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Abstract

This thesis explores different aspects of extensibility in computer music

software. Extensibility refers to how core developers, third-party developers,

and users can extend software. It is a primary factor in determining a

software’s range of use cases and capacity to grow over time. This has a direct

impact on the robustness of both the software and the user’s work.

This thesis discusses four main areas of research: extensibility in program-

ming languages, platform extensibility, run-time modular software develop-

ment, and music systems as libraries. It also explores these areas through the

development of four open-source software projects: Csound, Blue, Pink, and

Score. Csound and Blue are existing programs that have been modified to

provide new means of extension. Pink and Score are new software libraries

designed for extension from the start.

The goal of examining extensibility is to help create long-living computer

music software and – by extension – enduring musical works. These in turn

will hopefully provide future developers, users, and curious students with the

means not only to interact with the past through documentation, but also to

actively explore, experience, and use these programs and works.
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Chapter 1

Introduction

Computer music is the product of users employing software to create and

render projects in the context of a computing platform. Users create works

by developing projects and rendering them with software, potentially using

multiple programs to achieve their musical goals. The programs used must

have the features to meet the needs of the user. If the program does not

satisfy the user’s requirements, the program may be extended by its developers,

or other programs may be necessary. These other programs may augment

currently used software or replace them completely. For a work to function,

all of the software used to perform it must be available and in working order.

When programs die, users’ works are in jeopardy of never being usable again.

Extensibility – the ability for a system to be extended – is an important

facet of software. It refers to a number of different ways that a program grows.

One aspect is how new features are introduced to a system. This includes

programs where users extend the programs themselves using features provided

by the program. It also includes programs where third-party developers

provide features through plugins. In each of these scenarios, the core program
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remains stable, yet the total system can grow to further accommodate users’

needs.

Another aspect of extensibility is how a software grows to adapt to changes

in platforms. New hardware becomes available and old hardware becomes

obsolete. New versions of operating systems are released and features that

programs depend upon may disappear. New platforms may also emerge. In

the face of change, a software’s platform extensibility, or its readiness to move

on to new platforms or new versions of existing ones, is a factor in determining

whether a program – and the works created with it – will endure.

The quality of extensibility is one that affects computer software in general.

However, when applied to computer music, strong parallels are found with

another music system: Western music notation. The comparison of computer

music systems and projects as the digital counterpart to traditionally notated

music scores is explored below.

1.1 Parallels with Western Music Notation

Richard Taruskin, in his Oxford History of Western Music, develops a theo-

retical framework of literate music based upon the traditional notated score.

Within this framework, he traces the development of the written score, as

well as the history of Western Music, from the beginnings of notated music to

the present. Regarding what the development of notation enables, he writes:

The beginning of music writing gives us access through actual

musical documents to the repertories of the past and suddenly

raises the curtain, so to speak, on developments that had been

going on for centuries. All at once we are witnesses of a sort, able
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to trace the evolution of music with our own eyes and ears. The

development of musical literacy also made possible all kinds of

new ideas about music. Music became visual as well as aural. It

could occupy space as well as time. All of this had a decisive

impact on the styles and forms music would later assume. It

would be hard for us to imagine a greater watershed in musical

development. [172]

By the end of the work, Taruskin describes the rising popularity in using

computers as signaling the decline of the literate tradition and the beginning

of a postliterate era. In commenting on the use of computers to create works,

he writes:

When a majority of composers work that way, the postliterate

age will have arrived. That will happen when – or if – reading

music becomes a rare specialized skill, of practical value only for

reproducing “early music” (meaning all composed music performed

live). There has already been much movement in this direction.

Very few, especially in America, now learn musical notation as

part of their general education. The lowered cultural prestige of

literate musical genres has accompanied the marginalization of

musical literacy and abetted it; the availability of technologies that

can circumvent notation in the production of complex composed

music may eventually render musical literacy, like knowledge of

ancient scripts, superfluous to all but scholars. [173]

While Taruskin sees technology as something different than the literate

world of notated music, one that is pushing it aside, I see two models of music
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that share much in their form and function. The concerns over entering a

postliterate age could then just as easily be applied to computer music.

Western music notation is an open-ended format used to encode musical

ideas in a written form called the score. It is made up of symbols endowed with

specific meaning that are to be interpreted for performance. To understand

the score, one must be literate in the meanings of the symbols used. The

score is written onto a medium, that provides the context where the score

will be created, read, and interpreted.

The symbols used for writing scores may be a part of a common practice,

which embodies a well-known baseline of symbols that readers of scores are

expected to know. However, notation is also extensible. Composers can define

new symbols that they then employ in writing scores. These symbols are

not a part of the common practice, and thus readers are expected to first

learn the meanings of these symbols before interpreting the score. Composers

may augment the existing knowledge of notation with their own definitions,

though they may also define completely new forms of scores.

If the meanings of notation were lost, the score would be meaningless, and

the work would fail to be interpretable by readers. If notation was a fixed

format, musicians wanting to explore new means of sound production would

be handcuffed by the available symbols. A new format would be necessary.

However, looking at the function of extensibility in Western music notation,

we see a model that has successfully supported a community for hundreds of

years. The system of notation has endured, being able to grow over time to

encompass new features. Older and newer works exist together within this

system, allowing the knowledge and experiences from past generations to be

compared to and understood within the practice to today.
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Comparisons can be made between Western music notation and computer

music. In place of the score is the project, the data that encodes the work of

the user. In place of the system of notation is the software, used to create and

interpret the project. The program may act as the performer, or it may be

used together with other programs for performance. In this case, the model

of a performer would also map to software, just of a different kind.

In addition to this comparison is the mapping of the medium of notation

and the computing context. If a score is written on paper – whether hand-

written, printed, or computer-published – or presented digitally on a screen,

the literate reader can still decipher the symbols and interpret the score.

The knowledge of symbols and meanings functions across these mediums. In

computer music, software is used to interpret projects. If a project is moved

from one platform to another, as long as the program functions on the target

platform, the program is capable of reading the project and interpreting it.

Western music notation has provided a community the means by which

to create works that has endured over time. Extensibility has played a

large part in this tradition to allow notation to expand beyond its original

features to include new symbols and ways of music making. These qualities

of extensibility and notation can be similarly projected upon extensibility

and music software, for the same benefits of long-lived systems and enduring

works.

1.2 Goals and Methodology

This thesis explores qualities of extensibility in computer music software. The

goal in this research is to better understand and find ways to design software

that can:
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• Make music systems that are easier to preserve.

• Make music systems that can grow over time.

• Make musical works that are easier to preserve.

• Protect the investment of time in systems by developers and users.

This thesis explores four different areas of extensibility. Each area provides

context through the analysis of existing systems and discusses new work

implemented in software projects that engages with the particular area of

extensibility that is under investigation. This will be applied both to existing

systems, exploring new ways to make programs further extensible, as well as

new systems, implemented as music libraries designed for extensibility.

1.3 Thesis Overview

Chapter 2 examines user- and developer-extensibility through the evolution of

the Csound Orchestra programming language. It will present an overview of

the original language and trace its developments through Csound 4 to Csound

5. Focus will be drawn to historical changes that introduced new ways for

users to express ideas and extend the system in their own code.

Chapter 3 presents original work to further extend the language design

and implementation of the Csound Orchestra language. It will discuss changes

that were released as a part of Csound 6 and developed for release in Csound

7. These developments further contribute to the evolution of the language for

extensbility by users and developers.

Chapter 4 explores platform-extensibility: the ability to use software

across platforms. This chapter will analyse the various qualities of software
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that affect platform-extensibility. These qualities will be discussed through

the work of porting Csound to new plaforms – Android, iOS, and the Web.

Discussion will include the design and development of the cross-platform,

yet platform-specific, CsoundObj API. This chapter will also present various

case studies of software that have been written using Csound on these new

platforms.

Chapter 5 examines run-time modular software development and its

applications to computer music software. It presents an analysis of various

software architecture archetypes according to extensibility and explores how

modular software uniquely builds upon the strengths found in other systems

to offer the foundation for software ecosystems. Modular software techniques

will be further explored through the development of Blue’s modular Score

timeline, which provides a unique way for developers to extend the Score

interface through plugins.

Chapter 6 explores music systems as libraries in the context of general-

purpose programming languages. The chapter begins with an analysis of

language-based computer music systems. The analysis will compare and

contrast systems that employ domain-specific languages, and those that

are designed for general-purpose languages, and look at their impact on

extensibility. Next, two new music libraries – Pink and Score – will be

presented. These libraries will be used to explore music systems that are

designed from the start for extensibility.

Finally, Chapter 7 summarises the thesis and draws conclusions based

on the research as it has been presented in this document. The chapter also

provides a listing of original work for the thesis and considerations for future

work.
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Chapter 2

The Csound Orchestra Language

This chapter will look at the history of the Csound [35] Orchestra language and

its evolution from its beginning to Csound 5. It will begin with a look at Early

Csound to see where the language began. Next, it will cover developments in

Csound 4 that provided new ways for users to express their ideas as well as

new kinds of things to express. Finally, Csound 5’s new parser design will be

discussed and how it helped developer extensibility of the language.

2.1 Overview

Csound’s Orchestra (ORC) language is used primarily for defining instruments.

These are used most often used to generate and process sounds. Instruments

may also serve non-audio purposes to generate events and handle control

input. The ORC language of Csound has largely been stable since its inception

through early Csound 4. New developments in Csound were made within the

confines of the original syntax. This included abstractions of instruments and

opcodes as well as a limited set of variable types. To extend the system, a
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developer would have to write code in C to create new opcodes or add new

variable types.

It was not until later Csound 4 that significant new language changes were

added. During the development of Csound 5, a new parser was implemented

that would lay the groundwork for future language extension. Through this

time, new versions of Csound were backwards compatible because extensions

of the langauge were always made as additions.

The following will present an analysis of the Csound Orchestra language.

It will begin by looking at the earliest form of the language that existed

until Csound 4. Next, it will discuss changes that occurred in Csound 4

and Csound 5 that led to greater extensibility for users and developers. The

history presented here will provide the foundation that the original work for

this thesis (presented in Chapter 3) is built upon.

Note: Four different versions of Csound code will be discussed here and

in Chapter 3. The first is the 1988 version of Csound, available on the

CD-ROM provided with The Audio Programming Book [34], which will be

called Csound1988 in this text. The next three versions used in this text –

Csound 5, 6, and 7 – will be called here Csound5, Csound6, and Csound7.

Each of these versions is available online within the Csound project site [180]

on GitHub.1 The term Early Csound will be used to denote versions earlier

than 5.00.
1The repository at GitHub contains the history of Csound since version 5.00. Each

release has been tagged using git tags. At the time of this writing, Csound 6.04.0 is the

most recent release and is available in the master branch. New development work for

Csound 6 is available in the develop branch, and new work for Csound 7 is available in

the feature/parser3 branch.
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2.2 Early Csound

Csound’s original Orchestra language existed through Csound 4. It was a

statically, strongly-typed programming language made up of a set of basic

concepts: instruments, opcodes, variables, expressions, functions, and labels.

It bore a resemblance to other Music-N languages of the past, which in turn

had similarities to various assembly programming languages. The following

describes each of the various parts of the language.

2.2.1 Instruments

Instruments are the primary abstraction that users employ to define units of

computation run by the engine. Users define instruments by using the instr

keyword, followed by a numeric identifier, then writing their processing code,

and ending with the endin keyword. The processing code is written using

statements, which are single lines of text that declare what opcode to use,

together with their inputs and outputs.

instr 1

iamp = 0.5

ifreq = 440

aout vco2 iamp , ifreq

out aout

endin

Listing 2.1: Example Csound instrument

Listing 2.1 shows an example instrument definition. It defines an instru-

ment with an identifier of 1 and includes 4 statements. The first two lines use

the = opcode to assign the values 0.5 and 440 to iamp and ifreq respectively.

Next, the vco2 opcode is used with iamp and ifreq values as inputs and
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generates the aout output audio signal. Finally, the out opcode is used to

write the aout signal to the target audio file or sound card.

Users generally use Csound instruments to generate, analyse, and/or

process sound. However, instruments are not limited only to sound related

work but also may be used to process control values and execute non-audio

tasks. This provides the user with the flexibility to employ instruments for

any kind of processing to be done within the engine.

2.2.2 Opcodes

Csound opcodes are objects that can operate on zero or more input values

and return zero or more output values. Csound opcodes are equivalent to the

concept of unit generators in earlier Music-N systems. Listing 2.2 shows the

general syntax for opcodes.

[output arguments] opcode_name [input arguments]

Listing 2.2: Csound opcode syntax

Opcodes in early Csound have a similar syntax to opcodes one would find

as instructions in an assembly language. An opcode in assembly code would

represent a primitive machine code instruction, such as fetching memory

from a memory address, adding values from memory addresses, and storing

results in another memory address. However, unlike assembly, where an

opcode would have all memory locations – whether input or output – to the

right-hand side of the opcode, Csound’s opcode syntax typically uses outputs

to the left of the opcode name and inputs to the right.
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2.2.3 Variables

Variables are named locations in memory that store values. The meaning and

size of the memory used for a variable is determined by its type. Variables are

given names by the user that conform to the format specified in Listing 2.3.

Here, a type-specifier is a single character that denotes the type of the variable,

and the name-specifier is the unique name for the variable. The type-specifier

in early Csound could be one of a few known types (i.e., i-, k-, a-, etc.).

The name-specifier could be made up of one or more characters, numbers, or

underscores.

[type -specifier ][name -specifier]

Listing 2.3: Csound variable syntax

When parsing code in early Csound, a NAME entry would be registered for

each variable identified in code. The NAME entry would record the variable’s

type as well as an index saying what number of a type it was (i.e. the 3rd k

variable found). The total count of each variable type, together with the size

of each type, was used at runtime to determine how much memory would

be required as part of an instrument instance. The index that was stored

in the NAME structure was later used to setup pointers into an instrument

instance’s memory.

Variables are used in the system to store values. Opcodes in turn read

and write values from and to variables. The use of variables and opcodes

together determine how data flows during instrument processing at runtime.
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2.2.4 Constants

Constants are hard-coded values that do not change. In Csound, there are

two types of constants: numbers and strings. Listing 2.4 shows an example of

both constant types: 440 is an example of a numeric constant and “A String

Value” is an example of a string constant.

;; numeric constant

i1 = 440

i2 = 440

;; String constant

Sval1 = "A String Value"

Listing 2.4: Example of constants

When the compiler processes constants, it stores a copy of the values in

constant pools, with numbers stored in the MYFLT pool and strings in the

string pool. For each constant, only one unique copy of the value is stored

in each pool. For example, in Listing 2.4, the i1 and i2 variables are both

assigned the value 440. The value 440 is stored once into the MYFLT pool, and

the location of that value is shared with both assignment calls.

Note that the term pool has multiple meanings for computer science. In

the preceding paragraph, pools refer to lookup tables and the term is used in

the same manner that the Java Language Specification [81] describes Java’s

use of constant pools and String pools. Another use of the term is described

by Kircher and Jain [100] in the context of a design pattern that “describes

how expensive acquisition and release of resources can be avoided by recycling

the resources no longer needed.” The use of pool as a lookup table will be the

assumed meaning for this thesis; if resource pooling is the intended meaning,

it will be clearly marked as such.
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2.2.5 Expressions

In addition to variables and constants, inputs to opcodes could also be

expressions. Expressions allowed the inlining of operations to occur within

the same line as opcode call statements. Listing 2.5 shows an instrument that

uses code with expressions. The second oscil statement uses the value of

“ipch * 2”, and the statement that follows assigns the result of “a1 + a2” to

a3.

instr 1

i1 = 440

a1 oscil 0.5, ipch , 1

a2 oscil 0.5, ipch * 2, 1 ;; EXPRESSION

a3 = a1 + a2 ;; EXPRESSION

out a3

endin

Listing 2.5: Example of expressions

Note that while the Orchestra language allowed for expressions to occur

inline as part of the arguments to an opcode, the actual compiled result would

be a single list of opcode statements. Each operation within an expression

would be converted into an opcode call with its results assigned to a synthesised

variable. (Synthesised variables have names starting with the # symbol.)

Listing 2.6 shows what the compiled result for Listing 2.5 would look like if it

was decompiled back to Csound Orchestra code.

instr 1

i1 = 440

a1 oscil 0.5, ipch , 1

#i0 mul ipch , 2 ;; ipch * 2

a2 oscil 0.5, #i0, 1

#a0 add a1, a2 ;; a1 + a2
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a3 = #a0

out a3

endin

Listing 2.6: Example of expressions after compilation

Function Calls

Function calls allow for the use of secondary opcodes in-line within opcode

statements. The results of the function call are used as arguments to the

top-level opcode. They are a form of expression that may be combined with

other mathematical operations.

a1 oscil 0.5, cpspch (8.00) , 1

Listing 2.7: Example of function call as argument to oscil

Listing 2.7 shows the use of cpspch with an argument of 8.00. The result

of calling cpspch is further used as an argument to the oscil opcode. The

compiled result in Listing 2.8 shows how function calls are handled similarly

to other mathematical expressions. Function calls have been available as early

as Csound19882 and were processed as part of the expression handling code.3

#i0 cpspch 8.00

a1 oscil 0.5, #i0, 1

Listing 2.8: Compiled result of function call

Early Csound implementations of function calls were limited to a single

argument as input. They also required that the type of the output match the
2For Vercoe’s systems, function calls were also available as early as MUSIC 360 using

“Sublist Notation.” [177]
3This code is found in express.c in Csound1988 and is handled in Engine

csound_orc_expressions.c in modern Csound.
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type of the input. With these restrictions, only a certain limited number of

opcodes would be allowed as a candidate for use as a function call. (This

limit on arguments and type restrictions was later removed as part of Csound

6, discussed in Section 3.2.3).

2.2.6 Labels

Labels name places in code that can be the targets of jumps initiated by

goto statements. In early Csound Orchestra, labels and gotos were the only

option for controlling program flow. Labels are defined with an alpha-numeric

identifier, followed by a colon and either whitespace or a new line. Listing 2.9

shows an example of defining a label(loopStart:) and its usage as a target

of program flow by an if-goto statement. When executed, the example code

increments kval once per loop and repeats this 32 times.

k0 = 0

loopStart: ;; label definition

k0 = k0 + 1

if (k0 < 32) goto loopStart ;; label use

Listing 2.9: Example of label and goto

Edsger Dijkstra famously criticised gotos and labels as “just too primitive"

and an “invitation to make a mess of one’s program”. [61] The proposition

to move towards higher-level programming constructs from Dijkstra were

further developed by Knuth [101] and others and manifested itself under

the umbrella of Structured Programming. Since then, many programming

languages (i.e., Java, Python, Ruby) abandoned exposing gotos and labels for

programmer use, instead employing them only in compiled code generated by

their compilers.
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2.2.7 Discussion

The early Csound Orchestra programming language provided a simple syntax

for expressing musical processing code. The definitions of instruments and use

of opcode statements had similarities with Vercoe’s earlier systems, MUSIC

360 [177] and MUSIC 11 [178], as well as earlier Music-N systems, such as

Music V [121]. Users coming to Csound at that time from other systems

– especially Csound’s direct ancestor MUSIC 11 – would have found the

language familiar and easy to learn.

However, the Orchestra language at that time did have drawbacks. Firstly,

the language did not provide structured programming constructs, such as

if-else branching or while-loops. Using labels and gotos made for code that

could be difficult for users to write as well as read. Next, the requirement

that function calls in expressions allow only a single input and output of

the same type limited expressive possibilities for programming. Relaxing

those requirements would open up more of the available opcodes for use with

function calls. Finally, the language and system provided users with variable

types and opcodes to use, but provided no mechanism for users to create

their own. The only way for new types and opcodes to enter into Csound was

by modification of the core program itself.

2.3 Csound 4

Near the end of the Csound 4 series of releases, the Orchestra language was

extended, adding new control-flow syntax as well introducing a new concept

of User-Defined Opcodes (UDOs). The primary additions were if-then clauses,

subinstruments, and UDOs. These contributions to the language moved
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the Orchestra language further away from its roots, providing the user with

programming facilities commonly found in other programming languages.

2.3.1 Branching (if-then)

In Csound 4.21, Matt Ingalls introduced an alternative to if-goto style state-

ments, called if-then. With if-then, rather than having an opcode like abstrac-

tion to determine control flow, the user was able to have a higher-level way to

organise control-flow branches. Listing 2.10 shows an example of branching

code using early Csound if-goto style as well as Csound 5 if-then style. Note,

these two examples are functionally identical.

;; Early Csound if -goto

if (p4 == 0) goto branch1

if (p4 == 1) goto branch2

if (p4 == 2) goto branch3

goto branchDefault

branch0:

... code ...

goto end

branch1:

... code ...

goto end

branch2:

... code ...

goto end

branchDefault:
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... code ...

end:

;; Csound 5 if-then

if (p4 == 0) then

... code ...

elseif (p4 == 1) then

... code ...

elseif (p4 == 2) then

... code ...

else

... code ...

endif

Listing 2.10: if-then statements in Csound 5

With if-then, one defines branches of code that would optionally be

executed. Which branch of code is executed is determined by the test

conditions supplied to if or elseif statements. A default branch may

also be supplied using an else statement that will execute when no other

conditions pass.

Using if-then code is arguably more concise and expressive than if-goto code

as well as easier to read. Comparing the two code examples in Listing 2.10,

the if-then style uses roughly half the amount of lines to express the same

program as the corresponding if-goto style code. Also, the if-then code is

organised into a set of conditions and consequences, which may more closely

align with the user’s thought process, than if-goto, which aligns well with the

computer’s execution process.

The introduction of if-then represents a large shift in Csound’s history.

Introducing new opcodes to Csound, such as new signal processing routines,
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extends what users could say in the language. Introducing changes to the lan-

guage, such as with if-then, changes how users express themselves altogether.

2.3.2 Subinstruments

In addition to if-then, Matt Ingalls also introduced subinstruments in Csound

4.21. Subinstruments was a feature that allowed users to call one instrument

from another. This was a particularly powerful feature as it allowed the user

to define instruments as normal, but use them as one would use an opcode.4

The implementation of subinstruments required no new ORC language

syntax. The system was modified in two ways: first, a named instrument could

be called directly as if it was an opcode. To enable this, when the compiler

read in named instrument definitions, it would not record the instrument

definition, but also create an OENTRY in the global opcode table to define a

new opcode. Second, one could use the subinstr opcode to call a named or

numbered instrument. When the subinstr opcode was initialised, it would

create an instance of the subinstrument and delegate further initialisation and

performance calls to the subinstrument. Note that when the system created

new OENTRYs, those entries would delegate to subinstr internally.

instr 1

aout vco2 p4 , p5

out aout

endin

instr MyOscil

aout vco2 p4 , p5

out aout

4For further information, see the documentation for subinstr. [184]
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endin

instr 2

iamp = 0.5

ifreq = 440

asig subinstr 1, iamp , ifreq ;; subinstr call

asig2 MyOscil iamp , ifreq ;; named instrument call

out asig + asig2

endin

Listing 2.11: Example Csound 4 subinstrument usage

Listing 2.11 shows an example use of subinstruments. Instrument 2 defines

an amplitude and frequency, then calls subinstr to execute an instance of

instrument 1 using those values. When that instance of instrument 1 is run, it

will share the same p2 and p3 values from the parent instrument (instr 2), but

it will receive iamp and ifreq as p4 and p5 values. The resulting audio signal

output from instrument 1 is then returned to the subinstr call in instrument

2, and the value is assigned to asig. The line following the subinstr call

shows the equivalent processing code, using the MyOscil named instrument

directly as an opcode.

While subinstruments did not change the Orchestra language, the feature

itself enabled users to work in new ways. For the first time, users could use

the Orchestra language itself to define reusable bodies of code, as if they were

writing their own opcodes. This introduced a new form of user-extensibility

to Csound. However, subinstruments had a severe drawback in that they

could only return audio signals to their caller. This limited what kinds of

code could be reused. In addition, the feature to directly call instruments

as opcodes was lost in Csound 5, though the subinstr opcode continues to
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function today. While this represents a break in compatibility, it did not have

a great impact as User-Defined Opcodes, discussed below, provided similar

features to subinstruments and was more widely adopted.

2.3.3 User-Defined Opcodes

After Ingalls introduced subinstruments, Istvan Varga introduced User-Defined

Opcodes [183] in Csound 4.22. Based on the work by Ingalls, UDOs provided

a means for users to define their opcodes using Csound Orchestra code. Unlike

subinstruments, UDOs could not be scheduled to run like instruments and

only function as opcodes.

opcode myOpcode , i,i

ival xin

iret = ival + 1

xout ival

endop

Listing 2.12: User-Defined Opcode in Csound 4

Listing 2.12 shows an example of a UDO. The first line defines an opcode

with the name myOpcode and declares one output variable of type i and one

input variable of type i. The xin and xout opcodes are used to assign input

to variables and return variables as output. The number and types of input

and outputs must match those declared in the initial opcode line. Processing

code is written between the xin and xout lines. Finally, endop completes the

definition of the UDO.

Unlike subinstruments, which did not extend the language grammar but

did extend the semantics of instruments, UDOs brought forth new syntax to

define opcodes. In terms of implementation, the internal UDO processing
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code was based upon the instrument instance and delegation system written

by Ingalls for subinstruments. However, it was extended to allow for types

other than audio signals to be returned from the opcode. Also, when a UDO

is defined, it compiles to the same data structure as used by instrument

definitions. That way, runtime processing for a UDO or instrument can

be the same. Finally, when the system compiles UDO, it creates a new

OENTRY and appends it to the engine-wide list of opcode entries. Once

the OENTRY is registered, the UDO is treated by the system like any other

natively-programmed opcode.

UDOs extended the language of Csound to allow user-extensibility at

the level of the opcode. The mechanism to define UDOs acts similarly

to subinstruments, but aligns more closely with the native opcode model.

However, as the language of Csound continued to develop, the design of UDOs

presented drawbacks, particularly in the definition syntax. These issues and

solutions will be addressed in Section 3.3.4.

2.3.4 Summary

Csound 4.21 and 4.22 brought major changes to the Csound Orchestra lan-

guage and system. if-then provided a more structured approach to expressing

conditional code. This allowed users to express musical processing in easier

to write and understand ways. Subinstruments and UDOs provided user-

extensibility at the level of opcodes. This empowered users to create their

own opcodes using the Csound Orchestra language itself.
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2.4 Csound 5

While significant changes to Csound’s language occurred in Csound 4, the

internal code changes were implemented by extending the same parser and

compiler code that derived from the earliest Csound code.5 When Csound

5 was first released, the major version was incremented to mark the large

redesign of the internals to make Csound re-entrant as well as for the in-

troduction of the Csound API (Application Programming Interface). These

changes provided a new approach to using Csound as a library to embed

within other programs. However, through the Csound 5 series of releases,

another large internal change would occur: the introduction of a new parser

and compiler, called NewParser. Developed by John ffitch and myself, the

NewParser would provide a foundation upon which the Csound Orchestra

language would continue to develop. The following will discuss the original

parser, the NewParser that was developed in Csound 5, and until-statements,

which were developed using the new parser.

2.4.1 The Original Parser

The original Csound parser and compiler (hereafter OldParser) was hand-

written completely using C code. It was responsible for reading in text,

interpreting it as code, verifying the code was valid, and compiling data

structures that would be used for performance at runtime. It was here that

the Csound Orchestra language was implemented.
5For reference, the code files that contained the lexing, parsing, and compilation code

were primarily held in rdorch.c, rdscor.c, express.c, and oload.c. These files can be found

both in Csound1988 and Csound5.
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Looking at the source code to the OldParser from Csound1988, one finds

an arguably simple set of functions for processing the language. This is not

surprising, as the language was relatively simple at that time. However, by

the time of Csound5, as the Orchestra language grew more complex, so did the

OldParser. The Csound5 source code reveals that the preexisting functions

for the OldParser not only grew in size, but that many new functions were

also introduced. The original design and implementation of the OldParser was

perfectly suitable for the original language, but became increasingly difficult

to understand and modify as the system evolved.

By Csound5, the OldParser’s complexity presented two main problems.

Firstly, if a problem with the language interpreter was found, it was difficult

to debug and find the root cause of the bug. Secondly, as the compilation

process had mixed syntactic analysis, semantic analysis, expression processing,

optimisation, and compilation all together, it was difficult to figure out how

to develop new features. These problems – maintenance and development –

were key areas where the Csound language interpreter could benefit from a

new design.

2.4.2 NewParser

The NewParser was a rewrite of Csound’s interpreter using Flex [135] and

Bison [62], open-source versions of the classic Lex and Yacc tools [114].6

Within the domain of compiler construction tools, Flex and Bison are con-

sidered lexer and parser generators, repsectively. With compilers, the lexer

is responsible for reading individual characters from a stream of text and
6A broader discussion of software development tools and processes is presented in

Section 4.2.1.
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breaking that down into groups of characters. These groups are called tokens

and may be considered the “words” of the language. The parser is responsible

for pulling tokens from the lexer and applying syntactic analysis according to

rules specified in a grammar. This determines if the stream of tokens found

by the lexer are correctly organised and valid statements. If the lexer forms

“words”, then the parser organises “words” into “sentences”. When the parser

identifies groups of tokens that match a rule, an action is performed.

Rather than write the lexer and parser parts of a compiler by hand in C,

Flex and Bison provide domain-specific languages (DSLs) for specifying lexical

and syntactic analysis rules. When given code written in their respective

DSLs, these programs generate the C code for lexers and parsers, respectively.

Developers using lexer and parser generators can focus on the higher-level

specification of the language and employ the tools to produce efficient and

correct language processing code. A developer will still write C code for the

actions of the parser to customise processing for their own specific compiler.

Some compilers use parser actions to immediately perform some task, such as

adding two numbers together and printing the output to screen, while other

other compilers, such as Csound, may use actions to assemble an abstract-

syntax tree data structure to use for further processing by later stages of the

compiler.

The following will discuss the differences in design between the OldParser

and NewParser. Discussion about the impact of the NewParser will follow.

Design

Csound’s OldParser’s architecture resembled closely the single-pass compiler

design described in [14, Chapter 2: A Simple One-Pass Compiler]. Using the
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terminology from [14], Csound’s OldParser had two distinct parts: a lexical

analyser and a syntax-directed translator. This is shown in Figure 2.1. Code

would be loaded in as text by the system and read by the lexer as a stream of

characters. The lexer would then analyse the stream and emit tokens. Next,

the translator would read in the tokens, perform syntactic analysis, expression

processing, and semantic analysis, and finally generate the run-time data

structures (marked as “Output” in the diagram) for use with Csound’s engine.

Source Code Lexer Tokens Translator Output

Figure 2.1: Csound OldParser Design

Csound’s NewParser provided a separate compilation path than the Old-

Parser, shown in Figure 2.2. With the NewParser, code was sent to the

Flex-generated lexer as a stream of characters. The lexer would in turn

emit tokens that would be read by the Bison-generated parser. The parser

would do syntactic analysis of the tokens and generate a parse tree using

Csound’s TREE data structure. The TREE was then passed to the compiler,

which performed expression processing, semantic analysis, and generation of

the run-time data structures for Csound’s engine.

Source Code Lexer Tokens Parser TREE Compiler Output

Figure 2.2: Csound NewParser Design

With the new TREE data structure, processing was now done using an

in-memory representation of the code. This allowed the code for the compiler

to be organised into multiple phases, rather than completely intertwined as it

was in the OldParser. The NewParser did not completely organise code into
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phases at this time, but it did establish a foundation that would be developed

further in newer versions of Csound.

2.4.3 Discussion

With the initial development of the NewParser, the Csound Orchestra language

design did not change, only its implementation. The OldParser and NewParser

generated the same output, and the NewParser was developed to process

the same code in the same way as the OldParser, emitting the same correct

results and errors. The benefits then at this time were purely for the core

Csound developer.

Firstly, the NewParser arguably provided a clearer view of the Orchestra

language’s design and how it was processed. With Flex and Bison, the

code used to specify the tokens and grammar rules more clearly showed the

syntactic structure of the language as well as the component “words” of the

language. With the TREE output from the parser, the syntactic and semantic

analysis aspects of the system were clearly separated and thus, more easily

understood.

Secondly, the NewParser’s clarity led to better extensibility of the language

implementation. The phases of compilation with the NewParser more clearly

outlined where in the codebase one would introduce new language features

and where to introduce code for processing of those features. The benefits of

extensibility would first be realised in the implementation of until-loops by

ffitch in Csound 5.14, described in Section 2.4.4.

In addition to extending the language, the NewParser would facilitate

other interpreter-related system changes. A prime example of this was the in-

troduction of Csound’s automated parallel processing facilities by ffitch in [66].
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The implementation of the annotation aspect of the parallel implementation

was done by extending the NewParser.

However, one drawback to the NewParser’s design was that it still mixed

semantic analysis within various phases of the compilation process. This had

similarities to how semantic information was processed in the OldParser and

served well enough for the Orchestra language in Csound5. The design of the

NewParser would later change to introduce a new semantic analysis phase to

support new language work in Csound6. These changes would undergo further

redesign that would lead to the introduction of Parser3 (see Section 3.3.1) in

Csound7.

Also, using Flex and Bison required learning new DSLs and tools. This

adds a burden to developers to learn these tools if they wanted to work on

the language. However, these tools are well-known and well-documented,

such that there is a clear way to go about doing so. In comparison to trying

to learn the OldParser code, I would argue that the benefits of the tools

outweighed the cost of learning them.

2.4.4 until-loops

ffitch introduced until-loops [185] in Csound 5.14 using the NewParser. This

provided a more structured programming approach to expressing looping in

code. It removed the need for users to create labels and more clearly organised

the looping body of code.

1 ;; Loop with gotos

2 kndx = 0

3 loopStart:

4 ... code ...

5 kndx = kndx + 1
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6 if (kndx < 8) goto loopStart

7

8 ;; Loop with loop_lt

9 kndx = 0

10 loopStart:

11 ... code ...

12 loop_lt kndx , 1, 8, loopStart

13

14 ;; Loop with until

15 kndx = 0

16 until(kndx >= 8) do

17 ... code ...

18 kndx = kndx + 1

19 od

Listing 2.13: Looping examples with Csound 5

Listing 2.13 shows three ways to implement looping in Csound5 code.

Line 1 shows the classic use of gotos and labels. Line 9 shows the use of the

loop_lt [182] opcode, which handles index variable, increment amount, limit,

and target label. Finally, line 14 shows the until-loop.

With until-loops, users did not have to worry about writing labels and

setting them as targets correctly with goto or loop_lt statements. Instead,

Csound’s compiler would handle rewriting the loop to use labels and gotos for

them. Like the introduction of if-then, until-loops provided a more expressive

way to write code that was less error-prone than using labels and gotos.

The development of until-loops mark two aspects of Csound’s language

evolution. Firstly, it continued the trend started by the introduction of

if-then to extend Csound’s language to include more structured programming

constructs. Secondly, it was the first new language feature implemented using
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the NewParser. It would prove to be a model for implementing new language

features in future versions of Csound.

2.4.5 Summary

The NewParser in Csound5 provided a new implementation of the Csound

Orchestra language. Using Flex and Bison to generate the lexer and parser,

the NewParser provided a clearer specification of the language that was

easier to maintain and develop. The NewParser provided core developers new

opportunities to extend the language, as with the implementation of until-

loops, as well as to extend the system, as with the parallel implementation of

Csound. This work would provide the foundation for new language changes

in future versions of Csound.

2.5 Conclusions

In this chapter, I have looked at the evolution of the Csound Orchestra

language from its beginning through Csound 5. I started with an analysis

of the early Csound language, providing a baseline of language syntax and

features.

In Csound 4, the development of if-then marked the introduction of

structured programming into the language of Csound. It would change

how users could express themselves in the language. The introduction of

subinstruments and user-defined opcodes marked the beginnings of growing

user-extensibility. With the ability to define UDOs within the Orchestra

language itself, users now had new kinds of things they could express in their

code.
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In Csound 5, the introduction of the NewParser provided a new language

interpreter implementation. This laid the groundwork for future language

developments and represents better developer extensibility. The introduction

of until-loops brought another structured programming feature and was built

with the NewParser. This provided users with further ways to express their

code. The implementation of until-loops also served as a model of defining

new language features using the new infrastructure.

The Csound Orchestra language has grown over time, both in its design

and in its implementation. The kinds of changes shown for Csound 4 and 5

demonstrate ways to develop features to enable others to grow the system

themselves. These aspects of extensibility found in the historical development

of Csound’s language serve as the foundation of the original work discussed

in Chapter 3.
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Chapter 3

Evolving the Language of Csound

This chapter will look at new features of the Csound [35] Orchestra language

developed for this thesis. It will begin with an overview, then discuss language

design and implementation changes introduced in Csound 6. It will then

discuss further changes that are developed and will be released in Csound 7.

Finally, a summary will be given for the work on Csound’s language and its

impact on the system’s extensibility.

3.1 Overview

Chapter 2 discussed the origins and history of Csound’s Orchestra language.

The developments in Csound 4 and Csound 5 introduced new ways for users

and developers to extend the system. These changes provide a model for how

to grow the language and extend the richness of Csound’s language over time.

The work presented here continues to evolve the language of Csound.

Like Csound 5’s NewParser, changes like the new type system (Section 3.2.1)

and Parser3 (Section 3.3.1) will develop the infrastructure of the language.

These are changes that provide better developer extensibility, which is realised
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in the implementation of new language features like arrays (Section 3.2.2)

and user-defined types (Section 3.3.3). Like Csound 4, these new language

features provide new ways for users to develop their work and extend the

system themselves.

3.2 Csound 6

Csound 6 was a major rewrite of Csound 5. It introduced many new features,

such as sample-accurate scheduling, a new type system, transactional recom-

pilation for live coding, a new development test suite, and more. It was also

the first version where the OldParser was completely removed from use and

the codebase. The full set of goals and features are discussed in [67] and [68].

In this section, I will discuss original work on the Csound Orchestra

language design and implementation I have done as part of Csound 6 for this

thesis. This includes the new type system, new implementation of opcode

polymorphism, extensions to opcode function-call syntax, introduction of

array types, and runtime type identification. For each topic, I will discuss

motivations, provide analyses, then discuss the design and implementation of

the feature. I will also describe how these features enable greater extensibility

in Csound for users and developers.

3.2.1 Type System

The new type system (hereafter TypeSystem) introduced in Csound6 provides

a systematic way to define and work with data types used in the Csound

Orchestra language. It isolates all features for a data type to a single location,

which then provides a generic way to work with data types. The goal of
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this work was to organise and simplify the code related to data types within

Csound’s codebase as well as make data types extensible for developers.

I will begin with an analysis of types and their usage in Csound. Next, I

will discuss the implementation of types prior to Csound6. Afterwards, I will

discuss the goals of the new TypeSystem, then discuss the implementation. I

will then summarise this work.

Types in Csound

Types in Csound have two main aspects: concrete data types and specification

of data types. The former describes data in terms of what the data means

and how it is used. The latter defines what kinds of data types are acceptable

as arguments to opcodes.

Concrete Data Types In Csound, variables are used to name locations

in memory that store values. The meaning of that value is determined by the

variable’s data type. For example, when a variable is defined to be of type

i, the memory allocated for the variable is understood to represent a single

floating-point number.

Data types are uniquely named, such that a given type name maps to

only one data type. The Csound data type maps to a C data type, which

may be a primitive type (i.e. float) or a structure. Internally, Csound uses

the C data type to determine the size for a Csound type when allocating

memory. Variable memory is also cast to its corresponding C data type so

that processing code (i.e., opcodes) know how to read from and write to

variables.

Csound’s data types have also had a concept of rate traditionally associated

with them. The rate of a data type describes when the value of a variable is
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updated. Originally, Csound had three types of variables: i-, k-, and a-types.

Each type corresponded to a numeric value updated only at initialisation time

(i.e., init-rate), once per-block of audio (i.e., control-rate), or once per-sample

of audio (i.e., audio-rate), respectively. Internally, i- and k-types would map

to the same C data type, a single floating-point number, and the a-type would

map to an array of floating-point numbers with the size of the array equal to

the block-size — called ksmps in Csound — configured for the engine.

However, the association of specific rates with individual data types has

not been maintained with Csound’s newer data types. For example, Csound’s

S-type represents a character string that has no specific rate associated with it.

Some opcodes like strcat will use and process S-variables only at initialisation

time, while others like strcatk will process at initialisation and performance

times, once per block computation. The same S-type is used to describe

variables processed by these opcodes even though they differ in their update

rates. If Csound were to differentiate rates for character string types in the

same way as it did for floating point numbers, there would be multiple data

types defined for string variables, one for each rate used. Instead, the rate of

the S-type is left ambiguous and dependent upon the opcodes used with the

S-type variable.

Another aspect of rates with data types is further illustrated by f-type

variables. Csound’s f data type describes the contents of variable memory

as holding information for a spectral signal (i.e., FFT data frame) and maps

them internally to the PVSDAT data structure. The update rate of the f-signal

is generally determined by the hop size number of samples for the FFT

analysis source, which must be defined in relation to both the sample rate

and the block rate for proper processing to occur. Multiple f-type signals
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may exist in the same project and they may each have their own unique

update rates (i.e., hop sizes) that are different from Csound’s other rates (i.e.,

Csound’s control and audio rates). The requirement for variable rates that

are determined at run time for a data type is at odds with Csound’s original

practice of differentiating rates by using unique data type names at compile

time.

The situation where some data types can have a hard-coded rate associated

with them and others do not is possible because Csound’s engine does not

itself have any knowledge of rates for a data type. Internally, Csound’s data

types do not have a property that describes their rates. Rates are also not

expressed through some form of type hierarchy such that variables of different

types could be compared to each other to discover if they operate at equivalent

rates. The Csound compiler only knows that there are data type names and

that they map to data type definitions (i.e., the underlying C data type) that

describe the variable’s memory layout. The rate at which a variable actually

updates is determined entirely by the opcodes that use those variables.

Although Csound’s data types do not currently have rate as a first-class

property, it may be an interesting area to explore further for Csound’s type

system. Separating rate from the primary data type itself would allow

generically handling of data types by rate and enforcing certain variable

usage at the level of the language and engine. This would also prevent a a

proliferation of types simply to differentiate rates as was done for the i, k, and

a types. If the three types could be recast as a single floating-point numeric

type with three different rate attributes, the same process of attributing rates

could be applied to other data types. Other programming languages offer a

model solution to this kind of problem by using special language syntax and
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universal types [138, 23. Universal Types] (i.e., types specified in terms of

other types).

Listing 3.1 shows two related examples of how the issue of rates might be

interpreted using the C programming language. In the first example, the three

variables listed — isig, ksig, and asig — would correspond to Csound’s

i-, k-, and a-rate signals. The example shows three kinds of types related

to the float data type: a const float (i.e., an immutable float), a float,

and a float array. The the const keyword and braces are a part of the C

language as special syntax that denotes that universal types — a const and

array type respectively — are being used that are defined in terms of the

float data type. The special syntax may be applied to any other data type,

which allows endowing those qualities of mutability and dimensionality to the

the base type.

In the second example, C’s typedef feature provides a way to create an

alias for the more verbose universal types. Applying the typedef-created

types to variables shows a similarity to Csound’s method of discerning rates

using uniquely named types. The typedef provides a possible path to using

a universal type solution to reifying rates in Csound that could support the

original design of designating unique rates for certain data types.

// Implementation using types and modifiers

const float isig;

float ksig;

float asig[BLOCK_SIZE ];

// Implementation using typedefs

typedef const float IRATE;

typedef float KRATE;

typedef float* ARATE;
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IRATE isig;

KRATE ksig;

ARATE asig;

Listing 3.1: Possible C implementation of Csound’s rates

Csound’s existing data types demonstrate that the concept of rates are

not a first-class property of types. Language changes and the implementation

of universal types could one day be used to reify rates within the system.

However, the support for first-class rates is not a requirement for implementing

a type system that supports all of Csound’s existing features for data types.

Further exploration of rates is reserved for future work and is discussed in

Section 7.2.

In addition to mapping of data type names to definitions that describe

the storage format for a variable, there are general operations that happen to

all variables regardless of type and specific operations that are only relevant

to a single type. General operations include allocation, initialisation, and

freeing of variables, as well as copying from one variable to another of the

same type. These operations are performed by the engine and use information

about a variable’s type to process the variables. The first three operations

occur as part of the standard life cycle of an instrument instance, while the

last operation is performed as part of Csound’s execution model for calling

user-defined opcodes, where all variables are always passed-by-value.1 Specific

operations for variables occur within opcodes and outside of the main Csound
1Csound’s handling of arguments for native opcodes written in C are always passed-

by-reference and contrasts with what is done for user-defined opcodes. This disparity of

argument handling will be discussed in Section 7.2.
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engine. Opcodes process a variable’s memory in ways specific to the domain

of the data type’s meaning.

-

Type-specifiers Opcodes use type-specifiers to describe their input and

output arguments. Type-specifiers denote the permissible types allowed for

an argument, whether the argument is optional (and if so, what is its default

value when not present), and the number of arguments covered by that type-

specifier (i.e., cardinality). Like data type names, type-specifiers are single

characters.

All of the type names for concrete data types may be used as type-specifiers.

If a data type name is used, it specifies that the type-specifier refers to a single

argument, it allows only arguments that match the given data type, and it

is a required value. Additional single-character type-specifiers are defined in

Csound. For example, the type specifier T denotes a required, single argument

that may be of type S or i. The o type specifier denotes an optional i type

argument with a default value of 0 (p, q, v, j, and h denote the same but with

default values of 1, 10, 0.5, -1, and 127 respectively). The z type specifier is

used to denote an indefinite number of k-type arguments.

Type-specifiers intertwine a number of aspects about opcode arguments

all into a single-character name. This includes allowable types, optionality

and default value, and cardinality. Because these qualities are all encoded

within the single-character, the variations in qualities leads to the situation

where many different type-specifiers may be used for a single type, differing

by only one quality or another. The process of adding new type-specifiers and

variations can occur for each new type added to Csound. It is not difficult to
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imagine the available single-characters for type-specifiers becoming quickly

exhausted as the number of data types grow.

In other programming languages, these qualities of argument are usually

separated out from the type given for an argument. This may be done with

special syntax or qualifiers added to the argument. Listing 3.2 shows an

example in the Python language of defining a function with default (i.e.,

optional) arguments as well as variadic arguments. Here, arg1 is an optional

argument that defaults to the value 2.0, and otherargs denotes zero to many

other arguments may be used. Note that use of equals and asterisk are

additional modifiers to the standard argument specification.

# Definition of my_function

def my_function(arg0 , arg1 =2.0, *otherargs):

print(arg0 , arg1 , otherargs)

# Example usage

>>> my_function (1)

1 2.0 ()

>>> my_function (1, 5.0)

1 5.0 ()

>>> my_function (1, 5.0, 3, 4, 5)

1 5.0 (3, 4, 5)

Listing 3.2: Example of default and variadic arguments in Python

For the aspect of type-specifiers that specify allowable types, the type-

specifier acts like a variant and not an abstract data type (ADT). Pierce

defines variants [138, 11.10 Variants] as a generalised form of sum types [138,
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11.9 Sums], where the value of a variant can be one of a fixed set of types.2

With variants, the data type does not know about the variant, but the variant

knows about the data type.

Liskov and Zilles describe ADTs as “a class of abstract objects which is

completely characterized by the operations available on those objects” [117].

With ADTs, concrete types are defined as being or implementing an ADT.

Here, the concrete type must support being used as an instance of an ADT,

thus the type knows about the ADT. This implies a relationship between the

concrete types and that they share some aspect of meaning and behavior.

Initial attempts at analysing Csound’s type-specifiers using an object-

oriented approach failed when encountering the T type-specifier, which permits

either an i- or S-type to be used as an argument to an opcode. These two

types do not share qualities that would allow expressing T as an ADT that

i- or S-types implement. However, framing T as a variant does successfully

express the meaning and usage of T within the system.

The design of types and type-specifiers based around a single-character

would have been practical in early versions of Csound when there were only

three data types available. As more types were introduced, the design showed

limitations in extensibility and expressiveness.

Implementation of Types Prior to Csound6

Prior to Csound6, Csound did not have a system for working with types. One

could not programmatically define a type, nor could one query a system for
2Variants are usually implemented by tagging a data structure. In Csound, Runtime

Type Information (RTTI, described in 3.2.5) is used to determine the actual data type of

an argument.
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all known types. The concept of types existed, but there was no concrete

representation of types within the program.

Instead, types were a convention based around the single-letter name of

a type. To understand the type of a variable, code would have to analyse

the variable’s name for the type. This would be done every time a variable

was used, as the system also did not reify the concept of a variable into a

concrete data structure. Instead, the name of a variable was all that was

tracked during compilation.

For example, if an area of code allocated memory for a variable, it would

receive as an argument the name of the variable. If the name was ivar, the

first-letter would be used to determine it was of type i. The code would

then use if-else branches, checking the found type against known types, then

process and allocate memory. If a variable was used elsewhere, it was again

passed as just a name, the type would again be analysed, and another if-else

ladder of conditions would be run based on the found type.

The result was that code related to data types was spread out in numerous

places. To allocate a variable of a given type, the allocation code would have

to know what each type meant and what to do with it. This was the same for

initialising, copying, and freeing of variables, as well as tracking of variables

during compilation. In each of these areas of code, the specific knowledge of

a type was required.

Additionally, the use of type-specifiers was also by convention. One could

not define a new type-specifier except by updating the code that processed

them. This was less of a problem than for data types, as type-specifier

validation was isolated to one specific area of the compiler. However, by not
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having type-specifiers defined concretely, the meanings and usage of specifiers

as a whole was obscured.

With the code prior to Csound6, it was difficult to understand how to

define new types as well as understand where and how general processing of

variables occurred. The lack of concretely-defined data types made introducing

new data types both difficult for core developers and impossible for third-party

developers. The implementation of type-specifiers and their processing was

similarly difficult to understand and extend.

Goals of the New TypeSystem

The goals for the new TypeSystem were that it should be able to handle

the same data types found previously, support the new array type (see

Section 3.2.2) in Csound 6, and provide extensibility for the introduction of

new types. It should also isolate all type-specific code and properties to a

single location and, where possible, remove all type-specific code from the

areas of the codebase. This should make defining data types an explicit

process, simplify the code base, and prepare Csound for easier modification

for future type-related changes.

Redesigning types in Csound was outside the scope for the initial im-

plementation of the TypeSystem. The use of single-letter type names and

the argument type specifications for opcodes were to be maintained. All

previous opcodes should operate without modification to their code or their

definitions (OENTRYs). Finally, all expected behavior based around types and

type-specifiers was also to be maintained.
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Implementation

The implementation of the TypeSystem required defining new data structures

to represent Csound data types and variables, then updating code to use

these new data structures.3 It also required redefining all previous standard

data types within the new TypeSystem. The following will discuss these

implementation changes as well as modifications performed related to type-

specifiers.

Defining Data Types In Csound 6, variable types are concretely defined

by creating an instance of the CS_TYPE data structure and registering it with

the CSOUND engine. The CS_TYPE defines all common aspects of a data type.

Registering it with the engine makes that type available for use in the system.

Listing 3.3 shows the C code for CS_TYPE.

// include/csound_type_system.h:40

typedef struct cstype {

char* varTypeName;

char* varDescription;

int argtype; // used to denote if allowed as in-arg ,

out -arg , or both

struct csvariable* (* createVariable)(void*, void*);

void (* copyValue)(void* csound , void* dest , void* src);

struct cstype ** unionTypes;

void (* freeVariableMemory)(void* csound , void* varMem);

} CS_TYPE;

Listing 3.3: Definition of CS_TYPE struct in Csound 6

3The header files that define the basic type system code are include/c-

sound_type_system.h and include/csound_standard_types.h. The implementation files

are found in Engine/csound_type_system.c and Engine/csound_standard_types.c.
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Each of the fields in CS_TYPE was defined to capture some aspect of

data types that was already in use in the pre-Csound 6 codebase. The

varTypeName corresponds to the single-letter name of the data type. This

uses a char* instead of char to eventually support multi-character type names.

createVariable, copyValue, and freeVariableMemory are all pointers to

functions for creating variables, copying values from one variable of the same

type to another, and freeing the memory for a variable. These are the primary

fields in use.

Other fields shown were a part of the Csound6 design but not used.

varTypeDescription provides a human-readable description about the type.

argType and unionTypes were designed for using CS_TYPEs to define in-

formation for use as type-specifiers. These fields were retained for future

exploration.

In Csound 6, all of the standard concrete types in Csound were defined

using CS_TYPE definitions. Listing 3.4 shows the relevant code for the definition

of the f-type and is an example of how one defines a data type in the

TypeSystem.

// Engine/csound_standard_types.c:47

void fsig_copy_value(void* csound , void* dest , void* src) {

PVSDAT *fsigout = (PVSDAT *) dest;

PVSDAT *fsigin = (PVSDAT *) src;

int N = fsigin ->N;

memcpy(dest , src , sizeof(PVSDAT) - sizeof(AUXCH));

if(fsigout ->frame.auxp == NULL ||

fsigout ->frame.size < (N + 2) * sizeof(float))

(( CSOUND *) csound)->AuxAlloc(csound ,

(N + 2) * sizeof(float), &fsigout ->frame);

memcpy(fsigout ->frame.auxp , fsigin ->frame.auxp ,
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(N + 2) * sizeof(float));

}

// Engine/csound_standard_types.c:197

CS_VARIABLE* createFsig(void* cs , void* p) {

CSOUND* csound = (CSOUND *)cs;

CS_VARIABLE* var = csound ->Calloc(csound ,

sizeof (CS_VARIABLE));

IGN(p);

var ->memBlockSize = CS_FLOAT_ALIGN(sizeof(PVSDAT));

var ->initialiseVariableMemory = &varInitMemory;

return var;

}

// Engine/csound_standard_types.c:308

const CS_TYPE CS_VAR_TYPE_F = {

"f", "f-sig", CS_ARG_TYPE_BOTH , createFsig ,

fsig_copy_value , NULL , NULL

};

Listing 3.4: Definition of f data type

When a Csound engine is created and initialised, an empty TYPE_POOL

struct, shown in Listing 3.5, is also created, then populated with the standard

Csound types. The TYPE_POOL holds the head of a singly-linked list of

CS_TYPE_ITEMs, which in turn hold instances of CS_TYPEs. New Csound

API functions are provided for adding new data type definitions, creating

CS_VARIABLEs from types, and querying for types by name.

// include/csound_type_system.h:81

typedef struct cstypeitem {

CS_TYPE* cstype;

struct cstypeitem* next;
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} CS_TYPE_ITEM;

typedef struct typepool {

CS_TYPE_ITEM* head;

} TYPE_POOL;

/* Adds a new type to Csound 's type table

Returns if variable type redefined */

PUBLIC int csoundAddVariableType(CSOUND* csound ,

TYPE_POOL* pool , CS_TYPE* typeInstance);

PUBLIC CS_VARIABLE* csoundCreateVariable(void* csound ,

TYPE_POOL* pool , CS_TYPE* type , char* name ,

void* typeArg);

PUBLIC CS_TYPE* csoundGetTypeWithVarTypeName(

TYPE_POOL* pool , char* typeName);

PUBLIC CS_TYPE* csoundGetTypeForVarName(TYPE_POOL* pool ,

char* typeName);

Listing 3.5: Type system structures and functions

Defining Variables Variables are defined as part of instrument definitions

or as global variables. Variables are defined with a name and a data type.

They are used as input and output arguments to and from opcodes. They can

have one of two scopes: either globally-scoped, usable from any instrument,

or locally-scoped, usable only within a single instrument.4

Prior to Csound6, the parser would read variable names and check that

they were initialised before they were used. The type of variable would be
4Note that UDOs are compiled internally as instruments, so local-scoping for UDOs is

equivalent to an instrument’s local scope and a UDO’s variables can not be read or used

outside of the UDO.
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determined by the first character of the variable name. Each time a variable

was defined, the type would be checked, a counter for that type would be

incremented, and the count would be assigned to that variable’s name. At

compile time, a calculation would be made that multiplied each count by the

size of the variable’s memory requirement (i.e., kcounter * sizeof(MYFLT),

acounter * (sizeof(MYFLT) * ksmps)), and the sum total would be used

as the total size of local variable memory for new instances of instruments.

The problem with this approach is that for any new type, a new counter

would need to be added to the compiler to track that type. Additionally, the

memory requirements for that type would also have to be hardcoded in the

area of code that calculates local variable memory size. While effective when

there were few variable types in Csound, the system was difficult to extend

and became more difficult to understand as more types were added.

In Csound 6, variables are defined using CS_VARIABLEs and tracked in

CS_VAR_POOLs. When the parser reads a variable name, if it is a definition

of a variable, the name of the variable’s type – determined by the first

character – is used to find a registered CS_TYPE. Once a CS_TYPE is found, a

CS_VARIABLE is created from the CS_TYPE and added to the appropriate local

or global CS_VAR_POOL. Listing 3.6 shows the definitions for CS_VARIABLE

and CS_VAR_POOL.

// include/csound_type_system.h:57

typedef struct csvariable {

char* varName;

CS_TYPE* varType;

/* memBlockSize must be a multiple of sizeof(MYFLT), as

Csound uses MYFLT* and pointer arithmetic to assign

var locations */

int memBlockSize;

49



int memBlockIndex;

int dimensions; // used by arrays

int refCount;

struct csvariable* next;

CS_TYPE* subType;

void (* updateMemBlockSize)(void*, struct csvariable *);

void (* initializeVariableMemory)(struct csvariable*,

MYFLT*);

CS_VAR_MEM *memBlock;

} CS_VARIABLE;

// include/csound_type_system.h:106

typedef struct csvarpool {

CS_HASH_TABLE* table;

CS_VARIABLE* head;

CS_VARIABLE* tail;

int poolSize;

struct csvarpool* parent;

int varCount;

int synthArgCount;

} CS_VAR_POOL;

PUBLIC CS_VAR_POOL* csoundCreateVarPool(CSOUND* csound);

PUBLIC void csoundFreeVarPool(CSOUND* csound ,

CS_VAR_POOL* pool);

PUBLIC char* getVarSimpleName(CSOUND* csound ,

const char* name);

PUBLIC CS_VARIABLE* csoundFindVariableWithName(

CSOUND* csound , CS_VAR_POOL* pool , const char* name);

PUBLIC int csoundAddVariable(CSOUND* csound ,

CS_VAR_POOL* pool , CS_VARIABLE* var);

PUBLIC void recalculateVarPoolMemory(void* csound ,
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CS_VAR_POOL* pool);

PUBLIC void reallocateVarPoolMemory(void* csound ,

CS_VAR_POOL* pool);

PUBLIC void initialiseVarPool(MYFLT* memBlock ,

CS_VAR_POOL* pool);

Listing 3.6: Variables structures and functions

Instantiating Variables The information collected in local and global

variable pools is used to determine memory to allocate at runtime for instru-

ment instances and global variable memory. The two paths are handled in

two different manners, as each has different requirements.

For instrument instances, Csound calculates the total memory required for

the entire instance and allocates it as one large-block of memory. This memory

is then subdivided into various parts: some parts are used to represent state

data for opcodes, others are used to represent variable memory.

When an instrument instance is created, insprep() is called, which in turn

calls the new recalculateVarPoolMemory() function. The latter function

performs two tasks. Firstly, it calculates the sum total memory requirements

of all variables in the pool and records the poolSize. The poolSize is used

as part of the calculation for the total memory of an instance of an instrument.

Secondly, it calculates indexes for each variable to use for assigning memory.

The indexes are used as offsets from the base address of the location designated

for variable memory within the total instrument instance memory.

For global memory, variable memory is allocated with a different strategy.

Instead of creating a large block of memory that is then divided – the strategy

prior to Csound 6, and the one used for instruments – memory is allocated for

each variable individually. The variable memory is assigned to the memBlock
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field directly in CS_VARIABLE. When global variable memory pointers are

assigned to opcode arguments, they will point to the memory held in the

memBlock field.

Initialisation, Copying, and Freeing The other behavior of variables

besides allocation are initialisation, copying, and freeing. While all types

share these behaviors, the exact process that happens is type-specific. Prior

to Csound6, different areas of code would handle these aspects of variables,

and type-specific processing code would be repeated in each of these areas.

With Csound6, these areas of code were found and modified. Instead of

looking at just the type name for a variable to determine what to do, code

could now look at the variable’s CS_TYPE. From there, the appropriate function

pointer would be used to perform the type-specific operation. By modifying

the codebase to work with CS_TYPEs, any new types would automatically

work with the rest of the system without requiring changes to the codebase.

Type-specifiers Prior to Csound6, code in the compiler would directly

compare each of found types for arguments in large switch-statements to

see if they matched specific type specifiers. If so, then code for processing

optionality and cardinality were done inline. The specification of a type

specifier then was directly mixed in with its processing implementation.

For Csound6, type-specifier code was rewritten to better express the

intention of each specifier. Firstly, the kinds of specifiers were specifically

defined in a separate location than their use and organised by the specifier’s

qualities. Listing 3.7 shows the definitions of POLY, OPTIONAL, and VAR_ARG

specifiers, together with their allowed types.

// Engine/csound_standard_types.c:358
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const char* POLY_IN_TYPES [] = {

"x", "kacpri",

"T", "Sicpr",

"U", "Sikcpr",

"i", "cpri",

"k", "cprki",

"B", "Bb", NULL};

const char* OPTIONAL_IN_TYPES [] = {

"o", "icpr",

"p", "icpr",

"q", "icpr",

"v", "icpr",

"j", "icpr",

"h", "icpr",

"O", "kicpr",

"J", "kicpr",

"V", "kicpr",

"P", "kicpr", NULL

};

const char* VAR_ARG_IN_TYPES [] = {

"m", "icrp",

"M", "icrpka",

"N", "icrpkaS",

/* 'n' requires odd number of args ... */

"n", "icrp",

"W", "S",

"y", "a",

"z", "kicrp",

/* 'Z' needs to be ka alternating ... */

"Z", "kaicrp", NULL

};

const char* POLY_OUT_TYPES [] = {
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"s", "ka",

"i", "pi", NULL

};

const char* VAR_ARG_OUT_TYPES [] = {

"m", "a",

"z", "k",

"I", "Sip",

"X", "akip",

"N", "akipS",

"F", "f", NULL

};

Listing 3.7: Type-specifier definitions

Next, code that verified found arguments and opcode argument type

specifications was updated. Switch-statements were removed and replaced

with function calls that checked if a found argument’s type, read from the

variable’s CS_TYPE, matched against one of the specifier definitions. By

using functions with names like is_in_optional_arg or is_in_var_arg,

the intention of code was easier to see and understand.

This code change in Csound6 improved the situation in understanding

the use of type-specifiers. It explicitly defined type-specifiers, separately

from their usage, and classified them by their intent. However, while these

changes improved the situation, more could be done. The original design was

to use CS_TYPEs to define variant types and do type checking using those.

However, this would have only addressed that aspect of type-specifiers and not

optionality and cardinality. To address these qualities, it was determined that

changes may be required both to the type specification format for opcodes

as well as possibly opcode definitions themselves. Instead, the above was
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implemented, and the focus of Csound6’s type system was limited to data

type definition. Development of the type specification system is reserved for

future work.

Summary

The new TypeSystem in Csound6 provides a formalised system for creating

Csound data types. By explicitly defining data types using C data structures,

the TypeSystem provides a means by which code can work with with variables

generically through their types as well as make data types extensible by third-

party developers. The implementation has isolated type-specific code in

Csound and has arguably clarified the use of types in the rest of the codebase.

3.2.2 Arrays

For Csound6, a feature that was requested by the user community was the

implementation of array types. Arrays are sets of data of type x, where x

can be any non-array type. Arrays are useful for creating and operating on

sets of values. For example, they can be used to create multi-channel audio

signals or to hold analysis bin data for FFTs.

The following will begin by describing the specification for arrays. Example

code will follow that demonstrates array usage by users in Csound Orchestra

code. Next, the implementation of arrays will be described in detail. Finally,

a conclusion will discuss the impact of arrays for users and their works.

Specification

Arrays in Csound have the following properties: they are generic, they are

homogeneous, and they are multi-dimensional. Firstly, arrays are generic.
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This means that arrays can be created of any type x. Arrays then are a

type that are specified in terms of other types (i.e., a universal type). The

implementation of Csound arrays then must require that a variable’s type

include both that it is an array and what type of array it is. Note that

while all arrays share the same operations, arrays of different types are not

equivalent. It is invalid to try to use an array of type x where an array of

type y is expected.

Secondly, arrays in Csound are homogeneous. Each element of the array

is of the same type x. This requirement allows for each member to be the

same size in memory. When an array is created, one large block of memory

can be allocated for the entire array that is equal to the number of elements

multiplied by the size of the x. Homegenous memory layout allows efficient,

constant-time access to members of the array.

Finally, arrays in Csound are multi-dimensional. Each dimension has a

fixed size when the array is first created. The total number of elements in

the array is equal to the product of the sizes of all dimensions. For example,

for a 2-dimensional array with sizes 2 and 4, the total size of the array is 8.

Example Array Code

Listing 3.8 shows example Csound Orchestra code that uses a single-dimension

array. Line 3 shows the declaration of an i-type array called iarray. It it

initialised to size isize, which iresults in iarray having 10 elements. Next,

starting in line 5, an until-loop is used to iterate and set each member of

the iarray with a value calculated from the indx variable. Each value is

also printed out using the print opcode. Lines 6 and 7 shows left-hand side

expressions being used within the array access notation (described further in
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Section 3.2.2) to calculate the index into the array for setting a value. Lines

9 and 10 show right-hand side expressions being used to access members from

the array for printing.

1 indx = 0

2 isize = 10

3 iarray [] init isize

4

5 until (indx >= isize) do

6 iarray[indx] = indx

7 iarray[indx + 1] = indx

8

9 print iarray[indx]

10 print iarray[indx + 1]

11

12 indx += 2

13 od

Listing 3.8: Csound array example

The output of running the example in Listing 3.8 is shown in Listing 3.9.

instr 1: #i4 = 0.000

instr 1: #i6 = 0.000

instr 1: #i4 = 2.000

instr 1: #i6 = 2.000

instr 1: #i4 = 4.000

instr 1: #i6 = 4.000

instr 1: #i4 = 6.000

instr 1: #i6 = 6.000

instr 1: #i4 = 8.000

instr 1: #i6 = 8.000

Listing 3.9: Csound array example output
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Note that the use of empty brackets is only for the declaration of the array

variable. Declaration, like for non-array variables, is done at the first time a

variable is used on the left-hand side of an opcode. Once a variable is first

defined, its type is registered in the CS_VAR_POOL. Afterwards, references to

the array need only use the variable’s name without empty brackets. This

is seen in Listing 3.10, where the array is passed as an argument to the

lenarray [181] opcode.

;; initialise 2 member i-type array

ival[] init 2

ival [0] = 1

ival [1] = 2

;; Note , only using variable name

ilen = lenarray(ival)

Listing 3.10: Csound array use without empty brackets

To create and use multi-dimensional arrays, additional sizes can be given

to the init opcode. Listing 3.11 shows a variable called iarray. This array

is of type i[][] and is initialised to two dimensions of size 2 and 4.5 Two

nested until-loops are then used to set and print the contents of the array.

iarray [][] init 2, 4

indx = 0

until (indx >= 2) do

indx2 = 0

until (indx2 >= 4) do

iarray[indx][ indx2] = (indx + 1) * indx2

5For comparison, this would be equivalent to creating a multi-dimensional float array in

C using “float iarray[2][4]”.
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print iarray[indx][indx2]

indx2 += 1

od

indx += 1

od

Listing 3.11: Csound multi-dimensional array example

The output of running Listing 3.11 is shown in Listing 3.12.

instr 1: #i5 = 0.000

instr 1: #i5 = 1.000

instr 1: #i5 = 2.000

instr 1: #i5 = 3.000

instr 1: #i5 = 0.000

instr 1: #i5 = 2.000

instr 1: #i5 = 4.000

instr 1: #i5 = 6.000

Listing 3.12: Csound multi-dimensional array example output

Finally, Listing 3.13 shows the use of arrays with UDOs. Here, the

sum_array UDO takes in a single i[] array as an input argument. The code

loops to sum up all values within the array and returns the accumulated value.

Running instrument 1 will call sum_array and return the value 21.

opcode sum_array , i, i[]

iarray [] xin

indx init 0

ival init 0

until (indx >= lenarray(iarray)) do

ival += iarray[indx]

indx += 1

od

xout ival
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endop

instr 1

iarray [] init 3

iarray [0] = 1

iarray [1] = 7

iarray [2] = 13

print sum_array(iarray)

turnoff

endin

Listing 3.13: Csound array UDO example

Array member access

Array members are accessed using an array variable’s name, followed by

brackets that contain an expression. The result of the expression must be

either of type i or k. Using an i-type variable will cause the array access to

occur at initialisation time only, and using a k-type variable will cause the

access to occur at initialisation and performance times. The expression within

the brackets determines the index of the array member to read or write.

Array member access is itself considered and treated as an expression. This

means array access can be written and used anywhere that other expressions

are allowed. Before arrays were introduced in Csound 6, expressions only

existed on the right-hand side of opcode calls. In other words, expressions

could be used as input arguments to opcode calls, but were not found on the

left-hand side. For arrays, Csound’s parser and compiler required modification

to handle left-hand side expressions.
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Array Implementation

Implementing generic arrays of any type in Csound required a number of

changes to the compiler and engine. The following lists the order in which

features were implemented. Each feature builds upon the previous one, and

implementation details are described below.

1. Declare a variable of an array of type x.

2. Instantiate an array variable.

3. Modify C opcodes to work with arrays.

4. Process array member access.

5. Modify UDOs to work with arrays.

Declaring an array variable In Csound, variables are declared on their

first assignment. When declared, the variables name is recorded, as is its

type. For Csound, the first letter of the variable name is used for the type.

However, a single letter would not be enough to declare an array, as an array

requires both that it be declared an array as well as the type of array.

To handle this situation, the array declaration syntax was formed. To

declare an array, a variable requires an open and close bracket to be appended

to its name. For example, iarray[] declares an array variable with name

iarray. The brackets at the end of the declaration tell Csound it is being

declared as an array, and the first letter declares that the array is of type i.

To implement this, a new arrayident rule was added to Csound’s gram-

mar. Listing 3.14 begins with the rule for reading array identifiers. The rule

for arrayident is recursive, which allows it to have multiple pairs of brackets
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after the identifier name to accommodate multi-dimensional arrays. The

arrayident rules is then further used as the return value in the statement

rule as well as part of the ans rule. These two changes allow array declarations

to be used as output arguments from opcodes.

arrayident: arrayident '[' ']'

| ident '[' ']';

// excerpt of rule for statement

// Engine/csound_orc.y:410

arrayident '=' expr NEWLINE

// basic definition of ans

// Engine/csound_orc.y:500

ans : ident

| arrayident

| arrayexpr

| T_IDENT error

| ans ',' ident

| ans ',' arrayident

| ans ',' arrayexpr;

Listing 3.14: Array identifier syntax

After the array declaration was recognised by the parser, the compiler

and runtime required changes to handle the new array type. Using the new

type system discussed in Section 3.2.1, a new CS_TYPE was introduced that

defines the generic array type (shown in Listing 3.15). In conjunction with

CS_VAR_TYPE_ARRAY, the CS_VARIABLE data structure (shown in Listing 3.6)

contains subType and dimensions fields. These fields are used to specify the

specific aspects of the array for the variable.
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In Section 3.2.1, I discussed how determining a variable’s type changed

from always using the first character of the variable’s name to searching

through a CS_VAR_POOL for a registered type. In large part that change was

implemented to facilitate array variable definitions. Instead of determining

the variable type by re-interrogating the variable name each time, the change

allowed the variable’s type to be determined once and looked up afterwards.

If the previous lookup system was not changed, then the variable name would

require having all information as part of its name everywhere it was used.

If a variable required all type information to be a part of its name every

time it was used, two problems would occur with arrays. The first problem is

that the use of arrays would be very verbose and difficult to read, especially

when accessing members for reading and writing. For example, instead of

“iarray[0] = 1”, one would have to use “iarray[][0] = 1”, so that the primary

part of the variable name could be read to understand it is in an array.

The second problem is that parsing an array variable definition requires

more time than a simple single-character lookup to understand its type.

Array type processing requires finding the subtype, as well as figuring out the

number of dimensions the array variable has by using the number of pairs

of brackets found. Doing this each time a variable name is checked for its

type would add a lot of processing for something that could be done once

and looked up from a table.

Instantiation Once an array is defined as a CS_VARIABLE, at runtime, an

instance of ARRAYDAT is used to hold the actual data for the array in memory.

The ARRAYDAT structure is shown in Listing 3.15. Within this structure, the

data field contains the actual values of each array member, while the other

fields provide the required meta-data for opcodes to work with arrays.
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// include/csoundCore.h:359

typedef struct {

int dimensions;

int* sizes; /* size of each dimensions */

int arrayMemberSize;

CS_TYPE* arrayType;

MYFLT* data;

} ARRAYDAT;

// Engine/csound_standard_types.c:326

const CS_TYPE CS_VAR_TYPE_ARRAY = {

"[", "array", CS_ARG_TYPE_BOTH , createArray ,

array_copy_value , NULL , NULL

};

Listing 3.15: Csound 6 array implementation code

Modifying C Opcodes to work with arrays On the one hand, modi-

fying opcodes written in C to work with arrays was simple. Opcodes could

use ARRAYDATs as arguments just as using any other data type – i.e., MYFLT,

STRINGDAT, PVSDAT – in Csound. Listing 3.16 shows an example of the data

structure for the array-version of the init opcode that uses an ARRAYDAT

as an output argument.

// Opcodes/arrays.c:36

typedef struct {

OPDS h;

ARRAYDAT* arrayDat; // Output argument for opcode

MYFLT *isizes[VARGMAX ];

} ARRAYINIT;

// Opcodes/arrays.c:1914
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// OENTRY for array_init opcode using the "." any type

specifier

{ "init.0", sizeof(ARRAYINIT), 0, 1, ".[]", "m",

(SUBR)array_init },

Listing 3.16: Csound 6 array init opcode

However, two problems did present themselves when defining opcodes.

Firstly, the input and output argument specification did not work with multi-

character type specifications. Secondly, there was no type specifier available

to specify an any type, which would allow any kind of type to be used. This

would be necessary for certain opcodes to allow working with any kind of

array generically.

To address these concerns, the type specification and processing code for

opcode input and output types was modified. First, rather than search for one

character at a time through the argument strings, the code would look-ahead

to see if any brackets were found. If so, the code would identify the argument

as an array and then continue advancing through each pair of brackets found

to determine how many dimensions would be required for that array argument.

Second, to handle the any type, the “.” character was introduced as a valid

type-specifier and related processing code was updated. With these changes,

opcodes could now specify arguments of arrays of a specific type as well as of

any type.

Process array member access Array member access involves two sce-

narios: reading from arrays and writing to arrays. Reading from arrays is

done when an array access is found on the right-hand side of an opcode and

used as an input argument. Writing to arrays is done when an array access is

found on the left-hand side of an opcode.
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For the parser, array accesses are treated and processed as expressions.

Like other expressions, when a statement is found that contains expressions,

the statement is rewritten into multiple opcode statements containing one

operation per statement. With expressions as input arguments, the generated

statements would be prepended to the original statement line. The return

value of the expression would be written to a synthetic variable and the

variable would then be used as the input argument to the original statement.

For expressions as output arguments, the generated statement would be

appended after the original statement. The original statement would first

write its value to a new synthetic variable, and the synthetic variable would

then be used as the input argument to the array writing statement. Note: this

kind of processing for left-hand side expressions was introduced in Csound6

specifically to accommodate array member writing.

1 ;; BEFORE

2 indx init 2

3 iarray2[indx + 1] = iarray1[indx] + 3

4

5 ;; AFTER

6 indx init2

7 #i0 array_get iarray1 , indx

8 #i1 sum #i0, 3

9 #i2 sum indx , 1

10 array_set iarray2 , #i1 , #i2

Listing 3.17: Compiled array access code

Listing 3.17 shows a before and after compilation of array access code.

Line 3 shows code that reads an i-type value from iarray1 at index indx,

adds the number 3 to that value, then assigns that value to the iarray2 array

at index indx + 1. Lines 6 through 9 show the generated code after Line 3 is
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processed by the compiler. Array reads are converted into array_get opcode

calls, and array writes are converted into array_set opcode calls.

Modifying UDOs to work with arrays The final part of implementing

arrays for Csound6 was modifying UDOs to handle processing of arrays.

For UDOs, this meant updating the type specification for input and output

arguments to allow specifying arrays as well as handling copying of those

arguments from and to the caller of the UDO. For the first part, as UDOs

shared the same argument type parsing and handling code as for C opcodes,

this was already implemented. The only necessary thing to do then was to

document and advertise to users how to specify array arguments for their

UDOs.

For the second part, UDO argument processing required a new imple-

mentation. Previously, UDO arguments were interrogated using their single-

character types, and custom code was done per type found. This was hard-

coded into the UDO processing code. To handle arrays, rather than add

more type checks and processing code to the existing implementation, a

new strategy was implemented. Instead of the hard-coded type processing

code, the copy_value function pointer stored in the CS_TYPE type definition

was used. Now, when UDOs went to transfer argument values to and from

the local variables, it would lookup the type of the argument and call the

copy_value function for that type.

The result of changing the copying strategy was that not only would UDOs

now work with arrays, they would also work with any type registered with

the type system. This also meant that UDOs would automatically work with

any future types introduced into Csound.
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Summary

Arrays provide users with a new generic data type for handling sets of values,

with efficient, constant-time member access. This allows new kinds of musical

processing code to be written by the user. The implementation builds upon

features from both the NewParser and new type system, which, arguably,

validates their designs. In addition, the compiler was updated to handle

left-hand side expressions, and the UDO implementation was also updated to

handle arguments in a generic way.

The implementation of arrays also demonstrates are real use of the type

system to implement new types. Core developers and plugins developers can

now reference the above changes and use them as a model to define their own

data types for Csound.

3.2.3 Opcode Polymorphism

Opcode polymorphism in Csound allows for an opcode of a given name to

have multiple implementations depending upon the types of its arguments.

This corresponds to Christopher Strachey’s classification of ad hoc polymor-

phism [169]. With polymorphic opcodes, there are two key aspects to how

they operate: how polymorphic opcodes are defined and how the correct

version of an opcode is selected.

Motivations

Polymorphic opcodes have existed in Csound since at least since Csound1988.

They are a fundamental part of the Csound language. However, the pre-

Csound6 implementation of polymorphism had limitations. Firstly, the

system was complicated to understand. This made it difficult for developers

68



to implement polymorphic opcodes. Secondly, due to the implementation, it

was not possible for users to define their own polymorphic UDOs. This limited

user extensibility. Finally, the implementation of function calls depended upon

the implementation of polymorphism. This severely limited what opcodes

could be used in function-call syntax.

Pre-Csound6 Polymorphism

Prior to Csound6, polymorphic opcodes were defined using a two-part system.

For an opcode that only had one implementation, a single OENTRY was used to

define the opcode in the system. For polymorphic opcodes, multiple OENTRY

definitions were given, one for each implementation of the opcode, as well as

one additional OENTRY that was a special marker entry. The special marker

OENTRY would use the normal name of the opcode and used a special flag in

the dsblksize field, a convention which marked this opcode as polymorphic.

For each of the implementation entries, specially named versions of the opcode

that followed a convention (described below) were used. Listing 3.18 shows

an example of polymorphism using the pow opcode.

// Engine/entry1.c:124

{ "pow", 0xffff , },

// Engine/entry1.c:479

{ "pow.i", S(POW), 1, "i", "iip", ipow , NULL , NULL },

{ "pow.k", S(POW), 2, "k", "kkp", NULL , ipow , NULL },

{ "pow.a", S(POW), 4, "a", "akp", NULL , NULL , apow },

Listing 3.18: Csound 5 polymorphic opcode example

During compilation, for each opcode found in the user’s code, the compiler

would search for a corresponding OENTRY by name. If an OENTRY is found,

it would then check if the dsblksize was one of the special values (shown in
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Listing 3.19). If the entry was determined to be polymorphic, then a second

lookup was performed to find a specific implementation based on the found

arguments’ types.

// Engine/entry1.c:78

/* If dsblksize is

0xffff then translate on output arg

0xfffe then translate two (oscil)

0xfffd then translate on first input arg (peak)

0xfffc then translate two (divz)

0xfffb then translate on first input arg (loop_l) */

Listing 3.19: Csound 5 comments on polymorphic OENTRY

At this point, the original opcode name would be used as the basis for a

new opname to search for. Depending on the type of polymorphism defined,

either one or two additional type characters would be appended to the opcode

name, after first appending a period. For example, if the code “ival pow 10, 2”

was compiled, first, the OENTRY with “pow” would be found. Determining that

the polymorphism was dispatched on the single output type, a new name of

“pow.i” would be created, as the type of ival is an i-type. A second lookup

would then search for a “pow.i” OENTRY. If found, the entry would be further

checked if all input and output types matched, and then that opcode version

would be used for compilation. This same process of appending to opcode

names depending on first one or two input or output arguments types was

used for each of the polymorphism types.

Criticism

The system of polymorphism in Csound prior to Csound6 was effective in

providing a form of polymorphism to the language. However, the design of
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the system also presented issues. In particular, because a special entry was

required in addition to using special opcode names, it was not possible to

create polymorphic UDOs. Also, because of the limited types of polymorphism,

if future opcodes wanted to do polymorphic dispatch on more than two input

or output types, it would require altering the internal engine by adding a new

polymorphic type specifier (e.g., something like 0xfffa) as well as adding

additional code for synthesising the polymorphic opcode name to lookup. To

address these issues, a new design was necessary.

Polymorphism in Csound 6

For Csound 6, the system of polymorphism was modified from looking for

special entries to doing a type-based search for opcodes by arguments. In

pre-Csound6, two lookups were done for an opcode: first by plain opcode

name, then again by the new synthesised name. In Csound 6, the system does

a single lookup by opcode plain name, which returns all OENTRYs that match

that name. Next, the found types for both the input and output arguments

are used to match against the specified input and output argument types for

each OENTRY. When a match is found, that OENTRY is used.

To facilitate the newer system, all OENTRYs with polymorphic identifiers

were first removed, as these were no longer used to identify polymorphism.

Next, the system that registers OENTRYs was modified to use only the base

name of an OENTRY (i.e., everything before a period is found). Multiple entries

would now be registered for the same base opcode name.

In pre-Csound6, the registry for OENTRYs used a hash table where the keys

were opcode names and values were indexes to OENTRYs in a global opcode

list. This effectively allowed only one OENTRY per key. In Csound 6, the hash

71



table was changed to have values of CS_CONS cell lists. This allowed a list of

OENTRYs to be registered for an opcode name.

The result of this change is that the part of opcode names after periods

were no longer used by the system. However, the OENTRYs using names with

periods were retained in the source code to act as a form of documentation.

For example, in Listing 3.18, the result of registering those opcodes would be

a single pow entry in the opcode table with three opcodes in the list as the

value for that entry.

With the new polymorphism system, processing of previous example would

proceed as follows. Firstly, the compiler would find the pow opcode was used

with two input-arguments of type i and i, and one output argument of type

k. The compiler would then do a search for the pow opcode and find three

entries. Secondly, it would check each entry to see if types matched. Matching

is first done using input argument types, then by output types. For the first

entry, “pow.i”, the two i types would match against the “iip” input argument

types specified, since p denotes an optional input argument, but the output

type “i” would not match against the found k output argument. This would

be an invalid match, and the process would continue to the “pow.k” entry.

This time, the “pow.k” entry’s input argument of “kkp” would also match, as

i-types can be used where k-types are specified. The output k-type would

also match the found k-type. In this case, the “pow.k” opcode entry would

then be used for this line of code.

Note that it was very important for the new polymorphism system to take

into account both input and output argument types when type matching. This

was important as pre-Csound6 allowed for polymorphic opcodes to be defined

using the same input types but different output types. When implementing
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the Csound6 system, all pre-Csound6 polymorphic opcodes were reviewed.

It was determined that the new type matching rule properly resolved to

the correct entry for all polymorphic opcodes from pre-Csound6. The result

is that the modifications to polymorphism provided compatible language

semantics with pre-Csound6, ensuring backwards compatibility, while also

extending the system.

Benefits

The changes to the polymorphism system in Csound6 open up possibilities for

both users and developers. For developers, defining new polymorphic opcodes

is arguably simpler to do. Developers can now simply define multiple OENTRYs

for an opcode and concern themselves only with the argument types. They

would not have to also deal with marking up what arguments should be used

for polymorphic dispatch, or making sure the opcode names are formatted

correctly.

For users, the changes to polymorphism now allows users to write their

own polymorphic UDOs. Listing 3.20 shows an example of an overloaded add

UDO. The first version takes in an i and S-type arguments, while the latter

takes the same types but in a different order. The definition of instrument 1

shows both forms of the UDO in use. The output of running the example is

shown in Listing 3.21. This demonstrates that both forms of the add UDO

are defined in the system and available for use.

<CsoundSynthesizer >

<CsInstruments >

sr = 44100

ksmps = 1
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nchnls = 2

0dbfs = 1

opcode add , S,iS

ival , Sval xin

Sout sprintf "%d%s", ival , Sval

xout Sout

endop

opcode add , S,Si

Sval , ival xin

Sout sprintf "%s%d", Sval , ival

xout Sout

endop

instr 1

ival = 2

Sval = "TEST"

Sout = add(ival ,Sval)

Sout2 = add(Sval ,ival)

prints(Sout)

prints ("\n")

prints(Sout2)

prints ("\n")

endin

</CsInstruments >

<CsScore >

i1 0 0.1

</CsScore >
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</CsoundSynthesizer >

Listing 3.20: Csound 6 polymorphic UDOs

new alloc for instr 1:

2TEST

TEST2

Listing 3.21: Csound 6 polymorphic UDO output

Note that in pre-Csound6, if the UDO definitions in Listing 3.20 were

used, the second definition would have replaced the first definition. This was

due to there being only a one-to-one mapping between opcode names and

OENTRYs. In Csound6, redefinition is only done if a new UDO is defined with

the exact same input and output argument types.

Summary

The new Csound6 polymorphism system changed lookup of opcodes from

using special markup and naming conventions to using type-based search.

This simplified both how polymorphic opcodes are defined as well as how

opcode entries are looked up. As a result, this made it easier for developers

to implement their own polymorphic opcodes. Also, it enabled users to write

their own polymorphics UDOs, a feature that was entirely new in Csound6.

3.2.4 Function-Call Syntax

Csound allows using opcodes with function-call syntax as arguments to other

opcodes. However, the implementation was restricted to using opcodes with

single inputs and outputs, and a separate list of approved opcodes for use as

functions was maintained. The implementation also used a function resolution

75



system that would only work with polymorphic opcodes. Because of these

limitations, only a small set of opcodes was available for use in function calls.

For Csound6, the function-call system was rewritten to expand use of

function-call syntax to the vast majority of opcodes. This opened up new

ways of programming Csound instruments and UDOs using a more functional

programming, expression-based style. The following discusses the changes

implemented to enable this new feature. This will cover multiple-arguments,

opcode lookup, output argument synthesis, and function annotations.

Analysis of Prior Function-call System

The limitation of function-call syntax to a single argument is found as early as

Csound1988 and is present in the OldParser implementation through Csound5.

In the expression processing code, the function-call was hardcoded to use a

single argument as shown in Listing 3.22.6

if (prec == FCALL && argcnt >= 1) { /* function call: */

pp ->incount = 1; /* takes one arg */

Listing 3.22: OldParser function call processing code

A new opcode name would be synthesised using the function name, a

period, and the single argument’s type. This format matched the pre-Csound6

opcode system for polymorphism and made function-to-opcode mapping

dependent upon that convention. As mentioned in Section 3.2.3, only a

limited set of opcodes were polymorphic.

Note, this same limitation was encoded into the NewParser. The expression

processing code was entirely new in Csound5, but retained the same limitation
6Expression processing was implemented in express.c in the Csound1988 code.
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of a single-argument. This was due to using the same polymorphic opcode

lookup system as the OldParser.

MultiArgument Function Calls

The primary issue to resolve for multiple-argument function calls was opcode

lookup. As described in Section 3.2.3, opcode lookup was modified as a

whole to handle the new polymorphism system. This had the effect that

function-call processing no longer depended upon specially formatted opcode

names.

With that in place, the rest of the implementation required modifying all of

the parts leading up to the opcode lookup. Firstly, the grammar was modified

so that functions could take in a list of expressions as their arguments, rather

than just a single expression. Secondly, the compiling code was modified to

look for multiple arguments. It is here that opcode lookup was modified to

use the new system with two key differences: only input argument types were

used, and only opcodes with single outputs were allowed. As function-calls

are processed as expressions, the output argument is synthesised and further

used as an input into the calling opcode. This was done using the output

type of the found opcode.

Output argument synthesis

Output argument synthesis using the new opcode lookup system was initially

problematic. Because opcodes could be polymorphic on output types, it was

possible to create opcodes with the same input types but different output

types. The previous limitations on function-calls prevented this ambiguity as

there were no polymorphic opcodes with single arguments that only differed
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on output type. However, with generalised lookup for function-calls, opcodes

with multiple input arguments and polymorphic only on output type were

found.

To address the ambiguous opcode scenario in Csound6, the opcode lookup

was done in such a way that the first opcode that matched the input argument

types would be the one used for a function-call. This rule was chosen for two

reasons. Firstly, this was the simplest system to implement, and, in testing,

the found opcode was most often the one that matched user expectations.

Secondly, for the opcodes that were documented to be used as functions in pre-

Csound6, the rule was determined to correctly resolve the same exact opcode

that would have been used in pre-Csound 6; thus, the new rule preserved

backwards compatibility.

Implementing more advanced type inference for what opcode to choose

depending on the context of the code was seen as a desirable feature. However,

implementing type inference would have required many other changes to the

Csound Orchestra implementation. This remains an area to research in future

versions of Csound and is discussed further in Section 7.2.

Function annotations

While the new rule for opcode lookup and argument synthesis generally works

to find a suitable version of an opcode, it does not cover situations where

a user would want to use a matching version of an opcode other than what

is found by default. To address this new requirement, a new feature called

function annotations was implemented. This allows the user to explicitly

specify what form of an opcode to use in function-call syntax.
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For example, Listing 3.23 shows two calls to the oscil opcode that uses

the same input arguments. The first call returns a k-type variable, while the

second call returns an a-type variable.

ksig oscil 0.5, 440, 1

asig oscil 0.5, 440, 1

Listing 3.23: Polymorphism on output type

In the opcode-call syntax, the output arguments are already provided by

the user and their types can be used to disambiguate which opcode to use.

However, with function-call syntax, the output argument is synthesised. For

function-call syntax, I worked together with Victor Lazzarini on the Csound6

design to specify type annotations for function-calls. In this system, for a

function call where a specific output type was desired, the user can annotate

the function name with a specified output type. Listing 3.24 shows an example

of explicitly requesting that that vco2 opcode that outputs an a-type variable

be used, as well as specifically requesting that k-type output be used with the

adsr opcode. The generated equivalent in opcode-call syntax is also shown.

;; function call with type annotation

asig = vco2:a(1, 440) * adsr:k(0.1, 0.1, 0.9, 0.1)

;; generated opcode calls

#a0 vco2 1, 440

#k0 adsr 0.1, 0.1, 0.9, 0.1

#a1 mul #a0 , #k0

asig = #a1

Listing 3.24: Csound 6 function-call syntax
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Summary

Function-call syntax was extended to allow using opcodes with more than one

input argument. With an updated opcode lookup system, many more opcodes

were now available for use as function-calls. To support this work, output

argument synthesis was modified to use a found opcode’s output argument

type. In addition, function annotation was implemented to provide users the

ability to explicitly choose what version of an opcode to use.

The result of these changes is that users can now program their works

using a more functional programming, expression-based syntax. As this

change was additive, existing code continues to function, and users can opt

to use existing practices or avail themselves of the newer programming style.

3.2.5 Runtime Type Identification

Runtime Type Identification (RTTI) is the ability to identify the type of

a variable at runtime. The facility for RTTI exists in numerous languages.

Examples for C++, Java, Python, Ruby, and Common Lisp are shown in

Table 3.1.

Language Syntax

C++ typeid(*ptr)

Java obj.getClass()

Python type(obj)

Ruby obj.class

Common Lisp (type-of v)

Table 3.1: Runtime Type Identification in various programming languages
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In general programing languages such as those given in Table 3.1, RTTI

is useful to conditionally branch to perform work, depending on what type

of data has been given to a function. In Csound, opcodes are written using

RTTI so that one implementation of a function can be used to cover multiple

combinations of argument types. This would be the case if the same C

function was used with multiple OENTRYs for an opcode.

However, the pre-Csound6 RTTI system was problematic. The system

only worked to discern two types – a and S – and the implementation code

was not clear to read, maintain, or use. In Csound6, with the introduction of

the new type system, a more formal implementation of RTTI was introduced.

This simplified RTTI as a whole as well as made it work for all types found

in Csound.

The following will start by discussing the evolution of RTTI in Csound

prior to Csound6. Next, it will discuss the technical limitations of the pre-

Csound6 RTTI implementation. Finally, the new implementation in Csound6

will be described.

Evolution of RTTI pre-Csound6

Csound1988 In Csound1988, a field in OPTXT called xincod was used to

track the type of input arguments to an opcode. This value was an integer

that was used both as a bit-flag and as an index. When the parser read in

Orchestra code, for each opcode statement, it would set the the second or

first bit of xincod to 1 if the corresponding first or second argument for the

opcode was of type a. This marking would end up with xincod being a value

between 0 and 3.
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At the time, opcodes were defined in ENTRY data structures.7 ENTRYs had

up to four aopadr function pointers defined. This allowed one opcode ENTRY

to specify x types for its input argument types, where the x would mean “k-

or a-type argument”. The four aopdr functions would then correspond to the

four variations allowed for the two “xx” arguments: kk, ka, ak, or aa. This

allowed a single opcode like oscil to be specified once, but accommodate

working with different variations of input types.

At runtime, when a new instance of an instrument was created, the xincod

value would be used as an index into the ENTRY’s aopadr array to determine

which function to use. Listing 3.25 shows the definition of the ENTRY data

structure with its aopadr array. It is followed by the ENTRY for oscil, which

uses x-types and defines multiple aopadr functions. Next shows the code

in rdorch.c that shows the marking of xincod in the parser. Finally, the

code from oload.c shows the use of xincod to determine which performance

function from the aopadr array to use for an opcode.

// cs.h:101

typedef struct entry {

char *opname;

int dsblksiz;

int thread;

char *outypes;

char *intypes;

SUBR iopadr;

SUBR kopadr;

SUBR aopadr [4];

} ENTRY;

7This would later become OENTRY.
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// entry.c:195

{ "oscil", S(OSC), 11, "s", "xxio", oscset , koscil ,

osckk , oscka , oscak , oscaa},

// rdorch.c:392

if (tfound == 'a' && n < 2)

tp ->xincod += 2-n;

// oload.c:211

else opds ->opadr = ep->aopadr[ttp ->xincod ];

Listing 3.25: Use of xincod field in Csound (1988)

Csound5 By the time of Csound5, the usage of xincod had changed.

Firstly, xincod was still used as a bit-flag, but all input arguments were

marked whether they were an a-type or not, up to the size of xincod. The

first bit would correspond to the first argument, the second bit to the second

argument, and so on. This allowed the first sixteen arguments to be marked

as xincod was a 16-bit integer.

Secondly, the use of an aopadr array was abandoned. This was largely to

accommodate the use of more than two arguments that might be of a-type.

If the previous system was maintained, the potential number of variations

would require an aopadr array to be of size 65536 and many functions to be

implemented.

Instead, an aopadr field was added to OPTXT that could be dynamically

set at runtime. Also, functions were modified to read in xincod at runtime to

use different branches of code depending on if an argument was an a-type or

not. Listing 3.26 shows an example use of xincod in Csound5. Here, the buzz

opcode is specified with an input argument specification of “xxkio”. During
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performance, at init-time, the buzz opcode’s init function performs a check

of xincod and caches whether its amp and cps arguments were set to a-type

arguments or not. At performance-time, the buzz opcode’s performance

function would first do a single calculation as-if an argument was a scalar

value (i.e, k- or i-type), but then check if arguments were a-type within its

performance loop and conditionally do further processing.

// Engine/entry1.c:399

{ "buzz", S(BUZZ), TR|5, "a", "xxkio", bzzset , NULL , buzz },

// rdorch.c:1945

// csound_orc_compile.c:313

if (tfound == 'a' && n < 31) /* JMC added for FOG */

/* 4 for FOF , 8 for FOG; expanded to 15 */

tp ->xincod |= (1 << n);

// H/csoundCore.h:115

#define XINCODE ORTXT.xincod

#define XINARG1 (p->XINCODE & 1)

#define XINARG2 (p->XINCODE & 2)

// OOps/ugens4.c:38

p->ampcod = (XINARG1) ? 1 : 0;

p->cpscod = (XINARG2) ? 1 : 0;

// OOps/ugens4.c:83

if (p->ampcod)

scal = *++ ampp * over2n;

if (p->cpscod)

inc = (int32)(*++ cpsp * sicvt2);

Listing 3.26: Use of xincod field in Csound 5
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In addition to xincod, type tracking was extended to use three other

fields: xoutcod, xincod_str, and xoutcod_str. Each of these were used as

bit-flags in the same way xincod was used. These fields were used to track

if output arguments were an a-type, or if input or output arguments were

S-types, respectively.

Analysis The system of xincod, xoutcod, xincod_str, and xoutcod_str

for tracking type information was useful for simplifying opcode writing. How-

ever, looking towards the future, the system of using bits and adding new

bit-flag fields per-type would not scale. If a developer wanted to add tracking

for new types, they would have to add new fields and add further code for

checking and setting bit-flags. Also, the bit-flag system required that the

system itself have prior knowledge of the type it was trying to track. This

would be an impossible situation to track types defined in a third-party plugin

using the new type system. Due to the limitations above, as well as the

difficulty in understanding the code, a new system was devised.

RTTI in Csound 6

In Csound 6.04, I introduced a new system for generic RTTI for any opcode

input or output argument. All bit-flags and tracking code were removed. In

its place, all variables used in Csound had their corresponding CS_TYPE set

in memory at a negative offset from the data pointer. This change affected

how memory was calculated and laid out for instrument instances as well as

how the Csound channel database was allocated and managed. Also, Csound

API methods were added to simplify interrogating an argument’s types.

A comprehensive discussion of memory layout for instruments, variables,

and opcodes was presented in [202]. That work was produced before this

85



work for RTTI was introduced. Figure 3.1 shows the layout of memory for an

instrument instance pre-Csound6. Memory is laid out in three main regions:

the instrument header (an INSDS data structure), the variable memory space,

and the opcode memory space. For instrument instances, the sum total of

variable memory for an instrument instance was previously calculated as total

of the sizes for each variable’s type. For example, k-type arguments are defined

as a single MYFLT instance.8 If an instrument had 3 k-type variables, each

instrument instance would allocate 3 * sizeof(MYFLT) amount of memory

for the variables used. The memory allocated for the variables would then

be partitioned with the address of each partition assigned to the input and

output argument pointers for each opcode instance.

Memory 
for 

Single 
Instrument 
Instance

Opcode Data Space

INSDS

VARIABLE

VARIABLE

VARIABLE

OPCODE

OPCODE

Variable Data Space

Instrument Header 
Data

Figure 3.1: Memory layout diagram for pre-RTTI Csound instrument instance.

With RTTI, the memory allocation strategy was modified to include an

additional sizeof(CS_TYPE*) for each variable. For the example above, the
8In Csound, MYFLT is a macro assigned to either float or double. This allows Csound

to be compiled to use 32-bit or 64-bit numeric floating point precision for processing. The

default for Csound 6 is to use double.
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memory allocated would be 3 * (sizeof(MYFLT) + sizeof(CS_TYPE*)).

Also, the process of dividing up the total variable memory for an instrument

instance consequently changed. The memory would now be interpreted as

alternating pointers to CS_TYPE and variable memory, as shown in Figure 3.2.

Memory 
for 

Single 
Instrument 
Instance

Opcode Data Space

INSDS

VARIABLE

CS_TYPE*

VARIABLE

OPCODE

OPCODE

Variable Data 
Space

Instrument Header 
Data

CS_TYPE*

VARIABLE

CS_TYPE*

Figure 3.2: Memory layout diagram for Csound instrument instance with

RTTI.

When assigning variable memory to opcodes, the system partitions the

variable memory space and casts the partitions to CS_VAR_MEM* pointers. The

members of the CS_VAR_MEM data structure, shown in Listing 3.27, are used

within the system to clarify the intention of the code and express how the

block of memory is being used. Casting memory as a CS_VAR_MEM does have

one drawback in that compilers may align data structure members differently

and introduce padding to the member data’s addresses. To deal with this

situation, a CS_VAR_TYPE_OFFSET is calculated in a low-level way to account
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for any potential alignment issues. The calculated offset can then be used to

find the address of the CS_TYPE for any given variable’s data pointer.

// include/csound_type_system.h:51

typedef struct csvarmem {

CS_TYPE* varType;

MYFLT value;

} CS_VAR_MEM;

// include/csound_type_system.h:54

#define CS_VAR_TYPE_OFFSET (sizeof(CS_VAR_MEM) -

sizeof(MYFLT))

// Top/csound.c:3747

/** Returns the CS_TYPE for an opcode 's arg pointer */

CS_TYPE* csoundGetTypeForArg(void* argPtr) {

char* ptr = (char*) argPtr;

CS_TYPE* varType = *( CS_TYPE **)(ptr - CS_VAR_TYPE_OFFSET);

return varType;

}

Listing 3.27: RTTI-related code in Csound 6

With the new RTTI system, opcodes read and write values to and from

arguments in the same exact way as before this work. For opcodes that did

not use RTTI, no changes were necessary. For opcodes that do use RTTI, the

information retrieved for an argument was no longer based on argument index,

but directly retrieved from the the data pointer for the argument using the

csoundGetTypeForArg() function (shown in Listing 3.27). The developer

would not have to remember which argument mapped to what index as they

would have with the bit-flag system; rather, he would just ask of Csound what
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is the type for the argument. This, together with looking at the CS_TYPE,

has arguably led to simpler and easier to read code.

The new RTTI system in Csound6 is a simpler, more robust, and more

extensible system than previous implementations. It provides a generic

solution to retrieve the type for any variable. All arguments for opcodes now

have their CS_TYPE available at runtime. Any new types will automatically

be used as part of the system, freeing developers to create opcodes that use

RTTI with new types without additional tracking work. Since 6.04, the new

RTTI system has been employed and the previous RTTI-related code is now

removed from the system.

3.2.6 Csound 6 Summary

In this section, I discussed changes to the design and implementation of the

Csound Orchestra language in Csound 6. The development of the new type

system, new implementation of opcode polymorphism, and runtime type

identification have helped to make the core of the language implementation

simpler to maintain and easier to extend. The extensions to function-call

syntax and introduction of array types have furthered the design of the

language and provided users with new ways to think about and write their code.

These changes not only provide new features: they also maintain backwards

compatibility with previous projects while also laying the foundation for

future language developments.
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3.3 Csound 7: New Parser, New Possibilities

In this section, I will discuss original work on the Csound Orchestra Language

design and implementation I have done as part of Csound 7 and this thesis.

This includes a new parser design, called Parser3, explicit types, User-Defined

Types (UDTs, or structs), and a new User-Defined Opcode syntax. For each

feature, I will discuss motivations, design, and implementation details. I will

discuss these features in terms of their design for extensibility and potential

impact.

While the features here are already designed and implemented, the final

forms of these features may change as Csound 7 is not yet released.

3.3.1 Parser3

Parser3 is a new parser design and implementation for Csound 7. It is based

on the NewParser that was introduced in Csound 5, using the same Flex and

Bison tools for lexer and parser generation. However, it takes a very different

strategy to parsing than the NewParser. This new strategy was designed to

address aspects of semantic analysis in the NewParser design that limited the

extensibility of the Csound Orchestra language. The following will discuss

motivations for pursuing a new parser design, followed by the design and

implementation of Parser3.

Motivations

The primary problem of the NewParser is that its design introduced some

aspects of semantic analysis early in the compiling process, specifically in the

tokenizing (i.e., lexing) step. These tokens then were used throughout the

Bison grammar for the parser with the result that, arguably, the grammar
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was overly complicated. As a result, implementing new language features for

Csound 7 was becoming difficult using the existing grammar.

The design of the NewParser originated in Csound5, where the initial

implementation was closely based upon the design and implementation of the

OldParser. With the Csound5 NewParser, semantic analysis and verification

were being done in various areas of the lexer, parser, and compiler. Following

the design of the OldParser allowed for easier verification that the NewParser

was generating equivalent results, as well as following the same rules, as the

OldParser.

In Csound6, the semantic analysis code that was found in the compiler

was separated out into its own phase, run after parsing but before compilation.

This was a marked improvement in the clarity of the compiler code and

simplified modification for both the analysis and compilation phases. However,

the semantic analysis of tokens to determine if they were things like opcode

names or reserved identifiers was still being done within the lexer. As a result,

the grammar of the parser was still defined in terms of the numerous tokens

generated by the lexer, which led to the writing of some complex rules.

The goal for Parser3 then was to continue the work started in Csound6

and to move all semantic analysis into the specific phase run after parsing.

Doing so would simplify the specifications for both the lexer and parser. That

in turn would make the parser easier to maintain as well as extend.

Implementation

The implementation of Parser3 moved all semantic analysis from the lexer

and parser into the semantic analysis phase. Changes were required in each

of those parts. They will be discussed individually below.
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Lexer Firstly, all lookup-related code was removed from the lexer. In the

NewParser, before any compiling was done, a special table was loaded that

contained a copy of all opcode names and whether they were T_OPCODE or

T_OPCODE0 token types. At parse time, any time an identifier was found

(identifiers are words made up of an initial letter, followed by zero or more

letters, numbers, or underscores), the lexer would first do a lookup in the

special table to see if it was an opcode. If so, the lexer would emit one of the

two token types found in the special table. If not, the lexer would emit the

token as just an identifier using the T_IDENT type.

For Parser3, the special table, the table initialisation code, and the opcode

lookup were all removed. Instead, when an identifier was found, it would

always emit a token with T_IDENT type. The rules in the lexer to identify

reserved identifiers (sr, kr, ksmps, nchnls, and nchnls_i) were also removed.

This removed all semantic knowledge about what an identifier meant from

the lexer.

Parser Next, the grammar was rewritten to use only identifiers. In the

NewParser, rules were written using the semantically aware tokens. It was here

that language ambiguities were also handled, which required knowledge about

the types of tokens. This wove together both recognition of the structure of

the language as well as the meaning of the language.

With the Csound Orchestra language, the language had known ambiguities

regarding opcode-call syntax. For example, if a line of text was found with two

words, such as “word word2”, it would be ambiguous whether the statement

was a word opcode with a single input argument word2, or if it was a word2

opcode with a single word output argument.
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With the knowledge of whether one of these words was an opcode name,

the ambiguity could be resolved. The NewParser then was able to generate a

single tree format for all opcode statements. Consequently, the NewParser’s

semantic analyser and compiler could treat all opcode statements in the same

way. While this worked to handle the ambiguities and simplify the compiler,

it also complicated the grammar.

For Parser3, the grammar was updated to reflect the changes from the

lexer. All rules were rewritten using only identifiers, which saw a number

of rules removed. However, parsing opcode-statements now required a more

complex set of rules (shown in Listing 3.28).

opcall : identifier NEWLINE

| out_arg_list expr_list NEWLINE

| out_arg_list '(' ')' NEWLINE

| out_arg_list identifier expr_list NEWLINE

;

Listing 3.28: opcall rule in Parser3

With the opcall rule, four different tree formats could be generated for

opcode calls, depending on the structure of the opcode call statement. opcall

became a sort of catch-all rule. It would still only match opcode-statements

that would be valid in the NewParser, so that aspect was not lost. However,

the generated TREEs for opcode-statements could not longer be used as-is by

the analyser or compiler.

Semantic Analyser In the NewParser, while opcode names were recog-

nised in the lexer, the actual lookup of the OENTRY for an opcode name

was not done until the semantic analysis phase. The OENTRY defines the
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opcode, including its input and output argument types. This information

was necessary only when verifying that opcode use was semantically correct.

In Parser3, the semantic analyser largely stayed the same with the ex-

ception of one additional step. Previously, when the analyser encounted an

opcode-statement, the TREE structures were all formed in the same way. Now,

when the analyser first encounters an opcode-statement, it will run a TREE

rewriting step to re-form trees into the same structure as was previously used

in the NewParser. With the addition of this disambiguation step, the rest of

the analyser could continue to function as-is, as could the compiler.

Note, the general algorithm applied in the TREE rewriting was designed to

follow the same exact process found in the NewParser. This reads through

the words found in the TREE, checks to see if they are opcode names, then

checks against the variable pools, and so on. By applying the same algorithm

here, the same process of disambiguation was successfully moved from the

lexer and parser to the analyser.

Summary

Parser3 provides a new approach compared to the NewParser. All semantic

analysis has now been removed from the lexer and parser and moved to the

semantic analysis phase. Resolution of language ambiguities present in the

Csound Orchestra language were consequently moved to a single location in

the analyser. Parser3 also remains backwards compatible with the NewParser,

meaning all previous code that could be processed with the NewParser is also

valid with Parser3.
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The result is that the lexer and grammar specifications have been simplified,

making them easier to maintain and extend by core developers. This work

would provide a foundation for other language developments in Csound7.

3.3.2 Explicit Types

Explicit types is a feature where one can declare the the type of a variable

separately from the variable’s name. The goal of this is to allow more

flexible naming of variables and to provide a mechanism for declaring multi-

character type names. The following will discuss motivations, design, and

implementation of explicit types.

Motivation

Prior to Csound 7, variable types could only be determined by the initial

character of the variable name, or the second letter if the first letter was a g,

denoting a global variable. For example, a variable with the name ivar would

be of i-type, and a variable with the name gkvar would be a variable of k-type.

This system of naming variables has similarities to the Hungarian Notation

system [162], but with an important difference: in Hungarian this system is a

convention, whereas in prior versions of Csound it was a requirement.

This system for naming variables has limitations. Firstly, a user could

not name a variable according to other conventions or tastes. Secondly, the

number of single letters that could be used as types had a fixed limit, as the

assumption was that only ASCII characters (a-z and A-Z) would be used.

Third, type names were not very descriptive. Using a for an audio signal may

be easy to remember, but using f for phase vocoder signals and w for spectral

signals may be less clear.
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Of these three drawbacks, the limited number of single-letters that were

available to name types posed the biggest challenge to the system’s extensi-

bility. Both users and developers should be free to create new data types for

Csound without having to worry about using up all possible type letters for

the future. The freedom to create new types in an expressive way was a major

concern when implementing user-defined types (discussed in Section 3.3.3).

Design

Explicit types separate the name and type of a variable into two distinct parts

when declaring a variable. Listing 3.29 shows an example use of explicitly

typed variables. The syntax defines an explicitly typed variable as one that

uses an identifier, followed by a colon, followed by another identifier. The

first identifier defines the name of the variable, while the second identifier

names the type of the variable.

;; Implicitly typed ival variable

ival = 2.0

aout = doSomething(ival)

;; Explicitly typed value variable

value:i = 2.0

aout = doSomething(value)

Listing 3.29: Explicitly typed variables in Csound 7

The use of explicit types is only necessary the first time the variable

is assigned a value. This kind of practice is also found in numerous typed

languages, such as C, C++, and Java (example shown in Listing 3.30). After a

variable’s type is determined the first time, subsequent lookups of a variable’s

type are done using the entry for the variable in the currently loaded type
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table while parsing. In Listing 3.29, the value variable is first explicitly typed

as an i-type variable on its first assignment. In the following line, the value

variable is found in the type table, and an i-type is used when resolving the

arguments to the imaginary doSomething opcode.

double ival = 2.0;

double [] aout = doSomething(ival);

Listing 3.30: Variable declaration and use in C/C++/Java

Implementation

Implementing explicit types required changes to the lexer, parser, and seman-

tic analyser. Firstly, a new rule called TYPED_IDENTIFIER was introduced.

This rule matches text of the format “identifier:identifier” and is shown in List-

ing 3.31. Next, the parser was updated to handle the new TYPED_IDENTIFIER

token. This was done in the out_arg rule, which means that typed identifiers

could now be used as output arguments (also shown in Listing 3.31).

// Lexer rule for typed identifiers

TYPED_IDENTIFIER

[a-zA -Z_][a-zA-Z0 -9_]*:[a-zA -Z_][a-zA-Z0 -9_]*

// Parser3 rule for out_arg

out_arg : identifier

| typed_identifier

| array_identifier

| array_expr

| struct_expr

;

Listing 3.31: Lexer and parser changes for typed identifiers
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Finally, the semantic analyser was modified to check for typed identifier

output arguments. For output arguments, the analyser would already check

if a variable was registered in the type table. If not, it would previously

determine the argument’s type using the first or second letter as well as check

if it was an array or not. That code was then modified to first check if the

argument was a typed identifier. If a typed identifer was found, the left-side

of the colon would be used as the variable’s name and the right-side would be

used as the variable’s type. From here, processing continued as it had before

and identifier lookups in the type table would now find the name used with

the typed identifier.

Summary

Explicit types were implemented for Csound7. They provide greater flexibility

for users to name variables as they wish, without requiring that the variable’s

type be part of the name. Additionally, as the variable’s type was separated

out from the name, the type name could now be of any length. This would be

important for implementing and using User-Defined Types (Section 3.3.3) and

the new UDO syntax (Section 3.3.4). Finally, the change was implemented

as a new option for declaring types, and the previous method for determining

types from variable names was retained, thus providing complete backwards

compatibility.

3.3.3 User-Defined Types: Structs

User-Defined Types (also called structs in Csound) are a feature that allows

users to define their own data types using Csound Orchestra language code.
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This provides extensibility within the language for the user to create new

kinds of data and signals for processing.

Motivation

In Csound6, the new type system (described in Section 3.2.1) provided

concrete type definitions. For core developers, it clarified both definition and

internal use of type-related code. For third party developers, it made data

types extensible, providing a systematic way to define and introduce new

types.

For Csound7, the ability to define types is extended out to users and

implemented as structs. The goal of this is provide users with the same ability

to create their own signal representations that developers received in Csound6.

This permits new kinds of research to be done by users.

Design

In Csound 7, user-defined types are called structs. They are based on C’s

concept and implementation of structures, which are defined using the struct

keyword. Kernighan and Ritchie define structures in C as:

a collection of one or more variables, possibly of different types,

grouped together under a single name for convenient handling.

(Structures are called “records” in some languages, notably Pascal.)

Structures help to organise complicated data, particularly in large

programs, because they permit a group of related variables to be

treated as a unit instead of as separate entities.9

9Chapter 6 - Structures, page 103. [99]
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Like C, Csound structs are defined in terms of other existing types. They

may use natively-defined types (such as a-, k-, and i-types), arrays, as well

as other defined struct types. Structs in Csound can also be used with arrays,

such that one can define an array of structs.

struct TypeName varName1 , varName2 [, varName3 ...]

Listing 3.32: Csound struct syntax

Listing 3.32 shows the syntax for defining structs in Csound Orchestra

code. The user defines a struct type by using the struct keyword, followed

by the name of the type, then a comma-separated list of members of the

structure. As in other areas of Csound, struct member variables are typed

using the same implicit or explicit type rules as other variables. Listing 3.33

presents a sample definition of a complex number type using explicitly-typed

variables.

struct ComplexNumber real:k, imaginary:k

Listing 3.33: Csound struct example: ComplexNumber

Using Structs Defining a struct registers the data type with Csound’s type

definition table. Once registered, users can write code that creates instances

of the struct, read from and write values to the struct, as well as use the

data type as arguments in UDOs. Listing 3.34 shows these various facets in

use. (Note that the opcode definition here uses the new-style UDO syntax,

discussed in Section 3.3.4.)

struct Rectangular x:i, y:i

struct Polar R:i, t:i
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opcode to_polar(num:Rectangular):( Polar)

ipolarR = sqrt(num.x ^ 2 + num.y ^ 2)

ipolart = taninv2(num.y, num.x) * (360 / (2 * $M_PI))

retVal:Polar init ipolarR , ipolart

xout retVal

endop

instr 1

r:Rectangular init 1.0, 0.5

polar:Polar = to_polar(r)

print polar.R ; 1.118

print polar.t ; 26.565

endin

Listing 3.34: Csound struct usage example

In the example, the to_polar UDO takes in a single argument called num

of type Rectangular. A variable called retVal of type Polar is initialised

using values that are calculated using the x and y members of the passed

in num. The syntax to access member values of a struct variable follows the

same syntax as C, using the variable’s name, followed by a period, followed

by a member name. In the example, num.x and num.y are used to read the x

and y member values from the num variable.

Implementation

Implementing structs in Csound required modifications to the parser, semantic

analyser, compiler, and engine runtime. Also, new type system related code

was required, which will be described below. For the parser, new rules
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(shown in Listing 3.35) were added to Csound’s grammar for processing struct

definitions and member access. The struct_expr rule was also added to

rules for input and output arguments (not shown).

struct_definition : STRUCT_TOKEN identifier struct_arg_list

;

struct_arg_list : struct_arg_list ',' struct_arg

| struct_arg

;

struct_arg : identifier

| typed_identifier

| array_identifier;

struct_expr : struct_expr '.' identifier

| identifier '.' identifier

;

Listing 3.35: Struct-related grammar rules

Next, the analyser was modified for processing struct definitions. When a

definition is found, a new CS_TYPE is generated and registered with the type

system, and a new init opcode OENTRY is synthesised and registered. Once

the type is registered, it can be understood by the rest of the system and

used for variable declarations, UDOs, etc. The init opcode is what allows

users to create new instances of the struct.

For the generated CS_TYPE, the members in the struct definition are parsed

and added to the type definition’s members field as a list of CS_VARIABLEs.

The variables define both the name and the type of the member.
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Other type-related functions for CS_TYPE, copyValue and createVari-

able, are written in a generic way. They receive both the CS_TYPE and the

memory allocated for the variable. When structs are copied or newly created,

these functions reference the member variables from the CS_TYPE to perform

their processing with the variable memory.

typedef struct csstructvar {

CS_VAR_MEM ** members;

} CS_STRUCT_VAR;

Listing 3.36: C data structure for Csound struct variables

Listing 3.36 shows the C data structure used for Csound struct variables.

When a new Csound struct variable is created, the size to allocate for the

variable will be calculated from the sizes of the members defined in the

CS_TYPE. This uses the CS_VAR_MEM data structure so that the CS_TYPE for

each of the members precedes its variable data, which allows RTTI to function

with struct member data.

For struct member access, they are treated specially. For the analyser, the

information from the struct member’s type is used for semantic verification. In

the compiler, the member access is converted into a special address notation.

At runtime, when an instrument instance is created, the notation is used to

find the location in memory for the specified member. The process starts at

base struct’s address, then navigates using the notation to find the specific

member’s address using the members field from CS_STRUCT_VAR. The result is

that when struct members are used with opcodes, the data pointer set for the

opcode is the direct location for the member. This implementation adds a

small cost at initialisation time to find the correct data address; however, this
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adds no additional opcode calls at runtime to retrieve or set values within

the struct.

Summary

Structs provide a user-extensible way to introduce new data types into Csound.

The syntax for definition and usage were modeled upon C’s syntax and

semantics for structures. The implementation provides efficient runtime

characteristics as no additional opcode calls were necessary. The result is

that users can now do new kinds of research and musical work with Csound

that requires new data types.

3.3.4 New User-Defined Opcode Syntax

The new-style UDO syntax provides an alternate way to define UDOs from

the previous system (here called “old-style UDO”). This was done to work

with explicit types and structs, which the older-style UDO syntax could not

accommodate.

Motivations

With the introduction of the new type system in Csound6 and structs in

Csound7, the old-style UDO syntax presented problems for defining arguments

with multi-character type names. Listing 3.37 shows an example of old-style

UDO syntax. Input and argument types are given as a series of single-letter

types, using one letter per argument.

opcode myAdd , k, kk

k1 , k2 xin

kval = k1 + k2
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xout kval

endop

Listing 3.37: Pre-Csound 7 UDO definition

Attempting to extend the old-style specification would have been awkward

at best. Listing 3.38 shows some possible approaches to extend the old-style

syntax. Note that each form requires a special start character to determine

when a possible multi-character type started, and a special end character to

determine when the type name ended. Arguably, these alternatives are not

very easy to read or understand.

opcode my_opcode , a'MyType;kk, a

...

endop

opcode my_opcode , a"MyType"kk, a

...

endop

opcode my_opcode , a:MyType;kk, a

...

endop

Listing 3.38: Possible alternate syntaxes for old-style UDOs

Also, another problem with old-style UDOs is that the argument specifi-

cation is done using text instead of a quoted string. Because of this, special

lexer and parser rules were required to handle the case of UDO argument

specifications. This made the lexer and parser rules for UDOs awkward to

extend.
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Design

The design of new-style UDOs took into account both the requirements for

multi-character type names as well as conventions found in other programming

languages. Listing 3.39 shows examples of a myAdd function in C/C++/Java

and Pascal. Like Csound, these are statically typed languages; they all share

a common approach to function definition. Input arguments for a function

are listed with both the name of the input argument as well as its type.

For output arguments, these languages specify only the types of the output

arguments, but not names.

// C, C++, Java

float myAdd(float k1 , float k2) {

return k1 + k1;

}

{ Pascal }

function myAdd(k1, k2: real): real;

begin

myAdd := k1 + k2;

end;

Listing 3.39: Function definitions in various programming languages

In the C/C++/Java example, float is specified as the output argument

type, then the myAdd function name is given, and float k1 and float k2

are specified in a comma-separated list within parentheses. In the Pascal

example, k1 and k2 are declared as input arguments with the real type, and

the output argument type is also specified as a real. Note that the type

of the value returned from the function, as specified in the return line in
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the C example and with the myAdd := statement in the Pascal example, is

type-checked to agree with the specified output type.

A new syntax was developed for Csound 7 to accommodate types that are

longer than one character in length. An example of this syntax is presented

in Listing 3.40. This syntax shares common properties found in the examples

in Listing 3.39: input arguments are given as a list of names together with

their types, and the output types are specified without names in a second

list. Because Csound allows for returning multiple values from an opcode, a

single output type-specifier was insufficient to accommodate Csound opcode

definitions. Consequently, a list within parentheses was used.

; void return

opcode no_return(k1 , k2):void

endop

;; Single k-type return

opcode myAdd(k1 , k2):k

endop

;; Empty return , equivalent to void

opcode myAdd(k1 , k2):()

endop

;; Single k-type return

opcode myAdd(k1 , k2):(k)

endop

;; Multiple type return

opcode myAdd(k1 , k2):(k, a, Rectangular , Polar)
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endop

Listing 3.40: Csound 7 new-style UDO definitions

The new-style UDO syntax was chosen to look similar to function definition

forms found in other languages. It also adds the ability to specify both

argument names and types. In Listing 3.40, the input arguments are specified

as simply k1 and k2, but in Listing 3.34, the to_polar opcode takes in an

argument of num:Rectangular, using an explicitly-typed variable name.

The practice of defining variable names for input arguments follows the

same conventions for variable names found elsewhere in the Csound Orchestra

language. Users can choose to use non-qualified variable names, falling back

on the first-letter rule to determine the type of the variable, or use the

name:type convention to explicitly give the type for the argument. It is the

latter convention that allows for variables to use multi-character type names.

The types listed for the output argument of new-style UDOs can be of

three forms: a single output type, a comma-separated list of output types

within parentheses, or the word void, which denotes no return arguments.

Of the three, the parentheses form is the standard practice, as it is generic

and works with zero, one, or multiple return types. The void and single-arg

forms are therefore syntactic sugar for quicker and easier reading and writing.

Implementation

Implementing new-style UDOs required changes in the lexer, parser, and

semantic analyser. For the lexer, the only new requirement was for a new

VOID_TOKEN type that would match the word void. For the parser, the

existing udo_definition was augmented to include the new-style UDO

syntax, and additional rules were added for the input and output argument
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lists for new-style UDOs. The code for the grammar changes are shown in

Listing 3.41.

udo_definition : UDOSTART_DEFINITION identifier ','

UDO_IDENT ',' UDO_IDENT NEWLINE statement_list

UDOEND_TOKEN NEWLINE

| UDOSTART_DEFINITION identifier udo_arg_list

':' udo_out_arg_list NEWLINE statement_list UDOEND_TOKEN

NEWLINE

;

udo_arg_list : '(' out_arg_list ')'

;

udo_out_arg_list : '(' out_type_list ')'

| VOID_TOKEN

;

out_type_list : out_type_list ',' out_type

;

out_type : identifier

| array_identifier

;

Listing 3.41: New-style UDO grammar rules

Finally, two changes were made to the semantic analyser. Firstly, internal

representations of opcode argument specifications were modified to allow

multi-character types by using delimiters. The form used was the one shown

in the last example in Listing 3.38, using a colon and semi-colon as start

and end delimiters. While this would have been awkward for users to use,
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using it internally would have no impact on the user. This approach was

taken as all opcodes, including native ones, ultimately hold their input and

output arguments in strings. Updating the code that parses argument strings

and adding delimited multi-character types was vastly simpler than trying to

change argument specifications for all opcodes.

Secondly, when the analyser encountered a new-style UDO, it would first

rewrite the TREE. The analyser would look at all input arguments and their

types, generate an input argument string, and generate an xin opcode call. It

would then look at the specified output argument types, generate an output

argument string, and verify that a type-appropriate xout opcode call was

found. Finally, the input and argument type strings were appended to the

UDO TREE.

By the end of the TREE rewrite process, the UDO TREE would be in a

format compatible with the old-style UDO format. From here, semantic

analysis and compilation for UDOs proceeded as before.

Summary

Csound7 provides a new-style UDO syntax that is designed to work with

multi-character type names. This allows UDOs to work with structs and is

enabled by the use of explicitly typed variable names. The new syntax lets

users specify input arguments and types together, rather than specifying types

in one place and arguments by name in another, as was done with old-style

UDOs. Finally, the new-style UDO syntax is arguably simpler to read and

write, and uses a familiar design found in other programming languages.

110



3.3.5 Csound 7 Summary

In this section, I discussed changes to the design and implementation of the

Csound Orchestra language in the upcoming Csound 7. The new Parser3

design provides a revised approach to semantic analysis in the compiler that

simplifies the lexer and parser, a change which facilitates new language design

work. This work in turn was the foundation for the implementation of explicit

types, User-Defined Types, and the new User-Defined Opcode syntax. With

explicit types and new UDO syntax, the user is provided with more expressive

ways to define their code. With UDTs, users are given a completely new way

to extend their work by defining new data types in Orchestra code. These

features build upon the work of Csound 6 and continue the evolution of the

Csound Orchestra language.

3.4 Conclusions

In this chapter, I have discussed new work for this thesis that further developed

the extensibility of Csound’s language for both users and developers. In

Csound 6, I introduced a new type system that made defining Csound data

types an explicit operation, organised code related to types, and clarified

the use of types within the Csound system. I extended the function-call

syntax and implementation of opcode polymorphism, which led to a new

way for users to express their code using a more functional programming,

expression-based style. Finally, I implemented generic arrays, offering a new

data type for opcode writers and users to use. This provided new ways to

write things such as multi-channel audio code.
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In Csound 7, I introduced a new parser design called Parser3. This moved

all semantic analysis into its own phase and simplified the lexer and parser

specifications. This work would simplify three new language developments.

Firstly, explicit types provided a new syntax that freed the user to define

variable names without restriction; it also enabled definition of variables using

multi-character type names. Secondly, User-Defined Types allowed users to

define their own data types using the Csound Orchestra language. Finally,

the new-style UDO syntax provided a clearer way to define UDOs that would

work together with UDTs and explicit types.

The work presented has contributed to the evolution of the Csound

Orchestra language in Csound 6 and in Csound 7. It has extended both the

design and implementation of the language as well as provided developers

with new ways to do the same. It has given users new ways to write their code

as well as new ways to extend the system themselves. These changes have

all been additive and preserve backwards compatibility. Thus, the history of

Csound-based work has been preserved in the context of an active and living

system.
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Chapter 4

Extending the Reach of Csound

This chapter will discuss platform extensibility : extending the use of music

software by porting it to other platforms. It will begin by looking at properties

of cross-platform software and employing dependency analysis to understand

the challenges of platform extensibility. Next, it will analyse portability in

existing computer music systems. Afterwards, the CsoundObj Application

Programming Interface (API) will be presented, designed to address the

conflicting goals of project portability, which requires feature parity on each

platform, and utilisation of novel features, which are by definition unique to

each platform. The chapter will then look at work in extending Csound [35]

to three new platforms: iOS, Android, and the Web. Finally, various case

studies of software that uses Csound on these new platforms will be presented.

The chapter conclusion summarises the value of platform extensibility.

Much of this work has been presented by the author in [203], [111],

[109], [107], [108], and [98]. The work was done in collaboration with Victor

Lazzarini, John ffitch, and Edward Costello. My own original work for this

thesis includes designing the CsoundObj API, creating the Android and
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iOS Examples projects, and researching and setting up toolchains and build

scripts for iOS, Android, and Emscripten versions of Csound. The following

will cover lower-level design decisions and look at the work in the context of

extensible systems.

4.1 Overview

Csound has long been a cross-platform program, running on desktop, laptop,

server, and embedded devices. Using standard cross-platform build techniques

and coding practices, the Csound program has grown over time to adapt

to work on many systems. With each new platform comes new challenges

to assumptions held within the code and build system, and changes to the

system in response to those new challenges.

Developing programs to support multiple platforms brings numerous

benefits. It keeps the programs alive when platforms become obsolete. It

allows users to take advantage of new features on new platforms, while

leveraging their pre-existing knowledge and experience. It lets the works of

the past function in the musical world of today and provides a means to

directly explore the history of practice for a music program.

4.2 Platform Extensibility and Cross-platform

Development

One of the primary facets of evaluating music systems today involves ex-

amining the platforms on which these systems run. Understanding the

platform-specific features that programs require gives a picture of how dif-
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ficult it may be to move that software to new platforms. This affects not

only the portability of the program itself but also the projects that users can

create using that software. Additionally, dependencies on specific features

may also impact the program over time on the same platform as the platform

itself evolves.

In the early days of computer music, the Music-N family of systems was

often defined by the very platform that these systems ran on (e.g., MUSIC

360 and the IBM 360, Music 11 and the PDP-11). These systems shared a

common history and similarities in design and features. However, the small

differences between systems – such as what unit generators were available and

differences in language syntax – meant there were incompatibilities between

each program. As the software was intimately tied to its platforms – such as

Music 11 using assembly language that only worked with PDP-11 machines –

the software was not portable, nor were the projects created with it. Users

would have to port their own projects when moving from one system to the

next.

Later, as the world of computing evolved and higher-level languages and

their compilers developed, it was possible to create cross-platform programs

that could be compiled and run upon different platforms.1 Using a single

codebase, together with build-time and compile-time configuration, a cross-

platform application or programming library could be made.

The benefits of cross-platform programs can be understood in a few ways.

Firstly, extending a program to a new platform may be an act of preservation,

both of works and of workflows. By extending a program to new platforms,

existing works and knowledge can continue to function in a living context,
1By higher-level, I am referring to languages that do not map directly to machine code,

but instead offer more structured programming constructs. For more information, see [134].
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even if a prior supported platform becomes obsolete. Secondly, supporting new

platforms extends the usability of the program. A user can learn the program

on one system, but employ it on multiple platforms. Users may then take

advantage of unique features specific to each platform, but still reuse existing

knowledge and experience using a portable program. Finally, supporting new

platforms can be viewed as a means to take advantage of new developments

in hardware. In this regard, users may not gain new features, but do gain

in potential performance improvements. The following will explore what is

necessary to develop cross-platform music software. The work will begin by

discussing the general process for developing software for a single platform.

Next, it will look at cross-platform software and develop a framework for

evaluating program requirements as a graph of dependencies that must be

satisfied for the software to operate. The practice of dependency analysis will

be further extended to users’ projects written with that software. Finally, the

concepts discussed will be applied to analyse Csound and related projects.

4.2.1 Single-Platform Software Development

Developers create software that users use on a target platform. A platform

is a general term used to describe the environment where programs are

executed. The term may be refer to technologies such as operating systems

(e.g., Windows, Linux, OSX), interpreters (e.g., Java, Ruby, Python), and

hardware (e.g., Intel or ARM CPUs). From the perspective of the software

developer, a platform defines both what software (i.e., libraries and and

executables) and resources will be present for their own software to use, as

well as what format their software must be in to operate on that platform. For

example, on the Windows platform, a native application can utilize Windows-
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provided libraries to access hardware features, and the application must be

compiled into the Windows binary executable format for the platform to run

the application.

Developers create and use source files to define their programs. Source files

can be classified as code (i.e., text files written in a programming language)

or resources. Code defines a program’s operations and resources are used at

runtime by the program as a source of data. The software may be completely

defined by its source files, or it may require features provided by libraries

or executables — whether they are provided by the target platform or by a

third-party. The libraries and executables that a program requires are called

the program’s dependencies.

The format for source files may or may not be the in same format required

for execution. The source and target formats will be the same when the

target platform can interpret the source code at execution time. For example,

when developing software for Web Browser platforms (e.g., Chrome, Firefox,

Safari), developers might write their applications using HTML, Javascript,

and Cascading Stylesheet (CSS) code files. Users operating their browsers

will execute the developer’s software by loading in the source code.

When a platform requires a format that is different from the source code,

developers will employ various tools (i.e., executable applications) to translate

(i.e., compile or build) the source into the target format. The build process

may be as simple as a single application of a tool (e.g., using a C compiler with

C source files to generate an executable application) or may be an application

of multiple tools organised into a processing network. In a more complex

build, one tool may process one-to-many inputs and generate one-to-many

outputs, and the outputs may be further processed by other tools.
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Compile with 
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Generated C 
Source Files

Compile with C 
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Library File
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Source Format Build Target Format

Library Files

Figure 4.1: libcsound build process

Figure 4.1 shows an example of the build process for Csound’s main library,

libcsound. Data icons represent concrete files, rounded rectangles describe

processing by tools, and arrows denote the flow of processing, starting from

the source files on the left and ending with the libcsound library on the

right. The first step involves the compilation of Flex and Bison grammar

source files to generate C source files. The generated files are next compiled

together with other developer-written C source files to produce objects files

that contain native machine code. The final step uses a linker tool to join

together the various objects files and either statically link in machine code

from static libraries, or create dynamic (i.e., run-time) links to dynamically-

loaded libraries, depending upon the link configuration set for the build. The

end result of the process is a library file in the format of the target platform.

After building a program, developers may further package and deploy a

program to release it to users. Figure 4.2 illustrates a typical release process

for desktop and mobile music applications. Packaging tools are used to create

packages (i.e., archive files in a specific format) or installers (i.e., executable

applications) that include programs and resources (e.g., documentation, icons).

The packaging artifact is then deployed (i.e., pushed) to a public server to

make the software available for users. The deployment process could be a
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Figure 4.2: Software release process

manual one where a developer uploads a file to a publically accessible web

server, but it may also be an automated one involving its own set of tools.

Users then download (i.e., pull) a released program and install the package,

making the software available for use on their system.

The complete set of tools used for building, packaging, and deploying a

program is called the toolchain for the program. Developers may operate

the individual tools manually to transform code, but more often they will

automate various processes using a build tool. Build tools use some form of

build file (i.e., project or script file) that describes what are the source files for

the program, what tools are used for transformations, and what is the order

of operations required to build the software. Build tools may be stand-alone

programs (e.g., Make) or be an included feature as part of an Integrated

Development Environment (IDE) (e.g., Xcode, Visual Studio). Build files will

typically group sets of operations into targets that perform build, package,

deployment, and other tasks. Targets may have dependencies upon other

targets. For example, if a user executes the deployment target, the build tool

may first package the application, which itself may require building all build

targets.
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The general process of developing software for a single platform involves

the application of a toolchain to transform software from its source files to

a target format. Build tools organise and operate the toolchain to create

the end program. The build and release processes described above are only

examples of what may be done. Other software may require more complex

processes employing many more tools, libraries, and steps to build and deploy

the program. Other platforms, such as web browsers, may have different

execution models that would make installation to a server a part of the

developer’s deployment process and delivery to the client as part of the

execution process. The software development process is customised for each

program and each target platform. The process for building software for

multiple platforms builds upon the practices of single-platform development

by specifying toolchains and processes for each platform, further described

below.

4.2.2 Cross-platform Software and Projects

Cross-platform software is one that uses the same source files to produce

programs for multiple target platforms. Each platform has its own set of

available libraries, tools, and resources that may intersect, or be completely

disjoint, with those found on another platform. As a result, the toolchains

and software development processes (i.e., build, packaging, deployment) for

each platform may share much in common with, or be completely unique

from, each other.

Developers must make a choice as to how to adjust to each platform

difference, identifying those features within their program that are required

and those that are optional. Depending upon what a platform supports,
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programs may not be able to run at all on a given platform if all of their

required features are not supported, even if all optional features are available.

The degree to which a program is cross-platform has a direct impact on the

portability of projects used with the program. If all of a program’s features

are available on all supported platforms then the projects for that program

will be completely cross-platform. If the software allows for partial cross-

platform compliance then the user must decide whether to take advantage of

platform-specific features; the risk is that their work may then operate only

on a subset of available platforms.

Cross-Platform Application

Core Features
Optional 

Features A Core Features
Optional 

Features B

Project B (Only Platform A)

Cross-Platform Application

Platform BPlatform A

Project A (Cross-Platform)

Figure 4.3: Project and Program Dependencies

Figure 4.3 illustrates the dependencies of two different projects upon

a cross-platform program with optionally supported features. For Project

A, which only has a dependency on the Core Features, it is able to run

on both Platform A and Platform B, where the Core Features are equally

available. However, for Project B, which depends on both the Core Features

and Optional Features A, it is only possible to use this project on Platform A.

While Platform B offers the Core Features, it does not offer Optional Feature

A, and thus Project B cannot run as its dependencies have not been satisfied.
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Ultimately, the process of making software cross-platform is an exercise in

understanding completely the program’s dependencies. Similarly, a user who

wants to work across platforms must perform the same task of identifying

the project’s or work’s dependencies. The following will discuss dependency

analysis. Afterwards, techniques will be described for dealing with those

dependencies when moving across platforms.

4.2.3 Analysing Dependencies

Programs have dependencies that must be satisfied for them to build and

run. For programs that require building, all of their required build-time

dependencies must be satisfied to compile the program. Examples of build-

time dependencies may be the presence of particular programming libraries,

a certain operating system, or specific build tools.

For a program to run, all of its run-time dependencies must be satis-

fied. Examples of run-time dependencies include the presence of specific

dynamically-linked libraries,2 as well as the presence of certain CPU features.

For example, if a program is compiled to use AVX instructions, it will run

only on hardware platforms where the CPU supports those instructions.

Dependencies may be abstract. It is possible that more than one program,

library, or tool may satisfy a program’s requirements. For example, a program

written in C may compile using the GCC and Clang C-language compilers

but not with the Microsoft Visual C (MSVC) compiler. In this scenario,

the tool dependency is satisfied with the first two options but not the latter.
2Dynamically-linked libraries are linked into the program at runtime, as opposed to

statically-linked libraries, which are linked and permanently compiled into the program at

build-time. For further information, see [113].
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Another example is a program that may have been compiled using version 2.0

of library X but only version 2.1 is available on the system. However, version

2.1 of the library may be backwards compatible with 2.0, and thus may be

used to satisfy the dependency. In these cases, the abstract dependency has

been satisfied by a concrete implementation.

Library A

Music Program

Library B

Library DLibrary C

Figure 4.4: Example dependency graph

A software’s network of dependencies can be organised into a directed

graph. Figure 4.4 shows an example graph representation for a music program.

Here, the program depends directly on Library A and B. In turn, Library B

depends on C, and both Library A and B depend on D. Here, Library C and

D are called transitive dependencies of the music program.3

For developers, dependency analysis aids in seeing a complete picture of

what is required to build and run a program. Dependency analysis of their

works can be a beneficial practice for users as well. For example, if a user

creates a real-time music work, they may use Software X, Plugins Y and Z,
3For further discussion of transitive dependencies, see [127, 3.4 Project Dependencies].
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and Hardware A and B. Like the developer, the user has to account for each

one of these dependencies to reproduce the work. Users must understand

that when they use multiple applications and plugins together the overall

robustness of the project – its ability to load and operate as originally intended

over time – is directly related to the work’s dependency graph.

4.2.4 Moving Across Platforms

Moving a program to a new platform involves identifying all dependencies

and satisfying them. Some dependencies are already known from previous

platforms. In these situations, finding a compatible version is all that is

required.

However, sometimes new dependencies are discovered. This can be an issue

when an assumption about the software becomes invalid in a new context. For

example, as discussed in Section 4.5.1, the ability to dynamically load plugins

was an assumption that was a part of Csound’s architecture. This assumption

was invalid when moving Csound to iOS where no plugin loading is allowed.

The ability to load plugins was then recognized as a new dependency. In this

situation, the dependency was made optional, and an alternative architecture

for building Csound-based applications was developed (see CsoundObj in

Section 4.4).

Software must be able to adapt to differences between platforms. This is

usually done through a mix of build configuration and conditional compile-

time checks. For build configuration, developers may use multiple build files

for each platform or employ a configuration tool, such as Autotools [41] and

CMake [120], to interrogate a platform and generate customised build files

for the platform. Configuration tools will report to developers when required

124



dependencies are missing and the build process is unable to continue. For

optional dependencies, the tools will write a configuration file (i.e., a generated

source file) or in some way communicate what was found to the building

program. Also, the person using the configuration tool may have options to

explicitly enable or disable features.
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Figure 4.5: Cross-platform configuration and build

Figure 4.5 illustrates the process of using a configuration tool for cross-

platform development. Source files written by developers are shown as data

icons in the top swim-lane. The builds for Platform 1 and 2 both begin by

using a configuration tool to process a configuration source file. The tool

interrogates the platform and generates source files (e.g., a configuration
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header file) as well as a build file. Next, the developer uses a build tool on

each platform to build the program using shared, generated, platform-specific,

and feature source files. The configuration tool determines the exact set of

source files to use to build the program on each platform. In this example, the

source code for Feature A is included as part of the build only for Platform 1,

but not for Platform 2. This illustrates a case where an optional dependency

was found on one platform but not on another, and, consequently, a feature

in the program was enabled for only one platform.

Once a build starts, program code can be written to check the results of

the configuration. The code can conditionally enable or disable parts of code

using that information. The use of these compile-time configuration checks

are an an additional cross-platform development technique to the conditional

inclusion of source files described above. By using a mix of configuration and

compile-time checks, programs can be made to adapt to the software and

resources found on a platform.

As a general rule, the greater the number of dependencies, the more

difficult it is to adapt software to new platforms. This rule also applies to

users’ works and the software used to create them. Minimising the number

of dependencies and requirements when developing software and works is a

good practice for increasing robustness and platform extensibility.

By looking at the graph of required dependencies for a software, one can

see what must be satisfied when moving a software to run on another platform.

By looking at the optional dependencies that are available, one can see how

much of a software is cross-platform. The degree of platform-dependent

features used therefore determines the portability of a user’s work.
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4.2.5 Summary

This section discussed aspects of cross-platform development to consider for

software and works. Using dependency analysis and considering all transitive

dependencies can help show what must be accounted for when moving to new

platforms. Using configuration and compile-time conditional checks can make

software adapt to each unique situation. These tools can aid in making more

robust software and help preserve users works over time.

4.3 Related Work

Many computer music systems today are cross-platform, though some are

more amenable to porting to new platforms than others. The following will

provide an analysis of SuperCollider 3 [123] and Pure Data [148]. These

systems are actively developed and used, open-source, and cross-platform. I

will look at their dependencies as well as various aspects of their architecture

and design that contribute to their platform extensibility.

4.3.1 SuperCollider 3

SuperCollider 3 (SC3) is a computer music language and audio engine server.

Originally by James McCartney, it is now developed and maintained by a

community of developers and users. The code for SC3 is written in C++. It is

available and primarily used on Linux and OSX operating systems; Windows

versions are also available.4 A version of SC3 is available on Android [161],

though it uses its own version of SC3 code that is a separate fork from the
4Windows versions were not always available for SC3. However, the latest stable release,

3.6.6, does provide a Windows installer.
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main project. The codebase for SC3 includes a README_IPHONE.md file for

building SC3 for iOS, but the file has not been edited in years and refers to a

directory for iPhone-specific code that does not exist. A separate version of

SC3 for iOS [189] is available, though it does not appear to be maintained at

this time.

Required

• Tools

– C++ Compiler (GCC 4.7+, Clang, Intel C++ Compiler, MSVC).

– CMake.

• Libraries

– Boost.

– Pthreads (non-MSVC platforms).

– yaml-cpp (falls back to version in SC3 source tree).

– Audio API (either CoreAudio, JACK, or PortAudio, depending

on platform).

– QT 5 (for SC-IDE).

Optional

• Libraries

– FFT Library (VDSP or FFTW3, falls back to fftlib.c by John

Green, provided in SC3 source tree).

– libsndfile.

– libavahi (for non-OSX platforms).

Figure 4.6: SuperCollider 3 Dependencies
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Figure 4.6 shows a basic breakdown of SC3’s dependencies for a typical

build of SC3. This includes the sclang and scsynth modules, as well as the

SC-IDE GUI application. SC3 uses the CMake [120] configuration system,

which in turn generates build files for various other build systems. SC3’s

build system is fairly flexible; some required dependencies are made such that

they can use a version available on the system if found, or otherwise fall back

to one provided within the SC3 source-tree.

Looking at the dependencies, the ones that are truly third-party libraries –

such as Boost, QT, and libsndfile – are readily available across most platforms.

Others – such as VDSP, FFTW3, and libavahi – are platform dependent, but

may be optionally used. Overall, the build system and source of SC3 has

developed over time to adapt well to new platforms.

The typical SC3 user writes SuperCollider code, using SC-IDE or other

code editing environment (e.g., Emacs, Vim). In turn, the code is then

evaluated by an interpreter, sclang, which parses and compiles the code into

OSC messages. These messages are then sent to the SuperCollider engine,

scsynth.

A developer can compile and use scsynth as a library. Using C++ code with

the library, developers can create and embed an SC3 engine (called SCWorld)

into their application. The public functions for SC_WorldOptions.h only

provide few options for working with the engine, mostly starting and stopping

an engine, and sending OSC messages to it. Use of the library is not typical

for third-party application makers and its availability is not well publicized.

For third-party developers, a more typical design uses the standard sc-

synth server executable in a separate process, then communicates with the

application via OSC over TCP or UDP network protocols. This allows users
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to use the SuperCollider language and sclang to work with SC3, or use a

completely different front-end language that is able to communicate with

scserver using the same messages and protocols as sclang.5

Like Csound and PD, SuperCollider provides developer extensibility in

the form of shared-library plugins.6 The plugins may include their own

dependencies outside of those found already in SC3. Users using features

provided in plugins must account for each plugin’s degree of portability when

evaluating the portability of their own work.

Overall, SC3 has good platform extensibility. Its codebase is in C++ which

is well-supported across many platforms. It is currently actively supported on

desktop operating systems and embedded systems. While the main repository

does have support for Android and iOS, these do not look to be standard

build targets as part of the standard release process.

4.3.2 Pure Data

Pure Data (PD) is primarily known as graphical computer music system. A

version of PD called libpd is available that runs PD patches but does not

provide a graphical user interface. The engine code for PD is written in C,

while the application code is written in TCL, using the TK user interface

library [45].

In terms of platform extensibility, there are two aspects of PD: the runtime

audio engine and the graphical application (pd-gui). PD’s engine code is

very portable as it is written in C and has a minimal number of required
5Projects such as Overtone [11] and ScalaCollider [154] are examples of using the Clojure

and Scala programming languages as front-ends to scsynth via OSC.
6For more information on SC3’s UGen plugins, see [190, 25. Writing Unit Generator

Plugins].
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Required

• Tools

– C Compiler (GCC, Clang, MSVC).

– Autoconf.

– Make.

• Libraries

– Pthreads (non-MSVC platforms).

– Audio API (either CoreAudio, ASIO, JACK, ALSA, or PortAudio,

depending on availability).

– TCL/TK (for pd-gui applications).

Optional

• Libraries

– FFTW3 (falls back to built-in FFT routines).

Figure 4.7: Pure Data Dependencies

dependencies. The engine is capable of loading and running .pd patch files

that are written in a human-readable text file format.

pd-gui – the primary tool that users use to create PD patches – is written

in TCL/TK, which requires that a TCL/TK interpreter be available on the

target platform. Since TCL and TK are generally available cross-platform,

this simplifies porting of the graphical application across desktop systems.

However, TCL/TK may not be available on other platforms, such as mobile

ones like Android and iOS.
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The canonical source for PD comes from its original author, Miller Puck-

ette, and is often called PD-vanilla (as opposed to the PD-extended version

that includes numerous extensions and changes). PD-vanilla contains both

the runtime engine as well as the pd-gui. A separate project, libpd [39], reuses

the source code for the engine part of PD-vanilla and provides an API for

developers to use for embedding libpd within their programs. Architecturally,

it would make sense for libpd to be a central part of PD-vanilla, with pd-gui

being written as a client of libpd. However, the projects remain separate

today.

Between the two, libpd is the more extensible in regards to platform

extensibility when compared to pd-gui. This is primarily due to not requiring

TCL/TK, a somewhat heavy dependency. libpd’s platform extensibility is

evidenced by the number of platforms it is available on, both in terms of

operating systems (desktop, embedded, and mobile) as well as programming

languages (C, C++, Objective-C, Java, Python).

One primary difference between libpd and pd-gui is that libpd is able

to run a PD patch but it is not capable of authoring PD patches. Instead,

the typical workflow involves authoring a patch on a desktop system with

pd-gui, then running that patch on the target platform without the use of

the standard GUI. In turn, the user of libpd would likely create a customised

GUI, then run the PD patch and communicate with it using libpd’s API.

This workflow is somewhat similar to ways one can use Csound, but with the

difference that PD’s patch text format is not usually edited directly by users,

while Csound’s project format uses Csound text code that is normally edited

by users.
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Also like Csound and SC3, PD supports plugins known as externals.

Externals allow for developer extensibility but limit project portability, which

depends upon the plugin on all target platforms. However, this is a common

problem for all software that offers plugin capabilities. Issues regarding

platforms that lack plugin loading altogether will be discussed later in this

thesis.

Overall, PD is a highly platform-extensible program with few required

dependencies. pd-gui has been ported to numerous desktop and embedded

systems, and libpd has ported to even further platforms, including mobile

ones. While the pd-gui application is less portable than the engine itself, PD

as a system has proven to be resilient over time and robust to address users’

needs across platforms. The architecture is also well separated between the

UI application and the engine, such that alternative UI applications may be

developed.

4.4 CsoundObj: A Platform-Specific API

CsoundObj is a high-level, platform-specific API for developing musical

applications with Csound. It provides pre-made customisations for the target

platform and is designed to work well with the native development language.

It shares amongst its implementations a common architecture and design.

The following will discuss the architecture of Csound and its layers of

APIs. It will look at how its design served desktop platforms well, but also

how certain assumptions within its design did not hold when moved to newer

mobile platforms. Following this, the discussion will examine the design of

the CsoundObj API and how it addresses the needs for platform-specific

development while also working upon a portable core library.
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4.4.1 The Architecture of Csound

The following will describe the high-level architecture of Csound. I will begin

by discussing libcsound, which contains the core of Csound itself. Next I will

discuss how Csound provides developer extensibility in two ways: firstly, by

development of plugins, and secondly, by client use of libcsound and its API.

I will discuss how the public API of libcsound is used by both plugins and

library clients. These aspects of Csound’s architecture form the base upon

which the CsoundObj library was developed.

Core Library: libcsound

Csound employs a layered architecture that isolates portable code from plat-

form-specific code. At its core is libcsound, a portable library that has two

main library dependencies: libsndfile and pthreads. Beyond these two libraries,

Csound requires either libraries available on POSIX-compliant systems (i.e.,

Linux, BSD, OSX) or Windows standard libraries. For tools, Csound requires

Flex and Bison, as well as a C99-compliant C-language compiler. Csound uses

the CMake build tool to generate build files for other build tools (e.g., GNU

Make, XCode project files). Csound’s dependencies are shown in Figure 4.8.

libcsound contains the essence of Csound. The library includes Csound’s

language compilers, core audio engine, and built-in set of opcodes. Any

feature of Csound that has a third-party dependency outside of the standard

C library, libsndfile, and pthreads, is handled externally to libcsound. These

features may be supplied either through plugins or by host applications that

use libcsound.

At this level of architecture, libcsound is only a library. One can not

execute libcsound. In this state it is only of use to developers who would
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Required

• Tools

– CMake.

– Build System (Make, XCode, Ninja).

– C Compiler (GCC, Clang, MSVC).

– Flex.

– Bison.

• Libraries

– Pthreads (non-MSVC platforms).

– libsndfile.

Optional

• Libraries

– gettext (for internationalisation).

Figure 4.8: Csound Dependencies

build applications or their own libraries based on Csound. Developers using

libcsound will use the public Csound API, located in two places: the csound.h

header file and the CSOUND struct itself. csound.h lists public function proto-

types that host applications can use to embed Csound into their application.

These functions include operations such as creating and running a Csound

engine, as well as communicating with an engine via Csound’s channel system.

The functions that make up the API in csound.h are also available as

function pointers in the CSOUND data structure. This allows plugins to have

access to the same functions as in csound.h, just by dereferencing the function

135



pointer from the CSOUND data structure. The reason for using function

pointers for plugins is that one can compile plugins using just the Csound-

provided development headers, without requiring linking to libcsound itself.

Requiring plugins to link to libcsound was not a problem for Unix-style

operating systems (i.e., Linux and OSX) but did cause problems on Windows.

Client Applications and Libraries

Csound started its life as a single, monolithic command-line program. In

Csound 5, the core of Csound was isolated into libcsound and a public API

was developed to allow building programs using Csound as a library. It was at

this time that the command-line version of Csound moved from a monolithic

application to become a smaller executable that itself linked to libcsound.

By having a standard core library and well-defined public API, developers

had a clear way to embed Csound into their applications. Consequently, users

of the library also all shared the same implementation. If one wanted to

modify Csound for their own use, they could contribute a change and all users

of the library would benefit.

Additionally, while Csound provides many features, the libcsound API

design is such that it does not try to do everything itself. Rather, libcsound

tries to provide all of the necessary lower-level functionality that would

enable client applications to build what they need themselves. In this light,

developers can use libcsound and extend the capabilities of Csound using

their own application code.

libcsound is not only the basis for applications, but also other libraries.

Csound’s standard distributions include cross-language wrappers (also known

as Adapters [70]) in C++, Python, and Java. These language-specific classes
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and libraries wrap libcsound’s API functions and data types and offer another

API that is appropriate for their target languages. Adjustments for languages

include presenting a class-based API as well as mapping data types from one

language to another. For example, users may pass String objects to the Java

API for Csound and the wrapper translates these to C’s char* type when

further calling a wrapped libcsound API function.

For C++, Csound provides a csound.hpp header file that offers an object-

oriented, class-based view of libcsound’s API. For Python and Java, an

intermediary library, libcsnd6, is written in C++ to provide both an object-

oriented API, but also additional glue classes that help to make certain aspects

of Csound usage more idiomatic for the target language (e.g., expose a class

for wrapping access to a-rate variables, rather than passing a pointer to the

data to the host). SWIG (Simplified Wrapper and Interface Generator) — a

wrapper generator program — is then used to analyze the libcsnd6 API and

automatically create all of the wrapper code that bridges the target language

and the native code.7

The relationship of applications and libraries to libcsound is shown in

Figure 4.9.

Plugins

In addition to client extension, one can create plugin libraries that are loaded

by libcsound. When a Csound engine starts, it will first load any plugins found
7The design and usage of SWIG is described in [29]. The application and documentation

is available at [170]. As discussed in [171], SWIG is sometimes compared with interface

compilers such as CORBA [83] and COM [124], but SWIG does not use an Interface

Description Language (IDL), does not generate stubs, does not define protocols, and does

not to define component models.
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C++ Application

csnd6 (Python)

libcsnd6 (C++)

C Application Java Application Python Application

libcsound (C)

csnd6 (Java)

csound.hpp 
(C++ Header)

Figure 4.9: Relationship of libcsound to other libraries and applications

in the directory path defined in the OPCODE6DIR64 environment variable, as

well as any libraries explicitly given to the Csound program as an argument

using the –opcode-lib= flag.8

When Csound first finds a library, it attempts to load it. If the library

does successfully load, it means that its dependencies have been found and

successfully satisfied. Upon a successful load, three functions are sought out in

the library: csoundModuleCreate(), csoundModuleInit(), and csoundMo-

8The environment variable used depends upon the version of Csound used. Csound can be

compiled to use 32-bit or 64-bit floating point precision for its processing. These correspond

to float or double numeric types in C. For Csound 5, OPCODEDIR and OPCODEDIR64 were

used for float and double versions of Csound. This allowed users to have both versions

of Csound installed on the same system and to load plugins from separate locations. For

Csound 6, the variable names were changed to OPCODE6DIR and OPCODE6DIR64. This was

to allow having both versions of both Csound 5 and Csound 6 installed on the same system.

In Csound 6, the standard version distributed for desktop users is the 64-bit doubles version,

so OPCODE6DIR64 is used here.

138



duleDestroy(). These three functions are called at various points in the

Csound engine life-cycle.

Each of the above functions takes in a single argument: a pointer to a

CSOUND engine. Csound plugins use the Csound API through the function

pointers provided as part of the CSOUND data structure. As noted earlier, these

are the same API functions that are in the public Csound API in csound.h.

Consequently, anything that a plugin is capable of doing – such as registering

opcodes, audio drivers, MIDI drivers, and graphics drawing functions – a host

application can do as well.

However, the opposite is not true: plugins can not extend Csound in all

of the same ways as a host application. Plugins can not – or at least, should

not – alter the flow of control of the engine. However, host programs can

and are expected to operate the Csound engine however they would like. In

this way, plugins are meant to add features to known extension points, while

hosts may do that as well as add completely new abstractions and features

on top of the Csound engine.

Discussion

The architecture of Csound is centered on the core libcsound library. Client

applications build upon and use the Csound engine, and may also provide

their own extensions to Csound. Plugins are loaded by Csound itself and are

designed to only provide extensions.

Figure 4.10 illustrates the relationship between Csound, clients, and

plugins. For plugins, they provide features that are available to all clients of

libcsound. All features in Plugin X and Plugin Y are available to Client A

and Client B. For clients, the features they provide are limited to their own
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Client A Client B

libcsound (C)

UsesUses

Plugin YPlugin X

LoadsLoads

Provides FeaturesProvides Features

Figure 4.10: Csound, clients, and plugins

application. Any Csound extensions that Client A provides are not available

to Client B, and vice versa.

The two methods of developer extension in Csound both employ the same

Csound API. Their roles within the architecture of the system dictate when

to develop a plugin and when to develop a feature within a client application

itself. The ecosystem of Csound prior to the work in this chapter has largely

been developed with the assumption that both extension mechanisms would

be available. However, as will be explored below, not all platforms support

plugin loading and features traditionally provided as plugins would have to

be managed in a new way.

4.4.2 CsoundObj API

The CsoundObj API is a new API developed in response to issues found

when developing Csound for iOS (Section 4.5.1), Android (Section 4.5.2),

and the Web (Section 4.5.3). It builds upon the portable libcsound API
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and handles platform-specific requirements previously addressed with plugin-

based architecture. It also includes pre-made tools for quickly integrating

platform-specific features into the user’s work. It shares a common design

amongst its implementations to provide easier porting of works from one

platform to another.

Design

The design of CsoundObj differs somewhat from the libcsound API. With

classical Csound usage, dealing with hardware I/O is done using plugins.

Plugins in turn may interact with graphical user interface toolkits (e.g., FLTK

Widget opcodes, Slider opcodes) or hardware I/O (e.g., MIDI I/O, Audio

I/O). With the classical system, the features available to the user depends on

what plugins are loaded. Conversely, if a project depends on a feature from a

plugin that is not available, it is unable to run.

With CsoundObj, the design is inverted. Instead of extension by plugin,

CsoundObj itself creates a libcsound CSOUND instance and extends the

functionality by wrapping calls to the libcsound API. For example, rather

than depend upon an Audio or MIDI I/O plugin to implement features,

CsoundObj will directly register those callbacks with a Csound engine using

the appropriate libcsound API methods. Also, instead of using opcodes to

wrap hardware or GUI interface values, CsoundObj uses the Csound channel

system for bi-directional communication with Csound. By not using plugins,

these features are made always available when using CsoundObj.9

Csound’s channel system is a generic, named bus where signals of different

types can be sent into and read from Csound. At the time of this writing, i-,
9This is especially important as certain platforms do not provide runtime loading of

plugins, such as iOS (Section 4.5.1) and the Web (Section 4.5.3).
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k-, a-, and S-type signals are available for transfer over the bus. One benefit

of this is that users can write Csound projects that depend on values coming

from a channel, without concern for what is reading from or writing to that

channel. The channel’s readers and writers can thus differ from platform to

platform: on one system, a value may be mapped to homemade hardware

communicating to CsoundObj over a USB serial connection, on another it may

be driven by values over a WIFI network, and on another it may be driven

by a graphical user interface. Figure 4.11 illustrates the channel system.

External Controllers Csound

Custom Controller

WIFI 

GUI

MIDI

Csound
Channels

Writes

Writes

Writes

Writes

Csound Project

Reads
Channel: Volume

Channel: Density
Reads

Figure 4.11: Csound Channel System

CsoundBindings

The CsoundObj library offers the CsoundBinding system to support arbitrary

and generic communication with a Csound engine. To use this system, a

developer will create an object that implements the CsoundBinding interface,

then register that binding with CsoundObj. CsoundObj will in turn call
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various methods within the CsoundBinding at various times during the

execution of the engine. Bindings are run synchronously with the engine and

have strong time guarantees on when they will be executed.

package com.csounds.bindings;

import com.csounds.CsoundObj;

public interface CsoundBinding {

public void setup(CsoundObj csoundObj);

public void updateValuesToCsound ();

public void updateValuesFromCsound ();

public void cleanup ();

}

Listing 4.1: Android version of CsoundBinding interface

Listing 4.1 shows the Android version of the CsoundBinding interface.

Figure 4.12 shows the life cycle of a CsoundBinding as it relates to the

execution of a Csound engine by CsoundObj. The interface contains four

methods described below:

setup()

Executes code to set up a CsoundBinding for run-time. This method is

often used by the CsoundBinding to pre-calculate values as well as cache

channel pointers, acquired from the passed-in CsoundObj object. If the

CsoundBinding is registered with CsoundObj before the CsoundObj

object is set into a running state, setup() will be called during the

initialisation phase of the running state, just before the first samples are

generated by the Csound engine. If the CsoundBinding is registered with

a CsoundObj that is already in the running state, setup() will be called
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before either updateValuesToCsound() or updateValuesFromCsound()

are executed. This is done between block boundaries.

updateValuesToCsound()

Used to write values to a Csound engine. This is executed once per

block of engine computation, prior to the block computation call to the

Csound engine.

updateValuesFromCsound()

Used to read values from a Csound engine. This is executed once per

block of engine computation, following the performance call to the

Csound engine.

cleanup()

Called after a Csound engine performance has completed, but before

the Csound engine has been cleaned up and released. This allows the

object to release any resources it may have allocated or acquired.

CsoundBindings are a generic extension mechanism to the Csound engine.

They are run synchronously with the engine. Developers using a CsoundBind-

ing with their CsoundObj instances can choose how much work to do in the

binding. For example, a single CsoundBinding may be used that will update

all inputs to and outputs from the Csound engine for the application. Another

strategy may be to use multiple CsoundBindings, using one per graphical user

interface widget (i.e., sliders, knobs). Because the interface only defines when

things will happen and not what they will do, the developer is in complete

control on how to use the system.

For the CsoundObj API, all pre-made GUI element wrappers and hardware

I/O wrappers are implemented as individual CsoundBinding implementations.
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Figure 4.12: CsoundObj, Csound, and CsoundBinding Life Cycle
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For example, if a developer uses the CsoundUI helper class to add a slider

binding to a CsoundObj instance, a single CsoundSliderBinding will be created

and registered. After registration, the current value of the slider will be sent

to Csound via the channel system each time a block of samples is generated.

If a user uses the CsoundMotion helper class to enable reading from a device’s

accelerometer, a CsoundAcceleromter binding will be registered with the

engine that writes the current value of the accelerometer into a Csound

channel.

Discussion

The CsoundObj API was designed to handle the most common use cases for

features for applications. It was designed to be platform- and language-specific,

offering an API in a way that was idiomatic to the developer on the target

platform. CsoundObj comes pre-wired for real-time and non-real-time audio

rendering, common GUI widget wrappers, and MIDI I/O handling (where

available by platform). Additionally, for uncommon use cases, CsoundObj

exposes the libcsound CSOUND instance so that users can fallback to using the

lower-level libcsound API.

The CsoundObj API was first designed as part of the Csound for iOS

software development kit (SDK). The design was then reimplemented in the

Csound for Android SDK and was an influence on the Web versions of Csound.

While the CsoundObj implementations differ in what they can offer, they do

all follow the same architecture. Also, they do follow each other in class and

method naming; as such, users can more easily port their own application code

from one platform to another. The following section will further explore the
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design of CsoundObj and its role in developing platform-specific Csound-based

SDKs.

4.5 Extending Csound to Mobile and the Web

This section will explore the work of porting Csound to three new platforms:

iOS, Android, and the Web. Extending Csound to these platforms offers users

new ways and places to employ Csound. It has also increased the focus of

using Csound not only through its language but also through its engine and

API as the core of custom music applications.

Common goals for each platform include:

• Running existing Csound projects on these new platforms.

• Allowing content creation on these platforms (i.e., users can author

Csound-language projects on the target platforms).

• Building music applications using Csound.

• Simplifying cross-platform development of Csound-based music applica-

tions.

• Allowing users to take advantage of platform-specific features, but

provide a graceful fallback solution if features are not available.

This section will first cover two mobile platforms, iOS and Android.

Next, it will discuss two implementations of Csound for the Web: one using

Emscripten, the other using Portable NativeClient (PNaCl). A summary of

this work will conclude this section. Applications of the technology developed

here will be further explored through case studies in Section 4.6.
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4.5.1 Csound for iOS SDK

Csound for iOS is the name of the software development kit created for

building Csound-based iOS applications. The SDK was first released with

Csound 5.17.3 and new versions have been released with each new version

of Csound. The SDK includes statically compiled versions of libcsound and

libsndfile, development headers for working with libcsound, class files and

headers for the CsoundObj API, and an examples project that demonstrates

various use cases for how to use the SDK. A manual is also included.

The Csound for iOS SDK is released together with each release of Csound.

The version of Csound included in the SDK is built using the same source code

as that used for desktop Csound and other platform releases. By building

using the same source code as other releases, users can be assured that all

bug fixes and features available in new versions of Csound are also available

when using Csound on iOS.

About the Platform

iOS [25] is a closed-source, BSD-based operating system developed by Apple.

It is available only on the company’s iPhone, iPod Touch, and iPad devices.

The operating system’s popularity is closely tied to the popularity of the

devices themselves. Developers programming for iOS primarily program

in Objective-C or Swift, though they may also use C and C++. It is the

compatibility with C and C++ that allows for many libraries and applications

from desktop platforms to be easily compiled and used on iOS.

Regarding the hardware, the CPUs available in the devices for iOS have

been ARM-based processors. These CPUs are available in 32-bit and 64-bit;

devices prior to iPhone 5 were 32-bit, while those made after are mostly
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64-bit. The ARM CPU architecture is big-endian, which is common to other

embedded CPUs such as those available from MIPS but differs from little-

endian CPUs – such as those made by Intel and AMD – that are available in

most desktop and laptop devices.

In terms of libraries and linking, iOS differs from OSX. OSX has three

main types of libraries: static libraries, shared libraries, and frameworks.

Static and shared libraries are commonly found on desktop systems and

allow one to link an application or library binary to another library either at

compile-time or at runtime. Frameworks are an Apple invention that packages

libraries (either static or shared), development headers, documentation, and

other resources into a specified folder structure.

iOS prior to version 8.0 did not allow for use of dynamically-linked shared

libraries outside of those found in frameworks provided by Apple. Developers

of third-party libraries were then required to build and distribute static

libraries. While there was little technical difference between using static and

dynamically-linked libraries, there were implications for compatibility with

open-source licensing. Since iOS version 8.0, the use of dynamically-linked

libraries is now permitted, opening up the use of many open-source libraries

in applications.

Platform Analysis

Developers building applications for iOS will find the technologies and work-

flow very similar to those available when developing for desktop applications

on OSX. iOS provides many of the same build tools and development frame-

works as provided on OSX. Users used to building music applications using
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CoreAudio and CoreMIDI will find that much of their code can be reused

when moving to iOS.

Development of iOS applications does not happen directly on the device.

Instead, applications are written on a desktop system, then cross-compiled

from the native system to the target architecture (i.e., ARM7, ARM64),

before being deployed and installed on the device to be executed. This style

of development with cross-compilation is common for embedded systems,

especially considering the era in which the earliest iOS devices were made

and the processing power available at the time. While CPU speeds on iOS

devices has increased greatly, it is likely that the style of development with

cross-compilation will continue on.

For Audio and MIDI, iOS provides the same CoreAudio and CoreMIDI

frameworks that are found on OSX. CoreAudio provides a low-latency audio

system for all iOS devices; CoreMIDI provides a single, consistent way to inter-

act with MIDI devices connected to the device either physically or by network.

As all hardware devices are tightly controlled by Apple, there is a consis-

tency of what to expect on all iOS devices that makes it simpler to develop

multimedia applications, when compared to more hardware-heterogeneous

platforms such as Android.

For user interfaces, developers will generally use the UIKit framework

provided by iOS. This framework also exists on OSX but the two platforms

differ in what classes and features are provided. Developers can also opt to

use alternative toolkits such as QT [149].

In general, iOS is a more homogeneous platform than others such as

Android. Screen resolutions are limited to only a few sizes and I/O charac-

teristics for Audio and MIDI are consistent across devices. This simplifies
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development for the developer, who has less variables to account for when

developing for iOS.

SDK Design

The Csound for iOS SDK is designed in three parts. The first is the core

Csound library, libcsound. The version of libcsound that is built uses the

same sources as it does when it is built on desktop, and the same development

headers are provided on iOS as they are in the desktop releases. libcsound

is built and provided as a static library, together with a static library for

libsndfile – the only required dependency libcsound has.10 These two libraries

plus the Csound development headers comprise the core of Csound.

Users who develop applications on the desktop as well as on iOS have

access to the same C API. One difference between desktop and iOS versions

of Csound is that the desktop releases of Csound include command-line

executables as well as dynamically-loaded Csound plugins. These plugins can

include opcodes but they may also be I/O providers for interfacing with audio

and MIDI systems. Opcode and I/O driver plugins are not available on iOS

because iOS does not allow the building of applications that can dynamically

load plugins.

With libcsound, the user has full access to the core of Csound, comprised

of over 1400 opcodes, and the main Csound engine itself. However, because no

audio drivers are available, the user would have to know how to use Csound

as a library and know how to read and write samples from and to a running

Csound engine. The core of Csound can be used out-of-the-box; however, one
10This is as of Csound 6.04.0. Shared library versions of Csound and libsndfile have been

built by third-parties, and plans are to change the core Csound for iOS release to only

provide shared libraries in the future.
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can not drop it in a project, add a few lines of code and expect to generate

and process real-time audio.

Rather than modify the sources of libcsound through introducing condi-

tional code specific to iOS, a different design was implemented using a higher-

level library called CsoundObj. As discussed in Section 4.4, the CsoundObj

API was introduced to simplify development when building Csound-based ap-

plications. The main CsoundObj class comes with a standard set of methods

for instantiating, running, and communicating with an instance of Csound. It

is written in the primary language of the platform – Objective-C – and thus

is designed to be familiar for those developing for iOS. Additional methods

were added to simplify communication between Csound and application code.

The CsoundObj implementation for iOS handles communication between

a running Csound engine instance and CoreAudio (the audio system on iOS).

CsoundMIDI, CsoundMotion, and CsoundUI helper classes are provided to

perform MIDI, sensor, and GUI value binding with a CsoundObj instance.

These helper classes all use the CsoundBinding system to provide synchronous

value communication between the the bound component and Csound channels.

The motivation for the design was to make native Objective-C development

easy to do using the CsoundObj class. The CsoundObj class is not designed

to provide everything the primary Csound C API provides. Rather, it

provides the most commonly used items in a way that follows the common

practices of the platform (e.g., CsoundObj is written to use NSString values,

rather than char*, as NSString is more commonly used in iOS development).

The CsoundObj API does provide access to the CSOUND engine instance

should the user require more of the Csound API than is provided through

CsoundObj. Providing the higher-level, more platform-appropriate API, while
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also providing the ability to access the full Csound API, gives a good balance

between ease of use and full development potential.

Figure 4.13 illustrates the relationship of the user’s application source

and the Csound for iOS SDK library parts. Application code may use either

CsoundObj or libcsound, or both, and CsoundObj uses libcsound itself.
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Figure 4.13: iOS CsoundObj Diagram

The final part of the SDK is the manual and examples project. The

manual provides information about the design and usage of the CsoundObj

API on iOS. The examples project provides working code that demonstrates

individual aspects of using the API. By providing working code, the user can

copy and use the code to quickly start off their music projects.

Porting Csound to iOS

As Apple’s iOS development SDK provides many of the same build tools,

libraries, and frameworks as the OSX desktop, porting Csound to iOS was

fairly straightforward. The build scripts for Csound on iOS reuse the same

CMake build files used on the desktop to generate XCode project appropriate

for iOS. In turn, the xcodebuild command-line tool is used to build the
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project twice, first with an .xcconfig file containing settings appropriate

for hardware devices, then second with an .xcconfig file appropriate for the

iOS simulator. These .xcconfig files contain different settings to use for

compilation, with the primary difference being what CPU architectures to

target. The resulting libcsound libraries are then joined using the lipo tool

into a single universal binary library.

For libcsound on iOS, no new build-time challenges were found. The

existing build system for Csound already accounted for CPU-related issues

such as CPU endian-ness. All library and development headers that required

checks were already accounted for.

The primary challenge in bringing Csound to iOS was the lack of runtime

library loading on the platform. This meant that no plugins could be used

with Csound on iOS and that all existing I/O functionality would have to be

reconsidered. This was a new architectural challenge, as previously supported

platforms for Csound did support plugin loading.

The result was the development of the first implementation of the Csound-

Obj API. Here, client-based extension was used by CsoundObj to supply the

missing functionality that was previously supplied by plugins. This was done

for required features to operate Csound for real-time audio processing. All

other optional features provided by plugins were not redeveloped for the iOS

implementation of Csound.

Summary

Csound for iOS provides a working version of Csound ported to the iOS

platform. The work in porting Csound to iOS provided a blueprint for how

to approach platforms that do not provide library loading. This in turn
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manifested in the CsoundObj API design. The resulting Csound for iOS SDK

has been successfully released together with each new version of Csound and

used for personal and commercial work on iOS.

4.5.2 Csound for Android SDK

Csound for Android is the name of the software development kit created for

building Csound-based Android applications. The SDK was first released

with Csound 5.17.3 and new versions have been released with each new

version of Csound. The SDK includes shared library versions of libcsound and

libsndfile [57], binary class files and headers for the Java Csound API, and

Java source files for the CsoundObj API. The SDK also includes an examples

project that demonstrates various use cases for how to use the library and a

manual is also included.

The Csound for Android SDK is released together with each release of

Csound. Like the Csound for iOS SDK, the version of Csound included in

the SDK is built using the same source code as that used for Csound desktop

and other platform releases. This provides the same benefits as discussed for

the Csound for iOS SDK.

About the Platform

Android [76] is a Linux-based platform for mobile devices. On top of the Linux

core are two runtimes: Dalvik and Android Runtime (ART) [19]. Dalvik was

the initial runtime used on Android and it executes platform-independent

bytecode using a just-in-time (JIT) compilation model, similar to the Java

Virtual Machine. ART provides ahead-of-time (AOT) compilation model
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that compiles the same platform-independent bytecode to native code before

running.

Developers primarily use the Java programming language to program

Android applications. The Java source is first compiled into Java bytecode,

then translated into Dalvik bytecode, before being run on the Android

platform. Pre-compiled Java classes may also be used with Android projects

and will be translated into Dalvik bytecode format by the platform’s build

tools.

Developers may also use C and C++ to generate hardware-dependent li-

braries and applications. For Android, developers typically compile dynamically-

linked libraries that are then used from Dalvik-compiled programs via the

Java Native Interface (JNI) [115]. Libraries must be compiled with support

for each CPU-architecture that the application targets.11 Developers also have

the option to write their entire application in natively-compiled C/C++ code,

though this is less commonly found than the Java-language based approach.

As the Android platform is open-source, it has been used on a much wider

variety of hardware platforms when compared to iOS. Android supports not

only ARM-based processors but also Intel and MIPS-designed CPUs. These

processors vary in endian-ness and word-size (32- and 64-bit). Using natively-

compiled code requires that the library or executable be compiled multiple

times, once for each target CPU architecture. On the other hand, Dalvik

bytecode is platform-independent; once written, it is JIT- or AOT-compiled

on each platform.
11For more information on supported CPU architectures for Android are available, see

[21].
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Android supports both static and dynamic linking of libraries. Static

linking is supported when compiling native code. Dynamic linking is supported

both at compile-time as well as runtime.

Platform Analysis

Developers building applications for Android most commonly use the Java

programming language using the Android Software Development Kit (SDK).

They may also use C and C++ using Android’s Native Development Kit

(NDK). Like iOS, development is performed on a desktop system and cross-

compiled to run on Android devices. For projects using only Java code, the

code is compiled once into platform-independent bytecode and run on multiple

CPU architectures. For those using C/C++ code, the code is compiled once

per target CPU architecture.

Audio services on Android are most commonly accessed either through

the Dalvik layer using the system-provided AudioTrack class or through the

native layer using the OpenSL ES C API. At the time of this writing, Android

does not provide a standard MIDI API.

For user interfaces, users developing in Java will use the classes in the

system-provided android.widgets package. Developers may develop their

interfaces directly in Java code but they more commonly use XML interface

files that declaratively specify the user-interface. These are either hand-

written or developed using a GUI editing program. Native development

options are also available, such as using the QT widget toolkit.

In general, developers writing applications for Android face a much more

heterogeneous target than iOS. Differences include a wider variety of screen-

sizes, CPU-types, as well as capabilities supported (e.g., sample rates allowed
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for audio streams). Android as a whole does not support the same low-latency

as provided by iOS.12. While Android’s latency limitations make the range

of supported music application use cases smaller, the ubiquitousness and

open-source nature of Android make it an attractive target platform.

SDK Design

The Csound for Android SDK was designed to mirror the design of the

Csound for iOS SDK as closely as possible, with appropriate differences made

to adhere to conventions common to Android. While applications may be

developed purely in C and C++, it is more common on Android to use Java,

thus that was the target user for this project.

The base of the Csound for Android SDK begins with the same Csound

Java API that is available on the desktop. libcsound and libsndfile are provided

as shared libraries. A Java language wrapper for Csound is generated using

SWIG [29], as it is on the desktop. In addition to the standard libcsnd6

sources, one additional C++ class, called AndroidCsound, is also compiled

into the library. This class is a subclass of the Csound class and adds one

additional method to register native OpenSL audio callbacks with Csound.

This class is also wrapped with SWIG. The Java AudioTrack class is also

supported by CsoundObj on Android, but the OpenSL audio path is the

default and recommended path to use for performance reasons.

Like Csound for iOS, a CsoundObj API implementation is provided

that builds upon the lower-level Java csnd6 API. The methods and classes

implemented in the Android version of CsoundObj are closely named to their

iOS counterparts. The reason for this was to simplify creating cross-platform
12Measurements for common Android devices are available in [20].
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applications between the two platforms. Although the programming languages

are different between iOS and Android, both are object-oriented languages.

By using the same class designs and similarly named methods, users can

easily translate application code between the platforms.

Figure 4.14 illustrates the relationship of the user’s application source and

the Csound for Android SDK library parts. Like Csound for iOS, application

code may use either CsoundObj or csnd6 Java classes. These Java class

libraries in turn communicate over JNI to the natively-compiled libcsnd6

library, built upon libcsound.
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Figure 4.14: Android CsoundObj Diagram

Listing 4.2 illustrates the API parity between CsoundObj implementa-

tions on iOS and Android. The code fragments both create an instance

of CsoundObj, register the current class as a listener to CsoundObj, load a

Csound CSD project file, then use the CsoundMotion class to enable different

hardware sensors. The iOS version enables accelerometer, attitude, and gyro-
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scope, while the Android version only enables the accelerometer, as Android

does not support the other two hardware sensors.

/* iOS Objective -C Example */

NSString *tempFile = [[ NSBundle mainBundle]

pathForResource:@"hardwareTest"

ofType:@"csd"];

self.csound = [[ CsoundObj alloc] init];

[self.csound addListener:self];

CsoundMotion *csoundMotion = [[ CsoundMotion alloc]

initWithCsoundObj:self.csound ];

[csoundMotion enableAccelerometer ];

[csoundMotion enableAttitude ];

[csoundMotion enableGyroscope ];

[self.csound play:tempFile ];

/* Android Java Example */

CsoundObj csoundObj = new CsoundObj ();

csoundObj.addListener(this);

String csd = getResourceFileAsString(R.raw.hardware_test);

File f = createTempFile(csd);

CsoundMotion csoundMotion = new CsoundMotion(csoundObj);

csoundMotion.enableAccelerometer(AccelerometerActivity.this);

csoundObj.startCsound(f);

Listing 4.2: Android and iOS CsoundObj example
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One of the goals for Csound on these platforms is that the same Csound

CSD project may be used by either Android or iOS applications, even if

there are differences in available features. When this happens, the project

should degrade gracefully. In the case of Listing 4.2, the iOS version sends

values using Csound’s channel system that the Android version would not.

On the receiving end in the CSD, as shown in Listing 4.3, the chnget opcode

is used to read from channels where hardware sensor values are written. On

iOS, all nine of the channels will receive data, while on Android, only the

three accelerometer channels will receive data. For the other six channels on

Android, the default 0 value for channels will be read.

kaccelX chnget "accelerometerX"

kaccelY chnget "accelerometerY"

kaccelZ chnget "accelerometerZ"

kgyroX chnget "gyroX"

kgyroY chnget "gyroY"

kgyroZ chnget "gyroZ"

kattRoll chnget "attitudeRoll"

kattPitch chnget "attitudePitch"

kattYaw chnget "attitudeYaw"

Listing 4.3: Csound Channel Reading Code

The example Csound code shown can run on either iOS or Android

without modification. Additionally, this project can run on any other version

of Csound as well, such as on desktop platforms, where no sensors may be

available and all channels give 0 values. By having the default values for

channels, this simplifies porting the Csound project to various platforms and

minimises the worst case scenario such that at least the project will run.
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The Csound for Android SDK provides the same SDK features as Csound

for iOS. It includes the pre-built native libraries and CsoundObj API, a

Csound Examples project, and a user manual. The examples project provides

the same examples as those found in the Csound for iOS SDK, with the

exception of MIDI examples as Android does not support MIDI. The CSDs

used in the example project are the same ones from the iOS SDK, used

without modification.

Porting Csound to Android

Google provides both an Android SDK and NDK (Native Development Kit).

The SDK provides Java-language, Dalvik bytecode related build tools, while

the NDK provides C/C++ build tools. For the NDK, the provided devel-

opment headers and libraries and tools resemble closely to those commonly

found on desktop Linux distributions.

When Csound for Android work commenced, it was not clear how one

would use CMake with Android’s NDK tools. Instead, a typical Android.mk

and Application.mk file were written that would work with the NDK-

provided ndk-build tool. This made the method of building the native

libcsound library consistent with Android-specific development practices,

though required having a separate build recipe than the other main Csound

builds. The result is that the Android build files must be manually kept in

sync with the primary Csound CMake build recipe. This has added a small

amount of additional work for the core Csound developers but simplified

building Csound for Android.13

13It would be ideal to have an Android build based on CMake. Work towards that goal

is reserved for future research.
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Like the desktop Csound Java API, SWIG is used to generate both C and

Java class files that wrap Csound. The generated Java classes are compiled

and packaged for developers to use. The generated C files are compiled as

part of the libcsound.so library.

To simplify the runtime loading of the native library portion of Csound,

all of the native components are compiled together. This includes libcsound,

libsndfile, generated SWIG C files, and the additional AndroidCsound C++

class. While these could have been compiled into separate libraries, there was

little reason found to compile them separately for this project. The decision

to provide one monolithic library can be easily changed at a later time should

a compelling reason be found.

Unlike iOS, dynamic library loading of plugins is available on Android.

However, due to the nature of Android’s sandboxed applications, support for

multiple CPU architectures, and concerns for application sizes, it was easier

to follow the design used for iOS and provide a CsoundObj API that handled

I/O and other features. However, plugins for Csound have been developed

and used on Android and are provided as optional features for developers to

use.

While the build-time issues were simple to resolve, there was one large

issue found in Csound to Android: Csound’s use of temporary files to store

pre-processed score did not work. Prior to development with Android, when

Csound would load a score file, it would process the score language into a

set of score events, write the processed score to a temporary file on disk,

then open an input stream with the temporary file to read in score events at

runtime. Reading from disk limited the number of events in memory, saving
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space. However, since creating temporary files was problematic, the process

of score rendering was changed.

To support this situation with Android, ffitch introduced the new COR-

FILE system. The CORFILE system mimics the same file saving, opening,

and reading functions that were in use with Csound. However, instead of

reading from disk, the CORFILE system reads from and writes to memory.

Since memory is much more abundant today compared to when Csound was

first developed, this solution seemed like a reasonable one to pursue.

The CORFILE API provides a near drop-in replacement for the set of file

I/O functions used previously for working with temporary files. Listing 4.4

shows the data structure for a CORFIL. It contains a char* body, the length

of the body, and the current position p. CORFILs function much like RAM-

based files and are processed using the same kinds of operations as found for

file-based I/O.

Listing 4.4 also shows the function prototypes for working with CORFIL

structures. The CORFILE API provides funcions for creating and working

with single file-like entities, but it does not try to implement a full RAM-based

file system (i.e., it does not support directory listing, file metadata, etc.). The

API is small in size, uses only standard C library functions, and does not use

platform-specific functionality. These qualities make the CORFILE system

easily portable across platforms.

// include/csoundCore.h:197

typedef struct CORFIL {

char *body;

unsigned int len;

unsigned int p;

} CORFIL;
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// H/corfile.h

CORFIL *corfile_create_w(void);

CORFIL *corfile_create_r(const char *text);

void corfile_putc(int c, CORFIL *f);

void corfile_puts(const char *s, CORFIL *f);

void corfile_flush(CORFIL *f);

void corfile_rm(CORFIL **ff);

int corfile_getc(CORFIL *f);

void corfile_ungetc(CORFIL *f);

#define corfile_ungetc(f) (--f->p)

MYFLT corfile_get_flt(CORFIL *f);

void corfile_reset(CORFIL *f);

#define corfile_reset(f) (f->body[f->p=0]='\0')

void corfile_rewind(CORFIL *f);

#define corfile_rewind(f) (f->p=0)

int corfile_tell(CORFIL *f);

#define corfile_tell(f) (f->p)

char *corfile_body(CORFIL *f);

#define corfile_body(f) (f->body)

char *corfile_current(CORFIL *f);

#define corfile_current(f) (f->body+f->p)

CORFIL *copy_to_corefile(CSOUND *, const char *,

const char *, int);

CORFIL *copy_url_corefile(CSOUND *, const char *, int);

int corfile_length(CORFIL *f);

#define corfile_length(f) (strlen(f->body))

void corfile_set(CORFIL *f, int n);

#define corfile_set(f,n) (f->p = n)

void corfile_seek(CORFIL *f, int n, int dir);
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void corfile_preputs(const char *s, CORFIL *f);

Listing 4.4: CORFILE data structure and function prototypes

After implementing the CORFILE system, ffitch also updated the score

processing code in Csound to use the CORFIL system. The result of this is

that temporary files were no longer used in Csound’s score processing, and

Csound was then able to render without problems on Android. Because the

source code is shared across all Csound-supported platforms (i.e., Windows,

OSX, Linux, iOS, etc.), the problem of temporary files has been solved for all

current and future platforms.14

Summary

Csound for Android provides a working version of Csound ported to the

Android platform. It employs the same architecture and design as Csound

for iOS, making it easy to port applications from one platform to another.

The parity of code and use of same CSDs in the corresponding examples

projects demonstrate the viability of cross-platform, Csound-based music

application development as well as provide a set of models to use in building

new applications. The work also identified the limitation of disk-based

temporary file usage and work by ffitch has solved that problem for new

platforms moving forward. The resulting Csound for Android SDK has been

successfully released with each new version of Csound and has been used by

developers and users for their personal and commercial work on Android.
14This proved to be immediately useful in porting Csound to the Web, where temporary

file usage would also have been problematic.
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4.5.3 Csound on the Web

This section will discuss Csound on the Web – two versions of Csound that work

cross-platform among various browsers and operating systems. The first ver-

sion is built using the Emscripten [205] compiler and is a pure-Javascript ver-

sion of Csound that runs in any browser supporting the WebAudio API [191].

The second implementation is a Pepper API (PPAPI)-based [80] plugin

built using Google’s Portable Native Client (PNaCl) system [78] that runs

cross-platform in Chrome and Chromium browsers.

The goals in extending Csound to the Web are to:

• Run Csound on the client-side in a browser.

• Run Csound without the user having to additionally install anything

besides the browser.

• Run existing Csound code projects without modification.

• Author new Csound code content within a browser.

Being able to reuse Csound within the browser offers existing Csound users

a way to apply their existing knowledge to create web-based projects, without

having to learn or create a new computer music system. Conversely, new users

who might learn to use Csound in a browser have the opportunity to transfer

those skills to create desktop and mobile-based music applications. Finally, by

creating web pages that can render Csound code without requiring installation

of any plugins or applications, the web offers a solution for both long-term

preservation of works as well as ubiquitous sound and music computing.

The following will begin with setting out common design goals for both

Web versions of Csound. Next, the implementation of Emscripten and PNaCl
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ports will be covered separately. Finally, a comparison of the two ports will

be provided.

Design

When Lazzarini, Costello, and I first started looking at Csound on the Web,

our technical goals were to:

• Have a complete version of Csound available for building web applica-

tions.

• Build the web version of Csound using the same source code as the

desktop and mobile versions of Csound.

• Create real-time and non-real-time music applications written using

HTML, Javascript, and Csound.

• Provide simple deployment of applications and pieces.

• Have applications run client-side within the browser, using web tech-

nologies that do not require any installation of plugins.

• Be cross-platform.

It was important to the Csound developers that we look at solutions that

did not require rewriting Csound in another language (i.e., Javascript), but

that instead used the same C source code as the desktop and mobile versions

of Csound. Using a common codebase was critical, as it would have been

time consuming for the community to maintain and test a separate version of

Csound. A common codebase also ensured that the same Csound music code

would render in exactly the same way regardless of what platform it is on,

including the Web.
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We also wanted the development experience of web applications using

Csound on the Web to mimic very closely the experience of developing

applications on the desktop and mobile platforms. The expectations are that

the same Csound music code could be used in any project, and the only code

that would need porting would be specific to each target platform. To achieve

that end, we wanted to provide a Csound API implementation that was very

similar to those provided on other platforms. That way, users who start by

building a web application could more easily port their code to a mobile or

desktop platform, and vice versa.

Furthermore, we wanted to ensure that Csound-based web applications

were cross-platform across operating systems. We also wanted the implemen-

tation of Csound on the Web to be cross-browser, though this was less of a

priority than working across operating systems. Working across operating

systems meant that a user could create a project and have it run on as many

computers as possible. Working across browsers would add an additional level

of reach so that users could open projects in their own preferred browser.

After evaluating the available client-side web technologies, two systems

stood out: Emscripten and PNaCl. These two systems provide viable solutions

for the goals we wanted to achieve. However, the two systems also come with

certain tradeoffs. The following will discuss to the two technologies and the

approaches we took in employing them. Afterwards, I will provide an analysis

of the tradeoffs between the two systems.

Emscripten

Emscripten [65] is an LLVM-based compiler technology that allows cross-

compilation from C and C++ into a subset form of Javascript called ASM.js [88].

169



As ASM.js is a subset of Javascript, code produced by Emscripten runs in

any Javascript interpreter. However, certain browsers, such as Firefox, are

optimised for ASM.js and are capable of running ASM.js code faster than

standard Javascript code. Emscripten has been used to port games and other

applications to run within the browser.

As the result of running Emscripten is ultimately Javascript, the limitations

of using this technology are mostly a result of the services and technologies

provided by the browser itself. For Javascript, the current standard to generate

and process audio is done using the WebAudio API. (The WebAudio API,

in its current form, has limitations that influence the usability of Csound.

These limitations will be discussed below.) Also, one of the biggest hurdles for

Emscripten use at this time is that it does not support threads – in particular,

the cross-platform pthreads library.

Getting Csound to operate in the browser via Emscripten was largely done

in two parts. Firstly, we wanted to get libsndfile and the standard libcsound

C API compiled and available as a Javascript library. Secondly, we needed to

wrap the compiled library to connect it to the audio system of the browser via

the WebAudio API. The first part was done primarily by myself and required

modifying Csound’s source files and CMake build files to compile Csound

with Emscripten’s toolchain. The latter part was done primarily by Edward

Costello to design and implement the WebAudio connection with Csound, as

well as build up the platform-specific CsoundObj-like API for this project.

To get Csound compiled with Emscripten, we first had to build libsndfile.

Using libsndfile’s own autoconf-based build, together with Emscripten’s build

toolchain, we found we only required one patch [201] to the source code to

compile libsndfile into an LLVM bytecode (.bc) library. The generated target
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at this stage is LLVM bytecode as this is later used for linking, before the

final Javascript code is generated.

Compiling Csound with Emscripten was a larger challenge due to Csound’s

dependence on the pthreads library. Originally, a platform-specific, Csound-

provided threads implementation [10] was used throughout the codebase.

Later, the platform-specific parts were removed and only two implementations

remained: one implemented with pthreads and the other providing a dummy

implementation. However, as the pthreads library was set as a required library

in the build system, the dummy implemented was no longer used. Also, as

pthreads was assumed to always be available, we found that pthreads-provided

functions were being used directly in the codebase.

To get around the issue of pthreads, both the build system and the source

code were changed. Firstly, the CMake build system was modified to ignore

searching for pthreads if and only if building with Emscripten. This change

was limited to the Emscripten-build to ensure that if pthreads was not found

on other platforms where it should be available, then it would cause a build-

time failure. After the changes in CMake, code within the Csound codebase

was modified with pre-processor conditional checks to optionally compile

certain code when building with Emscripten.

The result was that libcsound could be compiled without thread support.

This allowed for single-threaded use of Csound, with all of the same built-in

opcodes and features as is found on all other libcsound builds (i.e., Desktop,

Mobile). For the purpose of using Csound with WebAudio, being single-

threaded was sufficient.

After libcsound and libsndfile were compiled, Costello then wrote an

implementation of CsoundObj in Javascript. This version of CsoundObj, like
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the Android and iOS versions, comes pre-configured to handle Csound and

platform-specific I/O to work with the native audio system (i.e., WebAudio).

It does this by creating a WebAudio ScriptProcessorNode [125] that manages

and runs an instance of a Csound engine. The ScriptProcessorNode is

responsible for transferring incoming samples to Csound, running the Csound

engine for n number of buffers, and transferring samples back from Csound

to WebAudio.

The current version of Emscripten CsoundObj does not provide the

CsoundObj Binding system found in Android and iOS.15 Instead, users read

values from and write values to Csound using its channel system. Whether

Bindings will be implemented is currently on hold as the future of WebAudio

is moving away from the ScriptProcessorNode and towards AudioWorkers.

With the the current state of AudioWorker design, AudioWorkers will run in

a separate thread and can not share memory with the main JS thread. This

would make it impossible to implement a synchronous Bindings system. It is

unknown whether Bindings can be implemented for Emscripten Csound until

the final design of AudioWorkers is complete.

Like iOS and Android, a Csound Emscripten SDK is now released together

with every new version of Csound. The SDK provides a pre-compiled version

of libcsound.js (generated from libcsound and libsndfile), CsoundObj.js, and a

set of HTML-based examples that demonstrate usage of Emscripten Csound

and also act as a manual for the project.
15Version 6.05.0 of Csound, as of the time of this writing.
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PNaCl

Another technology, Google’s Pepper API (PPAPI) and Portable Native

Client (PNaCl), offers a different path to developing cross-platform, web-

based audio applications. With PNaCl, C and C++ code can be compiled into

a portable bytecode that is in turn ahead-of-time compiled just before run-time.

Developers compile applications into portable .pexe files, deploy them over

the web together with a web page, and run them across browsers that support

PNaCl. Additionally, web pages and PNaCl applications can communicate

with each other using the PPAPI. This API provides a standardised way

for C code to receive messages and data from Javascript, and, in turn, send

messages back to Javascript.

Google provides a cross-platform compiler toolchain for compiling C and

C++ code into PNaCl binaries. As Google creates both PNaCl and Android,

it is unremarkable that the PNaCl toolchain is very similar to the one provided

for Android’s NDK. As a result, the build for PNaCl Csound is setup similarly

to the one used for Android Csound, with a custom Makefile used instead of

an Application.mk and Android.mk file.

Because PNaCl supports pthreads and the toolchain is very similar to

ones provided for platforms like Linux, there were few changes necessary to

build libcsound and libsndfile. After doing the initial build, Lazzarini then

filled in the parts normally implemented within a CsoundObj implementation

though, in this case, it is a Javascript and C++ class called Csound.16 This

Csound C++ class uses the Pepper API to register callbacks and handle audio
16The PNaCl Csound class could easily be renamed to CsoundObj to provide closer

parity to CsoundObj implementations on other platforms, as it functions in the same ways,

wrapping portable libcsound API usage with platform-specific code for PPAPI.
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communication between a Csound engine instance and the MediaTrack audio

system provided by Pepper. The C++ class also handles receiving messages

to perform actions such as starting, running, and stopping a Csound engine

instance. The Javascript class in turn uses the Csound C++ class via the

PPAPI and wraps the functionality of the C++ class, so that end users can

write their web applications using Javascript to work with Csound.

Csound PNaCl releases are now released together with every new version

of Csound. The SDK follows the norms of other Csound-based SDKs and

provides a pre-compiled library, example code, and a manual.

Comparing Emscripten and PNaCl

While both Emscripten and PNaCl versions of Csound provide the same

libcsound-based features and are both capable of compiling and running the

same Csound code, the two implementations differ in significant ways in

terms of performance and availability. In terms of performance, as shown in

[108], the Emscripten build does not run as fast as the PNaCl one in terms

of raw speed. Additionally, and perhaps more importantly, the WebAudio

ScriptProcessorNode’s design is not optimal for real-time audio. Consequently,

breakups in audio are much more likely to occur with the Emscripten build

than in the PNaCl build. For PNaCl, the audio system interaction between

Csound and Pepper API’s audio system is very similar in design to how

Csound interacts with desktop audio systems. As a result, for the best

real-time audio performance, the PNaCl version is much preferred to the

Emscripten version.

However, in terms of availability, while PNaCl and the Pepper API is a

cross-platform technology, it is only implemented by a single browser vendor
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– Google – in their Chrome, Chromium, and ChromeOS browsers. On the

other hand, since the Emscripten build of Csound only requires Javascript

and WebAudio, it is capable of running everywhere that the PNaCl build

is able to be run (i.e., the previously mentioned Chrome browsers), as well

as all of the other browsers that provide WebAudio (i.e., Firefox, Safari).

For users who are less concerned with performance and more concerned with

availability, the Emscipten version would be much preferred over the PNaCl

version.

With either version of Csound for the Web, the end-user does not require

separately installing any applications or plugins prior to loading the web page.

The user can just load the page and everything will download and run. From

the perspective of dependency management, one can view the Web Csound

builds as having all of their library dependencies statically compiled into their

builds, such that they will always be satisfied when running the web page.

The result is that existing Csound-based projects can be preserved using the

Web, together with the exact version of Csound used to create the project.

Also, new Csound-based projects will have a high degree of long-term viability

to execute and run in the future.

4.5.4 Impact of Csound on New Platforms

Extending Csound to new platforms – iOS, Android, and the Web – has

extended both the durability and value of Csound as whole. With more

platforms to run Csound, users can have more confidence that their Csound-

based projects will continue to operate in the future. Also, with the new

features that each platform provides, users can reuse their existing Csound

knowledge and experience when they begin new works and more quickly
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develop projects on these new platforms. Furthermore, with the introduction

of the CsoundObj API, users have clear guidance on how to translate their

projects from one platform to the next.

4.6 Case Studies

The following will discuss various case studies that use the iOS, Android, and

Web versions of Csound discussed in Section 4.5. The case studies will be

divided into two categories depending on their approach to using Csound:

Csound Exposed and Csound Inside. For Csound Exposed programs, the

program will expose the Csound language to the user of the program. The

target user of these programs will be one who knows how to program using

Csound’s Orchestra and Score languages. An example of a Csound Exposed

application on the desktop would be CsoundQT [5], an environment where

users program in Csound but have other features provided by the application.

The typical users of these kinds of programs will use Csound on their desktop

systems and look to use Csound on other platforms, and they may want

to move Csound CSD projects between programs and platforms. From a

higher-level view, we can say that both the developer and user of the program

require knowledge of Csound.

For Csound Inside programs, the program does not expose Csound to the

end user. An example of this on the desktop would be AVSynthesis [112, 137],

a program where the user works entirely with a graphical user interface.

For these kinds of programs, knowledge of Csound is only required for the

developer of the program, and it is for their benefit.

There are also programs that both expose and hide aspects of Csound,

such as the author’s own program Blue (see Chapter 5). For the use cases
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below, the examples will be categorised according to what aspect they most

exemplify. Notes will be given describing features that venture away from

their category.

4.6.1 Csound Exposed

Csound Notebook

Figure 4.15: Csound Notebook

The Csound Notebook [196] is an open-source [197] website for creating

Csound projects, called Notes, and organising them into collections, called

Notebooks. The client-side is written using HTML and Javascript, using

the AngularJS 1 [77] framework. The server-side is written using Ruby on

Rails [9].

Users using the Csound Notebook must first create an account. Once an

account is registered, users can login and open up their notebooks. Figure 4.15

shows the notebook user interface. The interface is organised into three

columns. The first column shows the list of notebooks, including a special

“All Notes” notebook. Once a note book is selected, the available notes for
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that notebook are shown in the second column. Once a note is selected, the

contents of the note are shown in the note editor, found in the third column.

The note editor is set up with three primary tabs: Orchestra, Score, and

Console. Controls for playing and pausing Csound as well as evaluating code

is available above the tabs. Users can write Csound Orchestra and Score code

separately, and view the status of Csound output in the console tab. Notes

may also be marked as public, which allows the note to be viewed by any

user. Otherwise, notes default to private status and can only be viewed or

used by the note’s owner. Finally, notes may be exported as standard Csound

CSD files for use with other Csound versions (e.g., desktop).

The Csound Notebook functions as an online workspace for working with

Csound. The application supports use of both Emscripten and PNaCl Csound

builds. Users can choose to use PNaCl when using Chrome-based browsers

(Chrome, Chromium, Chrome OS) and get near native performance, or use

the Emscripten build if they are using any other browser that supports the

WebAudio API. Neither of these options require the user to have Csound

installed on their system.

The Csound Notebook functions as a useful tool for users to work on

musical computing online using Csound. The application also functions

as a testing ground for using both Emscripten and PNaCl builds. As the

application is open-source, it can serve as a reference for users building their

own web-based, music computing systems.

The Csound Notebook exemplifies one particular use case where the end

product exposes Csound to the user directly. The users of the Notebook will

work with Csound in a classical way, programming in Csound code. Other

use cases for Web Csound are described further below.
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Csound6 Android Application

Figure 4.16: Csound6 Android Application

The Csound6 Android Application is a program developed for devices

running the Android operating system. Device types where Android is found

include phones, music players, tablets, laptops, and desktops. The program

was originally named CSDPlayer and was written by Victor Lazzarini.17 It was

released with the initial Csound for Android SDK as an example application

for running Csound on Android. The project was further developed by Michael

Gogins and renamed as Csound6.

The Csound6 application allows loading and running of Csound CSD

projects. A screenshot of the application running on a Nexus 4 device is

shown in Figure 4.16. The application does provide an edit button but does
17An article describing usage of the earlier CSDPlayer is available at [151]
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not provide its own editor. Instead, the application delegates to an external

editor application.

The application provides both a standard, fixed set of graphical user

interface widgets and user-defined widgets written using HTML5. For the

fixed widget interface, each widget is assigned a pre-defined channel that they

use to send values to Csound. Users wanting to use the widgets can simply

add calls to the chnget opcode in their Csound code and receive the values

from the widgets. A benefit here is that if the project is moved to another

system, the project may still run even in the absence of those widgets (using

the default 0.0 value for Csound’s control-rate channels). For the HTML5

interface, users can use Javascript to bind the values from widgets to channels

in the running Csound instance.

The Csound6 application is an example of a Csound Exposed application.

Typical workflows include on-device development and execution of Csound

CSD projects, as well as off-device development and on-device performance.

By extending Csound to the Android platform, Csound users can now extend

their own workflow and embrace new performance possibilities using the

Csound6 application.

4.6.2 Csound Inside

ProcessingJS

The ProcessingJS Csound example [200] is a demonstration project using

PNaCl Csound for its audio engine and ProcessingJS [145] for its user-interface.

The project is a client-side project and has no server-side dependencies.

The user interface is a simple interactive canvas. When a user presses

down with a mouse, a note string is sent from ProcessingJS to Csound to
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Figure 4.17: ProcessingJS + PNaCl Csound Example

start a note. The x- and y- mouse coordinates are tracked as the user moves

the mouse, and the values are mapped to the instrument’s frequency and

amplitude respectively. Additionally, the ProcessingJS sketch’s code will

render a green circle that follows the mouse pointer while the user has the

mouse button down. On mouse up, the note is ended and the green circle

disappears.

This project is an example of one where the end product is a musical

application that does not expose Csound to the end user. The use of Csound is

purely for the benefit of the developer. Note also that the Csound CSD project

is the exact same CSD used within the MultiTouchXY examples found in the

Csound for Android and Csound for iOS SDKs. This demonstrates one of

the larger goals of extending the platform reach of Csound, that of simplified

cross-platform application development. One can imagine a developer using

the same Csound engine and CSD project as the basis of a musical application

across multiple platforms.
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AudioKit

AudioKit (versions 1 and 2) [1] were an open-source Objective-C programming

framework for OSX and iOS. Both versions were built upon the Csound for

iOS and Csound for OSX SDKs.18 AudioKit provided a high-level library for

building musical applications.
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Figure 4.18: AudioKit Architecture Diagram

Figure 4.18 illustrates the relationship between application code, Au-

dioKit, and the Csound for iOS SDK. The target user of AudioKit was an

Objective-C or Swift developer looking to integrate sound and music into

their applications. No knowledge of Csound was required by users using

AudioKit, though Csound knowledge was required to develop and extend

AudioKit itself. AudioKit provided its own API to its users and itself used
18Csound for OSX is a desktop-focused SDK that contains an implementation of

CsoundObj appropriate for OSX. Application code written for CsoundObj in iOS can be

re-compiled in OSX using the Csound for OSX SDK, largely without change.
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the Csound API to implement the features required by the higher-level API.

AudioKit provided some abstractions that mapped closely to Csound ab-

stractions (e.g., Instruments and Operations mapped closely to Csound’s

instruments and opcodes) but also provided its own abstractions such as

Phrases and Properties.19.

AudioKit is an example of a Csound Inside program where one wants

to build a higher level musical library based upon Csound. Using Csound

this way, the developers of AudioKit build upon a foundation of well-tested

audio engine code that they do not have to implement themselves. The depth

of AudioKit demonstrates the possibilities of what can be developed using

CsoundObj and Csound.

csGrain

csGrain [36] is a commercial iOS application produced by Boulanger Labs. It

was the first iOS application released on the App Store to use the Csound for

iOS SDK. The application uses Csound internally for its audio engine, while

its own application code focuses on areas such as the graphical user interface,

configuration storage, and inter-app audio communication. The manual for

csGrain describes the application’s capacities as follows:

csGrain is a stereo granular sound processor with 10 post-processing

effects – all realized through a single Csound orchestra that is

rendering, processing, sampling, resampling, synthesizing, resyn-

thesising, playing, reversing, delaying, triggering, gating, compress-

ing, limiting, chorusing, flanging, echoing, filtering, pitch-shifting,
19Further information about AudioKit’s abstractions can be found in the documentation

provided with AudioKit releases.
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harmonizing, granulizing, and recording – in any combination,

or simultaneously; all in real-time, and all 100% being done in

Csound! csGrain is the first of Boulanger Lab’s innovative and

cutting edge Csound Touch apps that are built with the latest

version of the Csound for iOS SDK by Victor Lazzarini and Steven

Yi. [37]

csGrain is an example of a Csound Inside application that employs Csound

on a mobile platform. The application takes advantage of native coding

practices and blends in with other applications on the platform. It employs

hardware specific to iOS devices, uses operating system specific features, and

uses the Csound engine with cross-platform Csound Orchestra code. csGrain

demonstrates how CsoundObj and Csound can be used to make applications

that are well-integrated into mobile platforms and do not require users to

know Csound.

4.7 Conclusions

Developing programs for platform-extensibility requires understanding what

are all of its dependencies. From there, the process of porting software is one

of trying to satisfy all dependencies on each target platform. This may reveal

new dependencies that were the result of assumptions becoming invalid.

The work in porting Csound to iOS, Android, and the Web has shown

that even software that has long been cross-platform can still present new

dependencies. Issues such as temporary file writing on Android and the

absence of plugin loading on iOS and the Web were challenges that required
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new software designs, both internally (e.g., replacing temporary score file

writing) as well as externally (e.g., CsoundObj).

However, by employing build-time configuration and compile-time condi-

tional code, as well introducing the CsoundObj API, Csound was successfully

ported to all three platforms. Users can now employ their Csound knowledge

in new places, take advantage of the unique features each platform offers, and

rest assured that Csound can continue to grow and adapt to the changes in

computing.

Looking towards the future, the Csound code base should continue to

support new platforms as they arise and attempt to do so in ways that

embrace the unique qualities of each platform. It should continue to use the

same source code on all platforms so that new developments are shared and

projects built for one version of Csound can expect to run equally as well

on another. By developing for platform extensibility, Csound continues to

support users’ existing work and offer new ways to leverage their existing

knowledge and experiences.
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Chapter 5

Modular Software Design and

Blue

This chapter will discuss modular software design and run-time module-based

systems as a foundation for extensible computer music software. It will begin

with a look at different music system archetypes and discuss their features and

drawbacks for users and developers. Next, it will look at modular systems and

how they leverage features found in the two prior types of system. Finally,

original work for this thesis will show applications of modular design in

Blue’s [195] Modular Score timeline. This provides a developer-extensible

way to add new score layer groups and types to Blue.

5.1 Introduction

Computer music software is designed for various modes of operation. Some

software is independent and designed to stand alone, whereas other types of

software are independent but designed to interoperate with other software,
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and still other types are completely dependent on other software to function.

Users will pick and choose from the software that is available to them and use

it to create their music. Developers will work to extend the systems by the

means available, whether that is directly extending a software or indirectly

through creating plugins or separate applications. The means by which a

software is made extensible for developers directly impacts the way users will

assemble software for their musical work.

Taking a step back and looking at the larger picture of a musical project,

one can see a network of dependencies develop based on all of the software

that a user employs to create a work.1 From the start of a musical project,

each software introduced becomes an extension to the state of the system.

Understanding how the total system assembled by a user for their work is

organised and how the pieces communicate and interoperate with one another

can help to understand the robustness of the work over time. The ways that

software is made extensible thus not only affects what operations are possible

with the system but also how fragile the work may be.

The following will begin by analysing various music system designs and

discussing their strengths and weaknesses. Next, it will consider the issue

of extensibility in existing music software systems. Finally, the chapter will

present the original work to develop Blue’s Modular Score timeline. This

presentation will include a review of timelines in other software, the design of

the modular timeline, and case studies of new layer group types implemented

for Blue.
1For a further discussion on dependency analysis, see Section 4.2.3.
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5.2 Music System Designs

Music programs can be systems unto themselves or they can be a part of a

larger set of programs that together make up the system used for a work.

In this section, I will discuss the primary building blocks of music systems:

executables and plugins. From there, I will look at single and multi-executable

systems. Finally, I will look at modular systems and how they relate to and

differ from other systems.

5.2.1 Executables and Plugins

Executables

Executables are standalone applications that users use to perform some set

of operations. They may be non-interactive programs that operate on given

inputs and return an output. They may also be long-running processes that

are interactively operated by a user. They may have graphical user interfaces

or be designed to operate in a terminal. Executables form the starting point

of computer music systems.

Executables may or may not offer extensibility through plugins. If they

do, they will first look at their registry of plugins to discover what plugins

are available. The registry may be explicitly defined, such as having a text

file that lists what plugins to load, or it may be implicitly defined, such as

having a directory where any files found that follow a naming convention may

be assumed to be a plugin for the system. Once the registry is consulted,

plugins will be loaded and the life cycle of the plugin will begin. Throughout

the life cycle of the plugin, the host may search for values or call functions

provided by the plugin, and the plugin may in turn do the same for values

188



and functions provided by the host. The host and plugin will communicate

via the plugin/host Application Programming Interface (API).

While an executable may offer a plugin point as a means to extend

the system, executables may also be designed to interoperate with other

executables. Executables may communicate explicitly with each other using

some form of interprocess communication (i.e., sending and receiving binary

or text data via pipes or network sockets). They may also communicate with

each other implicitly using an intermediary data file in a known format (i.e.,

one application writes a MIDI file to disk, a separate application reads the

MIDI file and renders it).

Plugins

Plugins are extensions to a system that require a host application to use.

Plugins do not stand-alone and can not be executed directly by a user. Instead,

an executable application loads plugins to offer additional features provided

by the plugin.

Plugins are often packaged in the form of dynamically-loaded shared

libraries. Unlike dynamically-linked shared libraries, these are unknown

to an application until run-time. Programs use system-provided functions

to explicitly load libraries and search them for symbols to use as data or

functions. These are used to install one or more plugins and extend the

program’s capabilities.2

While there are many different types of plugins, plugins as a whole do

share some general properties. Plugins must adhere to a convention or format.

Plugins must also be registered in some way with the host application so that
2For further discussion on dynamic linking and loading, see [113, Chapter 10. Dynamic

Linking and Loading].
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the host can discover the plugin and know how to load that plugin. Finally,

plugins also have a life cycle, where the plugins are used or perform certain

actions at certain times, determined by the code using the plugin.

For example, the music program Pure Data (PD) works with a plugin

format it calls externals. As the documentation for PD notes, it loads plugins

on demand:

Pd looks first in the directory containing the patch, then in

directories in its “path.” Pd will then add whatever object is

defined there to its “class list,” which is the set of all Pd classes

you can use. [146, chapter 4: writing PD objects in C]

This convention serves as the means by which PD discovers plugins, with

the registry of available plugins being implicitly defined by the available

libraries found in the folder for the patch or the program-wide path-list

for externals. To load an external, the library must have a public void

xxx_setup(void) function that can be found to initialise the plugin. The

xxx part of the name must match the name of the plugin itself. [206, 2.4

generation of a new class] The setup function for the plugin also serves as

the initial point of entry into the external and is part of the life cycle of the

plugin. Finally, the plugin uses the API defined in m_pd.h to interact with

the PD system and register new object classes.

Plugins offer a means by which to extend the functionality of a software.

Once loaded, their features become a part of the running application. Exten-

sion by plugins may be offered not only by executables, but also by libraries

and other plugins. The scope for where a plugin can be used is determined

by what host applications support the format used by that plugin.

190



Analysis

Executables and plugins form the base upon which computer music systems

are developed. Users may use one or many executables and each executable

may have zero to many plugin possibilities. Plugins in turn may also support

plugins themselves. The following will discuss application archetypes for

music systems based on their usage of executables and plugin.

5.2.2 Single-Executable Systems

In single-executable systems, a user uses a single top-level executable as the

primary system for their work. For example, this could be a command-line

program like Csound, or a program with a graphical interface such as Ableton

Live [13]. These programs may use projects and resource files (e.g., audio

files, data files) to perform or render the musical work, or else operate as a

musical instrument to be used in real-time.

Single-executable systems may be entirely self-contained or allow for

extension through plugins. For example, a program like Xenakis’s UPIC [118]

was a self-contained, graphical application that was not extensible by third-

party developers3. The application was used to create original content and to

render the final audio output.

On the other hand, a sequencer program, such as Apple’s Logic Pro [94],

does allow users to augment the available instruments and effects within

the program by installing additional third-party plugins. The application
3The Lohner article describes the system in 1986; I had an opportunity to use UPIC

in 1999 during the summer course at Les Ateliers UPIC and did not find any means to

extend the system at that time as well.

191



provides a host environment for creating musical work but participates in a

larger ecosystem of music software through the AudioUnit plugin format.

From the point of view of the developer, a single-executable system

represents a complete vision for a music system. That vision of software may

be the work of an individual developer or the shared work of many developers.

Developers can extend a single-executable system either by modifying the

source code of the executable or by creating plugins for known plugin points.

Extending the executable requires tight coordination amongst developers and

consensus on acceptance of changes, if the extension is to become a part

of the canonical executable application. Extension by plugin requires loose

coordination between the core application’s developers and plugin developers

via the specification of the plugin format. However, given a plugin point

and its format, any developer can extend that point as they wish without

coordination with the core application’s developers.

Analysis

Single-executable systems are the smallest operational unit for computer

music making. The executable may be singular in purpose or be very deep

in features to accommodate many musical tasks. When plugin support is

available, third-party developers can extend these systems by adhering to the

specification and format of published plugin points.

However, when a feature is desired that would extend the executable

in ways not possible by plugins, or if plugin support is not available at all,

third-party developers have limited options. If the system is open-source,

they can work with primary developers and contribute code to the original

project, or otherwise create a fork of the application with their own changes
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applied. The former involves a risk of the change not being accepted; the

latter requires upkeep if the fork is to remain current with the upstream

source.

If neither of those options work for a developer, or if a system is closed-

source, then third-party developers may be able to create a separate executable

application that can communicate with the primary application. This requires

that there be a communication protocol in place that both applications

support. If a protocol is not present then there may be no way to extend the

primary application for the desired feature.

5.2.3 Multi-Executable Systems

Multi-executable systems are built upon single-executable systems. With

multi-executable systems, users assemble the total system for their work using

available single-executable systems. Each application within the work may

or may not communicate with another application (i.e., a user runs the two

programs simultaneously but the programs are unaware of each other). When

there is communication between applications, it may be direct or indirect.

Figure 5.1 shows a diagram of a simple two-application multi-executable

system. One application supports plugins and the other does not. The arrows

represent the communication between these programs.

Applications that run concurrently may directly communicate with each

other in real-time. This communication can take the form of some inter-

process communication system and format, such as using pipes or sockets to

send formatted binary or textual data. Applications may also communicate

with each other indirectly. Here, one program may generate data that is

stored on disk, then another program later opens and reads that data. The
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Figure 5.1: Multi-executable system

data format may be the same as what is used in direct communication but

how the information is communicated differs. Indirect communication also

allows for the data to be distributed separately from the application that

generated it and for the information to be processed at a later time than

when it was created.

Developers may design music systems from the outset to be made from

many executables. A primary example of this is the CARL [119] system, made

up of many small executables designed to work together through Unix Pipes.

(Further analysis of CARL is given in Section 5.3.2). In this case, the parts

of the core system are distributed together and third-party developers can

extend the system by creating new executables that follow the communication

protocols set out by the system.

Another example is SuperCollider 3 (SC3) [123] as a dual-executable

system. As discussed in Section 4.3.1, SC3 employs two programs: the

scsynth server, run in one process, and the sclang language interpreter, run in

another process. They communicate with each other using the OSC format

over network sockets (TCP or UDP).

Users may also create their own multi-executable systems by assembling

various other systems together. The parts in these ad-hoc systems have
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means to communicate and work with other systems, though they may not be

primarily designed to do so. For example, a user might use one music system

to compose and render music out to sets of audio files. From there the audio

files are then loaded into a second program for mastering work to generate

the final audio product. In this scenario, two separate programs were used

to create the final output and the means by which they communicated with

each other was through audio files.

Analysis

For third-party developers, multi-executable systems provide a high degree

of flexibility to extend an existing system. Given that an existing system

adheres to a known protocol, developers can use whatever technologies they

wish to create a new executable to work with that protocol. For example,

if Program A is written in C++ and is able to render AIFF audio files to

disk, a third-party developer could write a Program B in any language and

GUI toolkit to process AIFF audio files. This would allow a user to use

both Program A and B together to create a work, using features from both

programs.

Multi-executable systems can empower both developers and users. Devel-

opers benefit by being able to create new executables using technologies that

may be very different from those used by other executables in the system.

Users benefit by choosing from a variety of software options to assemble a

system that uniquely satisfies their needs in ways that single programs may

not alone.

However, while multi-executable systems provide a lot of freedom, they

are not without drawbacks. Firstly, the dependencies for a work are made up
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of each application used by the work as well as any plugins used by the user

within each application. Each dependency introduces greater complexity in

satisfying the overall dependencies to recreate that work. As each executable

can have its own unique network of library dependencies, the complexity of

the overall dependency graph can be come quite large. With single-executable

applications with plugins, the network of dependencies is resolved within

the confines of a single system and features can be shared between the host

and plugins. The tendency within single-executable systems then is to have

smaller dependency networks – a benefit to users.

Using multi-executable systems can also obscure the dependencies of

applications upon each other. They may also make problems with changes in

communication protocols (i.e., the data format) harder to detect. For example,

a user uses Program A0 and B and they use file format X0 to communicate

with each other. Later, Program A0 is modified as A1 to produce data in

format X1, and a user uses Program A1 with Program C in a newer work,

which is also designed to use format X1. All is well until the user returns

to the first project after some time and attempts to use Program A1 with

Program B again. Program B however was not updated to use format X1

and only now is the problem discovered. This error may be a problem that

the developer of Program B might not be aware of and that a user may not

be able to diagnose easily.

If, instead of individual executables, program A was a single-executable

program and programs B and C were plugins, then modifying the data format

or communication protocol could have caused a compilation error or plugin

load error to be reported for program B. In this case, the user may very well

get an error message from program A that program B is no longer compatible
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with program A and the developer of program B may learn there is an issue

with their program.

In addition to the problems of dependencies and communication formats

is the problem of communication graphs. Loy discusses this point in [119],

indicating that the communication graphs for the CARL system could only

reach certain levels of complexity. One-to-one communication for applications

would be fine but one-to-many and many-to-one relationships were not well

supported. While this may not be a problem in systems based on communi-

cation servers like JACK (discussed further in Section 5.3.3), the issue is one

that can present itself when other communication protocols – such as MIDI

or OSC – are used.

Furthermore, for real-time multi-executable systems, another problem is

session management. A session involves the state of all applications used

in a work. Session management then is the management of the state of

applications and involves saving and loading of the state of all programs

participating in the session. This not only requires knowing the state of

each application but also restoring the state of each program in the correct

order. For example, if software A routes audio to software B in real-time,

reproducing the session state requires that software B load first, then software

A, then the connection made between A and B. Session management may be

an ad hoc process managed by the user, or may be automated by a session

management system, which tracks dependency graphs between applications.4

From a high-level perspective, multi-executable systems empower users to

use the best applications for each part of their work and empowers developers

to extend systems with tools of their own design using whatever technologies
4Session management has been an ongoing issue in the Linux Audio community, with

multiple approaches having been explored. See [136] for further information.
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that best suit them. However, the benefits must be weighed heavily against

the potential fragility of the work due to the larger number of dependencies,

the complexity of communication between applications, and the difficulties in

recreating the state of the total system.

5.2.4 Module-based Systems

Module-based systems, as defined here, are an extension of single-executable

systems design where the application is made up almost entirely of plugins

loaded at runtime. With typical single-executable systems, many if not

all of the features of the application are built into the executable itself.

However, with module-based systems the executable contains very few features,

primarily dealing with discovering, ordering, loading, and unloading of plugins.

In turn, all application-specific code is delegated to functionality provided in

plugins.

Module systems – such as OSGi-compliant containers [85] and the Netbeans

Module system [33, Chapter 3: The Netbeans Module System] – use a very

generic module format. Modules have callbacks that are called at different

points of the application’s life cycle. These include things such as when a

module is first discovered and installed, when it is loaded, when it is unloaded,

and when it is uninstalled. Modules also list dependencies upon other modules

as well as public classes available for other modules to depend upon. In other

words, modules are used both at compile-time, like a library, and at run-time.

Module containers have not only the responsibility to load specified plugins

but also to do so in the correct order using the dependency graph of the

modules.
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At run-time, module systems provide a means for modules to advertise

service or plugin class implementations as well as to search for and discover

those services and plugins. This mechanism is a primary feature of module

systems and it promotes application architectures with many points of exten-

sibility for third-party developers to customise. It also helps core developers

of an application to use the same plugin mechanism internally as it promotes

clarity in design.

Unlike typical single-executable systems, applications using the same

module system all share the same top-level executable. The only difference

between applications are what modules are provided and the configuration

information. Therefore different applications may use the same executable

and module system but produce very different systems. Additionally, users

can install modules from different developers in the same container, effec-

tively having multiple top-level “applications” in the same single-executable

application.

Analysis

Module-based systems offer features to the application developer that bring to-

gether some of the best aspects of both single-executable and multi-executable

systems. However, module-based systems also have their own unique draw-

backs and concerns.

Single-executable system designs can be implemented using modular

systems. For self-contained single-executable systems, a comparable design

would be to create a single-module program that contains the entire application

codebase. For single-executable systems with plugins, a core module or set of

modules can be created that maps to the features of the single executable.
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The core module or set of modules may expose interface classes for other

modules to implement as plugins. From there, third-party developers could

create modules that depend on the plugin interfaces within the core module.

They would package their plugin implementations within their own modules.

The plugin modules could then be presented for users to install into their

module container application and the plugins would become available for the

user to use.

Module-based systems can also operate similarly to multi-executable

systems. For example, given a known communication protocol, two developers

can develop their own set of modules as applications and the two can be loaded

into the same module container. The two “applications” could then work

directly or indirectly with each other, with the same conditions found in multi-

executable systems. The separate set of developers can work independently,

yet participate within the same application container. While module-based

systems can provide this kind of architecture, it still has the same kinds of

drawbacks as multi-executable systems and is probably not the most effective

use of modular-programming technologies.

The real advantage of module-based systems is that they make designing

plugin points and using plugins into a fundamental part of application archi-

tecture design. The result is that application developers using module-based

systems tend to make many more features of their program extensible as

plugins than non-module-based systems. As a result, there are more opportu-

nities for third-party developers to extend a system without having to create

their own separate executable.

This too may help users who might not find all features within an applica-

tion adequate. Instead of reaching for another executable application and thus
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introducing another potentially large set of dependencies, they may be able

to find a module that can address their needs. If the module container can

install a module into its container then the module system has verified and

properly satisfied the dependencies of that module. Consequently, the burden

of verifying the total system’s dependencies is managed by the application

itself, rather than by the user.

However, module-based systems do have their drawbacks. Firstly, if an

application is small in scope, the features of using a module system may not be

worth using. Secondly, modular programming frameworks are mostly found

in use on the Java Virtual Machine (JVM). This limits the programming

languages for developers to those that work on the JVM. Although there

are many languages that work on the JVM – Java, JRuby, Scheme, Clojure,

Jython, Scala, and Groovy to name a few – it may not satisfy those developers

wanting to work in a language that operates closer to the machine level (i.e.,

C, C++, Objective-C). Modular programming systems in other languages

do exist, such as Celix [22] – written in C – and CTK [6] – written in

C++. However, they do not appear to be as widely used as Java modular

programming frameworks. Finally, module-based applications may require

the use of specific GUI toolkits. If a developer does not wish to use that GUI

toolkit, they may decide not to create plugins for that application.5

Module-based systems provide a great deal of flexibility in designing

applications and make extensibility a high-level concern when designing the

architecture of a program. It extends the monolithic single-executable with

plugins model by simplifying and generalising plugin loading. This in turn
5The primary Java runtime has evolved to provide three different UI Toolkits: AWT,

Swing, and JavaFX. There are opportunities to use all three within an application. However,

a separate UI toolkit, such as SWT, may not interoperate well with the built-in UI toolkits.
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provides more opportunities for extension by third-parties, providing some

of the same freedoms afforded by multi-executable systems. While multi-

executable systems will still develop – whether designed by developers or

assembled ad hoc by users – module-based systems can provide a base where

the need to create a separate executable is diminished. In the end, the musical

software ecosystems that can arise around a module-based system can help

manage a work’s dependencies for users, yet also continue to grow to meet

out users’ needs in the future.

5.2.5 Summary

Music systems are built from executables and plugins. A system may be

as small as a single executable or grow larger through plugins and other

executables. Executables and plugins all have dependencies and all of the

dependencies become a part of the total system’s dependency graph. This in

turn affects the robustness of a user’s work.

Module-based, single-executable systems provide an alternative to single-

executable and multi-executable systems. It provides a foundation to build

music programs open to extension at many levels, yet carefully managed

in terms of dependencies. This allows an ecosystem to develop around a

music application that can serve the needs of users and developers but also

minimises the risks for long-term viability of projects and works.

5.3 Computer Music Systems and Extensibility

In this section, I will look at a number of existing computer music sys-

tems, examining their overall designs and comparing them to the application
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archetypes presented in the previous section. I will also frame the systems

in terms of how extensibility is accounted for and the impact that system’s

extensibility design has on the developer and user.

5.3.1 Digital Audio Workstations

Digital Audio Workstations (DAWs) are a common type of graphical music

application that allow users to work with visual timelines to organise and

perform musical material. Originally the term DAW applied to programs

that strictly worked with digital audio content and the term sequencers

applied to programs that worked with organising MIDI content. Today, most

programs that supported digital audio now support organising MIDI material

and vice versa, and the term DAW can be used to apply generally to these

class of programs. Examples of DAWs include open-source programs such

as Ardour [55] and QTractor [42] and commercial closed-source programs

such as Steinberg’s Cubase [74], Apple’s Logic Pro X [94], and Cakewalk’s

Sonar [95].

DAWs are generally single-executable, monolithic applications that sup-

port plugin formats such as AudioUnit, VST, LV2, and LADSPA. Plugins

are available to extend the system at known points – instruments, effects,

and MIDI processors – but extending the primary host application requires

introducing changes to the primary source code. This must be done by a

trusted developer with access to the code for the application.

There are a few options available to the third-party interested in extending

a DAW application. One could make a request for a change to be performed by

one of the core developers. Another option available for open-source programs

would be to perform the change to a local version of the application’s source
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code and submit a patch to the core developers, whom would inspect and

either apply the change to the main source or reject it. In single-executable

systems like DAWs, modifications to the primary application are generally

closely audited. Changes deemed not globally useful may not make it into

the canonical application. This is good for consistency of user experience but

prevents integration of novel features that may be extremely beneficial for

some users, but not for all.

For open-source programs, one alternative is that a third-party developer

or set of developers could create a custom version of the application and

distribute the changed source and/or the modified version of the application.

The differences between the primary and modified sources could then be

maintained as patches. These patches could then be applied whenever there

are changes to the primary code base. Also, the code may become a completely

forked version of the code, with changes from the original repository applied

to the fork so that the fork can receive new features and bug fixes from the

original. However, this may require a lot of work, especially if the original

or fork diverges enough where patches cannot be applied easily and manual

intervention is required.

Another approach to dealing with extensibility by third parties is to

provide more plugin formats by which to extend the primary system. If the

format is stable, third party developers could create plugins to add new menu

options, add actions, add behavior, and customise the UI. The choice then

to use the features provided by these plugins becomes one a user can opt to

use or not. The most useful features would still likely be made as part of the

primary system but less globally valuable features still have a way to be a

part of the application.
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Also, the means to extend the system need not necessarily be by binary

plugin; it may also be some form of scripting language. For example, Cake-

walk’s Sonar provides a custom scripting language called CAL (Cakewalk

Application Language); Cockos’s Reaper [96] provides ReaScript [43], which

allows programming using EEL2 (a custom open-source language), Lua, or

Python programming languages. With both of these systems, users can

extend the behavior of the primary application by writing custom scripts.

This provides at least a limited way by which novel and useful features could

be introduced by third-parties to the existing system.

User may use a DAW alone but they may also use one as a part of a

multi-executable system. Using DAWs this way increases the complexity of

the total system but the complexity may be well understood and accepted

by a user. An analysis of JACK-based multi-executable systems, discussed

below in Section 5.3.3, will explore these complexities further.

DAWs generally provide a consistent and stable user experience by imple-

menting many features within their application code. They support limited

extensibility through a fixed set of plugin formats for features such as in-

struments, effects, and MIDI processing. They may also offer support for

scripting as a way for users to extend the system in novel ways, but this

support is in itself novel for DAWs and not a common trait for these kinds of

programs. Users working with DAWs may have all of their needs met by the

features provided by the program; however, when the user requires a novel

feature, DAWs can be more limited than other kinds of programs in ways to

extend the application.
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5.3.2 CARL

The CARL System [119] was a multi-executable system designed for Unix

operating systems. Each executable within CARL was used to perform a

single operation and users programmed their work by connecting executables

together and streaming data from one application to another. Users could

use the programs by themselves, execute a series of applications together on a

command-line, or use shell scripts to program a work or batch process using

the CARL applications.

CARL’s design followed classic UNIX programming philosophy6, providing

multiple single-purpose executables that followed a well-defined interface: this

design accounts for extensibility from the start. CARL provided a number of

features that would be generally useful that generically worked with binary

data over pipes. Users could combine the provided applications as they wished.

If a feature was desirable but not provided by CARL, a third-party could

develop a new executable in any language available and have it work with any

of the other CARL executables, provided it used the same communication

protocols as the rest of CARL.

CARL’s design worked well for its initial purposes, but it would have

drawbacks over time. As Loy points out in [119], some of the primary issues

with CARL’s design have to do with the focus on “linear processing chains” and

“avoidance of anything resembling dynamic real-time operation”. This could

be stated more generally that the system of communication used between the

executables within CARL was not capable enough to satisfy the requirements

of computer musicians over time.
6For more information about UNIX programming, see Raymond’s The Art of UNIX

Programming [150].
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The design of CARL provides a great deal of extensibility and flexibility for

users. However, the system of communication between executables ultimately

limited the capabilities of the total system. It may be that a different system

of communication or different granularity of features per executable might

have solved some of these issues but the system did not explore those options

and eventually fell out of use.

5.3.3 JACK-based Systems

Another multi-executable system are those developed to work with the JACK

audio server. [56] The JACK audio server was originally designed as a way to

connect audio programs to hardware. Later, the JACK audio server became a

hub by which audio from different programs could be routed to each other and

real-time multi-executable systems could develop. Developers could program

their JACK-compatible applications using their preferred languages and GUI

toolkits and each application could participate within a larger network of

applications.

JACK-based systems provide many similarities to CARL and offer the

same freedoms to arbitrarily extend the system with third-party applications.

The system of communication – the JACK audio server – allows for much

more flexible routing and real-time communication than Unix pipes. This

addresses some of the problems mentioned by Loy regarding CARL.

JACK has also gone on to inspire other inter-application audio systems.

On the iOS platform, Audiobus [27] has become a popular audio routing

and session saving system for connecting audio applications. Apple later

added their own inter-app audio system in iOS 7 as part of their Core Audio

library [24, Working with Inter-App Audio]. On Android, the Patchfield [79]
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system was developed to achieve the same kinds of capabilities as JACK

for inter-app audio. From a high-level perspective, all of these systems –

including JACK – share traits as communication technologies for building

multi-executable systems.

However, while many freedoms for developers and users are granted with

such a system, as mentioned earlier, multi-executable systems can be fragile.

Compared to a work created using single-executable applications, a work

that depends on multiple executables can have a much larger dependency

graph that must be satisfied if the work is to be recreated. Also, session

management becomes a concern with JACK-based systems. The freedoms

and capabilities must be weighed against the risks to the degradation of the

system over time and portability of a work.

5.3.4 Summary

The designs of DAWs, CARL, and JACK-based systems present different

architectures based on the number of executables and system of plugins.

Ideally, a music system would provide the stability and consistency that

Digital Audio Workstations provide as single-executable applications. Also, a

system would ideally have the flexibility to extend the system as one has in

systems like CARL and those built around inter-application audio systems

like JACK.

5.4 Blue: Modular Score Timeline

This section will look at original work for this thesis for Blue’s Modular

Score timeline. It will begin with an introduction to Blue. Next, it will
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review existing score timelines and discuss their properties. Motivations

for developing a developer-extensible, modular score timeline will follow.

Afterwards, the design and implementation of the new timeline will be explored.

Finally, two new Score Layer groups and types will be presented.

5.4.1 Introduction to Blue

Figure 5.2: Blue: Modular Score Timeline

Blue [194] is an integrated music environment for composing and perform-

ing computer music. It is written in Java and is built upon the Netbeans

Rich Client Platform (RCP) [47]. Blue also uses Csound as its audio engine,

either indirectly through executing the Csound command-line executable or

directly through Csound’s Java API.7

7This makes it either a single-executable or multi-executable system, depending on how

the user decides to operate the program.
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Blue is both a “Csound Inside” and “Csound Exposed” application.8 It

features a score timeline, graphical instruments, effects, and mixer system,

as well as a number of high-level features. These parts act as a framework

in which to use Csound programming to develop works. The program scales

such that the user can use mostly Csound code for their work, or use mostly

visual tools and almost no code at all.

In terms of classification, Blue is primarily a single-executable, module-

based software program. Using the Netbeans RCP, it provides many oppor-

tunities for developer extension. Internally, Blue is developed as a set of

modules and the application is released together with other modules provided

by the RCP. As is the practice with RCP applications, many parts of a

program are developed either to implement a plugin point or to consume

plugins. As external modules can be installed into an application, developers

have a well-defined mechanism provided by the RCP to create new modules

for Blue to extend its features and introduce new ones.

5.4.2 Review of Score Timelines

Score timelines present users with a visual way to coordinate musical material

in time. Time can be measured in a number of ways – beats, seconds, measures,

SMPTE time code, etc. – and different systems may show time in one or

more ways. Timelines are often divided into layers or tracks, and each layer

may be of a different type. For each layer type, there are different kinds

of objects that can exist; for example, audio layers may contain audio clip

objects, and MIDI layers may contain MIDI clip objects.
8Section 4.6.
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The following will look at score timelines in various music software. The

software will be classified according to whether they are homogeneous or

heterogeneous in terms of both their layer types and layer object types.

Ardour

Ardour is an open-source Digital Audio Workstation (DAW) and sequencer.

Prior to 3.0, Ardour’s timeline contained one layer type: audio layers. Audio

layers provided one type of layer object called Regions, which map to portions

of an audio file. Multiple regions may map to the same audio file and each

region in turn may have individually unique properties. For example, if two

regions map to the same audio file and use the same start time and duration

of audio to play, they may differ in their fade-in and fade-out times.

From 3.0, MIDI layers were introduced into Ardour. MIDI layers allow

MIDI clips to be organised on the timeline. MIDI clips are used to drive

instruments – either using software synthesisers or hardware devices.

The Score timeline in Ardour prior to 3.0 could be classified as having

homogeneous layers of type Audio with homogeneous objects of type Region.

From 3.0 onwards, Ardour could be classified as having heterogeneous layers

of type Audio or MIDI with each layer type as being homogeneous in terms

of allowed sub-objects – Regions and MIDI clips respectively. Through

the current version, Ardour’s layers and sub-objects are not extensible by

third-party developers.9

Ardour’s score timeline is characteristic of most commercial and open-

source DAWs and sequencers. Heterogeneous layer types with homogeneous
9The current version of Ardour is 4.1 as of the time of this writing.
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objects are also found in QTractor [42], Steinberg’s Cubase [74], Apple’s Logic

Pro X [94], and Cakewalk’s Sonar [95].

While Audio and MIDI layer types cover a large set of use cases, developing

new layer types or layer objects must be done within the core software

application code. This puts a burden of implementation and support on the

core developers. If these systems allowed for plugin layer types, third parties

could freely extend the system without intervention by core developers and

the burden of support would move to outside the core development team.

Also, as noted in Section 5.3.1, the introduction of novel features that may

have a limited audience is hindered when options for third-party extensibility

are not available.

Kyma

Kyma [155] is a hardware/software music and audio system produced by

Symbolic Sound. Kyma’s timeline contains a single layer type that contains a

single, but user-extensible, object type. From the product page for Kyma X:

Layer and sequence your sounds by dragging them into the timeline.

Each bar in the timeline represents a synthesis or processing

algorithm – program running on the Pacarana, starting at a

particular time, perhaps running in parallel with other programs,

and stopping at a specified time. You could think of the timeline

as a “process scheduler”. For example, you could create a timeline

where each bar represented a different effects-processing algorithm

applied to the microphone input – with each effect starting at a

different time, some of them running in parallel and routed to
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different outputs, and some of them fading out before others. [168,

Timeline]

Kyma’s homogeneous layer type provides a single, consistent way to

organise material in time. Since Kyma’s layer objects are user-extensible, users

can create objects with different processing algorithms and user interfaces.

This allows one to not only use pre-made objects, but also modify existing

ones and create new ones from scratch. Thus the system provides many ways

to express musical ideas within the contexts of bars on a timeline.

While a system like Kyma is very powerful, it does not allow for different

representations of and interactions with music on the timeline itself. Instead,

variations in musical ideas are expressed within the editor for each bar in

a separate editing area outside of the timeline. Users have many options

for individual object variety but, within the context of the timeline, they

are limited to the visualisations and interactions provided by the software’s

developers. Like Ardour, any new layer types or object types would require

development and support by the core developers.

Duration

Duration, developed by James George and YCAMInterlab, is an open-source

project that describes itself as a “Timeline for creative code.” [73] The program

is a score timeline made up of tracks. Each track can be one of a number

of pre-made types: bangs, flags, switches, curves, LFOs, colours, and audio.

Each track type has its own user-interface and each type generates OSC data

in its own unique way. The application is designed to be used with a separate

receiving program that can communicate over OSC. Thus, it is designed for
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developing multi-executable systems and works and has all the benefits and

drawbacks associated with that class of system design.

As the README.md file notes:

Timelines are used in so many different scenarios there is no

way that one application could solve them all, with this in mind

Duration was built to be extended. [72, Hacking on Duration]

Duration can be classified as having heterogeneous layer types and either

none or one object type per layer (in other words, some layers do have

sub-objects while others do not). While the code base supports extending

the system by adding new layer types, it does not appear to expose this

capability to third-party developers via plugins. The source code does not

have plugin loading facilities nor are there any mention of such things in its

documentation. It is assumed then that the path to introducing new layers is

to modify the source code for Duration and request merging if one wants to

extend the system for all users.

Duration has the internal architecture to allow arbitrary extension of its

timeline at the layer level. It would certainly be possible to expose these

capabilities to third-parties with the addition of a plugin system. However,

the state of the program is uncertain, as its last release was February 26th,

2013 (Alpha 004), and there are very few commits since then [71]. It may well

be that the program is “complete” and satisfies the goals of its creators, or it

may be that it is no longer being maintained or used. Regardless, the system

is open-source and open to extension to support plugins if its community of

users and developers wants to pursue that path.
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Analysis

Ardour, Kyma, and Duration present various approaches to score timelines.

They differ in their types of layers and in the types of objects each layer

supports. They also represent a range in terms of their designs for extensibility

of their timelines. Kyma’s user-extensible objects present extensibility at the

level of the layer object; Duration’s design presents extensibility at the layer

level; and Ardour presents a fixed layer and object design. None of these

programs provide extensibility of their timelines by third-party developers.

5.4.3 Motivations

Prior to the work in this thesis, Blue’s score timeline offered a single layer type

– called Sound Layers – that contained heterogeneous musical material – called

SoundObjects. Like Kyma, Blue’s timeline interface provided a consistent

and uniform interface for organising SoundObjects in time. However, unlike

Kyma, SoundObjects were both user-extensible as well as developer-extensible

as plugins.

With a single layer type, Blue’s score interface was consistent from layer

to layer for editing objects in time. With SoundObjects being a plugin-point,

developers could create new SoundObject types to extend the available objects

in Blue. In addition, users could further customise certain SoundObjects with

their own scripting code (i.e., PythonObject, ClojureObject) and user interface

designs (i.e., ObjectBuilder), providing a high degree of customisation and

extensibility10. Conceptually, this allowed users to introduce new objects,

similarly to how Kyma provides user-extensible objects.
10More information about various SoundObjects are available in [195, 3. Reference -

SoundObjects].
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The design of a single layer type with heterogeneous objects can be very

flexible within the confines of the objects themselves. However, there were two

problems with this design in Blue. Firstly, coordinating and editing material

within objects in relation to the internal contents of other objects may be

difficult. Even with extensive visualisation of the object on the timeline, one

still has to work outside the timeline and use the object’s edit panel to modify

its contents.

One possible solution would be to replace the use of bar renderers with

bar panels. This would allow SoundObject developers to provide custom bar

interfaces that might allow user editing of SoundObject contents directly on

the timeline. This kind of interface has been implemented in Ardour for its

MIDI layers and objects. This approach was considered for Blue but it did

not seem to fit well at the time with the kinds of objects that currently exist

in Blue. However, this approach may be revisited in the future.

Secondly, some forms of musical ideas do not fit in well with the paradigm

of objects and bars on a timeline. Using bar panels may solve the first

problem but does not address the second. One example would be timelines

with western music notation, where time is organised into measures by meter,

and notes and other markings are written within measures. Another example

is a music program like UPIC, where one works by drawing lines directly on

a timeline using digital pen and tablet. Both of these types of programs work

with music in time in ways very different from the objects and bars model.

In looking at DAWs and sequencer applications, there is a precedent

in having heterogeneous layer types for Audio and MIDI. Each layer type

has unique interfaces and operations that are specific to that kind of layer.

For example, in a MIDI layer, overlapping clips might play both the clips
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concurrently, while in an Audio layer, it may create a cross-fade between the

clips. In this scenario, while both audio and MIDI layers share an objects

and bar model, they visualise and perform them differently, giving different

behavior between layer types.

The goal for Blue’s Modular Score timeline was to extend Blue’s existing

homogeneous layer model to become a heterogeneous model. When interacting

with the timeline, the timeline should accommodate not only operations

specific to each layer but also operations that are global to the score as a

whole. In addition, the system should be developer-extensible, such that new

layer types could be introduced by third-parties.

5.4.4 Implementation

Blue’s modular score timeline was first introduced in version 2.3.0 and further

refined over time.11 The general design of Blue follows the Model-View-

Controller (MVC) [102] object pattern but uses the convention found in the

Swing GUI toolkit of combining the View and Controller within the same

GUI object. The following will discuss changes introduced to Blue’s data

model design, followed by changes for the graphical user interface. Next, it

will discuss how these changes are exposed to third-party developers as plugin

interfaces. Finally, a summary will be provided.

Data Model Changes

Figure 5.3 shows a diagram of the previous Blue Score data model. In this

model, a Score class was used that contained all data for the score timeline.
11The current version Blue is 2.6.0 as of the time of this writing. Versions 2.3.0 through

2.6.0 were developed as part of this thesis.
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Score

<<SoundObject>>
Interface

PolyObject

SoundObject 
Implementations

SoundLayer

Figure 5.3: Blue Score: Old Data Model

The Score class contained a single top-level SoundObject called a PolyObject.

The PolyObject class is a Composite [70] container class made up of a list of

SoundLayers, each of which contained SoundObjects. As PolyObjects also

implemented the SoundObject interface, this allowed adding of PolyObjects

to SoundLayers, thus allowing timelines to be embedded within timelines.

SoundLayers were presented in the user interface as vertically laid out rows,

and SoundObjects were presented as bars within each layer.

Figure 5.4 shows a diagram of the new Blue Score data model. The

modular score model introduces a new LayerGroup interface that acts as a

container for Layer interface objects. Score has been modified from holding

a single PolyObject to now act as a container for LayerGroups. The model

also introduces two new sub-interfaces, ScoreObjectLayer and ScoreObject,

which express that certain kinds of layers can provide ScoreObjects. By

using the sub-interfaces, the system can distinguish what layers may or may

not support layer objects.
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<<SoundObject>>
Interface
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<<LayerGroup>>
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<<ScoreObject>>
Interface

<<ScoreObjectLayer>>
Interface

Figure 5.4: Blue Score: New Data Model

The diagram also shows how the previous concrete classes, PolyObject

and SoundLayer, are now implementations of LayerGroup and ScoreObject-

Layer. Also, SoundObject is now a sub-interface of ScoreObject. Making

these classes implementations of the new interfaces allows the previous model

to act as a subset of the new model. As a result, there is a clear path of

migration for older projects and no data is lost in translation.

User-Interface Changes

In Blue’s modular score, the user interface class design was modified to work

with the new data model. Instead of working with a single LayerGroup

(PolyObject), the program now must work with multiple Layergroups.

Figure 5.5 shows a diagram of the previous Blue Score UI model. In

this model, the ScoreTopComponent held the editor for the Score. It used

a hard-coded ScoreTimeCanvas component to render out the main timeline
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<<SoundObject>>
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Figure 5.5: Blue Score UI: Old Class Design

of a PolyObject. A SoundLayerListPanel header component was used for

the left-hand side of the score. The ScoreTimeCanvas renders each layer

by reading their SoundObjects and creating SoundObjectPanels for each

one. Each panel used the associated BarRenderer for a SoundObject for

visualising the object on the timeline. The SoundLayerListPanel would

create SoundLayerPanels for each SoundLayer for editing properties for the

layer.

Figure 5.6 shows a diagram of the new Blue Score UI model. The ScoreTop-

Component now uses a fixed ScorePanel and LayerGroupHeaderListPanel.

Each of these new components works as containers for multiple LayerGroup

headers and panels.

A new LayerGroupUIProvider Abstract Factory [70] interface was intro-

duced that is associated with LayerGroups. When the ScoreTopComponent

receives a Score to edit, it will use the the associated provider for each

LayerGroup to create a header and panel. These are then added to the

LayerGroupHeaderListPanel and ScorePanel.
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Figure 5.6: Blue Score UI: New Class Design

Figure 5.2 shows an example of the modular score. In the score are three

LayerGroups: SoundObject (i.e., PolyObject), Audio (see Section 5.4.5), and

Pattern (see Section 5.4.5). The header list on the left and the timeline on

the right both show the corresponding panels provided by the LayerGroupUI-

Providers. Space is introduced between panels for LayerGroups, similar to

how orchestra scores in Western music notation group instrument families

together and provide space between groups.

To use the modular score, a new Score Manager dialog was introduced

(shown in Figure 5.7). This dialog is used to add, reorder, and remove

LayerGroups to the Score. User can also add, reorder, and remove Layers for

LayerGroups, as well as edit properties for the LayerGroup using property

panels provided by LayerGroupUIProviders.

Finally, mouse handling for the timeline was redesigned. Each LayerGroup

panel can implement its own mouse handling code. However, some mouse

operations should be global to the entire score. A new BlueMouseAdapter
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Figure 5.7: Score Manager Dialog

plugin was introduced that allows new mouse handlers to be used on the

top-level of the Score timeline. If a LayerGroup panel does not mark a mouse

event as being consumed, the top-level mouse handlers get an opportunity to

handle the mouse events.

When migrating to the modular score design, the former ScoreTimeCanvas

and SoundLayerListPanel were updated to be components returned from

the PolyObjectUIProvider. In addition, much of the mouse handling was

updated and moved from the ScoreTimeCanvas to a BlueMouseAdapter. The

mouse code was modified to work with ScoreObjects, allowing operations

like object selection, moving, and resizing to work with ScoreObjects of

different types and across different LayerGroups.
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Plugins

The Blue Modular Score introduces new interfaces to both the data model

and UI class model. These interfaces are plugin points that allow new kinds

of LayerGroups to be introduced into Blue. This can be done either by core

or third-party developers.

Plugins are handled in the standard way for Netbeans RCP applications.

The plugin interface is defined in one of Blue’s core modules. The package

is marked as public in the module’s manifest [33, Chapter 3: The Netbeans

Module System] so that other modules can use those interfaces. Other modules

add a dependency on the Blue core modules and implement the plugin. They

then register the plugin using the System Filesystem [33, Chapter 7: Data

and Files]. From here, Blue uses the Lookup [33, Chapter 5: Lookup Concept]

system or Filesystem API to discover all plugin implementations.

Summary

To implement the new Modular Score, new Java interfaces were introduced

for both Blue’s data model and its user interface class model. The Score

user interface was updated to work with and organise LayerGroups. These

interfaces are exposed as plugins points and can be implemented in new

modules, whether created internally within Blue or externally by third-parties.

5.4.5 Case Studies

This section will discuss two types of LayerGroups that were introduced since

the implementation of Blue’s modular score timeline: Patterns and Audio.

These LayerGroups will show different approaches to working with material
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in time and how their unique interfaces offer something more than what the

previous homogeneous score model could offer.

Pattern LayerGroups

Pattern LayerGroups were first introduced in Blue 2.3.0. Pattern Layer-

Groups are split into PatternLayers, each of which has a Pattern and a

SoundObject. The SoundObject for a PatternLayer is used as source ma-

terial for the layer, and the Pattern tracks where in time to perform the

SoundObject. For each location of the pattern selected, the SoundObject’s

generated score is used to play for the duration of the pattern’s box. The

length in time of each pattern box is configured in the PatternLayerGroup

and shared by all PatternLayers for the group.

Figure 5.8: Pattern Layers
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PatternLayers are useful for music which repeats material. Figure 5.8

shows a PatternLayer used together with a Pattern SoundObject to draw

in a drum pattern. Once the drum pattern is created, the user can then

select each place on the timeline where they would like that pattern to play.

Because the pattern is both drawn and edited on the timeline itself, the

user can be very quickly fill in locations to play the pattern. As Figure 5.8

shows, Pattern and SoundObject LayerGroups can co-exist on the timeline

together, allowing the user to choose which representation best suits the

musical idea they want to represent and work with.

The user interface for PatternLayers uses custom mouse actions that

differ from ScoreObject-based layers. For example, a user can press down

with the mouse in one box, drag the mouse over multiple locations, then

release the mouse. In that one gesture, the user would have filled in multiple

boxes within the pattern. Afterwards, they might then click to deselect some

locations. Using ScoreObjectLayers, the closest interface gesture would be

to copy a ScoreObject, then command-click to place copies of that object

in multiple places on the timeline. For those working with pattern-oriented

music-making, the PatternLayers interface may be considered to be more

efficient and optimal to the kind of music being represented than that of using

ScoreObjects.

Audio LayerGroups

Audio LayerGroups were introduced in Blue 2.6.0. They offer the same kinds

of functionality as one would find in DAW software, allowing the user to

organise audio clips in time. Blue’s audio layer functionality is modeled upon
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the features and behaviors found in other existing DAW software. Figure 5.8

shows an example of using Audio layers.

Figure 5.9: Audio Layers

With AudioLayers, users can drag and drop audio files on to the timeline

to create AudioClips. The mouse interactions for AudioClips should be

familiar to those who have experience with other DAWs. User can select and

move clips as well as resize from the left- and right-hand sides of objects

to adjust both the clip’s start/end time and audio file’s start/end time.12

Fade-in and fade-out times may also be adjusted.

AudioLayer is implemented as an instance of the ScoreObjectLayer in-

terface. Also, AudioClip objects implement the ScoreObject interface. This

allows mouse handling to work across Audio and SoundObject LayerGroups

12The AudioClip has properties such as when to start, but also where to start playing

within the audio file the clip refers to.
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and general mouse gestures for selection and movement to work with material

from either type of layer.

AudioLayers also work with Blue’s Mixer and Effects system. Each

AudioLayer maps to one auto-generated channel within the mixer. All audio

from the layer is routed through the mixer, where effects can be added. Users

can automate parameters for effects set on the layer’s channel directly on the

layer’s timeline panel.

5.4.6 Summary

Blue’s modular timeline meets the goal of providing heterogeneous layers in

an extensible way. By making LayerGroups within Blue a plugin, developers

can extend the Score timeline with new kinds of layers. The introduction of

Pattern and Audio LayerGroups shows that layers with very different and

very similar interfaces to the pre-existing SoundObject LayerGroup can be

implemented as plugins.

5.5 Conclusions

Module-based systems and modular programming techniques provide an

extensible foundation for computer music software. These systems and

techniques extend the monolithic single-executable with plugins model to

make the entire application a set of plugins organised into modules. Module-

based systems simplify exposing and handing plugin points, encouraging the

same kinds of freedom to extend the system by third-parties that are offered

by multi-executable systems.
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For this thesis, the module-based Blue music system was extended to

implement heterogeneous layer types in its score timeline. This was performed

by introducing new plugin points for LayerGroups and LayerGroupUIPro-

viders and exposing them for third-party implementation. Two new Layer-

Groups were implemented: Audio and Patterns. As a result, users now have

options from which to choose to best represent their musical ideas, and they

can organise various representations of music together in time.
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Chapter 6

Music Systems as Libraries: Pink

and Score

This chapter will look at music systems as libraries. This kind of system

exists when libraries are developed for use by users within general-purpose

programming languages (GPLs).1 I will compare this with music systems

using domain-specific languages (DSLs) and look at what each design offers

to developers and users in terms of extensibility and robustness of works.

After the analysis of language-based systems, I will look at two music

libraries written in the programming language Clojure – Pink and Score – that

I have developed for creating library-based musical works. Pink is a library

for sound and music computing, and Score is a high-level library for working

with symbolic representations of musical events. In the discussion of each

project, I will explore related systems, discuss the design and implementation

of the library, and look at how they address extensibility. Although each
1For this chapter, I will use GPL to refer to general-purpose programming languages.

This is not to be confused with the GNU Public License, a commonly used license for

open-source programs.
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library is designed to function alone, their use together enables additional

features that will be explored later in this chapter.

6.1 Introduction

Language-based music systems are the foundation of computer music. Starting

with Max Mathews’ Music series of programs and moving through software

such as Csound and SuperCollider 3 today, music systems that offered their

own languages have been a fundamental part of the history of computer music

software.

Over time, as computing developed and the expectations for the target

user changed, music software evolved into different forms. Some moved

more towards technical users – users who are themselves developers – while

others moved more towards non-technical users – users with no knowledge

of programming. Programming with text and manipulating graphical user

interfaces represent the extremes by which users develop their works today.

The following will focus on the more technical end of the computer

music spectrum: using libraries as music systems. In this approach, music

systems developers create libraries for use within an existing general-purpose

programming language. This is in contrast with building language-based music

systems where a domain-specific language and interpreter are implemented

by the system itself.

I will begin by comparing language-based systems using DSLs and GPLS.

I will then discuss the differences in architectures between the two and the

impact that library-based designs have on extensibility and the user’s work. I

will then discuss two new libraries for music making, Pink and Score, that

are written in Clojure and designed with extensibility in mind.
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6.2 Language-based Systems

Language-based computer music systems are those where the user writes text

to program musical ideas. The languages used for music systems may be

domain-specific or general-purpose. In the former, a system provides its own

custom programming language tailored to the problem domain of musical

computing. In the latter, a music system is written in an existing general-

purpose programming language, with the purpose of being used by users

within that language. Both kinds of system offer users means of extensibility

by user code, plugin, or programming library. They both also require users

to be or become programmers.

Computer music has long had a history of language-based systems, starting

with the original computer music software, Max Mathews’ Music-N series

of programs. Early computer music was rooted in a culture where learning

to program in a DSL or GPL was a requirement for making music with the

computer. Later systems – such as Csound, SuperCollider 3, and Common

Lisp Music – continue the tradition of offering language-based systems. While

today’s landscape of computer-based music making has diversified to include

many other kinds of programs, language-based systems continue to be attrac-

tive to users who find expressing musical ideas through text aligns with their

way of thinking about and working with music.

In the following, I will look at the designs of language-based systems using

domain-specific languages and general-purpose languages. I will look at how

each relates to the user’s work in terms of dependency management and user

control.
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6.2.1 Domain-specific Languages

Music systems using DSLs are in control of the language and the work. Users

write code then execute the system with their code. The music system

initialises, compiles the code using its built-in interpreter, and then runs the

engine to render the project. Further code compilation may occur if the

system supports compilation at runtime.

An example of a DSL-based system is Csound. Csound’s Orchestra

language is used to define instruments, opcodes, and data, and can also define

top-level commands to execute.2 This language is tailored specifically to the

domain of Csound’s music programming model.

Music System

Operates

Language

Executes

User Work/Code

Figure 6.1: Control Graph for DSL-based systems

Figure 6.1 shows the control graph for DSL-based systems. With a system

like Csound, the system controls (i.e., operates) the language, which in turn

controls (i.e., executes) the work. The top-level point of entry is thus the

system. The user then works within the context of both the language and

system to develop their work.

6.2.2 General-purpose Languages

Music systems designed for use with GPLs operate within the context of the

language. In these systems, the language and its runtime is the top-level

point of entry. The music system’s status then is just another library for use
2In Csound parlance, top-level commands are written in instrument 0 space.
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within the language. The user’s work, which employs the music system as a

library, controls the system.

An example of a GPL-based system is Common Lisp Music (CLM) [160].

CLM is written in Common Lisp and provided as a library. Users write their

works in Common Lisp and use features provided by CLM. The system then

operates within the context of the work. (CLM is discussed further below in

in Section 6.4.1.)

Music System

Executes

Language

Executes

User Work/Code

Operates

Figure 6.2: Control Graph for GPL-based systems

Figure 6.2 shows the control graph for GPL-based systems. With a system

like CLM, the language is the top-level point of entry. The language executes

the user’s work and system, and the work controls (i.e., operates) the system.

Other examples of GPL systems and languages include CMix [104] and C;

PyO [30] and Python; and Incudine [105] and Lisp.

6.2.3 Discussion

With DSL-based systems, the developers of the music software design, im-

plement, and maintain both the DSL language specification as well as the

interpreter. This is in addition to the musical aspects of the software. DSL-

based software then requires developers to understand at least two domains
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of knowledge: firstly, music systems, and secondly, programming language

design and implementation. This is in contrast to GPL-based systems, where

developers are dependent upon a third-party implementation of a language. In

this case, the developer must know how to use the language but does not have

to implement or maintain it. Developers then will only have to worry about

a single domain of knowledge – music systems – for their implementation.

Implementing and maintaining a DSL is non-trivial. Doing so has an

impact on both user extensibility and robustness of the software. In terms

of extensibility, the developer must not only implement parts of a system

but also expose parts of the system to the user through the DSL. Beyond

exposure, the DSL must also be expressive enough to be able to extend the

parts of the system. For example, in Csound, instruments are a part of the

system that is exposed to the user both to use and extend. The Orchestra

language is designed for the problem domain of musical programming, of

which defining instruments is an integral part. However, the processing order

of instruments is a part of the Csound system that is not exposed for users

to work with in the DSL. Even if it was exposed to the user, the Orchestra

language would not be well suited to the kind of programming required to

extend that part of the Csound system.

In terms of robustness, implementing a language requires a skill set

outside of the domain of music systems. A DSL-based system then requires

more knowledge to maintain the system than a GPL-based system. Finding

developers with the requisite skills is thus a factor in measuring the robustness

of a program over time.

With GPL-based systems, the issues of language design and maintenance

and its impact on the system’s robustness are delegated to third-party language
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developers. This is largely a positive factor, as the language developers are

likely experts in their domain and can well-support the system. This frees up

the developers of GPL-based music systems to focus on their domain.

Also, in regards to extensibility, as users and developers work within

the same language, the work of exposing parts of the system are minimised.

Developers need only focus on their decisions on what to expose to users

without having to worry about how to do so. If a part of the system is exposed

to users, the developer will not have to do extra work to address language

differences between the system language and the user language.

Aside from the issues in working with and supporting the language im-

plementation, the issue of control is an interesting one in terms of how it

relates to extensibility. In a DSL-based system, the user’s work is processed

within the life cycle of the system and may have little ability to control the

system. In a GPL-based system, as the system is a library, the user’s work is

in complete control over the life cycle of the system. For example, the user

can execute code before the system is even instantiated and started.

In summary, DSL-based systems offer users a language that is customised

to a problem domain. The cost of using a DSL for developers is the time

required for development and maintenance of a language implementation. The

cost for users is potentially a loss in extensibility and control of the system.

GPL-based systems use an expressive language that is not domain-specific.

It may then be more difficult to learn and use for music. However, there is

generally less work for the developer to maintain these systems, and users

can more easily extend and control the system.
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6.3 Introduction to Pink and Score

Pink and Score are music libraries designed for use in the general-purpose

programming language Clojure. They are developed as stand-alone projects

that may also be used together. (This design was inspired by Common Lisp

Music and Common Music, which will be further described below.) Each

has features that target the domain in which it is designed to serve: audio

synthesis and processing for Pink, and higher-level symbolic representations

of musical events for Score. Because Pink and Score are both written in the

same language, new and interesting musical possibilities emerge when they

are used together.

The following will discuss common aspects of Pink and Score. Section 6.4

will explore the design and usage of Pink as well as look at related systems.

Section 6.5 will do the same for Score.

6.3.1 Clojure

Clojure, created by Rich Hickey and made publicly available in 2009, is a

general purpose programming language. Regarding the language, the official

website states:

Clojure is a dialect of Lisp, and shares with Lisp the code-as-data

philosophy and a powerful macro system. Clojure is predominantly

a functional programming language, and features a rich set of

immutable, persistent data structures. When mutable state is

needed, Clojure offers a software transactional memory system and

reactive Agent system that ensure clean, correct, multi-threaded

designs. [89]
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Additionally, Clojure is open-source and developed as a hosted-language

that operates in conjunction with a known platform. Currently, three primary

Clojure implementations exist: Clojure, Clojurescript, and ClojureCLR. Each

of these implements the Clojure programming language and they are hosted

on Java, Javascript, and C# languages and platforms respectively. Further

information about the language can be found in [86], [64], and [69], as well as

on the official website.

For Pink and Score, I chose to use Clojure as I found the language appealing

to use. In particular, I found that functional programming practices suited

the problem spaces well for both audio and high-level musical descriptions.3

I also found Clojure’s operation on the JVM to be beneficial as the JVM

is open-source and provides platform extensibility. This also opened up the

possibility to use Pink and Score with other JVM-based music systems, such

as my own music program Blue.

6.3.2 Open Source Software Stack

An important aspect of choosing Clojure for Pink and Score is that one can

develop works using a completely open-source software stack. This means

that all software used for a work – from the lowest-level, the operating system,

to the highest level, Clojure itself – can be open-source software. Figure 6.3

shows a possible system dependency diagram where all dependencies are

open-source.
3Desain describes the benefits of using Lisp [122] in [58] for symbolic processing in

music. I think since the time of Desain’s article, computing has increased in performance

enough that it is well suited for signal processing in real-time as well.
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Figure 6.3: Pink/Score Dependency Graph: Open Source

While the software stack for Pink and Score can be open-source, it is

not a requirement. Pink and Score function equally well using closed-source

dependencies. Figure 6.4 shows a possible system dependency diagram where

some dependencies – the operating system and Java Platform – are closed-

source. This allows for a larger range of dependency configurations to be used

and promotes cross-platform development and use.

Having the possibility to use a completely open-source software stack

was an important design requirement for Pink and Score. Open-source

platforms provide options for maintenance (i.e., development can continue by

third-parties if the original developers discontinue work) that closed-source
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Figure 6.4: Pink/Score Dependency Graph: Closed Source

platforms do not offer. This in turn increases the potential robustness of the

dependencies and the work. Even if a user decides to work with a closed-source

configuration, they can rest assured that their work will continue to function

if support for those dependencies ends.

6.3.3 Cross-Platform

Another important concern when designing Pink and Score is that they

should be cross-platform. Pink and Score are designed specifically for the

Java-platform version of Clojure. As a result, they inherit the availability of

platforms that is provided by the JVM.
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The JVM is available on a number of operating systems. This includes the

three major OSs – Windows, OSX, and Linux – as well as other platforms like

the BSD-family of operating systems. This includes different versions of these

operating systems as well as variants (e.g., Windows 7 32-bit (i386), Windows

8 64-bit (x86_64), OSX 10.10 64-bit (x86_64), Linux 64-bit (amd64), etc.).

It is important to note that the JVM protects the developer from differences

and changes in hardware. For example, a developer can depend upon the

byte order representation of data as big endian in Java, whether or not they

are running on hardware that is natively big endian or little endian. Another

example is that the same application may run the same whether it is run on

a 32-bit CPU or 64-bit CPU (and potentially whatever CPU architectures

arrive in the future). As long as the JVM can be ported to a platform and

it complies with the Java Virtual Machine specification [116], a JVM-based

application will run on those platforms.

Making Pink and Score work across platforms was a requirement set out

at the beginning of their designs. The cross-platform support of the JVM

and first-class interoperability with the Java platform were primary factors

in determining the applicability of Clojure for this work. With protection

of changes in hardware and potential porting of the JVM to new operating

systems, it is expected that Pink and Score can work well not only across

existing platforms available today but also upon new platforms into the future.

6.3.4 Design Practices and Goals

I designed Pink and Score using features and practices commonly found in the

Clojure programming world. This includes not only functional programming

practices in general but also Clojure-specific idioms. It was a goal to write both
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libraries such that those familiar with functional programming languages could

understand the design, and those familiar with Clojure would understand the

implementation.

In particular, both projects make use of closures and higher-order pro-

gramming. With closures, functions in Pink and Score can return functions

that enclose over data and capture them for use as part of their processing.

The returned function can then reference and use the enclosed data, even

though they are not passed in as arguments to the function. This allows for

creating stateful functions and was particularly useful for implementing the

concept of unit generators in Pink and score parameter generators in Score.

Also, a number of key parts of each library are designed to generically work

with functions as arguments. These aspects of higher-order programming are

employed liberally in Pink and Score. For further information about closures

and higher-order programming, see [93].

Macros are used for compile-time programming. Clojure – and Lisp in

general – is a homoiconic language. Homoiconicity refers to the quality of a

language where “their internal and external representations are essentially the

same” [97]. One writes Clojure code using the syntax of lists, maps, numbers,

and so on, and internally the code is read in and represented using the same

data structures before it is evaluated.

This allows one to write macros, which are functions that operate on code

as data structures, most often for the purpose of transforming the code. In

essence, macros are code that operates on code. When the Clojure compiler

goes to compile code and encounters a macro, the macro is allowed to process

the containing code and generate new code. The final code is then what is

compiled by the compiler.

241



Pink and Score use macros judiciously and as minimally as possible. In

general, macros allow one to extend the language itself and introduce new

abstractions and shapes to code. With Pink and Score, I wanted to rely upon

standard abstractions and concepts as much as possible. Users could then

focus on learning and using the features of each library, without having to

additionally learn new high-level language constructs.

Other aspects of design include reusability and dependencies. For reusabil-

ity, I wanted to make as much of each library reusable, meaning that the

functions are designed for use not only within the context of the library but

also on their own outside of the library. For example, in Pink, the audio

engine uses a scheduler system. In some music systems, the user might be

able to use the scheduler through the engine but may not be able to reuse that

part on its own. This may be because the scheduler is designed specifically for

that system, or the developer simply did not expose that part for public use.

However in Pink, the scheduler and other parts of the engine are designed for

stand-alone use and are publicly available for users to use. This allows users

to reuse parts of Pink so that they can develop their own engines and have

greater flexibility in modifying the system for their work.

Finally, for dependencies, I wanted to create libraries that had as few

dependencies as possible. As a result, besides what is provided by the

JVM, Pink and Score only depend upon Clojure and no other libraries.

Minimising the dependencies provides the smallest baseline possible for users

when choosing to use these libraries. When they opt to add additional

libraries to their work, they can expect that Pink and Score will not add a

number of other dependencies that may conflict with the new libraries or
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their dependencies. This then simplifies the dependency graph of works that

depend on Pink and Score.

6.3.5 Libraries and Versioning

One important aspect of developing libraries for use within a general-purpose

programming language is versioning. As user’s works are themselves programs,

the build system for the work can take into account the version of the library

required for the project. This provides a great freedom for the library developer

as incompatible changes may be introduced without fear of endangering the

functioning of existing projects. The user also benefits in knowing that a

prior work may continue to function even when new versions of dependencies

become available, as they can continue to use a specified version.

In the Clojure world, the Leiningen [84] build tool is often used when

creating projects. It uses a Maven-compatible dependency resolution system

for downloading libraries used by a project.4 Users specify the identifier and

version of the library they wish to use in their project.clj file. Leiningen

in turn searches known Maven repositories for the specified versions of those

libraries.

(defproject my-music-project "0.1.0- SNAPSHOT"

:description "Example music project"

:url "http :// some-url.com"

:license {:name "Eclipse Public License"

:url "http :// www.eclipse.org/legal/epl-v10.html"}

:dependencies [[org.clojure/clojure "1.7.0"]

4Maven is a build tool based around a concept of a project object model. One specifies

dependencies and they are retrieved from a repository. It is a popular tool and the Maven

Central repository [23] contains many libraries. For more information on Maven, see [127].
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[kunstmusik/pink "0.2.1"]

[kunstmusik/score "0.3.0"]])

Listing 6.1: Example Leiningen project.clj file

Listing 6.1 shows an example Leiningen project file. It defines a project

called my-music-project that depends upon version 1.7.0 of Clojure, version

0.2.1 of Pink, and version 0.3.0 of Score. When this project is first built or run,

Leiningen will check to see if all of those dependencies are available locally

and, if not, search for them online. As long as the dependencies are available

online, the project will be able to download and satisfy all dependencies and

operate. If a new version of library is published, it will not affect the project

as it will still use the specified version.

Pink and Score are packaged and deployed to the Clojars [2] repository.

This repository is popularly used by the Clojure community for releasing

and locating libraries, and supports housing multiple versions of libraries. In

addition, for safety, I retain a backup copy of all versions of Pink and Score

libraries. If for some reason Clojars was to cease operation, I am able to

create a Leiningen-compatible repository with the backups.

Versioned libraries together with build tools can greatly simplify manage-

ment of dependencies for a musical work. By specifying a specific version of

a library, the project can isolate itself against changes to dependencies. This

liberates the system developer to continue developing the system without

fear of breaking users’ existing works, while also providing stability for users’

works to continue to function over time.
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6.3.6 Summary

Pink and Score are music system libraries developed using functional pro-

gramming techniques, employing features such as closures, higher-order pro-

gramming, and macros. They are designed to maximise reuse of their parts

and to empower the user to extend the system. These systems inherit Clojure

and the JVM’s cross-platform and open-source properties. Finally, users’

works using Pink and Score can depend upon specific versions without fear of

changes in new versions, thus increasing the robustness of the work over time.

6.4 Pink

Pink is an audio engine library for building music systems and works. It

includes functions for building engines, signal graphs, audio functions (similar

to unit generators), and other utility code. It provides a pre-made system to

extend and use, as well as exposes the core set of functions that users can use

to assemble their own engines and systems. The library is designed to have

the least amount of abstractions necessary to implement the largest number

of musical use cases.

The following section will discuss the design and architecture of Pink.

I will begin by looking at related systems and how they influenced Pink’s

design. I will then discuss the general design of the system, followed by the

implementation of each part of Pink. Use of the library will be shown in the

full project example in Section 6.6.
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6.4.1 Related Work

The design of Pink has been influenced by many other systems. The following

will begin with discusssion of CLM, Nyquist, and Extempore, as their use

of Lisp is directly relevant to Pink. Other systems and their influences will

follow.

Common Lisp Music

Common Lisp Music (CLM) [160] is a Music-V based system written by Bill

Schottstaedt for use in the Common Lisp (CL) language.5 A portion of the

signal processing functions of CLM are written in C and exposed to the Lisp

side of the system using the host CL interpreter’s Foreign Function Interface

(FFI). CLM employs a GPL-based design, in contrast to the DSL-based design

of Music-V which it is based on.

CLM’s processing model first ahead-of-time compiles each note as audio to

disk, then coalesces the audio from notes into the final audio file. It then plays

back the generated sound file in real-time. CLM is suitable for composed

works and audio processing utilities but less so for real-time composition

where changes to the work will occur during rendering.

CLM’s architecture is rooted in the design of Music-V and similarly

employs concepts of instruments and note lists. Instruments are generally

written in an imperative way, where the body of the code is a loop that

writes a calculated signal to the output stream using the outa or out-any

functions. The with-sound macro, used to organise and render note lists, does

allow for adding reverb to its child instrument instances using the :reverb
5This document will discuss the Common Lisp version of CLM. Other variants of CLM

exist in C, Scheme, Ruby, and Forth. For more information, see [159].
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keyword argument and a supplied reverb function. Within with-sound calls

are a list of calls to instrument functions with a start time, a duration, and

other arguments. As with-sound can be embedded within other with-sound

instances, a tree of audio signal processing can form.

CLM is designed for user-extensibility at the level of instruments and

unit generators using Lisp code. Note list writing can be done by explicitly

writing each event or using Lisp code to generate events. CLM has also long

been used in conjunction with Heinrich Taube’s Common Music (CM) [175].

CLM’s capacity to use Lisp at all levels – from generators to note lists – is

appealing, as is its interoperability with other libraries. That CLM has its

own event system, but can also work with other libraries like CM, was also

inspiring.

However, for Pink, I wanted to make a system that better supports

development of real-time musical works, as well as move away from the Music-

N paradigm of instruments and generators to a more generic, functional audio

graph. Additionally, I wanted to expose more of the engine’s parts to the user

than is offered in CLM, so that they could explore modifying the existing

engine or create new engines should they desire to do so.

Nyquist

Nyquist [52], written by Roger Dannenberg, is a music system written in

C that offers both a Lisp and SAL language front end. It differs in design

from Music-N systems, using a more functional programming approach where

audio functions return their signal data when they are called. Instead of

having a separate concept of instruments and generators, as is in Music-N,

Nyquist users will instead compose and use a new audio function built up
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of other audio functions. This allows signal routing to be determined by the

caller, rather than the callee as is done in Music-N systems. This “dual nature

of a patch”, such that a patch acts as both an object (unit generator) as well

as a signal, was further developed by Dannenberg in [53] in discussing his

music language Serpent, which later became a part of his real-time music

system Aura [54].

Additionally, Nyquist does not differentiate between scores and orchestras

as is found in Music-N systems. Instead, it uses temporal control constructs [52]

together with function applications to have a comparable system of timed

functions. Nyquist provides a number of essential time transformations that

allows one to easily build up larger score material from smaller ones.

Nyquist’s processing model is block-based, similarly to most Music-N

systems. One unique aspect, as discussed in [51], is that signal generating

functions can compute ahead of the current block and cache those results.

This allows for a signal to be realised only once, regardless of how many

other functions read from that signal. This also allows for one to calculate

values ahead of time for the total signal, such as the maximum amplitude of

a note. However, the drawback is that realizing ahead-of-time signals is not

particularly suitable for real-time processing.

Nyquist’s approach to audio functions and instruments as aggregate audio

functions was influential in Pink’s design of its unit generators. This provides

a great deal of extensibility and reuse of audio functions for users. While

Nyquist’s breaking down of the orchestra and score offers unique features,

this design was not used directly in Pink. Nyquist was also not designed for

real-time use, which was an important requirement for Pink’s design. Finally,

while Nyquist provides a Lisp front-end, it is not designed for use in general-
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purpose Lisp interpreters. This limits interoperability with third-party Lisp

libraries.

Extempore

Extempore [166], by Andrew Sorenson, is a music system designed for “cyber-

physical programming” [165], where the user participates as part of the system

by live-coding. Extempore develops upon the work done in an earlier system,

Impromptu [164], and introduces its own Scheme-like language, xtlang, that

is “designed to mix the high-level expressiveness of Lisp with the low-level

expressiveness of C.” [166]

One of the key influences of Extempore and Impromptu is the focus on

what Sorenson calls temporal recursion [167], which allows an event function

to schedule another event using the same function later in time. As Sorenson

points out in [167], this idea was explored earlier by Dannenberg in the CMU

MIDI Toolkit [48], which includes MoxC, which was itself based on Collinge’s

MOXIE system [44]. This is also explored in Csound by Lazzarini in [106].

Extempore is well-designed for real-time usage, a trait I wanted in my own

system. Also, temporal recursion as a style of programming was something I

wanted to support in Pink. However, unlike Extempore and Nyquist, I wanted

to build a system that would operate in the context of a general-purpose

language.

Other Systems

ChucK [188] is an audio programming system. It implements its own program-

ming language, virtual machine, and audio engine. It employs a single-sample

processing model. ChucK’s use of shreds as concurrent processing code was
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an influence on the goals of what could be done with Pink’s control functions,

though the design and implementation differ.

Faust [133] is a domain-specific language that uses a purely functional

programming style for DSP. The user writes code in the Faust language, then

compiles it for use within other music systems. Faust does not provide a

full music system, as it does not have support for events. However, Faust’s

language excels at providing users the ability to express a lot of DSP program-

ming with very little code. Faust’s design was influential on the functional

programming approach to audio functions taken by Pink.

Overtone [12] is a music composition system written in Clojure. It employs

SuperCollider 3 as its audio engine and functions as a replacement for sclang

as a frontend language. It inherits all signal processing and engine properties

from SC3, such as block-based processing and a client/server model. It uses its

own scheduler for processing of event functions that is run in a separate thread

from the SC3 engine. The design of Overtone is largely oriented towards live

coding and real-time performance. It is a mature system that shows how

Clojure can excel for musical programming, but its dependence on SC3 limits

one from writing low-level signal processing functions and exploring audio

engine research within the Clojure language itself.

Kyma [155] is a commercial object-oriented music system written in

Smalltalk that employs a graphical user interface and custom signal process-

ing hardware. The original design discussed in [155] describes a class hierarchy

to categorise the sound processing objects within the system. The Sound

class acts as the basic unit generator interface that SoundAtoms (source signal

generators) and SoundTransforms (signal processing units) implement. Pink

adopts a similar philosophy to Kyma’s unit generator design by considering
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audio functions as a “stream of samples”, audio function interfaces as “uniform”

where any function can substituted for any other, and edges between nodes

(i.e., audio functions) in the graph as representing an “is-a-function-of” rela-

tionship. [156] However, Pink uses coding conventions rather than class types

for its definition of audio functions due to the dynamically-typed nature of

the Clojure programming language. Pink is also designed as a software-only

system that is employed as a programming language library.

The Create Signal Library (CSL) [143] is a “low-level synthesis and pro-

cessing engine” [143] written in C++. CSL3 used an object-oriented design

based on Buffers as signals, FrameStreams as signal generators and modi-

fiers, and IO as driver abstraction for network and hardware communication.

CSL3 also provided an Instrument utility class to simplify building signal

processing graphs and exposing control parameters. CSL4 [142] adopted the

MetaModel for MultiMedia Processing Systems (4MPS) [16, 15] that origi-

nated in CLAM [15, 17, 18]. 4MPS uses Processing Data as the abstraction

for representing signals, Processing Objects for signal generators and modifiers,

Ports and Connections for synchronous signal connections between Processing

Objects, and Controls and Links for asynchronous event data connections.

Pink’s design has both similarities and differences to CSL and CLAM.

Pink, like CSL, is not a music representation language (MRL) but is designed

to work together with MRLs. Pink does include a scheduler and event system,

which CSL does not. Pink can support developing not only the same kinds of

realtime audio applications that CSL and CLAM are capable of supporting

but also music works employing classic computer music composition practices

developed around an event system that operates synchronously with the

audio engine. Pink also includes a control function system for synchronous
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processing of non-signal processing functions, a feature neither modeled

directly within 4MPS nor provided by CSL or CLAM.

Pink’s design for its signal processing graph is simpler than 4MPS and does

not directly model Ports, Connections, Controls, or Links. Instead of modeling

these concepts directly, Pink focuses on the minimal abstraction of the audio

function with most node connections of the graph created statically through

node references passed as arguments to audio functions at initialisation time.

Pink does support the dynamic connection features of Ports and Controls

and their synchronous and asynchronous processing features by providing

higher-level features (e.g., Nodes, discussed in Section 6.4.3) built on top of

audio functions. The result is that Pink users not only can avoid the layers

of indirection that a Proxy [70] object like Ports and Controls introduce but

also can choose to use Proxy-like functions only where necessary.

Finally, Pink’s processing graph does not support Observers [70] on audio

functions as is found in CSL’s UnitGenerators. To achieve the scoping

and IO behaviors associated with CSL’s Observer system, Pink users can

use pass-through audio functions inserted into the graph to add additional

behavior. In OO design, the use of pass-through functions would be equivalent

to the use of Decorators [70] rather than Observers to add additional behavior.

Looking at systems more broadly, Music-N systems (e.g., Music V, CLM,

Csound, SuperCollider 3) share concepts of instruments (called Synths in

SC3), unit generators, and events (i.e. notes). Instruments are made up of

unit generators and can be scheduled for activation through events. Unit

generators can neither operate on their own outside of instruments nor can

they be scheduled. Within Music-N instruments, unit generators are loosely

coupled: connections between unit generators are not made directly but rather
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are made through shared variable memory. Like unit generators, instruments

that communicate values to each other do so indirectly by writing to and

reading from shared memory (e.g., Csound global variables, SC3 bus channels).

Finally, Music-N event systems are generally limited to expressing a fixed set

of operations and only permit certain kinds of values as event arguments.

Pink was inspired by Music-N systems to include an event system as a

fundamental part of its design. However, Pink’s event system is generic in

terms of both its event functions and argument types. Pink also discards

the separation of instruments and unit generators and unifies the two in its

concept of audio functions. Audio functions can be composed together from

other audio functions to achieve the same features as instruments in Music-N

systems. Any audio function, whether it is a Composite or a standalone

function, may be scheduled and activated within Pink’s signal processing

graph. Finally, audio function connections are made by using references to

other audio functions directly rather than through intermediary variables.

The concept and implementation of unit generators from Music-N were

further extended by numerous software synthesis systems [140]. The concept

of a reusable signal processing object remains at the heart of what defines

unit generators, but requirements for real-time applications — particularly

dynamic connections and post-initialisation messaging — have largely driven

authors to extend the core definitions of unit generators within their sys-

tems. For example, in graphical patching systems in the Max family (e.g.,

Max [147], Pure Data (PD) [148]), the processing object not only executes

signal processing synchronously with the engine but also allows connections

to be made dynamically and accepts asynchronously posted messages to affect

state and behavior outside of the signal graph. The dynamic modification
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of graphs and event handling features of Max-style objects is a departure

from the implementation of unit generators in Music-N systems, where signal

processing graphs are assembled statically within the confines of an instrument

and generators may only react to their signal inputs. Dynamic connection

capabilities appear in object models such as the 4MPS model (CSL, CLAM)

through its concepts of Ports and Controls and the post-initialisation mes-

saging appears as additional methods on processing objects outside of the

primary signal processing method.

Many OO DSP systems (e.g., CSL, CLAM, Max, PD, JSyn) take the

dynamic processing requirements and define them as a basic fundamental

part of their unit generator classes. However, in looking at these systems,

I personally found the code for implementing unit generators to be more

verbose and harder to understand than what I was familiar with in a Music-N

system like Csound. Also, from my experiences in wrapping Csound opcodes

using Adapter [70] objects for use in Aura [204] — which features a dynamic

connection model — I realised that a static connection design could be made

to operate dynamically. These observations lead to my decision to design Pink

with as simple a model as possible that could both satisfy the requirements

for creating signal processing graphs and supporting building higher-level

object models. As a result, Pink, by default, takes a more Music-N approach

to unit generator design where audio functions are assembled into graphs at

initialisation time and may only react to their inputs. Other unit generator

features, such as dynamic connection capabilities, are expected to be developed

as higher-level features built upon Pink’s basic model.

Systems developed to operate within general-purpose programing lan-

guages (e.g., CSL, CLAM, Synthesis Toolkit (STK) [46], Cmix [104], JSyn [40])
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served as models for library-based system design. Observing how these sys-

tems were packaged as versioned libraries and how they integrated into users’

works, as well as studying the degree of openness of each system in terms

of the reusability of their parts, influenced design decisions when developing

Pink.

Systems that offer callback-based APIs, found mostly in hardware interac-

tion libraries (e.g., RtAudio [157], RtMidi [158], PortAudio [31], JACK [56])

provide users a way to register a callback function and data pointer. The

callback function is later executed by the system, passing the data pointer

to the callback for processing. Callback-based APIs operate with state data

and behavior as separate entities and are most commonly found in systems

programmed in languages, such as C, that are not object-oriented. Pink

uses a similar pull-based processing model to callback-based systems but

works with stateful functions (i.e. closures) instead of separate state data and

functions. (Object-oriented systems implementing this model would take a

similar approach but use objects instead of closures.)

Multimedia frameworks provide support for not only audio programming

but also other media-related development needs (e.g., graphical user interfaces,

video and sensor data processing). JUCE [153] and OpenFrameworks [130]

are both cross-platform, object-oriented C++ multimedia frameworks. JUCE

primarily targets audio application and plugin development while Open-

Frameworks targets building multimedia applications. Gibber [152] is a

browser-based live coding environment and multimedia framework written

in Javascript. In contrast to these frameworks, Pink’s design focuses on the

audio programming domain alone and it assumes users requiring non-audio

programming features will employ other libraries to fulfill their needs. Also,
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while there are no plans to make Pink into a framework itself, Pink could

serve as a part of a larger framework in the same way that Gibberish.js is an

audio-specific library that is a part of the Gibber framework.

6.4.2 Overview of Pink’s Design

The core of Pink is separated into the following parts: engine, signals, nodes,

audio functions, control functions, context, events, and utility code. The

engine is used to process events and run audio and control function graphs.

Events are time-tagged objects that are used to call functions with supplied

argument values; events are most often used to activate new audio functions

and dynamically extend the audio graph, but they are also generic and may be

used for whatever purpose the user desires. Audio and control graphs are made

up of zero-argument functions that are composed together at initialisation

time; the function graphs in Pink follow a pull-model where the engine calls

the graphs and processes their results. Signals are data structures (e.g., arrays

of 64-bit floating point numbers) that are returned by functions and further

processed by other functions within the graph. Nodes are data structures used

together with processing functions to create dynamically-modifiable points

within audio and control function graphs where sub-graphs can be attached;

Nodes behave similarly to Composite [70] objects in object-oriented languages

and can serve as dynamically-connectable, fan-in ports for audio functions.

(Further discussion on static and dynamic graph connections and comparison

to ports in other systems is provided in Section 6.4.3.) Context provides

audio and control functions information about the processing context, such

as the sample rate, buffer size, or current buffer number. Finally, utility code

is provided to help users implement their code to work with the engine.
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The design of Pink aims to provide not only all of the low-level parts

necessary to create a music system but also a working system for the user

to use. These high-level functions, found in the pink.simple namespace,

provide a new user a default setup that works out of the box for music-making.

However, by also exposing the lower-level functions that make up all of the

parts of the engine, a user can create and customise engines, adding and

removing parts as desired.

The goal for Pink is to support development of both ahead-of-time and

real-time systems. The design is made to be extensible by the user at all

levels. Ultimately, Pink should not only serve as a system to explore music

composition, performance, and audio processing, but also act as a framework

for exploring music system design.

6.4.3 Implementation

The following will discuss the implementation of Pink. Each part will be

discussed on its own, and an example usage of the full system, together with

the Score library, will be shown in Section 6.6. I will then conclude with a

discussion of the system’s design for extensibility and its impact on users.

Engine

Pink’s engine provides the basic core of a music system. The implementation

of the engine is found in the pink.engine namespace. The engine runs audio

and control function graphs as well as processes events. The engine’s design

supports both real-time and ahead-of-time use and is thus appropriate for

creating real-time music systems as well as pre-composed works.
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Pink’s engine employs a single-threaded design, where one thread drives

all of the processing in the system. The engine state may be read at any time

by other threads, but mutations to the engine state may only be done by

the engine’s thread. Users wanting to mutate the state of the engine (i.e.,

add a new event, add a new audio function, etc.) can use utility functions

that schedule messages to various message inboxes in the engine. These

messages in turn will be processed by the engine thread. By using message

passing in conjunction with Clojure’s atomic operations, the engine’s design

is completely lock-free and wait-free.

Figure 6.5 shows the four main parts of Pink engine loop: processing of

scheduled events, the pre-audio control graph, the audio graph, and the post-

audio control graphs. The engine delegates event scheduling and processing to

the EventList and event-list-processor (described in Section 6.4.3).The

three graphs are instances of Nodes (described in Section 6.4.3), and their

arrangement allows for doing control processing before and after the audio

graph. These control graphs may be used to retrieve and write values before

and after the audio graph is processed, as might be used for audio, network,

or user interface I/O. The use of multiple graphs allows for flexibility in

controlling the order of processing.

Pink’s engine executes but does not process the results of the control

function graphs. The results of control functions are processed by their parent

functions and most often will be processed by a Node control processing

function to determine if the function is complete and should be removed from

the graph (further details about Node processing is given in Section 6.4.3).

Pink’s engine both executes and processes the results of the audio function

graph. The audio function graph follows a pull processing model where results

258



Process Events

Process Pre-Audio Control 
Graph

Process Audio Graph

Process Post-Audio Control 
Graph

[running]

[stopped]

Check Engine Status

Pending Events

Pending Adds/Removes

Pending Adds/Removes

Writes

Writes

Writes

Writes

Start Engine

Engine Stopped

Engine Processing Loop Message Inboxes Message Sources

Reads

Reads

Reads

Reads

Message Source
(User, Event, Control Function)

Pending Adds/Removes

Figure 6.5: Pink Engine Architecture

of signal processing nodes (i.e., audio functions) in the graph are returned

to their callers for further processing. Pink calls the top-level audio function

(a Node audio processing function) that performs a depth-first traversal of

the audio function graph. The results of each audio function is processed by

its caller and ultimately returned to the engine. The engine takes the audio

graph results and uses the JavaSound API to push audio samples either to

the soundcard or to disk.
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The code that handles each processing step will first handle incoming

messages prior to main processing for that step. These messages are generally

used to modify the target graph by adding or removing functions or events.

The source of these messages may be from anywhere, including not only the

user but also from events and control functions. This means that events may

create events, control functions may create control functions, and so on.

The general use of an engine involves creating, starting, stopping, and

resetting an engine. Other operations involve scheduling events as well as

adding and removing functions to the audio and control graphs. Beyond this,

all other operations for the music system are handled by subsystems in Pink.

Pink provides two separate processing functions for the engine. engine-st-

art takes in an engine and creates a thread to run the engine in real-time. It

handles writing audio output to the sound card. engine->disk takes in an

engine and will run the engine to completion, defined as when all function

graphs are complete and empty, as well as when all events have been processed.

This functions handles writing audio output to disk.

The same engine and architecture is used whether the system is run to

disk or real-time. If the user would like to modify how the engine processes,

they are free to reuse the engine state design and develop their own processing

function.

Signals

Signals are modeled in Pink using simple data structures. For example, an

mono audio signal would be implemented by using an array of double precision

(i.e. 64-bit) floating point numbers and a stereo signal would be implemented
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by using a two-dimensions array. Audio functions in Pink generate signals as

well as consume signals from other audio functions.

Currently, Pink’s signal processing functions support only audio signal

processing of single- or multi-channel audio signals. Other signal functions

may be developed in the future to support scalar floating point numbers

(similar to Csound’s control rate variables), FFT analysis frames, and other

signal types. Processing functions for new signals would follow the same

pattern used for audio functions (discussed in Section 6.4.3) with the exception

of returning the new signal type instead of audio signals.

Nodes

Nodes are points in Pink’s function graphs where other functions may be

dynamically attached. They are used similarly to Composite objects in OO

programming where they function both as collections of audio or control

functions as well are themselves audio and control functions. Nodes may also

be used as Proxy[70] functions if used with a single child function. When

used as an input to an audio function, Nodes act like Ports for the audio

function that can both fan-in signals from other audio functions as well as

provide dynamic connection capabilities.

Implementation The implementation of Nodes is found in the pink.node

namespace. Nodes operate by iterating over a list of active function instances

and calling them for processing. Nodes also contain a list for pending adds

and removes of functions to and from the active list, a running status, and the

number of audio channels. Note that the the number of audio channels is used

only with audio node processing and is ignored for control node processing.
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Nodes are implemented in two parts. The state data contains all of the

current state. Listing 6.2 shows the create-node function that creates the

state data for a Node. Nodes are represented using plain Clojure map data

structures.

(defn create-node

[& { :keys [channels]

:or {channels *nchnls *}

}]

{ :funcs (atom [])

:pending-adds (atom [])

:pending-removes (atom [])

:status (atom nil)

:channels channels

})

Listing 6.2: Code for create-node

The second part of Nodes is their processing function. pink.nodes pro-

vides two processing function generators, node-processor and control-no-

de-processor. Each of these functions take in a Node and returns a function

that is used for processing of the node for the duration of one block of audio.

The two processing functions have similar processing code but differ both

in how they are used and how results are returned. For node-processor,

the returned function follows the Pink audio function convention. When

this function is executed, it will first process any pending add and remove

messages to update the list of active audio functions contained in the :funcs

list. Next, each function in the :funcs list is executed. If a function returns

an audio buffer, the results are summed into a results buffer. If a function

returns nil, the function is considered done and removed from the active list.
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After processing child audio functions, the node-processor function returns

the summed audio buffer.

For control-node-processor, processing follows the same model as

node-processor, but the returned processing function follows the Pink con-

trol function convention. The function will begin by processing all mes-

sages and handle updates to the active :func list. Next, functions are

executed. Pink control functions are expected to return true or false

as their results, which signals whether they are done processing. The

control-node-processor will remove any function that signals it is done

from its active :func list. The control-node-processor function will also

return true or false to signal if it itself is done.

As the functions returned from node-processor and control-node-

-processor themselves conform to Pink’s audio and control function conven-

tions, they can be used as inputs to other functions, including other Node

processing functions.

Active Functions Updates to a Node’s active function list are not done

directly by users. Instead, when adding or removing a new audio or con-

trol function, the function is added to the appropriate :pending-adds or

:pending-removes list for the Node. In turn, the audio or control node

processing function will handle inserting and removing those functions. This

guarantees that the state of the :func list is only mutated at audio block

boundaries by the processing function and not while processing occurs.

Users may add functions to the :pending-adds or :pending-removes

lists by using the node-add-func and node-remove-func utility functions.

These take in a Node and a function and atomically add the function to the

appropriate pending list. These utility functions may be used by the user

263



directly while live-coding or indirectly through events. The use of events

with these functions to dynamically add new audio functions to the graph

effectively simulates the concept of notes found in Music-N systems.

Summary Pink’s Node system is defined using a single data structure and

a set of related functions for working with instances of that structure. The

system provides safe functions for mutating the active function list through

the use of atomically-protected pending lists. The pending lists are then

safely processed at audio-block boundaries by Node processing functions.

Two function generators are provided that produce processing functions that

conform to Pink’s audio and control function conventions and operate upon

the state held within the Node data structure. Users can use the provided

Node functions to create dynamically modifiable points within a function

graph as well as build upon the Node data structure to implement their own

custom processing functions.

Audio Functions (Unit Generators)

Audio Functions in Pink are roughly equivalent to the classic concept of unit

generators and are composable units of audio signal processing. The system

of unit generators has had a great influence on computer music software

since its introduction. The design and implementation of unit generators

differs between systems. Beyond their primary signal processing methods,

unit generators may have additional features such as the ability to accept

messages (e.g., PD objects), exposure of properties for external modification

(e.g., ChucK UGens), and re-initialisation (e.g., Csound opcodes). The design

of audio functions in Pink is largely focused on the the signal processing

264



method alone, relying upon standard functional programming techniques to

implement the features found in other systems.

Life Cycle of Unit Generators The following section discusses the basic

life cycle of a unit generator. This includes allocation, initialisation, perfor-

mance, and deallocation. These properties of unit generators are common to

all unit generator implementations and has similarities to the life cycle of

objects in object-oriented (OO) languages. Some OO languages (e.g., Java)

tie together allocation and initialisation through the concept of a constructor,

but these concepts will be discussed separately here as some music systems

(e.g., Csound) operate with the two phases separately. This analysis of unit

generators was also presented in [204].

Allocation Allocation is the process of acquiring the memory required

to represent a unit generator. This aspect is the beginning of a unit generator’s

life cycle. Memory allocation is generally carefully handled in audio systems.

Approaches include implementing custom real-time memory allocators (e.g.,

SuperCollider 3) and/or garbage collectors (e.g., Aura), as well as reuse via

memory resource pooling (e.g., Csound). The extra care regarding memory

allocation is done to prevent breakups in real-time audio, where the time

required to allocate or free memory may interfere with the delivery of audio

samples to the sound card.

For Pink, memory allocation is done using the standard mechanisms found

in the Java Virtual Machine. The JVM uses a garbage collector (GC) and

pre-allocates the heap memory for an application at the start of the system.

Object allocations are done using sub-regions of memory from the heap. This
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makes memory allocation very fast compared to malloc as the memory is

already allocated.

While this provides fast allocation, it presents two drawbacks. Firstly,

the garbage collector thread can cause a full GC pause of all other JVM

threads to take care of GC tasks (also known as stop-the-world time). The

exact performance characteristics depends upon the GC algorithm chosen

when starting the JVM.6 Care must be taken to limit both the frequency and

duration of GC pauses so as not to interfere with the audio thread.

The audio thread is a natively-managed thread that is not affected by

JVM GC operations. The audio thread is setup to read from a ring buffer;

the Java audio system is setup to write to that ring buffer. There are two

buffers so the system is double-buffered.

The frequency of the GC is proportional to the rate at which garbage

is generated. Pink’s unit generators and engine reuse memory as much as

possible and do not allocate memory after initialisation. The worst case

scenario would be if the GC pause frequency was greater than the buffer

processing frequency such that more than one GC pause could occur in the

processing of one buffer.

With Pink and the default buffer size of 256 and sample rate of 44100

Hz, the duration of the buffer equates to 5.8 ms of time. The target then

would be to reduce GC pauses to less than once every 5.8 ms. Informally,

turning on GC diagnostic information (using the -XX:+PrintGCTimeStamps

-XX:+PrintGCApplicationStoppedTime flags when starting the JVM), GC
6At the time of this writing, the G1 algorithm [59] is the target algorithm for Pink.
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pauses occurred every 1.0-3.0 seconds, well safe from having multiple pauses

per buffer.7

The duration of the GC pause limits the amount of work that can safely

be done in the time to calculate one buffer. The worst case scenario is that

it takes longer than one buffer’s worth of time to generate and deliver the

buffer to the audio system. To safely deliver the buffer in time, the buffer

must be generated and delivered in less time than the duration of the buffer,

minus the duration of the GC pause. Informally, GC stop-the-world times

were viewed in the from 1.1 to 3.3 ms. With a buffer size of 256 size, the

worst case scenario for the observed GC pause times would require generating

each buffer within 2.5 ms to operate without risk of having audio breakups.

Here, the user has a few options. They can limit their CPU usage in their

project, they can try modifying the JVM settings to lower the stop-the-world

pause time, or they can increase the buffer size to minimise the cost of the

GC pause.

Secondly, if an application tries to allocate more memory than is available

in the heap, the application will start throwing OutOfMemoryExceptions.

The default maximum memory used for heaps depends upon the JVM used

(client or server) as well as the platform.8 For synthesised sound, the default

heap size may be enough but it may be limited for sample-based audio

processing. To mitigate this, one can set a larger maximum heap size when

starting the JVM using the -Xmx flag. For my own Pink-based projects, I

default to using 512 megabytes and adjust according to the project.
7This was observed on a Macbook Pro 13-inch early-2011, 2.7ghz Intel Core i7-2620m

CPU machine.
8For more information on heap size defaults, see [132]
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Note that all audio systems that use the JVM receive the benefits of fast

object allocation and issues due to GC pauses. This would include programs

like Beads [38] and JSyn [40].9 As one can not implement his or her own

memory allocator in Java, Pink then optimises what it can for GC frequency

and follows the common practice for how to handle GC pause times.

Initialisation An initialisation pass for a Unit Generator is done to

configure state variables and to calculate constants that will be used during

each performance call. The initialisation pass may be done in the constructor

for a class in an object-based system (e.g., SC3) or may be an explicitly called

function (e.g., Csound, PD). Additional memory may be allocated at this

time and must be handled with the same care as the initial unit generator

allocation. This is especially important if the initialisation is done while on

the main audio thread.

Performance At performance, a unit generator is responsible for gen-

erating x number of samples for a given time n. The number of samples and

how time is measured depends upon the system. For example, in systems with

a single-sample processing model, time would be measured in the number of

samples since the start of the engine, and the number of samples to produce

would be 1. In systems employing a block-based processing model, time would

be measured in the number of blocks since the start of the engine, and the

number of samples to produce may be something like 64 (the exact number

depends on how the user or developer has configured the system).
9This refers to newer, pure-Java versions of JSyn, which differs from earlier versions

that used a natively programmed C synthesis engine.
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For block-based systems, a unit generator will largely follow the following

pattern:

1. Read state values from the previous pass into local variables.

2. Process and generate samples up to the block-size, using a loop. Pro-

cessing here uses stack and local variables to improve performance over

the duration of the loop calculation.

3. When the block-size number of samples has been generated, the current

local state is then written into to the unit generator’s state. These

values are used the next time the unit generator is called for processing.

4. The unit generator may then write the generated values to some location

in memory, or return them to the caller, depending on the design of the

system.

Note that most state values stored in a unit generator’s memory that are

loaded into and saved from local variables are used strictly to preserve the

state of the generator’s computation between calls.

Deallocation When a unit generator completes processing, its memory

is available for deallocation. This may happen when an audio sub-graph is

expired or done (i.e., when a note ends) but may also be delayed until a

non-critical time (i.e., when a piece is finished rendering). What happens at

deallocation time is dependent on what memory system is implemented. It

could mean a call to free(), a marking that memory is garbage and free for

collection, or a decrement of a reference count. For Pink, the system follows

JVM standard practice and the unit generator will be garbage collected when

it no longer has any references to it from live objects.
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Pink Unit Generators In Pink, unit generators are split up into an

outer-function that returns an inner-function. The outer function will do

initialisation, calculating and storing values that the inner-function will enclose

over and have access to while processing. The inner-function is expected to

be a function of zero arguments that returns a signal value. This higher-order

programming style provides the same initialisation and performance time

separation as found in other systems based on unit generators, such as Csound

and SuperCollider.

(defn some-ugen

[arg0 arg1 arg2]

(let [x (some-calculation arg1)

out (create-buffer)]

(fn []

(do-processing-loop x arg0 arg1 out)

out)))

Listing 6.3: Basic code shape of Pink unit generator

Listing 6.3 shows the basic shape of a Pink unit generator in Clojure

code. In this example, the some-ugen function returns an anonymous audio

function with zero arguments. The outer function is where allocation and

initialisation is done (shown in the let-block), and the returned function is

used for performance. The returned anonymous function is a lexical closure

that will close over both the arguments to the outer function as well as the

values within the let-binding. At performance time, the audio function will

return a signal – such as a mono or multi-channel audio buffer – or nil.

Returning nil signifies that the audio function is done processing.

An audio function in Pink must be sure to check whether any audio

function it depends on is done (i.e., returns nil). If a nil is found, the audio
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function must short-circuit and return nil itself. When an audio function is

used as a child function of a Node, the Node’s processing function will check

if an audio function is done and, if so, remove that function from its active

list to prevent further processing.

Most unit generators yield stateful functions with mutable data. State

is generally used only for storing and restoring values that are used in the

processing loop and are scoped only to the function which closes over it. This

state should therefore not be allowed to escape its scope and thus be shared

outside of the function. Also, the only code that should be allowed to write

to the unit generators state is the unit generator itself. Following these rules

provides for safe use of mutable state by the function. (This follows the same

logic for safety as used in Clojure’s transient data structures [91].)

The basic pattern for Pink unit generators operates similarly to how

constructors and factory methods [70] function in object-oriented programming.

Constructors provide programmers a way to allocate, initialise, and return

an object of an exact type associated with the constructor. Factory methods

function similarly to constructors but are not bound to an exact type: they

can programmatically choose amongst subclasses to return to the caller. Hoyte

calls the function pattern used for Pink’s audio functions as “lambda over let

over lambda” and notes the similarities to objects and classes in [93].

public interface AudioFunction {

// can return double [] or double [][]

public Object perform ();

}

public class MyAudioFunction implements AudioFunction {

// Constructor
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public MyAudioFunction(double arg0 , double arg1) {

// Perform initialisation based on constructor arguments

}

public Object perform () {

// processing code

...

return result;

}

}

public class AFnFactory {

// factory method

public static AudioFunction createAFn(boolean useMyAFn) {

if(useMyAFn) {

return new MyAudioFunction (0.0, 2.0);

}

return new SomeOtherAFn ();

}

}

Listing 6.4: Constructors and Factory Methods

Listing 6.4 provides an object-oriented interpretation of Pink’s audio func-

tions using the Java programming language. The AudioFunction interface

represents the polymorphic type that the audio functions returned from a

Pink unit generator function implement. The performance code within Pink

audio functions can be interpreted as the implementation of the perform()

interface method. The MyAudioFunction class and its constructor maps

closely to Pink audio functions that return only a single kind of function. The

static createAFn() factory method of the AFnFactory class maps closely to

272



Pink unit generators that process their input arguments and choose amongst

various function implementations to return to the caller.

Function Graphs and Connections Audio functions are designed

such that all of their dependencies for their calculations are known at ini-

tialisation time. When one audio function is passed as an argument to the

initialisation function for a second audio function, the second audio function

keeps a reference to the first to call for signal generation. The function

reference is itself the connection made between two audio functions and rep-

resents the edge between two nodes in a directed acyclic graph. The function

graph is thus formed at initialisation time through the passing of functions

as arguments.

;; Define a Port as a mutable atom with a nil audio function

(def port (atom nil))

;; Proxy audio function for Ports

(defn port-processor [port]

(fn []

(let [afn @port]

(if afn

(afn)

EMPTY-BUFFER)) ;; global empty buffer

;; set port to use some-audio-function

(reset! port some-audio-function)

Listing 6.5: Implementing a 4MPS-style Port using audio functions

For cases where an exact dependency is not known at initialisation time,

such as in the case where audio functions are dynamically connected at runtime,
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proxy functions (equivalent to Proxy objects [70]) may be used. Listing 6.5

shows a simple implementation of a proxy function called port-processor.

The proxy function takes in a Clojure atom that is used as a mutable container

for audio functions. The function returned from port-processor is an audio

function that checks if an audio function has been set in the port container

and either executes the function and returns its results or returns a default

empty-buffer value. The port may then be modified at runtime to support

making dynamic connections between audio functions.

;; Define a Control as a mutable atom with 0 value

(def control (atom 0))

;; Control audio function

(defn control-processor [control]

(let [out (create-buffer)]

(fn []

(Arrays/fill out @control)

out)))

;; set control to some value

(reset! control 1.0)

Listing 6.6: Implementing a 4MPS-style Control using audio functions

For cases where an asynchronous connection is desired, a function and

data pattern similar to proxy functions can be used where a mutable data

container is exposed for writing values and an audio function is used for

reading values. Listing 6.6 shows an atom called control that is used to hold

a double floating point value. The control-processor function takes in an

atom and returns an audio function that, at runtime, will fill the out array

with the current value of control. Users may modify the value of control
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asynchronously from any other thread (e.g., GUI, MIDI, OSC) and the most

current value will be read by the control-processor when it generates its

signal value.

Pink’s audio function model is a lower-level model than the 4MPS object

model found in CSL and CLAM. Pink does not model concepts of Ports or

Controls as a base part of the signal graph design. However, Listing 6.5 and

Listing 6.6 demonstrate how those concepts could be implemented on top

of Pink’s model to add dynamic synchronous and asynchronous connection

capabilities to a Pink signal processing graph. A full implementation of

a higher-level Processing Object model could also be developed on top of

audio functions that includes all of the features from 4MPS’s model (i.e.

metadata lookup for what Ports and Controls are available, support for

dynamic connections by default). The lower-level design was chosen for Pink

to simplify coding responsibilities for audio function authors and to allow

users the flexibility to explore their own higher-level designs. A higher-level

system like Processing Objects may be offered as an optional part of Pink in

the future, but it remains outside of the goals of Pink’s design at this time.

(sum (sine2 440)

(sine2 880))

Listing 6.7: Example usage of audio functions

Listing 6.7 shows a simple use of audio functions. The sum unit generator

is called given two sine2 unit generators as arguments, one with frequency

440Hz, the other with 880Hz. Each call to sine2 returns an audio function.

When sum is called, it uses the two sine2 audio functions and itself returns

an audio function. When the returned function goes to calculate values, it

will call the audio functions returned from sine2, check if their results are
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nil and, if so, return nil itself. If the audio functions return audio signal

values, the sum audio function will mix the values into its out buffer and

return that as the result.

Instruments and Effects Pink’s engine processing model is built up

upon directed acyclic graphs of functions. The graphs are generally organised

into stable and dynamic subgraphs organised by Nodes. Stable parts of the

graph would be used for always-on processing, such as for mixing and effects,

and dynamic subgraphs would be used for temporary audio processing, such

as for instrument notes.

Dynamic Graph Stable Graph

Reverb +
Root Node

Engine+
Node

Figure 6.6: Example Pink Audio Graph: Stable

Figure 6.6 shows a simple stable graph. The root Node is the starting

point of the graph and is used by the engine to pull audio from the graph.

Connected to the root Node is a reverb audio function that itself has a Node

as its source. Using a Node as the source for the reverb allows audio functions

to be dynamically attached to that part of the graph.

Figure 6.7 shows the graph after a new note instance (i.e., audio function)

is created. The Audio Function (AFn) box here represents a Composite

audio function made up of other audio functions and used to represent an

instrument in the classic Music-N sense. The AFn is shared and attached to
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Dynamic Graph Stable Graph

Reverb +
Root Node

Engine+
Node

*

Audio Function

0.25

0.7

"Wet Signal"

*
"Dry Signal"

Figure 6.7: Example Pink Audio Graph: Dynamic

the graph in two ways. Firstly, the AFn is used as the source to a multiplier

audio function, and that AFn is in turn attached to the root Node. Secondly,

the AFn is used as the source to a second multiplier audio function, and that

AFn is in turn attached to the reverb Node.

When processing occurs for Figure 6.7, the audio results for the Audio

Function box would be routed through both the reverb and root Node parts

of the graph. The use of the multiplier AFNs then controls the amount of

wet and dry signal being used in the graph. When the Audio Function is

complete – such as would happen if the duration of the note is complete or

the note is turned off – it would return a nil value. That nil would cause the

multiplier AFns to short-circuit and themselves return nil. From there, the

nil would cause both the reverb’s source Node and the root Node to remove

the multiplier AFNs from their active :funcs list.

The above shows that the concept of effects and instruments can be

implemented using audio functions and Nodes. Ports and Controls may be

added to Pink-style effects and instruments by implementing them as audio

functions as shown in Listing 6.5 and Listing 6.6. Adding these features

to an audio function graph would then make the instruments and effects

amenable for manipulation by GUI, MIDI, or OSC. A higher-level instrument

abstraction that provides metadata and access to Ports and Controls, such
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as the one provided in CSL, is not provided at this time. However, future

versions of Pink may offer such an abstraction as an optional feature.

Generator Macro Because Unit Generator code has a number of com-

mon requirements, the generator macro, found in the pink.util namespace,

was developed to ease writing of unit generators. The generator macro uses

four parts and has the general code shape shown in Listing 6.8.

(generator

[cur-state state] ;; 1. State pairs

[sig sig-fn] ;; 2. Signal in sig function pairs

;; 3. Calculation for current sample

(let [some-value (calculation cur-state sig)]

(aset out int-index some-value)

(recur (unchecked-inc indx) (update cur-state)))

(yield out)) ;; 4. Value to yield

Listing 6.8: generator macro basic code shape

The above reads as “For each value of the current state and each signal value

returned from sig-fn’s, process each sample in a loop until *buffer-size*,

and yield out as a result.” The expanded macro would create a function that

will:

1. Initialize the cur-state to the provided initial state.

2. Restore cur-state from its last value in the processing loop (i.e., cur-

state).

3. Call sig-fn and assign the value to a temporary value. If the value is

nil, immediately short-circuit and return nil.
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4. In a loop, using the values from the state and signals sections (sections

1 and 2), call the section 3 body until indx is >= *buffer-size*.

5. When indx is >= *buffer-size*, save the local loop values to cur-

state, then return the out value.

The macro code in Listing 6.8 would macroexpand to the code shown in

Listing 6.9.

(let* [state1890 (double-array 1 state)

buffer-size1891 (clojure.core/long

pink.config /* buffer-size *)]

(fn*

([]

(let* [buffer1889 (sig-fn)]

(if buffer1889

(do

(loop* [indx 0

cur-state (clojure.core/aget state1890 0)]

(if (clojure.core/< indx buffer-size1891)

(let* [int-indx (clojure.core/int indx)

sig (aget buffer1 889 indx)]

(let* [some-value

(calculation cur-state sig)]

(aset out int-index some-value)

(recur (unchecked-inc indx)

(update cur-state))))

(do

(clojure.core/aset state1890 0 cur-state)

out)))))))))

Listing 6.9: generator macro basic code expanded
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Note that the macro does synthesise some common values, such as indx

and int-indx, which refers to the current index when iterating through the

processing loop. It is recommended to use the generator macro where possible,

as doing so can lead to code whose handling of state makes it easier to read

as well as safer to write. However, the generator macro does not currently

work for all unit generator use cases, as some unit generators require more

logic than just resuming from the previous state. In those cases, one can

simply write audio functions directly.

Example: Phasor The following is the source for the Phasor unit genera-

tor:

(defn phasor

"Phasor with fixed frequency and starting phase"

[^ double freq ^double phase]

(let [phase-incr ^double (/ freq (double *sr*))

out ^doubles (create-buffer)]

(generator

[cur-phase phase]

[]

(do

(aset out int-indx cur-phase)

(recur (unchecked-inc indx)

(rem (+ phase-incr cur-phase) 1.0)))

(yield out))))

The phasor function will, given a frequency and starting phase, return

a function that will generate audio signals from 0.0 to 1.0 over and over

again, repeating at the given frequency and offset by the given initial phase.

Note, phasor does not use the signals section of the macro (section 2). Use
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of section 1 and 2 of the generator macro is optional. Examples of further

generator macro use can be found in the Pink codebase.

Shared Audio Functions When using audio functions, situations arise

where the user may want to use the result of one audio function as the input

to multiple other audio functions. In general for functional programming,

a let-block is used to assign the result of an expression to a local variable,

and the variable is then further used as arguments to other functions. Using

let-blocks with audio functions addresses sharing of the audio function, but it

does not take into account that audio functions are often stateful and should

only calculate values once per unit of time within the engine.

(defn shared

"Decorates an audio function with another AFn that ensures

calculations are done only once per block. Calculates ,

saves , and returns an audio buffer the first time called

per buffer number. Subsequent calls during the same buffer

number will return the saved value."

[afn]

(let [my-buf-num (long-array 1 -1)

buffer (atom nil) ]

(fn []

(let [cur-buf (long *current-buffer-num *)]

(if (not== (getl my-buf-num) cur-buf )

(do

(aset my-buf-num 0 cur-buf)

(reset! buffer (afn)))

@buffer)))))

(defn- decorate-shared

"Utility function for let-s macro to wrap AFn symbols as
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shared."

[args]

(reduce

(fn [a [b c]]

(conj (conj a b) (list `shared c)))

[]

(partition 2 args)))

(defmacro let-s

"Macro for defining let-like bindings. Wraps AFn functions

with shared and allows using audio functions as inputs to

multiple other audio functions."

[bindings & body]

`(let ~( decorate-shared bindings)

~@body))

Listing 6.10: Code for let-s and shared

Pink provides the shared audio function decorator and the let-s macro

– short for “let shared” – to address sharing of audio functions within a graph.

The shared function takes in a source audio function as an argument and

returns its own audio function. When this audio function is executed, it will

check the engine’s current buffer number and compare it to the last stored

buffer number. If they differ, the source audio function is called to process

one buffer of audio. The returned value is cached then returned to the caller.

If the buffer numbers match, it means that the function is being called again

within the same graph. In this case, the cached value from the source audio

function is returned. Users can use the shared function to decorate any audio

function and make it safe for use by multiple other audio functions. However,

using shared with multiple functions may be “noisy” to write and read in the
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code. Instead, the let-s macro can be used. This takes a set of bindings and

a body of code in the same way that let-blocks do. In turn, the macro simply

decorates all of the second arguments in the bindings vector with shared.

;; Use shared function directly

(let [amp-env (shared (adsr 0.1 0.1 0.95 0.5))]

(mul amp-env

(moogladder (blit-saw 440.0)

(sum 2000 (mul 2000 amp-env)) 0.5)))

;; Use let-s macro

(let-s [amp-env (adsr 0.1 0.1 0.95 0.5)]

(mul amp-env

(moogladder (blit-saw 440.0)

(sum 2000 (mul 2000 amp-env)) 0.5)))

Listing 6.11: Example use of let-s and shared

Listing 6.11 shows example usage of shared within a let-block and an

equivalent code that uses let-s. In both of these examples, amp-env is

assigned an adsr envelope audio function that has been decorated by shared.

amp-env is then used both to multiply the signal to affect amplitude and to

modulate the cutoff frequency of the moogladder filter.

Sharing audio functions in Pink requires users to use either the shared

function or let-s macro. This design requires that users ensure that their

functions are properly protected using one of the above options. An alternative

design would move the burden of buffer time checking and caching from users

to audio function authors. One benefit of the current design is that the audio

function implementation code is focused only on the audio processing code,

making it easier both to read and to write than code that also handles audio

function sharing. Another benefit is that the design limits use of the shared
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processing code only to the locations where it is essential, reducing both

processing time for the graph and memory costs for caching. The drawback

to this design is that it adds additional work for the user when designing their

audio function graph. However, since Clojure requires using let-blocks to

share values, the use of let-s seemed like a reasonable solution that satisfies

requirements for both protection of shared audio function usage and idiomatic

programming patterns for the language.

Using an alternative design that requires audio function authors to handle

shared function usage complicates authoring, but simplifies using, of those

functions. The costs of this design are, as noted above, extra processing and

memory when functions are not shared as well as extra code unrelated to the

core audio processing algorithm. The benefits to this design are that users do

not have to worry about sharing and they can employ standard let-blocks to

share audio functions. While the benefit of the alternative design were very

appealing, my own concerns over the costs ultimately lead me to choose to

implement Pink’s current design.

Summary Pink uses functions that return stateful functions to implement

the concept of unit generators. As functions can be used as arguments to

other functions, the initialisation pass can be seen as a way to assemble

static graphs of signal processing functions. Dynamic graph manipulation is

possible by employing audio functions with separately mutable data. Using a

functional programming approach allows for smaller functions to be composed

into larger ones. This allows audio functions to act as both a unit generator

and an instrument, and for new unit generators to be created by reusing other

unit generators.
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Processing Context

Unit generators in music systems process within a context. The context holds

information such as the sampling rate, the block size, and other values. Unit

generators and control functions in turn use this information to calculate

coefficients and derive other values such as the current time.

Local and Global Contexts For Music-N-based systems, contexts are

generally found in two forms: a global context that is shared engine-wide, and

a local context that is shared by unit generators within a bounding body – such

as Csound’s instruments or SuperCollider 3’s Synths. The variables for the

contexts are generally found collected within a data structure. For example,

in Csound’s opcodes, global context information can be retrieved from the

CSOUND data structure, which is passed in to every opcode’s initialisation

and performance functions. Additionally, local context values can be found

through the opcode’s INSDS data member, which is a back-pointer to a data

structure shared by all opcode instances for an instrument. The INSDS struct

holds information relevant only to that instrument instance such as if it is

in a release state, the p-field values used to create that instrument instance,

and more. It also contains local overrides of global contextual values, such as

overriding ksmps so that a local block-size is used.

Pink and Dynamic Variables For Pink, processing context is handled

using dynamically-scoped variables. In Clojure, a var is a “a mechanism to

refer to a mutable storage location that can be dynamically rebound (to a

new storage location) on a per-thread basis” [92]. By default, vars are static,

meaning they have a single root binding to a value, or may be bound to

nothing. The value of the var can be redefined but can not be dynamically
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rebound to another value when static. Vars can be made dynamically-scoped

if they are marked as :dynamic. When a var is dynamic, its value can be

temporarily rebound on a per-thread basis, using the binding function. The

value of the var is restored once a binding goes out of scope.

(def ^: dynamic *sr* 44100)

(def ^: dynamic *buffer-size* 64)

(def ^: dynamic *nchnls* 1)

(def ^: dynamic *current-buffer-num* 0)

(def ^: dynamic *duration* nil)

(def ^: dynamic *done* nil)

(def ^: dynamic *tempo* 60.0)

Listing 6.12: Processing context variables in pink.config

Listing 6.12 shows the processing context variables defined in the pink.-

config namespace, together with their root bindings. The values of these

variables are rebound in various areas of the code base. For example, List-

ing 6.13 shows how Pink configures variables for a global context. When

a Pink engine starts, it takes values it has configured and rebinds *sr*,

*buffer-size*, and *nchnls*, then runs the engine. All code that is run

within the engine thread will then see the values configured by the engine,

rather than the default values. Once the code within the binding is complete,

the value in each var is restored.

(binding [*sr* sr *buffer-size* buffer-size *nchnls* nchnls]

...

)

Listing 6.13: Rebinding of context variables in Pink’s engine

Dynamically-scoped variables are used to implement contexts within Pink.

As bindings can be nested, this allows Pink code to use these variables for both
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global and local processing contexts. For example, the *duration* variable

is nil by default and is not used by the engine. If it is set, certain audio

functions – such as envelope generators – may use the value in *duration*

to calculate values such as segment durations. If *duration* is not set, the

envelope generator knows that it is running in a context where there is no

duration and may adjust its calculations to work in a real-time setting. In

that case, the envelope may then check if the *done* variable is set, which

would contain a boolean flag used to signal done-ness (i.e., a MIDI keyboard

key release). If a boolean flag is found, the audio function may check that

value while processing and adjust computations accordingly.

Another example is the the with-buffer-size macro, found in the

pink.util namespace. This macro allows for running a group of audio-

functions with a different *buffer-size* than the current one. This is

used similarly to how Csound’s setksmps works, which changes the buffer

size (ksmps) for the scope of the instrument or user-defined opcode. The

with-buffer-size macro generates the code to rebind *buffer-size* lo-

cally, handle running the contained audio function enough times to fill

the size of *buffer-size* outside of the macro, and restore the origi-

nal *buffer-size*. For example, if the outer *buffer-size* is 64 and

with-buffer-size has a value of 1, the audio functions within the with-

buffer-size will run one sample at a time and they will be run 64 times to

fill the size of the outer buffer.

Analysis Using dynamic variables for processing context provides unique

benefits and drawbacks. Users can modify existing context variables to affect

processing for local portions of code. Users may also extend the processing

context by introducing their own dynamic variables. They can define and
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use them within their audio and control function. Introducing new context

variables then requires no modification to Pink’s core engine code, making

Pink’s context extensible by the user.

The drawback to using dynamic variables is that debugging code may be

difficult. Code that seems to work fine in one setting may not function well in

another setting if the user forgets to set the dynamic variables correctly. This

is a real problem, but I would argue that the benefits of extensible processing

contexts outweigh the drawbacks of handling the context variables.

Pink’s use of dynamic variables provides a means to define a processing

context for audio and control functions. By using dynamic variables, sub-

graphs of functions can operate within a local processing context. As bindings

can be nested, multiple layers of contexts can form, not just global and local

contexts. Additionally, users can extend the processing context freely in their

own code, without requiring change to the Pink engine.

Control Functions

Control functions in Pink have similar characteristics to audio functions but

are generally used for non-audio purposes. The basic shape of a Pink control

function is:

(defn control-func

[arg0 arg1 arg2]

(let [x (some-calculation arg1)]

(fn []

(do-processing x arg0 arg1 out)

true)))

Like audio functions, control functions are attached to a Node as part

of a graph. They are also run once per-block of audio processing, just like
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audio functions. However, unlike audio functions, their return values are not

used to pass signals to callers. Instead, the functions return true or false,

to notify the caller if the function is done or not.

Control functions are called synchronously with the audio engine. Users

can implement and add control functions to act similarly to coroutines or

threads. Some uses include implementing algorithmic composition routines

that fire new events (i.e., notes) at calculated times, implementing sample-

accurate clocks for event generation, and processing user-interface values.

Like audio functions, control functions have access to the audio engine’s

current buffer number and sample rate. By using these values, control

functions can keep track of elapsed engine time in number of buffers and

samples. By tracking time and running synchronously with the engine, control

functions can both run in real-time and ahead-of-time and produce identical

results.

Pink’s control functions have similarities to ChucK’s shreds [187] and would

be used for similar purposes. However, instead of being sample-synchronous

as in ChucK, they are run block-synchronous as Pink’s engine is block-based

rather than sample-based. If desired, one can set Pink’s block size to 1 to

attain sample-synchronous behavior.

It is also noteworthy that Music-N systems often have a model for unit

generators that behave more like Pink’s control functions rather than audio

functions. By this I mean that Music-N unit generators are often those that

perform side effects and return a boolean result to signal success or failure.

For example, in Csound, an opcode will process and write results to various

memory locations then return either a success or error code. Due to these

similarities, if one wanted to mimic a Music-N processing model and use
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busses to read and write audio, one could use only control functions to achieve

this.

(defn tempo-change

"Change tempo atom value from current value to

end-tempo over given seconds time."

[tatom seconds end-tempo]

(let [cur-buf (atom 0)

end (/ (* seconds *sr*) *buffer-size *)

incr (/ (- end-tempo @tatom) end)]

(fn []

(when (< @cur-buf end)

(swap! cur-buf inc)

(swap! tatom + incr)

true))))

Listing 6.14: Example Control Function

Listing 6.14 shows an example control function. The function has three

arguments: a tempo atom that holds the current tempo, the number of

seconds to change over time, and the target end-tempo. The values cur-buf,

end, and incr are first initialised, then an anonymous function is returned.

The returned function will be added to one of Pink’s control graph Nodes for

processing. When the function is executed, it will first check if the current

buffer is less than the end buffer number. If not, the when function will return

nil, which is equivalent to false for the calling code. If it is less than the

end buffer number, it will update the tempo atom with the next value towards

the target tempo then return true. By returning true, the control function

is signaling that it is to continue processing.

Control functions enable users to write non-audio processing code that

will run synchronously with an audio engine. They are used primarily for
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their side-effects, as the return result is used to signal whether the function

is complete or not. It is a tool that can act as the foundation for writing

composition and application code.

Events

Pink’s event code is found in the pink.events namespace. It includes

functions for creating events, an EventList for holding pending events, and

a scheduler function for processing events. In Pink, events are considered

timed applications of functions. An event is fired by calling a given function

at a given time with given arguments.

(event horn 0.0 0.4 440.0)

Listing 6.15: Example Pink event

Listing 6.15 shows an example of creating an event. The event function

is called with four arguments: the horn function, which it will use when the

event is fired, a start time of 0.0, and 0.4 and 440.0 as arguments to pass to

the horn function. When the event processor in Pink fires the event, a horn

audio function will be created.

Design Pink’s event system follows a similar design to classic Music-N

systems in providing the user a flat-list system of events. Events are also

concrete data structures designed specifically for the single-purpose of firing

actions at a given time. Instead of trying to directly accomodate higher-level

music representation concerns within Pink’s event system (e.g., hierarchical

structuring of musical material, type hierarchies for kinds of musical events),

the system focuses only on scheduling and firing actions in a generic manner.

291



The goal in this design is to provide the user the basic tools for timed

executions of functions and to leave the decision of how to notate and organise

music to the user. The user may decide that the flat-list system is adequate for

their tasks as-is, use an available higher-level music representation library (such

as Score, discussed in Section 6.5), or develop their own music representation

system. When using a separate system from Pink, a translation layer will be

required to convert event data from the system’s format into Pink’s event

data structures.

Pink’s event code is based around two primary data structures: Event

and EventList. Listing 6.16 shows the code that defines both types. Events

have three properties: event-func, start, and event-args. The start value

designates at what time in beats the the event will be fired. When the event

is fired, the event-func function will be executed, given the values held in

event-args.

(deftype Event [event-func ^double start event-args ]

Object

(toString [_] (format "\t%s\t%s\t%s\n" event-func start

event-args ))

(hashCode [this] (System/identityHashCode this))

(equals [this b] (identical? this b))

Comparable

(compareTo [this a]

(let [t1 (.start this)

t2 (.start ^Event a)]

(compare t1 t2))))

(deftype EventList [^ PriorityQueue events pending-events

cur-beat buffer-size sr tempo-atom]
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Object

(toString [_] (str events))

(hashCode [this] (System/identityHashCode this))

(equals [this b] (identical? this b)))

Listing 6.16: Definitions of Events and EventLists

EventList has a number of properties: events, pending-events, cur-

-beat, buffer-size, sr, and tempo-atom. events is an instance of java.-

util.PriorityQueue and is a priority queue that sorts Events based on their

start times. pending-events is an atom that contains a list of newly arrived

events and acts as a message inbox. These events will be merged into the

priority queue when event list processing occurs. cur-beat, buffer-size,

sr, and tempo-atom are all used for calculating the current time in beats.

This value is then used by the event list processing function to determine if

any events are ready to fire.

Event Processing The event-list-processor function takes in an Event-

List and returns a Pink control function for processing of events. When the

control function is executed, the following will occur:

1. Merge all pending events into the PriorityQueue.

2. Calculate current time in beats for the EventList.

3. In a loop, peek at the head of the PriorityQueue and check if it is time

to fire the event. If so, fire the event and then discard it. Continue

processing until the first event that is outside of the current time window

is found, or until the queue is empty.

This algorithm is roughly equivalent to Dannenberg’s “Implementation

2” in [49], with the addition of virtual-time scheduling. Here, virtual-time is
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controlled by the tempo held in the tempo-atom. Event times are expressed

not in seconds but in beats, relative to the current time of the event list.

For example, if an event with start value of 1.0 passed to the event list, and

the event list’s current time is 10.0, then the start time of the event will be

adjusted to 11.0 when it is merged into the events queue. If tempo is set to

60 beats per minute, the event will fire 1 second into the future.

Firing Events Pink’s event processor is responsible only for firing events,

and it has no knowledge of what the function does, nor does it use the

function’s result. In the case of Listing 6.15, if the horn event was fired, the

audio function will be created but nothing would be done with it. If the user

wants to add the horn audio function to the audio graph of the engine, the

user would have to specifically do that in the code for the function argument

of the event.

The general responsibility of the action’s meaning is inverted from other

systems because the event processor does not concern itself with what the

function does. For example, in a MIDI processor, the processor would look

at incoming data and decide based on the initial byte whether to start a

new note or modify some internal state. As a result, there is a fixed set of

possible event actions encoded into the MIDI Processor. To expand the kinds

of events, one has to modify what kinds of messages the MIDI processor is

able to understand as well as change what information is in the event message.

This puts the burden of meaning and actions on the processor of events.

Instead, Pink events rely on the message creator to determine what the

action will be. The event processor is only concerned with applying a function

at a given time and nothing more. For example, given a MIDI note-on

message with note number 64 and velocity 127, the MIDI processor might
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read the message, determine that the channel maps to synthesiser-a, create a

new instance of synthesiser-a, then add it to the engine’s list of active audio

functions.

In Pink, the responsibility is reversed. Instead of creating a message that

maps to an action, the user embeds the action into the event. To achieve

the previous example, a Pink event would have an event-func argument

of engine-add-afunc. The event-args would include the sythesiser-a

function and the expected arguments for synthesiser-a. When the event is

processed, the processor would fire the engine-add-afunc function. This in

turn might apply the synthesiser-a function to the rest of the event-args

to create an audio function instance. engine-add-afunc would then add the

audio function to the root audio processing Node’s :pending-adds message

inbox.

Because the user is in control of what happens at a given time, the core

engine code can remain very small and simple, while at the same time be

extremely expressive. Pink provides the very basic mechanisms of events as

well as convenience functions for commonly used actions. However, the user

is not limited to any pre-determined notion of what can be done by an event

and is free to customise their events as they wish.

Higher-order Events Events in Pink are higher-order events, meaning

that event arguments may themselves be functions. This capability at the

event-level provides the same benefits as passing functions to functions does

in higher-order functions. On a musical level, this allows for more flexible

designs of audio functions as well as greater reuse.

For example, a violin is a string instrument. It is often used by bowing

it with a violin bow. Performers can vary the speed and pressure of a bow
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while performing. Performers may also use other techniques, such as plucking

the string, hitting the string with the back of the bow, and so on. In all of

these cases, the instrument itself has not changed, rather the input into the

instrument has changed. Also, inputs to the string time-vary and are not

static values.

In Pink, because an event is able to take in other functions, one can design

an audio function to take in arguments and pull values during the processing

of the audio function. For example, rather than pass in a static value for pitch,

such as 440.0, one can pass in an audio function as the frequency argument

that will give time-varying values. This allows for an audio-function acting

as an instrument to be re-used to perform in a variety of ways, such as for

playing a stable pitch or a glissando. It also allows the user to build up a

library of audio-functions specifically for modeling performance gestures and

reusing them between instruments.

Special Event Notation One problem that occurs with higher-order

events is if a set of events was constructed and a user wanted to fire that set

of events multiple times, the function instances that were used as arguments

in the event may give unexpected results. This would be the case if the

argument to an event is itself a stateful function.

(event horn 0.0 0.5 (env [0.0 440 0.5 880]))

Listing 6.17: Example problematic higher-order event

Listing 6.17 shows a problematic higher-order event. In this event, an

env unit generator is used to vary the pitch from 440Hz to 880Hz over a 0.5

second period. When the event is created, the function returned from calling

env is constructed. On the first time an event is called, the env instance
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would be used when the horn function is applied. Everything would render

fine the first time as the env instance is in its initial state. However, if the

event is later reused, the same env instance would be used again, which would

resume from its previous state.

To mitigate this scenario, Pink uses a special apply!*! operator when

processing events. If any IDeref values are given as arguments, apply!*!

will first deref the value before applying the function.10 This differs from the

standard apply operation, where arguments that are passed in a list would

be statically processed at the time of list construction.

(def pitch (atom 440))

;; static pitch

(event horn 0.0 0.5 @pitch)

;; dynamic pitch

(event horn 0.0 0.5 pitch)

Listing 6.18: Example events using IDeref

Listing 6.18 shows a var called pitch that holds an atom with the value of

440. This is followed by two events. The first event dereferences the atom to

get the value 440 when creating the event. The second event uses the atom

directly as an argument. For the first event, the call to horn will always use

the value 440 each time the event is processed. For the second event, the

current value of pitch will be used each time the event is fired, due to the

use of apply!*! in the event firing code. If the user calls reset! to alter

the pitch atom to another value, it would not affect the first event but would

affect the second event.
10IDeref is a base interface in Clojure for classes that support dereferencing. This is

used for things like atoms and refs, which are used to hold mutable values.
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To solve the problem with higher-order events as shown in Listing 6.17,

the !*! function is provided which wraps the given code in an IDeref. This

in turn creates an IDeref instance that, when dereferenced, calls apply!*!

on the given function and arguments. For the corrected higher-order event

in Listing 6.19, it will call (env [0.0 440 0.5 880]) each time the event is

fired to create a new env instance.

;; Use special !*! function to ensure a new env

;; instance is used each time this event is fired

(event horn 0.0 0.5 (!*! env [0.0 440 0.5 880]))

Listing 6.19: Corrected higher-order event

As a consequence of using apply!*!, if you do want to pass in an atom

as an argument to the event’s function without it being first dereferenced,

you must use the !r! operator to wrap the atom. (!r! reads as a "reference

argument".) For example, in Listing 6.20, when perf-func is applied, the

third argument passed to it will not be the value of tempo but the tempo

atom itself.

(def tempo (atom 60.0))

;; Use !r! to ensure the tempo atom is

;; passed as an argument to perf-func and

;; not first dereferenced by apply !*!

(event perf-func 0.0 0.5 (!r! tempo))

Listing 6.20: Event with reference argument

In general, if one is using higher-order events, it is likely one will use the

!*! function. The use of !r! will most likely come into play when doing

temporal recursion with events. In that scenario, it is useful to pass in things

like a tempo or a done value, so that one can affect the recursive event stream

elsewhere in the code.
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Summary Pink provides a higher-order event system that uses virtual-time

processing. This system processes events that contain a function to fire and

arguments to supply to the function. This system puts the responsibility of

an event’s meaning on the creator of the event. The event-list-processor

function provides a Pink control function that can be scheduled to run

synchronously with Pink’s engine.

6.4.4 Summary

Pink is an open-source, cross-platform music system written in Clojure. Users

work in the Clojure programming language and employ Pink as a library

for building musical works and applications. Pink is designed using a small

set of abstractions — engine, signals, audio and control functions, higher-

order events, and contexts — and it provides a basic set of implementations

for those abstractions. These abstractions provide a simple, flexible, and

extensible base for users to use and customise for their own works. Higher-level

abstractions, such as 4MPS’ model of ports and controls, are not currently

provided, but, as demonstrated in Section 6.4.3, they may be built upon the

existing abstractions.

Pink implements the library-based, general-purpose programming language

model of music systems. Releases of Pink are distributed as versioned libraries

which users can depend upon to create works with high degrees of stability

in the face of change. Overall, Pink has satisfied the primary design goals for

user-extensibility, support for both event-based works and realtime systems,

use of minimal abstractions, and implementation of a library-based system

design. Current plans for future work are to continue to develop the core

library of signal processing, control, and utility functions, while also continuing
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to develop works using Pink. In addition, as a system to research music

systems design, Pink has shown higher-order events to be a useful tool for

composing. Future work will apply the research from this project to further

develop Csound to also support higher-order events.

6.5 Score

Score is a library of functions for creating musical scores as list data.11 It

is based on the note as a list of values, and scores – or note lists – as

a higher level organisation of notes as lists of lists. Score contains useful

musical functions for concepts such as pitch, scales, tunings, and amplitude.

It also contains functions for generating, transforming, and organising scores.

Because it is based on standard Clojure data structures, the library is designed

to interoperate well with other Clojure functions and libraries that also work

with lists. Score provides numerous points of extensibility and encourages users

to draw upon their Clojure skills to customise their score-writing experience

to their own taste.

6.5.1 Related Work

Score has been inspired by many computer music score languages and libraries.

The following lists related work and their influences.

Common Music (CM) [174, 175] is an object-oriented score generation and

performance library, originally written in Common Lisp. It features a score

generation model as well as real-time scheduler for performance. The score
11For the purpose of this documentation, the term list is used synonymously with

Clojure’s concept of sequences [90].
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model generically models musical ideas using its own model, and mappings

are used to convert from the internal model to an external target system (i.e.,

CLM, Csound, MIDI, etc.). CM also includes the concept of item streams,

which act as generators of values.

CM’s item streams and generic music model were of particular influence

to Score. Also, CM’s earlier design as a library that would work with other

CL-based systems like CLM was influential in developing Pink and Score

as separate libraries. However, implementing a scheduler as well as using

an object-based system were not aspects of the design that were factors for

Score. In addition, the move from a library-based approach to an application

one in CM3 [176] was a path I did not want to follow due to the benefits of

employing versioned libraries for works.

CMask’s [28] score model uses fields made up of parameters to generate

note lists. Parameters are generators that take in a time argument and return

a value. Parameters may optionally be used with masks, quantizers, and

accumulators for further processing. Score reimplements CMask’s model in

the score.mask namespace using higher-order functions and also makes the

model extensible for users to implement their own generators and processing

functions. Score also provides features for hierarchical score organisation and

processing which CMask does not support.

SuperCollider 3’s Pattern library [87] provides various Pattern objects as

item generators that can be used alone or together to generate events. Event

generation is oriented around real-time use. Patterns may take into account

the time of an event when used for event generation but most Patterns simply

produce a stream of values. Score implements a similar score generation
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model using Clojure’s built-in sequence abstraction rather than employing a

custom Pattern abstraction.

JMSL [60] uses a generic container called MusicShape for musical informa-

tion that is further organised into hierarchies. This approach has similaritiese

with Score’s approach to using Clojure list data structures and score organisa-

tion functions with the exception that MusicShapes only support numerical

values for their fields. However, like CM3, JMSL has a broader design that

includes scheduling and performance, which was not a design goal of Score.

Canon’s [50] emphasis on “scores as programs” and goal “to combine and

transform simple scores to form more complex ones” was a model for Score.

Canon provides a number of transformations based on time that depend on

its implementation of notes, which uses a fixed set of fields. However, an

open-ended model for notes was chosen for Score, which prevents providing

similar kinds of transformations, as the meaning of fields is determined by

the user, not the system. Users can, however, use standard list processing

techniques to achieve the same kinds of transformations with Score as found

in Canon.

SmOKe (Smalltalk Object Kernel) [139] is a music description language

written in Smalltalk. It is a core part of the Siren [141] system and is based

on work from Siren’s predecessor, MODE [144]. SmOKe uses Music Mag-

nitudes objects to represent common musical values (e.g., pitch, amplitude,

and temporal values), Event dictionary objects as notes made up of val-

ues (which could be Magnitudes, Smalltalk function blocks, or any other

object), and EventList list objects as containers for multiple Events. The

EventList is itself an instance of the Event class, which allows EventLists to

be considered composite event objects that can be embedded within other
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events, thus allowing hierarchical organisation of musical material. SmOKe

further provides EventGenerator and EventModifier objects to generate and

transform EventLists and Voice objects to interpret SmOKe’s Event music

representation for use with a target music system.

Score provides many of the same features as SmOKe but differs in its

implementation in a number of ways. Firstly, Score handles musical values by

means of functions that convert from one value to another rather than using

intermediary MusicMagnitude objects. Secondly, events in Score are list data

structures rather than dictionaries. The use of lists aligns well with many

target systems (e.g., Csound, MIDI, Pink) where event data is sequentially

laid out. Writing lists is also less verbose than notating key-value pairs with

dictionaries: the verbosity of dictionaries is beneficial for later reading and

understanding of code but using lists can be quicker to write and fit more

data on screen. Lists also enable use of Clojure’s apply function to execute

another function using the list’s values as arguments. These benefits lead to

the decision to use lists over dictionaries. Finally, Score’s use of lists of lists

as note lists is similar to SmOKe’s EventLists but does not have the same

class-type relationship to Events. SmOKe’s Event objects can respond to

play messages that trigger a walk of the hierarchy of objects; Score requires

a separate score organisation function to walk the hierarchical list data. The

differences in designs — whether to include behavior with an object or handle

it separately in a function that processes data structures — largely reflect the

programming practices found in object-oriented and functional programming

languages.

Score shares much in common with the design of SmOKe. Each system of-

fers concepts of musical values, events, event lists, generators, processors, and
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mapping tools for target systems; allows hierarchical organisation of events;

operates within the context of general-purpose programming languages; and

provides means for users to extend the systems themselves. SmOKe currently

provides more features (i.e., implementations of MusicMagnitudes and Event-

Generators) than Score. However, future work will include implementing

SmOKe’s features currently not present within Score.

Looking at systems more broadly, those employing domain-specific lan-

guages can be categorized into notation and score generation systems. No-

tation systems (e.g., SCORE [163], Scot [75], ABC [186], LilyPond [126])

offer languages for hand-writing notes that are compiled and transformed to

operate with a target system (e.g., Music V, Music 11, Csound, MIDI, PDF).

Score generation systems (e.g., nGen [103], Score11 [82], CMask) provide

DSLs for generating note lists using sets of field generators. The compact

syntaxes of notation DSLs provide users with the unique ability to express

much with little code. However, score generation DSLs look very much like

code in general-purpose programming languages. Score provides comparable

designs and features to the above DSL-based score generation systems but

does not provide a notation-like system. Support for a short-hand notation

system was outside of the scope of Score’s current target feature set but may

be considered for implementation in future versions.

Finally, GPL-based systems packaged as applications (AC Toolbox [32],

Opus Modus [131], CM3) provide extensible programming environments for

score generation. These Lisp-based systems provide not only a library of score

functions but also text editors, graphics visualisations, schedulers, and other

features. Users can extend these systems but must do so while working within

the context of the provided application. Score differs from these systems by
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packaging itself as a library. Partitioning the system at a smaller level frees

users to employ the library within their own applications and use their own

preferred tools.

6.5.2 Design

Score uses a functional programming approach to model musical scores using

data and functions separately, rather than using objects which combine state

and behavior. Notes (i.e. events) are represented using standard Clojure list

data structures filled with values. The meaning of each value field of a note

is entirely determined by the user. Scores (i.e., note or event lists) are lists of

lists (i.e., notes) and they may be hierarchically organised by embedding one

within another. Score provides functions for generating and transforming flat

note lists as well as organising functions to transform hierarchical lists into a

flattened total score. Once a total score is produced, users can use Score’s

mapping functions to map the data into a format suitable for a target music

system. Score also provides a set of music value functions for generating values

and transforming values from one format to another. Score’s concepts map

closely to those found in SmOKe (i.e., Music Magnitudes, Events, EventLists,

EventGenerators, EventProcessors, and Voices).

Score is designed for use within Clojure code. Users may explicitly write

out each note and organise them into lists, use code to generate and process

note lists, or use a combination of the two together. By offering both hand-

written notation and score generation, Score allows users to work with both

the “score as data” approach found in Music-N systems as well as the “score

as program” approach found in Canon.
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The model of notes as a list of values, and scores as a list of notes, is

very flexible. Users can use standard Clojure functions such map, filter,

reduce to process the notes. They can further use functions like concat

and mapcat to join together smaller blocks of notes into larger blocks. This

allows a bottom-up composing of scores that has similarities to Western Music

concepts of notes, phrases, sections, and movements.

Score’s design is backend agnostic, meaning the internal representation is

not designed for any specific target music system. The user can take a full

list that represents a total score for a work, then do a final processing step to

map the notes to a target format. This approach is exemplified in Common

Music and SmOKE, where one develops their work with an internal score

model and generates output as MIDI, Csound SCO, or other format.

Beyond the internal design, Score, like Pink, is designed as a library and

not a system. Users can create works that depend upon a specific version

of Score, and their work will continue to function even if newer versions of

Score are produced. Also, Score has no other dependencies outside of Clojure

itself, which simplifies the introduction of Score into a project. Finally, Score

is designed to interoperate well with Pink, and vice versa.

6.5.3 Musical Values

Score provides a number of functions for generating and converting musical

values. These functions are useful on their own as well as when generating

and processing notes. These value functions are described below.
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Amplitude and Frequency

Figure 6.8 lists basic functions provided by Score for conversion between

different values for both amplitude and frequency.

db->amp

converts decibels to power ratios.

midi->freq

converts MIDI note numbers to frequency (Hz).

keyword->notenum

convert pitch keywords to MIDI note numbers.

keyword->freq

convert pitch keyword to frequency (Hz).

pch->notenum

convert PCH format to MIDI note number.

pch->freq

convert PCH format to frequency (Hz).

hertz

generic function for converting keyword, MIDI note number, or PCH to

frequency (Hz).

Figure 6.8: Basic amplitude and frequency functions

These functions are useful to allow the user to write values in a form they

find convenient and transform them into values appropriate for music systems

to process. For example, the keyword format uses Clojure keywords to allow
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for note pitches to be written using the note names and octave specifications

that are common in Western art music notation.

user=> (keyword- >notenum :C4)

60

user=> (keyword- >notenum :C#4)

61

user=> (keyword- >notenum :Bb4)

70

Listing 6.21: Conversions from keywords to MIDI note numbers

Listing 6.21 shows an example session where keywords are used with the

keyword->notenum function to generate MIDI note numbers. The keyword

:C4 describes the note name C at octave 4, which corresponds to the MIDI

note number 60 and the middle C key on a piano. Note names can be further

modified by using # and b to denote sharps and flats.

Beyond decibels, amplitude, keywords, MIDI, and frequencies is the PCH

format. This format is described further below.

PCH notation

Score’s PCH notation is based on Csound pch notation.12 In Csound, pch is

a specially formatted number defined using “octave point pitch class”. For

example, 8.01 means “octave 8, pitch class 1” and is equivalent to the C#

above middle C on a piano. Instead of using numbers, Score uses a 2-vector

to represent PCH. The equivalent to Csound’s 8.01 would be Score’s [8 1].

Besides the PCH to MIDI and frequency functions, Score provides addi-

tional PCH-related functions.
12For further information, see Table 8 in [179].
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pch-add

adds an interval to a PCH and returns the new PCH, optionally taking

in scale-degrees per octave (defaults to 12).

pch-diff

calculates the interval between two PCHs, optionally taking in scale-

degrees per octave (defaults to 12).

pch-interval-seq

given an initial PCH, and list of intervals, generates a sequence of PCHs

applying pch-add using the the previous PCH and new interval from

the list.

analyze-intervals

given a list of PCHs, calculate the intervals between each PCH.

invert

create a chord inversion using a list of PCHs and inversion number.

Figure 6.9: PCH-related functions

Note, these PCH functions take into account the number of scale degrees

per octave and normalize PCHs for overflows and underflows. For example,

when pch-add is used with [8 11], interval 1, and scale-degrees 12, rather

than return [8 12], the value will be normalised to [9 0]. Figure 6.22 shows

an example usage of PCH-related functions.

user=> (pch-add [8 0] 1)

[8 1]

user=> (pch-add [8 0] 13)

[9 1]
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user=> (pch-add [8 0] -1)

[7 11]

user=> (pch-diff [8 0] [8 7])

7

user=> (pch-diff [8 0] [9 1])

13

user=> (pch-interval-seq [8 0] [2 3 -1])

([8 0] [8 2] [8 5] [8 4])

user=> (analyze-intervals [[8 0] [8 2] [8 5]])

[2 3]

user=> (invert [[8 1] [8 2] [8 3]] 1)

[[8 1] [7 2] [7 3]]

Listing 6.22: PCH-related functions usages

These functions provide useful functions for transforming PCH values

and working with intervals between PCHs. They allow for common musical

operations such as transposition and inversions. Retrogrades and sub-list

operations can be achieved using Clojure’s reverse, drop, and take functions.

Tunings

score.tuning provides functions for working with musical tunings. A tuning

is defined using a Clojure map data structure with specific key/value pairs.

Listing 6.23 shows an example of the twelve-tone equal temperament tuning,

provided by Score.

(def ^: const ^{:tag 'double}

MIDDLE-C 261.6255653005986)

(def TWELVE-TET

{ :description "Twelve-Tone Equal Temperament"

:base-freq MIDDLE-C
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:num-scale-degrees 12

:octave 2.0

:ratios (map #(Math/pow 2.0 (/ % 12)) (range 12))

})

Listing 6.23: Twelve-tone equal temperament

Besides defining tunings by hand, the create-tuning-from-file function

can be used to load files in the Scala file format [129]. This provides access

to over 4000 scale files found in Scala’s scale archive [128].

Once a tuning is created, the pch->freq function found in score.tuning

can be used. This function takes in two arguments: a tuning and a PCH.

As noted earlier, PCH is a 2-element list that provides an octave and scale

degree. The result is the frequency for a given PCH.

Sieves

score.sieves provides a complete implementation of Xenakis’s sieves, as

defined in [193] and [192]. The implementation of score.sieves is a transla-

tion of the C code from those two sources. Ariza’s extensions to sieves and

implementation as objects [26] were also consulted, but the extensions to

Xenakis’s original models were not implemented in Score.

In score.sieves, sieves are represented using a 2-element list, made up of

a modulo and index. These sieves can be combined using the U and I functions,

which create Union and Intersection sieves respectively. Given a max number

of steps and a sieve, the gen-sieve function sieves the series of positive

numbers starting from 0 and returns the resulting sequence. Listing 6.24

shows an example coding session where four different sieve sequences are
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generated. The examples use a simple sieve, a Union sieve, an Intersection

sieve, and a complex sieve.

user=> (gen-sieve 12 [4 1])

(1 5 9 13 17 21 25 29 33 37 41 45)

user=> (gen-sieve 12 (U [4 1] [3 2]) )

(1 5 9 13 17 21 25 29 33 37 41 45)

user=> (gen-sieve 12 (I [4 1] [3 2]))

(5 17 29 41 53 65 77 89 101 113 125 137)

user=> (gen-sieve 12 (U [3 2] (I [3 2] [2 0])))

(2 5 8 11 14 17 20 23 26 29 32 35)

Listing 6.24: Example of generating sieved sequences

Analysis of sieves from a given sequence is also supported, using the

analyze-sieve function. Listing 6.25 shows an example analysis. The

function returns an analysis comprised of 3-vectors of sieves comprised of

modulo, index, and number of values covered by that sieve.13 The analysis

also returns a Sieve object ready to use for generating new sequences as well

as the period of repetition for the sieve.

user=> (analyze-sieve [0 2 3 5 8 11])

{ :analysis [[8 0 2] [3 2 4] [5 3 2]],

:sieve #score.sieves.Union{:l #score.sieves.Union{:l [8

0], :r [3 2]}, :r [5 3]},

:period 120}

Listing 6.25: Example of sieve analysis

13This matches the design in the C-code.
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6.5.4 Score Generation

Score includes two primary ways for generating note lists: gen-notes and

gen-notes2. The first is based on Clojure sequences and is modeled on SC3’s

Pattern Library. The latter uses higher-order programming and time-based

generator functions and is modeled on CMask.

gen-notes

Score’s primary tool for generating notes is the gen-notes function:

(defn- score-arg

"Utility function used by gen-notes to convert the given

argument into a sequence if not so already."

[a]

(cond (sequential? a) a

(fn? a) (repeatedly a)

:default (repeat a)))

(defn gen-notes

"Generate notes by assembling sequences together into

notes. If a constant value is given , it will be wrapped

with (repeat). If a no-arg function is given , it will be

wrapped with (repeatedly)."

[& fields]

(let [pfields (map score-arg fields)]

(apply map (fn [& a] (into [] a)) pfields)))

Listing 6.26: Implementation of gen-notes

Given a set of fields – which may be sequences, functions, or values –

gen-notes will generate a list of notes, where the value of each note is

generated using the value from each field. If the field is a sequence, each item
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of the sequence will be used. If the field is a function, it will be wrapped into

a sequence using Clojure’s repeatedly function. Finally, if a single value

is given, an infinite list comprised of that value is created using the repeat

function.

Because gen-notes uses map, the returned value is a lazy sequence. If all

fields given to gen-notes are infinite sequence, then the resulting sequence

is also infinite. If any of the fields are finite sequences, then the resulting

sequence of notes will have a length equal to the shortest field sequence. The

user should use the same care when using gen-notes as they would with

regular Clojure sequences in regards to infinite sequence generation.

user=> (gen-notes 1 (range) 1.0 [1 2 3 4 5] (range 6 300))

([1 0 1.0 1 6]

[1 1 1.0 2 7]

[1 2 1.0 3 8]

[1 3 1.0 4 9]

[1 4 1.0 5 10])

Listing 6.27: Example use of gen-notes

Listing 6.27 shows an example usage of gen-notes and its results. In the

call to gen-notes, the first and third fields are constants, 1 and 1.0. These

values are repeated for each generated note. For the sequences used in the

2nd, 4th, and 5th fields, the first value from each sequence is used for the first

generated note, then the next values used for the second note, and so on. As

the 4th field is a finite list with the shortest number of elements, only five

notes will be generated.
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gen-notes2 and score.mask

Score offers an alternate model for generating notes, gen-notes2, based on

time-based generator functions:

(defn- const

"Returns a function that generates a constant value."

[val]

(fn [t]

val))

(defn seq- >gen

"Converts a sequence into a generator function with time

argument."

[vs]

(let [curval (atom vs)]

(fn [t]

(let [[a & b] @curval]

(swap! curval rest)

a

))))

(defn wrap-generator

"Utility function to convert argument into a generator

function

if not so already."

[f]

(cond

(seq? f) (seq- >gen f)

(fn? f) f

:else (const f)))

(defn gen-notes2
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"Generate notes with time-based generator functions. This

score

generation method is based on CMask. Given fields should be

single-arg functions that generate a value based on time

argument."

[start dur & fields]

(let [gens (map wrap-generator fields)

[instrfn startfn & r] gens

dur (double dur)

start (double start)]

(loop [cur-start 0.0

retval []]

(if (< cur-start dur)

(let [i (instrfn cur-start)

^double xt (startfn cur-start)

note (into [i (+ start cur-start)]

(map (fn [a] (a cur-start)) r))]

(recur (+ cur-start xt) (conj retval note)))

retval))))

Listing 6.28: Implementation of gen-notes2

Given an initial start time, duration, and set of fields – which may be

sequences, functions, or values – gen-notes2 will generate a list of notes,

where the values of each note is generated using the values from each field.

Unlike gen-notes, fields in gen-notes2 are single-argument generator func-

tions that take in a time value. If the field is a sequence, seq->gen will be

called to convert the sequence into a generator function. If the field is a

function, it is assumed to already be a generator function and used as-is.

Finally, if a single value is given, an infinite generator function is produced

using the const function.
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gen-notes2 is modeled on CMask’s processing model, where gen-notes2

maps to CMask’s fields, and field arguments to gen-notes2 map to CMask’s

parameters. For each note, all fields will be called given the current start

time value (cur-start). The value generated by the second field’s value

will be especially used to increment cur-start for the next note generated.

Generation of notes will continue until the cur-start value is greater than

or equal to the dur argument.

All of CMask’s parameters – oscillators, items, probabilities, and break-

point functions – have been implemented as generator functions packaged

in sub-namespaces of the primary score.mask namespace. Additionally,

CMask’s masks, quantisers, and accumulators have also been implemented as

generator functions that decorate other generator functions. The generator

functions provided by score.mask, together with gen-notes2, provide a

complete implementation of CMask’s capabilities within Score.

As with gen-notes, the user should take special care of using infinite

generator functions. This is especially important as gen-notes2 eagerly

generates the resulting note list. If a finite generator function is not provided,

calling gen-notes2 will result in an infinite loop.

user=> (gen-notes2 0.0 4.0

4 0.5 3

(rand-range 0.1 20)

(item-cycle [1 2 3])

(swing [8 9 10])

(heap [10 100 400])

(rand-item [50 500 5000]))

[[4 0.0 3 0.5357457756267113 1 8 400 5000]
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[4 0.5 3 16.091049682038065 2 9 10 500]

[4 1.0 3 5.7949011228034 3 10 100 50]

[4 1.5 3 14.749602188427321 1 9 10 50]

[4 2.0 3 14.01972320806139 2 8 100 500]

[4 2.5 3 10.87719434050349 3 9 400 500]

[4 3.0 3 17.53310173768086 1 10 400 5000]

[4 3.5 3 4.218225062429189 2 9 10 500]]

Listing 6.29: Example use of gen-notes2

Listing 6.29 shows an example usage of gen-notes2 and its results. The

first two arguments are the initial start time (0.0) and duration (4.0). The

next 3 values are constants. Note that while the second field always returns

0.5, the generated value in the note list is the cur-start value calculated in

the loop. The 4th through 8th fields are all time-based generator functions

created by calling score.mask functions. For each of these fields, calling the

score.mask function returns another function that takes in a time argument.

This is shown in the implementation of rand-item in Listing 6.30.

(defn rand-item

"Generates values as random permutations of a sequence"

[vs]

(fn [t]

(rand-nth vs)))

Listing 6.30: Implementation of rand-item

The anonymous function returned by rand-item has a single argument t.

In this case, the t argument is not used. Instead, the vs argument, which is

closed over by the anonymous function, is used. While generator functions

for use with gen-notes2 must take in a single time argument, they are not

required to use it.

318



6.5.5 Score Transformation

Since notes are generic lists of data, the Score library has no explicit knowledge

about what is in a note. It does not know if a field in a note is a PCH, a

frequency, an amplitude, or other value. This limits the library from providing

fixed operations such as transposing or stretching notes.

However, a different approach is used in Score. The process-notes macro

allows a given note list to be transformed in a generic fashion. It takes in a

single note list and then pairs of indexes and transformation functions. It

processes the note list such that for each note, the values at the given indexes

will be given to the corresponding transformation functions. The transformed

field value is then used in the resulting transformed note list.

(def notes

[['trumpet 0 1 -12 :G5]

['trumpet 1 1 -12 :B5]

['trumpet 3 1 -12 :D6]])

(process-notes notes

3 db- >amp

4 keyword- >freq)

Listing 6.31: Example use of process-notes

Listing 6.31 shows an example use of process-notes. It reads as “given

the notes note list, process each note, converting the 4th field from decibels

to amplitude multipliers and the 5th field from keywords to frequencies”. Note

that the indexes are 0-based, so 0 refers to the first field, 1 to the second field,

and so on. The results of processing are shown in Listing 6.32.
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([ trumpet 0 1 0.251188643150958 783.9908719634985]

[trumpet 1 1 0.251188643150958 987.7666025122485]

[trumpet 3 1 0.251188643150958 1174.6590716696305])

Listing 6.32: Results of process-notes

This example shows one way of approaching score transformation, which

is to allow writing note values in a form that is convenient to the user but

transforming the values into one more suitable for signal processing routines.

As the transformation functions provided are generic, process-notes can also

be used to implement musical operations such as transpositions, decrescendos,

time stretching, and so on.

process-notes provides a generic way to transform scores. As users are

in control of specifying the meaning of field values for notes, users must also

have a way to specify transformations by field. By providing transformation

functions, the user is acknowledging they know what a field means as well as

how they would like it be transformed.

For more complex transformations of scores, the processing model of

process-notes may not be enough. However, as note lists are generic list

data structures, users can avail themselves of Clojure’s standard list processing

functions to implement their own custom transformations.

6.5.6 Score Organisation

Score offers two primary functions for higher level organisation of music:

convert-timed-score and convert-measured-score. The two functions

take in list data structures written in timed- or measured-score formats. They

will process the score formats and yield a single, flattened note list. The two
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functions operate similarly with the exception of how they work with time

specifications. They are described with examples below.

convert-timed-score

convert-timed-score allows the user to organise smaller blocks of score into

a larger score. The user specifies a list of values that can either be numbers

or note lists. If a number is encountered, it sets the current time for note list

start time translation. If a note list is encountered, it will be translated in

time by the current time. For note lists, convert-timed-score requires that

the second field of each note be a value for a start time.

(def pattern

[['bass-drum 0.0 0.5]

['bass-drum 1.0 0.5]

['bass-drum 2.0 0.5]

['bass-drum 3.0 0.5]])

(def score

[0.0 pattern

4.0 pattern ])

(println (convert-timed-score score))

Listing 6.33: Example use of convert-timed-score

Listing 6.33 show an example usage of convert-timed-score. Firstly, a

score fragment is explicitly written out by hand and assigned to the pattern

variable. Secondly, the score variable is defined in the timed-score format. It

reads as “at time 0.0, play pattern, and at time 4.0, play the pattern again”.
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Listing 6.34 shows the note list generated by calling convert-timed-score

with the score variable.

([ bass-drum 0.0 0.5]

[bass-drum 1.0 0.5]

[bass-drum 2.0 0.5]

[bass-drum 3.0 0.5]

[bass-drum 4.0 0.5]

[bass-drum 5.0 0.5]

[bass-drum 6.0 0.5]

[bass-drum 7.0 0.5])

Listing 6.34: Results of convert-timed-score

convert-timed-score also allows for multiple note lists to be used for a

given time. Listing 6.35 shows an example where two note lists, bd-pattern

and snare-pattern, are used together in the timed-score. The results are

shown in Listing 6.36.

(def bd-pattern

[['bass-drum 0.0 0.5]

['bass-drum 1.0 0.5]

['bass-drum 2.0 0.5]

['bass-drum 3.0 0.5]])

(def snare-pattern

[[' snare-drum 1.0 0.5]

['snare-drum 3.0 0.5]])

(def score

[0.0 bd-pattern

4.0 bd-pattern snare-pattern ])

322



(println (convert-timed-score score))

Listing 6.35: convert-timed-score with multiple note lists

([ bass-drum 0.0 0.5]

[bass-drum 1.0 0.5]

[bass-drum 2.0 0.5]

[bass-drum 3.0 0.5]

[bass-drum 4.0 0.5]

[bass-drum 5.0 0.5]

[bass-drum 6.0 0.5]

[bass-drum 7.0 0.5]

[snare-drum 5.0 0.5]

[snare-drum 7.0 0.5])

Listing 6.36: Results of convert-timed-score with multiple note lists

Since note lists are just lists, users can hand-write blocks of notes, use

note-processing functions, and use note-generating functions within a timed

score. Listing 6.37 shows an example of using inline hand-written note lists

and function calls within a time-score. In the example, the second use of

bd-pattern has been processed with the process-notes function, such that

the 3rd field of each note has its value multiplied by 0.5. Also, a single-shot-

sample note has been introduced to the score, written in by hand. Results

are shown in Listing 6.38.

(def score

[0.0 bd-pattern

4.0 (process-notes bd-pattern 2 #(* % 0.5))

snare-pattern

[[' single-shot-sample 2.0 2.0]]])
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(println (convert-timed-score score))

Listing 6.37: Inline hand-written note lists and function calls

([ bass-drum 0.0 0.5]

[bass-drum 1.0 0.5]

[bass-drum 2.0 0.5]

[bass-drum 3.0 0.5]

[bass-drum 4.0 0.25]

[bass-drum 5.0 0.25]

[bass-drum 6.0 0.25]

[bass-drum 7.0 0.25]

[snare-drum 5.0 0.5]

[snare-drum 7.0 0.5]

[single-shot-sample 6.0 2.0])

Listing 6.38: Inline hand-written note lists and function calls results

convert-timed-score provides users a way to organise score fragments

in time. The results from calling this function is a flattened note list. This

note list may in turn be assigned to a variable and used within other calls to

convert-timed-score.

convert-measured-score

convert-measured-score operates similarly to convert-timed-score, but

uses the measure as a unit of time rather than a time value. The measured-

score is also a list, but begins with a :meter definition. Following the meter,

values may be either numbers or lists, just as in timed-scores, but the numbers

are interpreted as measure numbers.

(def score
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[:meter 4 4

0 bd-pattern

1 bd-pattern snare-pattern ])

(println (convert-measured-score score))

Listing 6.39: Example use of convert-measured-score

Listing 6.39 shows an example usage of convert-measured-score. The

score reads as “with a 4/4 meter, at measure 0, play bd-pattern, and at

measure 1, play bd-pattern and snare-pattern”. Start time values for notes

are interpreted as beats, and beats map to quarter note values of the meter.

The results are shown in Listing 6.40.

([ bass-drum 0.0 0.5]

[bass-drum 1.0 0.5]

[bass-drum 2.0 0.5]

[bass-drum 3.0 0.5]

[bass-drum 4.0 0.5]

[bass-drum 5.0 0.5]

[bass-drum 6.0 0.5]

[bass-drum 7.0 0.5]

[snare-drum 5.0 0.5]

[snare-drum 7.0 0.5])

Listing 6.40: Results of convert-measured-score

convert-measured-score allows for multiple note lists to be used per

measure. Also, users may use in-lined, hand-written note lists and function

calls embedded within measure-scores just as they would with timed-scores.

For musical genres that use a regular, measured framework of time, using

convert-measured-score may be more convenient to use and think with
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than using convert-timed-score. Choosing between one or the other system

of time will be dependent upon the user’s own musical goals.

convert-measured-score and convert-timed-score simply process score

lists and generate a note list. The results of these functions may themselves

be further processed. This allows the user to mix usage of each time system.

For example, if one was working on a film score, one could use measured-score

to write the main music track and use a timed-score to add sound effects

according to clock time. The user could then use concat to merge the two

scores together.

6.5.7 Mapping Note Lists

Like Common Music and SmOKe, Score’s internal design is backend agnostic.

This means that the representation of data is not tied to a single target music

system. Users can use mapping functions to convert note lists generated by

Score into a format that works with another system. This may be for use

with other computer music systems but may also be used for visualisation or

other purposes.

Listing 6.41 shows an example use of Score and Csound. It uses the

gen-notes2 function, generating a note list from time 0 to 5.0 using 5 fields.

The first field is a constant field that will always generate 1. The rest of the

p-fields of the Csound score is generated using the values provided by within

the score.mask package.

(def notes

(gen-notes2 0 5.0

1

(gauss 0.5 0.1)
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(heap [0.1 0.2 0.4])

(rand-range 0.1 0.25)

(rand-item

["8.00" "8.03" "8.02"])))

(def csound-sco

(format-sco notes))

(println notes)

(println csound-sco)

Listing 6.41: Score and Csound Example: Code

Listing 6.42 shows the printed output from running Listing 6.41. The first

printout shows the results of running gen-notes2, which produces a Clojure

list of lists. The second printout shows the result of using the format-sco

function, provided by Score for formatting note lists into Csound SCO text

format. The csound-sco text may then be further sent to a running Csound

instance for live score performance or written to disk and later read by Csound

as a SCO file.

;; output from (println notes)

[[1 0.0 0.1 0.1455446063675899 8.02]

[1 0.07388877495229043 0.2 0.11487888605849467 8.00]

[1 0.2684591839186033 0.4 0.12170487899979296 8.00]

[1 1.0558572506209922 0.4 0.13304255988624555 8.03]

[1 1.554791683668857 0.2 0.16436113185377213 8.00]

[1 1.9392915161730429 0.1 0.11907587313489418 8.02]

[1 2.3410899943560195 0.2 0.21996317376289015 8.03]

[1 2.787924993057282 0.4 0.2119026696996974 8.00]

[1 3.7580 770774079575 0.1 0.12327608647786711 8.00]

[1 4.199933807980773 0.2 0.23620482696864334 8.00]]
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;; output from (println csound-sco)

i1 0.0 0.1 0.1455446063675899 8.02

i1 0.07388877495229043 0.2 0.11487888605849467 8.00

i1 0.2684591839186033 0.4 0.12170487899979296 8.00

i1 1.0558572506209922 0.4 0.13304255988624555 8.03

i1 1.554791683668857 0.2 0.16436113185377213 8.00

i1 1.9392915161730429 0.1 0.11907587313489418 8.02

i1 2.3410899943560195 0.2 0.21996317376289015 8.03

i1 2.787924993057282 0.4 0.2119026696996974 8.00

i1 3.7580770774079575 0.1 0.12327608647786711 8.00

i1 4.199933807980773 0.2 0.23620482696864334 8.00

Listing 6.42: Score and Csound Example: Output

At this time, Score only provides output mapping for Csound. However,

Score’s generated note lists are usable as-is with Pink, as both systems are

written in Clojure. Listing 6.43 shows an example note list fragment, taken

from the track1.clj example in the music-examples project [198]. In this

example, growing-line defines a note list using both features from Score

and Pink. The code first uses two note lists generated using the gen-notes

function that are concatenated together. This is then mapped over and the

growl audio function is prepended as the first field of each note in the note

list. The e argument given to gen-notes is itself a Pink audio function – the

env function – that is wrapped using the !*! operator. The result is that

for each note, the 6th field will be an instance of env used as the amplitude

argument to the growl instrument.

;; from music-examples.track1 example file

(def growing-line

(let [e (!*! env [0.0 400 0.11 5000])

starts (range 0 1.8 (/ 1.0 3.0))
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amps (range 0.05 5 0.05)

space (range 0.75 -1.0 -0.25)]

(map #(into [growl] %)

(concat

(gen-notes starts 0.1 :G5 amps e 0.75 space)

(gen-notes starts 0.1 :G3 amps e 0.75 space)

))))

Listing 6.43: Score and Pink: Generating higher-order events

From here, the growing-line note list is then reused as a part of a larger

measured-score. convert-measured-score is used to prodcue to the total

score, which is then mapped into Pink events using the sco->events function

provided in the pink.simple namespace.

(defn apply-afunc-with-dur

"Applies an afunc to given args within the context of a

given duration. with-duration will bind the value of dur

to the *duration* Pink context variable."

[afunc dur & args]

(with-duration (double dur)

(apply !*! afunc args)))

(defn i

"Csound style note events: audio-func , start , dur , & args."

[afunc start dur & args]

(apply event apply-afunc-with-dur start afunc dur args))

(defn sco- >events

"Converts Csound-style note list into a list of

Pink Events."

[notes]
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(map #( apply i %) notes))

Listing 6.44: sco->events function from pink.simple

Listing 6.44 shows the code for sco->events. Given a list of notes,

sco->event maps an anonymous function that applies the i function to the

values found in each note. The i function in turn applies the event function

to each note, using apply-afunc-with-dur as the event’s function – the one

that will fired by Pink’s event processor – with the given arguments. Finally,

when apply-afunc-with-dur is called, it fires by processing the values found

in the original note, applying the first field – the audio function – to the rest

of the fields.

In the full track1.clj example, these Pink events are further passed to

the add-audio-events function from pink.simple. This is a convenience

function that wraps events with another event that uses the add-afunc

function to attach audio functions to the root node of the engine. At runtime,

when an event is fired, the nested event will generate an audio function and

the top-level event will add it to the engine for processing.

The mapping of note lists is the technique by which the generated data

from Score is connected to other systems. Score currently provides a mapping

function for Csound and works out of the box with Pink, as shown in the

example code. In the future, more mappings could be provided with Score,

such as MIDI, OSC, and MusicXML. As the data generated from Score is

plain Clojure list data, users can create their own mappings relatively simply.
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6.5.8 Summary

Score provides users tools for generating, organising, and processing musical

scores. It is based on the concept of note as lists of values and a score as a list

of notes. Functions are provided for the generation of values for use as part

of notes, including values for frequencies, amplitudes, scales and more. These

value functions are used in conjunction with Clojure sequences or Score’s

generator functions to generate note lists using gen-notes or gen-notes2.

These functions provide similar score generation facilities found in SC3’s

Patterns library and CMask respectively. Score also provides functions for

higher-level organisation of musical material using convert-measured-score

and convert-timed-score. These provide a simple way to merge hand-

written note lists and note list fragments together into a full score. This

provides a system for hierarchically organising music as well as expressing

scores as programs.

Like Pink, Score is an open-source, cross-platform system packaged as

versioned libraries. The use of standard list data structures, rather than class

hierarchies or custom abstractions, allows easier interoperability with other

libraries and user code that also works with standard lists. The design of

Score provides the desired features of extensibility, reusability, and music

system interoperability sought out in the goals for this project.

6.6 Using Pink and Score

The following will present an example project that uses both Pink and Score.

The program is a single file [199] and is available from the music-projects
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project online. Some comments have been removed from the examples so as

not to repeat the discussion below.

The example project is designed for real-time performance. The user

would first evaluate the main part of the file to define instrument functions,

score fragments, control functions, and other source material. These will then

be used at performance time by the user. The user would evaluate other

lines of code to trigger instruments, play score fragments, and operate control

functions by modifying values. The following will begin by discussing the

definitions aspect of the project, then follow by describing the performance

code.

6.6.1 Definitions

(ns music-examples.features

(: require [score.core :refer :all]

[score.freq :refer :all]

[score.sieves :refer :all])

(: require [pink.simple :refer :all]

[pink.engine :refer :all]

[pink.config :refer :all]

[pink.control :refer :all]

[pink.filters :refer :all]

[pink.envelopes :refer :all]

[pink.util :refer :all]

[pink.node :refer :all]

[pink.oscillators :refer :all]

[pink.space :refer :all]

[pink.event :refer :all]

[pink.effects.ringmod :refer :all]
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[pink.effects.reverb :refer :all]

))

Listing 6.45: Pink/Score Example: Imports

Listing 6.45 shows the beginning of the project. Here in the namespace

declaration, all relevant symbols and namespaces are imported using the

:require clauses in the ns form.

(defn fm

"Simple frequency-modulation sound with default 1.77:1 cm

ratio"

([freq amp]

(fm freq amp 0.4 1.77))

([freq amp fm-index mod-mult]

(let [freq (shared (arg freq))

mod-freq (mul freq mod-mult)]

(let-s [e (if (fn? amp)

amp

(mul amp (adsr 0.02 2.0 0.0 0.01)))]

(->

(sine2 (sum freq (mul freq fm-index e

(sine2 mod-freq))))

(mul e)

)))))

(defn ringm

"Simple instrument with ring-modulation"

([freq amp]

(let [e (if (fn? amp)

amp

(mul amp (adsr 0.04 2.0 0.0 0.01)))]

(->
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(ringmod

(blit-saw freq)

(sine2 (mul freq 2.0)))

(mul e)

))))

Listing 6.46: Pink/Score Example: Instruments

Listing 6.46 shows the definition of two different instrument functions,

one for FM synthesis, and the other using ring modulation. These functions

take in arguments and call Pink unit generator functions to assemble the final

signal producing audio function.

Both functions use the -> threading macro [3] to simplify the writing of

the code. They also both check if the given amp argument is a function, and,

if so, use it as-is, otherwise multiply it with an adsr envelope function. This

allows users to provide either an amplitude value to control a default envelope

or a unit generator that can evolve over time and produce any amplitude

curve the user desires.

The fm function shows both the use of shared and let-s to create shared

versions of audio functions. The freq and e are consequently used in multiple

parts of the audio function graph that is built up within the threading macro.

;; Create stable Nodes

(def dry-node (create-node :channels 2))

(def reverb-node (create-node :channels 2))

;; Add nodes to root Node

(add-afunc (node-processor dry-node))

(add-afunc (freeverb (node-processor reverb-node)

0.9 0.5))
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(defn clear-afns

"Utility function for clearing dynamically attached

audio functions , but leaving stable audio graph in

place."

[]

(node-clear dry-node)

(node-clear reverb-node))

Listing 6.47: Pink/Score Example: Stable audio graph

Listing 6.47 shows the creation of stable part of the project’s audio graph.

Two stereo Nodes are created, dry-node and reverb-node. These Nodes will

be used for attaching audio functions during performance. Node-processing

audio functions are generated with calls to node-processor.

The dry-node’s processor is attached directly to the root of the audio

graph using add-afunc from pink.simple. The functions from pink.simple

work with a single, global engine, which simplifies coding for most user

projects. The processor for reverb-node is used as the input signal to the

freeverb reverb processor, which is itself added to the root of the audio

graph.

The clear-afns function is defined for convenience while performing.

It will remove all audio functions attached from outside the stable parts of

the audio graph. The stable parts will remain. This is useful as a “kill all”

function in case something goes awry during performance.

(defn mix-afn

"Applies panning (loc) to a mono audio function ,

then attaches to stereo values to dry and reverb nodes."

[afn loc]

(let-s [sig (pan afn loc)]

(node-add-func
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dry-node

(apply-stereo mul sig 0.7))

(node-add-func

reverb-node

(apply-stereo mul sig 0.3)))

nil)

(defn perf-fm

"Performance function for FM instrument."

[dur & args]

(binding [* duration* dur]

(mix-afn (apply !*! fm args) -0.1)))

(defn perf-ringm

"Performance function for ringm instrument."

[dur & args]

(binding [* duration* dur]

(mix-afn (apply !*! ringm args) 0.1)))

Listing 6.48: Pink/Score Example: Instrument performance functions

Listing 6.48 shows functions used for “performing” the instruments. perf-

fm and perf-ringm are given a duration and set of arguments. Each func-

tion then applies fm and ringm to the arguments to create the mono-signal

instrument. From there, they pass the insrument function to mix-afn with a

location argument.

mix-afn first pans the instrument and implicitly wraps the panning audio

function with shared by using let-s. Next, the apply-stereo function is

used to apply the mul operator to each of the channels from the sig function

with the given multiplier argument (0.7 for the dry signal, and 0.3 for the

wet signal). apply-stereo uses special audio functions that handle splitting
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multi-channel audio and merging the results back into a multi-channel signal.

The final functions are then attached to both the dry-node and reverb-node.

While the multiplier values for the apply-stereo function calls are fixed,

they could modified to use arguments passed into the mix-afn function.

This would allow each instrument instance to have their own wet and dry

mulitpliers.

(defn sieve-chord

"Given instrument function , base pitch , and sieve ,

generate chord where sieve values are offsets from

base-pch."

([ base-pch sieve dur amp]

(sieve-chord perf-ringm base-pch sieve dur amp))

([ instrfn base-pch sieve dur amp]

(gen-notes

(repeat instrfn)

0.0 dur (map #(pch- >freq (pch-add base-pch %)) sieve)

amp)))

;; glissandi score fragment with higher-order event arguments

(def gliss-fragment

(map #(into [perf-fm] %)

(gen-notes

0.0 6.0

(->>

[:A4 :C5 :C#5 :E5]

(map keyword- >freq)

(map #(!*! env [0.0 % 6.0 (* 1.2 %)])))

(repeat (!*! env [0.0 0.0 3.0 0.2 3.0 0.0])))))

;; Score in measured-score format

(def score
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[:meter 4 4

0.0 (sieve-chord perf-fm [8 0]

(gen-sieve 7 [2 0]) 1.0 0.25)

0.25 (sieve-chord perf-fm [8 3]

(gen-sieve 7 [2 0]) 3.0 0.25)

1.0 (sieve-chord perf-fm [9 0]

(gen-sieve 7 (U [4 0] [3 1])) 1.0 0.25)

1.25 (sieve-chord perf-fm [7 3]

(gen-sieve 7 (U [4 0] [3 1])) 3.0 0.25)

2.0 (sieve-chord perf-fm [8 3]

(gen-sieve 7 [2 0]) 8.0 0.05)

3.0 gliss-fragment

])

Listing 6.49: Pink/Score Example: Notelists

Listing 6.49 shows code that generates a score (i.e., note list) using

functions from Score and Pink. sieve-chord uses the gen-notes function

from Score to generate a note list. The instrfn, dur, and amp arguments

are used as constant values that each generated note will share in common.

The sieve argument is the generated list of values from a Xenakis-style sieve.

Each value in the sieve will be used as a transposition value from the base

PCH value that will further be converted into a frequency. The result is a

note list that represents a chord.

gliss-fragment is a named note list generated with gen-notes. The

third and fourth fields are produced using the !*! operator to wrap Pink

env audio functions as arguments. The third field uses keyword notation

from Score to define pitch values that are converted into frequencies; these

frequencies are then used as arguments to create instance of env that will

transition from the original frequency to 1.2 times the frequency over 6 seconds.
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The fourth field is used to control amplitude and it will linearly grow and

fade out over 6 seconds. The notes generated here will eventually be used to

generate higher-order Pink events.

score is a named list in the measured-score format. It specifies a 4/4

meter and organises various sieve chords to be played at measures 0.0, 0.25,

1.0, 1.25, and 2.0. The score also defines that the gliss-fragment note list

is used starting at measure 3.0. The named note list may be reused many

times in the measured-score, though here it is used only once.

(defn s

"Convenience function for creating a Pink event from

a Score note."

[afn start dur & args]

(event #(apply afn dur args) start ))

(defn play-from

"Plays score starting from a given measure."

[^ double measure]

(->>

(convert-measured-score score)

(starting-at (* measure 4))

(map #( apply s %))

(add-events)

))

Listing 6.50: Pink/Score Example: Notelist performing functions

Listing 6.50 shows code for performing the note lists in real-time. play-from

is used to perform the score starting from the given measure. The function

will first convert the measured score into a simple notelist. Next, the note

list is translated in time, and the s function is applied to each note of the
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note list. This converts each note into a Pink event. Finally, all of the Pink

events will be added to the global Pink engine for performance.

(defn cause [func start & args]

"Implementation of Canon-style cause function."

(add-events (apply event func start args)))

(defn echoes

"Temporally-recursive function for performing echoes"

[perf-fn counter dur delta-time freq amp]

(let [new-count (dec counter)

new-amp (* amp 0.5)]

;; perform fm instrument

(perf-fn dur freq amp)

(when (>= new-count 0)

(cause echoes delta-time perf-fn new-count

dur delta-time freq new-amp))))

;; partial function applications to make custom

;; echoes functions

(def fm-echoes (partial echoes perf-fm))

(def ringm-echoes (partial echoes perf-ringm))

Listing 6.51: Pink/Score Example: Temporal recursion

Listing 6.51 shows code for performing “echoes” of instrument notes.

Firstly, the cause function is defined that mimics Canon’s cause function

and allows a simple way to schedule events. It reads as “play this function at

this time with these arguments.”

Next, echoes is defined as a temporally-recursive event function. When

echoes is fired, it will play a given instrument with a given amp and freq

values. Next, it will decrement the given counter and check if it is greater
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than or equal to 0. If so, the function will use cause to create another event

to execute echoes at delta-time in the future. The new event will use the

same instrument function and frequency, a new amplitude with half the value

of the previous amp, and the new value for counter. The result is that when a

user calls echoes, it will play the note counter number of times and produce

an echoing effect.

(defn pulsing

"Triggers ringm instrument and given frequency and

delta-buffer time as atoms. User can adjust values for

args externally."

[done-atm freq delta-buffers]

(let [counter (atom 0)]

(fn []

(when (not @done-atm)

(swap! counter inc)

(when (>= @counter @delta-buffers)

(cause perf-ringm 0.0 5.0 @freq

(env [0 0.0 2.5 0.5 2.5 0.0]))

(reset! counter 0))

true))))

Listing 6.52: Pink/Score Example: Control function

Listing 6.52 shows the definition of a control function called pulsing. It

uses atoms as arguments for signaling that processing should stop (done-atm),

the current frequency (freq), and the number of buffers to wait before firing

off a ringm note (delta-buffers). When the control function is added to

the engine, it will increment its running counter and check if it is greater

than the value held in the delta-buffers argument. Once the condition is
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met, pulsing performs the note using the current value of freq and resets

the counter for the next call.

Once the control function is running in the engine, the user has the

opportunity to modify how it will perform by modifying the values within the

atom arguments. By resetting the values in the atom, the user can change

the pitch and frequency of the pulsing effect.

6.6.2 Performance Functions

The definitions above are the material which are then used for performance.

The following performance functions are provided in the full example file

within a comment form so that they are not run or performed when first

loading the file. Instead, the user will start the engine manually using the

start-engine function, then evaluate the code within the comments for live

coding performance. User may also modify the code while performing. The

following will cover the three main performance gestures.

(cause fm-echoes 0.0 5 0.25 1.5 400.0 0.5)

(cause fm-echoes 0.0 5 0.25 3.5 900.0 0.5)

(cause fm-echoes 0.0 5 0.25 4.5 800.0 0.5)

(cause fm-echoes 0.0 5 0.25 3.0 1500.0 0.5)

(cause ringm-echoes 0.0 5 0.25 2.5 220.0 0.5)

(cause ringm-echoes 0.0 5 0.25 4.25 60.0 0.5)

(cause ringm-echoes 0.0 5 0.25 4.25 51.0 0.5)

Listing 6.53: Pink/Score Example: Perform echoes

Listing 6.53 shows the use of the cause function to create different echoes.

The different instances are generally differentiated by their instrument per-

formance function, frequency, and time between echoes (i.e., delta-time).
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The user can evaluate one line at a time to execute a single echo, or evaluate

multiple lines to create chords where the echoes go out of phase due to their

delta-time differences.

;; play score

(play-from 0)

(play-from 2)

;; play just glissando part

(play-from 3.0)

Listing 6.54: Pink/Score Example: Perform score

Listing 6.54 uses the play-from function to play back the pre-written

score from various start times. The third version is timed to perform just

the glissando part of the score.

;; Values held in atoms to be used both by control

;; functions and realtime manipulation by user

(def done-atm (atom false))

(def freq (atom 31.0))

(def delta-buffers (atom 3200))

(def done-atm2 (atom false))

(def freq2 (atom 33.0))

(def delta-buffers2 (atom 3500))

;; Predefined code to select and evaluate during

;; performance

(reset! done-atm true)

(reset! done-atm false)

(reset! done-atm2 true)

(reset! done-atm2 false)
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(reset! freq 31.0)

(reset! freq2 33.0)

(reset! freq 41.0)

(reset! freq2 44.0)

(reset! delta-buffers 5300)

(reset! delta-buffers2 4700)

;; Evaluate to add control functions to perform

;; "pulsing" musical material

(add-post-cfunc (pulsing done-atm freq delta-buffers))

(add-post-cfunc (pulsing done-atm2 freq2 delta-buffers2))

Listing 6.55: Pink/Score Example: Perform pulsing

Listing 6.55 shows the use of two pulsing control functions. Two sets of

atoms are defined, then used as arguments to each pulsing function. Once

the functions are running in the engine, the user can execute the reset! code

lines to modify the behavior of the pulsing effect.

6.7 Conclusions

In this chapter, I have presented two new music systems as libraries: Pink

and Score. They are both open-source and work within the context of the

general-purpose programming language Clojure. They were both developed

for extensibility from the start.

344



With Pink, I developed a music engine capable of handling audio signal,

control function, and event processing. It provides a fully-formed system for

immediate use by the user. It also supports writing pre-composed and real-

time works. The system has provided extensibility at all levels of abstraction.

Users can customise the system for their own work, from creating new signal

processing functions all the way to modifying or replacing the engine. This

empowers the user to take advantage of whatever they desire from the library

for their musical work.

With Score, I developed a library for generating and processing of higher-

level symbolic representations of music. It employs the standard Clojure list to

represent a musical note and a list of notes to represent scores. It comes with a

number of functions for generating values, generating and transforming notes,

and processing hierarchical organization of note lists. As Score generates

standard Clojure lists, it interoperates well with Pink and mappings can be

developed easily to work with other music systems.

The result of these systems is that they provide many features, can be

extended, and work well with other Clojure code. By releasing Pink and

Score as versioned libraries, users can specify and depend on an exact version

of these systems without concern for any changes that may be introduced

to either library. Pink and Score have all of the properties of growth over

time and protection from change that were sought out at the beginning of

this thesis.

345



Chapter 7

Conclusions

Extensibility in computer music systems is the way that developers and users

can extend the programs they develop and work with. It is rooted in the

consideration of software over time. As users ask more of their software,

extensibility dictates who can extend the system and how it can be done.

As the environment of computing changes, extensibility factors into how

well-suited a program is to adapting to new or updated platforms. These

qualities of extensibility address not only the growth and sustainability of

software but also the durability and long-term value of a user’s work and

practice.

The original contributions of this thesis approached extensibility in nu-

merous ways. In Chapter 3, the new type system, Parser3, revision of opcode

polymorphism, and implementation of Runtime Type Identification all played

a part to refine the infrastructure of Csound’s language. These internal

changes both simplified as well as enabled new ways to extend the language

by developers.
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The implementation of arrays, function-call syntax, explicit types, user-

defined types, and new user-defined opcode syntax were built upon the new

infrastructure. These language design changes have provided users with new

ways to express their ideas and new opportunities to extend the Csound

system themselves.

The developments for Csound 6 and Csound 7 have contributed to

developer- and user-extensibility of the Csound language. It has done so in

a backwards-compatible way, preserving the history of Csound works while

opening up new ways to explore musical ideas in Csound.

In Chapter 4, the exploration of platform extensibility has brought Csound

to new kinds of platforms. By porting Csound to mobile (iOS and Android)

and Web (Emscripten and PNaCl) platforms, the overall ecosystem of Csound

has grown. Users gained new places to run their existing works as well new

ways to use their existing Csound knowledge and experiences.

In Chapter 5, the development of the Modular Score timeline in Blue was

used to explore the benefits of run-time module-based systems. By making

layers and layer groups a plugin, third-party developers can now extend

the score timeline to offer unique new ways of working with music while

coordinating with existing time-based interfaces. The new Pattern and Audio

layers were implemented as plugins and demonstrated the flexibility of what

could be implemented in the new system.

Finally, in Chapter 6, two new library-based music systems were presented:

Pink and Score. These systems were developed to maximise user-extensibility

and to explore the benefits of working within a general-purpose programming

language. With Pink, the system was designed to offer users a complete audio

music engine and signal processing library, while also providing the means to
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reuse or replace parts to customise all aspects of the system for their work.

With Score, the library was designed to work with generic lists of data as

notes, which lets users easily integrate Score with other libraries or develop

new functions to work with Score. Both systems offer releases as versioned

libraries, providing a way for users to preserve their works by preserving the

exact system used.

These explorations into extensibility have provided numerous facets to

consider when developing computer music systems. They have also extended

existing systems to provide new features as well as provided new systems to

explore. The work to make extensible computer music systems will continue

as long as computing changes and users require more for their work.

7.1 Original Contributions

The following lists original contributions completed for this thesis. It is

organized by software and area of research.

Csound Language

• New type system.

• Introduction of arrays.

• Modification of opcode polymorphism.

• Extension of function-call syntax.

• Implementation of Runtime Type Identification.

• New Parser design (Parser3).
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• Ability to explicitly specify types for variables.

• Introduced user-defined types.

• New user-defined opcode syntax.

Csound Platform

• Designed CsoundObj API and CsoundBindings system.

• Contributed to porting of Csound to iOS, development of examples and

build system for the Csound for iOS SDK.

• Contributed to porting of Csound to Android, development of examples

and build system for the Csound for Android SDK.

• Modified Csound to build with Emscripten.

• Developed Csound Notebook and Processing.js examples.

Blue

• Redesigned data model and UI architecture to support plugins for the

Modular Score.

• Implemented new Audio Layers.

• Implemented new Pattern Layers.

Pink and Score

• Developed Pink, a new audio engine and music system library.

• Developed Score, a new library for generating and processing note lists.
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7.2 Future Work

For Csound, the discussion of rates and data types in Chapter 3 looked at

possibilities for reifying update rates as a first-class property of data types.

The array universal data type has already been implemented (discussed

in Section 3.2.2) and lays the groundwork for future universal types to be

introduced into Csound. Listing 7.1 shows speculative language changes that

would employ new universal types together with keywords or qualifier syntax

to declare variables that operate at specific rates. A C-like typedef system is

also shown that would allow defining a simpler float numeric data type and

redefining Csound’s i-, k-, and a-types as rate-attributed forms of floats.

Further research in this area is required to evaluate whether the benefits of

first-class rates would offset the implementation and pedagogical costs of

remodeling Csound data types.

Sval = ``mutable string ''

Init Sval = ``immmutable string '' ;; Keyword modifier

val:Init:S = ``immmutable string '' ;; additional qualifier

in variable name

;; Typedefs for Csound 's original types using keywords

typedef Init float i

typedef Control float k

typedef Audio float a

;; Typedefs for Csound 's original types using qualifiers

typedef float:Init i

typedef float:Control k

typedef float:Audio a

Listing 7.1: Speculative Csound syntax for declaring rates
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Analysing Csound’s opcode system revealed a disparity between how

arguments are handled when calling native opcodes and user-defined opcodes.

For the former, all arguments are always passed-by-reference, and for the

latter, all arguments are always passed-by-value. Pass-by-value introduces

a performance cost when using UDOs that could be addressed if pass-by-

reference was permitted.

However, switching to pass-by-reference outright for UDOs internally

would introduce a backwards incompatibility for users who may have written

code that mutates input arguments within their UDOs. Introducing new

syntax to specify that UDO arguments should be handled as references may

be a possible backwards-compatible solution. Listing 7.2 shows speculative

syntax using new-style UDOs with keyword modifiers or custom syntax

applied to argument type specifiers. The compiler would require modification

to track reference arguments and the runtime would require an additional

address-setting pass for propogating references. Further research is required

to investigate both the appropriate syntax to use and the overall cost of

introducing pass-by-reference and pass-by-value concepts to users.

;; keyword modifier syntax

opcode my_opcode(ref fftdata:f):(ref f)

...

xout out_fsignal

endop

;; C-like reference syntax

opcode my_opcode(fftdata:f*):(f*)

...

xout out_fsignal

endop
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;; C++-like reference syntax

opcode my_opcode(fftdata:f&):(f&)

...

xout out_fsignal

endop

Listing 7.2: Speculative Csound syntax for pass-by-reference UDO arguments

The new language features developed for Csound 7 within this thesis

may be seen as but a step along a road well explored by other programming

languages. Explicit types (Section 3.3.2) were necessary to allow naming

variables without restrictions to the first letter used. However, the use of

explicit types may become onerous over time, especially with very large bodies

of code. Extending Csound to perform type inference [63] to determine the

type of a variable would build upon the work of explicit types and allow users

to freely write variable names without types, yet still statically type-check

code.

Listing 7.3 shows a possible future Csound language using type inference.

The first example shows an explicitly-typed version of code that would be

possible using Csound 7 syntax. Next, the same code is shown where type

inference is employed to resolve the type of the variables. The information

from both the opcodes argument types and previous uses of variables would

be used to to determine the type of the variable. Finally, the last example

shows a case where historical Csound code shows an ambiguity with the

oscil opcodes. In this example, using regular type inference alone would

make it valid for ksig and asig0 to be either k- or a-type variables. In this

situation, the compiler would have to report an ambiguity in the code. If the

type inference system additionally considered the previous single-letter rule
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as part of its type resolution algorithm, prior Csound code would resolve to

the same types as before. This shows a possible path for type inference that

would provide users the freedom to write their code using names as they wish,

yet still retain backwards compatibility and type safety.

;; explicitly typed variables

amp:i = 0.5

freq:i = 440

cutoff:i = freq * 4

sig0:a = vco2(amp , freq)

sig1:a = moogladder(sig0 , cutoff)

out(sig0)

;; type -inferred code

amp = 0.5

freq = 440

cutoff = freq * 4

sig0 = vco2(amp , freq)

sig1 = moogladder(sig0 , cutoff)

out(sig0)

;; single -letter rule resolves to k-rate var

ksig oscil 0.25, 440

asig0 oscil 0.5, 440 * (1 + ksig)

Listing 7.3: Example Csound code using type inferences

Another Csound language change for the future would be to introduce

opcodes as a type. This could open the door for more functional programming

techniques to enter in to Csound use, such as higher-order functions (i.e.,

opcodes). Additionally, modifying Csound’s event system to allow using

opcode instances as arguments to events would reproduce the benefits found
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in Pink’s higher-order events (Section 6.4.3). Other language features to

explore in Csound include the introduction of classes and objects as well as

new generic data types, such as sets and dictionaries. These features have not

yet been considered in detail and no speculation on syntax or implementation

is given at this time.

For Blue, new kinds of layers are planned. Notation layers would permit

the use of Western music notation on the timeline. Arc layers would be based

on UPIC [118] and allow drawing lines to create events with time-varying

pitch. These new layer types would add interesting ways to work with music

over time in conjunction with the existing layer types.

For Pink, while the system design is extremely flexible, the included library

of signal processing functions is currently limited. Adding implementations of

audio processing routines found in more mature systems – such as Csound and

SuperCollider 3 – would make Pink a more viable option when users consider

what music system to use for new works. Also, the ability to write real-time

event generation code similar to Common Music’s processes [176] would bring

a well known music programming model to Pink. Macros could be developed

to transform process-like code into Pink control functions suitable for use

with a Pink engine.

Finally, for Score, current plans are to maintain the current design and

continue to expand the library of composition functions. This would include

both existing functionality found in other systems as well as new research as

it develops in the field. This would benefit users by providing them a large

set of features that they can choose from, one that can easily integrate with

their own personal musical programming work.
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are also working on MusicXML import, which will 
add to MaxScore’s user-friendliness.  
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ABSTRACT

This article discusses the development of the Mobile Csou-
nd Platform (MCP), a group of related projects that aim to
provide support for sound synthesis and processing un-
der various new environments. Csound is itself an estab-
lished computer music system, derived from the MUSIC
N paradigm, which allows various uses and applications
through its Application Programming Interface (API). In
the article, we discuss these uses and introduce the three
environments under which the MCP is being run. The
projects designed for mobile operating systems, iOS and
Android, are discussed from a technical point of view, ex-
ploring the development of the CsoundObj toolkit, which
is built on top of the Csound host API. In addition to
these, we also discuss a web deployment solution, which
allows for Csound applications on desktop operating sys-
tems without prior installation. The article concludes with
some notes on future developments.

1. INTRODUCTION

Csound is a well-established computer music system in
the MUSIC N tradition [1] , developed originally at MIT
and then adopted as a large community project, with its
development base at the University of Bath. A major new
version, Csound 5, was released in 2006, offering a com-
pletely re-engineered software, as a programming library
with its own application programming interface (API).
This allowed the system to be embedded and integrated
into many applications. Csound can interface with a vari-
ety of programming languages and environments (C/C++,
Objective C, Python, Java, Lua, Pure Data, Lisp, etc.).
Full control of Csound compilation and performance is
provided by the API, as well software bus access to its
control and audio signals, and hooks into various aspects
of its internal data representation. Composition systems,
signal processing applications and various frontends have
been developed to take advantage of these features. The

Csound API has been described in a number of articles
[4], [6] [7].

New platforms for Computer Music have been brought
to the fore by the increasing availability of mobile devices
for computing (in the form of mobile phones, tablets and
netbooks). With this, we have an ideal scenario for a vari-
ety of deployment possibilities for computer music sys-
tems. In fact, Csound has already been present as the
sound engine for one of the pioneer portable systems, the
XO-based computer used in the One Laptop per Child
(OLPC) project [5]. The possibilities allowed by the re-
engineered Csound were partially exploited in this sys-
tem. Its development sparked the ideas for a Ubiquitous
Csound, which is now steadily coming to fruition with a
number of parallel projects, collectively named the Mo-
bile Csound Platform (MCP). In this paper, we would like
to introduce these and discuss the implications and possi-
bilities provided by them.

2. THE CSOUND APPLICATION ECOSYSTEM

Csound originated as a command-line application that pars-
ed text files, setup a signal processing graph, and pro-
cessed score events to render sound. In this mode, users
hand-edit text files to compose, or use a mix of hand-
edited text and text generated by external programs. Many
applications–whether custom programs for individual use
or publicly shared programs–were created that could gen-
erate text files for Csound usage. However, the usage sce-
narios were limited as applications could not communi-
cate with Csound except by what they could put into the
text files, prior to starting rendering.

Csound later developed realtime rendering and event
input, with the latter primarily coming from MIDI or stan-
dard input, as Csound score statements were also able to
be sent to realtime rendering Csound via pipes. These fea-
tures allowed development of Csound-based music sys-
tems that could accept events in realtime at the note-level,
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such as Cecilia [8]. These developments extended the use
cases for Csound to realtime application development.

However, it was not until Csound 5 that a full API
was developed and supported that could allow finer grain
interaction with Csound [3]. Applications using the API
could now directly access memory within Csound, control
rendering frame by frame, as well as many other low-level
features. It was at this time that desktop development of
applications grew within the Csound community. It is also
this level of development that Csound has been ported to
mobile platforms.

Throughout these developments, the usage of the
Csound language as well as exposure to users has changed
as well. In the beginning, users were required to under-
stand Csound syntax and coding to operate Csound. To-
day, applications are developed that expose varying de-
grees of Csound coding, from full knowledge of Csound
required to none at all. Applications such as those created
for the XO platform highlight where Csound was lever-
aged for its audio capabilities, while a task-focused inter-
face was presented to the user. Other applications such
as Cecilia show where users are primarily presented with
a task-focused interface, but the capability to extend the
system is available to those who know Csound coding.
The Csound language then has grown as a means to ex-
press a musical work, to becoming a domain-specific lan-
guage for audio engine programming.

Today, these developments have allowed many classes
of applications to be created. With the move from desktop
platforms to mobile platforms, the range of use cases that
Csound can satisfy has achieved a new dimension.

3. CSOUND FOR IOS

At the outset of this project, it was clear that some mod-
ifications to the core system would be required for a full
support of applications on mobile OSs. One of the first
issues arising in the development of Csound for iOS was
the question of plugin modules. Since the first release of
Csound 5, the bulk of its unit generators (opcodes) were
provided as dynamically-loaded libraries, which resided
in a special location (the OPCODEDIR or OPCODEDIR64
directories) and were loaded by Csound at the orchestra
compilation stage. However, due to the uncertain situa-
tion regarding dynamic libraries (not only in iOS but also
in other mobile platforms), it was decided that all mod-
ules without any dependencies or licensing issues could
be moved to the main Csound library code. This was a
major change (in Csound 5.15), which made the majority
of opcodes part of the base system, about 1,500 of them,
with the remaining 400 or so being left in plugin modules.
The present release of Csound for iOS includes only the
internal unit generators.

With a Csound library binary for iOS (in the required
arm and x86 architectures, for devices and simulators), a
new API was created in Objective-C, called CsoundObj.
This is a toolkit that provides a wrapper around the stan-
dard Csound C API and manages all hardware connec-

tivity. A CsoundObj object controls Csound performance
and provides the audio input and output functionality, via
the CoreAudio AuHAL mechanism. MIDI input is also
handled either by the object, by allowing direct pass-through
to Csound for standard Csound MIDI-handling, or by rout-
ing MIDI through a separate MIDIManager class to UI
widgets, which in turn send values to Csound. Addition-
ally, a number of sensors that are found on iOS devices
come pre-wrapped and ready to use with Csound through
CsoundObj.

To communicate with Csound, an object-oriented call-
back system was implemented in the CsoundObj API. Ob-
jects that are interested in communicating values, whether
control data or audio signals, to and from Csound must
implement the CsoundValueCacheable protocol. These
CsoundValueCacheables are then added to CsoundObj and
values will then be read from and written to on each con-
trol cycle of performance (fig.1). The CsoundObj API
comes with a number of CsoundValueCacheables that wrap
hardware sensors as well as UI widgets, and examples of
creating custom CsoundValueCacheables accompany the
Csound for iOS Examples project.

Figure 1. CsoundObj and the Application

While the CsoundObj API covers most of the general
use cases for Csound, it does not wrap the Csound C API
in its entirety. Instead, the decision was made to handle
the most common use cases from Objective-C, and for
less used functions, allow retrieval of the CSOUND ob-
ject. This is the lower-level object that encapsulates all
of the C API functionality. It is a member of CsoundObj
and it is exposed so that developers can use methods not
directly available in that class. It is expected that as more
developers use CsoundObj, the CsoundObj API may con-
tinue to further wrap C API functions as they are identified
as being popular.

Together with the API for iOS, a number of applica-
tion examples complete the SDK. These can be used dur-
ing development both as a practical guide for those inter-
ested in using Csound on iOS, as well as a test suite for the
API. Examples include a number of realtime instruments

Figure 2. Csound for iOS SDK sample app

(performed by screen or MIDI input), signal processing
applications (harmonizer, pitch shifter, ping-pong echo),
a generative music example, and other audio-related util-
ities (fig.2). These examples, together with the manual
created for the project, were assembled to assist in learn-
ing Csound for iOS.

4. CSOUND FOR ANDROID

Csound for Android is based on a native shared library
(libcsoundandroid.so) built using the Android Native De-
velopment Kit (NDK)1, as well as pure Java code for the
Android Dalvik compiler. The native library is composed
by the object files that are normally used to make up the
main Csound library (libcsound), its interfaces extensions
(libcsnd), and the external dependency, libsndfile2. The
Java classes include those commonly found in the csnd.jar
library used in standard Java-based Csound development
(which wrap libcsound and libcsnd), as well as unique
classes created for easing Csound development on An-
droid.

As a consequence of this, those users who are familiar
with Csound and Java can transfer their knowledge when
working on Android. Developers who learn Csound on

1http://developer.android.com/sdk/ndk/index.html
2http://www.mega-nerd.com/libsndfile/

Android can take their experience and work on standard
Java desktop applications. The two versions of Java do
differ, however, in some areas such as classes for access-
ing hardware and different user interface libraries. Simi-
larly to iOS, in order to help ease development, a
CsoundObj class, here written in Java, of course, was de-
veloped to provide straightforward solutions for common
tasks.

As with iOS, some issues with the Android platform
have motivated some internal changes to Csound. One
such problem was related to difficulties in handling tem-
porary files by the system. As Csound was dependent on
these in the compilation/parsing stage, a modification to
use core (memory) files instead of temporary disk files
was required.

Two options have been developed for audio IO. The
first involves using pure Java code through the Audio-
Track API provided by the Android SDK. This is, at pres-
ent, the standard way of accessing the DAC/ADC, as it
appears to provide a slightly better performance on some
devices. It employs the blocking mechanism given by Au-
dioTrack to push audio frames to the Csound input buffer
(spin) and to retrieve audio frames from the output buffer
(spout), sending them to the system sound device. Al-
though low latency is not available in Android, this mech-
anism works satisfactorily.

As a future low-latency option, we have also devel-
oped a native code audio interface. It employs the OpenSL
API offered by the Android NDK. It is built as a replace-
ment for the usual Csound IO modules (portaudio, alsa,
jack, etc.), using the provided API hooks. It works asyn-
chronously, integrated into the Csound performance cycle.
Currently, OpenSL does not offer lower latency than Au-
dioTrack, but this situation might change in the future, so
this option has been maintained alongside the pure Java
implementation. It is presented as an add-on to the na-
tive shared library. Such mechanism will also be used for
the future addition of MIDI IO (replacing the portmidi, al-
samidi, etc. modules available in the standard platforms),
in a similar manner to the present iOS implementation.

At the outset of the development of Csound for An-
droid, a choice was made to port the CsoundObj API from
Objective-C to Java. The implementation of audio han-
dling was done so in a manner following the general de-
sign as implemented on iOS (although, internally, the cur-
rent implementations differ in that iOS employs an asyn-
chronous mechanism, whereas in Android blocking IO is
used). Also, the APIs match each other as much as pos-
sible, including class and method names. There were in-
evitable differences, resulting primarily from what hard-
ware sensors were available and lack of a standard MIDI
library on Android. However, the overall similarities in
the APIs greatly simplified the porting of example appli-
cations from iOS to Android. For application developers
using MCP, the parity in APIs means an easy migration
path when moving projects from one platform to the other.
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such as Cecilia [8]. These developments extended the use
cases for Csound to realtime application development.

However, it was not until Csound 5 that a full API
was developed and supported that could allow finer grain
interaction with Csound [3]. Applications using the API
could now directly access memory within Csound, control
rendering frame by frame, as well as many other low-level
features. It was at this time that desktop development of
applications grew within the Csound community. It is also
this level of development that Csound has been ported to
mobile platforms.

Throughout these developments, the usage of the
Csound language as well as exposure to users has changed
as well. In the beginning, users were required to under-
stand Csound syntax and coding to operate Csound. To-
day, applications are developed that expose varying de-
grees of Csound coding, from full knowledge of Csound
required to none at all. Applications such as those created
for the XO platform highlight where Csound was lever-
aged for its audio capabilities, while a task-focused inter-
face was presented to the user. Other applications such
as Cecilia show where users are primarily presented with
a task-focused interface, but the capability to extend the
system is available to those who know Csound coding.
The Csound language then has grown as a means to ex-
press a musical work, to becoming a domain-specific lan-
guage for audio engine programming.

Today, these developments have allowed many classes
of applications to be created. With the move from desktop
platforms to mobile platforms, the range of use cases that
Csound can satisfy has achieved a new dimension.

3. CSOUND FOR IOS

At the outset of this project, it was clear that some mod-
ifications to the core system would be required for a full
support of applications on mobile OSs. One of the first
issues arising in the development of Csound for iOS was
the question of plugin modules. Since the first release of
Csound 5, the bulk of its unit generators (opcodes) were
provided as dynamically-loaded libraries, which resided
in a special location (the OPCODEDIR or OPCODEDIR64
directories) and were loaded by Csound at the orchestra
compilation stage. However, due to the uncertain situa-
tion regarding dynamic libraries (not only in iOS but also
in other mobile platforms), it was decided that all mod-
ules without any dependencies or licensing issues could
be moved to the main Csound library code. This was a
major change (in Csound 5.15), which made the majority
of opcodes part of the base system, about 1,500 of them,
with the remaining 400 or so being left in plugin modules.
The present release of Csound for iOS includes only the
internal unit generators.

With a Csound library binary for iOS (in the required
arm and x86 architectures, for devices and simulators), a
new API was created in Objective-C, called CsoundObj.
This is a toolkit that provides a wrapper around the stan-
dard Csound C API and manages all hardware connec-

tivity. A CsoundObj object controls Csound performance
and provides the audio input and output functionality, via
the CoreAudio AuHAL mechanism. MIDI input is also
handled either by the object, by allowing direct pass-through
to Csound for standard Csound MIDI-handling, or by rout-
ing MIDI through a separate MIDIManager class to UI
widgets, which in turn send values to Csound. Addition-
ally, a number of sensors that are found on iOS devices
come pre-wrapped and ready to use with Csound through
CsoundObj.

To communicate with Csound, an object-oriented call-
back system was implemented in the CsoundObj API. Ob-
jects that are interested in communicating values, whether
control data or audio signals, to and from Csound must
implement the CsoundValueCacheable protocol. These
CsoundValueCacheables are then added to CsoundObj and
values will then be read from and written to on each con-
trol cycle of performance (fig.1). The CsoundObj API
comes with a number of CsoundValueCacheables that wrap
hardware sensors as well as UI widgets, and examples of
creating custom CsoundValueCacheables accompany the
Csound for iOS Examples project.

Figure 1. CsoundObj and the Application

While the CsoundObj API covers most of the general
use cases for Csound, it does not wrap the Csound C API
in its entirety. Instead, the decision was made to handle
the most common use cases from Objective-C, and for
less used functions, allow retrieval of the CSOUND ob-
ject. This is the lower-level object that encapsulates all
of the C API functionality. It is a member of CsoundObj
and it is exposed so that developers can use methods not
directly available in that class. It is expected that as more
developers use CsoundObj, the CsoundObj API may con-
tinue to further wrap C API functions as they are identified
as being popular.

Together with the API for iOS, a number of applica-
tion examples complete the SDK. These can be used dur-
ing development both as a practical guide for those inter-
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(performed by screen or MIDI input), signal processing
applications (harmonizer, pitch shifter, ping-pong echo),
a generative music example, and other audio-related util-
ities (fig.2). These examples, together with the manual
created for the project, were assembled to assist in learn-
ing Csound for iOS.

4. CSOUND FOR ANDROID

Csound for Android is based on a native shared library
(libcsoundandroid.so) built using the Android Native De-
velopment Kit (NDK)1, as well as pure Java code for the
Android Dalvik compiler. The native library is composed
by the object files that are normally used to make up the
main Csound library (libcsound), its interfaces extensions
(libcsnd), and the external dependency, libsndfile2. The
Java classes include those commonly found in the csnd.jar
library used in standard Java-based Csound development
(which wrap libcsound and libcsnd), as well as unique
classes created for easing Csound development on An-
droid.

As a consequence of this, those users who are familiar
with Csound and Java can transfer their knowledge when
working on Android. Developers who learn Csound on

1http://developer.android.com/sdk/ndk/index.html
2http://www.mega-nerd.com/libsndfile/

Android can take their experience and work on standard
Java desktop applications. The two versions of Java do
differ, however, in some areas such as classes for access-
ing hardware and different user interface libraries. Simi-
larly to iOS, in order to help ease development, a
CsoundObj class, here written in Java, of course, was de-
veloped to provide straightforward solutions for common
tasks.

As with iOS, some issues with the Android platform
have motivated some internal changes to Csound. One
such problem was related to difficulties in handling tem-
porary files by the system. As Csound was dependent on
these in the compilation/parsing stage, a modification to
use core (memory) files instead of temporary disk files
was required.

Two options have been developed for audio IO. The
first involves using pure Java code through the Audio-
Track API provided by the Android SDK. This is, at pres-
ent, the standard way of accessing the DAC/ADC, as it
appears to provide a slightly better performance on some
devices. It employs the blocking mechanism given by Au-
dioTrack to push audio frames to the Csound input buffer
(spin) and to retrieve audio frames from the output buffer
(spout), sending them to the system sound device. Al-
though low latency is not available in Android, this mech-
anism works satisfactorily.

As a future low-latency option, we have also devel-
oped a native code audio interface. It employs the OpenSL
API offered by the Android NDK. It is built as a replace-
ment for the usual Csound IO modules (portaudio, alsa,
jack, etc.), using the provided API hooks. It works asyn-
chronously, integrated into the Csound performance cycle.
Currently, OpenSL does not offer lower latency than Au-
dioTrack, but this situation might change in the future, so
this option has been maintained alongside the pure Java
implementation. It is presented as an add-on to the na-
tive shared library. Such mechanism will also be used for
the future addition of MIDI IO (replacing the portmidi, al-
samidi, etc. modules available in the standard platforms),
in a similar manner to the present iOS implementation.

At the outset of the development of Csound for An-
droid, a choice was made to port the CsoundObj API from
Objective-C to Java. The implementation of audio han-
dling was done so in a manner following the general de-
sign as implemented on iOS (although, internally, the cur-
rent implementations differ in that iOS employs an asyn-
chronous mechanism, whereas in Android blocking IO is
used). Also, the APIs match each other as much as pos-
sible, including class and method names. There were in-
evitable differences, resulting primarily from what hard-
ware sensors were available and lack of a standard MIDI
library on Android. However, the overall similarities in
the APIs greatly simplified the porting of example appli-
cations from iOS to Android. For application developers
using MCP, the parity in APIs means an easy migration
path when moving projects from one platform to the other.
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Figure 3. Csound for Android SDK example

5. CSOUND FOR JAVA WEB START

Csound 5 has long included a Java wrapper API that is
used by desktop applications such as AVSynthesis and blue.
During research for a music-related project that required
being deployable over the web, work was done to explore
using Java as the technology to handle the requirements
of the project, particularly Java Web Start (JAWS). The
key difference between ordinary Java desktop and Java
Web Start-based applications is that with the former, the
Csound library must be installed by the user for the pro-
gram to function. With the latter, instead, the applica-
tion will be deployed, downloading the necessary libraries
to run Csound without the user having anything installed
(besides the Java runtime and plugin).

Regarding security, JAWS allows for certificate-signed
Java applications to package and use use native libraries.
Typically, JAWS will run an application within a sand-
box that limits what the application is allowed to do, in-
cluding things like where files can be written and what
data can be read from the user’s computer. However, to
run with native libraries, JAWS requires use of all permis-
sions, which allows full access to the computer. Appli-
cations must still be signed, verifying the authenticity of
what is downloaded, and users must still allow permission
to run. This level of security was deemed practical and ef-
fective enough for the purposes of this research.

In order to keep the native library components to a
minimum, JAWS Csound only requires the Csound core
code (and soundfile access through libsndfile, which is
packaged with it). Audio IO is provided by the Java-

Sound library, which is a standard part of modern Java
runtime environments. JAWS Csound has been chosen as
the sound engine for the DSP eartraining online course
being developed at the Norwegian University of Science
and Technology [2].

Figure 4. Csound for JAWS example

6. CSOUND 6

In February 2012, the final feature release of Csound 5
was launched (5.16) with the introduction of a new bison/
flex-based orchestra parser as default. The development
team has now embarked on the development of the next
major upgrade of the system, Csound 6. The existence of
projects such as the MCP will play an important part in
informing these new developments. One of the goals for
the new version is to provide more flexibility in the use
of Csound as a synthesis engine by various applications.
This is certainly going to be influenced by the experience
with MCP. Major planned changes for the system will in-
clude:

• Separation of parsing and performance

• Loading/unloading of instrument definitions

• Further support for parallelisation

As Csound 6 is developed, it is likely that new ver-
sions of the MCP projects will be released, in tandem with
changes in the system.

7. CONCLUSIONS

The Mobile Csound Platform has been developed to bring
Csound to popular mobile device operating systems. Work
was done to build an idiomatic, object-oriented API for
both iOS and Android, implemented using their native
languages (Objective-C and Java respectively). Work was
also done to enable Csound-based applications to be de-
ployed over the internet via Java Web Start. By porting
Csound to these platforms, Csound as a whole has moved
from embracing usage on the desktop to become perva-
sively available. The MCP, including all the source code
for the SDK, and technical documentation, is available for
download from

http://sourceforge.net/projects/csound/files/csound5

For the future, it is expected that current work on Csou-
nd 6 will help to open up more possibilities for music ap-
plication development. Developments such as real-time
orchestra modification within Csound should allow for more

flexibility in kinds of applications that are possible to de-
velop. As mobile hardware continues to increase in num-
ber of cores and multimedia capabilities, Csound will con-
tinue to grow and support these developments as first-class
platforms.
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also done to enable Csound-based applications to be de-
ployed over the internet via Java Web Start. By porting
Csound to these platforms, Csound as a whole has moved
from embracing usage on the desktop to become perva-
sively available. The MCP, including all the source code
for the SDK, and technical documentation, is available for
download from

http://sourceforge.net/projects/csound/files/csound5

For the future, it is expected that current work on Csou-
nd 6 will help to open up more possibilities for music ap-
plication development. Developments such as real-time
orchestra modification within Csound should allow for more

flexibility in kinds of applications that are possible to de-
velop. As mobile hardware continues to increase in num-
ber of cores and multimedia capabilities, Csound will con-
tinue to grow and support these developments as first-class
platforms.
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Abstract

The Csound computer music synthesis system has
grown from its roots in 1986 on desktop Unix sys-
tems to today’s many different desktop and embed-
ded operating systems. With the growing popularity
of the Linux-based Android operating system, Csound
has been ported to this vibrant mobile platform. This
paper will discuss using the Csound for Android plat-
form, use cases, and possible future explorations.
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1 Introduction

Csound is a computer music language of the MU-
SIC N type, developed originally at MIT for
UNIX-like operating systems[Boulanger, 2000]. It
is Free Software, released under the LGPL. In
2006, a major new version, Csound 5, was re-
leased, offering a completely re-engineered soft-
ware, which is now used as a programming library
with its own application programming interface
(API). It can now be embedded and integrated
into several systems, and it can be used from a
variety of programming languages and environ-
ments (C/C++, Objective-C, Python, Java, Lua,
Pure Data, Lisp, etc.). The API provides full con-
trol of Csound compilation and performance, soft-
ware bus access to its control and audio signals,
as well as hooks into various aspects of its inter-
nal data representation. Several frontends and
composition systems have been developed to take
advantage of these features. The Csound API has
been described in a number of articles [Lazzarini,
2006], [Lazzarini and Piche, 2006] [Lazzarini and
Walsh, 2007].

The increasing popularity of mobile devices for
computing (in the form of mobile phones, tablets

and netbooks), has brought to the fore new plat-
forms for Computer Music. Csound has already
been featured as the sound engine for one of the
pioneer systems, the XO-based computer used in
the One Laptop per Child (OLPC) project [Laz-
zarini, 2008]. This system, based on a Linux ker-
nel with the Sugar user interface, was an excel-
lent example of the possibilities allowed by the
re-engineered Csound. It sparked the ideas for
a Ubiquitous Csound, which is steadily coming to
fruition with a number of parallel projects, collec-
tively called the Mobile Csound Platform (MCP).
One such project is the development of a soft-
ware development kit (SDK) for Android plat-
forms, which is embodied by the CsoundObj API,
an extension to the underlying Csound 5 API.

Android 1 is a Linux-kernel-based, open-source
operating system, which has been deployed on a
number of mobile devices (phones and tablets).
Although not providing a full GNU/Linux envi-
ronment, Android nevertheless allows the devel-
opment of Free software for various uses, one of
which is audio and music. It is a platform with
some good potential for musical applications, al-
though at the moment, it has a severe problem for
realtime use that is brought by a lack of support
for low-latency audio.

In this article we will discuss Csound usage on
Android. We will explore the CsoundObj API
that has been created to ease developing Android
applications with Csound, as well as demonstrate
some use cases. Finally, we will look at what
Csound uniquely brings to Android, with a look
at the global Csound ecosystem and how mobile
apps can be integrated into it.

1http://www.android.com



2 Csound for Android

The Csound for Android platform is made up
of a native shared library (libCsoundandroid.so)
built using the Android Native Development Kit
(NDK)2, as well as Java classes that are com-
pilable with the more commonly used Android
Dalvik compiler. The native library is linked us-
ing the the object files that are normally used to
make up the libcsound, libcsnd, and libsndfile3

libraries that are found part of the desktop ver-
sion of Csound. The Java classes include those
commonly found in the csnd.jar library used for
desktop Java-based Csound development, as well
as unique classes created for easing Csound devel-
opment on Android.

The SWIG4 wrapping used for Android con-
tains all of the same classes as those used in the
Java wrapping that is used for desktop Java devel-
opment with Csound. Consequently, those users
who are familiar with Csound and Java can trans-
fer their knowledge when working on Android,
and users who learn Csound development on An-
droid can take their experience and work on desk-
top Java applications. However, the two plat-
forms do differ in some areas such as classes for
accessing hardware and different user interface li-
braries. To help ease development, a CsoundObj
class was developed to provide out-of-the-box so-
lutions for common tasks (such as routing audio
from Csound to hardware output). Also, applica-
tions using CsoundObj can be more easily ported
to other platforms where CsoundObj is imple-
mented (i.e. iOS).5

One of the first issues arising in the develop-
ment of Csound for Android was the question of
plugin modules. Since the first release of Csound
5, the bulk of its unit generators (opcodes) were
provided as dynamically-loaded libraries, which
resided in a special location (the OPCODEDIR
or OPCODEDIR64 directories) and were loaded
by Csound at the orchestra compilation stage.
However, due to the uncertain situation regard-
ing dynamic libraries (not only in Android but

2http://developer.android.com/sdk/ndk/index.html
3http://www.mega-nerd.com/libsndfile/
4http://www.swig.org
5There are plans to create CsoundObj implementations

for other object-oriented desktop development languages/-
platforms such as C++, Objective-C, Java, and Python,
but at the time of this writing, CsoundObj is only avail-
able in Objective-C for iOS.

also in other mobile platforms), it was decided
that all modules without any dependencies or li-
censing issues could be moved to the main Csound
library code. This was a major change (in Csound
5.15), which made the majority of opcodes part
of the base system, about 1,500 of them, with
the remaining 400 or so being left in plugin mod-
ules. The present release of Csound for Android
includes only the internal unit generators. An-
other major internal change to Csound, which was
needed to facilitate development for Android, was
the move to use core (memory) files instead of
temporary disk files in orchestra and score pars-
ing.

Audio IO has been developed in two fronts: us-
ing pure Java code through the AudioTrack API
provided by the Android SDK and, using C code,
as a Csound IO module that uses the OpenSL API
that is offered by the Android NDK. The latter
was developed as a possible window into a future
lower-latency mode, which is not available at the
moment. It is built as a replacement for the usual
Csound IO modules (PortAudio, ALSA, JACK,
etc.), using the provided API hooks. The Csound
input and output functions, called synchronously
in its performance loop, pass a buffer of audio
samples to the DAC/ADC using the OpenSL en-
queue mechanism. This includes a callback that
is used to notify when a new buffer needs to be
enqueued. A double buffer is used, so that while
one half is being written or read by Csound, the
other is enqueued to be consumed or filled by
the device. The code fragment below in listing 1
shows the output function and its associated call-
back. The OpenSL module is the default mode
of IO in Csound for Android. Although it does
not currently offer low-latency, it is a more ef-
ficient means of passing data to the audio device
and it operates outside the influence of the Dalvik
virtual machine garbage collector (which executes
the Java application code).

The AudioTrack code offers an alternative
means accessing the device. It pushes/retrieves
input/output frames into/from the main process-
ing buffers (spin/spout) of Csound synchronously
at control cycle intervals. It is offered as an option
to developers, which can be used for instance, in
older versions of Android without OpenSL sup-
port.



3 Application Development using
CsoundObj

Developers using the CsoundObj API will essen-
tially partition their codebase into three parts:
application code, audio code, and glue code. The
application code contains the standard Android
code for creating applications, including such
things as view controllers, views, database han-
dling, and application logic. The audio code is
a standard Csound CSD project that contains
code written in Csound and will be run using a
CsoundObj object. Finally, the glue code is what
will bridge the user interface with Csound.



/* this callback handler is called every time a buffer finishes playing */
void bqPlayerCallback(SLAndroidSimpleBufferQueueItf bq, void *context)
{

open_sl_params *params = (open_sl_params *) context;
params ->csound ->NotifyThreadLock(params ->clientLockOut);

}

/* put samples to DAC */
void androidrtplay_(CSOUND *csound , const MYFLT *buffer , int nbytes)
{

open_sl_params *params;
int i = 0, samples = nbytes / (int) sizeof(MYFLT);
short* openslBuffer;

params = (open_sl_params *) *(csound ->GetRtPlayUserData(csound));
openslBuffer = params ->outputBuffer[params ->currentOutputBuffer ];
if (params == NULL)

return;
do {

/* fill one of the double buffer halves */
openslBuffer[params ->currentOutputIndex ++] = (short) (buffer[i]* CONV16BIT);
if (params ->currentOutputIndex >= params ->outBufSamples) {

/* wait for notification */
csound ->WaitThreadLock(params ->clientLockOut , (size_t) 1000);

/* enqueue audio data */
(*params ->bqPlayerBufferQueue)->Enqueue(params ->bqPlayerBufferQueue ,

openslBuffer ,params ->outBufSamples*sizeof(short));
/* switch double buffer half */
params ->currentOutputBuffer = (params ->currentOutputBuffer ? 0 : 1);
params ->currentOutputIndex = 0;
openslBuffer = params ->outputBuffer[params ->currentOutputBuffer ];

}
} while (++i < samples);

}

Listing 1: OpenSL module output C function and associated callback

public interface CsoundValueCacheable {
public void setup(CsoundObj csoundObj);
public void updateValuesToCsound ();
public void updateValuesFromCsound ();
public void cleanup ();

}

Listing 2: CsoundValueCacheable Interface

String csd = getResourceFileAsString(R.raw.test);
File f = createTempFile(csd);
csoundObj.addSlider(fSlider , "slider", 0.0, 1.0);
csoundObj.startCsound(f);

Listing 3: Example CsoundObj usage



CsoundObj uses objects that implement the
CsoundValueCacheable interface for reading value
from and writing values to Csound (listing 2).
Any number of cacheables can be used with
CsoundObj. The design is flexible enough such
that you can design your application to use one
cacheable per user interface or hardware sensor
element, or one can make a cacheable that reads
and writes along many channels.

CsoundObj contains utility methods for bind-
ing Android Buttons and SeekBars to a Csound
channel, as well as for a method for binding the
hardware Accelerometer to preset Csound chan-
nels. These methods wrap the View or sensor ob-
jects with pre-made CsoundValueCacheables that
come with the CsoundObj API. Since these are
commonly used items that would be bound, the
utility methods were added to CsoundObj as a
built-in convenience to those using the API. Note
that CsoundValueCacheables are run within the
context of the audio processing thread; this was
done intentionally so that the cacheable could
copy any values it needed to from Csound, then
continue to do processing in another thread and
eventually post back to the main UI thread via a
Handler.

Figure 1: Android Emulator showing Simple Test
1 Activity

Listing 3 shows example code of using
CsoundObj with a single slider, from the Simple
Test 1 Activity, shown in Figure 1.The code above

shows how a CSD file is read from the projects re-
sources using the getResourceFileAsString utility
method, saved as a temporary file, then used as an
argument to CsoundObj’s startCsound method.
The 2nd to last line shows the addSlider method
being used to bind fslider, an instance of a Seek-
Bar, to Csound with a channel name of ”slider”
and a range from 0.0 to 1.0. When Csound is
started, the values from that SeekBar will be read
by the Csound project using the chnget opcode,
which will be reading from the ”slider” channel.

Figure 2 shows the relationships between dif-
ferent parts of the platform and different us-
age scenarios. An application may work with
CsoundObj alone if they are only going to be
starting and stopping a CSD. The application
may also use CsoundValueCacheables for read-
ing and writing values from either CsoundObj or
the CsoundObject. Finally, an application may
do additional interaction with the Csound object
that the CsoundObj has as its member, taking
advantage of the standard Csound API.

Figure 2: CsoundObj Usage Diagram

A Csound for Android examples project has
been created the contains a number of differ-
ent Csound example applications. These ex-
amples demonstrate different ways of using the
CsoundObj API as well as different approaches
to applications, such as realtime synthesis instru-
ments and generative music. The examples were
ported over from the Csound for iOS examples
project and users can study the code to better
understand both the CsoundObj API on Android
as well as what is required to do cross-platform



development with Csound as an audio platform.

4 Benefits of using Csound on
Android

Using Csound on Android provides many bene-
fits. First, Csound contains one of the largest
libraries of synthesis and signal processing rou-
tines. By leveraging what is available in Csound,
the developer can spend more time working on
the user interface and application code and rely
on the Csound library for audio-related program-
ming. The Csound code library is also tested and
supported by a open-source community, meaning
less testing work required for your project.

In addition to the productivity gain of using a
library for audio, Csound projects–developed in
text files with .csd extensions–can be developed
on the desktop, and later moved to the Android
application. Developing and testing on the desk-
top allows for a faster development process than
testing in the Android emulator or on a device,
as it removes the application compilation and de-
ployment stage, which can be slow at times.

Having the audio-related code in a CSD file
for a project also brings with it two benefits.
First, development of an application can be split
amongst multiple people; one can work on the
audio code while the other focuses on developing
other areas of the application. Second, develop-
ing an application based around Csound allows
for moving that CSD to other platforms, such as
iOS or desktop operating systems. The developer
would then only have to develop the user-interface
and glue code to work with that CSD on each
platform.

Additionally, cleanly separating out the audio
system of an application and enforcing a strict
API (Application Programmer Interface) to that
system is a good practice for application devel-
opment. This helps to prevent tangled, hard to
maintain code. This is of benefit to the beginning
and advanced programmer alike.

5 Conclusions

From its roots in the Music N family of programs,
Csound has grown over the years, continually ex-
panding it features as a synthesis library as well as
its usefulness as a music platform. With its avail-
ability on multiple operating systems, Csound of-
fers a multi-platform option for developing musi-

cal applications. Current Csound 6 developments
to enable realtime modification of the process-
ing graph as well as other features will expand
the types of applications that can be built with
Csound. As Android is now supported within the
core Csound repository, it will continue to be de-
veloped as a primary platform for deployment as
part of the MCP distribution.

6 Availability

The Csound for Android platform and exam-
ples project are included in the main Csound
GIT repository. Build files are included for
those interested in building Csound with the
Android Native Development Kit. Archives in-
cluding a pre-compiled Csound as well as exam-
ples are available at http://sourceforge.net/
projects/csound/files/csound5/Android/.
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This paper describes the current status of the de-
velopment of a new major version of Csound. We
begin by introducing the software and its historical
significance. We then detail the important aspects
of Csound 5 and the motivation for version 6. Fol-
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1 Introduction

In March 2012, a decision was taken to move
the development of Csound from version 5 to
a new major version, 6. This meant that most
of the major changes and improvements to the
software would cease to be made in Csound
5, and while new versions would be released,
these will consist mainly of bug fixes and mi-
nor changes (possibly including new opcodes).
Moving to a new version allowed developers to
rethink key aspects of the system, without the
requirement of keeping ABI or API compatibil-
ity with earlier iterations. The only restriction,
which is a fundamental one for Csound, is to
provide backwards language compatibility, en-
suring that music composed with the software
will continue to be preserved.

This paper describes the motivation for the
changes, current state of development and
prospective plans for the system.

1.1 Short History of Csound

1.1.1 Early History

Csound has had a long history of development,
which can be traced back to Barry Vercoe’s
MUSIC 360[Vercoe, 1973] package for computer
music, which was itself a variant of Max Math-
ews’ and Joan Miller’s MUSIC IV[Mathews and

Miller, 1964]. Following the introduction of
the PDP-11 minicomputer, a modified version
of the software appeared as MUSIC 11[Vercoe,
1981]. Later, with the availability of C (and
UNIX), this program was re-written in that lan-
guage as Csound[Boulanger, 2000], allowing a
simpler cycle of development and portability, in
comparison to its predecessor.

The system, in its first released version, em-
bodied a largely successful attempt at provid-
ing a cross-platform program for sound syn-
thesis and signal processing. Csound was then
adopted by a large development community in
the mid 90s, after being translated into the
ANSI C standard by John ffitch in the early
half of the decade. In the early 2000s, the final
releases of version 4 attempted to retrofit an ap-
plication programming interface (API), so that
the system could be used as a library.

1.1.2 Csound 5

The need for the further development of the
Csound API, as well as other innovations,
prompted a code freeze and a complete overhaul
of the system into version 5[ffitch, 2005]. Much
of this development included updating 1970s
programming practices by applying more mod-
ern standards. One of the major aims was to
make the code reentrant, so that its use as a li-
brary could be made more robust. In 2006, ver-
sion 5.00 was released. The developments em-
bodied by this and subsequent releases allowed
a varied use of the software, with a number of
third-party projects benefitting from them.

1.2 Csound operation in a nutshell

As a MUSIC-N language, Csound incorporates
a compiler for instruments. During perfor-
mance, these can be activated (instantiated) by
various means, the traditional one being the
standard numeric score. In Csound 5, compi-
lation can only be done once per performance
run, so new instruments cannot be added to
an already running engine (for this performance



needs to be interrupted so the compilation can
take place).

The steps involved in the compiler can be
divided into two: parsing, and compilation
proper. The first creates an abstract syntax tree
(AST) representing the instruments. The com-
pilation then creates data structures in memory
that correspond to the AST. When an instru-
ment is instantiated, an init-pass loop is per-
formed, executing all the once-off operations for
that instance. This is then inserted in a list of
active instruments, and its performance code is
executed sequentially, processing vectors (audio
signals), scalars (control signals) or frames of
spectral data. The list orders instruments by
ascending number, so higher-order ones will al-
ways be executed last. All of the key aspects of
Csound operation are exposed by the API.

2 Motivation

In the six years since its release, Csound 5 con-
tinued to develop in many ways, mostly in re-
sponse to user needs, as well as providing fur-
ther processing capabilities in the form of new
opcodes. After a long gestation, early in 2012,
the new flex-bison parser was completed and
added as a standard option. This was the final
major step of development for Csound, where
the last big chunk of 1970s code, the old ad-
hoc parser, was replaced by a modern, main-
tainable, and extendable parser. Following the
2011 Csound Conference in Hannover, it was
clear that there were a number of user requests
that would be more easily achievable with a re-
think of the system. Such suggestions included:

• the capacity of new orchestra code,
ie. instruments and user-defined opcodes
(UDOs), to be added to a running instance
of the engine

• additions to the orchestra language, for in-
stance, generic arrays

• rationalisation of the API to allow further
features in frontends

• loadable binary formats, API construction
of instruments

• further development of parallelism

• facilities for live coding

The time was ripe for major changes to be
made. User suggestions prompted developers to
begin an internal cleanup of code, the removal

of older components (such as the old parser),
and a reorganisation of the API. It was also an
opportunity to code-walk, and with that find
inconsistencies and bugs that would normally
be hidden. In particular, changes related to re-
peated loading and compilation of new instru-
ments would require (and indeed force) a wel-
come separation of language and synthesis en-
gine, which is well underway at present.

3 Developments to date

3.1 Build System and Tests

In Csound 5, the official build system is SCons1.
Over time, a CMake-based2 build was intro-
duced and used for local developer use, as well
as later for Debian packaging and iOS builds.
In Csound 6, the official build system is now
the CMake-based build. Moving to CMake in-
troduced some hurdles and changes in workflow,
but it also brought with it generation of build
system files, such as Makefiles, XCode projects,
and Eclipse projects. This solved a problem of
IDE-based projects for building Csound becom-
ing out of sync with changes in the SConstruct
file for SCons, as well as brought more ways
for developers to approach building and working
with Csound code, particularly through IDE’s.

Using the CTest feature in CMake, unit and
functional tests have been added to Csound 6’s
codebase. CTest is the test running utility used
to execute the individual C-code tests. In ad-
dition, CUnit3 is employed to create the indi-
vidual tests and test-suites within the test code
files. In addition to C-code testing, the suite
of CSD’s used for application/integration test-
ing continues to grow, and a new set of Python
tests has also been added for testing API usage
from a host language.

3.2 Code reorganisation

The Csound code base is passing through a sig-
nificant reorganisation. Firstly, parts of it that
are now obsolete, such as the old parser, have
been removed. Some opcodes with special li-
censing conditions that have been deemed not
to be conducive to further development have
been completely rewritten (also with some ef-
ficiency and generality improvements). The
CSOUND struct has been rationalised and re-
organised, with many modifications due to the
various changes outlined in the next sections.

1http://www.scons.org
2http://www.cmake.org
3http://cunit.sourceforge.net



Finally, the public API is going through a re-
design process (details of which are discussed
below).

3.3 Type system

The Csound Orchestra language uses strongly
typed variables and enforces these at compile-
time. This type information is used to deter-
mine the size of memory to allocate for a vari-
able as well as for specifying the in- and out-
arg types for opcodes. The system of types
used prior to Csound 6 was hard-coded into the
parser and compiler. Adding new types would
require adding code in many places.

In Csound 6, a generic type system was imple-
mented as well as tracking of variable names to
types. The new system provides a mechanism
to create and handle types, such that new types
can be easily added to the language. The sys-
tem also helps clarify how types are used during
compilation. Another feature is that variable
definitions and types were previously discarded
after compile-time; in Csound 6, this informa-
tion is kept after compilation. This allows the
possibility of inspecting variables found in in-
struments or in the global memory space.

3.4 Generic Arrays

In Csound 5, a ‘t’ type was added that provided
a user-definable length, single-dimension array
of floating-point numbers. In Csound 6, with
the introduction of the generic type system, the
code for t-types was extended to allow creation
of homogenous, multi-dimensional arrays of any
type. Additionally, the argument list specifica-
tion for opcodes was extended to allow denoting
arrays as arguments.

3.5 On-the-fly Compilation

The steps necessary for the replacement or ad-
dition of new instruments or UDOs to a running
Csound engine, or, more concisely, on-the-fly
compilation, started to be taken in the latter
versions of Csound 5. It was, of course, sine-
qua-non to have a properly structured parser,
which we did in 5.17. Also, as a side-effect
from the Csound for Android project, compila-
tion from text files was replaced by a new core
(memory) file subsystem, so now strings con-
taining Csound code could be presented directly
to the parser.

The first step in Csound 6 was
made by breaking down the mono-
lithic API call to compile Csound
(csoundCompile()) into csoundParseOrc()

and csoundCompileTree(), as well as by the
addition of a general csoundStart() function
to get the engine going. The parsing function
creates an abstract syntax tree (AST) from a
string containing Csound code. The compi-
lation function then creates the internal data
structures that the AST represents, ready for
engine instantiation(see figure 1).

Figure 1: Csound compilation and engineState.

These modifications provided the infrastruc-
ture for changes in the code to allow repeated
compilation. For this, we have abstracted the
data objects relating to instrument definition
into an engineState structure. On first com-
pilation, Csound creates its global instrument
0, which is made up of the header statements,
global variables declared outside instruments
and their initialisation. It then proceeds to com-
pile any other instruments defined in the orches-
tra (including UDOs, which are a special kind of
instrument). On any subsequent compilations,
instruments other than 0 are added to a newly-
created engineState. After compilation, the new
engineState is merged into the current one be-



longing to the running Csound object.
Instrument definitions with the same name

or number will replace previously existing ones,
but any instances of the old definitions that are
active are not touched. New instances will use
the new definition, and replaced instruments get
added to a deadpool for future memory recov-
ery (which will happen once all old instances
are deallocated). A similar process applies to
UDOs.

Currently, no built-in thread-safety mecha-
nisms have been placed in the API, so hosts are
left to make sure compilation calls are not made
concurrently to audio processing calls. How-
ever, it is envisaged that the final API will pro-
vide functions with built-in thread safe as well
as ordinary calls.

3.6 Sample-level accuracy

Csound has always allowed sample-level accu-
racy, a feature present since its MUSIC 11 in-
carnation. However, a performance penalty was
incurred, since the requirement for this was to
set the size of the processing block (ksmps) to 1
sample. Code can become very inefficient, since
there is a single call of an opcode performance
function for each sample of output and this is
in conflict with caching.

In Csound 6, an alternative sample accuracy
method has been introduced. This involves set-
ting an offset into the processing block, which
will round the start time of an event to a sin-
gle sample. Similarly, event durations are also
made to be sample accurate, as the last it-
eration of each processing loop is limited to
the correct number of samples (see figure 2).
This option is provided with the non-default
--sample-accurate flag, to preserve backward
compatibility.

Tied events4 are not subject to sample accu-
rate processing as they involve state reuse and
are, in its current form, incompatible with the
mechanism. Real-time events are also not af-
fect by the process, as event sensing works on a
ksmps-to-ksmps basis. Events scheduled to at
least one control-cycle ahead can be made to be
sample accurate through this mechanism.

The changes needed for this mechanism to
work were significant. Each opcode had to be
modified to take account of the offset and end

4In Csound, it is possible to have instrument in-
stances that take up a previously-used memory space,
which allows the ‘tieing’ of events, in analogy to slurs in
instrumental music

position. The scheduler had to be altered so
the start of all events was truncated, instead of
rounded, to ksmps boundaries, and the calcula-
tion of event duration had to be modified. The
offset and end position had to be properly de-
fined for each event, as well as set and reset at
specific times for each instrument instance.

3.7 Realtime priority mode

Csound has been a realtime audio synthesis en-
gine since 1990. However, it was never pro-
vided with strict realtime-safe behaviour, even
though in practice, it has been used success-
fully in many realtime applications. Given the
multiple applications of Csound, it makes sense
to provide separate operation modes for its en-
gine. In Csound 6, we introduce the realtime
priority mode, set by the --realtime option,
which aims to provide better support for real-
time safety, with complete asynchronous file ac-
cess and a separate thread for unit generator
initialisation.

3.7.1 Asynchronous file access

For Csound 6, a new lock-free mechanism has
been introduced and some key opcodes have
been modified to use it when operating in re-
altime. It uses a circular buffer, employing
an interface which had been already present
in Csound (used previously only for lock-free
realtime audio). It shares the common file
IO structure adopted throughout Csound, with
a similar, but dedicated interface. For spe-
cific file reading/writing requirements, though,
as required for instance by diskin, diskin2 or
pvsfwrite, the general interface is not suitable.
For this case, special opcode-level asynchronous
code has been designed.

3.7.2 Unit generator initialisation

Another important modification of the engine in
realtime priority mode is the spawning of a sep-
arate thread that is responsible for running all
of the unit generator initialisation code. This is
more commonly known as the ‘init-pass’, which
is separate from synthesis performance (‘perf-
pass’). In this mode, when an instrument is
instantiated, the init-pass code is immediately
run in a separate thread. Once this is done,
an instrument is allowed to perform. What this
does is to prevent any interruption in the syn-
thesis performance due to non-realtime-safe op-
erations in the initialisation code (memory allo-
cation, file opening, etc.). A side-effect of this is
that in some situations, an instrument may be
prevented to start performing straight away, as
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Figure 2: Sample accurate scheme.

the initialisation has not been done. However,
this is balanced with the gains in uninterrupted
performance.

3.8 Multicore operation

In 2009 an experimental system for using mul-
tiple cores for parallel rendering of instruments
was written [Wilson, 2009], and this was later
incorporated in the standard Csound [ffitch,
2009]. While the design was generally seman-
tically correct it only delivered a performance
gains in the case of low control rate and compu-
tationally heavy unit generators. Profiling the
code showed that the overheads in creating and
consuming the directed acyclic graph (DAG) of
dependencies, and especially in memory alloca-
tion activity.

For Csound 6 we are developing a different
approach, that while maintaining the semantic
analysis only needs to rebuild the DAG when
a score event starts or stops, and in use does
not call for changes in the structure. The clue
is in the use of watch-lists as found in SAT-
solvers [Brown and Purdom Jr, 1982; Eén and
Sörensson, 2003]. For each task we only need
to watch for the completion of one of the de-
pendencies; when a task finishes it can release
any task that is waiting for it, and for which
all other precursors have already finished. This
strategy is also possible with no locking of criti-
cal sections, and can use atomic swap primitives
instead.

At the same time some simplification of
the semantics-gathering has been achieved.
This scheme preserves the order-semantics that
Csound has always had, but offers efficient util-
isation of multiple cores with threads with-
out user intervention beyond saying how many
threads to use for the performance stage. Ini-
tial measurements (see table 3.8) are very en-
couraging, in most cases providing significant
speed-up. We are continuing to work on possi-
ble optimisations.

4 Further work

4.1 Pre-release prospective
development (i.e. the “todo list”)

The final feature set of Csound 6 is still not
finalised. There are a number of possible en-
hancements that we are considering; some grow
from the changes we have described above, and
some are long-standing desires.

The introduction of separate compilation and
replaceable instruments naturally suggests that
we could add a fast loadable format for instru-
ments, building on for example LISP FASL for-
mats, and API and opcode access to loading.
It remains to be seen if the source version is
sufficiently fast, and whether we can solve the
semantic issues that arise, such as f-table inde-
pendence. What is needed is to document the
abstract syntax tree that the parser produces,
and thus allow advocates of alternative orches-
tra languages to provide them.

A restriction in Csound than has long been
an irritation is the limit of one string in a score
statement. Previous work in this area has at-
tempted to allow up to four strings, but this is
both limiting and still buggy. The radical solu-
tion would be to introduce a flex/bison parser
for the score language and take the opportunity
for rethinking the score area. A small start has
been made, but the need to support users and
the amount of effort needed here has relegated
this work to a later release. Until then a simpler
scheme will have to be tried for the interim.

The Csound suite of software include a num-
ber of analysis programs, most dating from an
early time, and written without regard of float-
ing point formats or byte order. From time to
time this has caused problems. The task here
is to redefine these formats to indicate at least
their formats, or even to make the readers ca-
pable of format transformations. This needs to
be done at some stage and this break seems like
a good moment.

With the introduction of on-the-fly compila-
tion one can consider that a user might main-



-j CloudStrata Xanadu Trapped...
ksmps=500 (sr=96000) ksmps=10 ksmps=100 ksmps=10 ksmps=100 ksmps=1000

1 1 1 1 1 1 1
2 0.54 0.57 0.55 0.75 0.79 0.78
3 0.39 0.40 0.40 0.66 0.76 0.73
4 0.32 0.39 0.33 0.61 0.72 0.70

Table 1: Relative performance with multiple threads in three existing Csound code examples, -j
indicates the number of threads used.

tain a long-running Csound binary and use it
for different tasks at different times. This sug-
gests that the current command-line options or
API equivalents may need to change at some
time after the initialisation. Some changes may
be easy, but some may require re-engineering of
parts of the engine. We have not yet realised
to use-changes that the compilation change will
engender.

The new API still needs to be refined. In
response to what has been discussed above,
we plan, for instance, to expose the configura-
tion parameters in some form (currently held
in the OPARMS data structure). At the mo-
ment, there is a simple provision for setting sep-
arately specific configuration items in the API
(as flags). This is to be substituted by a more
flexible form, via the exposing of the OPARMS
or an OPARMS-like struct to API users.

A number of other changes are planned, some
of which are already present in an early form.
For instance, the various stages of parsing, com-
pilation, and engine start are now exposed in
the provisional API (as detailed for instance in
3.4). There is a plan to provide built-in thread-
safety, so some functions can be used directly in
a multi-threading environment without further
synchronisation or resource protection. The
software bus, which now exists in three forms,
will be unified to a single mechanism.

4.2 Future developments

A number of ideas have also been put forward,
which will be tackled in due course. These in-
clude for instance:

• support for alternative orchestra languages
(through access to the parse tree format or
some sort of intermediary representation)

• further language features (e.g. namespaces,
functions with more than one argument,
tuples)

• a system for streaming linear predictive

coding processing (in similar fashion to
PVOC)

• decoupling of widget opcodes from FLTK
dependency (and exposure through API)

• input / output buffer reorganisation (out-
put buffers added to instruments)

5 Conclusions

In this paper, we have sought to examine the
current development status of Csound 6, as
well as the motivations for the fundamental re-
engineering of the code that has been under-
way. We hope to have demonstrated how the
technology embodied in this software package
has been renovated continuously in response to
developments in Computer Science and Music.
Our aim is to continue to support a variety of
styles of computer music composition and per-
formance, as well as the various ways in which
Csound can be used for application develop-
ment. It is also important to note, for read-
ers, that the re-engineering of Csound is taking
place quite publicly in the Csound 6 git reposi-
tory on Sourceforge (git://git.code.sf.net/
p/csound/csound6-git). Anyone is welcome
to check out and examine our struggles with
computer technology and the solutions we are
putting forward in this paper.
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ABSTRACT

In this paper we introduce a major new version of Csound,
the audio processing system and library. We begin with an
overview of the current status of Csound (version 5), as well
as its three layers of use (high, middle, and low). We then
outline the design motivations and features of version 6. We
continue by exploring external changes and discussing some
examples of use. We conclude by looking forward to the next
steps in the development of Csound.

1. INTRODUCTION

In 2012, six years after the initial release of the first major
re-engineering of the well-known and widely-used software
sound synthesis system Csound [1], we (its developers) de-
cided to embark on a further revision of many of its inter-
nal and external aspects. Developments since version 5.00
[2] until the current release, 5.19, have been mostly incre-
mental. They have also been limited by our commitment
to maintaining both binary and API (Application Program-
ming Interface) compatibility with earlier versions (although
the system has actually come through a binary upgrade, after
version 5.09). To allow for a number of requested changes,
we decided a new major version was necessary, which would
mean a break in backwards compatibility (both API and bi-
nary). This does not, however, mean a break in backwards
compatibility of Csound code and pieces. Older pieces and
code will always continue to work with Csound 6. This pa-
per discusses the motivation for Csound 6, its development
process, and major features of the new system.

2. WHAT IS CSOUND?

For the ICMC audience, it might not seem necessary to de-
scribe such a well-known and established software package.
After all, there have been a number of papers on the subject

Copyright: c©2015 John ffitch et al. This is an open-access article dis-
tributed under the terms of the Creative Commons Attribution License 3.0
Unported, which permits unrestricted use, distribution, and reproduction in
any medium, provided the original author and source are credited.

of Csound presented here, over the years [3] [4] [5] [6] [7]
[8] [9]. However, it is well worth describing what Csound
is in a bit more detail, because 1) Csound has a long history
of development, and much of the information describing it is
outdated; and 2) the motivation for the present directions will
become clearer as we outline the present system.

The best way to describe Csound, in its version 5, is to
present it as a series of layers, with various ‘modes of entry’
for users and for related applications.

At the lowest level, Csound is a self-contained audio pro-
gramming language implemented in a cross-platform library,
with a well-defined API, which allows software developers to
create programs for audio synthesis and processing, and com-
puter music composition. Csound supports a variety of syn-
thesis techniques in its orchestra language, and allows various
means/levels of internal and external control. Csound is ex-
tensible via plugin modules. Software that uses Csound can
be written in C, C++, Objective-C, Java, Python, Lua, Tcl,
Lisp, and others. Csound runs on Windows, Linux, OSX,
Solaris, Haiku, Android and iOS.

The middle layer is characterized by writing programs in the
Csound language for performance, composition, and other
audio processing tasks such as sonification. At this level, the
system allows composers to design computer music instru-
ments, and to control them in real time or deferred time. In-
teraction with the system comes via various frontends, many
of which are third party (i.e. not maintained as part of the
Csound releases). The ‘classic’ command-line interface (CLI)
is the basic frontend, where the system is controlled by a sin-
gle terminal command. As this was the only original means
of using the software, traditionally a number of frontends
have been designed to provide a simpler wrapper around CLI
Csound. More commonly, today, frontends access the Csound
library directly (via its API). These frontends provide diverse
modes of interaction. For example, Csound can be embedded
in graphical environments such as Pure Data via the
csoundapi∼ frontend, and in Max/MSP via csound∼. Com-
position environments such as blue use it as a sound engine.
For more general-purpose uses, there are integrated devel-
opment environments (IDEs) for programming with Csound
(such as CsoundQt and WinXsound), and plugin/application
generators, such as Cs-LADSPA [6] and Cabbage[8].
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At this level, Csound co-exists with a number of tools and
languages which add support for activities such as algorith-
mic composition and graphical user interaction.

Csound-based 
applications

Csound 
language

Csound library

high

middle

low

le
v
e
ls

app users,
performers, 
composers

composers,
performers,
researchers

developers,
researchers

apps, 
desktop programs

IDEs, frontends,
plugin generators

programming languages 
and tools

Figure 1. The various levels of Csound, related software and end users.

At the highest level, use of Csound occurs by developing
applications based on the middle and lower levels. Here, the
user might not even know that Csound is involved, as user
programming is generally not involved. This is seen, for in-
stance, in some frontends, such as Cecilia and blue, where
the user might only need to deal with parameter setting in the
graphical interface, in plugins or applications generated by
Cabbage, in bundled packages such as Csound4Live (which
uses the csound∼ frontend), or in mobile applications for iOS
and Android [9].

It is clear that Csound has attracted a diverse set of users,
from the expert programmer to the mobile app customer. In
addition, thanks to Csound’s long history, especially by com-
posers working at the middle level, there is a legacy of music
written with Csound that is worth preserving (and that in fact
stretches back to 70s compositions written for Csound’s pre-
decessors MUSIC 11 and MUSIC 360 [10]). This has focused
our minds to provide a completely backwards-compatible sys-
tem (as far as the language is concerned) as sine qua non con-
dition for future versions.

Some may criticise this as recipe for an ever increasing lan-
guage, with its associated complexity penalty, and, as often
vocalised in the detractors’ corner, ‘bloat.’ But although some
‘bloat’ is inevitable in a system nearly three decades old, the
Csound language is still syntactically very simple (it consists
of just a few simple syntactical constructs), and the process-
ing engine is generally efficient in terms of DSP and algo-
rithm implementations. What criticisms fail to consider is
that Csound has fostered a vibrant community of users and
developers.

We understand that community is the biggest asset a sys-
tem like Csound can have. Without users, expert and non-
expert, a system withers and dies. It would not be a huge
task (in comparative terms) to ditch the old system and re-
create one whose language adapts completely to the flavour-
of-the-moment software design. Also, creating a whole new
computer music language from scratch is also not too diffi-

cult now, especially with the availability of models that exist
as open-source code. In fact, there is a multiplication of in-
cipient systems that claim to be the intelligent solution to per-
ceived problems in existing software. The majority of these
do not cross the 80/20 divide of development. This occurs
possibly for a variety of reasons, but especially for the lack
of an enthusiastic user (and developer) community. There is
great value in the accumulated knowledge of the community
and the large body of existing code. We understand that mov-
ing Csound away from its origins as a system does not mean
ditching users and music along the way. The requirements of
the community are paramount to where we want the software
to go. By supporting the various levels of entry into the sys-
tem, we aim to foster interest in the software and in computer
music in general. This translates as well into the different lev-
els of difficulty that the Csound language contains. It allows
educators to provide a smooth learning curve for students, go-
ing from the early (and simpler) set of language elements into
the expanded one that the system supports today.

3. WHY CSOUND 6?

By 2012, we began to feel that Csound 5’s incremental model
of development was becoming a limitation. At the 2011 In-
ternational Csound Conference in Hannover, users and devel-
opers met to agree on a number of desired features that the
software should have in future versions. Some of these (like
support for mobile platforms and some additional language
features) were achievable in Csound 5 and indeed were soon
made available. Others have required a major re-engineering
of the system. Among them, we can cite:

• the capacity of new orchestra code, ie. instruments and
user-defined opcodes (UDOs), to be added to a running
instance of the engine (enhancing, for instance, live-
coding support and interactive sound design);

• major additions to the orchestra language, for instance,
generic arrays, debugging/introspection, and a type sys-
tem;

• rationalisation of the API to simplify its usage and to
allow further features in frontends;

• fast loadable (FASL-like) binary formats, API construc-
tion of instruments;

• further development of concurrency (enhancement of
existing support [7]).

This list was our starting point for the development of
Csound 6.

4. INTERNAL CHANGES IN VERSION 6.0

A number of important changes have been made to the code
base, which not only introduce significant improvements and
scalability in performance (ie. in parallel processing), but also
provide a robust infrastructure for future developments
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Threads CloudStrata Xanadu Trapped In Convert
ksmps=500 (sr=96000) ksmps=10 ksmps=100 ksmps=10 ksmps=100 ksmps=1000

1 1 1 1 1 1 1
2 0.54 0.57 0.55 0.75 0.79 0.78
3 0.39 0.40 0.40 0.66 0.76 0.73
4 0.32 0.39 0.33 0.61 0.72 0.70

Table 1. Relative performance with multiple threads in three existing Csound code examples.

4.1 Build system and tests

We have adopted CMake as Csound’s primary build tool, re-
placing scons as used in Csound5. We have added test suites
for the language and API, as a well as individual CUnit tests,
to the code base and build system. These changes are well
aligned with modern standards of software testing and project
development.

4.2 Code reorganisation

We have removed obsolete code, such as the old parser. The
CSOUND class has been rationalised and refactored. Some
opcodes have been rewritten/substituted, especially in cases
where they incorporated special licensing issues beyond LGPL.
Syntax checking in the parser has been completely overhauled,
and, by extension, the old annotation system used for opcode
overloading has been substituted by a simpler and more ro-
bust mechanism. Data-structure utilities such as hash tables
etc have been given a clean and easy to maintain interface and
implementation.

4.3 Type system

To better support the strong typing of the Csound language
and also to allow its expansion, we have implemented a new
type system to replace the old hard-coded typing in the parser
and compiler. This is more generic and implements tracking
of variable names to types. The type system allows the cre-
ation of opcodes that accept and produce complex data struc-
tures, as well as new semantics for opcode inputs and outputs.
It will also allow the development of debugging/inspection
tools for Csound code. In addition, the code for the string
type has been completely replaced, allowing for dynamic al-
location and variable sizes. This was required to allow any
size orchestra code to be manipulated as strings, and passed
to the compilation stage inside a Csound instrument.

4.4 Asynchronous operations

We implemented mechanisms for the access of files in an
asynchronous mode (non-blocking). These mechanisms are
generic enough for the use in opcodes and plugins. In cases
where the generic mechanism was not suitable (e.g. the
diskin opcode), a dedicated solution was implemented. We
also added support for asynchronous i-time operations to the
engine, which will allow initialisation code to be performed
in a separate thread to performance.

4.5 Thread-safety

In Csound 5, library users were expected to take care of thread-
safety when splitting performance and control in separate
threads (although some helper classes were available for
this purpose in the Csound interfaces API). In Csound 6,
thread-safety is built into the library, so API calls
can be placed in separate threads (e.g. for control, table ac-
cess and performance). The software bus channels,
for instance use gcc atomic built-in functions (i.e.
sync lock test and set())

4.6 Multicore operation

Following the introduction of multicore support in
Csound 5 [11] [7], we have created an improved design with
better use of resources. The new design uses more conser-
vative re-drawing of directed acyclic graphs (DAG), which is
now done only at the beginning and end of events rather than
on every control cycle, and uses watch-lists, as found in SAT-
solvers [12]. The effect of this change is significant; in almost
all cases it gives major speed-up with two or more threads
being used on recent processors, delivering about 60% of the
time or better. Some preliminary figures are shown in table 1.

Finding a way of using multiple cores is a major challenge
to software writers, and is particularly difficult in audio pro-
cessing [13]. We think that this scheme will scale to a signifi-
cant number of cores and open up the possibility for complex
synthesis in real time.

It is important to note that parallelism in Csound is com-
pletely automatic and provided out-of-box by a single con-
figuration option (requesting a given number of threads). No
user modification of Csound code is required, and more im-
portantly, no expertise in how to parallelise code is required.
We understand this as a compiler problem, not a user one. Ini-
tial tests have indicated that the parallelism is generic enough
to provide gains and scalability for arbitrary orchestras, only
failing in pathological cases, such as when ksmps=1 and the
computation small when the overhead is apparent or where
there is no parallelism to find. It might even be possible to
have an automatic mode where the code analyser can deter-
mine whether there is likely to be and advantage in using mul-
tiple threads.

5. EXTERNAL CHANGES

In addition to the developer-level changes listed above, sig-
nificant external changes are also visible to end-users.
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5.1 Generic Arrays

Csound 5 introduced a new type of variable that implemented
simple one-dimensional arrays, and with it a suite of oper-
ations was also added. In Csound 6 arrays have been gen-
eralised, and all types can be constructed as one- or two-
dimensional objects. This provides substantial flexibility for
users of the language. For instance, we can have code con-
structs like this, where a bank of oscillators is spawned:

opcode OscBank,a,kki
setksmps 1
kamp,kfr,inum xin
kph[] init inum
kcnt = 0
au = 0
until kcnt == inum do
au += sin(kph[kcnt])
kph[kcnt] += kfr*kcnt*(2*$M_PI)/sr
kcnt += 1

od
xout au*kamp

endop

Previously, such designs would have had to be implemented
via recursive user-defined opcodes or instruments. But now,
more straightforward loops can be used. The only care is
that, as unit generators (opcodes) are effectively anonymous
classes in the current syntax, those whose internal state ad-
vances on every call cannot be directly used in loops as in
the example above. We are considering a number of possible
syntactical solutions, including automatic parallel expansion,
so that arrays can be used more freely with opcodes. Func-
tions, and many unit generators that don’t have an evolving
internal state (e.g. a phase accumulator) can be used with no
limitations. In addition to array data types, we have designed
a full set of operations (such as list comprehensions, maps,
copying, table access, etc.). We will implement these in sub-
sequent updates.

5.2 New functional syntax

Another major external change to Csound is the possibility of
a new functional syntax, where opcodes can be used in ex-
pressions of the general form

ans = opcode(arg-list)

This allows the inlining of opcodes in expressions, for in-
stance, with the following code

out(moogladder
(vco2
(linen(p4,0.01,p3,0.1),p5),

p5+linen(p5*4,0.01,p3,0.5),
0.8))

being the equivalent of

k1 linen p4,0.01,p3,0.1
k2 linen p5*4,0.01,p3,0.5
a1 vco2 k1, p5
a2 moogladder a1, k2+p5, 0.8

out a2

in the traditional Csound syntax.
Given the extensive use of polymorphism in Csound, the

mechanism of type annotation can be used to resolve certain
ambiguous expressions and to select the required opcode for a
desired output type. The general form of annotations in func-
tional syntax is

opcode:type(arg-list)

In version 6.00, only opcodes with a single output are al-
lowed in this form, as multiple outputs will require the in-
trodution of tuple types (current under plans). However, the
functional syntax can be intermingled with the traditional out-
op-in syntax in Csound code. Note that, as Csound is not a
purely functional language, there are no guarantees that func-
tions will not have side effects, so the change in syntax does
not imply any internal operation modifications.

5.3 On-the-fly Compilation

With Csound 5, recompilation of code running in an instance
of the engine required interruption of performance. This came
to seem restrictive, specially for performances involving live
coding, where either two instances would be used (so one
could be alternatively recompiled while the other was active),
or a complete set of instruments was required to be supplied.

In Csound 6, we have removed this restriction. Any new
instruments can be added at any point, and will be available
for new insertions. The mechanism allows for replacement
of existing instruments, with any running instances of these
being unaffected. User-defined opcodes can also be added at
any point. From the use-case point of view, we expect that
software using Csound will allow on-the-fly scripting of in-
struments, loading and instantiation.

From inside the orchestra language, however, it is also pos-
sible to add new instruments, via two special opcodes,
compileorc and compilestr. The first opcode reads
orchestra code from a file, parses and compiles it. The sec-
ond performs the same operations on a string.

Hosts can also send instruments as strings via bus channels
to be compiled, or save them in plain text files. Full ac-
cess to parsing and compilation is provided via the API. The
parse tree is also exposed via the API, so it is feasible that in
the future alternative languages might be implemented, ready
for Csound compilation. This is yet another step towards
the full separation of engine and language, which started in
Csound 5.
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5.4 Sample-level accuracy

Traditionally, sample-level accuracy had been achieved in
Csound by running it with a ksmps (block) size of 1. This
has been always available as a global orchestra setting. Since
Csound 5, user-defined opcodes can also have local ksmps
values, enabling sample-level processing. In Csound 6, this
is extended to instrument definitions, which can have a per-
instance block size. However, global (whole-orchestra)
sample-by-sample processing of this kind is relatively inef-
ficient (even though in some other systems this is all that is
available). For Csound 6, we have introduced a mechanism
that allows sample-level accuracy that is completely indepen-
dent of ksmps. This is enabled by an engine option (‘sample-
accurate’), but it is not on by default (for backward compat-
ibility reasons, as it would possibly alter behaviour of older
code). With this feature, we also have means of optimising
multicore performance by processing in larger blocks, with-
out loss of timing accuracy 1 [14].

5.5 Realtime priority mode

Another new feature of Csound 6 is a realtime priority mode
that allows performance to be uninterrupted by blocking or
time-consuming operations. This mode effectively forces op-
codes that access disk to do so asynchronously, and also per-
forms all init-time code in a separate thread. In this case,
new instrument instances will invoke their init-pass code to
happen in a worker thread, then immediately resume execut-
ing their performance-pass code. For example, the loading
of large tables and similar operations will no longer directly
affect performance. Similarly, opcodes reading or writing to
disk will not cause dropouts (which was liable to happen in
Csound 5, esp. on disk writing). This should enhance the
performance of Csound code in interrupt-driven callbacks.

5.6 The new API

We have carefully revised the low-level Csound API. Func-
tions exposing the new functionality have been added, and
others have been removed in an effort to simplify API use.
In particular, access to the software bus has been simplified.
Also, as noted above, with on-the-fly compilation, new means
of starting and running Csound instances has been added.
Csound performances can be started with no orchestra or
score, instruments and events can be added at any time to it.
New ways of configuring the engine have also been provided,
previously only possible via string flags and arguments. A
simple Python example demonstrating some of the new API
functions is shown below:

1 The effectiveness of parallelization of audio processes in general is tied
to the granularity of processing, due to the overhead from spawning and join-
ing the parallel processes. Larger granularity generally leads to greater event
jitter and latency.

import csnd6
import time

cs = csnd6.csoundCreate(None)
csnd6.csoundSetOption(cs,‘‘-odac’’)
csnd6.csoundStart(cs)
perf = csnd6.CsoundPerformanceThread(cs)
perf.Play()

csnd6.csoundCompileOrc(cs, ‘‘‘
event_i ‘‘i’’,1,0.1,1,1000,500
instr 1
k1 expon 1,p3,0.001
a2 oscili k1*p4,p5
event_i ‘‘i’’,1,0.1,1,p4,rnd(p5)+500
out a2
endin ’’’)

time.sleep(5)
perf.Stop()

This script runs for the synthesis engine only for 5 seconds,
but in interactive contexts Csound would be open for perfor-
mance indefinitely, accepting input in terms of orchestra code
or realtime events. Examples such as these can be run in a
read-eval-print loop (REPL) provided by emacs, vim, ipython
or similar environments, for live-coding with Csound, as well
as from other languages (Lua, Java, Clojure, etc.). Such pos-
sibilities are not limited to performance and composition, but
also allow flexible use in research and teaching.

5.7 Miscellaneous improvements

Utilities have been updated to provide cross-platform support
in terms of file formats, which is byte-order and precision in-
dependent. Support for string data in the score has also been
made more flexible, so that an unlimited number of strings
can be passed from events to instrument instances (previously
this was limited to one). There is a proposal for a new parser
for the score language, but details of this are still in the plan-
ning stage.

6. NEXT STEPS

At the time of writing, we are providing a Release Candidate
version of Csound 6, which is available for all users to test.
This will be followed by the first full release of Csound 6 for
Linux, OSX , Windows, Android and iOS. Beyond that, we
expect that the infrastructure changes will now allow signif-
icant room for further incremental development of new fea-
tures and improvements, and publication of the internal ab-
stract syntax tree format will allow new user-level languages
to access the Csound engine and unit generators. The new
releases will be developed in conjunction with third-party de-
velopments of frontends and applications, whose functional-
ity, it is hoped, will be greatly enhanced by Csound 6.
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Abstract

This paper reports on two approaches to provide a
general-purpose audio programming support for web
applications based on Csound. It reviews the cur-
rent state of web audio development, and discusses
some previous attempts at this. We then introduce
a Javascript version of Csound that has been crea-
ted using the Emscripten compiler, and discuss its
features and limitations. In complement to this, we
look at a Native Client implementation of Csound,
which is a fully-functional version of Csound running
in Chrome and Chromium browsers.
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1 Introduction

The web browser has become an increasingly
viable platform for the creation and distributi-
on of various types of media computing appli-
cations[Wyse and Subramanian, 2013]. It is no
surprise that audio is an important part of these
developments. For a good while now we have be-
en interested in the possibilities of deployment
of client-side Csound-based applications, in ad-
dition to the already existing server-side capa-
bilities of the system. Such scenarios would be
ideal for various uses of Csound. For instance,
in Education, we could see the easy deployment
of Computer Music training software for all le-
vels, from secondary schools to third-level in-
stitutions. For the researcher, web applications
can provide an easy means of creating proto-
types and demonstrations. Composers and me-
dia artists can also benefit from the wide reach
of the internet to create portable works of art.
In summary, given the right conditions, Csound
can provide a solid and robust general-purpose
audio development environment for a variety of
uses. In this paper, we report on the progress
towards supporting these conditions.

2 Audio Technologies for the Web

The current state of audio systems for world-
wide web applications is primarily based upon
three technologies: Java1, Adobe Flash2, and
HTML5 WebAudio3. Of the three, Java is the
oldest. Applications using Java are deployed via
the web either as Applets4 or via Java Web
Start5. Java as a platform for web applications
has lost popularity since its introduction, prima-
rily due to historically sluggish start-up times
as well as concerns over security breaches. Also
of concern is that major browser vendors have
either completely disabled Applet loading or di-
sabled them by default, and that NPAPI plugin
support–which the Java plugin for browsers is
implemented with–is planned to be dropped in
future browser versions6. While Java sees strong
support on the server-side and desktop, its fu-
ture as a web-deployed application is tenuous at
best and difficult to recommend for future audio
system development.

Adobe Flash as a platform has seen large-
scale support across platforms and across brow-
sers. Numerous large-scale applications have be-
en developed such as AudioTool7, Patchwork8,
and Noteflight9. Flash developers can choose to
deploy to the web using the Flash plugin, as
well as use Adobe Air10 to deploy to desktop
and mobile devices. While these applications de-
monstrate what can be developed for the web

1http://java.oracle.com
2http://www.adobe.com/products/flashruntimes.

html
3http://www.w3.org/TR/webaudio/
4http://docs.oracle.com/javase/tutorial/

deployment/applet/index.html
5http://docs.oracle.com/javase/tutorial/

deployment/webstart/index.html
6http://blog.chromium.org/2013/09/

saying-goodbye-to-our-old-friend-npapi.html
7http://www.audiotool.com/
8http://www.patchwork-synth.com
9http://www.noteflight.com

10http://www.adobe.com/products/air.html



using Flash, the Flash platform itself has a
number of drawbacks. The primary tools for
Flash development are closed-source, commer-
cial applications that are unavailable on Linux,
though open source Flash compilers and IDEs
do exist11. There has been a backlash against
Flash in browsers, most famously by Steve Jobs
and Apple12, and the technology stack as a who-
le has seen limited development with the gro-
wing popularity of HTML5. At this time, Flash
may be a viable platform for building audio ap-
plications, but the uncertain future makes it dif-
ficult to recommend.

Finally, HTML5 Web Audio is the most re-
cent of technologies for web audio applications.
Examples include the ”Recreating the sounds of
the BBC Radiophonic Workshop using the Web
Audio APIßite13, Gibberish14, and WebPd15.
Unlike Java or Flash, which are implemented
as browser plug-ins, the WebAudio API is a
W3C proposed standard that is implemented by
the browser itself.16 Having built-in support for
Audio removes the security issues and concerns
over the future of plug-ins that affect Java and
Flash. However, the Web Audio API has limita-
tions that will be explored further below in the
section on Emscripten.

3 Csound-based Web Application
Design

Csound is a music synthesis system that has
roots in the very earliest history of computer
music. Csound use in Desktop and Mobile app-
lications has been discussed previously in [Laz-
zarini et al., 2012b], [Yi and Lazzarini, 2012],
and [Lazzarini et al., 2012a].

Prior to the technologies presented this pa-
per, Csound-based web applications have em-
ployed Csound only on the server-side. For ex-
ample, NetCsound 17 allows sending a CSD file
to the server, where it would render the project
to disk and email the user a link to the rendered
file when complete. Another use of Csound on

11http://www.flashdevelop.org/
12http://www.apple.com/hotnews/

thoughts-on-flash/
13http://webaudio.prototyping.bbc.co.uk/
14Available at https://github.com/

charlieroberts/Gibberish, discussed in [Roberts
et al., 2013]

15https://github.com/sebpiq/WebPd
16http://caniuse.com/audio-api lists current brow-

sers that support the Web Audio API
17Available at http://dream.cs.bath.ac.uk/

netcsound/, discussed in [ffitch et al., 2007]

the server is Oeyvind Brandtsegg’s VLBI Music
18, where Csound is running on the server and
publishes its audio output to an audio stream
that end users can listen to. A similar architec-
ture is found in [Johannes and Toshihiro, 2013].
Since version 6.02, Csound also includes a built-
in server, that can be activated through an opti-
on on start up. The server is able to receive code
directly through UDP connections and compile
them on the fly.

Using Csound server-side has both positives
and negatives that should be evaluated for a
project’s requirements. It can be appropriate to
use if the project’s design calls for a single audio
stream/Csound instance that is shared by all
listeners. In this case, users might interact with
the audio system over the web, at the expen-
se of network latency. Using multiple realtime
Csound instances—as would be the case if there
was one per user—would certainly be taxing for
a single server and would require careful resour-
ce limiting. For multiple non-realtime Csound
instances, as in the case of NetCsound, multi-
ple jobs may be scheduled and batch processed
with less problems than with realtime systems,
though resource management is still a concern.

A possibly more flexible way to deploy
Csound over the internet is to support client-
side applications that use the browser as a plat-
form. Two attempts at this have been explo-
red in the past. The first was the now-defunct
ActiveX Csound (also known as AXCsound)19,
which allowed embedding Csound into a web-
page as an ActiveX Object. This technology is
no longer maintained and was only available for
use on Windows with Internet Explorer. A se-
cond attempt was made in the Mobile Csound
Project[Lazzarini et al., 2012b], where a proof-
of-concept Csound-based application was deve-
loped with Java and deployed using Java Web
Start, achieving client-side Csound use via the
browser. However, the technology required spe-
cial permissions to run on the client side and
required Java to be installed. Due to those issu-
es and the unsure future of Java over the web,
the solution was not further explored.

The two systems described in this paper are
browser-based solutions that run on the client-
side. The both share the following benefits:

18http://www.researchcatalogue.net/view/55360/
55361

19We were unable to find a copy of this online, but one
is available from the CD-ROM included with [Boulanger,
2000]



• Csound has a large array of signal proces-
sing opcodes made immediately available
to web-based projects.

• They are compiled using the same source
code as is used for the desktop and mo-
bile version of Csound. They only require
recompiling to keep them in sync with the
latest Csound features and bug fixes.

• Csound code that can be run with the-
se browser solutions can be used on other
platforms. Audio systems developed using
Csound code is then cross-platform across
the web, desktop, mobile, and embed-
ded systems (i.e. Raspberry Pi, Beaglebo-
ne; discussed in [Batchelor and Wignall,
2013]). Developers can reuse their audio co-
de from their web-based projects elsewhere,
and vice versa.

4 Emscripten

Emscripten is a a project created by Alon Za-
kai at the Mozilla Foundation that compiles the
assembly language used by the LLVM compi-
ler into Javascript [Zakai, 2011]. When used in
combination with LLVM’s Clang frontend, Em-
scripten allows applications written in C/C++
or languages that use C/C++ runtimes to be
run directly in web browsers. This eliminates
the need for browser plugins and takes full ad-
vantage of web standards that are already in
common use.

In order to generate Javascript from C/C++
sourcecode the codebase is first compiled into
LLVM assembly language using LLVM’s Clang
frontend. Emscripten translates the resulting
LLVM assembly language into Javascript, speci-
fically an optimised subset of Javascript entitled
asm.js. The asm.js subset of Javascript is inten-
ded as a low-level target language for compilers
and allows a number of optimisations which are
not possible with standard Javascript20. Code
semantics which differ between Javascript and
LLVM assembly are emulated when accurate co-
de is required. Emscripten has built-in methods
to check for arithmetic overflow, signing issues
and rounding errors. If emulation is not requi-
red, code is translated without semantic emula-
tion in order to achieve the best execution per-
formance [Zakai, 2011].

Implementations of the C and C++ runti-
me libraries have been created for applicati-
ons compiled with Emscripten. These allow pro-

20http://asmjs.org/spec/latest/

grams written in C/C++ to transparently per-
form common tasks such as using the file sys-
tem, allocating memory and printing to the con-
sole. Emscripten allows a virtual filesystem to
be created using its FS library, which is used
by Emscripten’s libc and libcxx for file I/O21.
Files can be added or removed from the virtual
filesystem using a number of Javascript helper
functions. It is also possible to directly call C
functions from Javascript using Emscripten22.
These functions must first be named at compile
time so they are not optimised out of the re-
sulting compiled Javascript code. The required
functions are then wrapped using Emscripten’s
cwrap function, and assigned to a Javascript
function name. The cwrap function allows many
Javascript variables to be used transparently as
arguments to C functions, such as passing Ja-
vascript strings to functions which require the
C languages const char array type.

Although Emscripten can successfully compi-
le a large section of C/C++ code there are still
a number of limitations to this approach due to
limitations within the Javascript language and
runtime. As Javascript doesn’t support threa-
ding, Emscripten is unable to compile codeba-
ses that make use of threads. Some concurrency
is possible using web workers, but they do not
share state. It is also not possible to directly im-
plement 64-bit integers in Javascript as all num-
bers are represented using 64-bit doubles. This
results in a risk of rounding errors being intro-
duced to the compiled Javascript when perfor-
ming arithmetic operations with 64-bit integers
[Zakai, 2011].

4.1 CsoundEmscripten

CsoundEmscripten is an implementation of the
Csound language in Javascript using the Ems-
cripten compiler. A working example of Csoun-
dEmscripten can be found at http://eddyc.
github.io/CsoundEmscripten/. The compiled
Csound library and CsoundObj Javascript class
can be found at https://github.com/eddyc/
CsoundEmscripten/. CsoundEmscripten con-
sists of three main modules:

• The Csound library compiled to Javascript
using Emscripten.

• A structure and associated functions writ-
ten in C named CsoundObj implemented

21https://github.com/kripken/emscripten/wiki/
Filesystem-API

22https://github.com/kripken/emscripten/wiki/
Interacting-with-code



on top of the Csound library that is com-
piled to Javascript using Emscripten.

• A handwritten Javascript class also named
CsoundObj that contains the public in-
terface to CsoundEmscripten. The Javas-
cript class both wraps the compiled Cso-
undObj structure and associated functions,
and connects the Csound library’s audio
output to the Web Audio API.

4.1.1 Wrapping the Csound C API for
use with Javascript

In order to simplify the interface between the
Csound C API and the Javascript class contai-
ning the CsoundEmscripten public interface, a
structure named CsoundObj and a number of
functions which use this structure were created.
The structure contains a reference to the cur-
rent instance of Csound, a reference to Csound’s
input and output buffer, and Csound’s 0dBFS
value. Some of the functions that use this struc-
ture are:

• CsoundObj_new() - This function alloca-
tes and returns an instance of the Csound-
Obj structure. It also initialises an instan-
ce of Csound and disables Csound’s default
handling of sound I/O, allowing Csound’s
input and output buffers to be used direct-
ly.

• CsoundObj_compileCSD(self,
filePath, samplerate, controlrate,
buffersize) - This function is used
to compile CSD files, it takes as its
arguments: a pointer to the CsoundObj
structure self, the address of a CSD file
given by filePath, a specified sample rate
given by samplerate, a specified control
rate given by controlrate and a buffer
size given by buffersize. The CSD file at
the given address is compiled using these
arguments.

• CsoundObj_process(self,
inNumberFrames, inputBuffer,
outputBuffer) - This function copies
audio samples to Csound’s input buffer
and copies samples from Csound’s output
buffer. It takes as its arguments: a pointer
to the CsoundObj structure self, an integer
inNumberFrames specifying the number
of samples to be copied, a pointer to a
buffer containing the input samples named
inputBuffer and a pointer to a destination

buffer to copy the output samples named
outputBuffer.

Each of the other functions that use the Cso-
undObj structure simply wrap existing functi-
ons present in the Csound C API. The relevant
functions are:

• csoundGetKsmps(csound) - This function
takes as its argument a pointer to an in-
stance of Csound and returns the number
of specified audio frames per control sam-
ple.

• csoundGetNchnls(csound) - This functi-
on takes as its argument a pointer to an
instance of Csound and returns the num-
ber of specified audio output channels.

• csoundGetNchnlsInput(csound) - This
function takes as its argument a pointer
to an instance of Csound and returns the
number of specified audio input channels.

• csoundStop(csound) - This function takes
as its argument a pointer to an instance
of Csound stops the current performance
pass.

• csoundReset(csound) - This function ta-
kes as its argument a pointer to an instance
of Csound and resets its internal memory
and state in preparation for a new perfor-
mance.

• csoundSetControlChannel(csound,
name, val) - This function takes as its
arguments: a pointer to an instance of
Csound, a string given by name, and
number given by val, it sets the numerical
value of a Csound control channel specified
by the string name.

The CsoundObj structure and associated
functions are compiled to Javascript using Em-
scripten and added to the compiled Csound Ja-
vascript library. Although this is not necessary,
keeping the compiled CsoundObj structure and
functions in the same file as the Csound library
makes it more convenient when including Cso-
undEmscripten within web pages.

4.1.2 The CsoundEmscripten
Javascript interface

The last component of CsoundEmscripten is the
CsoundObj Javascript class. This class provi-
des the public interface for interacting with the
compiled Csound library. As well as allocating



an instance of Csound this class provides me-
thods for controlling performance and setting
the values of Csound’s control channels. Addi-
tionally, this class interfaces with the Web Au-
dio API, providing Csound with samples from
the audio input bus and copying samples from
Csound to the audio output bus. Audio I/O
and the Csound process are performed in Javas-
cript using the Web Audio API’s ScriptProces-
sorNode. This node allows direct access to input
and output samples in Javascript allowing au-
dio processing and synthesis using the Csound
library.

Csound can be used in any webpage by crea-
ting an instance of CsoundObj and calling the
available public methods in Javascript. The me-
thods available in the CsoundObj class are:

• compileCSD(fileName) This method ta-
kes as its argument the address of a CSD
file fileName and compiles it for perfor-
mance. The CSD file must be present in
Emscripten’s virtual filesystem. This me-
thod calls the compiled C function Csoun-
dObj compileCSD. It also creates a Script-
ProcessorNode instance for Audio I/O.

• enableAudioInput() This method enables
audio input to the web browser. When cal-
led, it triggers a permissions dialogue in the
host web browser requesting permission to
allow audio input. If permission is gran-
ted, audio input is available for the running
Csound instance.

• startAudioCallback() This method
connects the ScriptProcessorNode to the
audio output and, if required, the audio
input. The ScriptProcessorNodes audio
processing callback is also started. During
each callback, if required, audio samples
from the ScriptProcessorNodes input are
copied into Csound’s input buffer and any
new values for Csound’s software channels
are set. Csound’s csoundPerformKsmps()
function is called and any output samples
are copied into the ScriptProcessorNodes
output buffer.

• stopAudioCallback() This method dis-
connects the current running ScriptPro-
cessorNode and stops the audio process
callback. If required this method also dis-
connects any audio inputs.

• addControlChannel(name,
initialValue) This method adds an

object to a Javascript array that is used
to update Csound’s named channel values.
Each object contains a string value given
by name, a float value given by initialValue
and additionally a boolean value indicating
whether the float value has been updated.

• setControlChannelValue(name, value)
This method sets the value of a named
control channel given by the string name
to the specified input value.

• getControlChannelValue(name) This
method returns the current value of a
named control channel given by the string
name.

4.1.3 Limitations

Using CsoundEmscripten, it is possible to add
Csound’s audio processing and synthesis capa-
bilities to any web browser that supports the
Web Audio API. Unfortunately this approach
of bringing Csound to the web comes with a
number of drawbacks.

Although Javascript engines are constant-
ly improving in speed and efficiency, running
Csound entirely in Javascript is a processor in-
tensive task on modern systems. This is especi-
ally troublesome when trying to run even mode-
rately complex CSD files on mobile computing
devices.

Another limitation is due to the design of
the ScriptProcessorNode part of the Web Au-
dio API. Unfortunately, the ScriptProcessorNo-
de runs on the main thread. This can result
in audio glitching when another process on the
main thread—such as the UI—causes a delay in
audio processing. As part of the W3Cs Web Au-
dio Spec review it has been suggested that the
ScriptProcessorNode be moved off of the main
thread23. There has also been a resolution by
the Web Audio API developers that they will
make it possible to use the ScriptProcessorNo-
de with web workers24. Hopefully in a future
version of the Web Audio API the ScriptPro-
cessorNode will be more capable of running the
kind complex audio processing and synthesis ca-
pabilities allowed by the Csound library.

This version of Csound also doesn’t support
plugins, making some opcodes unavailable. Ad-
ditionally, MIDI I/O is not currently suppor-

23https://github.com/w3ctag/spec-reviews/
blob/master/2013/07/WebAudio.md#
issue-scriptprocessornode-is-unfit-for-purpose-section-15

24https://www.w3.org/Bugs/Public/show_bug.cgi?
id=17415#c94



ted. This is not due to the technical limitations
of Emscripten, rather it was not implemented
due to the current lack of support for the Web
MIDI standard in Mozillas Firefox25 and in the
Webkit library26.

5 Beyond WebAudio: Audio
Applications with PNaCl

As an alternative to the development of audio
applications for web deployment in pure Javas-
cript, it is possible to take advantage of the Na-
tive Clients (NaCl) platform27. This allows the
use of C and C++ code to create components
that are accessible to client-side Javascript, and
run natively inside the browser. NaCl is descri-
bed as a sandboxing technology, as it provides a
safe environment for code to be executed, in an
OS-independent manner [Yee et al., 2009] [Sehr
et al., 2010]. This is not completely unlike the
use of Java with the Java Webstart Technology
(JAWS), which has been discussed elsewhere in
relation to Csound [Lazzarini et al., 2012b].

There are two basic toolchains in NaCl: nati-
ve/gcc and PNaCl [Donovan et al., 2010]. Whi-
le the former produces architecture-dependent
code (arm, x86, etc.), the latter is completely
independent of any existing architecture. NaCl
is currently only supported by the Chrome and
Chromium browsers. Since version 31, Chrome
enables PNaCl by default, allowing applications
created with that technology to work complete-
ly out-of-the-box. While PNaCl modules can be
served from anywhere in the open web, native-
toolchain NaCl applications and extensions can
only be installed from Google’s Chrome Web
Store.

5.1 The Pepper Plugin API

An integral part of NaCl is the Pepper Plu-
gin API (PPAPI, or just Pepper). It offers va-
rious services, of which interfacing with Javas-
cript and accessing the audio device is particu-
larly relevant to our ends. All of the toolchains
also include support for parts of the standard
C library (eg. stdio), and very importantly for
Csound, the pthread library. However, absent
from the PNaCl toolchain are dlopen() and fri-
ends, which means no dynamic loading is availa-
ble there.

25https://bugzilla.mozilla.org/show_bug.cgi?
id=836897

26https://bugs.webkit.org/show_bug.cgi?id=
107250

27https://developers.google.com/native-client

Javascript client-side code is responsible for
requesting the loading of a NaCl module. On-
ce the module is loaded, execution is controlled
through Javascript event listeners and messa-
ge passing. A postMessage() method is used by
Pepper to allow communication from Javascript
to PNaCl module, triggering a message handler
in the C/C++ side. In the opposite direction, a
message event is issued when C/C++ code calls
the equivalent PostMessage() function.

Audio output is well supported in Pepper
with a mid-latency callback mechanism (ca. 10-
11ms, 512 frames at 44.1 or 48 KHz sampling
rate). Its performance appears to be very uni-
form across the various platforms. The Audio
API design is very straightforward, although the
library is a little rigid in terms of parameters. It
supports only stereo at one of the two sampling
rates mentioned above). Audio input is not yet
available in the production release, but support
can already be seen in the development reposi-
tory.

The most complex part of NaCl is access to
the local files. In short, there is no open access
to the client disk, only to sandboxed filesys-
tems. It is possible to mount a server filesystem
(through httpfs), a memory filesystem (memfs),
as well as local temporary or permanent file-
systems (html5fs). For those to be useful, they
can only be mounted and accessed through the
NaCl module, which means that any copying
of data from the user disk into these partitions
has to be mediated by code written in the NaCl
module. For instance, it is possible to take ad-
vantage of the file HTML5 tag and to get data
from NaCl into a Javascript blob so that it can
be saved into the user’s disk. It is also possible
to copy a file from disk into the sandbox using
the URLReader service supplied by Pepper.

5.2 PNaCl

The PNaCl toolchain compiles code down to
a portable bitcode executable (called a pexe).
When this is delivered to the browser, an ahead-
of-time compiler is used to translate the code in-
to native form. A web application using PNaCl
will contain three basic components: the pexe
binary, a manifest file describing it, and a client-
side script in JS, which loads and allows interac-
tion with the module via the Pepper messaging
system.

5.3 Csound for PNaCl

A fully functional implementation of Csound for
Portable Native Clients is available from http:



//vlazzarini.github.io. The package is com-
posed of three elements: the Javascript modu-
le (csound.js), the manifest file (csound.nmf),
and the pexe binary (csound.pexe). The sour-
ce for the PNaCl component is also available
from that site (csound.cpp). It depends on the
Csound and Libsndfile libraries compiled for
PNaCl and the NaCL sdk. A Makefile for PNaCl
exists in the Csound 6 sources.

5.3.1 The Javascript interface

Users of Csound for PNaCl will only inter-
act with the services offered by the Javascript
module. Typically an application written in
HTML5 will require the following elements to
use it:

• the csound.js script

• a reference to the module using a div tag
with id=“engine”

• a script containing the code to control
Csound.

The script will contain calls to methods in
csound.js, such as:

• csound.Play() - starts performance

• csound.PlayCsd(s) - starts performance
from a CSD file s, which can be in ./http/
(ORIGIN server) or ./local/ (local sand-
box).

• csound.RenderCsd(s) - renders a CSD file
s, which can be in ./http/ (ORIGIN server)
or ./local/ (local sandbox), with no RT au-
dio output. The “finished render”message
is issued on completion.

• csound.Pause() - pauses performance

• csound.CompileOrc(s) - compiles the
Csound code in the string s

• csound.ReadScore(s) - reads the score in
the string s (with preprocessing support)

• csound.Event(s) - sends in the line events
contained in the string s (no preprocessing)

• csound.SetChannel(name, value) -
sends the control channel name the value
value, both arguments being strings.

As it starts, the PNaCl module will call a
moduleDidLoad() function, if it exists. This can
be defined in the application script. Also the fol-
lowing callbacks are also definable:

• function handleMessage(message): cal-
led when there are messages from Csound
(pnacl module). The string message.data
contains the message.

• function attachListeners(): this is cal-
led when listeners for different events are
to be attached.

In addition to Csound-specific controls, the
module also includes a number of filesystem fa-
cilities, to allow the manipulation of resources
in the server and in the sandbox:

• csound.CopyToLocal(src, dest) - copies
the file src in the ORIGIN directory to the
local file dest, which can be accessed at ./lo-
cal/dest. The “Complete”message is issued
on completion.

• csound.CopyUrlToLocal(url,dest) - co-
pies the url url to the local file dest, which
can be accessed at ./local/dest. Current-
ly only ORIGIN and CORS urls are allo-
wed remotely, but local files can also be
passed if encoded as urls with the web-
kitURL.createObjectURL() javascript me-
thod. The “Complete”message is issued on
completion.

• csound.RequestFileFromLocal(src)
- requests the data from the local file
src. The “Complete”message is issued on
completion.

• csound.GetFileData() - returns the most
recently requested file data as an ArrayOb-
ject.

A series of examples demonstrating this API
is provided in github. In particular, an introduc-
tory example is found on http://vlazzarini.
github.io/minimal.html.

5.3.2 Limitations

The following limitations apply to the current
release of Csound for PNaCl:

• no realtime audio input (not supported yet
in Pepper/NaCl)

• no MIDI in the NaCl module. However, it
might be possible to implement MIDI in
JavaScript, and using the csound.js functi-
ons, send data to Csound, and respond to
MIDI NOTE messages.

• no plugins, as pNaCl does not support
dlopen() and friends. This means some



Csound opcodes are not available as they
reside in plugin libraries. It might be possi-
ble to add some of these opcodes statically
to the Csound pNaCl library in the future.

6 Conclusions

In this paper we reviewed the current state of
support for the development of web-based au-
dio and music applications. As part of this, we
explored two approaches in deploying Csound
as an engine for general-purpose media softwa-
re. The first consisted of a Javascript version
created with the help of the Emscripten com-
piler, and the second a native C/C++ port for
the Native Client platform, using the Portable
Native Client toolchain. The first has the advan-
tage of enjoying widespread support by a varie-
ty of browsers, but is not yet fully deployable.
On the other hand, the second approach, whi-
le at the moment only running on Chrome and
Chromium browsers, is a robust and ready-for-
production version of Csound.

7 Acknowledgements

This research was partly funded by the Program
of Research in Third Level Institutions (PRTLI
5) of the Higher Education Authority (HEA) of
Ireland, through the Digital Arts and Humani-
ties programme.

References

Paul Batchelor and Trev Wignall. 2013. Be-
aglePi: An Introductory Guide to Csound on
the BeagleBone and the Raspberry Pi, as well
other Linux-powered tinyware. Csound Jour-
nal, (18).

Richard J. Boulanger, editor. 2000. The
Csound Book: Tutorials in Software Synthesis
and Sound Design. MIT Press, February.

Alan Donovan, Robert Muth, Brad Chen, and
David Sehr. 2010. PNaCl: Portable Native
Client Executables. Google White Paper.

John ffitch, James Mitchell, and Julian Pad-
get. 2007. Composition with sound web ser-
vices and workflows. In Suvisoft Oy Ltd,
editor, Proceedings of the 2007 International
Computer Music Conference, volume I, pages
419–422. ICMA and Re:New, August. ISBN
0-9713192-5-1.

Tarmo Johannes and Kita Toshihiro. 2013.

”
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ABSTRACT

Languages for music audio processing typically offer a
large assortment of unit generators. There is great dupli-
cation among different language implementations, as each
language must implement many of the same (or nearly the
same) unit generators. Csound has a large library of unit
generators and could be a useful source of reusable unit
generators for other languages or for direct use in applica-
tions. In this study, we consider how Csound unit genera-
tors can be exposed to direct access by other audio process-
ing languages. Using Aura as an example, we modified
Csound to allow efficient, dynamic allocation of individ-
ual unit generators without using the Csound compiler or
writing Csound instruments. We then extended Aura using
automatic code generation so that Csound unit generators
can be accessed in the normal way from within Aura. In
this scheme, Csound details are completely hidden from
Aura users. We suggest that these techniques might elim-
inate most of the effort of building unit generator libraries
and could help with the implementation of embedded au-
dio systems where unit generators are needed but a full
embedded Csound engine is not required.

1. INTRODUCTION

Csound [1, 2] is a Music-N-based computer music system
with a long history. Over time, it has been recognized that
the Csound functionality could be valuable in forms other
than the monolithic Csound command-line application. An
embeddable engine evolved that can be used by desktop,
mobile, and web-based applications. Especially with the
continuing growth of Csound opcodes, the equivalent of
Music-N unit generators, Csound offers a large library of
signal processing elements. While these are available by
using Csound as a whole or through an embedded Csound
engine, there are cases where one might like to use indi-
vidual opcodes or access the opcode library through alter-
native audio frameworks.

This paper will discuss research into the use of Csound
opcodes within the distributed, realtime object and mu-
sic system, Aura [3]. We will analyze how opcodes work
within Csound, see what is necessary to use them outside
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of Csound, and show steps taken to recontextualize op-
codes to function within Aura. Finally, we will explore
future directions for this work and how it can be useful
for research and music systems design. The main result
of this work is a new interface that exposes direct access
to Csound opcodes and the wealth of signal processing re-
sources they represent. 1 We also offer a detailed descrip-
tion of the Csound opcode and instrument architecture.

2. RELATED WORK

Previous research has taken a different approach to the
problem of unit generator code reuse. Several efforts have
been made to create abstract representations of the sig-
nal processing within unit generators, allowing code gen-
erators to convert these high-level descriptions into im-
plementations. The description can be as simple as a set
of parameters and state variables and an inner loop writ-
ten in C. For example, the RATL system [4] can generate
unit generators for at least 4 different systems. Faust [5]
is a functional programming language for signal process-
ing that can be compiled into C++ implementations for a
dozen or more systems. Finally, plug-in standards such as
Steinberg’s VST and LADSPA [6] provide a standard API
for dynamically loadable audio signal processing modules.
However, these modules typically have higher overhead
than unit generators and may have graphical interfaces, so
they usually contain larger building blocks such as entire
virtual instruments.

3. ANALYSIS OF CSOUND OPCODES

Csound’s system design is based on two key abstractions:
Instruments, which represent a time-schedulable series of
unit-generators, and Opcodes, the unit-generators that op-
erate to generate or process values. These abstractions
have a number of facets that must be considered in order to
understand how opcodes can be used either inside or out-
side of the Csound framework. These facets include con-
text, definition, allocation, initialization, performance, and
destruction.

1 Csound 6.02.0 and Aura 4 were used for this research. Their
project pages are available at http://www.github.com/csound/
csound and http://sourceforge.net/projects/aurart/,
respectively.



3.1 Context

When a user compiles and runs Csound orchestra language
code, a series of steps take place that contextualizes each
architectural layer. First, a CSOUND structure is allocated.
This structure contains the complete state for a Csound
engine instance. This includes current definitions of in-
struments and opcodes, live instances of instruments and
opcodes, current run-time state, and management of re-
sources such as function tables. Certain properties, such
as the current sampling rate and block size (called ksmps
in Csound), are set in the CSOUND structure and referenced
globally.

The CSOUND structure also contains function pointers for
a number of functions that are used by opcodes as well as
by host programs. These include such things as allocat-
ing memory and other resources, querying state, process-
ing FFT data, and so on. It is important to note that an
opcode’s initialization and performance functions can and
do use the data and function pointers within the CSOUND
structure.

After the CSOUND structure is initialized, Csound Or-
chestra code is then compiled. This reads in definitions
of instruments and user-defined opcodes, as well as global
resources and opcodes to run once at the start of Csound’s
performance. At this point, the CSOUND structure con-
tains definitions of instruments and user-defined opcodes,
but does not yet contain any instances of those definitions.

Next, Csound score code may be read in and processed.
This information will be used to trigger events at runtime,
including instantiation or forced destruction of instrument
instances, creation of function table resources, and ending
the score (and thus stopping the Csound engine).

After all compilation is done, runtime begins. Before the
initial run, opcodes found in the global code space (com-
monly called instrument 0) are executed. Next, Csound
runs one audio block at a time. In that time, instrument in-
stances may be scheduled to be instantiated or deactivated,
and active instances will be run. Csound does not instan-
tiate, deactivate, or run opcodes by themselves, but rather
only as part of an instrument instance.

In addition to the CSOUND structure, opcodes may also
read in information from the instrument instance they are
a part of. This may include information such as if the in-
stance of the instrument was initialized by MIDI, whether
the instrument is in a held or releasing state, duration of
note, and so on. More importantly, the value that is most
often used from the instrument instance context is the lo-
cal ksmps (buffer size) for the instrument instance. As
Csound allows for setting local ksmps per instrument in-
stance, all opcodes that work with audio-rate signals use
the local ksmps value when calculating how much audio to
render or process.

3.2 Definition

Csound opcodes are defined using the OENTRY data struc-
ture, as seen in Figure 1.

The data structure is made up of:

typedef struct oentry {
char *opname;
uint16 dsblksiz;
uint16 flags;
uint8_t thread;
char *outypes;
char *intypes;
int (*iopadr)(CSOUND *, void *p);
int (*kopadr)(CSOUND *, void *p);
int (*aopadr)(CSOUND *, void *p);
void *useropinfo; /* user opcode

parameters */
} OENTRY;

Figure 1. Definition of OENTRY struct.

opname the name of the opcode as used in Csound or-
chestra code

dsblksize the size in bytes of the data structure to use with
the opcode

flags bit flag that describes resource reading/writing de-
pendencies, used by Csound’s automatic paralleliza-
tion algorithm

thread bit flag that describes if the opcode has init, k-rate,
and a-rate performance functions

outypes a string description of the types used for the out-
put arguments of the opcode

intypes a string description of the types used for the input
arguments of the opcode

iopadr, kopadr, aopadr function pointers to use for ini-
tialization and performance of the opcode

useropinfo additional data used for user-defined opcodes

An OENTRY describes an opcode, but is not the instance
of an opcode used at run-time. Instead, the information
from an OENTRY is used to create, initialize, and perform
an OPDS data structure, which is the active instance of an
opcode. This is similar to the difference between a class
definition and and object instance in Object-Oriented Pro-
gramming.

Figure 2 shows the OENTRY definition for the oscils op-
code.

{ "oscils", S(OSCILS), 0, 5, "a", "iiio",
(SUBR)oscils_set, NULL, (SUBR)oscils },

Figure 2. OENTRY definition for the oscils opcode.

3.3 Allocation

The data structure for an opcode is allocated with a size
equal to the OENTRY’s dsblksize. The value for a dsblksize
is set using sizeof() with a struct that will be passed
into the opcode’s initialization and performance functions.
Note that it is the convention in Csound that the struct
always starts with its first member being an instance of
OPDS. This allows all opcode instances to be cast to OPDS
and handled generically within the engine. Following the



OPDS are a set of pointers, one for each of the output
and input arguments. These argument pointers are set by
Csound at runtime, using the information defined in the
intypes and outypes fields of the OENTRY. After the
pointers for arguments to the opcode come any internal
state data that the opcode will use between calls to its per-
formance function. This layout of data is shown in Figure
3.

/* oscils opcode struct */

typedef struct {
OPDS h;
/* opcode args */
MYFLT *ar, *iamp, *icps, *iphs, *iflg;
/* internal variables */
int use_double;
double xd, cd, vd;
MYFLT x, c, v;

} OSCILS;

Figure 3. Definition for OSCILS struct, used for the oscils
opcode.

Csound does not allocate memory for an opcode individ-
ually, but rather allocates a single large memory block for
an entire instrument instance. The compiler tracks the to-
tal amount of memory required for an instance of an instru-
ment. The total is a sum of the size of an INSDS struct, the
dsblksize’s of opcodes used within the instrument, and the
sizes of types for the variables defined for the instrument.
Upon allocation of the total memory block, the memory
is then divided up using pointers to addresses within the
block. As shown in Figure 4, the initial part of the memory
is used as an instance of INSDS (the data structure for an
instrument instance), the second part of the memory is used
as variables, and the last part is used as opcode instances.

INSDS Variables Opcodes

Figure 4. Memory block diagram for a Csound instrument
instance.

The information for what opcodes and what variables are
used in the instrument instance, as well as how to wire
up the memory are all gathered up during the compilation
phase. That information is stored with the instrument def-
inition (the INSTRTXT data structure). Csound will allo-
cate, then wire up the memory before any initialization of
the instrument instance occurs.

3.4 Initialization

Once the memory is allocated for an instrument and wired
together by setting pointers, Csound runs through the list of
opcodes and calls initialization functions (if the opcode has
an init-function). As shown in Figure 1, the iopadr has a
function signature where it takes in a pointer to a CSOUND
struct, as well as a void*. In general, the function used

for the opcodes will have their second argument already
cast to the type of the opcode’s data structure. Figure 5
shows the initialization function of oscils with a second
argument of OSCILS*, not void*.

int oscils_set(CSOUND *csound, OSCILS *p);

Figure 5. Function prototype for oscils opcode’s initial-
ization function.

This step in the opcode’s lifecycle is generally used to
pre-compute values that can be reused at run-time, as well
as allocate any further resources that the opcode may need.
The opcode will use values set in the input-argument point-
ers, as well as write values out to the output-argument point-
ers.

3.5 Performance

Csound’s kperf() function is used to perform one buff-
er’s worth of audio. In this time, active instances of an
instrument are performed by running through each opcode
for that instrument calling their performance function. This
will map to the opcode’s kopadr or aopadr function
pointer, depending on what pointer was set for use during
initialization. 2 The function is called with the same set of
arguments as discussed in Section 3.4.

3.6 Destruction

For opcodes, there are two aspects to destruction. The first
may be considered a form of deinitialization when an in-
stance of an instrument completes (for example, when a
note stops). In this scenario, any opcode that has registered
a deinitialization callback will have that callback executed.
The callback may be used to perform cleanup of resources
that might be valid only for that instance.

The other aspect to destruction is when the memory for
an instance of an instrument is being freed. Within a score
section, Csound does not destroy instances of instruments
when they become inactive and deinitialized. Rather, the
inactive instance is left in a pool and made available for
reuse and reinitialization. The memory for an instance is
actually freed only at the end of a score section or at the
very end of score rendering. When it is freed, all opcode
instances for the instrument are included as they are sub-
parts of the larger instrument instance memory, as shown
earlier in Figure 4.

4. RECONTEXTUALIZING THE OPCODE

By analyzing how Csound uses opcodes in Section 3, the
following points were understood to be necessary for using
opcodes outside of the Csound engine:

1. Opcodes are defined in OENTRYs. We will need to
reference the OENTRY to be able to allocate, instan-
tiate, and perform an opcode.

2 Csound has the ability to change what performance function is used
by an opcode. This is done to optimize runtime code performance.



2. The Csound engine does not allocate an opcode’s
data structure on its own, but rather as part of a larger
block of memory for an instance of an entire instru-
ment. However, we should be able to allocate mem-
ory to use for the data structure on its own, using the
dsblcksize field from the OENTRY.

3. Besides the opcode’s data structure, opcodes may
also rely on three other data structures for operation.
These include the CSOUND, INSDS, and OPDS data
structures. As OPDS is already part of the opcode
data structure, we will not have to handle allocation
specifically outside of allocation of the opcode data
structure. On the other hand, we will need to allo-
cate an instance of CSOUND and INSDS to use the
opcode.

4. The CSOUND structure is used as an argument to op-
code’s functions, as is the opcode’s data structure.
The INSDS will have to be wired to the OPDS data
structure in the opcode. Additionally, opcode input
and output arguments are allocated outside of the op-
code data structure, and pointers are set within the
data structure to make the values from the arguments
available for use by the opcode’s processing func-
tions.

Understanding the above, we set out to create a basic set
of C++ classes that could encapsulate a single opcode for
use outside of Csound. To do this, we have to support the
entire lifecycle of opcodes–allocation, initialization, per-
formance, and destruction. We also have to honor the as-
pects of Csound’s internal design to allow the opcode to
perform as if it were running within Csound. Additionally,
we want the design to be flexible enough to function within
any desired music system context, and in particular, within
Aura.

From here, we designed two layers of classes. The first
layer is a generic Opcode layer capable of creating opcode
instances that can be used on their own. The second layer
builds upon the first to use those opcodes within Aura.
While both layers were developed within the Aura 4 code
base, the first layer was developed with the intention that it
could be used within other applications, and could even be
moved into Csound’s code base as part of its public API.

4.1 OpcodeFactory and CSOpcode

The generic Opcode layer uses two classes,
OpcodeFactory and CSOpcode. OpcodeFactory
is a utility class that handles allocation and pre-setup of
CSOpcodes. In its constructor, it allocates and initializes
a single CSOUND and INSDS that will be shared by all
CSOpcodes. The CSOUND and INSDS within
OpcodeFactory uses a ksmps block size of 32 samples,
matching the default value of Aura. 3 By creating a sin-
gle instance of CSOUND and INSDS, all opcode instances
share the same world-view as if they were part of a sin-
gle Csound instrument instance. This was determined to

3 For the purpose of research this was adequate to continue develop-
ment, though this should be made configurable for general use.

be enough to allow the target set of opcodes to function
properly when run on their own.

Outside of the constructor and destructor, the
OpcodeFactory class has one public method, shown in
Figure 6.

CSOpcode* createCsOpcode(char* opName, char*
outArgTypes, char* inArgTypes);

Figure 6. Public methods for OpcodeFactory class.

The createCSOpcode()method requires that the call-
ing code pass in the exact name, intypes, and outypes
strings that matches those of the OENTRY to use for the op-
code. This design places the resposibilty for choosing what
version of an opcode (in the case of using a polymorphic
opcode) on the caller. We chose this design as it worked
best for the Serpent code generation system discussed fur-
ther below in Section 5.4.

With the given arguments, the OpcodeFactory will
search the list of opcodes in the CSOUND structure that
matches those parameters. If a valid OENTRY is found,
createCSOpcode() calls the CSOpcode constructor
(shown in Figure 7) to create a CSOpcode instance, us-
ing the shared CSOUND and INSDS structures, as well
as the found OENTRY. The factory will then return the
CSOpcode to the factory’s calling code. If a valid OENTRY
is not found, the factory will instead return NULL.

CSOpcode(CSOUND* csound, INSDS* insds, OENTRY*
oentry);

Figure 7. Constructor for CSOpcode class.

The CSOpcode constructor allocates and sets up an in-
stance of a Csound opcode. It stores a reference to the
CSOUND structure to later pass in as an argument for the
opcode’s initialization and performance functions. It also
allocates the opcode data structure and wires it up to the
shared INSDS instance. Afterwards, using the the
OENTRY’s input and output argument type string, it deter-
mines the storage requirements in terms of Csound
MYFLT’s 4 . Once the storage requirements are calculated,
a block of memory is allocated for the total size of the in-
put and output arguments (this is held in the MYFLT* data
member of the CSOpcode class). The argument pointers
for the opcode are then configured to point to various ad-
dresses within the data block.

Note that the input and output argument types defined in
an OENTRY describe allowable types. These types may
be concrete types (i.e. i-, k-, or a-rate variables), optional
argument of type x (i.e. the type specifier "o" means an
optional i-rate variable that defaults to 0), or var-arg of type
x (i.e. the type specifier "z" means an indefinite list of k-
rate arguments). 5

4 In Csound, MYFLT is a macro defined to be either a float or double.
5 For more information about Csound’s type specifications, please see

Engine/entry1.c and Engine/csound_standard_types.c files, found within
the Csound source code.



As some of the type specifiers may indicate types which
have different storage requirements (i.e may be of type k
or type a, the first being a single scalar value, and the latter
being a vector value), the size of the possible types with the
largest value is used. This ensures that there will be enough
memory for the type that is actually used, regardless of
which type is chosen.

4.2 Argument Handling

Once a CSOpcode is returned from an OpcodeFactory,
the memory for the opcode data structure is ready to be
used, but arguments for the opcode have not yet been set.
Pre-configuring the opcode data structure to point to pre-
allocated memory for arguments allows for two different
approaches to argument handling (the methods for these
approaches are shown in Figure 8). The first approach al-
lows setting of opcode arguments by value. Using these
methods will copy values to and from the data member of
the CSOpcode class. Because the opcode data structure
is configured to point to the values held in the CSOpcode
data member, those values will be used when the opcode
initialization and performance functions are executed.

void setInArgValue(int index, void *mem, size_t
size);

size_t getOutArgValue(int index, void* mem);
void setInArgPtr(int index, void* mem);
void setOutArgPtr(int index, void* mem);

Figure 8. Methods for argument handling in CSOpcode.

The second approach allows for directly setting the argu-
ment pointer in the opcode data structure to an address sup-
plied by the CSOpcode client. This approach assumes the
client has allocated memory and that the size of the mem-
ory is equal in size to the space requirement for the argu-
ment that the opcode expects. For example, if the opcode
expects an a-rate argument, it will expect that argument
will point to memory equal to the size of MYFLT× ksmps
block size. This approach removes the need to copy the
value if the value is already allocated elsewhere and can
lead to more efficient processing. Figure 9 shows a dia-
gram of how the two approaches handle argument pointers.

External Data

Opcode

Arg Data

CSOpcode

Figure 9. Memory diagram for CSOpcode and argument
handling.

4.3 Initialization, Performance, and Destruction

Once arguments have been set by value or by reference, the
opcode data structure is ready for initialization. CSOpcode
exposes two public methods for initialization and perfor-
mance (see Figure 10). opInit() delegates to calling the
function pointer set as the iopadr in the OENTRY, pass-
ing in the CSOUND structure and opcode data structure.
This is the same function as would be called if an op-
code was being initialized within Csound’s engine. The
opPerform() function delegates similarly to the
opInit() function, but instead uses either the kopadr
or aopadr function pointers.

int opInit();
int opPerform();

Figure 10. Opcode initialization and performance func-
tions in CSOpcode.

Once an init and/or performance function is called, the
value in the output argument pointers for the opcode may
be read with the updated value generated from the opcode.
This can be done by either retrieving the value if using
the set-by-value argument methods, or reading the memory
directly for the pointer set on the opcode data structure.

When it is time to finish using the opcode, the
~CSOpcode() destructor function will handle releasing
memory for the Csound opcode and cleaning up the inter-
nal data allocated by CSOpcode.

The OpcodeFactory and CSOpcode class design al-
lows for allocating, initializing, performing, and destroy-
ing an opcode instance, separate from its normal usage
within a Csound engine. This completes the general usage
layer of abstraction. Next we will discuss how this layer is
used with Aura’s object model and runtime system.

5. USING CSOUND OPCODES IN AURA

To use Csound opcodes in Aura, we must first analyze the
differences between the abstractions and designs. Next,
we must determine how to map concepts from Csound to
Aura. Finally, we must develop a means to bridge the two
together.

5.1 Aura Concepts

In Aura, there are two main abstractions for audio related
code: Instr and UGen. These roughly map to Csound
instruments and opcodes, but have features unique to Aura.
Similar to an opcode, a UGen defines a signal generator or
processor. Examples include oscillators, signal summers,
and filters. Also like an opcode, UGens are used as part of
an Instr. An Instr is basically a container for one or
more UGens, much like Csound instruments contain op-
codes.
Instr however, differs somewhat from Csound instru-

ments. Instrs can use other Instrs as inputs and out-
puts, and the network of Instrs can be composed to-
gether within the Audio Zone at runtime, often under the



control of programs written in the scripting language Ser-
pent [7].

In regards to the two abstractions, the CSOpcode class
developed in Section 4 functions much like an Aura UGen,
and would be used primarily within C++ where input and
output data can easily be allocated and managed. How-
ever, to allow users to instantiate opcodes dynamically,
possibly by writing code in Serpent, we need to wrap each
CSOpcode within an Aura Instr. Rather than write
many Instrs by hand, or even generate many Instr
subclasses automatically, we developed a special Instr
class that uses both OpcodeFactory and CSOpcode to
interact with Csound, handle exchange of values between
CSOpcode and clients of the Instr class, as well as
function normally as any other Instr class would within
Aura. Additionally, we developed the appropriate Serpent
code to instantiate and use this new Instr class.

Figure 11 shows the design between the Csound, Opcode,
and Aura layers.

Csound CSOUND INSDS OENTRY

Opcode CSOpcode

Aura CsoundOpcode Serpent Wrapper
C++ Serpent

Figure 11. Architecture showing relationship between
Csound, Opcode, and Aura layers.

5.2 Code Generation

Aura uses a preprocessing script to aid development. The
preprocessor reads comments in .h (header) files and au-
tomatically generates C++ code and declarations for some
Instr methods and for remote method invocation as well
as Serpent wrapper code for instantiating the Instr. For
this project, we designed a special Instr class called
CsoundOpcode that can dynamically create a CSOpcode
at initialization.

For native Aura Instrs, there is a one-to-one mapping
of an Instr to its Serpent code wrapper. In the case of
CsoundOpcode, the decision was made to have a one-
to-many mapping. This means that the the user writing
Serpent code would be presented with many Csound op-
codes to use, but that all of the Serpent wrappers would use
instances of the same CsoundOpcode class. To achieve
this, initialization steps were added to CsoundOpcode
not found in other Instr classes. Also, a second Serpent
generator script was designed to generate the opcode map-
pings that would reuse the generated CsoundOpcode Ser-
pent code. More details of each follow below.

5.3 CsoundOpcode

The CsoundOpcode class is a sub-class of Aura’s Instr
class. As mentioned in Section 5.1, the class uses the Op-
code layer to create and use CSOpcodes to bridge Aura

Instr usage with Csound’s opcode usage. In general,
most of the Aura Instr lifecycle maps closely to Csound’s
opcodes, and CsoundOpcode simply delegates actions
to CSOpcode.

The unique aspect of CsoundOpcode is its multi-step
initialization. For a native Aura Instr, when Serpent
code sends a message to create an instance of an Instr,
the Instr is first constructed using its constructor, then an
init_io() function is called as a means to set up argu-
ment pointers between Instrs, as well as perform other
initialization. However, to accommodate the generic de-
sign of CsoundOpcode to map to multiple Serpent rep-
resentations, the initialization steps of CsoundOpcode
were modified.

First, the constructor for CsoundOpcode takes no ar-
guments. At construction time, it only allocates the ba-
sic data for the class, but as of yet does no initialization.
Next, the init_io() function just calls the parent class’s
init_io()with zero inputs and outputs. Instead of mak-
ing the usual connection to other instruments, we will wait
to do it at a later time.

Following the standard construction and initialization, a
number of special methods were added. First,
set_opcode() is a method used to set what Csound op-
code the CsoundOpcode class should use. This passes
in the exact opcode name, input arg string, and output arg
string that should be matched against in the list of OENTRYs
available from Csound. This information is then used by
OpcodeFactory to create an instance of CSOpcode.
Next, set_a_input(), set_b_input(), and
set_c_input() functions are called. Each take in an
int index for what argument to set by arg position, and an
Aura object that should correspond to the Aura a, b, or c
type of the function called. (Aura types are described be-
low.) Once all inputs have been set, a final
init_complete() method is called. This then per-
forms the operations that a native Instr would in its
init_io() function, setting up argument pointers.

While care must be taken to call these functions in a spe-
cific order, the user does not have to particularly worry
about it as the generated Serpent code takes care to do all
of the operations correctly. To the user, the Serpent code
looks very much like any other Serpent class that wraps an
Aura Instr.

5.3.1 Mapping Csound and Aura types

An important part of allowing CsoundOpcode to func-
tion within Aura as an Instr is mapping of Aura types
to Csound types. In Aura, there are three types: a (audio-
rate vector), b (control-rate scalar), and c (constant scalar).
Fortunately, there is a direct mapping of these types to
Csound’s a-, k-, and i-type variables, respectively. Not
only are they related in purpose, but they also match in
storage requirements, if Csound is compiled with MYFLT
set to float.

In general, Aura Instrs share values directly by refer-
ence, sharing pointers between Instr instances. When
an Instr goes to process audio, it will first call the pro-
cessing methods for the Instrs it depends on, then use



the values shared through the pointers directly. For flexi-
bility in CsoundOpcode, code was written to check the
sizeof(MYFLT) and compare to the sizeof(float).
If these match, then CsoundOpcode will use the stan-
dard Aura practice and share pointers, using the correspond-
ing CSOpcode methods for setting and getting arguments
by reference. If these do not match, this will be detected
and extra work will be done to read and convert values to
and from Csound. In this case, the CSOpcode methods
for setting and getting arguments by value are used. This
gives the flexibility for the Aura user to use the
CsoundOpcode class with either the double or float ver-
sion of Csound. 6

Another important thing to note is that while there are
corresponding types in Csound for Aura’s types, the op-
posite is not true. Csound has other types for which Aura
does not have a corresponding type. These include things
like f-sig (phase vocoder analysis signals) and array data
types. These types can be accessed through C++ but they
are not automatically available using Serpent. This then
restricts what opcodes can be supported by automatically
generated code, as described in the following section.

5.4 Generating Serpent Code

The design of the CsoundOpcode Instr enables the
use of Csound opcodes from Aura. However, to make this
convenient and safe to use, we need to generate Serpent
code that will create CsoundOpcode instances and con-
figure them for the desired opcode. Additionally, we want
to make what the user sees look like any other Aura Ser-
pent code, with the Csound opcodes looking and function-
ing like native Aura Instrs in Serpent.

A Python script was developed to generate stubs in Ser-
pent that encapsulate the operations and parameters needed
to instantiate Csound opcodes. Python was used because
Csound has an API available to Python. We use the API to
query the available opcodes in Csound and then use that in-
formation to generate Serpent code. The script takes care
not to generate Serpent classes for opcodes where argu-
ment types are not available in Aura. Also, a whitelist
and blacklist system was added for special cases where
OENTRY’s were marked up differently than what was doc-
umented in the manual, as well as for skipping generation
for opcodes that really make sense only in the context of
Csound instruments (i.e. opcodes for gotos, if-branching).

One other adjustment was required for Csound opcodes
that are polymorphic based upon their output argument
types. To handle these cases of polymorphism, the actual
name of the generated class has the output types appended
to them, i.e. "Linseg_a", "Linseg_k". This puts the burden
on the user to understand and know what version of the op-
code to call, but this was vastly simpler than implementing
a type inference system.

The output from the script is a single Serpent file called
csound_opcodes.srp. Using this code, end users can now
avail themselves of Csound opcodes within their projects.

6 In principle, one could also define Aura’s sample type to be double
and do all DSP in double precision.

The following section demonstrates usage of the generated
Serpent script.

5.5 Example Code

Figure 12 shows a simple example making use of Csound
opcodes within Aura, using the Serpent scripting language.
The code begins by loading csoundopcode_rpc.srp, which
was generated from the CsoundOpcode class. The infor-
mation in that file is in turn used by the csound_opcodes.srp
script, discussed in Section 5.4. This is all that is necessary
for Aura Serpent users to begin to use Csound opcodes.

load "csoundopcode_rpc"
load "csound_opcodes"

def adsr(a, d, s, r, u)
[a, 1, a + d, s, u, s, u + r, 0]

tone_bps = adsr(0.01, 0.1, 1.0, 0.5, 1.0)

def csTest(amp, freq):
tone = Mult(Moogladder(Vco2(1.0,

Linseg_k(freq, 0.4, freq * 2, 0.4,
freq, 0.1, freq)),

2000, 0.9), Env(tone_bps), t)
tone.name = "moogladder"
tone.play()

rtsched.cause(4.0, nil, 'csTest', 0.5, 400)
rtsched.cause(6.0, nil, 'csTest', 0.5, 600)
rtsched.cause(8.0, nil, 'csTest', 0.5, 700)

Figure 12. Example Serpent code using Csound opcodes
and Aura Instrs.

The next block of code defines a utility function that will
pack a list with values appropriate for use with the Aura
Env Instr. Then, tone_bps is defined to be used glob-
ally by the rest of the script.

Next is the csTest() function. Given an amplitude and
frequency, it will create an enveloped, filtered, saw-tooth
sound with a modulated frequency. It will last the duration
of Env Instr, using the values from tone_bps. After
creating the sound generator, it will call play() on it to
schedule it for playback. Note that Mult and Env map to
native Aura Instr classes, while Moogladder, Vco2,
and Linseg_k all map to CsoundOpcode Instrs. The
CsoundOpcode-based classes look and act in the exact
same manner as the native Aura Instr-based classes. (For
reference, Figure 13 shows an equivalent Csound ORC
code example, written using Csound 6 function-call syn-
tax style.)

The final part of the script uses rtsched() to schedule
three events. It uses the csTest() function to generate
and play Instr instances at times 4.0, 6.0, and 8.0. These
events will play using starting frequencies of 400 hz, 600
hz, and 700 hz.

6. CONCLUSIONS

This paper has analyzed how Csound opcodes are used in
Csound. We developed two layers of code to allow using
opcodes outside of the Csound engine in general, as well as
to use opcodes within the Aura music system. Bridging to-
gether two different music systems has shown us that while



0dbfs=1
nchnls=1

instr 1

iamp = p4
ifreq = p5

out(moogladder(
vco2(1.0,
linseg(ifreq, 0.4, ifreq * 2, 0.4,
ifreq, 0.1, ifreq)), 2000, 0.9)) *

adsr(0.01, 0.1, 1.0, 0.5)))

endin

Figure 13. Csound ORC example using function-call syn-
tax.

system designs may differ, there are points of commonality
that would encourage reuse between systems. The end re-
sult is a working example where Csound opcodes are used
within Aura in a way that is natural for the Aura user.

For the future, we can see the generic Opcode layer dis-
cussed in Section 4 becoming a part of Csound’s own pub-
lic API. For other music systems developers, we see the
possibility of Csound becoming a library and resource upon
which to build larger systems. Within Csound itself, the
ability to instantiate and wire up opcode instances individ-
ually invites experimentation with live signal graph mod-
ifications. This would allow a number of use cases to be
addressed where Csound cannot currently be used, such as
patcher applications with live graph modifications. Also,
having an alternate compilation method within Csound that
allocates opcode instances individually might facilitate the
development of debugging facilities such as watches, prob-
ing, and logging.
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ABSTRACT
This paper discusses the presence of the sound and music
computing system Csound in the modern world-wide web
browser platform. It introduces the two versions of the sys-
tem currently available, as pure Javascript code, and as por-
table Native Client binary module with a Javascript inter-
face. Three example applications are presented, showing so-
me of the potential uses of the system. The paper concludes
with a discussion of the wider Csound application ecosys-
tem, and the prospects for its future development.

Keywords
Music Programming Languages; Web Applications;

1. INTRODUCTION
In a recent paper[6], we have introduced two ports of the
Csound sound and music computing system to the web-
browser platform. In the first one, the Csound codebase was
adapted and compiled to a subset of the Javascript language,
asm.js, via the Emscripten compiler [11]. The second port
employed the Portable Native Client (PNaCl)[3] technolo-
gy to provide a platform for the implementation a Csound
API-based Javascript frontend.

While the former is available for a wider range of inter-
net browsers, as it is based on pure Javascript, the second
project takes advantage of the near-native performance of
PNaCl to provide a very efficient implementation of the
system. Other significant differences between the two offe-
rings are notable: the existence of pthread support in PNaCl
versus the single-thread nature of pure Javascript; the de-
pendence on Web Audio ScriptProcessorNode and audio IO
in the Emscripten-based Csound versus the Pepper API-
based audio and threading offered by PNaCl; and finally,
the fact that the pure-Javascript implementation functions
as a wrapper to the Csound API, whereas the PNaCl versi-
on provides a higher-level Javascript frontend to the system,
with no direct access to the API.

Csound on the web browser is, therefore, an attractive opti-
on for audio programming targeting applications that run on
clients (as opposed to server-side solutions). It offers an al-
ternative to Adobe Flash (used, for instance in AudioTool1,
Patchwork2, and Noteflight3), as well as standard HTML
(used by the BBC Radiophonic workshop recreations4, Gib-
berish5, and WebPd6). It also fits with the development of
an ecosystem of applications based on Csound, which al-
lows users to easily move from one platform to another:
desktop, mobile[8][10][7], small and custom computers[1],
servers[4][5] (see also http://www.researchcatalogue.net/

view/55360/5536 for another application example), and now
web clients. This paper is organised as follows: we will start
with a brief overview of the two implementations of Csound
for web browsers; this is followed by a discussion of some
key example applications; we then explore the concept of
the Csound application ecosystem and its significance; the
final section shows the directions we intend to take the cur-
rent ideas, and how they fit in the overall development of
the system.

2. BROWSER-BASED CSOUND: OVER-
VIEW

The two implementations of Csound for web browsers use
distinct technologies. The first is a Javascript-only port,
created with the Emscripten compiler; the second is a
C/C++-based application, which uses the PNaCl toolchain
and the its ahead-of-time compiler module, which currently
exists only on Chrome and Chromium browsers.

2.1 Javascript Csound
Csound can now be run natively within any major web brow-
ser as a Javascript library using Emscripten. Emscripten can
translate from LLVM bitcode into Javascript enabling pro-
grams written in a language supported by the LLVM compi-
ler, such as C, to be compiled into Javascript and executed
on a web page. Emscripten translates the LLVM bitcode in-
to a strict subset of Javascript called asm.js. By disallowing
some features of the language, Javascript engines can per-
form optimisations not possible using standard Javascript,

1http://www.audiotool.com/
2http://www.patchwork-synth.com
3http://www.noteflight.com
4http://webaudio.prototyping.bbc.co.uk/
5Available at https://github.com/charlieroberts/
Gibberish, discussed in [9]
6https://github.com/sebpiq/WebPd



which can result in significant performance gains.

As it is written entirely in C and has only one required
external dependency, Csound makes an ideal codebase for
adding Javascript as a build target using Emscripten. The
only external library required to build Csound is libsndfile.
This library is used by some of Csound’s built-in opcodes
and the core system for saving and opening various sound
file formats. In order to build and run Csound successfully
it is first necessary to compile libsndfile into a Javascript
library. Emscripten comes with a number of python scripts
which set the necessary environmental variables for the build
configuration and compilation of software projects into Ja-
vascript. These scripts can be used to invoke the libsndfile
configure script and make file which compile the libsndfile
source code into an asm.js library. The resulting Javascript
library can be linked to Csound during the build process.

Csound uses the CMake build system to manage the compi-
lation of binaries for supported platforms. Fortunately, Em-
scripten provides support for using CMake and comes with
a toolchain file which sets the required toolchain variables
for project compilation using Emscriptens compiler.

In order for Csound to compile successfully, there are also
some minor changes which have to be made to the source
code. Csound has the option of using threads for a number of
operations during runtime, but as Emscripten does not sup-
port trans-compiling code bases which make use of threads,
this functionality is removed during the build configurati-
on step. Additionally, many of the features available in the
Desktop build of Csound are also disabled in the Javascript
library which do not currently make sense within a web page
context such as JACK support. The plugin opcodes such as
Fluidsynth and STK are also unavailable at this time but
may be included in future releases.

Communicating with the Csound process is done through
the provided C API. This allows an external application to
control the Csound process in a number of ways, including
compiling instruments, sending control signals and accessing
Csound’s audio input and output sample buffers. Emscripten
provides wrapper functions which allow Javascript variables
to be used as arguments to Emscripten compiled C functi-
ons, for instance, when using a Javascript string type as in-
put to a C function taking a character array as an argument.
This makes it possible to use Csound’s C API functions di-
rectly within Javascript, however, an interface to a number
of API functions has been created which greatly simplifies
using API calls in a web page context. The interface consists
of a Javascript class CsoundObj, which contains the necessa-
ry methods for instantiating and controlling Csound.

The following html creates a new instance of Csound, sends
an orchestra string for compilation and plays the compiled
instrument for one second.

<!DOCTYPE html>

<head>

<title></title>

<script src="javascripts/libcsound.js"></script>

<script src="javascripts/CsoundObj.js"></script>

</head>

<body>

<script>

var csound = new CsoundObj();

csound.compileOrc("ksmps=256\n" +

"nchnls=2\n" +

"0dbfs=1\n" +

"instr 1\n" +

"a1 vco2 0.2, 440\n" +

"outs a1, a1\n" +

"endin\n");

csound.startAudioCallback();

var scoreString = "i1 0 1"

csound.readScore(scoreString);

</script>

</body>

</html>

The CsoundObj class also contains methods for sending con-
trol messages using html and audio input to the running
Csound instance via the Web Audio API. As Emscripten
also provides a virtual file system that compiled C code can
access, it is possible for Csound to write and play back audio
files. A number of examples demonstrating the functionali-
ty provided by the Csound Javascript API can be found at
http://eddyc.github.io/CsoundEmscripten/.

2.2 PNaCl Csound
Native Client is a recent technology developed by the Chro-
mium project, which provides a sandboxing environment
for applications running on browsers. It exists in two ba-
sic forms: one that works with natively-compiled modules
(hardware-dependent, for i386, x86 64, arm, mips, etc); and
another that is hardware independent, PNaCl. The former
is currently only enabled for Chrome-store supplied appli-
cations, while the latter can be offered on the open web.
The Csound port for Native Client has targeted the PNaCl
platform, as it provides a flexible environment for the deve-
lopment of audio-based web applications.

The PNaCl project provides a toolchain so that C/C++
applications to be easily ported to it. Code is compiled to
a bytecode representation (called a pexe module). This is
then further compiled ahead-of-time to the target hardware
as the page containing it is loaded. Web pages containing a
PNaCl module need to be served over http, so for testing
and debugging, a minimal http server is required.

As part of the PNaCl platform, we have the Pepper API,
which fulfills three main roles here: general-purpose commu-
nication between the browser and the PNaCl code; access to
the sandbox for file IO; and audio IO. In addition to Pepper,
a number of basic C libraries are present in PNaCl, such as
pthreads, and the C stdio library. Ports of common Unix li-
braries are also available (libogg, libvorbis, libpng, libopenal,
libjpeg, to cite but a few).

PNaCl Csound is composed of two main elements:

1. the pexe module (csound.pexe): based on the Csound
library, provides means to run and control Csound, as
well as access to files in the sandbox

2. a Javascript interface (csound.js): the PNaCl Csound



functionality is exposed via a simple Javascript modu-
le, which allows applications to interface with Csound
programmatically, in similar a way to the other lan-
guage frontends like csound6 for PD, and csound for
MaxMSP.

Each pexe module (one per page) runs one single Csound
engine instance. For multiple instances, we would require
separate web pages for each. A simple PNaCl Csound app-
lication to play a sine beep for 5 seconds looks like this:

<!DOCTYPE html>

<html>

<head>

<title>Beep!</title>

<script type="text/javascript" src="csound.js">

</script>

<script type="text/javascript">

// this function is called by csound.js

// after the PNaCl module is loaded

function moduleDidLoad() {

csound.Play();

csound.CompileOrc(

"schedule 1,0,5\n" +

"instr 1 \n" +

"a1 oscili 0.1, 440\n" +

"outs a1,a1 \n" +

"endin");

}

</script>

</head>

<body

<!--module messages-->

<div id="console"></div>

<!--pNaCl csound module-->

<div id="engine"></div>

</body>

</html>

There is, of course, full scope for the development of
interactive controls via HTML5 tags, and to integrate other
Javascript packages. A set of introductory examples and
the module programming reference is found at

http://vlazzarini.github.io

3. SOME EXAMPLE APPLICATIONS
The following discusses a few example client-side web app-
lications using Csound built with Emscripten or PNaCl.

3.1 Csound Notebook
The Csound Notebook7 is an online organizer for Csound
projects. Users can create Notebooks filled with Csound no-
tes, with each note being equivalent to a Csound ORC/SCO
project. The interface for note editing is designed for live
coding, such that the user incrementally edits and evaluates

7http://csound-notebook.kunstmusik.com, source
code available at https://github.com/kunstmusik/
csound-notebook

Csound ORC and SCO code using a running Csound engine.
The project is written using Ruby on Rails for the server-
side, and Angular.js and PNaCl Csound for the client-side.

Figure 1: Csound Notebook

This project demonstrates a couple of use cases where
Csound in the browser can be applied. The first use case
is that a Csound user who works on the desktop or other
platform wants to sketch and experiment with ideas whi-
le on the go. They can organize and experiment with their
projects online and later retrieve their code to use on their
desktop system. Another use case is where a Csound user
wants to work with Csound but is on a computer where
Csound is not installed. With the Csound Notebook web
application, users do not require any plugins or applications
to be installed to the user’s system and can work entirely
within a browser. While these use cases cater towards users
who already know Csound and want to extend their use of
the technology to the web, one can imagine that such a web
application may also serve as a way for users who do not
know Csound to try using it without having to pre-install
any applications first.

3.2 Manual integration
As the number of opcodes within the Csound language is
quite large, the Csound manual is a valuable resource for
information about which opcodes are available to the lan-
guage. Manual entries also provide examples of how to use
opcodes within an orchestra file. Although it is available in
other formats, the manual is distributed as a set of linked
html documents. This allows the Csound Javascript library
to be embedded within a manual page providing a mecha-
nism to compile and run opcode examples directly from the
manual.

In the prototype implementation shown in (fig. 2), the manu-
al entry for the vco2 opcode was used. Instead of static text
providing an example of the opcode usage within a csd file,
two editable text fields are provided which contain exam-
ple instrument and score text. The text within each editable
text field can be compiled and sent to a running instance of
Csound using the provided Send Score and Send Instrument
buttons. There is also an on-screen piano keyboard availa-
ble, which can send score to the compiled Csound instrument
along with frequency values represented by the text macro
<KEY> within the score string.

3.3 Livecoder example



Figure 2: Csound manual integration

A final example of how this technology can be employed
is shown in a livecoder interactive page, which is currently
featured as a Try it online! item in the Csound communi-
ty github page8 (fig. 3). This page includes, as one of its
main components, a html5 <textarea> element, which can
be edited to hold Csound orchestra code. The code is pas-
sed to the csound.CompileOrc() function, which compiles it
on-the-fly. In complement to this, the page also allows users
to upload files to be used by the engine, and to enable audio
capture for realtime processing.

This example also highlights the educational aspects of the
technology, which allow the design of online, distance/blen-
ded learning initiatives for computer music and program-
ming. This is being incorporated in new courses such as the
DSP Eartraining programme[2], developed at NTNU Trond-
heim, in Norway.

4. THE CSOUND APPLICATION ECOSYS-
TEM

The presence of Csound on the web, be it as a client or as a
server application, is a part of a wider application ecosystem,
which is also integrated by software running on desktop, mo-
bile, small and embedded systems, and servers. The develop-
ment of this ecosystem has been founded on the presence of
an API, which has been a key feature of the Csound system
since version 5, launched in 2006 (although earlier releases
had already shipped with an incipient API).

Users developing multimedia applications and musical works
benefit in a number of ways by using Csound. Learning one
music system that can be applied to multiple musical pro-

8http://csound.github.io

Figure 3: Csound’s Try it online!

blem spaces increases the value of that knowledge. For ex-
ample, because Csound renders ORC and SCO code the sa-
me on each platform, users need only modify their projects
for the platform-specific parts, such as their graphical user
interfaces. This allows the user to leverage their existing
framework for musical computing and focus on the unique
features of each platform.

From the perspective of the existing Csound user, the web
offers numerous features, such as easy deployment of app-
lications, as well as long-term preservations of works. For
example, if a Csound user creates a web-based application,
they are able to share it with non-Csound users without
the end user having to install Csound or other dependen-
cies. The only requirement is that they have a browser that
supports Javascript and optionally PNaCl. Having easy to
reproduce projects greatly simplifies the dissemination of a
work. Also, for a Csound-only project, the project can be
preserved indefinitely by creating a web version of the piece.
Not only is the entire project preserved, but also the specific
version of Csound.



Finally, for non-Csound users looking to develop music app-
lications for the web, using Csound offers numerous benefits.
By developing a web-based music project with Csound code,
users have options to create desktop, mobile, and embedded
applications reusing their Csound code. Csound also offers
a rich library of unit generators, giving a large foundation
on which to build upon. Lastly, having a long history, users
learning Csound have a wealth of examples to draw upon
for inspiration for their own work.

5. FUTURE PROSPECTS
Csound on the web is an important platform for the Csound
community. The current Emscripten and PNaCl builds are
done using the same source code as is used for the desktop
and mobile releases. Csound development currently takes in-
to account all platforms and plans are to continue to support
each system equally. As a result, improvements made in the
main codebase are automatically shared with all platform
builds, and the entire ecosystem progresses together.

For platform-specific code, the CsoundObj API is re-written
for each platform in the native language of the platform.
This API is offered to help facilitate easier cross-platform
development. Future plans are to create a full CsoundObj
implementation for the web that will match closely in fea-
tures to the Android and iOS versions. It is also planned
to explore making CsoundObj delegate to either PNaCl or
Emscripten builds of Csound, depending on what is availa-
ble in the user’s browser. Having a unified CsoundObj API
would then allow users to depend on a single API to develop
against that would work across browsers.

6. CONCLUSIONS
The Csound computer music platform has been available for
composition, research, and musical application development
on the desktop, mobile, and embedded platforms. In this
paper, we have shown two implementations of Csound for
the web, one using Emscripten and another using PNaCl,
that extends the existing Csound ecosystem into the brow-
ser. This research explores not only the possibilities of web-
based music applications, but also the benefits of extending
existing systems to the web.
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Abstract. This paper reviews the current state of the Web Audio API, providing
some critical considerations with regard to its structure and development. Fol-
lowing an introduction to the system, we consider it from three perspectives: the
API design; its implementation; and the overall project directions. While there
are some very good aspects to the API design, in particular its concise and
straightforward nature, we point out some issues in terms of usage, Javascript
integration, scheduling and extensibility. We examine the differences in browser
implementation of builtin nodes via a case study involving oscillators. Some
general considerations are made with regards the project direction, and in con-
clusion we offer a summary of suggestions for consideration and further discus-
sion.

1. Introduction
The Web Audio API[Adenot and Rodgers 2015] is a framework aimed at providing sound
synthesis and processing as part of Javascript engines embedded in World-Wide Web
(WWW) browser software. Such functionality had been previously only partially ex-
plored via plugin systems such as Adobe Flash. Since the introduction of the audio el-
ement in the HTML5 specification, basic streaming audio playback has been possible,
but this has not been developed significantly to allow for more complex sound computing
applications. These include capabilities provided by game engines, and by desktop audio
software (such as mixing, processing, filtering, sample playback, etc.). The aim of the
Web Audio API is to support a wide range of use cases, which is acknowledged to be a
very ambitious proposition.

In this paper, we would like to raise a number of questions with regards to
this framework, and explore some issues that have been left so far unresolved. The
WebAudio API has seen some significant changes in the past two years, and is be-
ing strongly supported by the major browser vendors[Wyse and Subramanian 2013]. It
has also been the main focus of a major international conference (the Web Audio
Conference at Ircam, Paris [Ircam 2015]), where a number of projects employing this
technology have been showcased (for a sample of software using the API, please re-
fer to [Roberts et al. 2013], [Lazzarini et al. 2014], [Lazzarini et al. 2015], [Mann 2015],
[Wyse 2015], [Monschke 2015], and [Kleimola 2015]). While these developments bring
some very interesting possibilities to audio programming and to Ubiquitous Music, we
feel it is important to consider a number of aspects that relate to them in a critical light.

Our interest in the Web Audio API is twofold: firstly, we hope it will eventu-
ally provide a stable environment for Music Programming, and add to the existing choice



of maturely-developed Free, Libre and Open-Source (FLOSS) sound and music com-
puting systems (such as SuperCollider[McCartney 2015], Pure Data[Puckette 2015], and
Csound [Ffitch et al. 2015]); secondly, we would like it to provide the supports we need
to host efficiently a Javascript version of Csound [Lazzarini et al. 2015]. In the light of
this, we would like to explore some of the issues that are currently preventing one or the
other, or both, to come to fruition.

The paper poses questions that relate to a number of perspectives. From a tech-
nical side, we would like to discuss points of Application Programming Interface (API)
design, and the split between builtin, natively-implemented, components (nodes) with
Javascript interfaces, and the user-defined, pure-Javascript, elements which include the
ScriptProcessorNode and the upcoming AudioWorker. We evaluate the current
API according to requirements to meet various musical use cases, and see what use cases
are best supported and what areas where the current API may present problems.

Complementing this analysis, we consider the issue where the Web Audio native
components are implemented by the vendors in different ways, based on a specification
that is open to varied interpretation. Since there is no reference implementation for any
of these components, different ways of constructing the various unit generators can be
found. As a case study, we will look at how the OscillatorNode is presented under
two competing Javascript platforms, Blink/Webkit (Chrome) and Gecko (Firefox). We
aim to demonstrate how these not only use different algorithms to implement the same
specification, but also lead to different sounding results.

From a project development perspective, we have concerns that there is not a uni-
fied direction, or vision, for Web Audio as a system. Extensibility appears to be provided
as an afterthought, rather than being an integral part of the system. This is exemplified by
how the ScriptProcessorNode was provided to users with some significant limita-
tions. These are due to be addressed with the appearance of the AudioWorker, whose
principles are discussed in this paper. We also observe how the long history of com-
puter music systems and languages can contribute to the development of the Web Audio
framework.

2. The API and its design
The Web Audio API has been designed in a way that allows simple connections be-
tween audio processing objects , which are called AudioNodes or just nodes in this
context. These connections are simply performed by a single method (connect()) that
allows the output of one node to be put to another node. These objects all live within a
AudioContext, which also provides the end point to the connections (physically, the
system sound device), the AudioContext.destination. Aspects such as channel
count are handled seamlessly by the system, and obey a number of basic rules in terms of
stream merging or splitting. Such aspects of the API are well designed, and in general,
we should commend the development team for the concise and straightforward nature of
its specification.

In the API, the audio context is global: it controls the overall running of the nodes,
having attributes such as the current time (from a real time clock), the final audio desti-
nation (as mentioned above), sample rate, and performance state (suspended, running,
closed). This design can be contrasted with the approach in some music programming



systems such as Csound and SuperCollider, where local contexts are possible, on a per-
instance/per-event basis. Allowing such flexibility can come with a cost of increased
complexity in the API, but at the level at which the framework is targeted, it might be
something that could be entertained.

In general, it is possible to equate Web Audio nodes with the typical unit gener-
ators (ugens) found in music programming systems. However there are some significant
differences. One, which was pointed out in [Wyse and Subramanian 2013], is that there
are two distinct types of nodes: those whose ‘life cycle’ are determined by start and stop
commands, and those whose operation is not bound by these. This leads to a two-tier
system of ugens, which is generally not found in other music programming systems. In
these, the classification of ugens tends to be by the type of signal they generate, and in
some cases by whether they are performing or non-performing (ie. whether they consume
or produce output signals in a continuous stream). Such differences have implications for
programming in that nodes that are ‘always-on’ can be more or less freely combined into
larger components that can themselves be treated as new nodes, whereas the other type is
not so amenable to this type of composition. This is not an optimal situation, as ideally,
programmers should be able to treat all nodes similarly, and apply the same principles to
all audio objects being used.

A related difficulty in the design is the absence of the concept of an instru-
ment, which has been a very helpful element in other music programming systems. In
these, they take various forms: patches (PD), synthDefs (SuperCollider), and instruments
(Csound). They provide useful programming structures for encapsulating unit genera-
tors and their connecting graphs. In some senses, nodes that are activated/deactivated via
start-stop methods implement some aspects of this concept, namely, the mechanisms of
instantiation, state and performance. But in most other systems, instruments are program-
ming constructs that are user-defined, encapsulating instances of the ugens that compose
it. In other words, they sit at a different level in the system hierarchy. While we might be
able to introduce the concept via a Javascript class, this is perhaps more cumbersome than
it needs to be. The concept of an instrument could also allow the introduction of local
contexts.

From another perspective, the Web Audio API does not offer much in terms
of lower-level access to audio computation. For instance, users do not have ac-
cess to the individual data output from nodes (outside the ScriptProcessor or
AudioWorker nodes). It is not possible to control the audio computation at a sam-
ple or sample-block level, something that audio APIs in other languages tend to provide
(e.g. PyO[Bélanger 2015] or the SndObj[Lazzarini 2008] library for Python). Such ac-
cess would allow a better mix between natively-implemented nodes and Javascript ones.

2.1. ScriptProcessor and AudioWorker

The ScriptProcessorNode interface has been present in the API since the first
published working draft (in the form of a JavaScriptAudioNode, as it was called
then). The main aim of this component was to provide a means of processing sound
through Javascript code, as opposed to the natively-compiled bultin nodes. This is cur-
rently the only means of accessing the individual samples of an audio signal provided
by the API, but it sits awkwardly amongst the other built-in nodes, which are opaque.



More importantly, script processor code is run in the Javascript main thread, and asyn-
chronously to the other nodes. It communicates with the rest of the audio context through
AudioBuffer objects, and if these are not of sufficient size, dropouts may occur.
Higher latencies are then experienced as the result of this. In addition, any interruption by,
for instance, user interface events, can result in dropouts. These characteristics render the
ScriptProcessorNode unsuitable for applications which require a robust system.
They limit significantly the extendability of the system. Given that Web Audio is quite
limited in terms of its offer of builtin nodes (if compared to other music programming
systems), this represents a significant issue at the time of writing.

In order to rectify the problems with the script processor, a new node interface has
been introduced in the latest Web Audio API editor’s draft [Adenot and Rodgers 2015],
the AudioWorkerNode. This follows the model defined for the Web Worker specifi-
cation [Hickson 2014], which describes an API for spawning background threads to run
in parallel with the main page code. The Audio Worker has two sides to it: the one
represented by AudioWorkerNode methods, visible to the main thread; and another
that is provided in the actual worker script that processes the audio. This is given by
an AudioWorkerGlobalScope object, which allows access to the input and output
audio buffers and other contextual elements. A script is passed to the Audio Worker on
creation, and is run synchronously in the audio thread (rather than in the main thread as
the script processor did). In the cases where the WebAudio implementation places this
thread on high priority, using the Audio Worker will mean a demotion to normal priority,
as for security reasons, Javascript user code is not allowed to run with higher than normal
priority. Also, the specification dictates that the processing script cannot access the call-
ing audio context directly. The key configuration parameter of the sampling rate is passed
to the script as a readonly element of the AudioWorkerGlobalScope interface.

Since no actual implementation of the AudioWorkerNode exists at the time of
writing, it is not possible to assess its performance. There are some indications that it
might provide a more robust means of extending the Web Audio API, but some aspects of
its design (such as the separation between the script context and the calling audio context)
may limit it to some use cases. We understand this to be motivated by security reasons
(as many of the design decisions in Javascript engine-provided APIs have to be), but
inevitably it is a limitation of the current specification.

In providing Audio Workers, the editors of the Web Audio API are marking the
ScriptProcessor node as deprecated. However, some applications for script proces-
sors might still be found, and so it could be advisable to keep providing this interface in
future versions of the system.

2.2. AudioParams

AudioParams are exposed as parameters for AudioNodes. AudioParams can have a single
value set, can be connected to from other nodes, or also automated with values over time.
While the first two ways of setting values seem to align well with the rest of the API,
the third option of automating values via function calls is somewhat of an outlier. Since
automation times and values are set directly on the AudioParam itself, the curve values
can not be shared with multiple params. Instead, if one wants to use the same automation
values, one has to set the values for each parameter.



In systems such as Csound and SuperCollider, time-varying values using piece-
wise segment generators are often done using unit generators designed for that purpose.
Within the context of WebAudio, a similar implementation could have been done by cre-
ating an AutomationNode. By using a node, the values of the automation could then be
connected to multiple AudioParams. In that regards, the design of AudioParams adds
another node-like source of values in the graph that is implicitly connected, rather than
explicitly done so like other node inputs.

The user is certainly able to create and use their own automation nodes by imple-
menting them in Javascript. This would also allow one to create other types of curves and
means of triggering than those provided by the AudioParam API. However, since this ap-
pears to be a very basic functionality that could well be encapsulated as a node, it appears
that it would be best handled by an addition to the API.

2.3. Scheduling

Scheduling issues are also worthy of note. In many similar systems, an event mechanism
is provided or implemented behind the scenes. In Web Audio, there is no event data
structure to schedule. Instead, as we have discussed above, the API encourages creating a
graph of nodes, then using start() and stop() functions to turn on and off the nodes
at a given time, relative to the AudioContext clock. For ahead of time scheduling of
events, this requires all future nodes to be realised. This is inefficient in terms of memory,
but does give accurate timing. This appears to be a known issue that is being tracked by
the development team.

So in this case, it is expected that users will try and implement their own event
system. If this is the case, and nodes are used as-designed, it is possible to do this cur-
rently in Javascript via the ScriptProcessorNode. Scripts run inside these nodes
do have access to the AudioContext, and so can create new nodes. However, timing is
jitter-prone, as the ScriptProcessor is processed asynchronously from the audio thread.
Also, the jitter is unbounded; the Javascript main thread can end up completely paused
due to other processing or due to things like the page being backgrounded. Chris Rodgers
has proposed a solution [Rodgers 2013], which is similar to the one proposed by Roger
Dannenberg and Eli Brandt [Brandt and Dannenberg 1999]. However, this is not an ac-
curate solution in that it does not guarantee reproducible results. It might be sufficient for
many real-time scenarios, but not when processing may require sample-accurate timing.
It is not appropriate for non-realtime scenarios.

As we have seen above, the new AudioWorker proposes Javascript-based pro-
cessing code that is run synchronously in the audio thread. This would allow accurate
event system to be written, but the problem is that in this case AudioContext is not
available to the script run under this mechanism. That means even if you wrote a sched-
uler, you could not create nodes running in an AudioContext that is external to it. In
this scenario, one is probably better off not using any of the nodes in WebAudio, and
instead doing everything in Javascript. This abandons using any of the built-in nodes, but
trades off for accuracy and reproducibility across browsers (which is not guaranteed with
Web Audio code, see section 3). As noted above, there is an element of speculation in
this discussion, however, as AudioWorker is only a specification at this moment. It is
unknown whether the audio context will eventually be made available to AudioWorkers.



2.4. Offline rendering

As part of the current Editor’s draft of the Web Audio specification, we see the presence
of new audio context interface, represented by OfflineAudioContext. This is a
welcome addition, which would allow non-realtime use cases to be addressed. It provides
a means of running nodes asynchronously which are not dependent on the need of deliv-
ering samples in a given time period, so slow processes could be rendered through this
method (and buffered for playback when needed). It writes the output of the process to
memory (as an AudioBuffer object), and if the final destination of these is a file, then
this has to be separately handled by Javascript and HTML5. It appears to provide much
needed support for processing that is not designed for realtime audio. However at the
time of writing, it is not possible to assess it in a more thorough way since it is still at a
specification stage.

2.5. Extensibility

While support for Javascript-based extensions to the system exist, as discussed in sec-
tion 2.1, there is no indication of plans or proposals for means of extending the system
via natively-compiled nodes. Such components would be useful for two reasons: they
would allow computationally-intensive processes to take advantage of implementation-
language performance; and they would provide a simple means of porting existing code
into web applications. Current estimates of difference between optimised Javascript code
and native code plugins performing the same tasks indicate a slowdown by a factor of ten
[Lazzarini et al. 2015], so the first point above is clearly justified. The second is similarly
valid considering the wealth of open-source code for audio processing algorithms that
exists in C or C++ forms.

It would be interesting, for instance, if the efforts that have been put in the Na-
tive Client (NaCl) [Yee et al. 2009] open-source project could somehow be incorporated
into WebAudio via a well-defined interface maybe through a dedicated node. There has
been some indication that this might work, as a user-level integration of the two via the
script processor has been reported as functional, albeit with some significant issues, for
instance in terms of added latencies in the audio path [Kleimola 2015]. The Portable Na-
tive Client (PNaCl) plugin system has been proved to be very useful for audio processing,
for example, in one of the ports of the Csound system to the Web [Lazzarini et al. 2015].

One of the key aspects of the NaCl system is that it has been shown to be a se-
cure way of extending Javascript applications [Sehr et al. 2010]. Given that many of the
constraints to improving the support to lower-level programming in Web Audio appear to
relate to security concerns, it appears that NaCl, in its PNaCl form, might provide a suit-
able environment for extensibility. The provision of an interface for NaCl could therefore
provide a very powerful and secure plugin system for the API.

3. Implementation issues
The Web Audio API specification is implemented by browser vendors in different ways.
Since the source code for the audio implementation does not stem from a unique upstream
repository, such differences can be considerable. In order to explore this issue in a limited
but detailed fashion, we have chosen to concentrate on a particular case study. We un-
derstand, from informal observations, that the differences discussed here may extend well



beyond this particular example. For instance, we have discovered that a certain browser
(Safari) appears to apply a limit of -12dB for full scale audio, whereas other browsers,
such as Chrome and Firefox, do not (allowing not only a 0dB full scale, but also not
making any efforts to prevent off-scale amplitudes). However it is beyond the scope of
this paper to provide a complete assessment of implementation issues. We have chosen
two popular browser lines for this test, Google Chrome and Mozilla Firefox, which will
provide a sample of the possible differences both in source code implementation and in
sonic result.

3.1. Case study: the Oscillator node

In this case study, we have written a very simple Oscillator-based instrument consisting
of an OscillatorNode connected to the output, in this case, producing a sawtooth wave:

var audioContext;
var freq = 344.53125, end= 10, start = 1;
var oscNode = audioContext.createOscillator();
oscNode.type="sawtooh";
oscNode.frequency.value = freql
oscNode.connect(audioContext.destination);
oscNode.start(audioContext.currentTime + start);
oscNode.stop(audioContext.currentTime + start + end);

All signals had an f0 = 344.53125, which at fs = 44100 means 128 complete cy-
cles in 16384 samples. This was used as the size of our DFT frame for analysis. The above
program was run under the Chrome and Firefox browsers. We plotted the magnitude spec-
tra for the sawtooth waves in figs 1 and 2 (Chrome and Firefox outputs, respectively), and
their absolute difference in fig 3.
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Figure 1. The magnitude spectrum of a sawtooth wave generated by Chrome
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Figure 2. The magnitude spectrum of a sawtooth wave generated by Firefox
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Figure 3. The absolute difference of the magnitude spectra of two sawtooth
waves generated by Firefox and Chrome

In addition, we run the same program with oscNode.type="square" and
plotted the results of the individual magnitude spectra in figs 4 and 5, as well as their
absolute difference in fig 6.

From these plots, it is clear that at the high end of the spectrum, we have sig-
nificantly different signals, as the Firefox output is quite drastically bandlimited, yield
a difference of around 37-40dB between the two in the ten highest partials (sawtooth
wave, five in the square wave case). Examining the source code for these two imple-
mentations of the Web Audio spec, we see that while the Chrome implementation uses
a wavetable algorithm for implementing bandlimited versions of classic analogue waves,
the bandlimited impulse train (BLIT) [Stilson and Smith 1996] method is used in Firefox.
The Chrome implementation is much richer in harmonics, due to its use of three waveta-
bles per octave over twelve octaves, which covers quite a lot of the spectrum up to the
Nyquist frequency. In addition to the differences plotted here, we noticed the presence of
a very low-frequency component (not visible in the figures above), which is present in the
Firefox OscillatorNode signal as an artefact of the way BLIT is implemented.
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Figure 4. The magnitude spectrum of a square wave generated by Chrome
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Figure 5. The magnitude spectrum of a square wave generated by Firefox

The differences discussed here stem from these implementations being, in sound
and music computing terms, two clearly distinct unit generators. In a system such as
Csound, with over 1,800 such components, they are assigned two different names (in
this case, vco and vco2, also with slightly different parameters reflecting the particular
methods used). The WebAudio specification is not definitive enough to prevent such
deviations, and maybe not wide enough to accommodate them in a more suitable way.
While we understand the desire to be succinct, we also note that the experience of the
existing systems could have been used to inform the design of the API. Clearly, if we
are to allow different implementations of bandlimited oscillators (and there are many
of them), then we need to provide ways that users can distinguish between them. The
development of Computer Music has been one in which precision and audio quality were
always first-class citizens, and it is reasonable to expect these standards to be maintained
in such an important software project.
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Figure 6. The absolute difference of the magnitude spectra of two square waves
generated by Firefox and Chrome

As builtin nodes can differ, it is not possible to create consistent results across
browsers. An alternative to this of course is to use Javascript-programmed audio code (ei-
ther directly or via systems like Csound) to ensure the same results everywhere. It is also
important to note that issues such as this are not confined to Web Audio, as differences
in interpretations are not new to web applications. For instance, on the graphics side,
browsers have long been known to render web pages differently (types, in particular, are
an issue[Brown 2010]). However, this is widely acknowledged to be a less than desirable
scenario.

4. Project directions
The Web Audio project is clearly a very significant project, which has been managed
in an open way, through accessible code repositories, and a well-supported issue track-
ing system. Discussions on its directions have been carried out in open fora, and the
main team members seem to take heed of user suggestions. On the other hand, the
points made in this paper may indicate a certain lack of awareness of the fifty years of
computer-based digital audio technologies. The history of computer music languages
is rich in examples of interesting ideas and concepts [Lazzarini 2013], and these could
be very useful to the design of WebAudio. Interestingly, developers seem to be well
aware of commercially-available closed-source music software. Proprietary multitrack
and MIDI programs Logic and GarageBand, for instance are name-checked in the Web
Audio specification document[Adenot and Rodgers 2015], even though the functionality
and use-cases of the API are closer to FLOSS music programming systems.

One way in which the project could take advantage of the wealth of ideas in
FLOSS Computer Music systems is to develop a reference implementation for unit gen-
erators/nodes, based on source code that is openly available and well documented. This
could be a way of addressing the issues raised in section 3, and a means of making good
use of existing technology. Furthermore, a review of such systems could inform the deci-
sions taken by the team in terms of steering the future directions of the API. Contributors
to the discussion fora have already been bringing ideas that stem from academic research
in the area, in an informal way. This could be enhanced by structured and systemic study
that could be carried out as part of the development work.



5. Conclusions
The Web Audio framework is a very welcome development in audio programming, as
it provides a number of potential applications that were previously less well supported.
However, there are some key issues in its current implementation, and in its design, that
need to be addressed, or at least, considered. On one hand, users of the framework should
be made aware of these so that they can make informed decisions in the development
process; on the other, developers might want to pay attention to the ones that can be
addressed in some way. Our aim with this paper is to be able to contribute to the debate
in the area of programming tools, so that support for a variety of approaches in music
systems development is enhanced. From this perspective, we would like to offer the
following summary of suggestions:

• The introduction of an instrument interface to enhance composability (section 2)
• Further flexibility for Audio Worker code (e.g. some form of access to the calling

audio context) (2.1)
• New nodes, in particular one for handling control curve generation (2.2)
• More precise and flexible scheduling (2.3).
• Extensibility enhancements via native plugins (2.5).
• More precise definitions to minimise implementation differences (3).
• A reference implementation based on existing computer music systems (4).
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