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Abstract

Candida albicans is a dimorphic human pathogen in which the yeast to hyphal switch may be an important factor in virulence in
mammals. This pathogen has recently been shown to also kill insects such as the Greater Wax Moth Galleria mellonella when injected into
the haemocoel of the insect larvae. We have investigated the effect of previously characterised C. albicans mutations that influence the
yeast to hyphal transition on virulence in G. mellonella larvae. There is a good correlation between the virulence of these mutants in the
insect host and the virulence measured through systemic infection of mice. Although the predominant cellular species detected in G.
mellonella infections is the yeast form of C. albicans, mutations that influence the hyphal transition also reduce pathogenicity in the insect.
The correlation with virulence measured in the mouse infection system suggests that Galleria may provide a convenient and inexpensive

model for the in vivo screening of mutants of C. albicans.

© 2002 Federation of European Microbiological Societies. Published by Elsevier Science B.V. All rights reserved.
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1. Introduction

The dimorphic human pathogen Candida albicans is a
significant cause of mortality among immuno-compro-
mised patients [1,2]. C. albicans has several morphogenet-
ic forms shifting between a yeast and a hyphal form of
growth in response to environmental signals. Although
our understanding of the signalling pathways and tran-
scriptional networks underlying these transitions is still
rudimentary [3], the ability to undergo these transitions
has been implicated in C. albicans virulence [4]. Mice in-
fected systemically with C. albicans strains defective in
genes involved in the yeast to hyphal transition show re-
duced mortality relative to mice infected with wild-type
strains of the pathogen [5,6].
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Conventional in vivo assays to determine the relative
pathogenicity of yeast isolates and mutants have relied
upon the use of a range of mammalian species [7]. These
assays have been of great value in elucidating the immune
mechanism(s) involved in the host’s response to fungal
pathogens, but they are expensive, time consuming and
involve extensive monitoring of the infected animals. Al-
ternative systems that could provide comparable data
without the need to use mammals for in vivo testing would
be an useful addition to the analysis of host—pathogen
interactions.

Recent evidence suggests that the innate mammalian
immune responses are involved in the defence against fun-
gal pathogens [8]. These responses are evolutionarily an-
cient, existing in both higher and lower animals [9]. Com-
ponents of the innate immune response are conserved
between mammals and insects [10,11], and thus analysis
of insect responses to fungal pathogens can provide gen-
eral insights into the process of host defence against fungi
[10,12]. The innate defences of insects like those of mam-
mals consist of structural and passive barriers as well as
humoral and cellular responses within the haemolymph
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[13]. The latter are often activated by signal transduction
systems comparable to mice [11]. The insect cuticle is the
first line of defence and, as well as acting as a physical
barrier to the entry of microbes, contains anti-microbial
agents that prevent or retard the entry of pathogens into
the host’s haemocoel. Six types of haemocytes have been
identified in lepidopterous (e.g. Galleria mellonella). The
plasmatocytes and granulocytes participate in phagocyto-
sis, encapsulation and nodule formation [14] that are im-
portant elements of the insect’s cellular defences against
bacteria and unicellular fungi [15]. Larger parasites are
encapsulated and nodule formation occurs in response to
a number of invading micro-organisms [16]. Humoral fac-
tors involved in insect immunity to infection include lyso-
zyme, lectins and the prophenoloxidase cascade [17] and
serine proteases and carbohydrases [18]. The insect im-
mune response to micro-organisms has been shown to in-
volve a change in the circulating haemocyte population
and synthesis of new haemolymph proteins [19]. Although
insects do not produce antibodies they are capable of gen-
erating a series of proteins which confer a degree of non-
specific immunity to a range of micro-organisms. In addi-
tion, the ability of G. mellonella larvae to detect differences
in the pathogenicity of lipopolysaccharide-deficient mu-
tants of Pseudomonas aeruginosa has been demonstrated
[17], and a good correlation exists between the virulence
of P. aeruginosa in Galleria larvae and in mice [20]. Larvae
of G. mellonella have recently been used to determine
the relative virulence of C. albicans isolates and to differ-
entiate between pathogenic and non-pathogenic yeast spe-
cies [21].

The work presented in this paper describes the virulence
of a series of well-defined C. albicans mutants infected into
larvae of the wax moth G. mellonella through haemocoel
injection. The virulence of the C. albicans mutants in G.
mellonella correlated with that determined for systemic
infection models in mice. The use of G. mellonella larvae
may thus represent a means of measuring alterations in
fungal virulence without the need to resort to mammalian
testing as a first resort.

2. Materials and methods
2.1. Insect larvae

Larvae of the sixth developmental stage of G. mellonella
(Lepidoptera: Pyralidae, the Greater Wax Moth) were
obtained from the MealWorm Company, Sheffield, Eng-
land. Larvae were maintained at 15°C in wood shavings
and stored in the dark. Larvae between 0.2 and 0.4 g in
weight were employed in all assays. Ten randomly chosen
larvae of the required weight were used per treatment in
each experiment. All assays were performed on three in-
dependent occasions and the results are the mean percent-
age survival * standard deviation.

2.2. Candida strains and culture conditions

Candida strains used were derivatives of CAI4 [22] gen-
erated by site-directed deletion of various genes, or the
URA3+ wild-type SC5314 [22] (see Table 1). C. albicans
MEN (serotype B, wild-type originally isolated from an
eye infection, a gift from Dr D. Kerridge, Cambridge,
UK) was employed as a positive control in a number of
assays. Saccharomyces cerevisiae YIM128 is a clinical iso-
late [23] (a kind gift from Dr K. Clemons, Santa Clara
Valley Medical Centre, San Jose, CA, USA) which was
employed in a number of assays as it had a negligible
effect on Galleria viability.

Yeast isolates were grown to stationary phase (approx-
imate concentration of 3x10% cells ml™!) over 15 h in
50 ml of YEPD broth (2% (w/v) glucose (Sigma Chemical
Co., Dublin, Ireland), 2% (w/v) bactopeptone (Oxoid Ltd.,
Basingstoke, England) and (1% (w/v) yeast extract (Oxoid
Ltd.)) in 100-ml conical flasks at 30°C and 200 rpm in an
orbital incubator. Yeast cultures were maintained on
YEPD agar (as above but with the addition of 2% (w/v)
agar (Difco, Detroit, MI, USA) at 4°C and sub-cultured
every 2 weeks.

2.3. Inoculation of G. mellonella with C. albicans

The yeast cell concentration was assessed using an hae-
mocytometer following dilution of a 100-ul aliquot of cul-
ture in phosphate-buffered saline (PBS, pH 7.2). Yeast
cells were washed twice with PBS and resuspended in ster-
ile PBS, following harvesting by centrifugation at 2220 X g
for 5 min in a Beckmann GS-6 centrifuge. Larvae were
injected with 1Xx10° cells in 100 ul PBS into the haemo-
coel through the last left pro-leg as described previously
[17] using an SGE 1-ml gas-tight syringe (SGE Scientific
Party Ltd., Melbourne, Australia). Three types of controls
were used in each assay: (1) The first was the untouch-
ed control in which the larvae were not handled and incu-
bated at the same temperature as larvae to be inoculated.
(2) The second set of controls consisted of larvae that had

Table 1
Yeast strains used in this study

C. albicans strain Relevant genotype/mutation

CA LJ3 Acacla4lAcacla4

SC 5314 Clinical isolate; Ura™ parent of CAI4
CDHI10 Ahst71Ahst7

CDH22 Acst20/Acst20

CDH107 Acarasl/Acarasl

CP29-1-7 AcppllAcppl

CK43B-16 Acekl/Acekl

CR216 Acacde35lAcacde3s

HLC 67 Aefgl/Aefgl

HLC 69 AcphllAcphl; AefgllAefgl
JKC 19 AcphllAcphl

MEN Clinical isolate

S. cerevisiae YIM 128 Clinical isolate
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a sterile syringe inserted into the last left pro-leg but no
yeast or PBS was injected. (3) The PBS control consisted
of larvae injected with 20 pl of sterile PBS through the last
left pro-leg. All groups of insects were placed in a static
incubator in the dark at 30°C, the optimum temperature
for insect growth and development. Ten larvae were used
per treatment and assays were performed on three inde-
pendent occasions. Results represent the mean percentage
survival of larvae from all assays.

2.4. Murine challenge

For systemic infections, 8-10-week-old female BALB/c
mice were analysed as described [24,25]. Adenylyl cyclase
mutants were inoculated at higher cell densities to com-
pensate for the slower growth [26], while standard condi-
tions were used for the analysis of the Ras/ mutant strain
[27].

3. Results

3.1. Determination of pathogenicity of SC5314 and
derivatives

Previous studies have focussed on the ability of larvae
of G. mellonella to differentiate between pathogenic and
non-pathogenic yeast species [21] and a correlation be-
tween the virulence of bacteria as determined in Galleria
and mice has been established [20]. In the work presented
here we sought to establish whether a similar correlation
existed between the virulence of a number of C. albicans
mutants as determined in insect larvae and in murine

Table 2

Survival (%) of insect larvae following challenge with yeast isolates
Strain 24 h viability 48 h viability Mouse viability
Untouched 100 100 control

Injected 100 100 control

PBS 100 97 control

CaLJ3 (clad) 90 80 avirulent [5]
CR216 (cdc35) 100 100 avirulent [26]
CDHI107 (rasl) 50 10 reduced [29]
CP29-1-7 (cppl) 20 10 reduced [24]
CK43B-16 (cekl) 20 0 reduced [25]
CDHI10 (hst7) 10 0 virulent [27]
CDH22 (cst20) 20 0 virulent [27]
HLC67 (efgl) 20 10 reduced [6]
HLC69 (cphlefgl) 33 10 avirulent [6]
JKCI19 (cphl) 0 0 virulent [6]
SC5314 (WT) 15 0 virulent (all studies)
MEN (WT) 22 0 positive control
YIMI128 (S. cerevisiae) 90 90 negative control

All values are the mean percentage survival. Assays were performed on
three independent occasions with 10 larvae being employed per yeast
strain per assay. In all cases the standard deviation is less than 5% of
the mean.

systemic infection models. Larvae were inoculated as de-
scribed and monitored over a 48-h period.

Recent molecular studies of C. albicans have focused on
the strain background SC5314 and its ura3 mutant deriv-
ative CAI4 [22] and several mutant derivatives of the
SC5314 background have been tested in systemic and
superficial mammalian models of virulence [7]. We have
investigated the pathogenicity of several of these strains
(Table 1) using the G. mellonella larval virulence model
[21]. The strains CR216 (deleted for the adenylyl cyclase
gene CACDC35) and CALJ3 (deleted for the CACLA4
gene) had minimal effects on larval mortality (Table 2).
None of the larvae infected with the adenylyl cyclase mu-
tant, and only 10% infected with the cla4 mutant died
after 24 h. Larvae infected with the cyclase mutant were
all still alive after 48 h. This was in marked contrast to the
wild-type SC5314 strain that killed 85% of the infected
larvae after 24 h, and all the larvae after a 48 h incubation.

The strains mutated in the RASI, CPPI, CEKI and
EFGI genes, as well as the strain containing mutations
in both the EFGI and CPHI genes were more successful
in killing the G. mellonella larvae (Table 2). In the case of
the ras! mutant strain 50% of the larvae were killed at 24 h
and 90% were killed after 48 h. This was less than that
observed for the wild-type C. albicans strain SC5314, but
more than for the cacla4 and cacdc35 mutant strains. Sim-
ilarly, the double cphl efgl mutant strain was more viru-
lent than the cacdc35 strain, but less effective at killing the
insect larvae than the wild-type strain. The cppl, cekl,
efgl and cst20 mutant strains were marginally less virulent
than the wild-type strain, while the Ast7 and cphl defective
strains appeared at least as virulent as the wild-type strain.
These results were compared with those determined
through systemic mouse infection studies. Previous work
had established that the cacla4 mutant strain [5], the cphl
efgl strain [6] and the cyclase-defective strain [26] were
avirulent in mouse infection models, and these mutants
showed little or reduced pathogenicity in the Galleria mod-
el (Table 2). In contrast, the Ast7, ¢st20 [27] and cphl [28]
mutant strains were as virulent as the wild-type in the
systemic mouse model. The cppl, cekl and efgl mutants
were able to kill mice in the systemic infection models, but
their virulence was reduced relative to the wild-type strain
[24,25,6]. These mutants also showed intermediate killing
levels in the Galleria infection model, as did the strain
defective in rasl function [29]. There was a significant
correlation in yeast virulence between the two models
(r=0.899, P<0.01).

4. Discussion

Virulence studies in mouse models have correlated the
ability of C. albicans to undergo the yeast-to-hyphal tran-
sition with the pathogenicity of the fungus [5,6]. However,
the mutations that disrupt this transition are pleiotropic,
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and thus the reduction in pathogenicity could be due to
loss of other virulence factors in the strains with compro-
mised hyphal formation [30]. In this study we have deter-
mined that a series of mutations which reduce C. albicans
hyphal formation and virulence in mouse models also re-
duce their virulence in an insect infection model.

The wax moth G. mellonella has previously been used to
test the virulence of clinical isolates of C. albicans [21], and
to correlate the virulence of a variety of P. aeruginosa
mutants with mice [20]. In this study we found a broad
correlation in virulence in the comparison between the
mouse infection studies and the Galleria infections for a
series of defined isogenic single mutants of the SC5314
strain of C. albicans. CR216 is deleted for adenylyl cy-
clase; this strain is totally avirulent in mice [26] and gives
100% survival when tested in G. mellonella. Two other C.
albicans mutants that were avirulent in mice were also
examined; cacla4 [5] and the efgl cphl double mutant
[6]. The cacla4 mutant showed very little killing in Galle-
ria, with 90% of the larvae surviving after 24 h. The efg!/
cphl double mutant was also less virulent than the wild-
type strain, with 33% larval survival after 24 h. Thus all
these mutants significantly reduce killing in both the mu-
rine and insect models.

The RASI-deleted mutant strain is also defective in kill-
ing mice, but is more virulent in the systemic murine in-
fection model than the adenylyl cyclase mutant or the
cacla4 mutant. There is 25-50% survival in mice after
35 days of infection [29]. This ras/ mutant generates
50% killing after 24 h and 90% killing after 48 h in G
mellonella. Thus the Galleria model places ras/ mutants at
a virulence level similar to that of the double transcription
factor mutant efg/ cphl, while the murine model suggests
the rasl mutants retain some level of virulence. This shows
that while the correlation between the insect and murine
virulence models is good it is not perfect; in particular it
appears the loss of the Efglp and Cphlp transcription
factors may be less significant in blocking virulence in
insects than in mice.

Cpplp, Ceklp, Hst7p and Cst20p are components of a
MAP kinase pathway that plays a role in fungal virulence
in mice. Cppl and cekl mutants killed about 50% of in-
fected mice after 35 days [24,25], while the wild-type C.
albicans strain killed all the infected mice within 7-12
days. These mutants were also slightly less virulent in
the G. mellonella model, as 20% of the larvae survived
infection of either mutant after 24 h, while only 15% of
the wild-type infected larvae survived. The HST7-deleted
strain was found to be wild-type in terms of virulence in a
mouse study [27], and only 10% of the Galleria larvae
infected survived after 24 h, so both assay systems deter-
mined the loss of Hst7p function to have no influence on
virulence. The ¢s20 mutant was marginally less virulent in
mice in the same study, as 100% of the mice were killed
after 6 days with the wild-type and /st7 mutant strains,
and after 10 days with the ¢sz20 mutant strain [27]. In

Galleria, the c¢st20 mutant killed 80% of the larvae in
24 h, so in both the Galleria and mouse models cst20
mutants were somewhat less virulent than the wild-type
and Ast7 mutant strains. A similar correspondence in the
virulence of C. albicans mutants in the mouse and Galleria
models was found for mutants in transcription factors
influencing hyphal development. Mutants in the Cphlp
transcription factor were as virulent as wild-type strains
in mice [6], and killed 100% of infected larvae after 24 h.
The efg! mutant strain showed reduced virulence in mice
[6] and killed only 80% of infected Galleria after 24 h.
Finally, as noted, the double efg/ cphl transcription factor
mutant was avirulent in mice and permitted 33% survival
of Galleria larvae after 24 h.

The work presented here demonstrates that differences
in the virulence of hyphal-deficient mutants detected in
Galleria are similar to those observed in mice. While the
insect and mammalian immune systems differ they share a
high degree of similarity in terms of their innate immune
responses [9] which are important defenses against fungal
infections [8]. The response of insects to infection shows
strong similarities to that found in mammals [20,21,31]
and opens the possibility of reducing the need to use mam-
mals for testing the virulence of mutants by employing
Galleria larvae as a primary screening mechanism. The
ability to screen a large number of mutants in a short
time period using G. mellonella would have a number of
cost and labour advantages compared to the use of con-
ventional vertebrate models.
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