell death in this monolayer, which 

was not observed with similarly challenged HCT-8 cells (Garvey et al., 2014).  Previous studies 

conducted by Cotton et al., (2011) showed that genes associated with apoptosis are up-

regulated in cells exposed to Giardia and heightened rates of epithelial apoptosis occurs shortly 

after exposure to Giardia trophozoites, which was observed both in vitro and in vivo. This 

marked difference in pathogenesis between these two veterinary relevant parasites may be 

attributed to Cryptosporidium parvum inhibiting apoptosis at the trophozoite stage or 

promoting apoptosis sporozoite and merozoite stages in HCT-8 cells (Panora et al., 2007). 
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Giardia lamblia predominantly colonises the proximal small intestine and this is the primary 

site of infection following ingestion of the parasite. Therefore, the HCT-8 cell line which is of 

ileum origin is an ideal candidate for in vitro infectivity studies. The Caco-2 cell line has its 

origin in the colon and this difference in gastrointestinal location may contribute to the ability 

of the cells to withstand parasitic infection for both the Giardia and Cryptosporidium species. 

Therefore, the findings of this study show that the HCT-8 cell line was a superior host to 

infectivity than the CaCo2 cells. This is evident by the lower detection of parasitic DNA (figure 

3.3) and a more stable cell monolayer and microscopically as detached and apoptotic 

monolayers. Consequently, the HCT-8 cell line was deemed more suitable as an in vitro host 

cell type for Giardia infectivity and therefore used throughout this study. These findings are 

comparable to the studies of Hijjawi (2010) who reported that the HCT-8 cells were superior 

to that of eleven other human cell lines tested when carrying out similar parasite infectivity 

studies (Hijjawi, 2010). Furthermore, Garvey et al., 2014 demonstrated that HCT-8 cells to be 

more robust as they continued to proliferate whether the cells were infected or not.  

4. 2. Comparative LP- UV and PUV inactivation of veterinary relevant parasite Giardia 

lamblia.  

Table 3.1 and 3.2 detail the inactivation of Giardia test species following exposure to LP and 

PUV light. Results show that a significant level of parasite inactivation was achieved with both 

UV systems (Table 3.1). However the pulsed light approach resulted in a higher rate of 

inactivation with a greatly reduced rate of energy requirement than the LP system, operating at 

10-3 mJ (µJ) as opposed to mJ. Indeed, with a treatment time of 210 seconds equivalent to LP 

dose of 113 mJ/cm2 or PUV dose of 22.68 x10-3 mJ/cm2 a maximal 1.7 log10 and 2.8 log10 

inactivation of Giardia was achieved with LP UV and PUV respectively. This demonstrates 

that even with a greatly reduced energy consumption rate a significantly (p<0.05) increased 

level of inactivation was achieved using the pulsed UV approach. Results also show that with 



77 

 

the LP system a 1.9 log10 reduction was achieved with a dose of 10 mJ/cm2, this did not increase 

significantly with a further increase in applied UV dose. Indeed a plateau effect was observed 

with a dose exceeding 10.8 mJ/cm2 and up to 49 mJ/cm2. These findings correspond to that of 

Craik et al., 2000 and Campbell and Wallis, 2002 where studies show that 99% of Giardia 

inactivation was achieved below 8 mJ/cm2 and 10 mJ/cm2 respectively using a medium 

pressure lamp and in vivo infectivity in mice and gerbil models. At doses exceeding 8 mJ/cm2 

and as high as 130 mJ/cm2 there was no significant increase in the inactivation of Giardia cysts 

(Craik et al., 2000).  The similarities in these findings using a cell culture based assay to that 

of animal infectivity suggest that the former in vitro based approach may indeed show levels 

of infectivity to that of the in vivo test system. A similar trend where C. parvum showed 

increased sensitivity to medium pressure UV than Giardia was reported by Belosevic et al., 

2001. 

The pulsed light system provided a ca. 3 log10 (99.9%) inactivation of Giardia with a 

dose 22.68 x10-3 mJ/cm2. Additionally, the plateau effect observed with the LP system was not 

evident with every increase in PUV dose a corresponding increase in inactivation was achieved 

(table 3.1). Previously published work of Garvey et al., 2010 detailing the inactivation of 

Cryptosporidium parvum reported a 3.3 log10 inactivation following a pulsed UV dose of 

9.72x10-3 mJ/cm2. This report also showed the correlation between mice infectivity and an in 

vitro HCT-8 CC qPCR assay for the disinfection kinetics of C. parvum with pulsed UV light. 

By comparison Giardia lamblia appears more UV resistant than C. parvum at doses up to 

9.72x10-3 mJ/cm2 with a 1.2 log10 and < 4 log10 inactivation obtained for Giardia and 

Cryptosporidium (Garvey et al., 2010) respectively. 

Table 3.2 highlights the disparities in the various viability assays currently in use to assess 

Giardia inactivation. As shown the DAPI/PI dye exclusion and in vitro excystation PCR assay 

(without cell culture) greatly overestimated the viability of treated cysts compared to the cell 
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culture PCR assay. This was the irrespective of the treatment system used (LP or PUV). As 

expected, the dye based assay was not suitable for determining inactivation rates post treatment 

due to fact that such assays are based solely on membrane damage. It has been well documented 

that UV disinfection is centred on the principal of genetic damage resulting from the 

absorbance of photons of UV light. PCR amplification of parasite DNA (without cell culture) 

also greatly overestimated the extent of Giardia inactivation (table 3.2), due to the fact that 

PCR alone does not differentiate between live or dead trophozoites. These findings highlight 

the importance of the additional cell culture step pre DNA extraction, as supplying a host cell 

for infectivity allows for the parasite reproduction cycle to initiate. By utilising this approach, 

only viable infective trophozoites were amplified giving a direct and accurate measurement of 

viability pre and post treatment.  

4. 3. PUV inactivation of veterinary relevant microbial test strains.  

All Gram positive and Gram negative bacterial test species proved susceptible to PUV light 

inactivation. A pattern of degree of susceptibly was evident (figure 3.4 a and b), this being that 

the test species in liquid suspensions were more resistant at equal doses to that of surface treated 

organisms. In Figure 3.4 at a UV dose of 2µJ/cm2 a 7 log10 reduction of E. coli was achieved 

on agar surfaces (figure 3.4a) with a 5 log10 reduction seen in liquid suspension (figure 3.4b), 

a difference of 2 log10 cfu/ml. This pattern falls true also for B. cereus, L. monocytogenes with 

reduction differences at a treatment dose of 6µJ/cm2, where a difference of 2.5 log10 cfu/ml and 

5 log10 cfu/ml respectively was obtained. The exception to this pattern was S. typhimurium 

which proved more resistant when treated on agar surfaces than when treated in liquid 

suspensions. A UV dose of 6µJ/cm2 gives a log10 reduction of 4.5cfu/ml on surfaces but a log10 

reduction of 9.5cfu/ml in liquid suspension, giving a difference of 5cfu/ml. E. coli showed the 

greatest level of inactivation on agar surfaces with complete inactivation of an initial 

concentration of ca. 9 log10 with as little as 5 µJ/cm2 of pulsed light. The order of decreasing 



79 

 

sensitivity for test strains was E. coli, L. monocytogenes, B. cereus and S. typhimurium on 

surfaces. When treated in suspension this sensitivity changed with L. monocytogenes showing 

the highest resistance to PUV treatment and S. typhimurium  showing the greatest sensitivity 

to pulsed light for all treatment doses (p<0.05). Indeed, a maximal 9 log10 inactivation of S. 

typhimurium was achieved with 5.5 µJ/cm2 compared to a 2.5 log10 for L. monocytogenes. This 

same dose resulted in a 3 and 5 log10 inactivation of B. cereus and E. coli respectively, 

highlighting the significant difference in susceptibility to pulsed UV. These findings correlate 

with Cheigh et al., 2012 where E. coli also proved more sensitive to PL than L. monocytogenes 

when treated in suspension. 

Candida and Saccharomyces test species also proved susceptible to PUV light inactivation 

(figure 3.5 & 3.6). All yeast strains in liquid suspensions were more resistant to PUV treatment 

that those on agar surfaces. C. kruesi treated at a UV dose of 5µJ/cm2 resulted in a 7.3 cfu/ml 

Log10 reduction on surface yet only a reduction of 5 Log10 cfu/ml in suspension, a difference 

of 2 log10 cfu/ml is seen. C. parapsilosis treated at a UV dose of 5µJ/cm2 a log10 reduction of 

up to 7.3 cfu/ml on surface agar yet only a log10 reduction of 4.5cfu/ml, giving a difference of 

2.8cfu/ml. S. cerevisiae treated with a UV dose of 7µJ/cm2 showed a reduction of 3.7 Log10 

cfu/ml, this is similar to the work of Rowan et al, 1999 with a 5 log10 reduction was achieved 

for S. cerevisiae on agar surface in 5 pulses using a UV dose of 0.7J.cm2 (Rowan et al, 1999).  

When a comparison of treatment dose and microbial test species is looked at in detail (figure 

3.4, 3.5 & 3.6), it is evident that bacterial test species are more susceptible to UV light 

inactivation treatment than yeasts. This corresponds with in vitro studies carried out by Rowan 

et al. 1999 and Anderson et al. 2000, both having demonstrated that fungi are more resistant to 

pulsed light than bacteria. This study also mirrors the findings of previous studies by 

Krishnamurthy et al., 2007 and Marquenie et al. 2003 as it was found that pulsed UV treatment 

is more effective on solid surfaces than in liquids. 
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4. 4. Growth and sterilisation of microbial & fungal biofilms on surfaces present in the 

veterinary environment.  

Biofilm communities are the natural state of microbial habitat where they are found attached 

to biotic or abiotic surfaces more so than planktonic free floating cells.  The change from a 

planktonic free floating cell to that of a biofilm sessile cell induces physiological changes in 

bacteria. This occurs via a series of gene expression alterations which include gene repression 

and induction. It is the induction of genes, relating to antibiotic resistance that leads to the 

increased pathogenicity of sessile bacteria over their planktonic counterparts. Additionally, the 

adaption to this new environment and associated living conditions induces genes that encode 

for new important proteins and enzymes. Quorum sensing and response mechanisms within 

biofilms allows for gene regulation and plays an important role in pathogenicity and virulence 

of organisms (Clusterbuck et al., 2007). Cell adhesion is believed to trigger gene expression 

responsible for the control of microbial products necessary for adhesion to a surface (Costerton 

and Lappin-Scott., 1995). The enzyme polyphosphate kinase (PPK) is one such protein, linked 

to the thickness of biofilms (Clusterbuck et al., 2007) adding to the EPS matrix and is believed 

to subsequently limit antibiotic penetration of a biofilm.  Consequently, this causes an increased 

resistance to antibiotics and disinfectants commonly observed with these complex structures 

(Aguilar-Romero et al., 2010). Regardless of this, planktonic culture remains the main 

mechanism for microbiological studies such as disinfection (Otter et al., 2014). Furthermore, 

the sensitivity of planktonic cells to disinfection has been used as an indication of biofilm 

sensitivity and resistance (Buckingham-Meyer et al., 2007). However, disinfection studies 

based on actual biofilm communities is much more representative of the environmental 

situation. The findings of this study show that the use of the CDC biofilm reactor allows for 

the growth of biofilms with high cell densities attached to surfaces in a reproducible manner. 

Such methods ensure that the biofilm structures possess the key characteristics of real life 



81 

 

biofilms for the test species in question. This study assessed the sensitivity of microbial biofilm 

structures to pulsed light treatment and provides a direct relationship between treatment fluence 

and loss in sessile cell viability. Consequently an important aspect of clinical disinfection and 

disease prevention is dealt with.  

Biofilms are often associated with a number of persistent infections that poorly respond 

to antibiotics (Hall-Stoodley, 2004) and can be the cause of detrimental losses within the 

agricultural and veterinary environment. In 2013 for example, New Zealand’s leading export 

market to China was temporarily closed due to a botulism scare in whey products originating 

from Fonterra Cooperative Group. 95% of all dairy products produced in New Zealand are 

exported, feeding $NZ11bn directly into the New Zealand economy. Unsterilized pipes were 

the source of the contamination on that particular occasion.    

The formation of biofilms on surfaces and in other inaccessible areas, often harbouring 

pathogenic bacteria, fungi, viruses or parasites, raises concerns to the health of inpatients and 

the public. Therefore, the inactivation of these resilient bacterial communities is important in 

order to reduce the risk to veterinary staff and in patients contracting a nosocomial disease 

while hospitalised and at work. Furthermore, Neely and Orloff, 2001 have shown that fungal 

pathogens also have the ability to survive on clinical surfaces. Established biofilms on these 

surfaces pose a difficult challenge to hospital cleaning and disinfection, due to their resistance 

to biocides and difficulty to remove by detergent cleaning (Otter et al., 2014). Fungal infections 

are increasing at a disturbing rate affecting a growing population of severely ill patients which 

poses important challenges for the health care professionals. Studies by Chandra et al., 2001 

have shown that cellular resistance to biocides increased as the biofilm structure matured, with 

a 72 hour biofilm of C. albicans showing a dramatically increased level of resistance than their 

earlier stage biofilm counterparts (Chandra et al., 2001). A means of inactivating planktonic 

and sessile cells which renders the surface free of pathogenic species is essential to prevent 
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patient infection or the contamination of medical materials. Research by Garvey et al., 2013 

concluded that the CDC reactor allows for the formation of more densely populated bacterial 

biofilms than alternative methods such as microtiter plates (Nailis et al., 2010) and attributed 

this to the availability of nutrients within the reactor. Studies assessing in vivo models for 

catheter associated Candida infections such as microscopic structure analysis indicate that the 

in vitro techniques such as the CDC reactor show similarly structured biofilm communities 

than those found in vivo (Lopez-Ribot, 2005). Furthermore, in vitro studies have shown that 

Candida can survive in the low iron environment found in the tissues surrounding implanted 

devices such as catheters, with the additional factor of its filamentous life cycle making it 

proficient at colonising inert surfaces such as PVC (Suci and Tyler, 2002). These studies 

suggest that in vitro model systems mimic in vivo events indicating that the research outputs 

made are clinically relevant. For PUV inactivation studies both the stainless steel and PVC 

coupons were exposed to varying UV doses on both sides to ensure complete biofilm exposure. 

Replicate results indicate that this pulsed UV system was effective at inactivating all test 

species at 8 µJ per pulse.  Indeed substantial amounts of inactivation were achieved with as a 

little as 1 µJ/cm2 for bacterial biofilms on PVC and SS surfaces, (figure 3.7 a and b). 

Additionally, for all strains a consistent pattern emerged where for each treatment dose resulted 

in a significant difference in inactivation rates. Furthermore, the PUV system tested repeatedly 

inactivated Candida species biofilms on both PVC and stainless steel surfaces. Significant 

levels of inactivation were obtained for C. albicans (ATCC), C. albicans (clinical) and C. 

parapsilosis for 48 (figure 3.8) and 72 hour (figure 3.9) biofilm structures. For both time points 

ca. 3.5 – 4 log10 cfu/ml inactivation of all test strains was achieved with a fluence of 6.68 

µJ/cm2. There was no difference in the inactivation rates of C. parapsilosis 48 hour and 72 

hour biofilms on PVC surfaces. C. albicans biofilms appear more UV sensitive at 48 hours 

with a significant (p<0.05) increase in inactivation obtained for each PUV fluence. C. albicans 
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clinical isolate showed similar or a slightly decreased level of inactivation at 48 hours 

compared to 72 hour biofilm formation. 48 hour biofilms on stainless steel surfaces appear 

more UV sensitive with an increase in inactivation achieved for C. albicans up to a UV fluence 

of 4.32 µJ/cm2 and for all treatment fluences for C. albicans (clinical) and C. parapsilosis. At 

48 hour biofilm formation, C. parapsilosis appears most resistant to UV pulses with both C. 

albicans strains showing similar levels of sensitivity on PVC surfaces. A similar trend was 

observed for biofilms grown for 48 hours on stainless steel surfaces. The order of increasing 

sensitivity to UV fluence was C. parapsilosis, C. albicans and C. albicans (clinical) on PVC 

surfaces and C. albicans (clinical), C. parapsilosis and C. albicans on stainless surfaces for 72 

hour biofilms structures. The order of sensitivity to UV pulses was the same for fungal 

suspensions and biofilms on stainless steel surfaces, meaning that planktonic cells treated in 

suspension had the same level of susceptibility as cells in biofilms on stainless steel surfaces 

to pulsed light. C. parapsilosis proved the most sensitive test strain on agar surfaces and PVC 

attached biofilms.  

 

In general it was found that planktonic cells are more sensitive to PUV than attached biofilm 

cells on either surface material. 

 

Further studies are warranted on the photo reactivation ability of organisms within the biofilm 

structure following PUV treatment. However, it is worth noting that previously published 

studies by McDonald and Curry, 2001 postulate that the high proton flux from a pulsed light 

source overwhelms the cellular repair mechanisms of treated organisms.    
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4. 5. Studies to determine the entrapment of parasite species within these biofilm 

structures 

Biofilms structures of a bacterial and/or fungal nature when attached to surfaces can entrap 

organisms such as viruses or parasites within their matrix, providing a protective environment. 

This harbouring of parasites such as Giardia means that they are shielded somewhat from the 

action of various disinfection processes. This represents a serious threat to the veterinary 

industry in relation to the contraction of nosocomial infections.  Detachment from biofilms can 

occur by continuous erosion from both physical cleaning and chemical disinfection (Wingender 

and Flemming., 2011).  The studies described herein show that Giardia parasites were indeed 

trapped in Bacillus cereus biofilms on both surface types (figure 3.11).  

Findings indicate that PCR proved a more efficient reliable method of detecting Giardia with 

biofilm structures than the use of specific dyes. Fluorescent dye staining of biofilms containing 

cysts greatly underestimated the number of organisms present. Issues arose in relation to non-

specific binding of dyes to biofilm constitutes believed to be EPS components resulting in 

unreliable counting of parasite numbers. These findings confirm that Giardia can quickly attach 

or become entrapped in bacterial biofilms. The detection of these pathogens within biofilm 

structures has important public health implications in relation to animal and human exposure. 

The robust, disinfection resistant nature of biofilms and these parasites themselves increases 

the probability that the survival and detachment of biofilm-associated viable parasites may 

occur at concentrations exceeding that required for infection. This possibility needs to be 

considered in risk assessments relating to the cleaning of veterinary environments particularly 

where animals are housed and fed. 
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4. 6. Conclusions 

 UV light would be an effective sterilization technique in a veterinary clinical setting 

once regular cleaning had taken place. 

  Findings indicated that current Giardia detection methods are limited to using vital 

stains before and after cyst excystation are not appropriate for monitoring or evaluating 

cyst destruction post PUV-treatments.  

 Use of the human ileocecal HCT-8 cell line was superior to that of the human colon 

Caco-2 cell line for in vitro culture and determining PUV sensitivity of treated cysts. 

 The use of this HCT-8 cell culture assay may replace use of animal models for 

determining disinfection performances of PUV for treating G. lamblia 

 The extraction and amplification of the parasitic DNA via real time PCR provides a 

rapid measurement of infective parasite numbers allowing for the measurement of live 

or dead parasites post PUV treatment. 

 Findings demonstrate the use of pulsed UV light to be effective in the inactivation of 

clinically relevant microbial species on surfaces commonly associated within the 

clinical veterinary environment.  

 Based on findings from this study, and in an attempt to be proactive in the reduction of 

biofilm adhesion, Stainless Steel should be chosen instead of PVC material when 

choosing kennels, feed bowls etc for use in a veterinary clinic. 
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Abstract 

The presence of pathogenic organisms namely parasite species and bacterial biofilms in 

veterinary settings is a public health concern in relation to human and animal exposure. 

Veterinary clinics represent a significant risk factor for the transfer of pathogens from housed 

animals to humans especially in cases of wound infection and the shedding of faecal matter. 

This study aims to provide a means of detecting veterinary relevant parasite species in bacterial 

biofilms, and to provide a means of disinfecting these biofilms. A real time PCR assay was 

utilized to detect parasite DNA in Bacillus cereus biofilms on stainless steel and PVC surfaces. 

Results show that both Cryptosporidium and Giardia attach to biofilms in large numbers (100-

1000 oo/cysts) in as little as 72 hours.   Pulsed light successfully inactivated all test species 

(Listeria, Salmonella, Bacillus, Escherichia) in planktonic and biofilm form with an increase 

in inactivation for every increase in UV dose.  
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Introduction 

The prevention and control of veterinary related infections is an important aspect of public 

health and safety due to the occurrence of zoonotic infections. The spread of pathogenic species 

within veterinary practices can lead to infection of both the housed animals and veterinary staff. 

Veterinary clinics are a connection of human and animal interaction, often in situations dealing 

with infected wounds or faecal matter. This is a significant concern for immunocompromised 

individuals who are animal owners. Animal associated pathogens of concern to 

immunocompromised persons include Cryptosporidium, Salmonella, Listeria, Bacillus, 

Escherichia coli, Campylobacter and Giardia (Grant and Olsen, 1999). Furthermore, many 

research studies have highlighted the connection between the spread of pathogenic organisms 

from surfaces to patients (Gebel et al., 2013). Consequently, the use of surface disinfectants 

for the control of pathogens in clinical and veterinary settings has become important due to the 

increase in antibiotic resistant microbial species and zoonotic infections. However, issues have 

arisen where some pathogens have shown resistance to commonly used chemical based 

disinfectants. Such pathogens include the parasite species Cryptosporidium and Giardia, 

bacterial endospores and bacterial biofilm structures.  Planktonic microbial cells are able to 

attach to and colonise environmental surfaces by producing an extracellular polymeric 

substance (EPS), these adherent (sessile) cells are referred to as biofilms. The descriptive terms 

sessile and planktonic are used to describe surface adherent and free floating bacterial cells 

respectively. Veterinary important species such as Listeria, Escherichia, Bacillus and 

Salmonella are capable of producing these biofilm structures allowing them to gain resistance 

to standard chemical disinfection methods.  Indeed, biofilms or sessile communities are 

believed to be the causative agent in diseases such as pneumonia, liver abscesses, enteritis, 

wound infections and mastitis infections in animals (Clutterbuck et al., 2007). In addition, in 

hosts with functioning innate and adaptive immune responses, biofilm-based infections are 
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often very persistent and remain unresolved. In fact surrounding tissues often undergo 

extensive damage by immune complexes and invading neutrophils when trying to eradicate the 

infection (Stewart and Costerton, 2001).  

The prevention of biofilm formation would provide the best control measures for these 

robust structures; however, there is no agent available that will prevent cell adhesion and 

biofilm formation. Current methods rely on the use of disinfection agents and regular cleaning 

of surfaces exposed to possible pathogens.  Research has indicated that sessile communities 

can be up to 1000 times more resistant to chemotherapeutics such as chlorhexidine than their 

planktonic counterparts. Furthermore,  resistant bacteria originated in sessile communities can 

spread from animal to animal through veterinary staff, veterinary surfaces and equipment or 

farm equipment such as feeders and water dispensers (Aguilar-Romero et al., 2010) resulting 

in extended infection problems. Biofilm structures are also capable of trapping or incorporating 

other pathogenic species including viruses and parasites such as Giardia and Cryptosporidium 

(DiCesare et al., 2012). Harbouring of such species shields them from cleaning and disinfection 

techniques, increasing their already high resistance to such treatments. Studies have shown that 

biofilms represent a significant, long-term reservoir for pathogens such as Cryptosporidium 

and Giardia which can be released back into water. Thus, explaining the presence of parasites 

in water networks long after disinfection protocols are completed following an outbreak. 

Indeed, the continued presence of Cryptosporidium in a drinking water system following an 

outbreak in England was attributed to the presence of biofilm structures on the piping network 

(Wingender and Flemming, 2011). Such findings indicate that alternative ways of pathogen 

inactivation in the veterinary setting must be provided. Ultraviolet (UV) light is well known 

for its antimicrobial activity, due to its bacteriostatic properties preventing bacterial cell 

replication. Additionally, research focusing on the use of a pulsed light system for the 

inactivation of parasite species and bacterial endospores has shown this system to be highly 
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efficient (Garvey et al., 2014). Pulsed light technologies differ from standard UV lamps in their 

mode of delivery, penetration depth and wavelength range (Garvey et al., 2014) making them 

a more potent disinfection system. Here we report on the use of a pulsed light system for the 

disinfection of veterinary relevant biofilms on polyvinylchloride (PVC) and stainless steel 

surfaces. The use of polymerase chain reaction (PCR) methods provides a rapid species specific 

means of identifying species type and cell numbers present. Indeed, PCR methods have been 

used extensively to detect and quantify bacterial cells in food products and in biofilms (Pan 

and Breidt, 2007). Therefore, the present study also utilised a real time PCR assay to determine 

the extent at which Bacillus biofilm structures incorporated parasite species into their matrix, 

subsequently providing shelter from disinfection techniques. 

Methods  

Pulsed UV light 

The PUV machine used throughout this study was sourced through Samtech Ltd, Strathclyde, 

Scotland, UK. The bacteriostatic effects of pulsed light are caused by the rich and broad-

spectrum UV content, the short duration, and the high peak power of the pulse. The system 

was used as per Garvey et al., (2014) and Garvey et al., (2010) and is therefore not described 

in further detail herein. 

Microbial test species 

For this study a range of veterinary relevant microbial species Listeria monocytogenes (ATCC 

11994), Bacillus cereus (ATCC 11778), Salmonella typhimurium (ATCC 13311) and 

Escherichia coli (ATCC 11775) were chosen for biofilm formation and pulsed light 

inactivation studies.  All strains were cultured and maintained nutrient agar and nutrient broth 

(Cruinn Diagnostics Ltd, Ireland) at 37oC. Giardia duodenalis cysts and Cryptosporidium 

parvum oocysts were purchased from Waterborne Inc USA. Oocysts and cysts were stored in 

sterile PBS (0.01 M phosphate buffer, containing 0.0027 M KCL and 0.137 MNaCl at a pH of 

https://www.google.ie/search?client=firefox-a&hs=Y7S&rls=org.mozilla:en-US:official&channel=sb&q=Samtech+Ltd,+Strathclyde&spell=1&sa=X&ei=GfsSVI7iJ-yh7AbioYCwDg&ved=0CBoQvwUoAA&biw=1366&bih=631
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7.4) with 100 U of penicillin/ml, 100 μg of streptomycin/ml and 100 μg of gentamicin/ml at 

4°C. Species identity was confirmed by a dye staining method comprising of propidium iodide 

(PI) 1 mg/ml in 0.1 M sterile PBS and 4’, 6’-Diamidino-2-Phenylindole (DAPI) 2 mg/ml in 

methanol and a fluorescein-labelled mouse-derived monoclonal antibody Giardi-a-Glo™ or 

Crypt-a-GloTM (Waterborne Inc, New Orleans, USA) Oo/cysts were counted using a 

haemocytometer and inverted microscope (Olympus, CKX41) with camera (Olympus, IX2-

SLP) attached. 

Growth of sessile communities using Centers for Disease Control (CDC) biofilm reactor 

 

The CDC biofilm reactor (Biosurface Technologies Corp, Bozeman, Montana, USA) was used 

for the growth of biofilm structures as per the recommended procedure of the American Society 

for Testing and Materials (ASTM).  Furthermore, the CDC reactor is a recognised method for 

the growth of biofilms under high shear and continuous flow (Coenye and Nelis, 2010) and is 

of sufficient capacity to provide numerous samples of biofilms for disinfection studies. For this 

study both PVC and stainless steel coupons were chosen as biofilm growth surfaces as both 

materials are commonly used in veterinary settings and are excellent matrixes for biofilm 

adhesion and proliferation.  

For the growth of microbial biofilms methods were followed as per the recommended 

procedure for continuous fluid shear flow biofilm formation (ASTM E2562-12 2012) and 

Garvey et al., 2014. The reactor was prepared containing 350 mL of tryptone soya broth (TSB) 

and 2% glucose; ensuring disks were completely submerged and autoclaved. 1 mL of a 12 hour 

microbial culture was added to the reactor chamber to ensure that cells were in the log phase 

of reproduction. For each test strain the reactor was incubated at 37°C for 72 and 96 hours 

under rotatory conditions at 125 rpm. To allow for the enumeration of colony forming units 

(cfu) per microbial biofilm, all coupons were removed aseptically from each reactor rod and 
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rinsed with sterile phosphate-buffered saline (PBS) to remove any planktonic cells. Biofilms 

were removed from each coupon by scraping the coupon using a sterile cell scraper into 10 mL 

of sterile PBS. The standard plate count technique was used to determine the cfu/ml bacterial 

population in the biofilm as per the recommended procedure (ASTM E2562-12 2012). To 

allow for the entrapment of parasite test species within the biofilm matrix 1x106 oo/cysts per 

ml was added to the reactor chamber and incubated for 72 hours. For biofilms containing 

parasite test species, 1 ml from the 10 ml PBS containing the scrapped biofilm was stained with 

parasite specific dyes as per previously described to confirm identity and numbers present.  

Pulsed light inactivation of planktonic microbial species 

E. coli, S. typhimurium, L. monocytogenes and B. cereus cultures were grown and maintained 

as previously described. For PUV studies a single colony of the test strain was aseptically 

transferred to 100 ml of sterile nutrient broth followed by incubation at 37oC for 12 hours at 

125 rpm. For surface treatment 100 µl of an appropriate dilution was spread onto agar surfaces. 

Test plates were then exposed to pulses of UV light at 16.2J at varying doses at a rate of 1 pulse 

per second as per Garvey et al., (2014). PUV studies were also conducted on samples diluted 

from the 12 hour broth in 20 ml final volumes of sterile PBS at 8 cm from the light source, 

after which 100 µl of treated liquid was transferred to suitable agar and incubated at 37oC for 

24 hours. 

Pulsed light inactivation of sessile communities 

Coupons were aseptically removed from the reactor, rinsed with sterile PBS and transferred to 

a sterile petri dish. Samples were exposed to pulses of UV light at 16.2J at 8 cm from the light 

source at varying UV doses which were obtained by increasing the pulse number. Once treated, 

coupons were submerged in 10 ml of sterile PBS and surface scraped using a sterile cell scraper 

to remove the treated biofilms and to allow for the determination of inactivated rates. The liquid 

was then transferred to a sterile 20 ml container and centrifuged at 800 g for 10 mins to pellet 
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the cells. The sample was then re-suspended and agitated to ensure biofilm dispersion. Serial 

dilutions were made from the biofilms suspension and 100 µl spread on triplicate agar plates 

to determine the cfu/ml of treated samples. This process was repeated for coupons at varying 

UV doses to determine the Log10 reduction obtained with increasing UV dose.  

DNA extraction from biofilm structures 

Scrapped coupons suspended in 10 ml volumes were centrifuged at 800g for 10 minutes to 

pellet the cells, followed by re-suspension in 200 µl of sterile PCR grade water. Target DNA 

extraction was conducted as per kit instructions for B. cereus biofilm suspensions using a 

Roche DNA extraction kit and HP PCR template preparation kit (Roche Diagnostics, Roche, 

Ireland). All steps were performed as per manufactures instructions with treated and untreated 

microbial pellets which were suspended in 200 µl of sterile PBS.  

Real Time PCR 

All primers and probes were sourced from Tib Molbiol, Berlin, Germany. For B. cereus the 

forward primer ACACACGTGCTACAATGGATG and reverse primer 

AGTTGCAGCCTACAATCCGAA with the taqman probe sequence F-

ACAAAGGGCTGCAAGACCGCG—Q coding for the phaC gene was used as per Nayak et 

al., 2013. Primers coding for β-giardin of G. duodenalis were used as per method of Bertrand 

et al., 2009. The Taqman probe with the following sequence: 5'-FAM 

TCACCCAGACGATGGA CAAGCCCTAMRA-3 was utilised for this study. For 

Cryptosporidium parvum the 18Si reverse primer 5’- CCTgCTTTAAgCACTTAATTTTC and 

18Si forward primer 5’- ATggACAAgAAATAACAATACAgg were utilised.  The Taqman 

probe had the following sequence: 5-‘-(6-FAM) ACCAGACTTGCCCTCC (TAMRA). 

Amplification reactions (20 µL) contained 5 µL of sample DNA (0.5 µM of each primer, 0.2 

µM of probe) and 15 µL of reaction buffer (Roche Diagnostic, West Sussex, England). Both 

positive and negative controls were included in RT-PCR to validate the results. DNase–RNase 
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free water was used as negative control throughout. Cycling parameters were initial 

denaturation for 10 min at 95°C followed by 65 cycles of denaturation for 10 s at 95°C, 

annealing for 40 s at 40 °C, extension for 1 s at 70°C and cooling for 30 s at 40°C on a 

Nanocycler® device (Roche Diagnostics).  Large numbers of cycles were used to ensure 

detection of low levels of infection. On completion of each RT-PCR run amplification curves 

were analysed by Nanocycler software (Roche Diagnostics) and a standard curve (figure 1) of 

cell DNA concentration determined. DNA standards were prepared from fresh cells or oo/cysts 

ranging in concentration from 10 to 108 oocysts or cysts/ml by dilution in PBS following 

standard viable count determinations.  

Statistics 

All experimental data is an average of 3 experimental replicates with 3 internal replicates. 

Bacterial inactivation is expressed as log10 reduction of the untreated control. Student's t-tests 

and ANOVA one-way model (MINITAB software release 16; Mintab Inc., State College, PA) 

were used to compare the relationship between UV treatments and bacterial inactivation at 95% 

level of confidence. Student t-tests were used to determine the relationship between the 

sensitivity of biofilms from different strains to PL treatment.   

Results and Discussion 

Sessile communities and parasite detection  

The change from a planktonic free floating cell to that of a biofilm sessile cell induces 

physiological changes in bacteria. This occurs via a series of gene expression alterations which 

include gene repression and induction. It is the induction of genes, relating to antibiotic 

resistance that leads to the increased pathogenicity of sessile bacteria over their planktonic 

counterparts. Additionally, the adaption to this new environment and associated living 

conditions induces genes that encode for new important proteins and enzymes. Consequently, 

this causes an increased resistance to antibiotics and disinfectants commonly observed with 
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these complex structures (Aguilar-Romero et al., 2010). Traditionally, the sensitivity of 

planktonic cells to disinfection has been used as an indication of biofilm sensitivity and 

resistance (Buckingham-Meyer et al., 2007). However, disinfection studies based on actual 

biofilm communities is much more representative of the environmental situation. The findings 

of this study show that the use of the CDC biofilm reactor allows for the growth of biofilms 

with high cell densities attached to surfaces in a reproducible manner. Such methods ensure 

that the biofilm structures possess the key characteristics of real life biofilms for the test species 

in question. All bacterial strains under study formed densely populated sessile communities on 

both PVC and stainless steel surfaces after 72 hours. Findings also demonstrate (data not 

shown) that with longer incubation times, exceeding 72 hours (96 hours), there was no increase 

in cell number of the biofilms as detected by plate counts. Following 72 hours, a ca. 5 and 6.6 

log10 biofilm formed for B. cereus and S. typhimurium respectively, and a 6 log10 for E. coli 

and 6.5 log10 for L. monocytogenes on PVC surfaces. A similar level of cell density was 

detected on stainless steel surfaces, where a ca. 5 log10 to 6.6 log10 biofilm formed for B. cereus, 

L. monocytogenes, S. typhimurium and E. coli. The determination of cell number for B. cereus 

biofilms via PCR was slightly higher than the standard cell count method. A Ct value of 18.9, 

corresponding to a cell count of ca. 7 log10 cfu/ml for both materials was determined by analysis 

of the standard curve. An important fact to note is that PCR detects the presence of target DNA, 

but cannot differentiate between live and dead cells. In contrast, the standard cell count 

technique reports viable cell numbers only via the enumeration of colonies grown on nutrient 

agar. In this case a biofilm viable cell density of 5 log10 was formed, indicating that 

approximately 2 log10 of non-viable cells were also present in the biofilm matrix as detected 

by PCR.  Studies have shown that with greater incubation times (up to and exceeding 96 hours) 

no increase in cell number occurred for biofilms populations, suggesting the presence of a 

stationary phase or steady state of biofilm growth. PCR analyses showed the presence of non-
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viable cells at 72 hours, further confirming that incubation for 72 hours provided an optimal 

period of time for biofilm formation, after which cell death occurs to some extent. These 

findings correspond to that of Senevirantne et al., 2013, who concluded that 72 hours was also 

the optimal incubation time for the growth of Enterococcus faecalis biofilms. Therefore, the 

findings of this study suggest that 72 hour duration of incubation is sufficient to reproducibly 

produce a robust, densely populated biofilm of B. cereus, E. coli, L. monocytogenes and S. 

typhimurium using a CDC reactor. Consequently, 72 hour biofilms were used for inactivation 

studies for all test species.  

Both parasites species were detected in the B. cereus biofilms at a concentration of between 2 

and 3 log10 for PVC and stainless steel surfaces by PCR (figure 2). Additionally, PCR proved 

a more efficient reliable method of detecting Cryptosporidium and Giardia than the use of 

specific dyes. Fluorescent dye staining of biofilms containing oo/cysts greatly underestimated 

the number of organisms present. A maximal oo/cyst count of 10 (+/-2) was measured for C. 

parvum and 14 for G. duodenalis (+/-4) via fluorescent staining.  Issues arose in relation to non-

specific binding of dyes to biofilm constitutes believed to be EPS components resulting in 

unreliable counting of parasite numbers. These findings confirm that both parasite species can 

quickly attach or become entrapped in bacterial biofilms. The detection of these pathogens 

within biofilm structures has important public health implications in relation to animal and 

human exposure. The infectious dose for Cryptosporidium has been established to be less than 

20 oocysts (Zambriski et al., 2013) with prolonged infection occurring with little success 

following medical intervention. The robust, disinfection resistant nature of biofilms and these 

parasites themselves increases the probability that the survival and detachment of biofilm-

associated viable parasites may occur at concentrations exceeding that required for infection. 

This possibility needs to be considered in risk assessments relating to the cleaning of veterinary 

environments particularly where animals are housed. 
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Pulsed light inactivation of planktonic and sessile test species 

The impact of pulsed light on microbial species was assessed for surface treated organisms, 

organisms in suspension and sessile communities. All test strains proved susceptible to the 

pulsed light treatment, albeit with varying levels of sensitivity as shown in figure 3 and 4. E. 

coli showed the greatest level of inactivation on agar surfaces (figure 3a) with complete 

inactivation of an initial concentration of ca. 9 log10 with as little as 5 µJ/cm2 of pulsed light. 

The order of decreasing sensitivity for test strains was E. coli, L. monocytogenes, B. cereus and 

S. typhimurium on surfaces. When treated in suspension this sensitivity changed with L. 

monocytogenes showing the highest resistance to PL treatment and S. typhimurium  showing 

the greatest sensitivity to pulsed light (figure 3b) for all treatment doses (p<0.05). Indeed a 

maximal 9 log10 inactivation of S. typhimurium was achieved with 5.5 µJ/cm2 compared to a 

2.5 log10 for L. monocytogenes. This same dose resulted in a 3 and 5 log10 inactivation of B. 

cereus and E. coli respectively, highlighting the significant difference in susceptibility to 

pulsed light. These findings are in conjunction with Cheigh et al., 2012 where E. coli also 

proved more sensitive to PL than L. monocytogenes when treated in suspension.  High levels 

of biofilm inactivation were also achieved for all test strains present on both surface materials 

(figure 4). For the Gram negative species E. coli and S. typhimurium a 4.2 and 5.1 log10 

reduction in viable cell counts was obtained on PVC surfaces with 5.39 µJ/cm2 (figure 4a). 

This same dose resulted in a significantly (p<0.05) greater level of inactivation of the same 

species on stainless steel surfaces, with a maximal 4.2 and 6.6 log10 reduction obtained for E. 

coli and S. typhimurium respectively (figure 4b). Both Gram positive species tested showed 

increased sensitivity on stainless steel surfaces compared to PVC. A dose of 5.39 µJ/cm2 

resulted in a 3.2 and a 4.3 log10 inactivation on PVC and 5.9 and 4.6 log10 inactivation on 

stainless steel for B. cereus and L. monocytogenes respectively. A PL dose of 7.38 µJ/cm2 

resulted in complete inactivation of L. monocytogenes and S. typhimurium of ca. 6.5 log10.  
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Previous studies by this research group reported a ca. 5 log10 inactivation of Cryptosporidium 

parvum (Garvey et al., 2012) and ca. 1 log10 inactivation of Giardia duodenalis (Garvey et al., 

2014) with a PL dose of 7.38 µJ/cm2. Nevertheless, further studies are warranted to determine 

the exact dose required to inactivate parasites within biofilm matrixes, which will undoubtedly 

shield parasites to some extent. However, issues are expected to arise in relation to viability 

determination post treatment and cell culture infectivity. Specifically, issues relating to the 

sterility of the parasites following extraction from biofilms and subsequent exposure to 

mammalian cell lines. Nonetheless, PL shows potential for use as a disinfectant for veterinary 

environments given its highly effective bacteriostatic properties towards bacterial biofilms and 

parasite species. Regardless of microbial exposure to PL in suspension or on surfaces findings 

demonstrate that cell inactivation increased significantly (p<0.05) with increasing UV dose or 

treatment time. 

In conclusion, the findings reported here contribute to existing literature in many ways.  

 Firstly, all veterinary relevant strains produced densely populated biofilms structures 

on both surface materials used.  

 Secondly, PL repeatedly inactivated the range of test species on surfaces and in 

suspension. Additionally, it provided high levels of biofilm inactivation on PVC and 

stainless steel surfaces.   

 Thirdly, a real time PCR assay proved successful for determining the level of C. parvum 

and G. duodenalis present in the biofilms of B. cereus where fluorescent staining greatly 

underestimated the numbers present.  

 Finally, pulsed light doses (7.38 µJ/cm2) which have been previously shown to 

inactivate both parasite species (Cryptosporidium and Giardia), have also provided 

complete inactivation of all biofilms tested.  
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