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Abstract  

The development of novel, practice-oriented and reliable instrumentation and control strategies for 

wastewater treatment plants in order to improve energy efficiency, while guaranteeing process stability and 

maintenance of high cleaning capacity, has become a priority for WWTP operators due to increasing 

treatment costs. To achieve these ambitious and even contradictory objectives, this thesis investigates a 

combination of online measurement systems, computational intelligence and machine learning methods as 

well as dynamic simulation models. Introducing the state-of-the-art in the fields of WWTP operation, 

process monitoring and control, three novel computational intelligence enabled instrumentation, control 

and automation (ICA) methods are developed and presented. Furthermore, their potential for practical 

implementation is assessed.  The methods are, on the one hand, the automated calibration of a simulation 

model for the Rospe WWTP that provides a basis for the development and evaluation of the subsequent 

methods, and on the other hand, the development of soft sensors for the WWTP inflow which estimate the 

crucial process variables COD and NH4-N, and the estimation of WWTP operating states using Self-

Organising Maps (SOM) that are used to determine the optimal control parameters for each state. These 

collectively, provide the basis for achieving comprehensive WWTP optimization. Results show that energy 

consumption and cleaning capacity can be improved by more than 50%. 

  



Computational Intelligence Techniques for Control and Optimization of Wastewater Treatment Plants 

Acknowledgements 

 

 
II 

 

Acknowledgements 

Writing a PhD thesis is probably always a demanding task. For me, it was a pretty rough time as well and 

I am glad and happy that I was surrounded by people, who supported me more than I could have ever 

imagined.  

 

First of all I would like to thank my two supervisors, Prof. Dr. Seán McLoone from Queen’s University 

Belfast and Prof. Dr. Michael Bongards from Cologne University of Applied Sciences: Thank you for 

giving me the possibility to contact you day and night, for your professional advice and your constructive 

reviews. 

 

Dr. Christian Wolfs support was amazing: Thanks Christian for sharing your knowledge and spending hours 

with me in front of my monitor. Oliver Trauer’s exceptional skills in writing software programs were 

incredibly helpful: Oliver, thank you so much for your advice and your support, which improved my work 

a lot. 

 

Furthermore I would like to thank Dr. Anne-Kathrin Hillenbach for the given support. Without you, this 

work could not have been done or at least could not have been finished in time. I am happy to hand in that 

work and even happier to have you at my sight. Thanks to the staff of the National University of Ireland 

Maynooth, who made the administration processes smooth and easy. Last, but not least thanks to Thomas 

Schiller for the help formatting of the thesis. 

  



Computational Intelligence Techniques for Control and Optimization of Wastewater Treatment Plants 

Table of Contents 

 

 
III 

 

Table of Contents 

 

Abstract  ................................................................................................................................................... I 

Acknowledgements ................................................................................................................................. II 

List of Figures....................................................................................................................................... VII 

List of Tables .......................................................................................................................................... X 

Nomenclature ....................................................................................................................................... XII 

1 Introduction .......................................................................................................................... - 1 - 

1.1 Aims and Scope of the Thesis .............................................................................................. - 3 - 

1.2 Objectives and Contributions ............................................................................................... - 4 - 

1.3 Outline .................................................................................................................................. - 4 - 

1.4 Publications .......................................................................................................................... - 5 - 

2 Wastewater Treatment ......................................................................................................... - 9 - 

2.1 Wastewater ........................................................................................................................... - 9 - 

2.1.1 Sources and Types of Wastewater ............................................................................... - 9 - 

2.2 Biochemical Wastewater Treatment .................................................................................. - 10 - 

2.2.1 Activated Sludge ....................................................................................................... - 11 - 

2.2.2 Nitrogen Removal...................................................................................................... - 11 - 

2.2.3 Carbon Removal (Organic Matter Removal) ............................................................ - 15 - 

2.2.4 Phosphate Removal ................................................................................................... - 16 - 

2.3 Wastewater Treatment Infrastructure ................................................................................. - 17 - 

2.3.1 Sewer System ............................................................................................................ - 17 - 

2.3.2 Wastewater Treatment Plants .................................................................................... - 18 - 

2.3.3 Sludge Treatment ....................................................................................................... - 24 - 

2.4 Summary ............................................................................................................................ - 25 - 

3 Wastewater treatment plant control ................................................................................... - 27 - 

3.1 WWTP Instrumentation and Actuators .............................................................................. - 27 - 

3.1.1 Actuators .................................................................................................................... - 28 - 

3.1.2 Process Variables / Measurement Values .................................................................. - 29 - 



Computational Intelligence Techniques for Control and Optimization of Wastewater Treatment Plants 

Table of Contents 

 

 
IV 

 

3.1.3 Measurement Principles ............................................................................................ - 32 - 

3.2 WWTP Control .................................................................................................................. - 38 - 

3.2.1 Aeration Control ........................................................................................................ - 40 - 

3.2.2 Recirculation Control ................................................................................................ - 46 - 

3.2.3 Phosphate Precipitation Control ................................................................................ - 46 - 

3.2.4 Filtrate Water Control ................................................................................................ - 48 - 

3.2.5 Return Sludge Control and Excess Sludge Control ................................................... - 49 - 

3.3 Summary ............................................................................................................................ - 49 - 

4 WWTP Modelling .............................................................................................................. - 51 - 

4.1 General wastewater treatment plant models ...................................................................... - 51 - 

4.1.1 Modeling of the hydraulics ........................................................................................ - 51 - 

4.1.2 Modeling biological processes .................................................................................. - 53 - 

4.1.3 Activated Sludge Models ........................................................................................... - 55 - 

4.1.4 Activated Sludge Model No. 1 .................................................................................. - 57 - 

4.2 Modelling of the Rospe WWTP ......................................................................................... - 60 - 

4.2.1 Rospe WWTP ............................................................................................................ - 60 - 

4.2.2 WWTP Model ........................................................................................................... - 65 - 

4.3 Model Calibration .............................................................................................................. - 69 - 

4.3.1 Calibration Prerequisites ............................................................................................ - 69 - 

4.3.2 Modell Initialization .................................................................................................. - 70 - 

4.3.3 Parameter optimization .............................................................................................. - 71 - 

4.4 Results and Discussion ....................................................................................................... - 74 - 

4.4.1 Conclusion and consequences for further use ........................................................... - 76 - 

5 Virtual COD and NH4-N inflow measurements ................................................................. - 77 - 

5.1 Introduction ........................................................................................................................ - 77 - 

5.2 Installed measurement probes ............................................................................................ - 79 - 

5.3 Measurement Campaign at Rospe WWTP ........................................................................ - 81 - 

5.3.1 Data Description ........................................................................................................ - 81 - 

5.3.2 Data Preparation ........................................................................................................ - 86 - 



Computational Intelligence Techniques for Control and Optimization of Wastewater Treatment Plants 

Table of Contents 

 

 
V 

 

5.3.3 Generation of input data sets ..................................................................................... - 89 - 

5.4 Description of mathematical methods ................................................................................ - 90 - 

5.4.1 Stepwise backward elimination ................................................................................. - 90 - 

5.4.2 Regression Methods .................................................................................................. - 92 - 

5.4.3 Classification Methods .............................................................................................. - 95 - 

5.5 Results ................................................................................................................................ - 98 - 

5.5.1 Sensitivity Analysis ................................................................................................... - 98 - 

5.5.2 Regression Results COD ......................................................................................... - 101 - 

5.5.3 Regression Results NH4-N ....................................................................................... - 103 - 

5.5.4 Classification Results .............................................................................................. - 104 - 

5.6 Comparison to standard reference samples ...................................................................... - 108 - 

5.6.1 Calculation of the Reference Standard .................................................................... - 108 - 

5.6.2 Back Transformation from Classes to Concentrations ............................................ - 111 - 

5.6.3 Direct Comparison of Regression and Classification Results ................................. - 111 - 

5.6.4 2h mean Comparison of Regression and Classification Results .............................. - 112 - 

5.7 Conclusion ....................................................................................................................... - 115 - 

6 Application and Testing of Model-Based inflow estimation ........................................... - 116 - 

6.1 Introduction to feed stream estimation ............................................................................. - 116 - 

6.2 Methodology limitations .................................................................................................. - 119 - 

6.2.1 Effects based on retention time ............................................................................... - 119 - 

6.2.2 Drifting of the state vector ....................................................................................... - 121 - 

6.3 Application of feed stream estimation to the Rospe model ............................................. - 122 - 

6.3.1 Model adaption ........................................................................................................ - 122 - 

6.3.2 Data generation and model stabilization .................................................................. - 122 - 

6.3.3 Parameterization of the Feed Stream Algorithm ..................................................... - 123 - 

6.4 Optimization Possibilities ................................................................................................ - 124 - 

6.5 Results of the feed stream estimation ............................................................................... - 125 - 

6.6 Conclusion ....................................................................................................................... - 128 - 



Computational Intelligence Techniques for Control and Optimization of Wastewater Treatment Plants 

Table of Contents 

 

 
VI 

 

7 Self-Organizing Map based operation regime estimation for state based control of Wastewater 

Treatment Plants .............................................................................................................. - 130 - 

7.1 Introduction ...................................................................................................................... - 130 - 

7.2 Self-Organizing Maps ...................................................................................................... - 130 - 

7.2.1 SOM Initialization and Training .............................................................................. - 131 - 

7.2.2 SOM Validation ....................................................................................................... - 132 - 

7.3 Clustering the SOM ......................................................................................................... - 133 - 

7.4 Operational State-Based controller design ....................................................................... - 134 - 

7.4.1 Implementation of the online Controller ................................................................. - 134 - 

7.5 Test Case 1: Modified BSM1 Model ............................................................................... - 135 - 

7.5.1 Description of the Simulation Model ...................................................................... - 135 - 

7.5.2 Model initialisation .................................................................................................. - 136 - 

7.5.3 Data generation and variable selection .................................................................... - 136 - 

7.5.4 Development of the fitness function ........................................................................ - 137 - 

7.5.5 SOM Controller development CASE 1 ................................................................... - 138 - 

7.5.6 Results of test case 1 ................................................................................................ - 140 - 

7.6 Test Case 2: Rospe Plant .................................................................................................. - 142 - 

7.6.1 Data generation and input variable selection Case 2 ............................................... - 142 - 

7.6.2 SOM development and optimization ....................................................................... - 144 - 

7.6.3 SOM Controller development for Case 2 ................................................................ - 151 - 

7.6.4 Development of a fitness function for Case 2 ......................................................... - 152 - 

7.6.5 Results and discussion for Case 2 ............................................................................ - 153 - 

7.7 Conclusion ....................................................................................................................... - 155 - 

8 Conclusion ....................................................................................................................... - 156 - 

References ....................................................................................................................................... - 157 - 

Appendix ......................................................................................................................................... - 164 - 

 

  



Computational Intelligence Techniques for Control and Optimization of Wastewater Treatment Plants 

List of Figures 

 

 
VII 

 

List of Figures 

FIGURE 1-1: IMPLEMENTATION OF THE URBAN WASTE WATER TREATMENT DIRECTIVE (UWWTD)  (EUROPEAN 

ENVIRONMENT AGENCY, 2014) ................................................................................................................... - 2 - 

FIGURE 2-1: SIMPLIFIED REPRESENTATION OF NITROGEN REMOVAL IN WWTPS .............................................. - 12 - 

FIGURE 2-2: CARBON AND NITROGEN BEHAVIOUR DURING NITRIFICATION IN AN IDEAL BATCH REACTOR ....... - 14 - 

FIGURE 2-3: LAYOUT OF A TYPICAL WASTEWATER TREATMENT PLANT (EBEL, 2009) ........................................ - 19 - 

FIGURE 2-4: DOWNSTREAM DENITRIFICATION ................................................................................................... - 21 - 

FIGURE 2-5: UPSTREAM DENITRIFICATION ......................................................................................................... - 21 - 

FIGURE 2-6: CASCADED DENITRIFICATION ......................................................................................................... - 22 - 

FIGURE 2-7: SIMULTANEOUS DENITRIFICATION ................................................................................................. - 22 - 

FIGURE 2-8: INTERMITTENT DENITRIFICATION (ID) ........................................................................................... - 23 - 

FIGURE 2-9: ALTERNATING DENITRIFICATION (AD) .......................................................................................... - 24 - 

FIGURE 3-1: O2-MEASUREMENT WWTP HEINZENBERG .................................................................................... - 28 - 

FIGURE 3-2: TYPICAL POLLUTIONS OF PROBES ................................................................................................... - 31 - 

FIGURE 3-3: MEASUREMENT TEST OF DIFFERENT NH4-N ONLINE MEASUREMENT DEVICES AT THE ROSPE WWTP 

(2004) ........................................................................................................................................................ - 32 - 

FIGURE 3-4: PRINCIPLE OF UV/VIS SPECTROMETRY .......................................................................................... - 33 - 

FIGURE 3-5: SIGNIFICANT REGIONS OF A TYPICAL UV/VIS ABSORPTION SPECTRUM (NON COMPENSATED) ....... - 34 - 

FIGURE 3-6: SIGNIFICANT REGIONS OF A TYPICAL UV/VIS ABSORPTION SPECTRUM (COMPENSATED) ............... - 35 - 

FIGURE 3-7: SCHEMATIC ISE (WTW GMBH, 2007) ........................................................................................... - 37 - 

FIGURE 3-8: AERATION NH4-N CASCADE CONTROLLER .................................................................................... - 39 - 

FIGURE 3-9: CONTROLLER SHELL MODEL ........................................................................................................... - 43 - 

FIGURE 3-10: BEHAVIOUR O2-PI-CONTROLLER IN THE BEGINNING OF NITRIFICATION ....................................... - 44 - 

FIGURE 3-11: AERATION CONTROL - INTERACTION WITH OTHER CONTROL LOOPS ............................................ - 45 - 

FIGURE 3-12: PROCESS WATER CONTROL ........................................................................................................... - 48 - 

FIGURE 4-1: STIRRED TANKS IN SERIES ............................................................................................................... - 52 - 

FIGURE 4-2: GROWTH BEHAVIOUR - MONOD KINETIK ....................................................................................... - 54 - 

FIGURE 4-3: BIOLOGICAL STAGES OF THE ROSPE WWTP .................................................................................. - 61 - 

FIGURE 4-4: BIOLOGICAL STAGES OF THE ROSPE WWTP .................................................................................. - 62 - 

FIGURE 4-5: RESULTS OF A GRID SEARCH FOR THE OPTIMUM RECIRCULATION FLOW BASED ON  NH4-N RMSE . - 63 - 

FIGURE 4-6: RESULTS OF A GRID SEARCH FOR OPTIMUM RECIRCULATION FLOW BASED TO NO3-N RMSE ......... - 63 - 

FIGURE 4-7: ANALYSERS AT ROSPE WWTP A: HACH-LANGE AMTAX AND B: HACH-LANGE NITRATAX ... - 64 - 

FIGURE 4-8: ROSPE MODEL OVERVIEW .............................................................................................................. - 65 - 

FIGURE 4-9: INFLOW FRACTIONING .................................................................................................................... - 66 - 

FIGURE 4-10: SECONDARY CLARIFIER ................................................................................................................ - 67 - 

FIGURE 4-11: SECONDARY TREATMENT / BIOLOGICAL TREATMENT .................................................................. - 68 - 

FIGURE 4-12: APPLIED CALIBRATION PROCEDURE .............................................................................................. - 71 - 

FIGURE 4-13: COMPARISON OF DIFFERENT OPTIMIZATION RESULTS (BLUE: MEASURED, RED: SIMULATED) ....... - 75 - 

FIGURE 4-14: PARAMETER OPTIMIZATION PARETO FRONT .................................................................................. - 76 - 



Computational Intelligence Techniques for Control and Optimization of Wastewater Treatment Plants 

List of Figures 

 

 
VIII 

 

FIGURE 5-1: INSTALLED MEASUREMENT PROBES: (A) ION-SELECTIVE AMMONIUM SENSOR, (B) TURBIMAX CUS51D 

TURBIDITY PROBE, (C) E+H STIPSCAN SPECTROMETRIC SENSOR, (D) TRIOS UV/VIS SPECTROSCOPIC COD/NO3 

ANALYZER ................................................................................................................................................. - 81 - 

FIGURE 5-2: SCATTERPLOT ATU VS. FNU (SCALED) ......................................................................................... - 82 - 

FIGURE 5-3: COMPARISON OF FNU AND ATU (SCALED) .................................................................................... - 82 - 

FIGURE 5-4: OVERVIEW OF RELEVANT MEASUREMENT VALUES ......................................................................... - 83 - 

FIGURE 5-5: DISTRIBUTION OF MEASUREMENT VALUES IN THE MEASUREMENT CAMPAIGN ............................... - 89 - 

FIGURE 5-6: SEQUENCE OF STEPWISE BACKWARD ELEMINATION (SBE) ........................................................... - 91 - 

FIGURE 5-7: SBE ALGORITHM IN PSEUDO-CODE ................................................................................................ - 92 - 

FIGURE 5-8: PREDICTING COD – THE MOST SIGNIFICANT INPUT IS ON THE RIGHT (SAC254)  AND THE LEAST 

SIGNIFICANT IS ON THE LEFT (COND.) ........................................................................................................ - 99 - 

FIGURE 5-9: COD - COEFFICIENT OF DETERMINATION (R2) FOR REGRESSION MODELS WITH DIFFERENT  NUMBERS OF 

INPUT, WITH THE SELECTION ORDER GIVEN IN FIGURE 5-8 ....................................................................... - 100 - 

FIGURE 5-10: PREDICTING NH4-N – THE MOST SIGNIFICANT INPUT IS ON THE RIGHT (SAC254)  AND THE LEAST 

SIGNIFICANT IS ON THE LEFT (COND.) ...................................................................................................... - 100 - 

FIGURE 5-11: NH4-N - COEFFICIENT OF DETERMINATION (R2) FOR REGRESSION MODELS WITH DIFFERENT NUMBERS OF 

INPUT, WITH THE SELECTION ORDER GIVEN IN FIGURE 5-10 ..................................................................... - 101 - 

FIGURE 5-12: REGRESSION RESULTS DATASET U1,COD  (50 RUNS MONTE CARLO SIMULATION) ........................ - 101 - 

FIGURE 5-13: REGRESSION RESULTS DATASET U2,COD  (50 RUNS MONTE CARLO SIMULATION) ....................... - 102 - 

FIGURE 5-14: PREDICTION USING SVR FOR U2,COD (MEASURED: BLUE, PREDICTED: RED) .............................. - 102 - 

FIGURE 5-15: REGRESSION RESULTS DATASET U3,COD (50 RUNS MONTE CARLO SIMULATION) ....................... - 103 - 

FIGURE 5-16: REGRESSION RESULTS DATASET U1,NH4 (50 RUNS MONTE CARLO SIMULATION) ........................ - 103 - 

FIGURE 5-17: REGRESSION RESULTS DATASET U2,NH4 (50 RUNS MONTE CARLO SIMULATION) ........................ - 104 - 

FIGURE 5-18: REGRESSION RESULTS DATASET U3,NH4 (50 RUNS MONTE CARLO SIMULATION) ........................ - 104 - 

FIGURE 5-19: COMPARISON ON MEAN INFLOW VALUES (NH4-N) (BLUE CS, RED CSF) .................................... - 110 - 

FIGURE 5-20: COMPARISON OF MEAN INFLOW VALUES (COD)(BLUE CS, RED CSF) ........................................ - 110 - 

FIGURE 5-21: RF CLASSIFICATION 2H MEAN U3,COD (BLUE: MEASURED, RED: PREDICTED) ............................... - 113 - 

FIGURE 5-22: SUPPORT VECTOR REGRESSION 2H MEAN U2,COD (BLUE: MEASURED, RED: PREDICTED) ............. - 114 - 

FIGURE 5-23: PARTITIAL LEAST SQUARES REGRESSION 2H MEAN U1,NH4 (BLUE: MEASURED, RED: PREDICTED)- 114 -

FIGURE 5-24: LDA 2H MEAN U2,NH4 (BLUE: MEASURED, RED: PREDICTED) .......................................... - 114 - 

FIGURE 6-1: MODEL BASED INFLOW ESTIMATION PRINCIPLE (EBEL, 2009) ...................................................... - 117 - 

FIGURE 6-2: MODEL BASED INFLOW ESTIMATION PRINCIPLE USING AN ADDITIONAL SURROGATE MODEL 

(EBEL, 2009) ........................................................................................................................................... - 118 - 

FIGURE 6-3: STEP RESPONSE OF THE ROSPE MODEL TO A NH4-N STEP FROM 9.5 MG/L TO 15 MG/L (SCALED) ... - 120 - 

FIGURE 6-4: ALTERNATIVE FEED STREAM ESTIMATION FOR DIMENSION REDUCTION  (RED: ORIGINAL FEED STREAM 

ESTIMATION, BLUE: MODIFIED FEED STREAM ESTIMATION) ..................................................................... - 124 - 

FIGURE 6-5: INFLOW ESTIMATION (ORIGINAL VERSION) COMPARISON VARIABLES NO3-N AND NH4-N  USING TWO 

STEPS OF 120 MINUTES (OPTIMIZATION HORIZON 240 MINUTES) .............................................................. - 126 - 

FIGURE 6-6: INFLOW ESTIMATION FOR COD AND NH4-N USING 2 STEPS A 120 MINUTES (240 MINUTES OPTIMIZATION 

HORIZONT)  AND NH4-N AND NO3-N AT TANK D4 FOR COMPARISON ....................................................... - 126 - 



Computational Intelligence Techniques for Control and Optimization of Wastewater Treatment Plants 

List of Figures 

 

 
IX 

 

FIGURE 6-7: INFLOW ESTIMATION (MODIFIED VERSION) COMPARISON VARIABLES NO3-N AND NH4-N  USING 360 

MINUTE’S OPTIMIZATION HORIZON .......................................................................................................... - 127 - 

FIGURE 6-8: INFLOW ESTIMATION (MODIFIED VERSION) FOR COD AND NH4-N USING 360 MINUTES OPTIMIZATION 

HORIZON  AND NH4-N AND NO3-N AT TANK D4 FOR COMPARISON .......................................................... - 128 - 

FIGURE 7-1: ADJACENT NEURONS ON RECTANGULAR (LEFT) AND HEXAGONAL (RIGHT) GRIDS ON SOMS (BMU – RED, 

ADJACENT NEURONS – GREEN, CORNER NEURONS – VIOLET, NOT ADJACENT NEURONS – WHITE) ............ - 133 - 

FIGURE 7-2: OPERATION REGIME CONTROLLER (ORG) WORKING PRINCIPLE ................................................... - 134 - 

FIGURE 7-3: DESIGN OF THE MODIFIED BENCHMARK SIMULATION MODEL NO. 1 ............................................ - 135 - 

FIGURE 7-4: BSM1 DRY WEATHER INFLOW SCENARIO ..................................................................................... - 136 - 

FIGURE 7-5: AMMONIUM DEGRADATION IN AN AERATED BIOREACTOR UNDER THE ASSUMPTION THAT ALL VARIABLES 

EXCEPT AMMONIUM AND OXYGEN ARE CONSTANT .................................................................................. - 137 - 

FIGURE 7-6: COMMUNICATION PRINCIPLE BETWEEN MATLAB AND THE JAVA SOMTOOLBOX ........................ - 138 - 

FIGURE 7-7: RECORDED STATES OVER A SIMULATION PERIOD OF THREE DAYS ................................................ - 141 - 

FIGURE 7-8: SMOOTHED DATA HISTOGRAM OF THE SOM CLUSTERED WITH WARD LINKAGE ALGORITHM (LIGHTER 

COLOURS INDICATE AREAS WITH HIGHER DATA DENSITY ON THE MAP) ................................................... - 141 - 

FIGURE 7-9: OPTIMIZATION RESULTS OF THE TOPOLOGY ERROR FOR DATA SET DS1 ....................................... - 145 - 

FIGURE 7-10: OPTIMIZATION RESULTS OF THE QUANTIZATION ERROR FOR DATA SET DS1 .............................. - 145 - 

FIGURE 7-11: OPTIMIZATION RESULTS OF THE TOPOLOGY ERROR FOR DATA SET DS2 ..................................... - 146 - 

FIGURE 7-12: OPTIMIZATION RESULTS OF THE QUANTIZATION ERROR FOR DATA SET DS2 .............................. - 146 - 

FIGURE 7-13: DETERMINATION OF THE OPTIMAL NUMBER OF CLUSTERS USING SILHOUETTE CRITERION  FOR TWO 

DIMENSIONAL SOM WEIGHTS USING WARD LINKAGE CLUSTERING. ........................................................ - 147 - 

FIGURE 7-14: WARD LINKAGE CLUSTERS FOR DATA SET DS1 WITH DE NORMALIZED WEIGHT VECTORS .......... - 147 - 

FIGURE 7-15: WARD LINKAGE CLUSTERS FOR DATA SET DS1 WITH DE NORMALIZED WEIGHT VECTORS  AND DIURNAL 

CYCLE OF DAY 1, DAY8 AND DAY 13 ........................................................................................................ - 148 - 

FIGURE 7-16: DETERMINATION OF THE OPTIMAL NUMBER OF CLUSTERS USING SILHOUETTE CRITERION  FOR THREE 

DIMENSIONAL SOM WEIGHTS USING WARD LINKAGE CLUSTERING. ........................................................ - 149 - 

FIGURE 7-17: SOM NEIGHBOR WEIGHT DISTANCES DS2 (DARKER COLORS INDICATE BIGGER DISTANCES IN THE INPUT 

SPACE BETWEEN NEURONS) ..................................................................................................................... - 149 - 

FIGURE 7-18: WARD LINKAGE CLUSTERS FOR DATA SET DS3 WITH DE NORMALIZED WEIGHT VECTORS .......... - 150 - 

FIGURE 7-19: WARD LINKAGE CLUSTERS FOR DATA SET DS3 WITH  DE-NORMALIZED WEIGHT VECTORS INCLUDING 

DIURNAL CYCLE OF DAY 1 FROM TWO ANGLES ........................................................................................ - 151 - 

FIGURE 7-20: DETERMINATION OF THE OPTIMAL NUMBER OF CLUSTERS USING WARD LINKAGE  AND SILHOUETTE 

CRITERION AS QUALITY MEASURE FOR THREE DIMENSIONAL DATA SET DS3 ........................................... - 152 - 

FIGURE 7-21: SOM NEIGHBOUR WEIGHT DISTANCES FOR 30X30 MAP USING DS3 ........................................... - 152 - 

FIGURE 7-22: FITNESS RESULTS CONTROLLER OPTIMIZATION .......................................................................... - 154 - 

FIGURE 7-23: OPERATION REGIMES OF THE ROSPE PLANT BETWEEN DAY 12 AND DAY 14 ............................... - 154 - 

 

  



Computational Intelligence Techniques for Control and Optimization of Wastewater Treatment Plants 

List of Tables 

 

 
X 

 

List of Tables 

TABLE 3-1: TYPICAL TECHNICAL PROPERTIES OF ACTUATORS ........................................................................... - 29 - 

TABLE 3-2: TYPICAL WWTP PROCESS VARIABLES AND THEIR RELEVANCE FOR CONTROL APPLICATIONS ......... - 30 - 

TABLE 3-3: OVERVIEW OF MAIN CONTROL LOOPS IN WWTPS ........................................................................... - 39 - 

TABLE 4-1: MATRIX REPRESENTATION OF MODELS (HENZE ET AL., 2000) ......................................................... - 55 - 

TABLE 4-2: ASM1 PROCESSES ........................................................................................................................... - 58 - 

TABLE 4-3: ASM1 DEFAULT PARAMETER VALUES (JEPPSSON, 1996) ................................................................ - 59 - 

TABLE 4-4: WWTP ROSPE - BASIC DATA .......................................................................................................... - 60 - 

TABLE 4-5: WWTP ROSPE - LIMIT / DESIGN VALUES ........................................................................................ - 61 - 

TABLE 4-6: SECONDARY CLARIFIER SETTLING PARAMETER ............................................................................... - 67 - 

TABLE 4-7: DENITRIFICATION AND NITRIFICATION TANK VOLUMES ................................................................... - 69 - 

TABLE 4-8: SMS-EGO PARAMETERS ................................................................................................................. - 74 - 

TABLE 4-9: RMSE COMPARISON OF DIFFERENT MODEL PARAMETER SETS ......................................................... - 75 - 

TABLE 5-1: OVERVIEW OF MEASUREMENT VALUES ............................................................................................ - 85 - 

TABLE 5-2: COD AND NH4-N CLASSES .............................................................................................................. - 89 - 

TABLE 5-3: MLP OPTIMIZATION - OPTIMAL NUMBER OF NEURONS FOR THE DATASETS ..................................... - 94 - 

TABLE 5-4: SVR OPTIMIZATION - OPTIMAL PARAMETER FOR DATASETS .......................................................... - 95 - 

TABLE 5-5: LDA OPTIMIZATION - OPTIMAL NUMBER OF EIGENVECTORS FOR THE DATASETS .......................... - 97 - 

TABLE 5-6: RF OPTIMIZATION - OPTIMAL NUMBER OF DECISION TREES FOR CLASSIFICATION AND REGRESSION FOR 

EACH DATASET .......................................................................................................................................... - 97 - 

TABLE 5-7: SVM OPTIMIZATION - OPTIMAL PARAMETER FOR DATASETS ........................................................... - 98 - 

TABLE 5-8: MEDIAN (20 REPETITIONS) CLASSIFICATION RESULTS FOR COD TEST DATA -NMCR[%]............ - 105 - 

TABLE 5-9: CONFUSION MATRICES DATASET U1,COD ....................................................................................... - 106 - 

TABLE 5-10: CONFUSION MATRICES DATASET U2,COD ..................................................................................... - 106 - 

TABLE 5-11: CONFUSION MATRICES DATASET U3,COD ..................................................................................... - 106 - 

TABLE 5-12: MEDIAN (20 REPETITIONS) CLASSIFICATION RESULTS FOR NH4-N TEST DATA -NMCR[%] ....... - 107 - 

TABLE 5-13: CONFUSION MATRICES DATASET U1,NH4 ...................................................................................... - 107 - 

TABLE 5-14: CONFUSION MATRICES DATASET U2,NH4 ...................................................................................... - 108 - 

TABLE 5-15: CONFUSION MATRICES DATASET U3,NH4 ...................................................................................... - 108 - 

TABLE 5-16: CLASS MEAN MEASUREMENT VALUES.......................................................................................... - 111 - 

TABLE 5-17: NMSE DIRECT COMPARISON OF REGRESSION AND CLASSIFICATION RESULTS [X100%] .............. - 112 - 

TABLE 5-18: NMSE COMPARISON RESULTS FOR TEST DATA: VIRTUAL 2H-COMPOSITE SAMPLES [X100%] .. - 113 - 

TABLE 6-1: PARAMETERIZATION OF THE FEED STREAM ALGORITHM ................................................................ - 123 - 

TABLE 6-2: PARAMETERIZATION OF THE KRIGING MODEL ............................................................................... - 123 - 

TABLE 6-3: PARAMETERIZATION OF THE PSO ALGORIHTM .............................................................................. - 124 - 

TABLE 6-4: CONFIGURATION OF THE MODIFIED FEED STREAM ESTIMATION ..................................................... - 125 - 

TABLE 7-1: GA SOM PARAMETERS CASE 1 ................................................................................................... - 139 - 

TABLE 7-2: GA SOM OPTIMIZATIN RESULTS CASE 1 ..................................................................................... - 139 - 



Computational Intelligence Techniques for Control and Optimization of Wastewater Treatment Plants 

List of Tables 

 

 
XI 

 

TABLE 7-3: SOM PREDICTION MODEL CLUSTERING EVALUATION USING SILHOUETTE FUNCTION FOR THREE CLUSTERS

 ................................................................................................................................................................ - 140 - 

TABLE 7-4: OPERATION REGIME OXYGEN SET POINTS CASE 1.......................................................................... - 141 - 

TABLE 7-5: COMPARISON OF THE PLANT PERFORMANCE CASE 1 ...................................................................... - 142 - 

TABLE 7-6: CONTROL SCENARIOS TO CREATE DIFFERENT OPERATING CONDITIONS FOR SOM TRAINING ......... - 143 - 

TABLE 7-7: CHARACTERISTICS OF DATA SET DS3 ............................................................................................ - 143 - 

TABLE 7-8: INTERPRETATION OF SOM CLUSTERS FOR DATA SET DS2 ............................................................. - 150 - 

TABLE 7-9: OPERATION REGIME OXYGEN SET POINTS CASE 2.......................................................................... - 154 - 

TABLE 7-10: COMPARISON OF DIFFERENT SET POINTS FOR THE ROSPE PLANT .................................................. - 155 - 

  



Computational Intelligence Techniques for Control and Optimization of Wastewater Treatment Plants 

Nomenclature 

 

 
XII 

 

Nomenclature 

Abbreviation Definition 

CFO  flux of oxygen utilised 

RQ  Recirculation 

RSQ  Return Sludge 

ESQ  Excess sludge 

ionU  Potential of the electrodes 

iona  The active concentration of the target ion 

,ion interfK  dimensionless coefficient which describes the 
influence of other ions 

interfa  activity of these ions 

PAQ  
 

Flocking Agent flow 

[ / ]Q l s   Inflow 

PC  Phosphate concentration 

[ / ]Fe molP   Beta-Value 

[ / ³]p kg m   Flocking Agent density 

[ / ]MEm kgFe kgPA   effective metal content 

AD Alternating Denitrification 

AD Anaerobic Digestion 

ASM1 
Activated Sludge Models No. 1 , auch ASM2, 
ASM 3 

ATU Absorptiometric Turbidity Units 

BMU nearest weight vector 

BOD Biological Oxygen Demand 

BSM1 Benchmark Simulation Model No.1 

C:N:P ratio Carbon:Nitrogen:Phospherous Ratio 

CDT Clarifier Detention Time 

CL Closed Loop – feed back 

COD Chemical Oxygen Demand 

CS Composite Sample 

CSF Composite Sample considering the Flow 

CSTR Continously stirred tank reactors 

Da Dalton 

DIN German industry norm 

DT Decision Trees 

DWA 
Deutsche Vereinigung für Wasserwirtschaft, 
Abwasser und Abfall e. V. – German 
Association for Water Wastewater and Waste 

EBPR Enhanced Biological Phosphate Removal 

EQ Effluent Quality 



Computational Intelligence Techniques for Control and Optimization of Wastewater Treatment Plants 

Nomenclature 

 

 
XIII 

 

F Faraday constant 

FF Feed Forward 

FL Fill level 

FNU Formazin Nephelometric Units 

GA Genetic Algorithm 

GECO►C 
Gummersbach Environmental Computing 
Center 

GMP Good Modelling Practice 

IAWPRC 
International Water Association on Water 
Pollution Research and Control 

IAWQ International Association on Water Quality 

ICA Instrumentation and Control Applications 

ID Intermittend Denitrification 

IE3 International Efficiency class 3 

IEC International Electrotechnical Commission 

ISE Ion-Selective Electrode 

IWA International Water Association 

LDA Linear Discriminant Analysis 

LIBSVM Support Vector Machine Toolbox 

LSR Least squares regression 

MA Moving Average 

MAD Median Absolute Deviation 

MCR Misclassification Rate 

MFM magnetic flow meter 

MID Magnetic inductive flow meter 

MLP Multi-Layer Perceptrons 

MLR Multivariate linear regression 

MOOA Multi-Objective Optimization Algorithms 

N Nitrogen 

NMCR Normal Misclassification Rate 

NMSE Normalized Mean Sqared Error 

NS Neighbourhood Size 

O2 Oxygen 

OHOs Ordinary Heterotrophic Organisms 

OL Open Loop – feed forward 

PAOs Phosphorus Accumulating Organisms 

PC Predictive Control 

PE Population Equivalents 

PI or PID controller Proportional Integral Differential controller 

PLC Programmable Logic Controller 



Computational Intelligence Techniques for Control and Optimization of Wastewater Treatment Plants 

Nomenclature 

 

 
XIV 

 

PLS Partial Least Squares 

PVC Polyvinyl chloride 

PW Process water 

PWM Pulse Width Modulation 

R gas constant 

R² coefficient of determination 

RBF Radial Basis Function 

Ref Reference electrode 

RF Random Forest 

RMSE Root Mean Squared Error 

SBE stepwise backward elimination algorithm 

SCADA Supervisory Control and Data Acquisition 

SD Simultaneous Denitrification 

SIMBA Matlab Toolbox for  

SLR Surface Loading Rate 

SOM Self-Organizing Maps 

SP Set Point 

SRT sludge age 

SVI Sludge Volume Index 

SVM Support Vector Machines 

SVR Support Vector Regression 

SWT Storm Water Tanks 

T Temperature in Kelvin 

TOC Total Organic Carbon 

TS Total Solids 

TSS Totally Suspended Solids 

UB Upper Bound 

UV/VIS UV and visible light 

UWWTD Urban Wastewater Treatment Directive 

WHG Wasserhaushaltsgesetz 

ws window size 

WWTP Wastewater treatment plants 

 

 



Computational Intelligence Techniques for Control and Optimization of Wastewater Treatment Plants 

Introduction 

 

 
 - 1 - 

1 Introduction 
 

“To summarize the summary of the summary: People are a problem.” 

Douglas Adams, The Restaurant at the End of the Universe (1980) 

 

In their natural state, rivers and water bodies have the impressive capability to clean themselves due to 

the microorganisms living in them. As is the case with most things, this capability has its limits. 

Problems arise when it is overburdened and the carrying capacity of the water body is exceeded. In 

preindustrial times most of the pollutions or nutrients originated from plants and animals living in the 

surrounding areas and, for example, flushed from the riverbanks during rain events. The situation today 

is different. Nowadays, water bodies suffer from the contamination by different sources that are mainly 

artificial. The agricultural industry uses high amounts of artificial fertilizers which are in parts flushed 

into the rivers during rain events. This effect is further enhanced by the fact that many surfaces are sealed 

or have a reduced absorption capacity due to soil compaction. Besides the diffuse inputs, the water 

bodies are burdened by point sources, like sewer systems or wastewater treatment plants (WWTP). The 

basic concept of most sewer systems is to gather the wastewater of an “unnatural” large agglomeration 

of people and lead it to a single location. Besides high amounts of pollutants and nutrients concentrated 

at a single point, the wastewater reaches the water body in a significantly shorter time. Especially in 

areas with combined sewers flushing surges appear in case of rain events. It is therefore not surprising 

that small water bodies are not able to cope. The described effects lead to eutrophication, oxygen 

depletion and eventually river death. The consequences are not only a problem for the river and the 

organisms living in it, but also for the people in the area. Diseases like cholera, dysentery, typhoid fever, 

hepatitis etc. occurred in the past as a direct result of the use of contaminated water. These effects are 

well known from the past and still happen today in many countries without proper treatment facilities 

for wastewater. This alone explains the high importance of wastewater treatment prior to the release into 

a water body. 

On a European level this issue is addressed by the European Council in its Urban Wastewater Treatment 

Directive 91/271/EEC (UWWTD) (Directive, 1991, p. 271), which was adopted in 1991 and 

implemented by 31st December 1998. The UWWTD requires the collection and treatment of waste water 

in agglomerations of more than 2000 population equivalents (PE) and more advanced treatment for 

agglomerations of more than 10,000 PE. Furthermore, the member states have to ensure certain limit 

values for discharge concentrations as well as a minimum percentage of reduction of Chemical Oxygen 

Demand ( COD ), Biological Oxygen Demand ( BOD ), Total Suspended Solids (TSS ), phosphorus  

( P ) and nitrogen (TNb ). 
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Figure 1-1 gives an overview of the implementation of the UWWTD in the different member states of 

the EU. While the implementation in the Netherlands, Austria and Germany reaches already high levels, 

the envisaged objectives are not met in other member states. 

 

Figure 1-1: Implementation of the Urban Waste Water Treatment Directive (UWWTD) 
 (European Environment Agency, 2014) 

Following the subsidiarity principle of the EU, member states have to implement national law which 

fulfils the guidelines of the UWWTD. For example, in Germany this is done in the water resources act 

(WHG – Wasserhaushaltsgesetz) (Deutschland and Bundesministerium der Justiz, 2009). With the 

stringent requirements on effluent values of WWTP other problems for the operators arise. Demographic 

change, or more precisely rural-urban migration, amplifies this problem. Currently many plants in rural 

areas are under loaded while urban plants are operated at their load limits.  

Whilst many developments in the area of advanced control strategies for WWTP have been made in the 

last number of years, it is difficult to find success stories of control systems which outperform 

conventional feedforward-feedback controllers in the long run (Åmand et al., 2013). From personal 

experience in the GECO►C Research Group of developing control systems for more than 10 WWTP 

over the last decade, I am convinced that it is very challenging to build up a complex system which is 

superior to conventional systems in the long run. The real problem is that the effort required to develop 



Computational Intelligence Techniques for Control and Optimization of Wastewater Treatment Plants 

Introduction 

 

 
 - 3 - 

advanced control systems and to adapt them during operation is often too high to justify the benefit. 

Nevertheless, I am convinced that in line with the ongoing development in sensor technology, 

automation systems and instrumentation, advanced control systems, which today run often only for test 

and academic purposes, will become more and more interesting for operators and become state of the 

art eventually.  

1.1 Aims and Scope of the Thesis 

The aim of this thesis is to develop novel instrumentation and control strategies for wastewater treatment 

plants in order to improve energy efficiency while guaranteeing process stability and maintainenace of 

high cleaning capacity. To achieve these ambitious and even contradictory objectives, a combination of 

online measurement systems, computational intelligence and machine learning methods as well as 

dynamic simulation models was used. Furthermore, the focus of the thesis is on the development and 

assessment of practice-oriented and realisable as well as reliable solutions that do not require 

sophisticated, and often maintenance intensive, instrumentation, control and automation (ICA) 

equipment. The overall goal is to work with what is available and to make the best of it. The benefit of 

such an approach is the high acceptance by the plant operator of these solutions as well as the easy 

transfer to other WWTP. 

Analysing what is available at WWTP that can be used for instrumentation and control, two things stand 

out: 

(1) The degree of online instrumentation in the inflow and in the bioreactors is normally good and 

allows sufficient monitoring of the processes, but it would be advantageous to measure 

additional process variables in the WWTP inflow to allow for faster control response times. 

(2) Large volumes of operational and process data are collected and available at most WWTP, but 

very seldom used for simulation, optimization and control purposes. Important process 

knowledge is wasted. 

Therefore, the scope of the thesis is to set the scene by introducing the state of the art in the fields of 

WWTP operation, process monitoring and control and to subsequently develop and present three novel 

methods and to assess their potential for practical implementation. Those are, on the one hand, the 

automated calibration of a simulation model for the Rospe WWTP that provides a basis for the 

development and evaluation of the subsequent methods, and on the other hand, the development of soft 

sensors for the WWTP inflow which estimate the crucial process variables COD and NH4-N, and the 

estimation of WWTP operating states using Self-Organising Maps (SOM) that are used to determine the 

optimal control parameters for each state. These collectively, provide the basis for achieving 

comprehensive WWTP optimization. 
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1.2 Contributions 

Based on the defined aims and scope, the thesis makes major contributions to the field of WWTP 

instrumentation and control in terms of simulation model development, process data analysis and 

advanced but operationally robust process control. The major contributions are as follows: 

(1) Development of a full scale simulation model for the Rospe WWTP 

The development of the simulation model is a significant contribution as it provides a challenging 

test bed for the development and evaluation of the novel ICA methods. The simulation model 

represents the real WWTP with its main hydraulic and biological characteristics and thus ensures 

that the developed ICA strategies can be successfully implemented in practice and are of high 

relevance to practitioners. 

(2) Automated calibration of a full scale WWTP using the non-deterministic multi-objective 

optimization method SMS-EGO 

The calibration of dynamic WWTP simulation models is a major challenge due to the fact that 

many model parameters are extremely difficult to measure, which normally requires their 

estimation based on experience. The proposed automated calibration method is a novel and 

sophisticated solution to this problem. By optimizing the model calibration with respect to two 

separate fitness functions rather than a single combined fitness function (i.e. the sum of the RMSE 

of NH4-N and NO3-N), a more target-oriented calibration is possible. Furthermore, model 

calibration is much faster and available to a broader user base due to its easy applicability. 

(3) Development of a virtual COD and NH4-N measurement system for the WWTP inflow 

When it comes to model calibration as well as to advanced control strategies, online 

measurements of COD and NH4-N in the WWTP inflow are absolutely necessary. Unfortunately, 

online instrumentation for these parameters is expensive and maintenance intensive, which is why 

most WWTP do not have them in the inflow. The development of a virtual measurement system, 

so-called soft sensors is a solution. Based on available process data from standard instrumentation, 

machine learning methods, both regression and classification methods, were configured and 

trained to estimate COD and NH4-N in the WWTP inflow. In order to evaluate the performance 

of the soft sensors an extensive measurement campaign was conducted at the Rospe WWTP. 

Furthermore, a toolbox for data pre-processing and sensitivity analysis using a stepwise backward 

elimination algorithm was developed to improve the machine learning results. 

(4) Evaluation of a model-based inflow estimation method for COD and NH4-N 

An alternative to the method described in the third contribution is to use an already existing fully 

calibrated simulation model to retrospectively estimate the inflow to WWTP, as proposed in Ebel 

(2009). This involves simulating the response of the WWTP model to different concentration of 

COD and NH4-N applied in discrete steps. Based on a performance function that compares the 

simulated concentrations measured in the biological stages with the actual values over a defined 
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estimation horizon, estimating the inflow concentrations can be formulated as an optimisation 

problem.  As this optimization is high dimensional and complex Kriging surrogate models of the 

performance function are used to speed up the estimation process. An evaluation of the 

methodology for the Rospe WWTP model highlights that it is severely impacted by variable 

retention times as well as blending of different wastewater and recirculation streams in a WWTP, 

with the result that it has limited utility. 

(5) Identification of the operating regimes of a WWTP 

A good control method is one that adapts to changing process states, such that gives the optimal 

response under all operating conditions. In reality, there is mostly one control strategy for a 

control loop that is not adapted to varying process conditions but more a compromise as the 

different process stated are unknown. Using Self-Organising Maps (SOM) process data is 

analysed and the information mapped onto a two-dimensional feature space, in order to visualise 

the different operating regimes of a WWTP. This information can then be used for the 

development of optimal controllers for each operating regime. 

(6) Development and optimization of a state-based controller for different WWTP operating 

regimes 

The information on WWTP operating regimes generated using SOM was used to develop a state-

based aeration controller, that chooses the optimal oxygen concentration set point for the 

nitrification tanks with regard to energy consumption and cleaning efficiency. In order to identify 

these set points a Genetic Algorithm (GA) was used. Results show that a significant improvement 

in plant operation can be achieved. 

1.3 Outline  

The remainder of the thesis is organised as follows: 

Chapter 2 provides the necessary background to the field of wastewater treatment using activated sludge 

with a focus on describing the whole process chain and the related challenges. The chapter begins with 

a definition for wastewater, and its different types and sources followed by an overview of biological 

wastewater treatment and biochemical processes. Then, wastewater infrastructure from the collection to 

the final treatment and different plant designs are introduced and briefly explained. The chapter 

concludes with a summary, highlighting the resulting challenges for control design and implementation. 

Chapter 3 describes the main areas of WWTP control, introducing the most common instrumentation 

and control loops from the point of view of an automation engineer. This chapter, thus sets the context 

for all following development chapters. Initially an overview of typical online instrumentation, actuators 

and the challenges for control are presented. Then the typical control loops and different strategies for 

WWTP control are described, and finally a summary of the state-of-the-art control strategies is 

presented. 
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As modelling and simulation are important to the development and testing of novel optimization and 

control methodologies, chapter 4 is devoted to WWTP modelling.  The basics of the modelling of 

hydraulic and biological processes are introduced, followed by the presentation of different activated 

sludge models and their matrix representation. Then the development of the Rospe WWTP simulation 

model is presented. A detailed description of the plant and the modelling process are provided and the 

related modelling challenges are thoroughly described. Finally, the chapter introduces a novel automated 

model calibration procedure that uses a multi-objective optimization algorithm that allows faster and 

more accurate model calibration compared to manual approaches based on expert knowledge. The 

resulting calibrated Rospe WWTP model is used for the experiments conducted in chapter 6 and 7. 

Chapter 5 describes the development of virtual COD and NH4-N sensors starting off with a description 

of the particularities of the inflow measurement of a WWTP, followed by a detailed description of the 

measurement campaign conducted at the Rospe WWTP plant, whose goal was to get a comprehensive 

data basis for the application of machine learning methods. The necessary data pre-processing steps as 

well as the mathematical background for applied regression and classification methods are introduced 

and then a detailed evaluation of regression and classification algorithms presented for a number of 

virtual sensor scenarios.  

Chapter 6 presents an alternative to the soft sensor approach of chapter 5, where a model-based 

numerical-based inflow estimation for COD and NH4-N is applied and tested using the Rospe WWTP 

simulation model. The chapter begins with an introduction to the inflow estimation method developed 

by (Ebel, 2009), followed by an investigation of the limitations in relation to the Rospe WWTP model. 

An extension of the estimation method by Ebel (2009) using longer estimation horizons with constant 

inflow concentrations is then introduced. Results are then presented for both implementations and their 

major limitations highlighted. 

Chapter 7 presents a state-based control method based on operation regime estimation on available 

process data.  The chapter begins with an introduction to the concept of operating regime decomposition, 

followed by a short description of self-organizing maps (SOM) and SOM clustering as a means of 

achieving this. After the fundamentals are explained, an operational state controller design is presented.  

The chapter then concludes with an evaluation of the proposed methodology on a standard benchmark 

model (BSM1) and the Rospe plant model. 

Chapter 8 summarizes the contributions of the thesis and provides an outlook on possible future work. 

1.4 Publications 

Bongards M, Schaefer S, Ebel A, Kern P. 2006. Wastewater Treatment Plant Improvement by Smart 
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2 Wastewater Treatment 

This chapter aims to give an introduction into the field of wastewater treatment using activated sludge. 

The common process of wastewater treatment using nitrification and denitrification and the associated 

process engineering is widely known and well described in literature. The first articles about nitrification 

were published by Sergei Winogradsky in 1890 (Winogradsky, 1890). For this reason this chapter 

focuses on the aspects of the treatment process that are relevant for automation and optimization 

purposes. After a short introduction to the topic, the description follows the water from the origin of the 

wastewater, over the sewer system, through the WWTP to the connected water body. 

2.1 Wastewater 

In general wastewater is water whose quality was negatively affected by human activity. This means 

that it can be contaminated with a wide range of substances. Despite this diversity of possible 

contaminants, the typical biological treatment process using nitrification and denitrification focusses on 

the main pollution with carbon, nitrogen and phosphorus. In addition to that, different mechanical steps 

remove particulate matter. 

2.1.1 Sources and Types of Wastewater 

While wastewater is different from region to region the sources are mainly similar. The following list 

gives an overview of typical sources:  

 Domestic Wastewater 

 Industrial Wastewater 

 Municipal Water 

 Agricultural Wastewater 

 Infiltration Water 

 Surface Water 

Domestic wastewater is the most relevant type for this thesis and is basically water which was used by 

households or similar facilities and can be further divided into two groups: 1. Black water, which is 

mainly affected by faeces and urine from people or animals. 2. Grey water, which is polluted from 

bathing, washing, cooking and similar activities. In the majority of all cases black and grey water are 

not separated and reach the sewer system as a mixture. Important for the treatment process is the fact 

that these activities lead to a certain composition of pollutants / nutrients in the wastewater. This fact 

can be used by intelligent control systems, e.g. for the prediction of measurement values (soft-sensors, 

see chapter 5). Particularly interesting is the relationship between carbon, nitrogen and phosphorus, 

because of its importance for the biological processes during nitrification and denitrification, which will 

be described in section 2.2. 
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Industrial wastewater is water polluted during industrial processes like fabrication, cleaning or cooling. 

The composition of industrial wastewater can be completely different from domestic wastewater and 

depends highly on the type of industry discharger. This means that every source has its own 

characteristics. While one industrial discharger releases high amounts of COD (e.g. food processing 

industry) into the water, others are characterized by high nitrate values. If the production process is 

organized in batches, the composition can change significantly from day to day. These imponderables 

complicate the application of control and optimization techniques. Furthermore, industrial wastewater 

can be contaminated with substances that can only be measured in a laboratory. 

The term municipal wastewater refers to water from a city and means a mixture of domestic and 

industrial wastewater. 

Agricultural wastewater is water used on farms. Typical contaminants are faeces, fertilizers, pesticides 

etc. For treatment plants only the agricultural wastewater from point sources, like live breeding facilities 

are of interest. Contaminated water in fields is usually not collected and flows directly into the 

groundwater or water body. 

Infiltration water is a special kind of wastewater. In a narrow sense it could be argued that it is not 

really wastewater. Infiltration water is water (usually groundwater) which seeped into the sewer system. 

In the sewer it is then mixed with the other types of wastewater and transported to the WWTP. Therefore, 

it is treated in the WWTP, but mainly leads to a dilution of the other types of wastewater. During 

optimization or controller development it has to be considered, because the amount varies over the year 

and changes with the ground water level.  

Surface wastewater is urban run-off water from streets, parking lots and basically all sealed surfaces 

adjacent to a sewer system. Therefore, it can be contaminated with oil, fuel, rubber, exhaust, street 

abrasion, etc. For the treatment plant and the control strategy it becomes relevant during rain events 

when the WWTP is connected to a combined sewer as the influent to the plant increases significantly. 

 

2.2 Biochemical Wastewater Treatment 

This subsection gives a short introduction into the biochemical processes of wastewater treatment using 

activated sludge. A detailed description of the complex processes can be found, for example in 

Biological Wastewater Treatment (Henze et al., 2008). The biological processes in common wastewater 

treatment plants focus typically on the removal of carbon, nitrogen and phosphorus. Although the 

processes are considered individually, they are closely linked and influence each other. Other substances 

than the ones mentioned before, such as pharmaceutical compounds or heavy metals, which can be partly 

removed during the treatment process are not targeted specifically. The removal of these substances can 
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be considered a useful and desireable side effect. In many cases the removal is rather a physical effect 

than a biochemical where substances are bound to the sludge and disposed of in this way. 

2.2.1 Activated Sludge 

Activated sludge is a widespread technique used in wastewater treatment. Using this technique 

wastewater is combined with microorganisms to build up flocs. The resulting combination of wastewater 

and biological mass is often referred to as mixed liquor. Using activated sludge offers different 

advantages, two major ones are: 

1. The sludge settles easily, which simplifies the clarification process.  

2. Mixed liquor is pumpable, which makes it possible to control biomass concentration in the 

reactors. 

In all activated sludge plants, the sludge has to be separated from the water in the final treatment also 

known as clarification. The separated biomass is than pumped back in the bioreactors. Due to the fact 

that the biomass is fed continuously with fresh wastewater, the biomass grows. This makes it necessary 

to separate a part of the pumped-back sludge, the so called excess sludge, and lead it to the sludge 

treatment. Besides these advantages different operating problems can occur during the treatment 

process. Typical problems are bulking sludge and floating sludge. In both cases separation does not 

work properly. Bulking Sludge occurs when certain microorganisms, the so called filamentous bacteria 

(Lee and Lin, 2007), gain a growth advantage, which leads to slow settling conditions. Sludge is 

considered bulked sludge if the Sludge Volume Index (SVI)1, is greater than 150 /ml g  (Gujer, 2007, p. 

327). Rising Sludge / Floating Sludge occurs if denitrification appears during the final treatment which 

produces carbon dioxide gas and is furthermore facilitated by the growth of certain bacteria, such as 

Nocardia. The result is a layer of floating sludge on the clarifier. Bulking sludge and rising sludge 

problems can both lead to sludge outflow and result in violation of effluent values. 

 

2.2.2 Nitrogen Removal 

Nitrogen removal is one of the relevant processes in the context of WWTP control. It is composed of 

two main steps: 1. Nitrification and 2. Denitrification. Nitrification is the process in which ammonium 

is converted to nitrate under aerobic conditions, whereas denitrification is the process in which nitrate 

is converted to elemental nitrogen under anoxic conditions. Figure 2-1 shows a simplified representation 

of the main nitrogen removal process in the bioreactors of a WWTP.  

                                                      
1 Sludge Volume Index: The quotient of the settled volume of sludge and the amount of suspended solids in ml/g. 
The lower the SVI, the better the settling properties. 
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Figure 2-1: Simplified representation of Nitrogen Removal in WWTPs 

In order for this to work, urea one of the main substances in urine, is transformed in a previous step by 

urea hydrolysis into ammonium. This process mainly occurs in the sewer system.  

2.2.2.1 Nitrification 

Nitrification is mediated in two steps: 1. Conversion from ammonium to nitrite. 2. Conversion from 

nitrite to nitrate. This is done by two special kinds of autotrophic organisms (ammonium oxidizing 

organisms (ANOs) and nitrite oxidizing organisms (NNOs)). The stoichiometric reaction for the 

conversion of ammonium to nitrite is shown in equation (2.1): 

 4 2 2 2

3
2

2
NH O NO H O H        (2.1) 

The conversion from nitrite to nitrate is shown in equation (2.2): 

 2 2 3

1

2
NO O NO     (2.2) 

Oxygen consumption during Nitrification 

Both reactions involve oxygen, which has to be provided by the plants’ blowers and which is therefore 

a cost factor for the plant operator. Therefore, the oxygen consumption in 2 /mgO mgN  for the nitrogen 

conversion has to be calculated. Considering only the left side of equation (2.1) it can be seen that 2
3

2O  

are needed for the conversion of one 4NH   ion. Considering further that nitrogen ( N ) has an atomic 

mass of 14da  and oxygen ( 2O ) an atomic mass of 32da , the following oxygen consumption can be 

calculated for the conversion of ammonium to nitrite (2.3):  

 
 
 

2 2323
3.42

2 14

da O mgO

da N mgN
    (2.3) 

Dealing in the same manner with equation (2.2), the oxygen consumption for the conversion from nitrite 

to nitrate can be calculated as: 

 
 
 

2 2321
1.14

2 14

da O mgO

da N mgN
    (2.4) 
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Combining the output of equations (2.3) and (2.4), the total oxygen consumption per mg nitrogen is: 

 
 
 

2 232
2 4.57

14

da O mgO

da N mgN
    (2.5) 

Nitrification Control 

Nitrification is significantly more difficult to establish than carbon removal, because autotrophic 

biomass grows approximately five times slower than heterotrophic biomass. For the same reason carbon 

is consumed more quickly than ammonium. This is why 4NH N  is commonly used as a reference 

value for oxygen controllers. For domestic wastewater it could be said in simple terms: If nitrogen 

removal is working sufficiently, carbon removal should not be a problem (On the condition that the 

wastewater has a common C:N:P ratio (Bever, 2002, p. 4)).  

Figure 2-2 shows the basic behaviour of carbon ( 5BOD ) and Nitrogen ( 4NH N , 3NO N ) as it would 

be in an ideal batch reactor during nitrification. After the oxygen ( 2O ) is turned on, the heterotrophic 

organisms start to consume carbon, while autotrophic biomass starts to convert ammonium. Because the 

first process is significantly faster, carbon will be completely consumed after a while and only 

nitrification continues. On full-scale plants nitrification often starts only after carbon is completely 

consumed. The reason is that the oxygen is consumed immediately by the heterotrophic organisms and 

blowers are not able to provide enough oxygen to reach the required level for nitrification. This effect 

is especially important for intermittently operated plants, because it leads to a strong non-linearity in the 

system. Until the carbon is consumed, oxygen concentration will not rise and subsequently it rises very 

rapidly. The time to this ‘jump’ depends on the carbon concentration in the reactor. Due to the control 

deviation (in oxygen concentration), a PI or PID controller will react by increasing the integral part, 

which leads to overshooting, when carbon is consumed. A detailed description of this effect is provided 

in chapter 3. 
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Figure 2-2: Carbon and Nitrogen behaviour during Nitrification in an ideal Batch Reactor 

 

2.2.2.2 Denitrification 

The denitrification process takes place in an anoxic environment and is the process in which nitrate is 

converted to nitrogen gas ( 2N ). Denitrification is performed by so-called ordinary heterotrophic 

organisms (OHOs). The typical stoichiometric reaction, omitting carbon consumption, for nitrate 

conversion is shown in equation (2.6): 

 3 2 2

1 1 5

2 2 2
NO H O N O OH       (2.6) 

Oxygen Recovery by Denitrification 

Besides the elimination of nitrogen, denitrification has the benefit that it recovers oxygen. This means 

that a part of the oxygen used for nitrification can be used in the form of nitrate for the degradation of 

carbon. The oxygen equivalent of nitrate is 2 32.86 /mgO mgNO N , which means that 31mgNO N  

has the same electron accepting capacity as 22 mgO . This oxygen equivalent can be calculated as 

follows: During nitrification ammonium donates 8 /e mol  changing N  from an e  state of -3 to 5. 

During denitrification, nitrate accepts 5 /e mol  changing N  from an e  state of 5 to 0. Considering 

equation (2.5), the oxygen equivalent can be calculated as: 

 2 25
4.57 2.86

8

mgO mgO

mgN mgN
   (2.7) 
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which means that in theory 63% of the oxygen can be recovered: 

 2

2

2.86
63%

4.57

mgO

mgO
   (2.8) 

In practice a recovery rate of approximately 50% is realistic (Henze et al., 2008, p. 109). This means 

that even for WWTPs, where nitrogen removal is not necessary, it is useful to enforce denitrification to 

save energy by using the oxygen recovered during denitrification for carbon degradation. 

However, in practice denitrification is desired for nitrogen removal and a problem is actually a lack of  

carbon. The carbon problem is usually addressed by a different plant design (described in section 

2.3.2.3) or by the use of an additional external carbon source. 

2.2.3 Carbon Removal (Organic Matter Removal) 

Historically, carbon was the first substance targeted in wastewater treatment and up to the mid-seventies 

plants were built only for organic matter removal (Ludzack and Ettinger, 1962). These plants were 

continuously aerated until the sludge was stabilized. This process needed high amounts of energy, which 

was less relevant due to significantly lower energy costs (EnergieAgentur.NRW, 2015). For plants 

applying nitrogen removal, carbon has to be available in sufficient concentrations for denitrification, but 

has to be removed sufficiently before the clarified water leaves the plant. This complicates process 

engineering and control of the plant. During the process carbon is used mainly for two processes:  

1. Growth of heterotrophic biomass. 

2. Endogenous respiration of the sludge. 

For the control of the plant two aspects have to be considered:  

1. Having sufficient COD  available during the denitrification process 

2. Achieving sufficient COD  removal to bring the effluent within regulatory limits. 

Due to the fact that sources of carbon or organic matter are versatile, a stoichiometric description is not 

suitable. Instead, it is preferable to describe the carbonaceous oxygen demand using process kinetics. 

Equation (2.9) calculates the daily flux of oxygen utilised ( CFO ).  

  (1 ) 1
(1 )

Hv cv
C bi cv Hv H H

H

Y f SRT
FO FS f Y f b

b SRT

 
     

  (2.9) 

  (Henze et al., 2008, p. 60) 
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 
 

 
 

2 - Daily flux of oxygen utilised 

 - Daily flux of influent biodegradable COD 

- VSS yield of OHOs 

 - COD to VSS ratio of sludge 

 - Unbiodegradable fraction

C

bi

HV

cv

H

FO mgO d

FS mgCOD d

Y mgVSS mgCOD

f mgCOD mgVSS

f  

 

1

 of OHOs 

 - Specific rate of endogenous mass loss of OHOs 

 - Sludge rentention time - sludge age 

H

mgCOD mgCOD

b d

SRT d

  

 

A closer look at equation (2.9) shows that it consists of the sum of two terms. The first part 

(1 )bi cv HVFS f Y  represents the oxygen demand for the growth of the heterotrophic biomass (OHOs) 

and is independent of the sludge age (SRT). The second term  1
(1 )

Hv cv
bi H H

H

Y f SRT
FS f b

b SRT



 represents 

the endogenous respiration of the biomass. From the fact that SRT is included in the second term, it can 

be seen, that the endogenous respiration depends on the sludge age.   

2.2.4 Phosphate Removal 

In the past, phosphate was mainly removed using chemical processes. This involves adding iron or 

aluminium salts such as 4FeSO  or 3AlCl  to the wastewater. The dissolved phosphate compounds are 

converted as a result into undissolved phosphates, which can then be removed from the plants with the 

sludge. The most commonly used process is simultaneous precipitation, where the precipitant is dosed 

into the aeration tanks. Alternatives are pre-precipitation, in which the precipitant is dosed into the 

inflow for the purpose of preliminary treatment, or post-precipitation, in which an additional reaction 

tank is required (Mudrack et al., 1991, pp. 265–266). Today, biological phosphate removal is also used 

so that phosphate elimination usually occurs through a combination of chemical and biological 

precipitation processes (Stier and Bundesinstitut für Berufsbildung, 2003, pp. 173–174). Although the 

elimination of phosphates is not explicitly part of this work, it is necessary to briefly discuss the basic 

processes involved as it is relevant due to the close relationships between the individual processes. In 

anaerobic conditions, it is possible for the phosphate to redissolve back into the wastewater so that the 

phosphate bound in the biomass is released again. Therefore, it is important to also take this into account 

during the development of the oxygen controller because otherwise it cannot be guaranteed that the 

amount of phosphate will not rise to exceed the imposed limits. 

2.2.4.1 Biological Phosphate Removal and Enhanced Biological Phosphate Removal (EBPR) 

In the biological elimination of phosphates, the phosphate is stored within microorganisms and removed 

from the plant via the excess sludge. This is where there is the already mentioned danger of phosphate 

being redissolved back into the wastewater because the microorganisms can release the phosphate again. 

In general, microorganisms require phosphate to build their cell structure. It is known that phosphate 
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uptake can be increased under stress conditions (change between aerobic and anaerobic conditions). For 

this reason, an additional upstream anaerobic tank is often utilised during biological phosphate removal 

in which return sludge is brought together with the fresh inflowing wastewater. In the case of 

intermittently operated plants with a low load, it is possible to biologically remove the phosphate without 

an additional tank using the oxygen control to achieve similar conditions as with an additional tank. 

Typical phosphate consumption during this process is around 0.02 mgP mgVSS . This corresponds to 

phosphate removal of up to 25% for normal wastewater. Enhanced Biological Phosphate Removal 

(EBPR) is based on specifically promoting certain microorganisms – so-called Phosphorus 

Accumulating Organisms (PAOs). These organisms store phosphate in the form of polyphosphates and 

can thus achieve phosphate consumption of up to 0.15 mgP mgVSS  (Henze et al., 2008). 

In terms of the regulation of oxygen, this means avoiding forced anaerobic conditions in tanks in those 

plants where Bio-P occurs and there is no aerated tank downstream. Otherwise, it is difficult to avoid 

the increased use of chemical precipitation. 

2.3 Wastewater Treatment Infrastructure 

2.3.1 Sewer System 

The purpose of the sewer system is the fast transport of wastewater from a producer to a treatment 

facility. Usually it is an underground network of pipes without significant instrumentation (Koch, 2002). 

Two main kinds are common: 

2.3.1.1 Sanitary Sewers  

This kind of sewer system is dedicated only to wastewater. Rainwater is collected separately in a runoff 

drainage system. These systems have the advantage that the connected treatment facility only has to deal 

with pure wastewater, where fluctuations in the inflow are only generated by wastewater producers. 

Furthermore, the inflow usually follows a diurnal cycle, which is easily predictable and can be used for 

control optimization purposes. However, in practice it is hard to avoid infiltration water (2.1.1), 

especially if the system is older. For this reason dilution effects have to be expected, when groundwater 

levels rise. Generally, these systems have the disadvantage that a second system for runoff water has to 

be installed. Therefore, the costs are significantly higher than for combined sewers. 

2.3.1.2 Combined Sewers 

Combined sewers transport wastewater and runoff water. On the one hand, the system is much cheaper 

compared to sanitary sewers, because only one underground system has to be installed. On the other 

hand, it has several disadvantages: 

1. The system has to be designed to be able to carry the additional runoff water.  

2. In case of rain events, peak flows appear.  
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3. The connected treatment plant has to be designed in a way that it is able to treat higher inflows.  

4. Additional storm water tanks have to be integrated into the system to buffer wastewater in case 

of strong rain events. 

2.3.1.3 Storm Water Tanks (SWT) 

SWTs are hydraulic capacities (typically concrete tanks) integrated in combined sewer systems to 

temporarily store high amounts of water in cases of rain events, to avoid an overflowing of the sewer 

network or overloading of the connected WWTP. The control principle is simple: A flow meter 

(typically a magnetic flow meter - MFM) and a controllable throttle valve is integrated in the sewer 

system. An additional controller, typically a PLC, controls the valve so that only the desired amount of 

water can pass. Surplus water is led into the SWT. After a rain event the water in the SWT is pumped 

back into the sewer. SWTs are typically sized such that only in the case of very strong rain events will 

their capacity be exceeded. If this happens the water is usually discharged into the adjacent river. Under 

these extreme conditions the wastewater is already diluted to the point where it is no longer harmful to 

the receiving water body. Furthermore, sedimentation occurs in SWTs, so that coarse dirt and particulate 

matter are held back part wise. For better control, SWT level as well as the discharged water is measured. 

Using the measured data and throttle valves SWTs offer several opportunities for optimization: 

1. Early measurement of the amount of water in the sewer system, which can be used for feed-

forward plant control (early aeration, if peak loads are expected). 

2. Controlling the inflow to the plant.  

A more complex application is the better distribution of the water to the different SWTs in a sewer 

system during rain events. Various research projects have dealt with the optimization of sewer systems 

using SWT e.g.(Nickolaus et al., 2005; Trauer, 2010; Wolf, Merkel, 2015). A detailed description of the 

KANNST research project, which deals with these aspects and additionally considers the COD and NH4-

N loads can be found in the doctoral dissertation “Water in Society” (Hilmer, 2008). 

2.3.2 Wastewater Treatment Plants 

Treatment plants are the main components of wastewater treatment systems. This is where the actual 

purification process (see subsection 2.2) is carried out in individual stages. These plants deploy 

mechanical, biological and chemical purification processes. Following a variety of mechanical 

purification steps, the biological purification of carbon, nitrogen and phosphorus is then carried out in 

the main reactor. This is followed by the final treatment in which the activated sludge is mechanically 

separated from the wastewater through sedimentation. A final purification stage is optional and is only 

utilised in cases where there are particularly stringent requirements placed on the quality of the effluent. 

Figure 2-3 shows the basic structure of a typical treatment plant. The following subsections describe the 

relevant stages and the possibilities for intervention in each case.  
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Figure 2-3: Layout of a typical wastewater treatment plant (Ebel, 2009) 

 

2.3.2.1 Inflow Grate / Screen and Grit separation 

The inflow grate performs the task of keeping coarse dirt out of the treatment plant in order to, on the 

one hand, avoid mechanical damage and, on the other hand, reduce the solid content. The grates can be 

subdivided into coarse and fine grates. Coarse grates have openings between 10 mm and 50 mm, while 

the openings on fine grates are between 2 mm and 10 mm. Typically, automatic grates are used today 

e.g. step grates. These systems detect how blocked the grates have become, automatically clean them 

and transfer accumulated waste directly into a container. (Teichmann, 1997) 

The traditional method for recognising the extent to which the grates have become blocked is to measure 

the water level in front of the grates. If the water level exceeds a certain level, the automatic cleaning 

process is initiated. Improved systems measure the water level before and after the grate and use the 

difference between them as the defining criterion. A new approach is the use of image recognition 

methods to assess the extent to which the grate has become blocked. Tests conducted by the GECO►C 

Research Group have demonstrated that this is possible in principle but remains difficult because the 

majority of the dirt collects below the water level (Trauer et al., 2011). 

For the control of treatment plants, it is conceivable that water level sensors could be used at the grates 

to detect hydraulic impact at an early stage.  

The grate is usually followed by a grit chamber. This has the job of trapping other solids that are being 

carried by the water. 
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2.3.2.2 Primary Treatment / Primary Settlement 

The primary treatment tank or clarifier is part of the mechanical purification process. The goal is to free 

the wastewater of any suspended solids that could not be removed in the previous stages. It is constructed 

so that the wastewater flows slowly through the tank. In rectangular tanks, scrapers at the bottom and 

also usually at the surface of the tank are used to remove the deposited or floating material. The 

discharged material, which generally has a high carbon content, is concentrated and fed into the 

digestion tanks at the treatment plant as so-called raw sludge. 

In activated sludge plants, primary treatment tanks are operated with a clarifier detention time (CDT) of 

between 0.5 h  and 1 h  or a surface loading rate (SLR) of between 4 m h  and 2.5 m h . It can be 

assumed that practically all of the material that can settle out will have been separated after 

approximately two hours (Stier and Bundesinstitut für Berufsbildung, 2003, p. 107). 

From a control engineering perspective, two aspects of the primary treatment tank are interesting.  

1. They have a hydraulic capacity, or dead time, which control systems can take advantage of when 

measurements are taken during the inflow of wastewater. 

2. Large amounts of carbon are removed during the primary treatment.  

While the goal of older plants was to allow as much material to settle out as possible, the clarifier 

detention time is today kept shorter to retain some carbon for the denitrification process (Stier and 

Bundesinstitut für Berufsbildung, 2003, p. 108). It is possible in some plants for part of the wastewater 

to bypass the primary treatment and feed into the bioreactors so that additional carbon is present for 

denitrification. If this option is available, it must also be integrated into the control system for nitrogen 

removal. 

2.3.2.3 Secondary Treatment 

Secondary treatment is the biochemical purification stage. There are six types of reactor layouts or 

configurations that are typically used in activated sludge plants. Every reactor layout has specific 

characteristics, as well as advantages and disadvantages.  

In practice, complexity of the plants often increases because many of them, especially the medium and 

large sized plants, have multiple lanes. The main types, their relevant characteristics and their specific 

intervention and control possibilities will be described below. A detailed description of the control loops, 

as well as the general control options, will follow in Chapter 3 (Wastewater treatment plant control). 
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Downstream Denitrification 

 
Figure 2-4: Downstream Denitrification 

Downstream denitrification (Figure 2-4) is actually a chemical degradation process in which the 

wastewater is firstly subjected to a nitrification and then a denitrification process. The benefit here is 

that almost all of the ammonium ( 4NH N ) is converted to nitrate ( 3NO N ) during the nitrification 

process. The nitrate is then largely degraded during the denitrification process. In this manner, it is 

possible to ensure that there is hardly any nitrogen present in the effluent from the plant. The 

disadvantage is that the carbon is largely consumed by the heterotrophic biomass during nitrification 

and is thus no longer available for the denitrification process. This is doubly disadvantageous:  

1. Carbon is lacking for the subsequent denitrification and must be added externally. 

2. Dissolved oxygen is also consumed during carbon degradation, which could otherwise be 

recovered in part from the nitrate during a functioning denitrification process (see subsection 

2.2.2.2).  

In this type of plant, the main control options are in the areas of oxygen concentration and carbon dosing. 

Upstream Denitrification 

Upstream denitrification (Figure 2-5) is one of the most widely used types due to the benefits it offers. 

 
Figure 2-5: Upstream Denitrification 

In upstream denitrification, the process steps of nitrification and denitrification are interchanged. This 

means that the nitrate that is created from ammonium in the second nitrification tank needs to be pumped 

back to the start of the plant with the activated sludge (recirculation RQ  ). It is then combined with fresh 

carbonaceous wastewater in the denitrification tank. The advantage of this arrangement is that no 

supplementary source of carbon is necessary. The disadvantage is that it is impossible to avoid some of 
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the nitrate produced during nitrification remaining in the water and entering the final treatment stage. In 

addition, energy is required for the internal recirculation process. 

In this arrangement of tanks, the ammonium concentration ( 4NH N ) can be influenced by the oxygen 

concentration and the nitrate concentration ( 3NO N ) by the recirculation volume RQ . 

 

Cascaded Denitrification 

Cascaded denitrification is similar to upstream denitrification, although it does not involve a 

recirculation process. It begins with a denitrification tank into which return sludge ( RSQ ) and fresh 

wastewater are fed and is followed by a nitrification tank. This is followed by a further denitrification 

tank and so on (Figure 2-6). Part of the inflow is fed into each of the denitrification tanks in order to 

provide them with fresh carbon. In principle, this system consists of a cascade of multiple upstream 

denitrification plants. 

 
Figure 2-6: Cascaded Denitrification 

The advantages of this arrangement are that neither a recirculation process nor any externally added 

carbon are required. In addition, biological phosphate removal is promoted as a consequence of the 

anaerobic, aerobic and anoxic zones. The possibilities for intervention here relate to the distribution of 

the inflowing wastewater and the oxygen concentrations in the individual aerobic tanks. In practice, it 

is also not unusual for individual zones to be aerated only intermittently or as required. 

Simultaneous Denitrification (SD) 

In the case of simultaneous denitrification, the tanks are split into individual aerobic and anoxic zones 

in which the different processes take place (Figure 2-7). 

 
Figure 2-7: Simultaneous Denitrification 
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As there is no separation between the individual zones, relatively large tank volumes are required. The 

advantages are that the tanks have a simple design and no recirculation process is required. This type of 

system is suitable for smaller plants. The control options are limited here to the oxygen concentration in 

the individual zones of the tank. 

Intermittent Denitrification (ID) 

In intermittent denitrification, both processes run successively in the same tank (Figure 2-8). This type 

of plant is still very widespread not least because it was very easy to convert continuously aerated plants 

that were originally used for the removal of carbon for the purposes of nitrogen degradation. 

 

Figure 2-8: Intermittent Denitrification (ID) 

From the perspective of control technology, this type of plant is one of the most interesting because, 

alongside the oxygen concentration during the nitrification phase, it is also possible to control the 

different phases themselves. For example, it is possible during peak loads to quickly switch to the 

nitrification phase. 

Alternating Denitrification 

In alternating denitrification, the water is fed alternatively into two tanks. In addition, the two tanks are 

also (intermittently) aerated on a rotating basis (Figure 2-9). Here, the wastewater being treated flows 

out of the tank into which it was originally fed and into the other tank and from there to the final 

treatment tanks. 
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Figure 2-9: Alternating Denitrification (AD) 

The main advantage for operators is that two tanks can be operated with one blower and investment 

costs are saved as a result. 

 

2.3.2.4 Final Treatment 

The role of the final treatment tank is to separate the water and sludge, as well as to store the activated 

sludge or biomass when it is raining. Typical versions of final treatment tanks are hopper bottomed tanks 

or round tanks with scrapers. The separation process is based on the sedimentation of the sludge. It is 

for this reason that the most important variable for the separation efficiency of the final treatment tank 

is the sludge volume index  SVI mg l , which describes the ratio of the sludge volume to the dry matter 

content TSS and the surface area FTA  of the final treatment tank. Here, it is assumed that smaller 

compacter flakes settle better than larger lighter flakes. The deposited sludge is then fed back into the 

bioreactors as return sludge ( RSQ ). As the biomass grows constantly, part of the sedimentary sludge is 

separated and fed into the sludge treatment process as excess sludge ( ESQ ). 

From a control perspective, the final treatment tank is a storage system for biomass. The TSS content in 

the aeration tanks can be controlled using the volume of return sludge. It is thus conceivable, for 

example, that the volume of return sludge can be increased during peak loads, thus increasing the amount 

of active biomass in the reactors. 

2.3.3 Sludge Treatment 

Sludge treatment is another major aspect in the area of wastewater treatment. During wastewater 

treatment sludge is generated at different process steps. Primary sludge is mechanically separated from 

the wastewater during the primary treatment and is characterized by high amounts of COD  due to the 

high fat and grease content. The second source is excess sludge. Because the biomass is fed constantly 

it grows continuously. Thus, for an operator the sludge is a waste disposal problem. It has to be 

stabilized, which means that the organic content has to be reduced until the biological activity is reduced 
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to a minimum. This has to be done to avoid unpleasant odour and to make the sludge storable. After this 

process the sludge is dewatered and burned or used as fertilizer.  

Different methods are used for sludge stabilization: 

- Aerobic sludge stabilization  

This method is often used on small-scale WWTPs, which do not have a digester because of 

financial reasons. Basically, the sludge is aerated so that the microorganisms are in a constant 

hunger condition, where they are forced to use all available resources to avoid starvation. This 

method has the major disadvantage that a lot of energy is needed for the aeration. Furthermore 

it is only possible in the same tank as the nitrification, if the plant is only lightly loaded. 

 

- Anaerobic sludge digestion 

The Anaerobic Digestion (AD) of sludge serves two major purposes: (1) Carbon and nitrate 

removal as well as (2) energy production. In order to achieve these goals, sludge is treated in 

digesters under an anaerobic environment to produce biogas which mainly consists of methane 

( 4CH ), carbon dioxide ( 2CO ), hydrogen ( 2H ) and hydrogen sulphide ( 2H S ). The biogas is 

then burned in cogeneration units to produce electrical and thermal energy or upgraded to 

natural gas quality, which is in turn supplied to the gas grid. The AD process in WWTP digesters 

is normally operated at constant temperature in the mesophilic range between 35 and 42°C and 

at a TS concentration between 5 and 10%. Although, there exist AD designs with multiple 

digesters to increase process efficiency, the single reactor design is most common on WWTP 

due to lower costs. The state of online instrumentation and control of AD plants is still in its 

infancy, which is why only temperature, biogas yield and composition are commonly measured 

on most AD plants for sludge treatment. The same applies to the use of control systems. As 

process conditions are very stable, due to the fact that sludge composition is mostly stable as 

well, online process control is often considered to be not necessary. 

 

Generally, it can be said, that sludge treatment is one of the major costs of wastewater treatment 

(Friedrich et al., 2006). This work does not focus particularly on sludge treatment, but never the less 

during plant optimization or controller development, sludge treatment has to be considered. 

2.4 Summary 

This overview of the complete wastewater system from wastewater collection to final treatment in 

WWTP illustrates its high complexity, which is the main reason why wastewater treatment optimization 

and control is challenging requiring novel but also sufficiently robust solutions. In particular, the 

multiple biological treatment processes of nitrification, denitrification as well as carbon and phosphate 
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removal that take place simultaneously and/or successively all require different specific optimal process 

conditions and maybe even specifically adapted plant designs as shown in section 2.3.2.3. In addition to 

that the major challenges in wastewater treatment in terms of degree of water purification and energy 

consumption are introduced and briefly described. Constantly rising demands for higher treatment 

standards as wells as rising energy costs create a high demand for practice-oriented optimization and 

control solutions. 

Thus, this introduction to wastewater collection and treatment and the respective processes is an 

important basis for WWTP simulation using the Activated Sludge Model No. 1 (Henze et al., 1999) 

introducing the relevant biological process variables and their influence at a higher level. Furthermore, 

the development of process control strategies has to consider general plant designs and process 

conditions as well in order to meet the objectives.  
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3 Wastewater treatment plant control 

This chapter gives an overview of WWTP control as well as the related instrumentation and automation. 

The aim of this chapter is to provide a summary from the point of view of an automation engineer as a 

basis for the following chapters. The main focus is on presenting typical control loops and the associated 

design and operation challenges. 

From several years of experience in the field of controller development for WWTPs with the GECO►C 

research group, we learned that the development of the “perfect controller” from a control theory 

viewpoint is usually not the optimal goal but instead the development of a control system which is 

operationally robust and tailored to the requirements of a specific plant. A similar opinion was expressed 

by Olsson et al. in 2014 who observed that: “The control of wastewater treatment systems is certainly 

not limited by the available control theory. Rather, the challenge is to have a comprehensive 

understanding of the process and its limitations, the control authority of the actuators, the reliability of 

and information from the sensors and also data management and monitoring strategies.”(Olsson et al., 

2014). Apart from controllers, as the main components, the complete control loop consists of many 

additional parts. Sensors are used to measure different control variables, further hardware is required to 

implement the controllers (nowadays typically a PLC or an industrial PC) and the actuators (blowers, 

valves, pumps, etc.), which have to be controlled. In particular in the area of online-sensors, major 

developments have come to market in recent years, which offer new opportunities especially for smaller 

WWTPs.  

This chapter describes briefly the measurement and machine technology in use today, as well as their 

development in recent years and the associated changes in the control and optimization of wastewater 

treatment plants. Then typical control loops, as well as their procedural specificities from the perspective 

of an automation engineer, are described. Finally, the ammonium ion-selective measurement, and the 

spectrometric measurements of Chemical Oxygen Demand, two particularly important developments in 

the context of this work, are described in detail. 

 

3.1 WWTP Instrumentation and Actuators 

While many plants were operated with only a few or even no online sensors just a few years ago, they 

play a much more important role in the operation of plants today. The first instrumentation and control 

applications (ICA) were introduced around 1970 (Olsson et al., 2014). The proportion of investment 

costs accounted for by instrumentation in treatment plants was 10%-15% in 2005 and the forecasts then 

predicted it would reach 30% by 2010 (Olsson et al., 2005, p. 36). This development clearly 

demonstrates the increasing importance of ICA. 
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3.1.1 Actuators 

Actuators are generally transducers or motor elements that convert the control signals from controllers 

into mechanical movements or other physical variables. In treatment plants, these actuators are mainly 

pumps, compressors or valves. Just as in the area of instrumentation, there have been far-reaching 

developments in the area of actuators in the last few years. In particular, power electronics can be 

sourced for significantly lower prices than was the case a few years ago. This makes it possible to now 

employ frequency converters in significantly greater numbers and above all in smaller plants. 

Continuous controllers are thus becoming more and more important in comparison to simple 2-point 

and 3-point controllers. 

However, the existing machine technology is the limiting factor in many areas of application. Typical 

examples of these limitations are pumps or compressors without frequency converters or equipment that 

can only be adjusted to a few different performance levels. Figure 3-1 shows an example of an oxygen 

control system. In this case, the desired oxygen setpoint was 1.8 mg/l. However, the blowers only had 

three different setting levels and could only be changed a maximum of every 5 minutes. 

 
Figure 3-1: O2-Measurement WWTP Heinzenberg 

Many compressors can also only be operated within certain limits (e.g. between 30 Hz and 55 Hz). 

During periods of very low load, it is often particularly desirable to be able to operate the compressors 

at even lower outputs or lower frequencies. In many cases, the required controllability for maintaining 

good operational control is thus inadequate. 

At the same time electric motors have become significantly more efficient in the last few years. This 

can be seen in the energy efficiency classes introduced by the International Electrotechnical Commission 

(IEC) in 2008 and defined in the IEC 60034-30 (Deutsche Elektrotechnische Kommission, 2009) 

standard. Many manufacturers already offer extremely energy-saving premium efficiency motors with 

efficiency class IE3. However, some optimisations consequently lead to problems. One example is 

wastewater pumps that can be operated very efficiently at a range of speeds. Lower flow velocities can 

tend to promote blockages to the impeller when it is operated at low speeds. 
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These diverse framework conditions need to be taken into account when optimizing plant control 

systems. In addition, the typical response times of the control loop, which often reacts relatively slowly 

due to its compensatory times, must also be taken into account. Table 3-1 shows typical actuators and 

example response times, as well as standard types of control signals. It is often possible to influence a 

great number of process variables with relatively few actuators and these will be presented in the 

following section. 

Table 3-1: Typical technical properties of actuators 

Actor Signaltype Response Time – 
(including Process 
until measurable)  

Compressors continuous  2-10 min 
Wastewater / 
Sludge Pumps 

continuous  <1min 

Dosage Pumps 
discrete / PWM / 

continuous 
>10 min 

Valves 
discrete / 

continuous 
- 

Gate Slider 
Discrete / 

continuous 
- 

 

3.1.2 Process Variables / Measurement Values 

It is possible to manage a great number of process variables in a treatment plant with the aid of modern 

SCADA systems. These variables can be roughly divided into three categories: 

1. Archive variables – variables that are gathered but only recorded.  

2. Monitoring variables – variables that are used for monitoring processes. 

3. Control variables – variables that are actively used for controlling processes. 

The largest proportion of these variables belong to category 1. Typical examples are e.g. runtimes and 

frequencies of pumps and motors or status information on measurement devices and assemblies. In 

addition, legislators require that certain variables are recorded and archived, such as the pH value and 

the conductivity of the inflow into treatment plants.  

Variables in the second category are typically measurement values that become important when the 

values deviate strongly from the expected values. Although they are relevant for monitoring the 

processes, they are not required for controlling the plant during normal operation. Examples of this type 

of variable are flow measurements, ammonium and nitrate measurements in the primary treatment or 

the final treatment and turbidity measurements at the effluent of a treatment plant. These variables are 

usually visualised in SCADA systems as trends. They are used by operators to evaluate the process and 

to determine when a manual intervention may be necessary. Process variables in the third category 

(control variables) are actively integrated into the control loop. Typical examples include oxygen, 
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ammonium and nitrate measurements in the aeration tanks. They only account for a small proportion of 

the total number of variables recorded. In order to ensure the memory requirements do not become too 

large, data is often aggregated after certain time intervals. 

A comprehensive overview of typical measurement variables, although without taking into account 

nutrient parameters, and information on the optimal arrangement of measurements can be found in the 

DWA M256 information sheet (DWA, 2011). The various measurement values are subdivided 

according to their measurement location into the categories A: essential, B: expedient and C: not 

expedient (see subsection 5.1). 

In general, it is desirable to record the highest possible number of relevant variables online. However, 

only some of them can be measured online with an appropriate amount of effort and cost. Measurements 

can be distinguished as physical, chemical, biological and, in special cases, discrete process variables. 

Discrete process variables are e.g. states such as aeration on/off or performance levels. For control 

purposes, it is also relevant whether the variable can be determined online or only in a laboratory. Table 

3-2 contains a brief overview of those process variables relevant to control and monitoring together with 

their characteristics: 

Table 3-2: Typical WWTP process variables and their relevance for control applications 

Name Unit 
Measurement 

principle
Location 

Application / 
Control Loop 

Relevance

Flow 3 /m d  
magnetic 
inductive 

Inflow / 
Outflow / 

internal Flows 

Return Sludge, 
Aeration, 

Recirculation 
high 

Temperature °C resistant 
Inflow / 

Outflow / 
Biology 

Monitoring / 
Advanced Control: 

Aeration 
medium 

Conductivity /µS cm  resistant Inflow Monitoring low 

pH-Value - ion-selective Inflow Monitoring low 

Oxygen /mg l   Biology Aeration high 

NH4-N /mg l  ion-selective Biology Aeration high 

NO3-N /mg l  optical / ion-
selective 

Biology 
Recirculation, 

Aeration, 
high 

COD /mg l  chemical / 
spectrometric 

Inflow / 
Outflow / 
Biology 

Aeration medium 

PO4-P /mg l  chemical 
Biology / 
Outflow 

Chemical 
Precipitation / 

Aeration 
high 

 

Typical Problems / Challenges 

Depending on their type and manufacturer, sensors require regular maintenance. Despite careful 

maintenance, there are a series of recurring problems that typically occur:  
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 Drift 

 Offsets 

 Breakdowns 

 Lower sensitivity against concentration changes 

These problems are also made worse in certain measurement locations e.g. at the inflow into the plant 

due to heavy contamination, biofouling, high deviations in the temperature and concentrations and 

unfavourable flow conditions (Graner et al., 2005), whereby they can have very different service lives 

depending on the plant and installation location. Figure 3-2 a-c shows typical contamination experienced 

by different ion-selective 4NH N  sensors. The sensor in image a) was installed to take measurements 

directly in the sewerage system operated by the Aggerverband, while images b) and c) show the impact 

on sensors installed in the inflow into the industrial treatment plant in Emmerich. The sensor in image 

a) still functioned perfectly, while the membranes in the sensors in images b) and c) were destroyed. 

 
a) b) c) 

Figure 3-2: Typical pollutions of probes 

Figure 3-3 shows measurement values from a measurement device test with two ion-selective 

measurement devices (Hydrion, WTW), as well as a chemical analyser (Danfoss). It is possible to clearly 

recognise some of the described effects. Hydrion demonstrates a typical drift towards the end of the 

measurement. In a direct comparison between the Danfoss measurement and the WTW measurement, it 

can also be seen that the Danfoss device displays considerably less dynamism. It is also evident that the 

Danfoss device experienced a breakdown on 26th december and showed a measurement value of  

0 /mg l . The Danfoss membrane was cleaned on the 27th December, which led to a discernible jump in 

the measurement value. 



Computational Intelligence Techniques for Control and Optimization of Wastewater Treatment Plants 

Wastewater treatment plant control 

 

 
 - 32 - 

 
Figure 3-3: Measurement Test of different NH4-N online measurement devices at the Rospe WWTP (2004) 

The described effects invariably lead to incorrect measurements and are difficult to avoid in practice. 

Therefore, a proposed system must always be designed to guarantee the safe operation of the plant 

despite these errors. One possibility is described in section 3.2.1. 

3.1.3 Measurement Principles 

This section gives an introduction to the measurement principles of the most important probes used for 

this thesis, namely the UV/VIS spectrometry and ion-selective measurements as they represent state-of-

the-art technologies. Technologies for other measurements such as flow, pH values, and conductivity are 

well established and therefore not reviewed here (Koppe and Stozek, 1999). The technical principle of 

these relatively complex measurement systems, compared to standard conductivity or temperature 

gauges, has to be kept in mind, when further analysis of measurement data is presented in chapter 5. The 

level of precision of these measurements is an important technical limitation for the prediction quality 

of state variables. 

3.1.3.1 Spectrometric measurement probes (UV/VIS spectrometry) 

The sensor of a spectrometric (UV/VIS) probe consists of four main components:  

 A light source (xenon or deuterium lamp) 

 An optical diffraction grating 

 A detector 

 A computation unit (typically an embedded linux or windows system) 

UV/VIS spectrometry uses ultraviolet and visible light (STIP-scan 200 nm-680 nm / Trios 

ProPS-WW 190 nm-360 nm) to determine certain substances in a liquid sample. During the 

measurement a special xenon or deuterium lamp shines through the sample. After the light 
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passes the sample, the light is refracted by a prism or in most cases by a diffraction grating and 

split into different wavelengths. Figure 3-4 shows the principle of UV/VIS spectrometry: 

 
Figure 3-4: Principle of UV/VIS spectrometry 

UV/VIS spectrometry is based on the fact that many compounds have unique absorption patterns. Based 

on the Beer-Lambert law (3.1) it is possible to relate an absorption pattern to specific concentrations of 

compounds in a liquid sample. 
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Where A  is the absorption, 0I  the intensity of the incident light, I  the intensity of transmitted light,   

the extinction coefficient, c  the concentration and l  the length the light travels through the sample. Due 

to the fact that these are spectrometric data, the values depend on the wavelength  . In contrast to 

measurement systems which only use the absorption of one wavelength, the spectrometric measurement 

systems use several or all measured wavelengths. To calculate the concentration of one compound, an 

absorption coefficient ia  for each wavelength i   is determined. The concentration is calculated by a 

linear combination of a  and A  (3.2). 
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To determine the absorption coefficients ia  for 1...i n  mathematical methods like multiple linear 

regression analyses are used. A typical machine learning method often used to deduce chemical 

parameters from UV/VIS measurements is Partial Least Squares Regression (PLS) (Langergraber et al., 

2003). Typical detectors used in UV/VIS spectrometers, such as the Zeiss MMS (Carl Zeiss Microscopy 

GmbH, 2013) are able to detect 256 different wavelengths. The determination of all 256 coefficients is 

complex due to the high number of input / output value pairs needed to properly capture the underlying 

process information. To reduce the number of coefficients, some companies use a subset of wavelengths 

and laboratory measurements for the calculation. 
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Figure 3-5 shows typical absorption areas in the UV/VIS spectrum. For wastewater the area from 

200 nm to 250 nm is used to measure nitrogen, from 250 nm to 380 nm to measure carbon and above 

380 nm (the area of visible light) to measure turbidity, totally suspended solids (TSS) and colour. 

 

Figure 3-5: Significant regions of a typical UV/VIS absorption spectrum (non compensated) 

The measurement in Figure 3-5 is not yet compensated against turbidity which results in errors when 

calculating the other parameters. In reality the measurement data at all wavelengths are impacted by 

turbidity, which makes it more complicated to differentiate between turbidity and the concentration 

values of the measured substances. Figure 3-6 shows the turbidity compensated absorption spectrum for 

the same measurement. For this compensation the absorption at 350 nm, which represents mainly the 

turbidity is subtracted. In direct comparison it becomes obvious that in this case the turbidity has a 

considerably higher influence on the absorption than other concentration values (note that the scaling of 

the y-axes is different).  

In contrast to nitrate, which is a relatively easy to measure substance and has a very specific absorption 

area (about 210 nm ), COD is much more complex to measure. Due to the fact that COD is a sum 

parameter which represents the sum of all organic compounds and not a specific compound, there are 

no generally valid wavelengths to calculate COD. For this reason a special calibration (a set of 

coefficients ia ), depending on the specific kind and composition of wastewater, is necessary. 
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Figure 3-6: Significant regions of a typical UV/VIS absorption spectrum (compensated) 

The measurement of COD differs from the classical approach described above, where usually turbidity 

is compensated and known wavelengths are used. The COD-analysis uses turbidity and additional 

measurement values as well. This is possible because of the specific composition of the wastewater. In 

simple terms it means, when wastewater looks much polluted or has a strong colour, it can be assumed 

that it contains a high amount of COD etc. This rule is mostly valid, even if the colour or the dirty look 

has no chemical connection to the COD concentration. The application of the method is limited, if the 

composition of the wastewater often changes substantially. An example could be a construction site near 

to the WWTP, where the water is polluted with mud. The mud itself won't contain high amounts of 

COD, but it will change the turbidity and colour of the water, which will lead to wrong results. 

3.1.3.2 Ion-selective probes 

Ion-selective in-situ sensors are a relatively new technique in the area of wastewater treatment. The first 

commercially available devices were brought to the market about 10 years ago. The advantages 

compared to classic analysers are: 

 smaller size 

 no sample preparation 

 small delay time (<2 min ) 

 low price 

However, there are also some disadvantages in comparison to classical analysers: 
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 higher maintenance requirements (calibration is necessary in intervals between a week and a 

month) 

 measurement errors by cross-sensitivities (ammonium to potassium, nitrate to chloride) 

 tendency to drift (offset) 

 membrane ageing (loss of sensitivity in measurement values) 

 adversely impacted by several substances (membrane poisoning) 

Today many operators install ion-selective probes instead of analysers. Especially small plants, which 

were in the past only equipped with basic measurement probes, can now operate ion-selective online 

ammonium and nitrate measurement probes. 

A typical ion-selective sensor system is composed of four components: 

 An ion-selective electrode (ISE) 

 A reference electrode (Ref) 

 A temperature sensor 

 An amplifier and controller unit 

The combination of an ISE and a reference electrode is called a measuring chain (Figure 3-7). The ISE 

is composed of a tube filled with an electrolyte, an inner electrode and a PVC membrane at the end. The 

membrane contains so called ionophores, special molecules which are able to transport specific ions. 

These ionophores make the membrane permeable for specific ions. Due to the different chemical 

concentrations in the electrolyte and the medium, an osmotic pressure arises at the membrane. This 

pressure causes a movement of charge which builds up an electrical gradient over the membrane until 

equilibrium between the two forces is reached. Since only specific ions (depending on the ionophores) 

are able to permeate the membrane, the electric potential at the equilibrium depends on the target ion. 

The purpose of the reference electrode (Figure 3-7) is to establish a stable connection to the liquid 

medium. It builds up an electric potential which does not depend on the medium to be measured. 
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Figure 3-7: Schematic ISE (WTW GmbH, 2007) 

The difference between these potentials ionU  (potential of the electrodes) can be measured and is 

described by the Nernst equation (Cammack et al., 2006): 

 0 log( )ion ion ionU U S a    (3.3) 

Where 0
ionU  is a fixed voltage depending on the measurement system (standard potential of the electrode 

at a reference point), S is the slope which describes how much the signal changes depending on the 

concentration of the target ion (typically 58 mV-59 mV for ammonium or nitrate (single charged ions) 

with a new membrane) and iona  is the active concentration of the target ion. The activity takes into 

account the influence by other ions in the medium that cause matrix effects. The slope is defined as: 

 
RT

S
zF

   (3.4) 

where R  is the gas constant  1 18.314J K mol    , T  the temperature in Kelvin, z  the valence of the 

ion and F  the Faraday constant  196485C mol . Here it becomes obvious that the temperature has a 

major influence on the measurement. For this reason every ion-selective probe measures the 

temperature. In practice ISEs are influenced by other ions (cross sensitivity). For this reason the equation 

has to be extended: 

  0
,int intlogion ion ion ion erf erfU U S a K a       (3.5) 
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where ,ion interfK  is a dimensionless coefficient which describes the influence of other ions and interfa  is 

the activity of these ions. By rearranging the equation, the active concentration iona  can be calculated 

as: 

  0 1

,10 ion ionU U S

ion ion interf interfa K a


  


  (3.6) 

In practice, it has to be considered that the active concentration iona  is influenced by the amount of other 

ions present in the medium. There are two ways to calibrate the probe: 1. An offset calibration which 

corrects 0
ionU . A change of 0

ionU  is what can be seen as drift. 2. A two point calibration to correct the 

slope S  . Current electrodes are able to keep the slope S  stable over a longer period of time, which is 

why some manufacturers, such as Hach, claim that two point calibrations are not necessary anymore 

because the quality of the membranes has improved substantially. Personal application experience has 

found that in practice the slope decreases over time. This effect was strongly present when the probes 

were placed in the WWTP inflow stream.  

In chapter 4, results using these measurement systems are presented and discussed. 

 

3.2 WWTP Control 

The control loops utilised in treatment plants differ significantly in some relevant areas from traditional 

control loops in process engineering systems. For example, the volume of inflow and its composition is 

constantly changing. This causes complications for the control system. The biochemical processes that 

take place in the plant are not linear and there are interactions between the individual processes. 

Furthermore, the number of manipulatable variables is very low in relation to the complexity of the 

system. In wastewater treatment plants, controllers are used to control internal flows, dose chemicals 

and regulate oxygen levels.  

In general, three different types of controllers can be found in wastewater treatment plants: 

1. Control without feedback (open loop – feed forward) (OL) 

2. Control with feedback (closed loop – feed back) (CL) 

3. Predictive control (PC) 

Control systems in the first category are now only utilised for simple applications such as pumps. In the 

area of oxygen regulation, closed loop (CL) controllers are primarily used, whereby a typical application 

is a 4NH N  cascade controller. In rarer cases, predictive controllers are also utilised but their 

development costs mean they can usually only be financed as part of research and development projects. 
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One example is the wastewater treatment plant in Hildesheim, which was optimised with the aid of an 

online simulation model (Rosenwinkel, 2003). 

Calculation of the setpoint and maintaining the setpoint 

It is common in most controllers for the maintenance of the oxygen setpoint to play a subordinate role. 

It is more important to define the optimal oxygen setpoint. Figure 3-8 shows the basic structure of an 

oxygen 4NH N  cascade controller. 

 
Figure 3-8: Aeration NH4-N Cascade Controller 

The important point is to differentiate here between the two parts: 

 Calculation of the setpoint  

 Maintaining the setpoint 

As the status of the wastewater treatment plant is constantly changing (biology, inflow, load, etc.), it is 

necessary to calculate the appropriate oxygen setpoint in each situation. The ammonium concentration 

is mostly used for this purpose. Although the aim is to maintain the setpoint, deviations of 10 to 30% do 

not endanger the stability of the plant. In the aeration tanks, the oxygen content can vary by a similar 

amount depending on the flow conditions so that just by measuring the oxygen in the tanks at different 

positions similar variations in the concentration can be observed. Similar local dynamic effects can also 

be expected for the measurement of the concentrations of other substances. 

Typical control loops / main control loop 

Depending on the process technology, there are a series of typical control loops used in treatment plants, 

which can be described as the main control loop. Table 3-3 provides an overview of these control loops, 

the operation types in which they are used and the relevant controller type categories. 

Table 3-3: Overview of main control loops in WWTPs 

Control Loop Used for Operation Type Controller Type  
Aeration all types CL, FF 

Recirculation upstream denitrification OL, CL 
Return Sludge all types OL, CL 

Phosphate Precipitation all types OL, CL, PC 
Filtrate Water all types OL, CL 
Excess Sludge all types OL, CL 

In general, every one of these controllers can be designed as an OL, CL or PC system. Table 3-3 shows 

an overview based on practical considerations and empirical values. In many cases, the effort and costs 

involved in additional measurement technology is not proportionate to the achievable results. Therefore, 
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many plants do not have a inductive flow measurement system for the recirculation so that only an OL 

control system is possible for this variable. 

Although every one of these controllers is firstly considered individually, they sometimes have a strong 

influence on each other. A challenge for control system developers is thus to recognise and avoid as best 

as possible any potential negative effects on other control loops without having any major negative 

consequences on their own control objective. In the following sections, the control loops and their most 

important interactions with other control loops will be briefly described. 

3.2.1 Aeration Control 

General Notions concerning Aeration Control 

Control of the oxygen content in the aeration tanks is usually the largest energy consumer in a 

wastewater treatment plant: The compressors or blowers require the most electrical energy in the plant 

and thus represent one of the largest running costs. Any reduction in aeration will substantially decrease 

operating costs. For this reason, considerably more effort is invested in the control of oxygen in many 

cases than in the development or optimisation of the other controllers. 

In practice, an oxygen concentration of  2 /mg l  is frequently set. Although this is a safe option, it is 

far from the optimal solution in many cases. Therefore, the question arises: What is the right oxygen 

concentration? 

The answer to this question is not simple, it depends to a great degree on the operating and process 

conditions. The following factors play a role here: 

 the load placed on the plant 

 the inflow dynamics (strong forces make higher concentrations necessary for safety reasons) 

 the distribution of the oxygen in the tank (avoidance of anoxic zones) 

 the design of the plant 

 the control objective (saving energy vs. lower effluent concentrations) 

This list covers only a selection of the typical factors; there are often other individual criteria in practice. 

This is also the reason why efficient controllers for wastewater treatment plants generally need to be 

individually customized. Approaches for calculating the optimal 2O  setpoint are, for example, the 

method described by A. Niet (Niet et al., 2011), which attempts to minimise the sum of 4NH N  and 

3NO N  or Lindberg (Lindberg and Carlsson, 1996) which take the nonlinear oxygen transfer function 

into account to design a nonlinear oxygen controller. As treatment plants are never in a steady state in 

reality, this calculation remains a challenge in operational practice. 
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Continuous oxygen control 

The standard system used today for regulating the oxygen value consists of two or three cascade 

controllers: 

1. An 4NH  controller with a fixed 4NH  setpoint that calculates an oxygen setpoint based on its 

control deviation. 

2. An 2O  controller that calculates the airflow with the aid of the 2O  control deviation (or 

calculates the speed of the compressor directly) 

3. An airflow controller that maintains the desired flow of air by controlling the valves on the air 

lines based on its control deviation. 

Every single one of these control loops has individual non-linearities so that they must be setup and 

optimised separately. Controller 3 is often utilised in systems with highly non-linear control elements 

e.g. prism valves in the air lines (Olsson et al., 2005). Today, regulating valves are sometimes omitted 

to save energy and the airflow is controlled directly via the compressor. This avoids the otherwise 

inevitable energy losses at the valves. In these cases, the third controller is omitted. 

Feed Forward Control 

In order to be able to guarantee that the effluent limits can be maintained even when the inflow has a 

highly dynamic nature, it is necessary to select a correspondingly low 4NH N  setpoint. Alternatively, 

additional predictive components can be introduced into the control system. These utilise measurement 

values from the wastewater treatment plant inflow or from the upstream sewage system. The changes to 

the 4NH  setpoint can thus be adjusted according to the measurement of the inflow volumes. Better 

results are achieved when 4NH N  or COD  measurement values from the inflow are used. These 

methods make it possible to use higher 4NH  setpoints when the plant is subject to lower loads and vice 

versa. In practice, these predictive components enable the 2O  setpoint to be increased at an early stage 

when a sudden increase in load is recognised in the inflow or in the sewage system. This means that 

large energy savings can be made without making any major sacrifices to operational safety. However, 

safe operation in this case necessitates relatively high maintenance costs as the measurement location 

itself in the inflow or sewage system can quickly lead to disruptions or the breakdown of the 

measurement technology. This is one of the most important motivations for the development of virtual 

sensors that will be presented in Chapter 5 (Virtual COD  and 4NH N  measurements). 

Intermittent oxygen control 

Intermittent 2O  controllers are required in certain plants for procedural reasons. Older plants often only 

have one aeration tank. They date back to the time when the primary objective was to eliminate COD , 

which required basic and continuous aeration. These plants were later converted by the introduction of 
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intermittent operation for nitrification and denitrification. From a control engineering perspective, these 

plants are very interesting because they offer more possibilities for intervention: 

- 2O  setpoint 

- Length of the aerated or non-aerated phase 

- Start time of each phase. 

Simple controllers work with fixed 4NH N  switching points so that, for example, the aeration is 

switched on at 4 /mg l  4NH N  and then switched off again at 2 /mg l  4NH N . The challenge here 

is to decide whether longer nitrification phases with lower 2O  concentrations or shorter phases with 

higher 2O  concentrations are better for the specific plant. Depending on the load experienced by the 

plant, longer nitrification phases are better in terms of energy consumption but mean that the length of 

the denitrification phases are no longer sufficient. Within the scope of this work, controllers were 

developed that could determine both the 4NH N  removal rate: 

 4
4 removal rate

dNH N
NH N

dt


    (3.7) 

and the 3NO N  removal rate: 

 3
3 removal rate

dNO N
NO N

dt


    (3.8) 

The optimal 2O  setpoint is the value that minimises the ratio between the 2O  concentration and 

ammonium removal 4 removal rateNH N , that is: 

 2
2

4 removal rate

(optimal Setpoint) min
O

O
NH N

 
   

  (3.9) 

However, this approach has a number of limitations in practice:  

 The removal rates are difficult to determine and change greatly because the inflow acts as a 

disturbance variable.  

 The 2O  concentration is not the optimal key parameter because it gives no information on either 

the volume of air provided or the energy consumption. However, this information is often not 

available. 

 If the load experienced by the plant is high, the nitrification phases must be kept short to provide 

sufficient time for the denitrification phases. The required length of the denitrification time can 

be estimated based on the nitrate removal 3 removal rateNO N . 

The change in the length and starting points of the nitrification and denitrification phases provide good 

opportunities for the dynamic control of plant operation based on the load. In many cases, the desired 
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2O  setpoint cannot be adjusted dynamically enough (see subsection 3.1.1). In order to compensate for 

this, the nitrification phase can be started, for example, earlier if there is a sudden increase in load so 

that sufficient capacity for the nitrification is made available. 

There are a variety of approaches for calculating the 4NH  concentrations at which the aeration should 

be switched on and off. The most important are the statutory effluent values and the safety-related 

considerations. It is possible in normal operation e.g. to select a 4NH N  switching point at the end of 

the denitrification phase that is higher than the statutory 4NH N  effluent limits because a combination 

of denitrification and nitrification takes place in the final treatment tank. In the case of a sudden and 

sharp increase in load shortly before or after reaching the switching limit, e.g. a rain event, there is 

however a risk that the effluent limits could be breached. 

Variable zones 

A special feature of intermittent control is variable zones. These are tanks or zones that can be aerated 

depending on the load experienced by the plant. The principle is similar to the intermittent operation 

described above, although it is implemented as an additional component in other plant designs. 

Safe operation 

A more important aspect than saving energy for the operator is the safe operation of the plant, which 

includes in particular the safe observance of limit values. As measurement devices do not always work 

correctly (see subsection 3.1), it is necessary to recognise any possible incorrect measurement and to 

build in fallback strategies. The controllers developed by the GECO►C Research Group (Betz, 2015) 

employ a strategy involving multiple fall-back levels. Figure 3-9 shows a representation of these as a 

shell model. 

 
Figure 3-9: Controller shell model 

In normal operation, the controller is located in the innermost shell. The switching limits are calculated 

according to the described method. However, if these limits exceed the stated limits on the middle shell 
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then they are ignored and overridden. The same principle is valid for the middle shell. For example, 

there is an automatic changeover to the nitrification phase after four hours of denitrification even if the 

lower 4NH N  limit has not yet been achieved. In this manner, it is possible to guarantee continued 

safe operation even if a measurement device breaks down overnight when the personnel are absent. 

 

O2-Control 

The 2O  controller is generally just one component in a cascade control system (see Figure 3-8). 

Although many different types of system, e.g. fuzzy control (Bongards et al., 2005), have been 

successfully implemented in the last few years, the most common controller is still the PI or PID 

controller. One reason for this is certainly their high degree of availability in standard development 

environments for control systems. While the first stages of a cascade control system are partially 

implemented in the SCADA system, particularly those that use CPU-intensive methods, the 2O  

controller is mostly implemented independently on the PLC itself. The practical limits of this controller 

will be briefly described using the example of intermittent control.  

The control deviation is at its maximum at the start of the nitrification phase because the actual value is 

0 /mg l . 

 
Figure 3-10: Behaviour O2-PI-Controller in the beginning of nitrification 

At the beginning of the nitrification phase, oxygen is consumed at a very high rate and this continues 

until the COD  has been largely used up. The 2O  concentration in the tanks during this period mostly 

remains at 0 /mg l . Afterwards, the 2O  concentration rises quickly. The start of this rise is marked in 
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Figure 3-10 by a vertical line. During the first phase, the I-term of the controller rises so that although 

the P-term falls when the setpoint (SP) is reached, the I-term remains high. This leads to an overshoot 

in the 2O  concentration. The time it takes for the consumption of oxygen up to the beginning of the 

nitrification phase is dependent on the COD  concentration, meaning this phase can take a variable 

amount of time and thus displays highly non-linear behaviour. This effect is not very disruptive in 

normal operation but it does cause unnecessary energy consumption for the aeration. PI or PID 

controllers with different settings for different phases of the nitrification can provide assistance here but 

these types of solution are not widely used in practice. 

Interactions with other controllers 

As mentioned at the start of this chapter, there are dependencies between the different control loops that 

need to be taken into account. Figure 3-11 shows the most relevant dependencies for the oxygen 

controller. 

 
Figure 3-11: Aeration Control - Interaction with other control loops 

Link a) 

 Phosphate is stored in the biomass during aeration. This means less precipitant is required. 

 If anaerobic states occur in phases without aeration, there is a risk of redissolution. 

Link b) 

 High volumes of degradable biomass in the return sludge require oxygen so that more air needs 

to be provided. 

Link c) 

 High levels of recirculation in combination with high oxygen concentrations can lead to oxygen 

carryover from the nitrification phase to the denitrification phase, which endangers nitrate 

removal. The removal of high levels of nitrate during the denitrification phase is usually 

achieved through greater recirculation. 
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Link d) 

 Filtrate water from sludge treatment increases the ammonium concentration, which leads to 

higher oxygen consumption. 

 High levels of aeration lead to lower levels of ammonium. These are generally beneficial 

situations for adding filtrate water to the activated sludge. 

3.2.2 Recirculation Control 

Recirculation control is a special case and is only required in plants with upstream denitrification. It is 

responsible for transferring the nitrate formed during the nitrification phase into the inflow of the 

denitrification phase (see section 2.2.2.2). In general, two typical approaches are used for recirculation 

control: 

 Inflow-proportional control 

 Nitrate-based control 

Inflow-proportional control is the simplest approach. In this case, the volume of recirculated water is 

controlled at a fixed rate to the inflow. Therefore, this is a type of non-feedback control as it is not 

regulated by feedback on the volume of nitrate. This has the disadvantage that in the case of already 

high inflow volumes and correspondingly shorter retention times in the tanks, the recirculated water 

shortens the retention times even further.  

In nitrate-based control, the 3NO N  concentration of the effluent from the aeration tank is used as the 

key parameter. The control principle is as follows: If the 3NO N  concentration increases, the volume 

of recirculated water is increased so that a higher proportion of nitrate flows through the denitrification 

stage. 

Interactions between the recirculation and other controllers 

Changes to the recirculation have an effect on oxygen control if nitrate-based control is used. In the case 

of higher 2O  concentrations, there is an increased amount of 3NO N  which leads to higher levels of 

recirculation. In turn, the shorter retention times can cause poorer 3NO N  degradation, whereby most 

oxygen controllers respond by reducing the 2O  setpoint. 

3.2.3 Phosphate Precipitation Control 

A variety of different iron salts are utilised as precipitants for the removal of phosphate. A diverse range 

of products based on iron or aluminium are available on the market. The goal of all control systems is 

to maintain the phosphate limit values in the effluent and at the same time keep the precipitant costs to 

a minimum. The following approaches are described by the DWA (ATV-DVWK, 2001):  

 Continuous dosing  
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 Dosing according to a schedule  

 Dosing according to the flow of wastewater  

 Dosing according to the phosphate load  

 Dosing according to the phosphate concentration 

During continuous dosing, a dosing pump runs permanently delivering a constant dose. In order to safely 

remove the phosphate, overdosing of the precipitant is carried out in most cases. Dosing according to a 

schedule is the simplest improvement, where the dosing quantity is adjusted based on empirical values 

depending on the time of day. In dosing according to the flow of wastewater, the precipitant is dosed 

within a controlled range in proportion to the flow of wastewater. Fixed values are used above and below 

this range. Control based on the phosphate load is significantly more efficient because it utilises a 

phosphate measurement. This involves multiplying the wastewater volume by the 4PO P  

concentration to calculate the required precipitant flow PAQ  (example for iron-based precipitant): 

 
55.8 1 1

30.9PA P
ME

Q Q C f
m




         (3.10) 

using the wastewater volume [ / ]Q l s  , the phosphorus concentration PC , the safety factor f , the Beta 

value  Fe mol P , the density of the precipitant 3[ / ]kg m  and the active metal content of the 

precipitant  kg Fe kg PAMEm . It is often the case that the precipitant is hyperstoichiometrically dosed 

so that a safety factor f  of over 1 is selected. The value 55.8 30.9  represents the ratio of the molecular 

weight of iron to phosphorus. 

Control according to the phosphate concentration corresponds to a traditional feedback control solution, 

where the phosphate concentration is measured after the dosing point. 

Biological Phosphate Removal and Interactions with Other Controllers 

As described in section 2.2.4, the targeted application of aeration makes it possible to store phosphate 

in the biomass and to remove it from the plant in the form of excess sludge. It is for this reason that a 

value of under 1 can be selected in the calculation of the safety factor f  in many plants. This can lead 

to significant savings in the amount of precipitant used. A problem experienced in biological phosphate 

precipitation is so-called phosphate redissolution. Here, the biomass releases the phosphate again which 

occurs especially under anaerobic process conditions. As this process occurs very quickly, it can lead to 

high phosphate peaks and endanger the effluent limit values. In intermittently operated plants, this effect 

can be avoided by preventing anaerobic states through briefly aerating the wastewater during 

denitrification. 
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3.2.4 Filtrate Water Control 

Filtrate or process water (PW) is created during the dewatering of sewage sludge. Depending on the type 

of sludge and the concentration method used, the process water is subject to varying levels of 

contamination. The most heavily contaminated PW comes from digested sludge. It is characterised by 

a high 4NH N  concentration and a comparatively low COD  concentration. This process water needs 

to be fed back into the plant. It is often the case that this is performed continuously throughout the day. 

It is more sensible to dose the process water during phases when the plant is experiencing low loads so 

that the plant is not overburdened. A typical mistake that is often made is to dose the process water at 

night. Although this is when the plant is experiencing the least load and there are low 4NH N  

concentrations, there is a lack of carbon for denitrification so that the nitrate created cannot be degraded 

(see section 2.2.2.2). An improvement can be made by dosing according to a schedule because the times 

of extremely high or low load are often known and it is possible to plan accordingly. In addition, it is 

sensible to integrate the fill level (FL) of the process water tank into the control system. As the tank's 

capacity is limited, the control system must take this into account and dose higher volumes before there 

is a danger that no more capacity is available. A tried-and-tested practical solution developed by the 

GECO►C research group is the following relatively simple formula (3.11). 

 

10                       if    0< <25

( ) 10 1.12     if  25< <25

66 1.40     if  25< <25

FL

PW FL FL FL

FL FL


  
  

  (3.11) 

Based on the graphical representation in Figure 3-12, it is easy to recognise that the dose of PW increases 

as the FL increases. The slope of the curve can be individually adapted to the plant where required. 

 
Figure 3-12: Process water control 
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3.2.5 Return Sludge Control and Excess Sludge Control 

All activation plants with a final treatment tank must feed the separated biomass (see section 2.3.2.4) 

back into the bioreactors. Therefore, the volume of active biomass in the reactors is directly controlled 

by the volume of return sludge. Different processes have become established for controlling the return 

sludge: 

 Inflow-proportional control 

 Control based on the volume of sludge in the aeration and/or final treatment stages 

 3NO N -based control 

The inflow-based process is always utilised if the plant is not capable of measuring the dry matter content 

(TSS ) in the aeration tank or the sludge level in the final treatment tank. In other cases, the volume of 

sludge can be controlled so that a constant amount of dry matter is retained in the aeration tank or a 

predetermined sludge level in the final treatment tank is not exceeded. 

The nitrate degradation in the aeration tank can also be used as a control variable: If it is insufficient, 

more biomass or activated sludge is pumped into the aeration tank.  

Advanced control systems also use the volume of return sludge to ensure there is more active biomass 

in the aeration tanks during peak times or to partially store the biomass in the final treatment tanks during 

phases of low load. As the associated pumping processes can take many hours, it is necessary to be able 

to estimate the behaviour of the plant and particularly the variations in the levels of inflow in advance.  

Part of the return sludge is discharged as excess sludge. It is common to divert a fixed proportion or to 

use the dry matter content as a guide value. The goal is to maintain the active biomass in the plant at a 

constant level. In addition, it is possible in this way to control the age of the sludge in the plant, which 

should remain within certain limits depending on the type of plant. 

3.3 Summary 

The chapter shows that wastewater treatment plant control is much more than the well-established 

aeration control but rather a comprehensive optimization of several control loops including recirculation, 

phosphate precipitation, filtrate water dosage and return sludge as well (plant-wide control). It becomes 

evident that all those control loops influence the biological treatment process and thus each other to a 

great extent, which is why the optimization of a single control loop is mostly not constructive. Instead 

the overall operating and process conditions at different treatment stages of the plant need to be 

considered. 

Nevertheless, the overview of available online instrumentation for process monitoring clearly illustrates 

that this is easier said than done. In particular, cross-sensitivities, sensor drift and high maintenance, 

depending on the type of instrumentation used, turn the proper assessment of the operating state of a 
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plant into a challenge. Based on these limitations on the instrumentation side, the control side needs to 

rely on sufficiently robust and financially feasible online instrumentation, in order to come up with 

practice-oriented optimization and control solutions that achieve a high acceptance by plant operators. 

Therefore, this chapter sets the scene for the developed soft-sensor solution in section 5 as well as for 

the SOM- and state-based control in section 7 by providing insight into and justification for the line of 

thought that these novel methods are based on. 
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4 WWTP Modelling 

This chapter provides a general description of the modelling of wastewater treatment plants and 

especially the modelling of the Rospe treatment plant with the help of the Activated Sludge Model No. 1 

(ASM1) (Henze et al., 2000). Initially, an introduction to the basics of modelling wastewater treatment 

plants is given. The plant and the implementation of the model in Matlab® Simba is then described. 

This is followed by a description of the model calibration. The calibration is initially carried out 

manually and then a quicker and more efficient method using the multi-parameter optimisation process 

SMS-EGO (Zitzler and Thiele, 1998) is presented.  

Modelling of wastewater treatment plants is a combination of models of multiple processes. It is initially 

necessary to model the hydraulic conditions in the different reactors. The biological processes, process 

kinetics and stoichiometry then need to be modelled. 

4.1 General wastewater treatment plant models 

4.1.1 Modeling of the hydraulics 

Although the hydraulic conditions are a relevant factor in the behaviour of a plant, they are highly 

simplified in many cases due to their complexity. It is common practice to view reactors as continuously 

stirred tank reactors (CSTR) or as zero order systems. It is assumed here that the concentrations are the 

same across the entire reactor. In order to model plants in which large changes in concentration in the 

direction of flow occur, such as oxygen ditches or plug-flow systems, first order systems are sometimes 

used. In general, it is possible to differentiate between three types of reactors for the hydraulic 

description: batch reactors, stirrer tanks and plug-flow reactors. For larger plants, stirrer tank reactors 

are primarily used. 

4.1.1.1 Batch reactors 

Batch reactors are tanks in which the process is completed as a batch job. This means that they are filled, 

the desired process is completed and then the tank is emptied. Assuming that nothing flows into or out 

of the tank during the process – i.e. the volume remains constant– then the change in concentration can 

be described as follows: 

 
dc

r
dt

  
mg

l s
 
  

  (4.1) 

The concentration is represented by c and the conversion rate by r . In wastewater treatment, batch 

reactors are popular solutions for small wastewater treatment plants or highly contaminated industrial 

wastewater. It is important to note here that the process often already starts during the long filling phase 

and therefore there is a continuous change in volume in many cases. 
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4.1.1.2 Continously stirred tank reactors (CSTR) 

Continuously stirred tank reactors are the most commonly used type of reactor for the modelling of 

wastewater treatment plants. As the name already suggests, it is assumed that they are completely mixed 

and thus the concentrations of the individual substances are the same throughout the entire reactor. The 

change in concentration 
dc

dt
 can be described as follows: 

 
 in outQ c cdc mg

r
dt V l s

      
 (4.2) 

In contrast to batch reactors, the inflowing and outflowing load is calculated and added to the conversion 

rate r . This simple approach is based on the assumption that the volume remains constant. In practice, 

there is often a small change in volume because the fill level in the relevant tanks can change by a few 

cm if there are high levels of inflow e.g. in the event of rain. This effect is intensified if the tanks are not 

directly connected but the medium passes through a pump. 

4.1.1.3 Stirred tanks in series 

In principle, stirred tanks in series are the standard solution for most plants and are simply a series of 

linked stirred tanks. In this process, every stirred tank behaves as a CSTR as described in section 4.1.1.2.  

 
 1 11 in outQ c cdc mg

r
dt V l s

      
 (4.3) 

 
 2 22 in outQ c cdc mg

r
dt V l s

      
 (4.4) 

The outflowing concentration 1outc  is thus identical to the inflowing 2inc  (Figure 4-1). 

 
Figure 4-1: Stirred tanks in series 

 

4.1.1.4 Plug-flow Systems 

In plug-flow systems, it is assumed that the water passes through the tank like a plug. There is thus no 

complete mixing of the water. This results in a concentration gradient in the direction of flow (z-axis) 

in the tank. The mathematical description of the change in concentration in a plug-flow is as shown in 

equation (4.5): 
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r
t A z m d

 
 

      
  (4.5) 

The reduction in concentration over time is represented here by 
c

t




, while 
c

z




 represents the reduction 

in concentration along the axis z  and the area is represented by A . In direct comparison, stirred tanks 

in series reduce the concentration in steps, while plug-flow reactors reduce the concentration 

continuously. As it is not really possible to mix a stirred tank perfectly, the cascade effect is also present 

in the stirred tank to some extent.  

4.1.2 Modeling biological processes 

The following subsections provide an introduction to the mathematical description of biological 

processes. This consists of a description of the kinetics, meaning the rate of conversion, and the 

stoichiometry, meaning the actual conversion of the materials. 

4.1.2.1 Kinetics / Monod equation 

Through his experiments on the growth of bacterial cultures in discontinuously stirred tanks at the start 

of the 1940s, the French scientist Monod recognised parallels with the Michaelis-Menten theory due to 

the non-linear relationship between the specific growth rate and the limiting substrate and formulated 

analogous relationships for bacterial growth (Gerber, 2009). The so-called Monod equation is today a 

widely used method for describing the rate of conversion. Equation (4.6) shows an example of a typical 

Monod equation. The Monod equation is very precise for pure cultures and simple substrates (Gerber, 

2009). 

 max
,h

S

S K
  


 (4.6) 

The growth rate is represented here by µ , the maximum growth rate by maxµ , the substrate concentration 

by S  and the so-called Monod constant by hK , which gives the substrate concentration at which 50% 

of the maximum growth rate µ  is achieved. It is noticeable in Figure 4-2 that the growth rate increases 

sharply at low substrate concentrations and then always flattens out when it nears the maximum growth 

rate maxµ . 
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Figure 4-2: Growth behaviour - Monod kinetics 

Furthermore, a differentiation is also made between growth kinetics and inhibition kinetics. In growth 

kinetics, the conversion rate rises with an increased amount of substrate, while it falls in inhibition 

kinetics. A typical example for growth kinetics in the area of wastewater treatment is nitrification. In 

this case, the conversion rate increases along with the availability of ammonium. 

4.1.2.2 Stoichiometry 

Stoichiometry describes the conversion of materials. This is formulated with the help of chemical 

equations. Stoichiometry does not only describe the reactions but also gives additional information about 

the precise proportions of the materials. An example of a stoichiometric equation can be found, for 

example, in the description of the denitrification process in section 2.2.2.2 (equation (2.6)). 

4.1.2.3 Matrix representation 

In order to illustrate the complex dynamic reaction model more closely, a matrix notation has become 

established based on the work of Peterson (Peterson, 1965). The so-called Peterson Matrix describes a 

combination of the kinetics and stoichiometry. Table 4-1 shows an example of the aerobic growth and 

decay of a group of microorganisms. The table is structured as follows:  

 The first row describes the different components involved in the processes with their indices i  . 

 The leftmost column describes the different processes with their indices j . 

 The rightmost column describes the kinetic expressions / process rates j  in the corresponding 

row. 

 The lower left corner describes the stoichiometric coefficients and the lower right corner the 
kinetic parameters. 

 The elements in the matrix are the stoichiometric coefficients ij . 

In order to calculate the reaction rate of an individual component, follow the relevant column for the 

component downwards and multiply the stoichiometric coefficient for each process j  by the relevant 
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process rate j . This is repeated for every process and the individual results are then added together. In 

the case of BX , this gives, for example, the process rate 
BXr  as follows: 

 
ˆ

B

s
X B B

S S

S
r X bX

K S


 


  (4.7) 

The system process rate is calculated as follows: 

 i ij j
j

r v    (4.8) 

All organic constituents are expressed as equivalent amounts of COD . Therefore oxygen is expressed 

as negative COD . 

Table 4-1: Matrix representation of models (Henze et al., 2000) 

 

A major advantage of this representation is the easy and fast recognition of the fate of each component. 

Looking at the rows all components involved in the corresponding process are visible, likewise looking 

at the columns gives an overview of all processes influencing the corresponding component. 

A detailed description of the matrix representation used for the description of the ASM models can be 

found in Activated Sludge Models ASM1, ASM2, ASM2d and ASM3 (Henze et al., 2000). 

4.1.3 Activated Sludge Models 

In 1982 the International Water Association on Water Pollution Research and Control (IAWPRC) 

established the Task Group on Mathematical Modelling for Design and Operation of Activated Sludge 

Processes. The aim was to develop a model with minimum complexity. The result was the Activated 

Sludge Model No. 1 (ASM1) (Henze et al., 2000). In the following years, further models with different 
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extensions were developed and published. In addition, many research groups developed their own 

models based on the ASM models. The following list gives a short overview of the main properties / 

differences of the official ASM versions published in journals of the IWA: 

 Activated Sludge Model No. 1 (ASM1) – The ASM1 considers processes for carbon oxidation, 

nitrification and denitrification. It was finally published in the IAWPRC Scientific and 

Technical Report No. 1 (Henze et al., 1986). 

 Activated Sludge Model No. 2 (ASM2) – The ASM2 is an extension of the ASM1 with higher 

complexity due to more components. It was developed out of the need for a model that is able 

to simulate phosphorus removal. To make this possible, biomass in the ASM2 has a cell internal 

structure. Furthermore, two chemical processes were added, which are needed to simulate 

phosphorus precipitation. It was first published 1995 in IAWQ Scientific and Technical Report 

No. 3 (Gujer et al., 1995) 

 Activated Sludge Model No. 2d (ASM2d) – The ASM2d is a minor extension of the ASM2. It 

extends the ASM2 model by two additional processes which account for the fact that 

phosphorous accumulating organisms (PAOs) can be considered as two fractions which can use 

cell internal organic products for the denitrification process. The ASM2d was published 1999 

in Water Science and Technology (Henze et al., 1999). 

 Activated Sludge Model No. 3 (ASM3) – The ASM3 is the most advanced model and was 

designed to fulfill the needs of engineering specialists as well as scientists. It combines the core 

functionalities of many different models in order to eliminate different weaknesses of the ASM1 

and to make it possible to connect additional modules such as modules for biological phosphorus 

removal. A comparison between the ASM1 and the ASM3 model can be found in (Henze, 2000, 

p. 105). The ASM3 was published in 1999 in Water Science and Technology (Gujer et al., 

1999). 

4.1.3.1 Choice of model (ASM1) 

The ASM1 model was selected for this work. ASM1 is the first and oldest model in the ASM series of 

models. Although a series of deficiencies are known, which are described in IWA Scientific Report No. 

9 (Henze, 2000, p. 103), they are outweighed by the advantages it offers over the other models for this 

work. 

The model is used in this piece of work for the purpose of optimising the aeration process. The ASM1 

model is stable, simple and appropriate for this task. Phosphate is neither taken into account nor required 

for this task. Furthermore, it is not recorded at the Rospe wastewater treatment plant. In comparison to 

other models, there are also a low number of parameters and processes in ASM1, which makes it easier 

to calibrate. Last but not least, the good availability of already published implementations is also one of 

the arguments for using this model. 
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4.1.4 Activated Sludge Model No. 1 

As described in subsection 4.1.3.1, the ASM1 model was used for the development of the model for the 

Rospe wastewater treatment plant. For this reason, this subsection describes ASM1 in more detail. 

ASM1 has a total of eight processes and 13 variables. Accordingly, the state vector x  is formed as 

follows: 

 , , ,[ , ; , , , , , , , , , ]I S I S B H B A P O NO NH ND ND ALKS S X X X X X S S S S X Sx   (4.9) 

In general, there is a distinction made between dissolved substances ( S ) and particulate substances 

( X  ). The model recognises two types of biomass: The heterotrophic biomass ( ,B HX ) and the 

autotrophic biomass ( ,B AX ). Organic matter is subdivided here into four fractions: soluble inert ( IS ), 

soluble readily biodegradable ( SS ), particulate inert ( IX ) and particulate readily biodegradable ( SX ). 

Nitrogen is represented by nitrate and nitrite ( NOS ), ammonium and ammonia ( NHS ), soluble 

biodegradable organic nitrogen ( NDS ) and particulate biodegradable organic nitrogen ( NDX ). In addition 

there is oxygen ( NOS ), alkalinity ( ALKS ) and, as a intermediary product of the process, particulate 

products arising from biomass decay ( PX ). Phosphate is not taken into account in ASM1. Using these 

variables, the model employs eight processes (Table 4-2). 

4.1.4.1 ASM1 Model Parameters 

The ASM1 model has a total of 19 parameters, which describe the stoichiometry (5 parameters) and 

kinetics (14 parameters). Default values for 20°C and 10°C at a neutral pH value have been provided by 

the IWA Task Group to assist with calibrating the model. These act as a good starting point for a 

calibration and were used as such in calibration of the Rospe model. However, the range covered by the 

individual parameters is large. When viewing the parameters in the 10°C column and comparing them 

to the parameters for 20°C, it is noticeable that only seven of the kinetic parameters are influenced by 

the change in temperature. These are marked in bold in Table 4-3. The last column of Table 4-3 shows 

published values from relevant literature (Jeppsson, 1996) for the different parameters. If the published 

values for the half-saturation coefficient (hsc) for heterotrophs SK  , which lies between 5 and 225, is 

taken as an example, it clearly demonstrates how large the range can be. 
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4.2 Modelling of the Rospe WWTP 

4.2.1 Rospe WWTP  

The Rospe plant is a municipal WWTP which treats a fraction of the wastewater of the German city of 

Gummersbach. The plant is designed for 34,000 population equivalents (PE) and is currently connected to 

approximately 18,000 PE. The wastewater is mostly municipal wastewater. Approximately 15,900 PE of 

the 18,000 PE are wastewater from households. In 2014, the Rospe plant treated 3,537,940 m³ wastewater. 

The Rospe plant is continuously operated with upstream de-nitrification. Mechanical purification is carried 

out in the form of a 6 mm grate followed by a sand filter. Afterwards, the water passes through a horizontal 

flow primary treatment tank. The biological stage consists of a total of 18 tanks into which the wastewater 

flows successively. The structure of the plant is laid out in 3 lanes. Finally, there is the final treatment stage 

that consists of three lanes connected in parallel. Table 4-4 gives an overview of the different volumes. 

Table 4-4: WWTP Rospe - Basic Data 

Procedural Stage Size  Unit  
Volume Primary Treatment 550 m3 

Volume Biology (total) 7,215 m3 

Volume Nitrification 3,207 m3 

Volume Denitrification 4,008 m3 

Volume Final Treatment 5,207 m3 

 

From the volumes in Table 4-4 and the total amounts being treated, it is possible to roughly calculate the 

following retention times for the individual stages: 

 Primary treatment approx. 1.5 hours 

 Biology approx. 18 hours 

 Final treatment approx. 13 hours 

It is important to note here that the plant has different internal flows, such as two recirculation lines (see 

Figure 4-4) and the return sludge. Table 4-5 shows the statutory effluent limits for the plant. 
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Table 4-5: WWTP Rospe - Limit / Design Values 

Substance / Entity Value Unit  

Chemical Oxygen Demand (COD) 60 mg/l 

Ammonium Nitrate (NH4-N @ T > 6°C) 8 mg/l 

Total Nitrogen (NTot) 18 mg/l 

Total Phosphate (PTot) 2 mg/l 

4.2.1.1 Biological Treatment 

Figure 4-3 shows the 18 tanks in the biological stage of the Rospe wastewater treatment plant. Lane one 

can be seen on the left of the picture, lane two in the middle and lane three on the right. 

 
Figure 4-3: Biological Stages of the Rospe WWTP 

However, the distribution of these lanes is misleading because the wastewater flows through all of the tanks 

in succession. An overview of the precise distribution of the tanks is given in Figure 4-4. The dotted line in 

Figure 4-4 shows the flow path. With respect to the process technology, the plant utilises upstream 

denitrification. The first nine tanks are denitrification tanks, followed by eight nitrification tanks. The last 

tank (Deni 4) is again a denitrification tank. There are two paths for the recirculation (Figure 4-4 blue dotted 

line) required for upstream denitrification. The outer recirculation (1) leads from the last tank (Deni 4) back 

to the first tank, while the second recirculation (2) is an additional internal loop. In terms of modelling the 

plant, a reduction in the complexity to two or three tanks would appear appropriate at first glance. However, 

this is not possible due to the two recirculation paths. The red (denitrification tanks) and green (nitrification 

tanks) areas represent the volumes that will be merged together in the model into one tank each respectively. 

In this manner, it is possible to reduce the model from 18 to 7 tanks without significantly changing the 

representation of the process technology. 
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Figure 4-4: Biological Stages of the Rospe WWTP  

 

4.2.1.2 Calculation of recirculation flow 

The recirculation volumes at the Rospe plant are neither controlled nor measured. This poses a severe 

problem for the calibration of the simulation model as the recirculation flow has a strong impact on the 

plant hydraulics and the respective process behaviour. Thus, the recirculation flow rate needs to be 

estimated realistically so that it matches the power of the installed pumps as well as the concentration ranges 

of the process variables. In this case the influence of the recirculation flow on 4NH N  and 3NO N  

concentrations is analysed. The plant has two recirculation pumps of type KSB Amaline P260-501/014. 

The type description describes a propeller pump with a propeller diameter of 501 mm, a nominal speed of 

260 min-1 and a 4-Pol 1.3 kW asynchronous motor. The pumps for the recirculation are operated via a 

frequency converter. According to the display, recirculation pump 1 (D1D4) is operated at 300 min-1 @ 

1.02 kW and recirculation pump 2 (N1D3) at 290 min-1 @ 0.92 kW. As the pumps only have a small 

height difference to overcome, it can be assumed that the counterpressure is primarily created by the 

recirculation lines themselves. Based on the pump data sheet (KSB, 2011), it is difficult to estimate the 

flowrate for this output because the setting range is very large. However, flow rates of up to 350 l/s or 

30240 m3/d are possible for the pump speed. In order to identify a realistic flow rate in the two recirculation 

lines, a grid search with different flow volumes for each pump was carried out. This took into account the 

realistically achievable flow volumes. Figure 4-5 shows the resulting difference in 4NH N  concentration 

between the measured and simulated concentrations based on the estimated recirculation flow (RMSE). It 

can be seen that the best value of around 0.88 mg/l lies in the upper left section. This is between 15000 m3/d 

and 27000 m3/d for recirculation volume 1. The best result for recirculation volume 2 is between 35000 m3/d 

and 40000 m3/d. These are relatively high values. It can be seen in Figure 4-6 that the optimal value for the 

lowest 3NO N  concentration RMSE is a little lower.   
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As the 4NH N  limit value in the biology is more relevant for wastewater treatment plants, the following 

values were selected as a compromise: 

 recirculation volume 1: 20000 m3/d 

 recirculation volume 2: 30000 m3/d 

The higher flow rate in the second recirculation line corresponds to the expectation that there should be a 

higher flow rate because this line is significantly shorter than the first recirculation line. 

 
Figure 4-5: Results of a grid search for the optimum recirculation flow based on  NH4-N RMSE 

 

 
Figure 4-6: Results of a grid search for optimum recirculation flow based to NO3-N RMSE 

 

4.2.1.3 Excess Sludge Treatment 

The treatment of raw sludge and excess sludge at the Rospe plant is a special feature because the plant does 

not have a digestion tower. For this reason, a pipeline for the generated sludge has been laid between the 

Rospe plant and the central wastewater treatment plant at Gummersbach Krummenohl. All of the excess 

sludge generated is handled in Krummenohl. In order to partially balance the system, process water is 

pumped back to the Rospe plant and added again to the process. This additional load has not been taken 

into account in the model for a variety of reasons: 1. There are no laboratory samples about the load of 
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4NH N  or COD  in the process water. 2. The process water is added together with the water from the 

primary treatment underground to the biological stage (Deni1). It is thus not possible to measure the inflow 

of process water in a practical way. 

4.2.1.4 Phosphorus Removal 

Chemical precipitation is used in Rospe to remove phosphate. However, the plant does not have any online 

measurement for phosphate which is why the precipitant is dosed continuously. A description of this 

process can be found in section 3.2.3. 

4.2.1.5 Relevant plant instrumentation 

The Rospe plant has two main quantities that are reliably measured, 4NH N  (Hach Lange Amtax) (Figure 

4-7 A) and 3NO N  (Figure 4-7 B), both taken at the effluent from the biological stage. This is 

supplemented by three oxygen sensors in the effluent from each of the nitrification tanks (Nitri 1, Nitri 2 

and Nitri 3). In addition, the plant takes TSS  measurements in the effluent from the biological stage. These 

measurements are the most important for the model because they are required for calibration. 

 

Figure 4-7: Analysers at Rospe WWTP A: Hach-Lange AMTAX and B: Hach-Lange NITRATAX 

The plant also possesses other measurement technology but this is largely utilised for monitoring purposes. 

The 4PO P  value and the COD  value are not recorded. 

4.2.1.6 Control Loops 

The main control loops at the Rospe wastewater treatment plant are: 

- Oxygen controller 

- Return sludge or TSS  controller 

AB 



Computational Intelligence Techniques for Control and Optimization of Wastewater Treatment Plants 

WWTP Modelling 

 

 
 - 65 - 

Both controllers in the model differ from those installed in the real plant. The controllers in the real plant 

are fuzzy controllers that are set individually. As the aim of this work is not to simulate the fuzzy controllers 

but rather to model the process conditions, they were replaced in the model by PI controllers which use the 

actually measured values ( 2O  and TSS ) during the measurement campaign as setpoints. 

The real oxygen controller consists of a fuzzy controller that uses the three measured oxygen values from 

the tanks Nitri 1, Nitri 2 and Nitri 3 and 4NH N  and 3NO N  values from the effluent of the biological 

stage as inputs.  

The TSS  controller or the controller for the volume of return sludge also takes the form of a fuzzy 

controller. In the model, it was implemented as a PI controller with a fixed setpoint because the TS  content 

at the plant is almost stable at 3.5 g/l. Excess sludge is discharged at a fixed ratio to the return sludge. 

As the plant does not have an inductive flow measurement system in the recirculation line, it is operated 

with fixed values. In practice, the recirculation volume fluctuates to a certain extent because the outlets 

from the recirculation lines are installed a few centimetres below the surface of the water and thus the water 

level in the tanks can influence the counterpressure in the recirculation lines. As these effects are in the 

single-digit percentage range, they have not been considered further in this work.  

4.2.2 WWTP Model 

The Simba® toolbox from the company ifak in the software Matlab® / Simulink was utilised for 

implementing the treatment plant model. 

 
Figure 4-8: Rospe Model Overview 

Figure 4-8 shows an overview of the model. The model is split into five main areas a) inflow and inflow 

fractioning, b) primary treatment, c) biological wastewater treatment, d) final treatment and e) control loops. 

The following subsections describe the model and highlight the differences to the implementation in the 

real wastewater treatment plant. 

a b 
b d 

e 
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4.2.2.1 Model of the inflow and inflow fractioning 

The data from a measurement campaign at the Rospe treatment plant in 2012 was used as the inflow data 

for the model. For this purpose, additional measurement devices for 4NH N , COD , turbidity and a 

variety of other parameters were installed. After eliminating any incorrect or incomplete data, an inflow set 

covering 17 days was created. A detailed description of the installation and the measurement campaign can 

be found in section 5.2 and section 5.3.  

As there were no precise investigations into the individual COD  fractions, standard values for inflow 

fractioning in municipal wastewater treatment plants were used (see Figure 4-9): 

 
Figure 4-9: Inflow Fractioning 

For this fractioning data, it is assumed that the nitrogen is completely present in the form of 4NH N . The 

COD  is primarily present as particulate readily biodegradable COD  ( SX ). A further 15% of the COD  is 

heterotrophic biomass ( ,B HX ) and 20% is soluble readily biodegradable COD  ( SS ). 

4.2.2.2 Primary and Secondary Clarification 

For the primary treatment an adaptation of the simple primary clarifier without biological processes 

developed by Otterpohl (Otterpohl and Freund, 1992) and part of the Simba toolbox was chosen. The model 

considers the clarifier as a completely mixed reactor, which models the buffering behaviour of a clarifier. 

The elimination of particulate fractions of COD  and N  is calculated using the hydraulic retention time 

and the proportion of particulate fractions in the COD . The primary clarification tank of the Rospe plant 

has a volume of 3550.2V m  and the ratio of particulate COD  to total COD  is: 

 .

.

0.7part
X

tot

COD
f

COD
    (4.18) 
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For the final treatment or secondary clarifier with 10 layers using a two term exponential function for the 

settling velocity according to Takacs (Takacs, 1991) was chosen. As with the primary clarifier, the final 

treatment tank does not include any biological processes that do not normally take place at this stage. A 

detailed description of the final treatment model used can be found in Ebel (Ebel, 2009, pp. 69–73). The 

Rospe wastewater treatment plant has three final treatment tanks with identical volumes, which are all 

operated in parallel. This is also reflected in the model using three identical tanks (Figure 4-10). 

 
Figure 4-10: Secondary Clarifier 

The total surface area 2
. 1200SurCF m  is distributed across the three tanks with each having a surface area 

of 2400m . Layer no. 4 acts as the feed layer, whereby the overall depth of the individual tanks is 

. 5.19depCF m . Standard values were selected for the settling parameters, which can be found in Table 4-6: 

Table 4-6: Secondary clarifier settling parameter 

Parameter Value Unit  

Maximum theoretical settling velocity ( 0v ) 370 
m

d
 

Maximum practical settling velocity ( 0,maxv ) 143 
m

d
 

Settling parameter associated with the hindered settling component 
of the settling velocity equation ( hr ) 3.8e-4 

3m

g
 

Settling parameter associated with the low concentration and 
slowly settling component of the suspension ( pr ) 2.9e-3 

3m

g
 

Fraction of non settable particles in the influent ( nsf ) 2.3e-3   - 

Threshold suspended solids concentration ( xt ) 3,000 
3m

g
 

Factor for calculation of TSS-content for settling function 

.: partTSS COD  ( TSf ) 1   - 
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The sizes of the tanks are taken from the sum of the individual tanks in the real plant and are shown in 

Table 4-7.  

Table 4-7: Denitrification and nitrification tank volumes 

Deni-Tanks m3 Nitri-tanks m3 

Deni 1 1129 Nitri 1 1288 

Deni 2 1094 Nitri 2 1288 

Deni 3 1129 Nitri 3 855 

Deni 4 437   

 

The specific parameters required for the nitrification tanks were selected as follows: Oxygen transfer 

rate 0.6  , specific oxygen input 316 [ ( )]airR g m m  , oxygen saturation concentration

3
. 8.637 [ ]satDO g m , and immersion depth . 5.8 [ ]imd m . The modelling of aeration control is 

described in subsection 4.2.1.6. This consists of PI controllers, which simulate the real 2O  

concentrations measured during the measurement campaign. The precise process conditions during the 

campaign are thus reproduced. For simulations outside of this time period, fixed setpoints for the 

controllers were adopted that correspond to standard operating values. This was the case, for example, 

during the ramping up of the model when fixed inflow values were used.  

 

4.3 Model Calibration 

A numeric model adapted to the data measured during the field studies was used for calibration or 

adjustment of the model. Individual calibration processes or protocols were defined for many of the 

models used. The IWA Task Group on Good Modelling Practice (GMP) worked on the development of 

a standard protocol for model calibration, based on their results they published the Unified Protocol 

(GILLOT, 2012). The correct design of the model and its calibration go hand in hand because diverse 

parameters must be set in both. Therefore, selecting the correct dimensions for the internal flows in the 

model is actually part of the calibration but this process could also be part of the design of the model. 

The calibration of the Rospe model presented in the following sections relates only to the settings for 

the biological and biochemical processes. The dimensions for the internal flows were already presented 

in section 4.2.1.2. 

4.3.1 Calibration Prerequisites 

In general, the prerequisite for a calibration is a correctly designed model based on process technology 

and the sufficient availability of measured process values. The following list provides an overview of 

the most important prerequisites for successful model calibration: 
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 Complete representation of the process technology 

o Tank sizes 

o Lines 

o Pumps 

o Internal flows 

o Control loops 

o Disturbance variables (e.g. process water) 

 Sufficient availability of process measurement technology: 

o Oxygen ( 2O ) 

o Ammonium ( 4NH N ) 

o Nitrate ( 3NO N ) 

 Availability of inflow measurement values (measurement campaign) (based on ASM1) 

o Chemical Oxygen Demand ( COD ) (Inflow) 

o Ammonium ( 4NH N ) (Inflow) 

o Flow ( Q ) 

o Temperature 

Even modelling the process technology is a challenge for many plants, as can be seen in the example of 

the recirculation volumes and the dosing of process water at the Rospe wastewater treatment plant 

(section 4.2.1.2). In addition, other measurements in the individual tanks, as well as laboratory 

experiments to identify the individual fractions, would be desirable. However, these measurements are 

complex and costly to implement in practice and are thus not generally available. 

4.3.2 Model Initialization 

In order to adapt the internal states of the model that represent the biology to the real circumstances, the 

model is initialised in two steps. In the first step, the model is ramped up (run-in) for several hundred 

days at constant inflow values, normally using averages from real measurement values. The TSS  builds 

up and the internal states become adapted during this period. In practice, this represents the development 

of the “biology”. In the case of the Rospe model, 300 days were selected until the internal states were 

stable. There was then a second phase in which the model was further ramped up using dynamic inflow 

values. In this phase, the internal states adapt further. For the Rospe model, the data recorded by the 

measurement technology over 17 days was used a total of 10 times to create a simulation period of 

170 days. One difficulty is that the achievement of a stable state is dependent on the model parameters. 

If they deviate from the real biology, the stable state of the model deviates from reality. In order to 

overcome this problem, it is necessary for the state vector to be considered to assess whether the 

individual fractions are realistically represented. At the same time, the RMSE between the measured 
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and simulated process values can also be used. The first adjustments to the parameters are then carried 

out on this basis. Next, the model is stabilised further based on the adjusted parameters. This process is 

repeated until a satisfactory stable state is achieved. This is therefore an iterative process. Based on this 

starting state, the fine tuning of the parameters can now be carried out. An overview of this process is 

show in Figure 4-12: 

 

Figure 4-12: Applied calibration procedure 

 

4.3.3 Parameter optimization 

The ASM1 Model features 19 parameters (see section 4.1.2.1 and section 4.1.4.1), which can be adjusted 

during the calibration. The modified version used (see section 4.2.2.3 and ifak system GmbH, 2009) 

was supplemented by an additional 6 parameters. In order to limit the search space, only the five most 

important parameters that have a relevant influence on the simulation model were selected. The 

parameter optimization was carried out in two ways. Firstly, a manual adjustment of the parameters was 

carried out. The RMSE between the measured and simulated 4NH N  ( NHS ) time series in tank D4 

and the RMSE between the measured and simulated 3NO N  ( NOS ) times series in tank D4 were used 

as a fitness function – which was possible due to the available measurement technology.  
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4.3.3.1 Manual parameter optimization and parameter selection 

While the fully automated optimisation only considers the error values, the manual parameter 

optimization also allows the precise consideration of the state vector and the adjustment of parameters 

in line with knowledge about the processes. However, this is a time-consuming iterative process due to 

the complexity of the model, where each individual parameter must be adjusted one at a time. The 

influence or sensitivity of each of the individual parameters can thus be assessed correspondingly. On 

the basis of relevant published literature, such as the ASM1 Report (Henze, 2000), it is however possible 

to limit the number of relevant parameters. The following parameters were thus selected for the Rospe 

model: 

 ak  which describes the release of ammonium from soluble organic nitrogen and is therefore 

crucial to determine ammonium production correctly (Henze, 2000, p. 22). 

 A  which is according to the ASM1 report (Henze, 2000, p. 19) described as the most critical 

parameter characterizing the growth of the autotrophic biomass. 

 Hb  which is according to the ASM1 report (Henze, 2000, p. 19) very important for the 

prediction of sludge production and oxygen requirements. 

 NHK  which provides information on the relationship between the specific nitrification rate and 

the pseudo-steady state ammonium nitrogen concentration (Henze, 2000, p. 19). 

 SK  which decribes biomass growth, but is not a critical parameter as the model is not very 

sensitive to it (Henze, 2000, p. 20). Nevertheless, it was included to allow for optimized biomass 

growth kinetics. 

4.3.3.2 Automated parameter optimization using SMS-EGO algorithm 

The S-Metric-Selection-based Efficient Global Optimization (SMS-EGO) algorithm was selected for 

the automated optimization because it can use multiple fitness functions at the same time. Therefore, the 

4NH N  RMSE and the 3NO N  RMSE were each minimized. For a better understanding, the 

algorithm will be briefly described in the following section. 

S-Metric-Selection-based Efficient Global Optimization (SMS-EGO)  

The optimization of highly complex nonlinear and thus, computationally intensive problems requires a 

high number of fitness function evaluations (Simpson et al., 2001, pp. 129–150). In the case of real 

world problems, these fitness functions are often represented by dynamic simulation models consisting 

of an ODE system, which increases evaluation time significantly. Furthermore, most optimization 

problems have more than one objective at a time, which creates the need for multi-objective optimization 

algorithms (MOOA). This poses two additional challenges: (1) The evaluation of several fitness 

functions f  with underlying simulation models is even more time consuming as the computation time 
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grows linearly with f ; (2) A fair assessment of the different fitness functions during each optimization 

run needs to be guaranteed, i.e. by equally distributing the optimization solutions along a Pareto Front. 

SMS-EGO addresses these two problems by using Kriging surrogate models (Matheron, 1963, pp. 

1246–1266) to allow for faster fitness function evaluation and by using the S -Metric (Zitzler and Thiele, 

1998, pp. 292–301) to look for promising solutions along the Pareto Front, calculating hypervolumes of 

fitness values from 1f  to Nf . 

The use of Kriging models for optimization purposes is well established as only a limited number of 

fitness function evaluations ( )f Xy  for the design sites 1 nx x  are required to get a reasonable 

approximation ˆ ( )   Xy  where   denotes the mean of all design sites X  and   the error which is 

determined by the covariance and the process variance as described by Matheron in 1963 (Matheron, 

1963, pp. 1246–1266). While a fast computation of a Kriging model is possible for a low number of 

design sites (< 100), computation time increases exponentially with the number of design sites ( )nO N . 

Therefore, the design sites to update the Kriging model need to be chosen carefully. 

In order to achieve a high surrogate model accuracy where it is most needed, the Kriging model is 

updated calculating the S -Metric along the Pareto Front for the optimal solutions generated by each run 

of the MOOA. The principle of the S -Metric is to calculate the hypervolume of each potential optimal 

solution *
ix  which is spanned by the corresponding fitness values ,1 ,ˆ ˆi i Ny y  and the distance to the 

fitness values of the surrounding solutions *
1ix   and *

1ix  . Thus, greater hypervolumes represent solutions 

that are more balanced with regard to the N  optimization objectives and that are more widely spread 

over the Pareto Front, whereas small hypervolumes represent biased solutions that tend to optimize one 

objective more than the other or solutions that are very close to other optimal solutions. 

The idea behind SMS-EGO is to use that information on the potential solutions and choose the ones 

associated with a high hypervolume to update the Kriging model while neglecting the others with a low 

hypervolume. Consequences are that the optimization algorithm has a strong focus on balanced solutions 

along the Pareto Front and that extreme solutions favoring one objective over the others are not 

considered. Due to the wide spread of the solutions over the interesting area of the Pareto Front by the 

S -Metric, the possibility of a local search is minimized. Nevertheless, this evaluation criterion narrows 

the search area considerably. In order to compensate for this effect, Ponnweiser et al. used additional 

penalties to compensate that effect (Ponweiser et al., 2008, pp. 784–794). 
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SMS-EGO parameter setting and application 

Table 4-8 shows the selected parameters for the SMS-EGO algorithm. The upper bound (UB) and lower 

bound (LB) describe the relevant limits within which the algorithm is allowed to set the parameters. The 

budget for the initial design describes the size of the initial population. The maximum budget of 

objective evaluations is the maximum number of simulation runs. 

Table 4-8: SMS-EGO Parameters 

Parameter Value 

Budget for the initial design (11*dim-1) 54  

Maximum budget of objective evaluations 70 

Type of smoothing using none 

Lower Bound (LB) [ ,  ,  ,  ,  A a H NH Sk b K K ] [0.3, 0.8, 0.2, 1.0, 20] 

Upper Bound (UB) [ ,  ,  ,  ,  A a H NH Sk b K K ] [1.0,  0.04, 1.6, 2.0, 225] 

 

The fitness function f utilises the initialised Rospe model run for the time period of 17 days for which 

inflow values are available. The goal of the optimization is to minimize the two RMSE values:  

 
17 days
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4.4 Results and Discussion 

Table 4-9 gives an overview of the most important optimization results. The best results of an RMSE of 

0.85 mg/l for 4NH N  and 0.98 mg/l for 3NO N  were achieved with SMS-EGO. However, these 

were only a little better than the manually optimized values of 0.9031 for 4NH N  and 0.9924 mg/l for 

3NO N . The high RMSE value when using the default parameters was particularly noteworthy. The 

results for the default parameters are thus only given for reference purposes. 
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Table 4-9: RMSE comparison of different model parameter sets 

Parameter 

set 
,  ,  ,  ,  A a H NH Sk b K K  

NH4-N RMSE 

[mg/l] 

NO3-N RMSE 

[mg/l] 

Default 0.8, 0.08, 0.62, 1.0, 20.0 1.8625 6.7556 

Manually  1.0, 0.8, 1.42, 1.65, 216.0 0.9031 0.9924 

SMS-EGO 0.918, 0.04, 1.599, 1.146, 156.76 0.8512 0.9776 

When examining Figure 4-13, it can be seen that the simulated values were less dynamic than the 

measured values in all cases. If the results of the manual and automatic optimizations are considered, it 

is noticeable that the 4NH N  peaks, in particular, are not accurately modelled. 

 
Figure 4-13: Comparison of different optimization results (blue: measured, red: simulated) 
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SMS-EGO not only calculates an optimal value but also a set of optimal results according to the Pareto 

principle, i.e. where for each result, there will be no other result that would not be worse in at least one 

of the optimization criteria. These results are illustrated in Figure 4-14 in the form of a Pareto Front. 

 
Figure 4-14: Parameter optimization Pareto Front 

An individual parameter or set of parameters was selected that had the smallest possible 3NO N  

RMSE value. 

4.4.1 Conclusion and consequences for further use 

The results generated and the model created are applied further in the following chapters. Although the 

design of the model from the completion of the measurement campaign through learning the processes 

in the real plant and modelling the process technology through to the parameter optimization was 

completed with the maximum reasonable effort and the greatest of care, the simulated results could only 

approximate the real conditions to a certain degree. In the case of the Rospe plant, this was especially 

noticeable in the dynamics of the 4NH N  values. There are a diverse range of reasons for this problem: 

the measurement errors across all of the measurement devices used accumulate, the plant was only 

subjected to a low load so that the 4NH N  value was often at the lower limit of the measurement 

range, etc. and various internal flows could only be estimated. In order to improve these results further, 

it is thus necessary to once again significantly increase the work involved. This would mean completing 

complex laboratory experiments, using additional online measurement devices and would result in high 

additional costs. However, this would go beyond the scope and justifiable budget available for this piece 

of work. The extent to which the results influence the model-based inflow estimation and what this 

means for its practical application will be discussed in the next chapter. 
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5 Virtual COD and NH4-N inflow measurements 

5.1 Introduction 

When considering the water purification process of a WWTP, the chemical oxygen demand ( COD ) and 

ammonium ( 4NH N ) concentration, in combination with phosphate ( 4PO P ) are the most important 

substances in the inflow of municipal wastewater treatment plants (WWTPs) to assess the degree of 

pollution. Therefore, inline measurement systems for COD  and 4NH N are needed as they are not 

only able to provide sufficiently accurate (+- 10 to 20 %) and timely information about the incoming 

wastewater stream, but also offer many possibilities for advanced optimization and control strategies. 

Nevertheless, existing inline measurement systems are expensive and come with high maintenance 

costs, so that their application in small and medium-sized WWTP is mostly not financially feasible. 

Thus, the need for cost-efficient but also robust monitoring solutions is high. This chapter addresses this 

need and presents a virtual COD  and 4NH N  monitoring solution using Machine Learning to estimate 

the two process variables based on existing and widely available inflow inline measurement systems. 

The measurement of 4NH N and COD  concentrations in the inflow of WWTPs provides several 

advantages:  

(1) It is possible to optimize the control strategy for WWTPs by knowing in advance the amount of 

4NH N and COD  that flows into the bioreactors. In particular, it is possible to increase the 

oxygen ( 2O ) concentration, when a load peak is detected in the inflow giving the nitrification 

more time to treat ammonium.  

(2) It enables a comparison of inflow and effluent and hence, the evaluation of plant efficiency.  

(3) To calibrate WWTP simulation models based on, for example, the activated sludge model 

(ASM) (Henze et al., 2000), it is essential to have measurements of these process variables in 

the WWTP inflow. 

In guideline DWA-M 256-1 (DWA, 2011) the DWA2 classifies WWTP measurement devices in three 

classes: 

 A: essential 

 B: expedient 

 C: not expedient 

For the WWTP inflow only the benefits of pH-value, conductivity and temperature are evaluated. The 

fact, that other measurements are not considered by the DWA working group KA-13.3 (process 

                                                      
2 DWA – German Water Association 
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measurement systems for wastewater treatment plants) reflects that today only these measurements are 

considered to be standard in the inflow of most WWTPs. Although COD and NH4-N are important for 

inflow monitoring and aeration control purposes, they are rarely used. Furthermore, the working group 

categorized pH-value as class A, conductivity as class B and temperature as class C. While this might 

be a reasonable categorization for simple control systems, there is more than meets the eye that can be 

learned from C-type measurements such as temperature. For example, a sudden drop in temperature is 

a typical sign of a rain event (at least in colder regions), which can be detected and used by sophisticated 

state-of-the-art control systems to detect high inflow volumes and peak loads of COD and NH4-N. This 

shows that measurement values which are allegedly not expedient can be used by intelligent control 

systems to improve process efficiency. Nevertheless, one of the consequences of such DWA 

recommendations is also that most plants in Germany are not equipped with probes for NH4-N and COD. 

Together with the high maintenance effort and high prices for the measurement systems, which, 

depending on the operating principle of the measurement systems, are between €3,500 for ion-selective3 

probes and €20,000 for chemical analyzers4 for NH4-N, as well as between €10,0005 and €25,0006 for 

COD, installation of these systems is often not financially feasible. Another reason is the harsh 

environment in the inflow. Raw Inflow Water can be characterized by the following attributes: 

 strong variations in concentration 

 strong temperature variations 

 high fat / grease content 

 high flow rates 

 variations in pH-value 

These facts lead to significantly higher maintenance costs in comparison to operation within the 

bioreactors. The probes have to be cleaned, calibrated and maintained in relatively short intervals 

(Graner et al., 2005). Furthermore, ion-selective membranes tend to wear out much faster in the inflow 

of WWTP than in bioreactors. 

Therefore, the development of a new method to estimate important inflow concentrations based on 

existing inline-measurement systems using Machine Learning offers a solution to many if not to all 

issues with existing, highly complex and costly inline measurement systems. 

The main contributions of this chapter are: 

                                                      
3 WTW VARiON® Plus 700 IQ ca. €3500 
4 Hach-Lange AMTAX €19000 
5 Trios – Probs €11.500 
6 S::CAN spectro::lyser ca. €22.000 
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(1) A measurement campaign in the inflow of the Rospe WWTP for two months to gather real-time 

COD and NH4-N concentrations. 

(2) Development of Matlab functions for fully automated preprocessing of measurement data. 

(3) Calibration, application and performance assessment of eight Machine Learning methods for 

the estimation of COD and NH4-N in the WWTP inflow. 

(4) Determination of the optimal combination and financially reasonable combination of probes to 

estimate the inflow variables COD and NH4-N sufficiently accurately. 

(5) Development of a software estimator for COD and NH4-N that can replace costly and high 

maintenance inline measurement systems using different regression and classification methods. 

(6) Development and evaluation of a method to compare classification and regression results for 

inflow measurements. 

The remainder of this chapter is organized as follows: Section 2 describes the probes used for the 

measurement campaign. Section 3 gives a detailed overview of the measurement campaign and the 

related data. This includes data preparation (outlier detection, sensitivity analysis, class division and 

generation of datasets) necessary for the investigation. Section 4 gives an overview of the applied 

mathematical methods including the determination of the related optimal parameters for each method 

and dataset. In section 5 the results of the different regression and classification methods are presented. 

The final section concludes which method gives the best prediction of each inflow variable and which 

combination of probes is practically manageable and financially reasonable. 

 

5.2 Installed measurement probes 

To carry out this study, a set of measurement probes were installed at Rospe WWTP operated by the 

Aggerverband7 and a measurement campaign over two months was conducted in 2012.  

The standard instrumentation in the inflow of the Rospe WWTP is a magnetic induction flow meter 

(MID), a pH-probe, a conductivity sensor and a temperature sensor. In addition to this, the following 

measurement probes for COD, NH4-N and turbidity were installed in the intake canal: 

 ISEmax CAS40D (ion-selective measurement probe) (Figure 5-1 (a)) 

 Turbimax CUS51D (turbidity measurement probe 860 nm) (Figure 5-1 (b)) 

 STIP-scan (spectrometric measurement probe 200 nm-680 nm) (Figure 5-1 (c)) 

 Trios ProPS-WW (spectrometric measurement probe 190 nm-360 nm) (Figure 5-1 (d)) 

                                                      
7 Aggerverband -  A local water association managing the water-related tasks of the Agger river basin 



Computational Intelligence Techniques for Control and Optimization of Wastewater Treatment Plants 

Virtual COD and NH4-N inflow measurements 

 

 
 - 80 - 

ISEmax CAS40D is an ion-selective measurement probe for ammonium and nitrate produced by 

Endress+Hauser. For the measurement campaign it is solely equipped with electrodes for ammonium 

measurement. It is able to measure ammonium between 0.1 mg/l and 1000 mg/l. To compensate a cross 

sensitivity between ammonium-ions (NH4
+) and potassium-ions (K+), the probe is additionally equipped 

with an electrode for potassium. Figure 5-1 (a) shows a picture of the CAS40D probe. 

The Turbimax CUS51D is an immersion sensor produced by Endress+Hauser which measures turbidity 

as well as solid contents. The optics integrated in the sensor head allow measurements according to three 

different measurement principles namely the 90° scattered light, 135° back-scattered light and four-

beam pulsed-light method (Endress+Hauser, 2013a). Furthermore, the sensor uses a wavelength of 

=860 nm to avoid interference with diluted light absorbing substances. This measurement principle 

conforms to the German industry norm for turbidity measurements (DIN EN ISO 7027) 

(Wasserbeschaffenheit: Bestimmung der Trübung, 2000). The unit of the measurement values is 

formazin nephelometric units (FNU) (Mike Sadar, 2004; Oregon Water Science Center, 2013) and is 

factory calibrated to 0-4,000 FNU. Figure 1(b) shows a picture of the CUS51D probe. 

The Endress+Hauser STIP-scan CAM74/CAS74 is a spectral measurement probe for nitrate, CODeq, 

BODeq, TOCeq, SAC, total solids, sludge volume, sludge index and turbidity (ATU). It measures the 

absorption spectrum between 200 nm and 680 nm using a xenon lamp as light source (Endress+Hauser, 

2013). For the measurement campaign it is used as a reference measurement for COD. Furthermore, it 

is used to measure the spectral absorption coefficient at 254 nm (SAC254), SAC433 and turbidity in ATU. 

Figure 5-1(c) shows a picture of the CAM74/CAS74. 

The Trios ProPS-WW is a spectrometric measurement probe and is comparable to the E&H STIP-scan. 

Instead of the xenon lamp it uses a deuterium lamp and measures the absorption spectrum between  

190 nm and 360 nm. It is also able to measure several parameters including COD, nitrate, turbidity and 

SAC254. For the measurement campaign it was used as a backup measurement for COD. Figure 5-1(d) 

shows a picture of the ProPS-WW probe.  
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5-1: Installed measurement probes: (a) ion-selective ammonium sensor, (b) Turbimax CUS51D turbidity 
probe, (c) E+H StipScan spectrometric sensor, (d) Trios UV/vis spectroscopic COD/NO3 analyzer 

 

5.3 Measurement Campaign at Rospe WWTP 

5.3.1 Data Description 

The analysis is based on measurement values recorded in March 2012. Measurements were conducted 

every three minutes. The full dataset consisted of 14,380 samples; after data cleansing 9,843 samples 

remained. This resulted in approximately three weeks of usable data. Due to the fact that different 

sampling intervals were used by data loggers, it was necessary to use interpolation to fit the data to the 

same time grid. Figure 5-4 and Table 5-1 give an overview of the most important characteristics of the 

recorded data. Note that there are three data gaps in the data: 22th-27th February; 5th-7th March; and 13th-
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14th March. At these limited periods one or more important measurement devices malfunctioned. For 

this reason those segments of data were unusable and omitted. Overall the data exhibits cyclic daily 

variations, but has no strong long term tendency or trend. Turbidity appears twice in the data sets. The 

first measurement is from the Turbimax CUS51D turbidity probe and measures reflected light at 860 nm. 

The unit is FNU as described in section 5.2. The second measurement is taken by the STIP-scan 

CAM74/CAS74 spectrometric probe. It measures in ATU (Absorptiometric Turbidity Units), which 

means it uses transmitted light rather than reflected light. For the measurement campaign the ATU probe 

was not calibrated, which leads to significant differences in the absolute values of the CUS51D and the 

Stip-scan probe. Due to the fact that these values are used as input values for regression and classification 

models the absolute values are not important. For comparison purposes both were scaled to have zero 

mean and standard deviation of 1. Figure 5-2 and Figure 5-3 show a comparison of the scaled FNU and 

ATU values. 

 
Figure 5-2: Scatterplot ATU vs. FNU (scaled) 

 
Figure 5-3: Comparison of FNU and ATU (scaled) 

It becomes obvious that both values are comparable. In areas with low noise, e.g. between 26th February 

and 2nd March the correlation is 0.92  . For a practical application the FNU values are of more 

interest, because of the low cost measurement probe. The data depicted in Figure 5-4 and Table 5-1 

represent a typical inflow situation in spring. 4NH N  is most of the time below 20 mg/l and COD  is 

mainly below 400 mg/l. These relatively low values are caused by dilution and probably infiltration into 

the sewer system. During summertime with little rain much higher values are expected. Obviously a 
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dynamic with a one day period can be identified in all data. This is expected due to variations in the 

inflow of a WWTP. Usually the load follows the daily water consumption of the households connected 

to the sewer system. For this reason the load rises in the morning, reaches its maximum at midday, stays 

at a high level until the early evening and decreases into the night. During the night the load is at its 

minimum. Basically all measurement values depicted in Figure 5-4 show this behaviour. Although one 

might expect 4NH N  and COD  to behave in a similar fashion, taking a closer look at the progression 

of the curves reveals significant differences. While COD  stays at its maximum 4NH N  shows a short 

peak before settling at a slightly lower level. The flow ( Q ) deviates from this behaviour when rain 

events occur. It can be observed that concentrations of COD  and 4NH N  are slightly lower when the 

flow is high. This effect can be explained by dilution. While the sum of substances in the sewer stays at 

the same level, the volume of water rises. 

 
Figure 5-4: Overview of relevant measurement values 



Computational Intelligence Techniques for Control and Optimization of Wastewater Treatment Plants 

Virtual COD and NH4-N inflow measurements 

 

 
 - 84 - 

Table 5-1 gives an overview of the sensors used to collect the data, including the sensor range, and the 

min- and max-values and standard deviation of the data recorded. As already described the measurement 

campaign was conducted in spring. The mean concentration of COD  is 169.2 mg/l and the mean of 

4NH N  is 27 mg/l. Both concentrations are relatively low, while the mean flow is 134.3 l/s. Even 

when the rain events are not considered, this is still a high inflow. Looking at the flow in Figure 5-4 it 

can be seen that during the night it stays at approximately 80 l/s. One might conclude from this, that this 

flow is caused by infiltration into the sewer system. 
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5.3.2 Data Preparation 

To prepare the data for further analysis, the following five steps were applied: 

 Selection of a suitable period of time by hand 

 Global outlier elimination 

 Local outlier elimination 

 Data were transformed to have zero mean and a standard deviation of one 

 Randomization of datasets 

Selection of suitable time period 

The first step of data preparation was to find a suitable period of time, where all measurement probes 

were operating correctly. In the first weeks, in particular, there were several failures due to clogging of 

the sensors. For the first experiments, three weeks in March 2012 were selected for analysis. 

Global outlier elimination  

The global outlier detection algorithm takes all N  input values u   into account and detects global 

outliers using the median absolute deviation ( MAD ). The filter is non-causal and for this reason not 

suitable for online filtering.  

First the median Nu   is calculated: 

 ( )u median u  (5.1) 

In a second step the median centered vector Nu
   is calculated by removing the median u  from the 

input data u . 

  1, , , ,
T

o k Nu u u u u u   u
       (5.2) 

Based on u

 the new vector Nx

   is calculated as follows 

 

for each 0,1,2, , 1

if ( )

  

else

  ( , )

end

k

k k

k

k N

u MAD

x u

x MA ws


 

 





u

u




 



,  (5.3) 

where x


 is composed of the valid values of the original u


 and the moving average ( , )MA wsu  


 replaces 

the outliers of u


. The moving average window size ws  has to be larger than the biggest data gap 
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
u  to allow for complete coverage of missing or implausible data points. Threshold   determines filter 

sensitivity and was set to 3   in accordance with standard practice. The MAD is defined as  

 
1

( ) 1.4826 median( )

, , , ,  for 0, , 1
T

o k N

MAD

u u u u u u k N

 

       

 

       

u u

u
  (5.4) 

while the moving average ( MA ) is given by 

 

1
( , ) : 1  for mod( ,2) 0

1 2 2 2

and

1
( , ) : 1  for mod( ,2) 0.

2 2 2
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                    
      

   

   

u

u

 (5.5) 

In the final step the median u  is added again, so that the corrected vector is Nx : 

  0 1, , , ,
T

k Nu u u u u u        x   (5.6) 

This filter is used to eliminate global outliers which do not fit to the complete data set, but cannot be 

detected by a local filter, because they persist over a longer period of time. A temporary pollution of a 

sensor can lead to such outliers. 

Local outlier detection 

The local outlier detector is an online outlier detection and removal filter. The filter is an extension of 

the well-known median filter. The observed data point ku  is compared to the median u  of the present 

and past data points. If the distance is greater than a predefined threshold kT   the value is replaced 

by a more reasonable value (Menold et al., 1999). This filter is causal, which makes it suitable for online 

filtering. First a window of the present and past data points is defined 

  1 2, , ,k wz k wz ku u u    w ,  (5.7) 

where ws  is the size of the window w . After calculating the median u  of w , the distance kd  

between the current data point ku  and the median u  is calculated: 

 k kd u u    (5.8) 
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Whether ku  is valid or an outlier, is determined using a threshold kT  calculated using the MAD  times 

a factor  . The outlier corrected vector x  is calculated as 

 

( , , , , )

1: Set ( )

2: For the number of samples 0 1

3:    ( , )

4:    If  

5:        Set   

6:    End if

7: End for

k

k k

k k
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k N
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x u x u


 

  



  

Algorithm localOutlierDetection 





x u w

w

  (5.9) 

A detailed description of this filter can be found in Menold et al. (1999). 

Normalization and splitting 

In the last step the mean was removed from the input data and the data was scaled to have a standard 

deviation of one. After this step the data was split into training, validation and test data. 

To keep this analysis consistent with real world application, the test data used was chronologically after 

the training and validation data. This is done considering the fact, that a newly developed measurement 

system based on these analysis would always have to use a model based on historical data. 

Generation of Data Classes 

For the application of classification methods the data was divided into different classes. Each class 

represents data which is in a certain band (e.g. between 100 mg/l and 200 mg/l). The number of classes 

as well as the different spans were determined manually considering the following aspects: 

 typical concentrations of the substance in the inflow 

 even distribution of data points in each class 

 practical applicability (easy to understand boundaries for an operator) 

 complexity (minimal number of required classes to maintain inflow dynamics) 

Figure 5-5 shows the distribution of the values of the complete measurement campaign. It can be seen 

that COD has two maxima at 50 mg/l and at 230 mg/l. This effect can be traced back to a long high load 

period during the day and a shorter low load period during the night. In general the data is relatively 

evenly distributed. Hence, for simplicity COD  was divided into 5 classes (1-5) of equal width with the 

exception of class 5 which represents all high values over 300 mg/l. 4NH N  data is concentrated 

around 10 mg/l (see Figure 5-5). Consequently, class ranges were made smaller around the maximum 

to achieve a better distribution of data points per class. Even with this step the classes in the middle still 
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have significantly more data points than the classes at the edges. A further division of the classes was 

not made because of the low practical advantages which arise from more small classes in the middle.  

 

Figure 5-5: Distribution of measurement values in the measurement campaign 

Table 5-2 shows the number of samples and ranges of the different classes. For COD it is noticeable 

that class 1 and 4 have the most data points, while for NH4-N class 2 and 3 are over-represented. The 

number of data points in class 3 is slightly more than fifty times higher than in class 5. This sample 

distribution over all classes mainly depends on the inflow load of the plant, which not only changes from 

plant to plant but also with the seasons of the year. Thus, in order to keep the analysis transferable to 

other plants, no weighting was applied during classification. 

Table 5-2: COD and NH4-N classes 

Class COD [mg/l] Number of Data 
Points in COD 

Classes 

NH4-N [mg/l] Number of Data 
Points in NH4-N 

Classes 
1 0 100COD    2501 40 5NH N    1306 
2 100 150COD   1359 45 8NH N    2302 
3 150 200COD   2064 48 15NH N    5109 
4 200 300COD   3393 415 20NH N    1002 
5 300 COD   526 420 NH N     124 

 

5.3.3 Generation of input data sets 

For the practical implementation and application of the estimation methods at a WWTP, it is important 

to investigate which in-line measurements in the WWTP inflow are necessary and also financially 

feasible to achieve sufficiently good results for COD and NH4-N, estimation. Therefore, three different 

input data sets U  were generated.  
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  1 1, , nU u u  contains all 9n   input variables except the respective target variable x   and 

thus represents the optimal version assuming the WWTP is fully-equipped with state-of-the-art 

inline-measurement systems. 

  2 , , ,Q pH cond TU u u u u  contains only the standard inflow in-line measurements (Flow rate, pH-

value, conductivity and temperature). This represents the majority of WWTPs and is at the same 

time the version, which requires the least investment costs. 

  3 , ,FNU pH QU u u u  contains the variables FNU, pH-value and flow rate which were determined 

to have significant influence on predictions based on the backward elimination sensitivity analysis 

described in 5.4.1. 

While several other combinations of input variables were tested, these three datasets are the most 

interesting combinations for practical application. The first dataset is a quasi-reference for the best result 

that can be achieved using all input variables and can be used as a benchmark. The second one, in 

contrast, shows what is possible without investment into additional in-line probes and the third one 

represents a pragmatic trade-off between investment costs and prediction results (only an additional 

turbidity probe has to be installed). 

 

5.4 Description of mathematical methods 

The following subsection describes the mathematical methods used in the analysis. With regard to the 

length of this chapter only the most important methods for the chapter are explained in detail, while 

standard methods are described in an abbreviated form. 

5.4.1 Stepwise backward elimination 

To identify relevant measurement variables for COD and NH4-N prediction, a stepwise backward 

elimination algorithm (SBE) was implemented in Matlab®. Figure 5-6 depicts the working principle of 

the algorithm. 

After the data set U  is loaded and normalized, data rows are randomly permuted and U  split into four 

parts: Input training data TU , input validation data VU , target training data Tx  and target validation 

data Vx . The ratio between training and validation data is 70:30. In this case, the data in U  was not 

used in chronological order to minimize influence of the temporal location of the validation data on the 

input variable selection process. 
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Figure 5-6: Sequence of Stepwise Backward Elemination (SBE) 

The actual SBE algorithm (Figure 5-7) consists of two loops. In an inner loop the SBE algorithm uses 

the training data TU  to generate a new input data set 
1TU  omitting data column i  (i.e. omitting the  

i-th input). The resulting data set has 1n   columns, where n is the number of data columns in TU . 
1TU  

is then used to train a regression model, which is evaluated by calculating the RMSE of the prediction 

on the validation data VU  and Vx . This is repeated n times until each input column has been omitted 

once. After a complete run of the inner loop the best regression model, which is the model where the 

input column with the least impact on performance was omitted, is determined. In a second outer loop 

this least important column is removed permanently and the whole procedure is repeated until only one 

column remains. This last remaining column has the most impact and hence the highest information 

content about the target value. To ensure the robustness of the results the procedure is repeated several 

times and the distribution of results analysed. The following pseudo code provides a more detailed 

description of the SBE variable selection procedure: 
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Figure 5-7: SBE algorithm in Pseudo-Code 

 

The main advantage of this algorithm is that it generates a priority ranking of the different input columns, 

similar to a sensitivity analysis. Furthermore, irrelevant input data can be easily identified. Starting with 

a big data set with a high number of probable irrelevant data, the quality of the regression model will 

barely decrease until the first relevant input variable is removed. This becomes obvious in the results 

section. Another advantage is that the SBE doesn’t depend on a certain regression algorithm, so that 

different algorithms can be easily implemented and compared. 

5.4.2 Regression Methods 

Different regression methods were applied to predict the COD and NH4-N concentrations. The following 

section gives a short overview of the different methods and the reasons for their selection. 

 

 

U = readInputData(); 
U = normalize(U); 
For jj=1 to nTests 
{ 

U = randPermutate(U); //Rows 
UT = setTrain_Data(U, 70%); 
xT = setTargetTrain_Data (U); 
UV = setValid_Data(U, 30%); 
xV = setTargetValid_Data (U); 
For(kk = 1 to nDataColumns) 
{ 

i = number of DataColumns; 
while(i > 1) 
{ 

regModel= buildRegressionModel(UT, xT); 
xP = computeModelResults(regModel,UV); 
RMSE[i]= calcRMSE(xp, xV); 
UT.DeleteColumn[i] 
UV.DeleteColumn[i]; 
i= i-1; 

} 
UT.DeleteLeastImpactColumn(where min(RMSE)); 
UV.DeleteLeastImpactColumn(where min(RMSE)); 

} 
} 
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Multivariate linear regression (MLR) / Least squares regression (LSR) 

Multi-linear regression, often referred to as least squares regression or ordinary least squares, is one of 

the simplest linear regression models. One major advantage is, that it is independent of the underlying 

distribution (Draper, 1998, pp. 135–136). MLR seeks to minimize the sum of squared residuals 

    T U Ux b x b ,  (5.10) 

with respect to the regression parameter vector b . Here U  are the input values and x  are the target 

values. 

 

Partial Least Squares Regression (PLS) 

In partial least squares (PLS) the original predictor data matrix U  and the predicted variables x  are 

both projected into a new space in which the covariance between the projected *U  and *x  (so called 

*U  scores and *x  scores) is maximal. The *U  scores may contain less predictors than U ; the number 

of predictors is chosen by the user. Furthermore, all predictors in the *U  scores are orthogonal to the 

preceding predictors in the *U scores (Geladi and Kowalski, 1986). For this analysis MATLAB’s 

function plsregress is used which implements the SIMPLS algorithm (de Jong, 1993). 

 

Neural Networks (MLP) 

Feedforward artificial neural networks consist of multiple layers of neurons that are fully connected 

from one layer to the next. Going beyond standard linear perceptrons, so-called Multi-Layer Perceptrons 

(MLP) are very well suited for learning and mapping of non-linear relationships in highly complex data 

structures (Cybenko, 1989). Furthermore, MLPs have several desirable properties like universal 

function approximation capabilities, good generalization properties and the availability of robust 

efficient training algorithms (Haykin, 1999). For the regression problem at hand a three layer feed 

forward MLP is used (i.e. with one hidden layer). MLP training is performed using a Levenberg-

Marquardt training algorithm and cross-validation to prevent over-fitting.  

MLP Optimization 

To optimize the network, different numbers of neurons were tested for each dataset. Each number of 

neurons was tested several times to ensure robustness using a Monte Carlo algorithm to randomize the 

training data. Table 5-3 shows the results of the MLP optimization. 

  



Computational Intelligence Techniques for Control and Optimization of Wastewater Treatment Plants 

Virtual COD and NH4-N inflow measurements 

 

 
 - 94 - 

Table 5-3: MLP Optimization - optimal number of neurons for the datasets 

Dataset Number of Neurons 

1,CODU  4 

2,CODU  50 

3,CODU  15 

1, 4NHU  20 

2, 4NHU  100 

3, 4NHU  30 

 

Support vector regression (SVR) 

The most commonly used form of Support Vector Regression (SVR) is called ε-SVR and was introduced 

by (Vapnik, 1998). The basic concept behind this SVR is to describe the relationship between input and 

target variables  ,u x  using a high dimensional linear function f̂ . This function is defined by 

minimizing the distance between each predicted and each real value ˆi ix x  to be not greater than  . 

Due to the fact, that it might be difficult to find a solution for f̂ , so that all points x  are within  , an 

additional, so called slack variable   is introduced. Thus,   is transformed into a soft margin around 

f̂  that can be described as follows 
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w u   (5.11) 

where w  describes the gradient and b the intercept of f̂ . In order to determine w  and b , the following 

equation (3.23) needs to be minimized 
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w   (5.12) 

The trade-off parameter c  is introduced to determine the influence of deviations larger than  . The 

greater c, the lower the number of deviations larger than   that are still tolerated. 

As the minimization problem from (5.12) can be solved more easily using its dual form, a standard 

method with Lagrangian mulipliers , , ,i j i j     is used to create the following dual formulation using 

the kernel function k  
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where the dual multipliers have to satisfy positivity constraints (3.25). 

 , 0all    (5.14) 

The solution to the dual optimization problem then gives the necessary values for w  and b. In order to 

allow the SVR algorithm to work for non-linear data sets, it is assumed that a solution for a linear 

function f̂  exists in a high dimensional feature space F . As the calculation of a solution for (5.13) in

F , can be very difficult, so called kernel-functions are used to implicitly calculate the dot products 

needed to determine a solution. For the SVR on the COD  and 4NH N  data sets an RBF kernel was 

used as it is perfectly suited for a non-linear relation between target values and training data. The 

linear kernel is a special case of the RBF kernel as proven by Keerthi and Lin (2003). 

SVR Optimization 

The SVR models were optimized using a grid search to find the optimal trade off parameter c and 

 , a parameter which defines how far the influence of a single training example reaches. The optimal 

parameter are depicted in Table 5-4. 

Table 5-4: SVR Optimization - Optimal Parameter for Datasets 

Dataset  c  

1,CODU  0.005 1024 

2,CODU  0.125 4 

3,CODU  0.125 4 

1, 4NHU  0.25 4 

2, 4NHU  0.5 8 

3, 4NHU  1 2 
 

5.4.3 Classification Methods 

As an alternative to the regression methods, different classification methods were applied to predict the 

inflow concentrations. To formulate the mapping from iu  to ix  for all measurements 1, ,i N   as a 

classification problem, COD  and 4NH N  concentrations are clustered into 5C   classes from low, 

low-normal, normal, normal-high and high inflow concentrations. Thereby, every input sample iu  is 
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associated with a class number i    with  : 1,2,3,4,5   as defined in Table 5-2. This section gives 

a short overview of the applied classification methods. 

In order to evaluate classification performance, the following two error measures as given in Wolf et al. 

(2013) are used.  

 
1

1
MCR : 100 1 1( )

N

i
iN 

     
 
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i
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 (5.15) 

where :classifierf U  is the mapping function. Given the confusion matrix  ,: CxC
j lk K  , with 

,
1

100
C

j l
l

k


 , 1, ,j C  , for each classifier, the Normalized MCR (NMCR) is used as an alternative 

performance measure, that gives equal weighting to each class. 

 ,
1

1
NMCR : 100

C

j j
j

k
C 

    (5.16) 

Due to the unbalanced number of samples in the fifth class in particular, the NMCR was used for 

validation of the classification methods. 

Linear Discriminant Analysis (LDA) 

Linear Discriminant Analysis (LDA) is a method from the area of machine learning, which is used to 

find a linear combination of features to separate one or more classes of data. In order to do this LDA 

searches for a linear transformation mxpA   with m p , such that the transformed data *  U A U   

can be better linearly separated than the original feature input vectors U . To determine the 

transformation matrix A  an optimization problem has to be solved that corresponds to the maximization 

of the Fisher discriminant criterion: 

  1
T Btrace  S S ,  (5.17) 

where TS  is the total scatter matrix and BS  is the between classes scatter matrix (Duda, 2001). This 

method was chosen for the analysis because of its linear approach.  

In this case LDA was used not only for classification but also for dimension reduction. For the latter, 

different numbers of eigenvectors, meaning different target spaces were tested for each dataset. Each 

number of eigenvectors was tested several times to ensure robustness using a Monte Carlo algorithm to 

randomize the training data. Table 5-5 shows the results of the LDA optimization. 
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Table 5-5: LDA Optimization - Optimal Number of Eigenvectors for the Datasets 

Dataset Number of Eigenvectors 

1,CODU  1 

2,CODU  4 

3,CODU  4 

1, 4NHU  4 

2, 4NHU  4 

3, 4NHU  3 

 

Random Forest (RF) 

Random Forest is an algorithm for solving complex classification and regression problems, introduced 

by (Breiman, 2001). The algorithm is an ensemble of decision trees (DT). Hence, the classification 

consists of an ensemble of classification trees, where each tree is trained on a bootstrapped sample of 

the original training data set, and at each new branch the candidate set of variables is a random subset 

of all variables. RF was chosen as a non-linear classification method as well as regression method from 

the field of ensemble modelling.  

RF Optimization 

For the optimization different numbers of decision trees were tested for each dataset. Each number of 

decision trees was tested several times to ensure robustness using a Monte Carlo algorithm to randomize 

the training data. Table 5-6 shows the optimal number of decision trees when RF is used for 

classification and regression. 

Table 5-6: RF Optimization - Optimal Number of Decision Trees for Classification and Regression for each Dataset 

Dataset 
Number of Trees 
(Classification ) 

Number of Trees 
(Regression ) 

1,CODU  3000 50 

2,CODU  1000 100 

3,CODU  3000 50 

1, 4NHU  500 100 

2, 4NHU  1000 50 

3, 4NHU  3000 50 
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Support Vector Machines (SVM) 

Support Vector Machines are a method for solving multi-class classification problems by finding 

hyperplanes, which separate data sets into classes in a high dimensional feature space. For the 

classification problem under consideration a C-Support Vector Classification is used with soft margin 

optimization and a Radial Basis Function Kernel (RBF Kernel) (Cortes and Vapnik, 1995) using the 

SVM implementation LIBSVM (Chang and Lin, 2001).  

For the same reasons as for SVR an RBF kernel was also selected for SVM (section 5.4.2). Furthermore, 

a grid search is performed to determine the best values of parameters c  and   for the RBF kernel 

function according to the training data using the misclassification rate (MCR). Training is performed 

with a 5-folded cross-validation procedure (one against one) and different pairs of c  and   values are 

tested. Finally, the one that yields the best cross-validation accuracy is picked. As suggested by Hsu in 

2003, in a first pass an exponentially growing sequences of c  and    are evaluated to identify interesting 

regions for a detailed grid search (Hsu et al., 2003).  

SVM Optimization 

In the same way as for SVR a grid search to find the optimal parameters was conducted for each dataset 

separately. The optimal parameters are depicted in Table 5-7. 

Table 5-7: SVM Optimization - optimal parameter for datasets 

Dataset   c  

1,CODU  0.0625 64 

2,CODU  1 1 

3,CODU  0.5 16 

1, 4NHU  0.25 16 

2, 4NHU  0.25 128 

3, 4NHU  2 8 

 

5.5 Results 

5.5.1 Sensitivity Analysis 

The idea of the sensitivity analysis is to get a better idea of the influence of the different measured 

process variables on COD  and 4NH N . For this purpose Stepwise Backward Elimination (SBE) 

(described in section 5.4.1) was implemented in Matlab and applied to the input variables u  in order to 

find which of the input variables are best suited for inclusion in the models  1COD f u  and 

 4 2NH N f  u  to estimate COD  and 4NH N . To get robust results SBE was repeated 50 times 

using different randomly selected data sets generated using Monte Carlo simulation. Because each data 
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row represents one set of measurements at a certain point of time, it is possible to randomize the data 

rows. For each repetition the data rows were randomly permuted with the exception of the first run 

where the data was left in its original order to investigate if the timed measurement sequence has a 

significant impact on the results. 

5.5.1.1 COD Analysis Sensitivity Analysis 

Figure 5-8 shows a box plot of the order of elimination, which means that the last input value eliminated, 

in this case 254SAC , has the highest impact on model quality. This was expected as COD  represents the 

sum of all organic compounds and a common alternative for COD  is 254SAC . Turbidity ( ATU ) has the 

second largest influence on COD  prediction, which can be explained by the fact that a fraction of the 

COD  exists in particulate form. The order of elimination of FNU  (measured at 860 nm) and 433SAC  

was also consistent across most of the simulation runs. While the remaining values show a much higher 

variation. The reason for this variation lies in their small influence on model quality, hence they are 

much more sensitive to the randomization of the data. From a practical point of view it is disappointing 

that conductivity , temperature , pH value  and flow  were the first values to be eliminated because 

it means that these variables, that are currently available as standard on most WWTP, do not improve 

model quality significantly. 

 
Figure 5-8: Predicting COD – The most significant input is on the right (SAC254)  

and the least significant is on the left (Cond.) 

Figure 5-9 depicts the coefficient of determination ( 2R ) of the different models for the test data. It can 

be seen that model quality is and stays high up to the point where only three input values remain. It 

seems that these three input variables ( FNU , turbidity  and 254SAC ) have the highest impact on model 

quality. The first small degradation can be seen when only four input variables remain. The fourth value 

is 433SAC  which represents the absorption of a sample at 433 nm , where the colour yellow shows a high 

absorption as well. This makes sense because with higher pollution of the water (and therefore higher

COD ) the wastewater tends to have a stronger colour. At this point it has to be mentioned that these 

interpretations are based on the fact that all measurements were taken in municipal wastewater. As 

already noted in chapter 2, the characteristics of, for example, industrial wastewater in many cases are 

completely different. For example high COD  values can appear without a particulate fraction and 



Computational Intelligence Techniques for Control and Optimization of Wastewater Treatment Plants 

Virtual COD and NH4-N inflow measurements 

 

 
 - 100 - 

without significant coloration. Thus, detection and regression analysis is much more difficult in this 

environment. 

 
Figure 5-9: COD - Coefficient of determination (R2) for regression models with different  

numbers of input, with the selection order given in Figure 5-8 
 

5.5.1.2 NH4-N Analysis 

Figure 5-10 shows the order of priority of input variables for the prediction of 4NH N . The prediction 

of 4NH N  is expected to be more difficult than COD  due to the fact that it is present in completely 

dissolved form and has no specific absorption. This is also supported by the fact that Turbidity  has no 

significant impact on model quality. Interesting for the practical application are pH value  and Flow  

which were eliminated fourth from last and third from last respectively. The influence of the pH value  

can be explained by the fact that in the inflow of a WWTP the major part of ammonium is present as 

fully protonated 4NH  . Depending on pH value  and temperature  it can deprotonate to 3NH  

(ammoniac) and vice versa. This means that the pH value  has an influence on the 4NH N  

concentration and the 4NH N  concentration on the pH value . The correlation between flow  and 

4NH N  can be explained by diluting effects (the more water, the less 4NH N ). The 254SAC  and 

433SAC  measurements have the highest influence. In comparison to COD  it becomes obvious that the 

variation in selection order is much higher, which means that most of the variables have a similar 

influence on the result, which means in this case only a small influence. 

 
Figure 5-10: Predicting NH4-N – The most significant input is on the right (SAC254)  

and the least significant is on the left (Cond.) 
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Looking at Figure 5-11 it can be seen that even with all input variables included the coefficient of 

determination only reaches 2 0.75R  . When Flow  is omitted from the model 2R  drops to 0.56. Based 

on these first test results it is not expected that good prediction results can be achieved with other 

mathematical methods for 4NH N . The later presented results confirm this expectation. 

 
Figure 5-11: NH4-N - Coefficient of determination (R2) for regression models with different 

numbers of input, with the selection order given in Figure 5-10 

The results of the sensitivity analysis are used for the following analysis to identify valuable process 

variables and to create optimized data sets for regression and classification. 

 

5.5.2 Regression Results COD 

Regression Dataset U1,COD 

Dataset 1,CODU  includes all measured input variables except the target variable. Therefore the model 

errors (Figure 5-12) are, as expected for COD , relatively small. Furthermore it is noticeable that the 

errors of the different regression algorithms are in the same range. 

 
Figure 5-12: Regression Results Dataset U1,COD  (50 runs monte carlo simulation) 

An average RMSE of 12 mg/l is achieved, which corresponds to an average NMSE of 6 %. The accuracy 

of these results is absolutely sufficient for the previously mentioned different target applications such as 

modelling and optimized control. The problem is, that 254SAC  is the most important input variable 

(Figure 5-11). 254SAC  probes are in general nearly as expensive as COD  probes and therefore often 

used as an alternative to a COD  probe. So from this point of view there is no major financial advantage 

for an operator to use this combination of sensors. 
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Regression Dataset U2,COD 

Due to the fact that dataset 2,CODU  only includes standard in-line measurements, which are variables 

with minor impact on COD  prediction (see Figure 5-8), the results show an average RMSE of 66.7 mg/l, 

which corresponds to an average NMSE of 42 %. As expected these are substantially worse than the 

results for dataset 1,CODU .  

 
Figure 5-13: Regression Results Dataset U2,COD  (50 runs Monte Carlo simulation) 

Apart from the fact that neural networks (MLP) are more sensitive to the randomized input data sets and 

therefore show a higher error distribution, it is obvious that the linear and non-linear methods yield 

similar performance. Despite the poor RMSE results these models may still be useful for practical 

application, for example in the early detection of load peaks. Figure 5-14 shows the SVR COD  

prediction results. The dynamics are clearly depicted as well as the range of the COD  values. Therefore, 

this is an interesting result, due to the fact that it is obviously possible to predict COD  up to a certain 

level with the measurement equipment installed as standard on WWTP. The level of prediction is 

sufficient to be a useful input variable for advanced control strategies. 

 
Figure 5-14: Prediction using SVR for U2,COD (Measured: Blue, Predicted: Red) 

 

Regression Dataset U3,COD 

Dataset 3,CODU  uses the input variables with the highest information about the target variable COD  

determined by the sensitivity analyses (stepwise backward elimination) (see Figure 5-6). Furthermore, 

all variables measured by the Stip-scan spectrometric probe were eliminated from the dataset (including 

missing data 



Computational Intelligence Techniques for Control and Optimization of Wastewater Treatment Plants 

Virtual COD and NH4-N inflow measurements 

 

 
 - 103 - 

254SAC  which would lead to significant improvement of the results) to create a dataset that contains 

only those variables which can be measured by cheaper measurement probes. Therefore, this dataset 

could be the most important one for the targeted applications. To gather these data, it is only necessary 

to install an additional turbidity probe in the inflow of a WWTP. 

 
Figure 5-15: Regression Results Dataset U3,COD (50 runs Monte Carlo simulation) 

With an RMSE of 48.8 mg/l the results are significantly better than the results of dataset 2,CODU . 

Noticeable is the fact that the non-linear methods SVR, RF and MLP perform better than the linear 

methods MLR and PLS.  

 

5.5.3 Regression Results NH4-N 

Regression Dataset U1,NH4 

Dataset 1,NH 4U   contains all measured input variables and offers the best chance for good prediction 

results. From this point of view it can be seen as a reference for which results can be achieved. 

 
Figure 5-16: Regression Results Dataset U1,NH4 (50 runs Monte Carlo simulation) 

In comparison to COD  results 4NH N  results are much worse. MLR and PLS have a RMSE of 

1.96 mg/l and 1.94 mg/l respectively. Interesting is the fact that in this case linear methods (MLR and 

PLS) perform better than the non-linear methods (RF, MLP and SVR). It can be assumed that there is a 

linear correlation with 254SAC  . 
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Regression Dataset U2,NH4 

The average RMSE for dataset 2,NH4U  is 4.3 mg/l. It is noticeable that the differences in the RMSE 

between the applied regression methods is negligible. Furthermore, variations are relatively small, which 

shows that the results do not depend on a certain area in the validation data.  

 
Figure 5-17: Regression Results Dataset U2,NH4 (50 runs Monte Carlo simulation) 

Regression Dataset U3,NH4 

Although an improvement of the results was expected by including turbidity , the results for dataset 

3,NH 4U  have higher variations then dataset 2,NH 4U . MLR and PLS show comparable prediction results 

to dataset 2,NH 4U  for dataset 3,NH 4U  with an RMSE of 3.58 mg/l and 3.59 mg/l respectively. For this 

data set it is noticeable that the linear methods MLR and MNR show significantly better results than the 

non-linear methods. 

 
Figure 5-18: Regression Results Dataset U3,NH4 (50 runs Monte Carlo simulation) 

It can be assumed that the differences are caused by the variation of the turbidity , because it is the only 

new variable included. An exception is MLP which has an average RMSE of 5.53 mg/l, which is slightly 

better than the MLP RMSE for dataset 2,NH 4U with 6.71 mg/l. Nevertheless, these results are strongly 

influenced by the sensitivity of the MLP to randomization and the corresponding variation of the MLP 

results. 

 

5.5.4 Classification Results 

A different approach is to estimate COD  and 4NH N  concentrations in the inflow by classification. 

Instead of estimating the concentrations continuously they are estimated in different bands (for example 
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COD  class 1 is between 100 mg/l and 200 mg/l). Table 5-8 and Table 5-12 show the NMCR of the 

applied classification methods for COD  and 4NH N  respectively. 

Different Kinds of Misclassifications 

For later interpretation of the confusion matrices it is important to keep in mind that there are different 

types of misclassifications. Because the classes are on a cardinal scale, it makes a big difference for the 

utilization of classification results whether the algorithm confuses adjacent classes or non-adjacent 

classes. From this point of view, it can be distinguished between “severe” misclassifications and “mild” 

misclassifications. After the back transformation into mg/l values this effect will be considered 

automatically by applying the NMSE and the RMSE metrics. 

Discussion of COD Classification Results 

Similar to the regression results, COD  predictions show considerably better results than 4NH N  

predictions and there is good agreement in terms of datasets which give good results. The best prediction 

results are achieved by Random Forest Regression for 1,CODU  with an average NMCR of approximately 

6.13%. For dataset 2,CODU  the best results are achieved by LDA with an average NMSE of 56.9%. The 

best results for 3,CODU  are achieved by Random Forest with an average NMSE of 47.8%. These results 

are particularly interesting, as it can be seen, that the additional turbidity measurement improves the 

classification results significantly compared to 2,CODU .  

Table 5-8: Median (20 repetitions) Classification Results for COD Test Data -NMCR[%] 

Dataset RFclass LDA SVM  

1,CODU  6.13 11.09 10.05 

2,CODU  66.93 56.90 73.14 

3,CODU  47.79 51.86 52.34 

Table 5-9, Table 5-10 and Table 5-11 show the confusion matrices for the different classification 

algorithms and datasets. For datasets 1,CODU  RF achieved a hit ratio over 90% for all classes (Table 

5-9a). LDA and SVM performed slightly worse (Table 5-9 b+c), but still achieved a hit ratio between 

80% and 99%. In general it can be said that all classification methods performed very well for the 

prediction of dataset 1,CODU .  
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Table 5-9: Confusion Matrices Dataset U1,COD 

a) LDA predicted 

 [%] 1 2 3 4 5 

gi
ve

n 

1 99.5 0.53 0.0 0.0 0.0 

2 5.4 86.7 7.8 0.0 0.0 

3 0.0 4.1 88.5 7.3 0.0 

4 0.0 0.0 8.8 85.4 5.7 

5 0.0 0.0 0.5 5.8 93.5 
 

b) SVM predicted 

 [%] 1 2 3 4 5 

gi
ve

n 

1 99.6 0.1 0.0 0.3 0.0 

2 12.3 69.3 16.3 2.1 0.0 

3 0.2 6.1 78.8 14.8 0.2 

4 0.0 0.0 4.0 90.9 5.1 

5 0.0 0.0 0.3 9.9 89.8 
 

c) RF predicted 

 [%] 1 2 3 4 5 

gi
ve

n 

1 98.8 0.9 0.0 0.3 0.0 

2 3.9 92.8 3.3 0.0 0.0 

3 0.2 2.4 94.4 2.9 0.0 

4 0.0 0.0 3.3 92.2 4.5 

5 0.0 0.0 0.6 4.7 94.8 

 

Table 5-10 shows the results for dataset 2,CODU . For this dataset LDA performs best. The majority of 

samples are mapped to the correct or the adjacent class (mild misclassification). SVM has obviously the 

biggest problems, it tends to map most samples to class 4 and is not able to recognize class 5 at all. 

While RF has problems with class 5 too, most of the incorrect mappings are to the adjacent classes. 

Table 5-10: Confusion Matrices Dataset U2,COD 

a) LDA predicted 

 [%] 1 2 3 4 5 

gi
ve

n 

1 95.6 4.4 0.0 0.0 0.0 

2 36.4 35.8 25.3 2.4 0.0 

3 6.4 13.9 50.3 29.3 0.0 

4 1.1 2.0 40.9 48.4 7.6 

5 0.0 0.0 6.7 31.2 62.1 
 

b) SVM predicted 

 [%] 1 2 3 4 5 

gi
ve

n 

1 22.3 3.2 0.0 74.5 0.0 

2 0.0 9.6 14.8 75.6 0.0 

3 0.0 0.5 15.0 84.5 0.0 

4 0.0 0.0 0.5 99.4 0.1 

5 0.0 0.0 0.0 100 0.0 
 

c) RF Predicted 

 [%] 1 2 3 4 5 

gi
ve

n 

1 84.0 7.3 8.6 0.0 0.0 

2 20.5 35.5 30.4 13.6 0.0 

3 1.4 13.9 43.1 41.6 0.0 

4 0.0 0.8 19.1 79.9 0.2 

5 0.0 0.0 4.1 88.0 7.9 

 

Table 5-11 shows the results for dataset 3,CODU . For this dataset RF shows again the best results, but the 

differences in NMSE are relatively small compared to the other datasets. Except for RF class 5 the 

majority of samples are mapped to the correct classes. Furthermore, the number of severe 

misclassifications is relatively small for all methods. This shows that besides the comparable NMSE 

results for dataset 2,CODU  and 3,CODU , the additional turbidity probes brought notable improvements. 

Table 5-11: Confusion Matrices Dataset U3,COD 

a) LDA predicted 

 [%] 1 2 3 4 5 

gi
ve

n 

1 88.1 11.2 0.3 0.3 0.1 

2 26.5 34.3 22.6 16.6 0.0 

3 3.5 0.2 42.1 51.3 3.0 

4 1.9 0.0 10.3 74.2 13.6 

5 0.0 0.0 0.3 19.8 79.9 
 

b) SVM predicted 

 [%] 1 2 3 4 5 

gi
ve

n 

1 60.5 2.5 23.0 14.0 0.0 

2 9.6 17.5 55.7 17.2 0.0 

3 0.3 1.6 44.5 52.9 0.7 

4 0.0 0.0 17.8 74.8 7.3 

5 0.0 0.0 4.9 32.1 62.9 
 

c) RF predicted 

 [%] 1 2 3 4 5 

gi
ve

n 

1 95.2 4.1 0.4 0.3 0.0 

2 16.9 61.7 21.1 0.3 0.0 

3 0.2 13.8 68.2 17.7 0.2 

4 0.3 0.5 26.9 69.8 2.5 

5 0.0 0.0 0.6 70.3 29.1 

Generally it can be said that, as long as the number of mild misclassifications are not the majority of the 

results, even classification results with a high NMCR > 50% can still be considered to be of high value 

for the practical applications.  
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Discussion of NH4-N Classification Results 

The NMCR distribution of 4NH N  for the different datasets 1,NH4U , 2,NH4U  and 3,NH4U  over all 

methods is much less diverse than for COD . While the NMSE for COD  had a range between 6% and 

73%, the NMSE for 4NH N  results are for all datasets between 44% and 75%. The reason is that 

4NH N  does not correlate as strongly as COD  with 254SAC . The best results with an NMCR of 

approximately 44% were achieved by LDA and for dataset 1,NH4U . Clearly more interesting are the 

results for dataset 2,NH4U  and 3,NH4U  (Table 5-12). The different methods achieve NMCRs comparable 

to the NMCRs of the COD  prediction, which was not expected. 

Table 5-12: Median (20 repetitions) Classification Results for NH4-N Test Data -NMCR[%] 

Dataset RFclass LDA SVM  

1,NH4U  55.85 43.99 70.60 

2,NH4U  62.4 57.72 75.36 

3,NH4U  57.00 64.41 56.15 

 

Only looking at the NMSE the impression is created that the results for 2,NH4U  and 3,NH4U are not much 

worse than for 1,NH4U . Table 5-13 shows the confusion matrices for dataset 1,NH4U . Looking at the 

confusion matrices it can be seen, that none of the methods were able to map class 5 correctly. Class 5, 

with 124 data samples (Table 5-2), is underrepresented and there are even fewer class 5 4NH N  

samples in the training data. In the future this problem could be addressed by artificially multiplying the 

number of samples in underrepresented classes. While LDA is not able to map class 5 correctly it maps 

99% of the samples to class 4, which is only a mild misclassification. The same applies for the other 

classes. Most of the misclassifications are mild. SVM and RF have obviously more problems with higher 

classes. The reason LDA outperforms SVM and RF is that non-linear methods have more difficulty to 

extrapolating. Due to the fact that the test data samples are chronologically after the training data 

samples and the values rose during the measurement campaign, the training data contains fewer class 5 

samples. 

Table 5-13: Confusion Matrices Dataset U1,NH4 

a) LDA predicted 

 [%] 1 2 3 4 5 

gi
ve

n 

1 74.4 12.4 13.2 0.0 0.0 

2 5.3 23.8 70.9 0.0 0.0 

3 0.1 0.6 88.6 10.7 0.0 

4 0.0 0.0 42.4 57.6 0.0 

5 0.0 0.0 0.9 99.0 0.0 
 

b) SVM predicted 

 [%] 1 2 3 4 5 

gi
ve

n 

1 75.5 24.0 0.5 0.0 0.0 

2 5.7 47.9 46.0 0.30 0.0 

3 0.0 5.1 93.0 1.9 0.0 

4 0.0 5.4 86.8 7.7 0.0 

5 0.0 0.0 70.0 30.0 0.0 
 

c) RF predicted 

 [%] 1 2 3 4 5 

gi
ve

n 

1 95.4 4.6 0.0 0.0 0.0 

2 31.4 57.3 11.3 0.0 0.0 

3 2.3 23.7 71.8 2.1 0.0 

4 0.0 43.1 36.7 20.3 0.0 

5 0.0 18.2 5.5 76.4 0.0 
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Table 5-14 shows the confusion matrices for dataset 2,NH4U . RF and SVM have again problems mapping 

the higher classes correctly; they map nearly all samples below class 4. Again, none of the methods was 

able to map class 5 correctly. The simpler form of LDA gives it an advantage over the non-linear 

methods. All methods give the best results for class 3. 

Table 5-14: Confusion Matrices Dataset U2,NH4 

a) LDA predicted 

 [%] 1 2 3 4 5 

gi
ve

n 

1 38.8 26.7 34.5 0.0 0.0 

2 17.6 32.8 49.4 0.2 0.0 

3 0.6 5.6 88.6 5.1 0.0 

4 0.0 2.1 69.1 29.0 0.0 

5 0.0 0.0 28.2 71.8 0.0 
 

b) SVM predicted 

 [%] 1 2 3 4 5 

gi
ve

n 

1 55.0 43.4 1.6 0.0 0.0 

2 8.2 45.6 46.1 0.0 0.0 

3 1.0 12.1 85.0 1.9 0.0 

4 0.0 34.6 57.6 7.7 0.0 

5 0.0 3.6 84.5 11.8 0.0 
 

c) RF predicted 

 [%] 1 2 3 4 5 

gi
ve

n 

1 65.2 34.2 0.5 0.0 0.0 

2 23.5 48.6 27.9 0.0 0.0 

3 4.4 18.1 75.0 2.5 0.0 

4 0.2 29.6 54.2 15.9 0.0 

5 0.0 0.9 36.6 62.7 0.0 

 

Table 5-15 shows the confusion matrices of dataset 3,NH4U . Again, there is a strong tendency of all 

methods to map all samples below class 3. SVM maps nearly all samples in class 3, which is interesting 

because looking at the NMSE SVM outperforms LDA and RF. The results for dataset 3,NH4U  aren’t 

much better than for 2,NH4U , while the necessary measurement effort is much higher. This is why dataset 

3,NH4U is considered not interesting for practical application. 

Table 5-15: Confusion Matrices Dataset U3,NH4 

a) LDA predicted 

 [%] 1 2 3 4 5 

gi
ve

n 

1 54.2 9.7 36.1 0.0 0.0 

2 8.2 31.7 60.1 0.0 0.0 

3 0.9 5.1 84.2 9.8 0.0 

4 0.0 2.3 55.8 41.9 0.0 

5 0.0 0.0 23.6 76.4 0.0 
 

b) SVM Predicted 

 [%] 1 2 3 4 5 

gi
ve

n 

1 14.0 11.9 74.1 0.0 0.0 

2 2.9 32.2 64.9 0.0 0.0 

3 0.0 0.3 96.3 3.4 0.0 

4 0.0 0.0 99.1 0.9 0.0 

5 0.0 0.0 100 0.0 0.0 
 

c) RF predicted 

 [%] 1 2 3 4 5 

gi
ve

n 

1 72.2 25.3 2.4 0.0 0.0 

2 33.3 43.7 23.0 0.0 0.0 

3 7.7 19.9 70.0 2.3 0.0 

4 0.7 45.8 34.9 18.7 0.0 

5 0.0 18.2 57.3 24.5 0.0 

 

However, dataset 2,NH4U  and 3,NH4U  show relatively weak results. Later in section 5.6.3 and 5.6.4 it will 

become obvious, that the prediction quality is too low for practical application. 

5.6 Comparison to standard reference samples 

5.6.1 Calculation of the Reference Standard 

Regression and classification results are not directly comparable. While regression methods map to a 

specific value, classification methods map to a domain. To be able to compare the results a reference 

standard has to be used. Two characteristics of the inflow are important: 1. The amount of substances 
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(in this section COD  is used as example) which flowed into the plant in a certain period of time. 2. The 

variations of inflow concentrations. 

To compare regression and classification results it is possible to use the total amount in grams in time 

period 2 1pT t t  : 

  
2

1

( ) ( )
t

g s
t t

mg l
COD COD t Q t t s mg

l s

       
   (5.18) 

where st  is the step size of the measurements and ( )COD t  the COD  concentration at time t  and  Q t  

the flow at time t . Alternatively it is possible to use the mean concentration in pT : 

 
2

1

1( )
t

s
t t

COD COD t n 



 
   
 
   (5.19) 

where sn   is the number of samples in time period pT . Using equation (5.19) has the disadvantage that 

the flow is not considered. 

A major challenge is to find a suitable timespan, which is short enough to maintain the dynamics but 

long enough to make regression and classification comparable. Because it depends on the application 

whether the dynamics or the total amount of substance is more important there is no optimum answer to 

this question. For this reason a two hour composite sample, which is commonly used for measurement 

campaigns to calibrate activated sludge models (ASM) (Henze et al., 2000) is used as reference. 

As already described, the inflow of most plants is only equipped with measurement probes for 

pH value , temperature , flow  and conductivity . This is why measurements for COD  and 4NH N  

are usually done in measurement campaigns over a short period of time (one to several days). During 

these campaigns samples are taken which are analysed in a laboratory. As described above a typical 

time interval for these samples is two hours. In order to cover the entire inflow in these two hours 

composite samples should be used. To generate these samples a continuous amount of wastewater is 

pumped into a container which is changed every two hours. To get a better representation of the inflow 

it would be necessary to consider the flow  too (for example by coupling the pump to the inflow 

measurement). In practice both are often not possible. For this reason it is common practice to make 

spot tests every two hours. 

For this investigation it is assumed that a standard measurement campaign with composite samples was 

conducted on the Rospe plant. The COD  and 4NH N  composite samples CSCOD  and 4 CSNH N  
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are calculated using the COD  and 4NH N  online measurements respectively. The following 

equations show the example of COD . 

 
0

0

1
( )

m it n t

CS
m t t

COD COD t
n

 



    (5.20) 

where mn  is the number of measurements for the composite sample CSCOD  and it  the measuring 

interval of the online probes. For better comparison samples considering the flow  ( Q ) are calculated 

in equation (5.21): 
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 (5.21) 

Both equations (5.20) and (5.21) are applicable to the regression as well as the classification results. 

Figure 5-19 and Figure 5-20 show the comparison between the composite samples (CS) and the 

composite samples considering the flow (CSF) for 
4NH N  and COD  respectively. For this particular 

inflow and during the time of the measurement campaign the differences are negligible. Both 

measurement values show only minor differences (Figure 5-19 and Figure 5-20). 

 
Figure 5-19: Comparison on mean inflow values (NH4-N) (blue CS, red CSF) 

Due to these insignificant differences the simpler CS metric is used in the following comparison of 

regression and classification. 

 
Figure 5-20: Comparison of mean inflow values (COD)(blue CS, red CSF) 
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5.6.2 Back Transformation from Classes to Concentrations 

For the comparison of classification and regression results, it was necessary to transform the predicted 

classes back into measured concentrations given in mg/l. Instead of simply using the class mean value 

C , defined as 

 
2

ulim llimC C
C


   (5.22) 

where ulimC  and llimC  represent the upper and lower limit of the class respectively, the mean value of all 

measurement values in a class was used: 

 1

1

N

ms i
i

C x N 



 
  
 
   (5.23) 

where N  is the number of data points in the particular class. The measurement values were taken from 

the COD  and 4NH N  reference measurements.  

Table 5-16: Class mean measurement values 

Class COD  [mg/l] 4NH N  [mg/l] 

1 54.6 3.6 

2 127.2 6.53 

3 176.7 10.9 

4 239.9 16.5 

5 339.1 22.0 

 

5.6.3 Direct Comparison of Regression and Classification Results 

After the transformation back into concentration values it is possible to compare regression and 

classification values directly. Because of the limited number of classes, representing concentration 

ranges, classification results will most likely perform worse using an error measure like RMSE or 

NMSE. Therefore a two hour mean, representing a virtual 2h sample, was calculated from all results 

(classification and regression). The goal is to show that over a period of two hours the differences 

between classification and regression results are minimal. As these 2h intervals are normally used when 

performing inflow measurements at WWTP, it is proven to be good enough to preserve the dynamics of 

the inflow while sufficiently describing the absolute values of the inflow load. Table 5-17 provides a 

direct comparison of the classification and regression results in terms of NMSE based on these virtual 

2h samples.  
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Table 5-17: NMSE direct comparison of regression and classification results [x100%] 

Dataset RFclass. LDAclass SVMclass MLRreg RFreg MLPreg PLSreg SVRreg 

1,CODU  0.074 0.11 0.07 0.02 0.02 0.05 0.02 0.02 

2,CODU  0.3 1.03 0.35 0.28 0.30 0.90 0.28 0.36 

3,CODU  0.24 0.5 0.22 0.30 0.16 0.21 0.30 0.21 

1, 4NHU  0.4 0.6 0.63 0.17 0.47 0.72 0.16 0.65 

2, 4NHU  0.62 0.73 0.77 0.49 0.86 1.26 0.49 0.83 

3, 4NHU  0.61 0.86 0.98 0.56 0.70 1.13 0.56 0.90 

It is obvious that the regression methods outperform in most cases classification methods, with the 

exception of dataset 3,CODU  where RF outperforms all other classification methods. Interesting is the 

fact that RF Classification outperforms RF Regression for dataset 2, 4NHU . But in this case it has to be 

considered that both results are very bad. Furthermore it is interesting that SVR is outperformed by RF 

classification as well as LDA. Important is the fact that for 4NH N   the additional turbidity probe 

brings no improvement, while it improves the results for COD  significantly. In fact with some methods 

the 4NH N  prediction results are even better with the standard measurements used for 2, 4NHU . 

5.6.4 2h mean Comparison of Regression and Classification Results 

For the final comparison of classification and regression results, classification results were transformed 

back to concentrations using equation (5.23). In a second step all results (regression and classification) 

were transformed according to the described 2h reference standard using equation (5.20). The same was 

done to the real measured reference values of COD  and 4NH N . From this point on the results are 

considered to be virtual 2h composite samples. The final step for the comparison is the application of 

the NMSE to the different datasets and the reference data respectively. 

Table 5-18 gives an overview of the performance of all applied regression and classification methods. 

The results show that for most cases regression and classification methods achieve similar NMSE 

values. This effect is obvious for dataset 1,CODU , 2,CODU  and 3,CODU  in particular. While dataset 1,CODU

achieves good results no matter which method is used, it is the least interesting dataset for practical 

utilization, due to the fact that in-line 254SAC  probes are in the same price range as in-line COD  probes. 

Significantly more interesting are the results for datasets 2,CODU  and 3,CODU . For dataset 2,CODU  the 

best performing classification and overall method is LDA which achieves a NMSE of 0.18, while for 

dataset 3,CODU  the best classification method with a NMSE of 0.12 is RFclass.  
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The overall best result for 3,CODU  is achieved by RFreg with a NMSEs of 0.11. This shows that the 

turbidity probe improves the overall estimation performance over a period of 2 hours, which could not 

be seen in Table 5-8. Looking at the 4NH N  results only 1,NH 4U  is of interest for practical utilization. 

2,NH 4U and 3,NH4U  show significant deviations and were not able to follow the dynamics. In particular 

the height of the peaks could not be predicted.  

Table 5-18: NMSE Comparison Results for Test Data: Virtual 2H-Composite Samples [x100%] 

Dataset RFclass. LDAclass SVMclass MLRreg RFreg MLPreg PLSreg SVRreg 

1,CODU  0.00 0.01 0.02 0.00 0.01 0.02 0.00 0.00 

2,CODU  0.24 0.18 1.07 0.23 0.26 0.89 0.23 0.30 

3,CODU  0.12 0.14 0.39 0.20 0.11 0.16 0.19 0.14 

1, 4NHU  0.51 0.28 0.48 0.13 0.48 0.70 0.13 0.64 

2, 4NHU  0.70 0.54 0.64 0.47 0.70 1.20 0.47 0.82 

3, 4NHU  0.92 0.52 0.77 0.51 0.72 1.15 0.51 0.88 

Figure 5-21 shows the comparison results for 3,CODU . The middle part is not considered, due to a data 

gap. It can be seen that the estimated data not only follows the dynamics of the real measured data but 

also matches the peaks. Nevertheless, RF has problems in the second half of the validation period, where 

the COD  levels rise. This can be attributed to the fact that values as high as these were not present in 

the training data. 

 
Figure 5-21: RF Classification 2h mean U3,COD (blue: measured, red: predicted) 

Figure 5-22 shows the results for SVR for 2,CODU . While the results are still sufficient in the first half, 

it is obvious that SVR has problems capturing the peak concentrations. Nevertheless, SVR achieves 

surprisingly good results in the second half of the validation period, although COD  levels are much 

higher and values this high are not present in the training data. 

missing data 
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Figure 5-22: Support Vector Regression 2h mean U2,COD (blue: measured, red: predicted) 

The best result for 4NH N  presented in Figure 5-23 is achieved for dataset 1, 4NHU . Although 

4NH N  is considered harder to estimate than COD , estimation of 4NH N  concentrations yields 

good results. The dynamics are captured well and even peak concentrations are estimated well for the 

second half of the test data. Estimation for the first half of the test data is slightly worse with peak 

concentrations underestimated and an offset in predictions relative to the measured values. However, 

overall these results are of high value for WWTP operation and advanced control. 

 
Figure 5-23: Partitial Least Squares Regression 2h mean U1,NH4 (blue: measured, red: predicted) 

Figure 5-24 shows the best classification result for dataset 2, 4NHU  using LDA with an NMSE of 0.54. 

It can be seen that the prediction is not able to follow the dynamics or reach the peak values. The reason 

can be seen in the confusion matrices (Table 5-14). As already described the classification methods tend 

to map most samples to the middle classes. 

 
Figure 5-24: LDA 2h mean U2,NH4 (blue: measured, red: predicted) 

In general, it can be seen that for 2,CODU  and 3,CODU  the non-linear methods perform best, while for 

2, 4NHU  and 3, 4NHU  the linear methods achieve the best results. While regression and classification 

missing data 

missing data 

missing data 
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performance is similar for easily predictable datasets like 1,CODU , classification methods achieve better 

results for datasets that are harder to estimate. 

 

5.7 Conclusion 

The results show that it is possible to estimate COD  in the WWTP inflow based on standard 

measurements with sufficient accuracy for use in optimization and control strategies. Furthermore, it is 

possible to achieve better prediction results through installation of an additional in-line turbidity probe. 

The prediction of 4NH N  with standard equipment is not feasible due to low estimation accuracy 

whereas it is possible to achieve sufficiently accurate results, using all input variables. For practical 

application this means that it is recommended to estimate COD  based on standard equipment or after 

installation of an additional in-line turbidity probe, while 4NH N  estimation is a valid option for 

operators who already have an in-line COD  probe in the WWTP inflow. 

In addition, this analysis shows that it is possible to achieve sufficient estimation results using 

classification instead of regression methods. This not only facilitates the transparent presentation of 

inflow concentrations to the operator but also allows for specifically adapted training to focus on correct 

estimation of interesting individual classes. 
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6 Application and Testing of Model-Based inflow estimation 

An alternative approach to the methodology presented in chapter 5 to get process data from the WWTP 

inflow was presented by (Ebel, 2009). While the methodology in chapter 5 pursued the goal of creating 

soft sensors for important inflow variables, whose data can be used for online control, the idea of a 

model-based estimation of inflow variables is to determine inflow measurement data retrospectively. 

The advantage of this approach is, that the optimization of WWTP operation using simulation models 

requires a broad range of process data representing multiple inflow conditions and, in particular, as many 

critical operating events as possible. Due to the fact, that inflow measurements are usually done in 

measurement campaigns over a limited period of time and, as described in chapter 5, permanently 

installed online measurement devices for COD and NH4-N are not common due to high operating costs. 

Thus, it is unlikely to capture interesting critical events. Therefore, in order to be able to simulate these 

scenarios, artificial events are normally generated. However, the composition of these events and their 

representation of real events have its limitations. In this chapter the retrospective inflow estimation 

method is applied to the Rospe WWTP model developed in chapter 4 (section 4.2) to generate missing 

inflow data over a period of several days in order to capture relevant operating states for further 

optimization and control applications as described in chapter 7. The achieved results clearly show the 

strong limitations of the method and provide an insight into further necessary improvements of the 

method. 

6.1 Introduction to feed stream estimation 

The developed methodology requires a fully calibrated simulation model of the WWTP which is used 

in combination with a non-deterministic optimization method, in this case Particle Swarm Optimization 

(PSO) (Clerc, 2006a), to estimate the correct feed stream. Basically, the method creates an artificial feed 

stream 1 2= [ , ,..., ]mu u uu , e.g. a combination of COD  and 4NH N  concentrations and the measured 

inflow Q . This artificial feed is then simulated for a period of time ST  (e.g. 2 hours) using the calibrated 

model. During that time ST  the chosen inflow parameters are kept constant. At the end of the simulation 

period ST , the trajectories of the simulated process variables (denoted as ( )vs u ), 1,...,v n ), for a set 

V  of process variables, e.g. 4 3[ , ]V NH N NO N   , at the outflow of the biological treatment, are 

compared with the trajectories of the measurements vm  from the real plant. The result of the comparison 

of simulated versus measured values is used to create the performance index ( )vJ u : E  

 ( ) ( , ( ))v v vJ E su m u   (6.1) 

where E  is a trajectory matching error metric such as the RMSE. The total performance index is then 

calculated by aggregation of the individual errors:  
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This is repeated by the optimization algorithm using different feed stream combinations for the same 

period of time ST  in order to minimize ( )J u .When a minimum is found, this feed stream is used to 

simulate the model for period ST  and the process is repeated for the next time period 1ST  . The result 

is a stepwise feed stream (Figure 6-4), which results in the same plant behaviour, as the real feed stream. 

Therefore, this estimated feed stream can be used in experiments as a surrogate for the real feed stream 

being a financially feasible approach that does not require extensive long online measurement 

campaigns. Furthermore, by choosing 2h-feed stream sample intervals the accuracy of the estimation is 

comparable to the 2h-online fully automated feed stream sampler machines that are commonly used in 

practice. Figure 6-1 gives an overview of the described methodology. 

 

Figure 6-1: Model based inflow estimation principle (Ebel, 2009) 

A problem with this approach is the high computational overhead. The dimension m of the feed stream 

u is directly related to the dimension of the optimization problem. In the basic implementation only two 

feed stream variables (COD and NH4-N) need to be estimated because Q is measured, resulting in a two 

dimensional optimization problem. However, in order to take account of the dynamics of the WWTP 

model, and to achieve more accurate inflow estimates, it is necessary to simultaneously optimise two or 

more time steps TS (see Figure 6-2). This is necessary because the current plant output will be a function 

of the inflow variables over several simulation steps, and not just the current one. However even when 

time steps ST  and 1ST  are optimized, which constitute the estimation horizon, only the optimal result 

for ST  is used to simulate the next state of the simulation model. This state is then used as the new 

starting point for the next estimation run with the estimation horizon being 1ST   and 2ST  . The 

problem is that estimating two feed stream variables and using p time steps, the optimization problem 
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is already 2p dimensional. As the dimension of the optimization problem increases the number of 

experiments needed also increases rapidly. The experiments with the Rospe model were conducted on 

a Windows 7 computer, with a i7-2600 processer with four cores running at 3.4 GHz. Using a small 

simulation step size of one minute for the Rospe WWTP model, it takes up to 120 seconds to simulate 

a 4 hour simulation (e.g. ST  and 1ST  ). Using only 60 feed stream combinations to find the optimal one, 

this is already real time. In order to reduce the number of necessary computer experiments, Ebel (2009) 

extended the algorithm by introducing a surrogate model (Kriging) to approximate the performance 

index (see Figure 6-2). 

 

 

Figure 6-2: Model based inflow estimation principle using an additional surrogate model (Ebel, 2009) 

To create the surrogate model, a small number of feed stream concentration vectors are created using 

Latin Hypercube Sampling (LHS) (McKay et al., 1979) and applied to the full dynamic simulation 

model. LHS splits each dimension of the search space into intervals of equal length. Then, for each 

interval in every dimension one value is randomly generated. In the final step, these values from each 

dimension are randomly brought together in pairs. The result is a sparse sample distribution in the search 

space. Using these inputs and their corresponding  J u  values, a Kriging surrogate model  kJ u , is 

built. Applying PSO to  kJ u  instead of  J u  yields significantly faster computation of the optimum 

*u , as the number of expensive WWTP simulation runs is substantially reduced. A detailed description, 

testing different optimization algorithms, error measures and the number of necessary computer 

experiments is given in (Ebel, 2009). 
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6.2 Methodology limitations  

In order to apply retrospective inflow estimation to the Rospe model, consideration needs to be given to 

the limitations of the methodology and challenges associated with using it in practice. The following 

sections describe three scenarios, which can lead to unsatisfactory estimation results when the method 

is applied to certain plant designs. 

6.2.1 Effects based on retention time 

The Rospe plant is equipped with measurement devices for 4NH N  and 3NO N  at the end of the 

biological treatment (tank D4). Due to the fact that these measurement devices are the only ones 

available, it means that the wastewater has to pass through the primary clarifier with a volume of 550 m3 

and through the 18 (reduced to 7 in the Rospe model) nitrification and denitrification tanks with a total 

volume of 7,215 m3. The Rospe plant is continuously operated with upstream de-nitrification. 

Mechanical purification is carried out in the form of a 6 mm grate followed by a sand filter. Afterwards, 

the water passes through a horizontal flow primary treatment tank. The biological stage consists of a 

total of 18 tanks into which the wastewater flows successively. The structure of the plant is laid out in 3 

lanes. Finally, there is the final treatment stage that consists of three lanes connected in parallel. Table 

4-4 gives an overview of the different volumes.  

Assuming a mean inflow of 128 l/s (11,131 m3/d), it needs 72 minutes to pass through the primary 

clarifier. The retention time for the biological treatment is calculated as 

 
3

3

7,215
0.65 15.6

11,131

m
d h

m

d

    (6.3) 

Hence, the combined retention time of the primary clarifier and the biological treatment stages is 

16.8 hours. Therefore, if the plant would work like a plug flow system, the water from the feed stream 

u would reach the location of the online measurement probes in the system after approximately 17 hours. 

In reality, this delay is much shorter due to mainly two reasons: 

 The internal flow of the plant is higher, because of internal recirculation. 

 The return sludge from the final clarification increases the internal flow. 

 The tanks are completely mixed (in the model) 

Figure 6-3 shows the normalized step response of the Rospe model after the primary clarification (PC) 

and at the tank D4 to a step in 4NH N  from 9.5 mg/l to 15 mg/l .Using a constant inflow flow of 

128 l/s. The other inflow parameters were kept constant. Prior to the test the model was stabilized over 

a period of 200 days with mean inflow values. 
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Figure 6-3: Step response of the Rospe model to a NH4-N step from 9.5 mg/l to 15 mg/l (scaled) 

It can be seen, that the model reacts much faster, than one might expect from the calculated retention 

times. After approximately 0.1 days (2.4 hours) the NH4-N concentration starts to rise at tank D4. After 

0.3 days (7.2 hours) 90% of the maximum NH4-N concentration is reached. Furthermore, the NH4-N 

degradation decreases the height of the step response in tank D4. Thus, a simulation period for the feed 

stream of 4 to 6 hours should be sufficient for the water to reach the online measurement devices. 

Depending on the plant used, two undesired effects can occur when using the described approach for 

feed stream estimation. 

Undesired hydraulic retention time. Depending on the size of the primary clarifier and the following 

tank volumes, the hydraulic retention time cuts off a part of the feed stream which might be stored in 

the clarifier. Using for example two time steps ST  and 1ST  , each of two hour duration, time step 1ST 

is lost, because the water is still “stuck” in the primary clarifier and has no effect on the performance 

index ( )J u . To give an example, during the night or in the early morning, many WWTP have a low 

inflow with low concentrations. During these times, the inflow water stays in the primary clarifier for 

several hours without reaching the biological treatment stage. For the given example this means, that a 

four dimensional 4 4 1 1[ , NH N , , ]TS TS TS TSNH N COD COD   u  optimization problem has to be 

solved, although only two of the variables have an effect on the performance index ( )J u  which is 

considering only the concentrations in the biology over the estimation horizon, which is not long enough 

to see the effect of the 1ST   samples. Thus, section 6.4 describes an alternative approach which avoids 

this problem and saves computational effort. 
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Undesired blending of feed stream steps. In cases, when the time for the inflow water to reach the 

measurement devices is longer than the time of one time step and the plant has internal flows, e.g. the 

recirculation of plants with upstream denitrification, the feed stream of the second and later steps will 

mix up with the first step. The following example should explain the problem. Assume that only the 

ammonium concentration in the inflow has to be estimated. Two time steps are created: 

 4

1 4

: 0

: 10
S

S

T NH N

T NH N

 

 
 (6.4) 

Depending on the inflow Q  a trajectory of 4NH N  that lies between 0 mg/l and 10 mg/l is the result 

after the primary clarification (PC). The start point of the trajectory depends on the 4NH N

concentration in the PC at the beginning of ST . The trajectory which reaches tank D4 is further 

deformed. The important aspect is that the trajectory is influenced by 1ST  . Due to the blending of the 

feed stream, different combinations for ST  and 1ST   can lead to the same result. In the given example 

this means that the feed stream is 0 mg/l for ST , while the minimum of ( )J u  is determined on a blend 

of 0 mg/l and 10 mg/l. Over time, this optimization will compensate this effect up to a point, when the 

process values used to calculate ( )J u  start to deviate. The influence of these effects depends on the size 

of the plant, the design, the inflow and the location of the measurement devices used to calculate  

( )J u . 

While Ebel used the model of an intermittent operated WWTP with cascaded tanks (Odenthal WWTP) 

for his experiments, the Rospe plant is continuously aerated with an upstream denitrification. Due to the 

higher internal flows, in the Rospe plant the described negative effects are stronger. Furthermore, the 

Odentahl WWTP is equipped with 4NH N  and 3NO N  measurement devices at the outflow of each 

cascade. Therefore, the delay in measuring the inflow is much shorter. 

6.2.2 Drifting of the state vector 

The reaction of the model to a feed stream u, as described in Chapter 4, depends on the internal state of 

the tanks based on the ASM1 model. This state is defined by the concentration of the different biomass 

fractions and chemical components, using a state vector x: 

 , , ,[ , ; , , , , , , , , , ]I S I S B H B A P O NO NH ND ND ALKS S X X X X X S S S S X Sx   (6.5) 

The state vector x changes according to the flow and the availability of nutrients. The processes involved 

are described in Table 4-1. It is concluded that the model reacts differently to a feed stream u, depending 

on the state vector x. This is the reason why models have to reach a steady state, which can then be used 

as a starting point for future simulations. An internal state which differs from the real state, will result 
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in a wrong model reaction. For example if ,B HX  is too high, 3NO N  (model variable NOS ) will 

decrease too quickly and too much COD is consumed. With regard to the feed stream estimation, this 

effect can become stronger due to a concentration built up. A small error in the feed stream u will cause 

the state vector x to deviate from the real vector. In the next simulation step, this will lead to a slightly 

wrong model reaction. Due to the fact, that the optimization algorithm searches for a minimum using 

the performance vector ( )J u , the next estimated feed stream 1ST u  has to deviate from the real inflow 

in order to achieve the same model reaction. After a certain amount of steps, depending on the model 

and measurement quality, it will be necessary to present an inflow stream, which is far from the real 

inflow stream in order to get the same model reaction. The same effect can be caused if the 

measurements used to calculate ( )J u  are corrupted. 

6.3 Application of feed stream estimation to the Rospe model 

6.3.1 Model adaption 

To facilitate the application of the feed stream estimation methodolgy, the Rospe model that was 

presented in chapter 4, was extended by the inclusion of an additional “pattern generator” function block, 

which sits between the inflow block and the primary clarifier. The block bypasses the desired measured 

variables and replaces the variables which are being estimated with the estimated feed stream u. For the 

estimation of 4NH N , the 10th element of the input vector NHS , the model variable for 4NH N , is 

replaced by its estimate. Due to the fact that COD is represented in the model by 

, ,, ; , , , , ,I S I S B H B A P NDS S X X X X X S  and NDX  the fraction block (see Figure 4-9) is used to split the COD  

estimate into the necessary fractions. With COD and 4NH N  estimated, only the flow is used from 

the inflow block. 

6.3.2 Data generation and model stabilization 

As preparation, the model is stabilized using mean inflow values over a period of 200 days followed by 

five repetitions of the real dynamic inflow values gathered during the measuring campaign (see 

chapter 5, section 5.3). After that the model is simulated until day 8 and the model state is saved. Due 

to the high computational effort associated with conducting the experiments a limited period of time, 

from day 8 to day 11, is chosen for the inflow estimation evaluation.  

In order to eliminate errors from the measurement devices and from the model, instead of using the 

recorded process data vm  from the measurement campaign, the targeted time period from day 8 to day 

11 is simulated and the process values NHS  and NOS , the model variables corresponding to 4NH N  

and 3NO N , were recorded. To indicate, that these values are from the model, they are designated as 
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sm . This is done to ensure, that possible problems are related to the method and the application and not 

to measurement errors. 

6.3.3 Parameterization of the Feed Stream Algorithm 

The following section gives an overview of the most important parameters used for the different 

algorithms. Table 6-1 describes the parameters used for the feed stream algorithm itself, as well as the 

estimated inflow variables and the variables used to calculate the performance. 

Table 6-1: Parameterization of the feed stream algorithm 

Feed Stream Estimation  

Number of Steps 2 

Step Size (minutes) 120 

Estimated Feed Stream variables COD , 4NH N   

Comparison variables for performance calculation 4NH N  @ D4, 3NO N @ 
D4 

Error measure for performace calculation RMSE 

Number of Evaluation runs 30-50 

Simultion period  
(days of the measurement campaign) 

8-11 (3 days) 

 

For the Kriging model, that is used as surrogate model for the performance function J, which is a 

combination of a regression and correlation model (see Table 6-2), the DACE Matlab toolbox 

(Lophaven et al., 2002) is used. The trained Kriging model ( )kJ u approximates the performance index 

( )J u . The parameters are the standard parameters proposed in (Ebel, 2009). For the regression function 

a linear model is chosen and for the correlation function a Gaussian function. The number of so called 

design sites, which are support points for the model, is equal to the number of evaluation runs, because 

each evaluation run / experiment results in one value of the performance index. 

Table 6-2: Parameterization of the Kriging model 

Kriging Parameter  

Number of design sites 30-50 

Correlation function Gaussian 

Regression function  Zero order polynomial 

 

Particle Swarm Optimization (PSO), a non-deterministic global optimization algorithm, is used to find 

the minimum of the Kriging approximation Jk. The implementation used is the one provided in the  

Matlab PSOt toolbox (Birge, 2003), and the algorithm settings were chosen as given in Table 6.3. 
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Table 6-3: Parameterization of the PSO algorihtm 

PSO Parameter  

Population size 100 

Maximum number of training epochs 2000 

6.4 Optimization Possibilities 

This section proposes an approach to reduce the dimension of the optimization problem. As described 

in section 6.2.1, depending on the plant design and the inflow conditions, it can happen that the latest 

step of the estimated horizon of the feed stream has no effect on the model, because the time is too short 

for the feed stream to reach the plants’ sensors. To solve this problem, the original feed stream estimation 

is able to generate several steps 1, ,...,S S S nT T T  . But, as the dimension of the search space is equal to 

the number of steps multiplied by the number of estimated variables, this, in the worst case, results in a 

high dimensional search space. This is necessary to consider the hydraulics of the plant. Figure 6-4 

shows in red the original feed stream estimation principle for three steps, which for the estimation of 

two parameters (COD and NH4-N) results in a six dimensional search space. A simple solution for this 

problem of high dimensional search spaces is depicted in blue in Figure 6-4. Rather than using three 

steps over the optimisation horizon, the modified version uses only one step over the 0t  to 3t horizon, 

reducing the search space by a factor of three. When the minimum of ( )kJ u  is found, the next 

optimization starts at 1t . The periods t1-t2 to t2-t3 allow for the transport delay to the sensors, but without 

increasing the search space. By employing this modification the retention time problem outlined 

previously can be addressed. The modified approach also has some advantages with regard to the 

blending problem, since only one value is selected over the three steps, it is not possible to choose 

extremely different values from one step to the next. 

 
Figure 6-4: Alternative feed stream estimation for dimension reduction  

(red: original feed stream estimation, blue: modified feed stream estimation) 
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Table 6-4 shows the parameters for the modified version of the inflow estimation. Using this alternative 

approach with only one constant concentration over the estimation horizon, the dimensionality of the 

problem is significantly reduced while considering higher retention times. 

Table 6-4: Configuration of the modified feed stream estimation 

Feed Stream Estimation  

Step Size (minutes) 240-360 

Resulting optimized time (minutes) 120 

Estimated Feed Stream variables COD, NH4-N 

Comparison variables for performance calculation NH4-N @ D4, NO3-N @ D4 

Error measure for performance calculation RMSE 

Number of Evaluation runs 30-50 

 

6.5 Results of the feed stream estimation 

To test the feed stream estimation algorithm different settings for the estimation horizon were used 

varying between 240 and 360 minutes. The resulting optimized inflow step size, which is used, after a 

minimum is found, is always kept at 120 minutes. The result is an inflow that consists of steps of 120 

minutes for COD and NH4-N. Both methods, the original one using several equally long steps, as well 

as the modified one using only one step with different estimation horizons longer than 120 minutes were 

tested. 

The original version of the inflow estimation is tested with two time steps each 120 minutes in duration 

(resulting in a 240 minutes estimation horizon) and the modified version uses estimation horizons of 

240 and 360 minutes with one step keeping the concentrations constant. Furthermore, different 

combinations of process variables are tested to calculate the performance index. The process variables 

used for comparison were always measured in tank D4 of the Rospe plant model, which is the location 

of the measurement devices in the real plant. In order to determine, if the method is applicable to the 

real plant without investing in new measurement equipment, no artificially created measurements from 

the simulation model were considered for the experiments to improve estimation quality. Although the 

inflow conditions during the tests include no extreme weather events such as rain, the algorithm 

performed poorly for most experiments. For this reason, the following section shows only excerpt 

results, which describe the algorithm behaviour. 

Figure 6-5 shows the comparison of the process variables for an experiment with the original version of 

the algorithm using two 120 minutes steps (240 minutes estimation horizon). While the NH4-N 

concentrations in tank D4 are in the correct range, they still show a different dynamic behaviour, than 

the measured concentrations and the estimates are not able to capture the real concentration peaks. 

However, the NO3-N concentrations are completely uncorrelated to the measured values. This shows 
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that the algorithm is clearly not able to keep the NO3-N concentration stable which is why it starts with 

the correct concentration of 9 mg/l NO3-N and falls down to 2 mg/l. 

 

Figure 6-5: Inflow Estimation (original version) comparison variables NO3-N and NH4-N 
 using two steps of 120 minutes (optimization horizon 240 minutes) 

Figure 6-6 shows the corresponding inflow estimation. It is obvious, that the estimated values have no 

correlation with the real inflow whatsoever. The estimated COD as well as the estimated NH4-N only 

jump between the boundaries of the optimization algorithm.  

 

Figure 6-6: Inflow Estimation for COD and NH4-N using 2 steps a 120 minutes (240 minutes optimization horizont)  
and NH4-N and NO3-N at tank D4 for comparison 

While most of the experiments failed to achieve usable results, one estimation run achieved reasonable 

results. Figure 6-7 shows the comparison variables of an estimation using the modified version with an 
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estimation horizon of 360 minutes. While the trajectories still do not fit perfectly, they are in the correct 

range.  

 
Figure 6-7: Inflow Estimation (modified version) comparison variables NO3-N and NH4-N  

using 360 minute’s optimization horizon  

The corresponding feed stream estimation when compared to the previous experiments looks reasonably 

good. While COD is very noisy, the mean of the estimated COD is 171.32 mg/l, while the mean value 

of the measured value is 203.2 mg/l. Moreover, the mean value of the estimated NH4-N is 10.47 mg/l, 

while the mean of the estimated NH4-N is 9.7 mg/l. Due to the high noise on the COD estimation the 

RMSE for COD is very poor with 119.4 mg/l. On the contrary, the NH4-N RMSE is 2.43 mg/l, which is 

an acceptable result. 
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Figure 6-8: Inflow Estimation (modified version) for COD and NH4-N using 360 minutes optimization horizon 

 and NH4-N and NO3-N at tank D4 for comparison 

The better results for the NH4-N measurement could have been expected, because the comparison 

variables both represent forms of nitrogen. The COD estimation proves to be more difficult, because it 

indirectly depends on the COD available for NO3-N degradation.  

6.6 Conclusion 

Overall the retrospective inflow estimation methodology performed very poorly for the Rospe WWWP 

model as most results show no correlation with the real inflow values. Only the inflow estimates of NH4-

N using an optimization horizon of 6 hours achieved reasonable results. It is clear that the approach is 

not able to offer a viable alternative to artificial inflow events for this application. The NH4-N results of 

the last experiment show, that an improvement is possible, but further research is needed to address the 

impact of high and variable retention times and recirculation in order to achieve reasonable results. 

The main reason for the poor results on the Rospe WWTP is most likely the variable retention time, 

which makes an evaluation of the possible estimates based on the measured values during the same 

estimation horizon nearly impossible. Different optimization strategies considering varying dead times 

in the model and longer estimation horizons should be tested in future work in order to thoroughly assess 

the applicability of the method. 

Furthermore, there is scope to improve the performance function ( )J u . The high noise on the COD 

inflow suggests that the optimization algorithm has problems finding an optimal solution. The reasons 

for that can be multifaceted. Multiple local minima or an extremely flat performance function require a 

very high number of experiments in order to allow the Kriging surrogate model to give a sufficiently 
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accurate representation of the original performance function. Furthermore, the effect of blending needs 

to be incorporated. 

One practical problem, which has to be solved is the high computational effort. The experiments for this 

evaluation took several weeks of computing time. Therefore, ways have to be found to speed up the 

simulation time. 

With regard to the initial goal of investigating an alternative to the soft sensor methodology developed 

in chapter 5, it has to be concluded that retrospective inflow estimation in its current form is not a viable 

proposition. However, it does represent a first step in the right direction. The poor quality of the results 

show that the dynamics of the plant have to be addressed specifically in order to get good results, 

whereas the Machine Learning approach considered in chapter 5 seems to be able to achieve this mostly 

automatically. Therefore, with regard to the aim of this thesis to find and assess possibilities for 

improved WWTP operation and control, it is obvious that inflow estimation is highly complex and 

strongly dependent on individual WWTP characteristics.  
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7 Self-Organizing Map based operation regime estimation for state based 

control of Wastewater Treatment Plants 

Optimal control of WWTPs is often hindered by a lack of knowledge about the bio-chemical state of the 

bioreactors. As many process variables of a WWTP are difficult to measure online, the development of 

an efficient control strategy is a great challenge. This chapter presents an approach, which combines the 

use of Self-Organizing Maps (SOM) and a clustering algorithm to identify operational patterns in 

WWTP process data. These patterns provide a basis for the optimization of controller set points that are 

well suited to the previously identified operating regimes of the plant. The optimization is performed 

using Genetic Algorithms (GA). The approach is tested and validated on two test cases using (1) a 

modified version of the Benchmark Simulation Model No.1 (BSM1) (Alex et al., 2008) and (2) the 

Rospe model described in section 4.2. The results of this state-based control strategy indicate that the 

presented methodology is a promising and useful control strategy that is able to address and resolve the 

individual energy and effluent limit challenges faced by WWTP operators. 

7.1 Introduction 

The development of an optimal controller for wastewater treatment plants has to consider changes in the 

bio-chemical state of the bioreactors. The ASM1 model describes this state, as a vector with 13 elements, 

representing the different biomass fractions and chemical components with a 14th element, the inflow 

rate Q . In practice, online measurement devices for 2O , 4NH N , 3NO N , COD  and Q  are 

available for reasonable prices, whereas spectrometric COD  probes are hardly ever used and when they 

are, they are typically installed in the inflow or the outflow of a plant instead of the bioreactors. This 

means that only three of 13 elements of the state vector are available to control the process. As described 

in section 3.2.1 most controllers use only 4NH N  or 2O  as input. This shows that only a small fraction 

of the real state is used, while the other state variables are largely unknown. The idea of operation regime 

estimation using SOM is that different regions on the trained SOM offer, depending on the process 

values used to train the map, a better representation of the plant’s state, than single process values such 

as 4NH N .  

7.2 Self-Organizing Maps 

SOM is a special kind of artificial neural network, whose training is unsupervised and which has 

properties of vector quantization and vector projection algorithms (Kohonen, 1995). Thus, SOM reduces 

multidimensional data into a much lower-dimensional map space that usually has two dimensions. 

Matching input data to neurons with similar weight vectors, SOM limits the number of different data 

samples to the number of neurons on the map. This method is called vector quantization (Kohonen, 

1995). In addition, it performs a vector projection, which creates a topology preserving the high 

dimensional input space by mapping it to the two dimensional output space usually referred to as the 
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map. This means, that data that are close together in the high dimensional input space are mapped into 

spatially close areas on the map and elements which are spatially close on the map should be similar in 

the input space (Kohonen, 1995). 

The SOM algorithm can be divided into three parts: (1) architecture, (2) initialization and (3) training. 

The created map consists of artificial neurons that are randomly created and fitted to the lattice of the 

map. Each neuron has a vector of weights ,1 ,, ,i i i nm m   m  , 1, ,i K   where n is the dimension of 

the weight / input vector and K  is the number of the map nodes (neurons). Each input vector

,1 ,, ,j j j nx x   x  , 1, ,j P   where P  is the size of the input dataset that is mapped to exactly one 

neuron K  during training. 

7.2.1 SOM Initialization and Training 

The initialization is done by randomly initializing the network with uniformly distributed values or by 

sample initialization with random samples drawn from the training set (Engelbrecht, 2002). During 

training, each single neuron is activated and the best matching unit (BMU) to the input vector jx  is 

determined by a distance measure. For this work, Euclidean distance is used. 

 2

1

( , ) ( )
n

j i jk ik
k

d x m


 x m  . (7.1) 

An adaption rule, known as the Kohonen rule, for the neuron weight im  is defined by: 

  

 ( 1) ( ) ( ) (t)i i ci j it t h t     m m x m    (7.2) 

where cih  is the neighbourhood of the BMU cim  at time t  and it defines the region of influence that the 

input sample jx  has on the SOM. The size of the neighbourhood NS  is altered through the training 

from an initial size (default 3NS  ) down to 1. It is during this phase that neuron weights order 

themselves in the input space consistent with the associated neuron positions. When 1NS   only the 

BMU is influenced. Using neighbourhood sizes of 1 or below is also called tuning, due to the fact that 

the map topology is retained but the neurons are better fitted to the input data. For this work the so-alled 

bubble neighbourhood function was used. It allows that all neurons in the neighbourhood cih  are 

influenced in the same way. Other neighbourhood functions influence the neurons in the neighbourhood 

differently depending on the Euclidean distance to the BMU.  
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Regarding the control application, SOM has several advantages compared to other methods. First, SOM 

is relatively insensitive to non-equally distributed data, which is important if certain operating regimes 

appear less frequently. Due to the fact that similar data will always hit the same BMU, all operating 

conditions are still represented by their BMUs and not masked as done by other clustering algorithms. 

For the work at hand two different SOM software packages were used for test cases (1) and (2). The 

Java SOMToolbox from the Technical University Vienna (Vienna University of Technology, 2010) was 

used for test case (1) and the Matlab Neural Network toolbox (Hagan et. al, 2002) was used for test case 

(2) as the integration into the Rospe simulation model has proven to be easier to handle. However, most 

of the error measures used for optimizing the SOM are not implemented in the Matlab toolbox and had 

to be developed. 

7.2.2 SOM Validation 

To evaluate the quality of a SOM two main aspects are considered: (1) quantisation quality and  

(2) topological preservation. 

7.2.2.1 Quantisation Error 

The quantisation quality can be measured using the quantisation error QE  which is defined as the sum 

of Euclidean distances of all input vectors to the weight vectors of their best matching unit BMU (also 

known as winning neurons) divided by the number of input samples. This is defined as 

 
1

1
( , )

P

Q j cj
j

E d
P 

  x m   (7.3) 

where cjm  is the BMU for the corresponding input sample jx . This means that a small QE  represents 

a better fitting of the neural map to the data. Using this error two aspects have to be taken into 

consideration. (1) The quantisation error offers no information about the topologic quality of the map, 

which means that neurons with similar weight vectors can be located in different regions of the map. 

For the task at hand this plays a minor role due to the fact that the second clustering step is applied to 

the input space. Therefore the location on the 2-D map is not important. (2) With the size of the map 

(number of neurons) it is likely that the error will decrease. The reason is, that the likelihood that an 

input sample is close to its BMU rises with the number of neurons on the map. If the number of neurons 

is equal or higher as the number of input samples, it would be possible to have a perfectly fitting neuron 

for each input sample, which would result in a quantisation error 0QE  . 

7.2.2.2 Topological Error 

The topological error TE  defines the projection quality from the input dimension to the 2-D map. TE is 

calculated as follows. For each input data vector, the nearest weight vector (BMU) and the second 
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nearest weight vector (second BMU) is computed using Euclidean distance. If they are not adjacent on 

the SOM-grid, this is counted as a local error. The global topographic error measure is then computed 

by counting the number of local errors and divided by the overall number of data samples (Uriarte and 

Martín, 2005). The topographic error is given by  

 
1

1
( )

P

T j
j

E u
P 

  x , (7.4) 

where the function  ju x  is 0 if the first and second BMUs of the data vectors jx  are adjacent and 1 

otherwise. Using this error it has to be to be kept in mind that depending on the map topology different 

numbers of neurons are considered adjacent. For example for a rectangular grid 4 neurons are adjacent, 

while on a hexagonal grid 6 neurons are adjacent. This will lead to smaller errors on maps with 

hexagonal topology. Figure 7-1 shows the different behaviour of the rectangular and hexagonal maps. 

     

Figure 7-1: Adjacent neurons on rectangular (left) and hexagonal (right) grids on SOMs (BMU – red, adjacent 
neurons – green, corner neurons – violet, not adjacent neurons – white) 

Uriata (Uriarte and Martín, 2005) proposes a methodology which offers a possibility to improve the 

topological error by extending  ju x  so that it counts the corner neurons as 0.5. For the optimization 

of the SOM, these errors are used as quality measures. 

7.3 Clustering the SOM 

For the purpose of this work, it is important to create bigger clusters from the SOM to group similar 

operation regimes together. Different algorithms such as single linkage, complete linkage, centroid 

linkage, ward linkage and k-means (MacKay, 2003; MacQueen, 1967) can be applied on the SOM to 

create such bigger clusters. From experiments conducted, ward linkage fared better than other 

algorithms. Ward linkage aims to keep the variance between the clusters as small as possible. 

Mathematically, the distance in ward linkage clustering is computed as 
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where 1C  and 2C  represent clusters 1 and 2, 1c  and 2c  are the centroids of the clusters and 1cn  and 2cn  

are the number of points in the clusters. 

 

7.4 Operational State-Based controller design 

The basis for the controller is the trained SOM, which is used to identify relevant operating states of a 

WWTP in order to define optimal control settings accordingly. The first step is to build up a SOM based 

on the available process data and to optimize the map design using an optimization algorithm, such as 

Genetic Algorithms (GA). For this optimization, the quantization and the topology error are used as 

performance measures. The second step is to identify the operating states on the map which is achieved 

by a clustering algorithm, such as ward linkage. In the third step, optimal control parameters for each of 

the clusters need to be chosen, which are selected using GA once again. Based on the fully functional 

SOM, new process data can be used to quickly identify the corresponding operating state and the 

respective control parameters. 

7.4.1 Implementation of the online Controller 

For the optimization, as well as for the later operation, the controller is developed as a Matlab Simulink 

module (Matlab S-Function). During simulation, the Simulink module is continuously fed with the 

current measurable state variables. Figure 7-2 depicts the different steps which are executed in the 

controller module. 

 
Figure 7-2: Operation regime controller (ORG) working principle 
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After data pre-processing (data normalization), the scaled process values x  are presented to a SOM, 

which has previously been trained on process data covering the full operating range. Using the Euclidean 

distance measure x  is compared with the vectors of weight  1, ,i i inm mm   of the SOM and the BMU 

is determined. In the next step the index i  of the BMU is transferred to a Cluster Lookup Table. The 

lookup table is created using a clustering algorithm, in this case ward linkage, applied to the vectors of 

weights of the SOM. The resulting lookup table contains the information on which neuron im  belongs 

to which cluster kc , 1, ,k P   where P  is the number of clusters. The cluster index k  is then 

transferred to a second lookup table containing controller set-points for WWTP plant oxygen PID 

controller. During optimization the optimal set points for each operation regime, represented by the 

cluster, were determined. In the last step, these set points are fed back to the WWTP model.  

 

7.5 Test Case 1: Modified BSM1 Model 

Test case 1 is introduced to evaluate the method and to conduct a thorough investigation of the possible 

settings of the SOM using a widely known standard model. 

7.5.1 Description of the Simulation Model 

Test case 1 was conducted using a modified version of the Benchmark Simulation Model 1 (BSM1) 

(Alex et al., 2008), which represents a typical European WWTP. The model is based on the ASM1 

Model, which was also used for the Rospe WWTP model. To simplify the model, the number of tanks 

was reduced from five to two tanks, but the denitrification and the nitrification tank volumes, as well as 

the clarifier stage were retained. The simulation model represents a WWTP with two biological reactors 

(see Figure 7-3). An upstream denitrification tank with a capacity of 2000 m3 is followed by a 

nitrification tank with a capacity of 4000 m3 and a clarifier with a surface area of 1000 m2. The nitrate 

concentration is controlled by internal recirculation.  

 
Figure 7-3: Design of the modified Benchmark Simulation Model No. 1 
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A good starting point for the control of the model is a fixed set point of 2 m/l for the oxygen 

concentration. This value is considered a good compromise between energy consumption and effluent 

quality for this plant under the given inflow conditions. The IWA Taskgroup on Benchmarking of 

Control Strategies developed several typical inflow scenarios for the BSM1. Figure 7-4 depicts the dry 

weather inflow scenario for hydraulic flow Q  and ammonium NHS . Further inflow scenarios for rain 

and storm weather are described in the BSM1 technical report (Alex et al., 2008). 

 

Figure 7-4: BSM1 Dry weather inflow scenario 

Due to the fact that the size of the plant is similar to the unmodified BSM1, these scenarios are also 

applicable for the model and therefore are used as inflow.  

7.5.2 Model initialisation 

To initialize the model, a 100-days of stabilization period under closed-loop control using constant 

inputs (average dry weather inflow) is simulated. The system is stabilized during this period. The period 

is particularly important for the growth of the biomass ,B HX  and ,B AX  and for achieving a reference 

steady state of the plant for further simulations. Following this, a 14-day simulation period with dry 

weather inflow is performed to bring the plant to a desired state for testing of the controller strategy. 

7.5.3 Data generation and variable selection 

The data for the SOM clustering is created synthetically using the initialized and fully calibrated 

simulation model. To make the SOM clustering as generally applicable as possible, three different 

weather case scenarios were simulated for 14 days each, namely dry, rainy and stormy weather. During 

these simulation runs, the state vector of the ASM1 for the aerated bioreactor is sampled every 15 

minutes for each weather scenario. Due to the fact, that not all 14 process variables of the state vector 

are relevant for aeration control, the most suitable variables have to be selected. Furthermore, it is 

important to consider the fact, that some process variables are extremely difficult to measure, which 

reduces practical applicability of the presented approach. Therefore, selection is performed based on 

measurability and relevance of the variables for the nitrification process in the aerated bioreactor. The 

selected variables are NHS , NOS , Q  and the sum of SS  and SX , which represents the portion of 
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available degradable COD . In addition to these state vector variables, an approximation of the oxygen 

consumption CO  is used. This is defined as the total airflow into the bioreactor airQ  divided by the 

oxygen concentration OS  inside the reactor. 

 air
C

O

Q
O

S
   (7.6) 

7.5.4 Development of the fitness function 

Under the assumption that all state variables except ammonium concentration ( NHS ) and oxygen ( OS ) 

are constant, it is possible to plot the general shape of the ammonium degradation function for a certain 

state. In reality, shape and position of the best area depend on several other state variables. Figure 7-5 

shows the area, where ammonium is relatively high, while the oxygen concentration is still adequate 

(<2.5 mg/l). It is evident, that there is always a trade-off between oxygen concentration, meaning higher 

energy consumption, and ammonium degradation. Therefore, the most efficient ratio between OS  and 

NHS  to get the most efficient ammonium degradation (
NHSD ) with the least amount of energy can be 

determined. 

 

Figure 7-5: Ammonium degradation in an aerated bioreactor under the assumption that all variables except 
ammonium and oxygen are constant 

Using the assumption depicted in Figure 7-5 the following fitness function was developed: 
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where airQ  is the air pumped into the bioreactor, 
NHSD  is the NHS  degradation, 

SiSt  the start time and 
SiEt  

the end time of state i . This function has a minimum where the ratio between airflow and ammonium 

degradation is optimal. A well dimensioned WWTP should be able to keep the desired effluent values 

at the point of highest energy efficiency. This means that the fitness function has to be modified for 

overloaded or under loaded WWTP. 

7.5.5 SOM Controller development CASE 1 

To develop the Controller for the modified BSM1 model, the different functions depicted in Figure 7-2 

had to be implemented and optimized. 

7.5.5.1 Data pre-processing 

As a pre-processing step, the data is scaled between 0 and 1 using the min-max method:  

 
 
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 (7.8) 

During training of the SOM, Euclidean distance is used to determine the similarity of dissimilarity 

between the nodes and the input vector. Without normalization, high values from the state variables like 

flow would have a significantly higher influence on the map. 

7.5.5.2 SOM model CASE 1 

The SOM model for the given data set is realized using the Java SOMToolbox developed by the Institute 

of Software Technology and Interactive Systems (Vienna University of Technology, 2010). The Java 

SOMToolbox offers high performance algorithms for the development of SOMs as well as different 

visualization methods. The best SOM for the given dataset is realized using Genetic Algorithms (GA) 

in Matlab to determine the optimal map dimension, learning rate and number of iterations. To integrate 

both platforms for the optimization steps, an interface between the Matlab GA toolbox (also the 

simulation model for the online operation) and the Java SOMToolbox was developed. The 

communication principle is depicted in Figure 7-6. 

 

Figure 7-6: Communication principle between Matlab and the Java SOMToolbox 
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Given that the cost functions are quantization error QE  and topology error TE , the objective function 

and boundaries were defined as follows 

 
: min( )

: min( )
a T

b Q

Cost E

Cost E



   (7.9) 

subject to 

 1 2d d d  , where 1d  and 2d  are the min and max map dimensions 

 1 2lr lr lr  , where 1lr  and 2lr  are the min and max learning rates 

 1 2itr itr itr  , where 1itr  and 2itr  are the min and max training interations 

The objective function is formulated as a single objective function for each cost function separately, 

because the computational effort for a combined multi-objective optimisation can grow significantly. 

Table 7-1 shows the optimization parameters and the boundaries fed to the GA.  

Table 7-1: GA SOM Parameters CASE 1 

Boundary  ,d x y  lr  itr

lower 20 0.5 90000 

upper 60 1 150000 

Table 7-2 shows that the results for QE  and TE  differ by approximately 10%. Using QE  as cost function 

leads to a map with 3364 neurons (58 x 58), while using TE  as cost function leads to a smaller map with 

2704 neurons (52 x 52).  

Table 7-2: GA SOM Optimizatin results CASE 1 

SOM tuned parameters Quality factors 

Cost function  ,d x y  lr  itr  QE  
TE  

QE  58,58 0.9561 147560 0.0343 0.1182 

TE  52,52 0.9785 131720 0.0377 0.1033 

Having a look at the definition of QE  and TE  (section 7.2.2) this result is expected since a higher number 

of neurons reduces the probability that similar neurons are adjacent. As there is only a 10% difference 

in QE  and the topological error is better, the second configuration with 2,704 neurons was chosen for 

the controller. 
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7.5.5.3 Clustering of the trained map 

After training the map with the optimal parameters as described in section 7.5.5.2, the model generated 

is further clustered using a ward linkage algorithm in order to create the state prediction model. From 

several experiments conducted, ward linkage proved better in comparison to complete linkage and k-

means. To validate these results, the silhouette algorithm (Kaufman, 1990) is applied on the data and 

predicted states. The silhouette value for each point on the map is a measure of how similar that point is 

to points in its own cluster, when compared to points in other clusters. The silhouette value ranges from 

-1 to +1. A high silhouette value indicates that it is well-matched to its own cluster, and poorly-matched 

to neighbouring clusters. If most points have a high silhouette value, then the clustering solution is 

appropriate. If many points have a low or negative silhouette value, then the clustering solution may 

have either too many or too few clusters. The mean values of the results are given in Table 7-3: 

Table 7-3: SOM prediction model clustering evaluation using silhouette function for three clusters 

Silhouette results for 3 cluster

Method Ward Linkage Complete Linkage k-means 

Mean 0.5011 0.3895 0.3677 

 

7.5.6 Results of test case 1 

In this section, the results from the experiments are discussed. Figure 7-7 shows the three operational 

states identified by the SOM prediction model. The model is formulated based on the clustered SOM as 

shown in Figure 7-8. As discussed the map shows the results of clusters produced by the ward linkage 

algorithm and the various islands are generated with a Smoothed Data Histogram (SDH) (Pampalk et 

al., 2002). The SDH identifies clusters by resembling the distribution of the data on the map. Due to the 

complex character of the plants states, it is a challenge to relate the state to certain measurement values. 

Looking at Figure 7-7, it becomes obvious that the states follow a daily course. This daily course 

represents a typical load of a WWTP. From this, it can be argued that the determined states represent 

the state of the plant. A typical operational pattern of the plant revealed that in the night the plant operates 

at minimal load, while the load is rated medium in the morning and highest around mid-day. The pattern 

formed by the clusters (see Figure 7-8) showed a correlation with the operational load. Cluster 1 

represents the night load, cluster 2 reveals the transition period and cluster 3 represents the mid-day 

load.  
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Figure 7-7: Recorded states over a simulation period of three days 

From Figure 7-8, it can be seen that the ward linkage algorithm separates the clusters at the same 

boundaries as the SDH algorithm. The three clusters correspond to the inflow categories of low, medium 

and high as described in (Ebel, 2009). 

 
Figure 7-8: Smoothed data histogram of the SOM clustered with ward linkage algorithm (lighter colours indicate 

areas with higher data density on the map) 

In Table 7-4, the Optimized oxygen ( OS ) set points found by the GA are tabulated. It is noticeable that 

for cluster 1 during the night a high set point was found. This is because the set point does not directly 

represent the airflow into the plant, rather the most efficient area. 

Table 7-4: Operation Regime oxygen set points Case 1 

Operation Regime Optimized OS  Setpoint [mg / l]  

1 2.48 

2 1.77 

3 2.26 

 

Furthermore, the mean value for OS  of the three operation regimes is 2.17 mg/l. This value is, as 

expected, very close the fixed 2 mg/l set point which is considered optimal for the BSM1 plant. Although 

the effluent values were not included in the fitness function, good results with regard to efficient plant 
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operation and effluent values were achieved by the presented methodology. Keeping the effluent values 

and the energy in a reasonable domain shows that the plant is well operated. Otherwise the effluent 

values would be violated or the overall energy consumption would increase significantly. Table 7-5 

gives an overview of the most important effluent parameters as well as the aeration energy. The aeration 

energy was calculated for the second week of the simulation period as described in the simulation 

procedure for the BSM1 (Alex et al., 2008). The results show that the aeration energy and the total 

nitrogen are kept nearly at the same level while yielding a reduction of 3.3% in ammonium in the 

effluent. 

Table 7-5: Comparison of the plant performance Case 1 

 Fixed OS  Set Point Optimized OS  Set Point 

Total Nitrogen 17.97 mg/l 18.06 mg/l 

Ammonium 3.56 mg/l 3.44 mg/l 

Aeration Energy 1163 kwh 1184 kwh 

 

7.6 Test Case 2: Rospe Plant 

The second test of the developed methodology is conducted using the Rospe WWTP model developed 

in section 4. While the BSM1 model is an artificially generated model with perfect inflow data created 

by a group of specialists, the Rospe model is a model which is representative of a real WWTP. 

7.6.1 Data generation and input variable selection Case 2 

The selection of input variables is based on measurement devices which are available on the real plant. 

These are ammonium ( NHS ) and nitrate ( NOS ) at the outflow of tank D4 (see Figure 4-8) as well as the 

flow ( Q ) in the inflow of the plant. While additional process variables from other tanks, as well as 

COD  measurements would be desirable, creating these variables artificially from the model would 

contradict the idea of the methodology. For this reason three input data sets were created:  

 1DS : Two dimensional dataset including NHS  and NOS  based on measured plant operating 

conditions. 

 2DS : Three dimensional dataset including NHS , NOS  and Q  based on measured plant operating 

conditions. 

Both datasets consist of 2,448 data samples (10 min sample interval) over the measuring period of 

17 days, described in section 5.3. From a practical point of view, it makes sense to use the second dataset 

2DS because the flow in combination with the concentration of NHS  and N OS  it offers better 

information on the load on the plant. A problem with using these datasets to optimize the SOM regime 

estimation model and control setpoints for the optimization is the fact, that they only represent operating 

conditions, which occurred during normal operation of the real plant. These operating conditions are 
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characterized by relatively low ammonium and relatively high nitrate values. This means that new 

operating conditions generated during GA optimization, especially when ammonium is medium or high, 

are not captured by the trained model. For this reason an additional data set 3DS  was created. 

 3DS : Three dimensional dataset including NHS , N OS  and Q  based on measured plant 

operating conditions and additional simulated operating conditions. 

The simulated operating conditions were generated by simulating the 17 days of the measurement 

campaign four times with different fixed oxygen set points for the three nitrification tanks (N1, N2, N3). 

The different set points for the operating scenarios are depicted in Table 7-6. The set points are chosen 

by hand, so that they cover the whole operating range from complete ammonium to complete nitrate 

elimination.  

Table 7-6: Control scenarios to create different operating conditions for SOM training 

Scenario 
Fixed OS  

Tank N1 

Fixed OS  

Tank N2 

Fixed OS  

Tank N3 
1 0 0 0 

2 0.1 0.1 0.1 

3 0.6 0.6 0.5 

4 1 1 1 

 

From each simulated scenario 500 data samples were randomly picked and merged into one training 

data set. Therefore 3DS  contains a total number of 2,500 data samples. Table 7-7 shows the main 

characteristics of the 3DS . The min and max values are particularly important, because they show that 

the complete possible range is covered. 

Table 7-7: Characteristics of data set DS3 

Scenario  4 /NH N mg l   3 /NO N mg l  3 /Q m d    

min 0 0 29,849 

max 11.64 12.02 62,742 

mean 3.41 6.03 40,533 

Number of 
samples 

2,500 

The necessary data pre-processing was done using the min-max method, scaling the measurement values 

for each process variable between 0 and 1, as described in section 7.5.5.1. 
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7.6.2 SOM development and optimization 

The SOM development for the Rospe WWTP was undertaken using the Matlab neural network toolbox 

as mentioned previously. Although the Java SOMtoolbox used for Case 1, is a powerful tool offering a 

wide range of visualization and data processing methods, using it in combination with Matlab for 

optimization and online simulation is a slow process. The reason is that it has to be called during each 

simulation step from Matlab. Furthermore, the Matlab neural network toolbox offers a batch training 

algorithm, which processes the complete input data set in one pass and updates all weights according to 

the learning rate (see section 7.2.1). Each pass is called an epoche. For this work, this is considerably 

faster than presenting every sample individually. Due to the fact, that the topology error and the 

quantization error were not available as Matlab functions custom functions were implemented. The 

experiments for the Rospe plant were conducted separately for data sets 1DS   and 2DS  and data set 

3DS . 

7.6.2.1 SOM Optimization for data sets DS1 and DS2 

From the experiments in Case 1 it became obvious that the optimum learning rate lr  and the number of 

iterations itr  are inversely related (i.e. using a small learning rate leads to a higher number of necessary 

iterations and vice versa). Tuning them individually only leads to minor improvements, while the 

computation time increases significantly. Therefore, for the experiments in case 2, Matlab’s default 

learning rate 0.9lr   (which is close to the determined optimal lr  in Case 1) was used and only the 

map size and number of training epochs were optimized. The optimal map size and number of epochs, 

was determined by a grid search. The map dimensions were varied between 5 and 30 with an increment 

of 5 (using a quadratic map both dimensions are kept the same 1 2dim = dim ). For each map size, different 

numbers of training epochs were tested, between 10 and 300 with an increment of 10. These ranges were 

chosen as a result of preceding tests.  

Figure 7-9 shows the topology error TE  for data set 1DS . It can be seen that the minimum is at 100 

epochs. While the map dimension has a minor influence on TE , it rises with dimension size. This 

behaviour is expected due to the fact that each neurons has only 6 adjacent neuron on a hexagonal map 

or 4 on a rectangular map (see section 7.2.2.2).  Therefore the probability that the first and the second 

BMU are adjacent decreases with map size.  
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Figure 7-9: Optimization results of the topology error for data set DS1 

Figure 7-10 shows the quantization error QE  for data set 1DS . For QE  the dimension of the map has a 

higher influence, while the training shows no significant improvement after 100 epochs.  

 
Figure 7-10: Optimization results of the quantization error for data set DS1 

While topology preservation is important for visualization and a good indicator of the training success, 

it plays a minor role for this application, due to the fact that the weight vectors are clustered in the next 

step, and similar weight vectors will be assigned to the same cluster independent of their location in the 

SOM. Therefore a map with a dimension of 30x30 (900) neurons and 100 epochs of training was chosen. 

This map has a 0.0506QE   and a 42.518 10TE   . 

Figure 7-11 shows the results for the topology error optimization for data set 2DS . It shows obviously 

similar behaviour as 1DS . The minimum topologic error is at 100 epochs training, while the dimension 

of the map has a minor influence on the error result. 
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Figure 7-11: Optimization results of the topology error for data set DS2 

 

Figure 7-12: Optimization results of the quantization error for data set DS2 

The quantization error for 2DS , shown in Figure 7-12, has similar behaviour to 1DS . The minimum is 

reached after 100 epochs of training, while the error decreases with the map dimension (number of 

neurons). Therefore the same size of 30x30 neurons is chosen. The quantization error for 2DS  is 

0.0698QE   and the topology error is 48.9 10TE   . 
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7.6.2.2 SOM Clustering for DS1 and DS2 

The optimal number of clusters was determined using the silhouette criterion. For data set 1DS  with two 

input variables, the best silhouette value of 0.61 is achieved with two clusters, while the silhouette value 

for three clusters is only slightly smaller with 0.59. 

 

Figure 7-13: Determination of the optimal number of clusters using Silhouette criterion  
for two dimensional SOM weights using ward linkage clustering.  

Under the assumption, that one cluster represents high load, one cluster medium load and one cluster 

low load conditions, three clusters were chosen over two clusters. Using only two dimensional input 

data offers the possibility to plot the weight vectors of the map using a scatter plot. Figure 7-14 shows 

the three clusters generated with ward linkage. The weight vectors of the neurons were de-normalized. 

Therefore, the axes show the real process values. 

 

Figure 7-14: Ward linkage clusters for data set DS1 with de normalized weight vectors 
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It can be seen, that the neurons are evenly distributed. In this example cluster 1 represents a higher load 

on the plant, where cluster 3 represents a low load. Cluster 2 shows an operating condition where 

ammonium is low and nitrate is high. In this this area the controller should decrease the airflow to the 

plant. Figure 7-15 shows the diurnal cycles of three different days from the measurement campaign on 

the plant. These three days were taken from different load situations. Day 8 represents a medium load 

day, which cycles through cluster 1 and 2, day 1 represents a higher load with high ammonium and high 

nitrate values and day 13 represents a low load situation. It can be seen that most of the time the plant 

resides in cluster 3. 

 

Figure 7-15: Ward linkage clusters for data set DS1 with de normalized weight vectors  
and diurnal cycle of day 1, day8 and day 13 

Figure 7-16 shows the silhouette values for data set 2DS . The highest value is achieved for 2 clusters. 

Using only two operation regimes would end up in a very simple controller. The next best silhouette 

value is achieved for six clusters. Figure 7-17 shows the neighbour weight distance plot for the SOM 

trained with 2DS . The blue dots represent the neurons, while the fields between the neurons represent 

the distances in the input space (in this case three dimensional). Similar data would be represented by 

lighter areas separated by darker lines. In this case it is obvious that the map contains more than two 

areas with similar data. For this reason the second best result of the silhouette criterion with six clusters 

is chosen. 
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Figure 7-16: Determination of the optimal number of clusters using Silhouette criterion  

for three dimensional SOM weights using ward linkage clustering.  

 

 
Figure 7-17: SOM Neighbor weight distances DS2 

(darker colors indicate bigger distances in the input space between neurons) 

Figure 7-18 shows a 3D scatter plot of the clusters generated from dataset 2DS  using ward linkage 

clustering. The weight vectors of the neurons were again de-normalized to relate them to the real inputs. 

It can be seen that while neuron weights are distributed over the whole space, distinct clusters are 

formed. In particular in the vicinity of clusters 4 and 5 a small area, which is not covered with neurons, 

because an operation regime with low 4NH N , low 3NO N  and low Q  doesn’t appear in the data. 
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Figure 7-18: Ward linkage clusters for data set DS3 with de normalized weight vectors 

Table 7-8 gives a short interpretation of the clusters shown in Figure 7-18. It can be seen, that the clusters 

generated depict realistic operation conditions. Two clusters 1 and 3 present high inflow conditions. E.g. 

cluster 1 represent high flow, high ammonium and medium nitrate, a condition typical after a rain peak, 

when ammonium is pushed into the plant. Cluster 3 is typical for rainy weather with high flow and 

diluted wastewater, which leads to low ammonium and nitrate. 

Table 7-8: Interpretation of SOM Clusters for data set DS2 

Cluster Q  4NH - N   3NO - N  

1 high high medium 

2 low high medium 

3 high low low 

4 low-medium low low-medium 

5 low high low 

6 low medium high 

 

The other four clusters depict dry weather inflow conditions, which typically occur over the course of a 

day. Figure 7-19 shows day 8 from two different angles. It is recognizable that day 8 starts and ends in 

the same area in the 3D space. Over the day the operation regime of the plant is mainly cluster 5 and 6, 

which are both low inflow clusters (see right side of Figure 7-19). Therefore it can be seen that it was a 

typical dry weather inflow situation with the typical load peak at noon (Cluster 6).  
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Figure 7-19: Ward linkage clusters for data set DS3 with  
de-normalized weight vectors including diurnal cycle of day 1 from two angles 

The results show that, the cluster depict different operation regimes, and that the plant is following a 

path through the generated clusters over the operation. The next section will show an example for the 

Rospe plant, of how this decomposition of the operating space can be used for control purposes. 

 

7.6.3 SOM Controller development for Case 2 

Controller development for the Rospe plant followed the same approach as presented for Case 1. The 

SOM was trained using dataset 3DS  (see section 7.6.1) with the optimal map dimension determined 

using the method described in section 7.6.2. A map with 900 neurons (30x30) was chosen with a 

0.0521TE   and a 48.24 10QE   . The optimal number of clusters was determined using the silhouette 

function (Figure 7-20). 



Computational Intelligence Techniques for Control and Optimization of Wastewater Treatment Plants 
Self-Organizing Map based operation regime estimation for state based control of Wastewater Treatment Plants 

 

 
 - 152 - 

 

Figure 7-20: Determination of the optimal number of clusters using ward linkage  
and Silhouette criterion as quality measure for three dimensional data set DS3 

According to the silhouette value, two clusters would be the best result, but looking at the neighbour 

weight distances in Figure 7-21 it is obvious that at least three clusters are visibly separated by the darker 

vertical lines. While the silhouette values for 3, 4 and 5 clusters are very similar, 3 clusters with 

equivalently operating regimes were chosen. 

 
Figure 7-21: SOM neighbour weight distances for 30x30 map using DS3 

7.6.4 Development of a fitness function for Case 2 

The goal of the fitness function for the WWTP Rospe is to save air or energy respectively, without 

violating the effluent limits. Therefore a simple fitness function is used which integrates the airflow airQ  

over the simulation period. This value is divided by the number of days in the simulation period and a 

fixed number used to reduce the magnitude of the fitness value:  
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Where St  is the start time and Et   the end time of the simulation period. Violations of the effluent limits 

for 4NH N  (model variable NHS ) and total nitrogen totN  are penalized, when : 
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where TotN  is total nitrogen and 
maxTotN  the maximum value during the simulation. The limit values for 

the penalty are 80% of the plant limit values. The complete fitness value is calculated by summing up 

these three parts: 

 1 2 3f f f f     (7.13) 

This function has a minimum when the minimal amount of air is used without violating one of the 

nitrogen effluent limits. 

7.6.4.1 Optimization of operation regime oxygen set points 

To determine the optimal oxygen set points for the three operation regimes, an online SOM controller 

was developed in Matlab. Because the complete system was simulated in Matlab, simulations were 

approximately twice as fast as those conducted via the java interface used for Case 1. This speed-up is 

important, because the GA runs the model several hundred times with different oxygen setpoints. The 

full 17 day period from the measurement campaign is used as evaluation period. The determined set-

point for an operating regime is used for all three nitrification tanks. 

For each evaluation run, the GA writes a new oxygen look-up table and runs the model. At the end of 

the evaluation run, the fitness value is calculated using the fitness function described in 

equation (7.13).  

7.6.5 Results and discussion for Case 2 

Figure 7-22 shows the fitness values for 300 evaluation runs. While in the first 75 the spread is relatively 

high, it settles down from the 76th run forward. The step at the 76th evaluation run is caused by the 

4NH N  penalty function. After 250 runs, there is no further improvement. 
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Figure 7-22: Fitness results controller optimization 

Table 7-4 shows the optimal set points determined by the GA. The set points are very low, but 

considering that the suggested set points for the aeration of this plant are between 0.5 mg/l and 0.6 mg/l, 

these low set-points seem reasonable. 

Table 7-9: Operation Regime oxygen set points Case 2 

Operation Regime Optimized OS  Setpoint [mg / l]  

1 0.8235 

2 0.145 

3 0.168 

 

To compare the performance of the optimized set points against the fixed suggested set points and the 

set points used on the actual plant, the different settings were simulated. Figure 7-23 shows the 

operation regimes which occurred during the run used to develop the SOM-based controller.

 
Figure 7-23: Operation Regimes of the rospe plant between day 12 and day 14 
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It is obvious, that only operation regime 2 and 3 occur. The reason is, that the used fitness function tries 

to save energy by reducing the air flow. Therefore low 4NH N  in combination with high 3NO N  

values, do not occur. This is why the operating regime doesn’t appear in this simulation run.  

Table 7-10: Comparison of different set points for the Rospe plant 

Operation Regime 
Airflow 

3[m / d ]  
Mean

4NH - N[m g / l]  
Mean

3NO - N[m g / l]  

Measured set points 11,580 0.86 8.2 

Fixed [0.5 0.5 0.6] 6,774 2.27 6.83 

SOM Controller 3,110 5.9 3.2 

 

Table 7-10 shows the results of the different controllers. It is obvious, that the operator of the plant has 

a different operation goal than the described fitness function. This is done for technical reasons. The 

results for the measured set points show that 4NH N  is very low, while 3NO N is high. Using the 

fixed set point, the situation is not as extreme as with the measured set points, but still has the same 

tendency to keep the 4NH N  low. The SOM controller operates at the other end of the legal spectrum. 

Therefore it reduces the airflow significantly, which leads to higher 4NH N  and lower 3NO N . 

Considering only the airflow, the new controller saves 73% air in comparison to the measured set points 

and 54% in comparison to the fixes set points. While these savings seem to be impressive, they only 

show that the plant can be operated differently.  

7.7 Conclusion 

The challenges of controlling a highly disturbed, non-linear system like a WWTP are not trivial. The 

proposed operating regime estimation and state-based set-point control method introduces new 

possibilities for control applications in the wastewater treatment. Although the favoured results for test 

case 1, are very similar to the static OS  set point controller results, many potential opportunities are 

created to achieve improved results in this field. An important aspect of this work dealt with operation 

state identification from process variables of a WWTP. The results proved encouraging with the 

clustering algorithm employed capturing and successfully categorizing the operating states of the 

WWTPs. This itself provides a platform for exploring its integration to developing control strategies. 

The outcome of this study presents a great potential for discovering some level of optimum in controlling 

the energy usage and at the same time keeping the effluent limits within given by regulations. In 

conclusion, a framework for state-based data driven controller design has been developed. This strategy 

is promising and offers great potential for achieving optimum energy control and at the same time 

compliance with effluent limits.  
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8 Conclusion 

The description of the state of the art in WWTP operation, instrumentation and control and its relevance 

for the environment and society in chapters one, two and three shows that the development of novel 

operationally robust and practice-oriented WWTP instrumentation and control strategies is challenging 

but necessary. High treatment and maintenance costs put the WWTP operators under a lot of pressure 

to optimize their processes and to go beyond conventional control strategies. 

Fortunately, the rapid development of new technologies and faster hardware in the area of process 

automation and industrial IT allows for the implementation of new computationally intensive 

approaches. 

The developed methods and their evaluation on the BSM1 and the Rospe WWTP show that there is high 

potential for improvement in process optimization and control using computational intelligence methods 

and dynamic simulation models. The calibration of a WWTP model using the non deterministic multi-

objective SMS-EGO algorithm shows that WWTP calibration can be efficiently automated facilitating 

the use of simulation models for optimization and control strategies significantly. 

Furthermore, the lack of inflow measurements that are required for the development of control strategies 

is addressed by the virtual measurement systems introduced in chapter 5. Thus, crucial process variables 

in the inflow such as COD and NH4-N can be successfully estimated with sufficient accuracy based on 

process data from existing online instrumentation. Machine Learning methods have proven to be a 

valuable tool, although their parametrisation and training is time-consuming and requires expert 

knowledge. A comparison to an alternative model-based inflow estimation method developed by Ebel 

(2009) illustrates that Machine Learning achieves much better results while the model-based approach 

suffers from variable retention times and blending of different wastewater streams inside a WWTP.  

Nevertheless, all this information on the treatment process provided by online instrumentation needs to 

be analysed to extract valuable process information that can be used for control purposes. Therefore, an 

operating regime estimation using Self-Organising Maps (SOM) was successfully implemented, in order 

to develop a state-based controller with optimal parameters for each operating regime. Results show that 

this control strategy achieves major savings in energy while maintaining sufficient cleaning capacity. 

All in all, the achieved results prove that the use of computational intelligence methods for 

instrumentation and control purposes is able to substantially improve WWTP operation. While requiring 

a high degree of expert knowledge for the development and implementation of the novel methods, the 

required effort for operation is similar to conventional ICA strategies. 
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