

Interaction Design for

Digital Musical Instruments

A dissertation

submitted for the degree of

Doctor of Philosophy

by

Patrick McGlynn, BA, MA.

Supervisors: Dr. Victor Lazzarini & Dr. Gordon Delap

Department of Music

National University of Ireland, Maynooth

Ollscoil na hÉireann, Má Nuad

May 2014

2

Table of contents

Table of contents .. 2
Table of figures .. 7
Acknowledgments .. 8

Abstract .. 10
Chapter 1. Introduction .. 13

1.1 Context of research .. 14
1.2 Summary of hypotheses ... 16
1.3 Original contribution of thesis ... 17

Chapter 2. A century of electronic musical controllers.. 20
2.1 Keyboard based instruments .. 21

2.1.1 The Musical Telegraph ... 21
2.1.2 Teleharmonium ... 21
2.1.3 Optophonic piano .. 22
2.1.4 Sphaerophone .. 22
2.1.5 Hammond organ .. 22
2.1.6 Electronic Sackbut .. 22
2.1.7 Mellotron ... 23

2.1.8 Moog modular ... 23
2.1.9 Optigan .. 23

2.1.10 Synclavier .. 24
2.1.11 ADS 100 .. 24
2.1.12 EDP wasp .. 24

2.1.13 Fairlight CMI .. 25

2.1.14 Syntar .. 25
2.1.15 Roland SH-101 .. 25
2.1.16 Yamaha DX7 ... 26

2.2 Buttons and dials .. 26
2.2.1 Electrophon & Kurbelsphäraphon... 26

2.2.2 Dynaphone .. 26
2.2.3 Voder speech synthesizer .. 27
2.2.4 Electronium Scott .. 27

2.2.5 Wurlitzer Side Man ... 27
2.2.6 Roland TR-808 .. 28

2.2.7 Linn LM-1 ... 28
2.2.8 Dynachord Rhythm Stick .. 28
2.2.9 Akai MPC60 ... 28

2.2.10 Axis 64 .. 29
2.2.11 Jammer .. 29
2.2.12 Monome .. 29
2.2.13 Samchillian .. 30

2.2.14 Maschine ... 30
2.2.15 Arc ... 31
2.2.16 Tenori-on ... 31
2.2.17 Zendrum .. 31
2.2.18 Faderfox .. 32

2.3 Ribbons and strips .. 32

3

2.3.1 Ondes Martenot ... 32

2.3.2 Hellertion & Helliophon ... 33
2.3.3 Trautonium .. 33
2.3.4 Theremin cello .. 33
2.3.5 Buchla Thunder ... 34

2.3.6 Swarmatron ... 34
2.4 Gesture based systems ... 34

2.4.1 Theremin ... 34
2.4.2 Radio Baton ... 35
2.4.3 Laser harp .. 35

2.4.4 Buchla Lightning ... 36
2.4.5 Very Nervous System ... 36
2.4.6 Wii Remote ... 36
2.4.7 Airpiano .. 37

2.4.8 SoundCatcher .. 37
2.4.9 Peacock ... 38

2.5 Wind controllers ... 38
2.5.1 Lyricon .. 38

2.5.2 Casio DH range ... 38

2.5.3 Yamaha WX range .. 39
2.6 Combined controllers ... 39

2.6.1 Composer-Tron ... 39

2.6.2 Buchla ... 39
2.6.3 VCS3 ... 40

2.6.4 GROOVE system .. 40
2.6.5 Casio VL-1 .. 40
2.6.6 Synthaxe .. 41

2.6.7 Ztar .. 41

2.6.8 You Rock Guitar ... 41
2.6.9 Reactable ... 42
2.6.10 Silent drum .. 42

2.6.11 T-Stick ... 42
2.6.12 Eigenharp .. 43

2.6.13 Orbit .. 43
2.7 Two-dimensional surfaces ... 43

2.7.1 Misa Kitara .. 43
2.7.2 Madrona Soundplane .. 44
2.7.3 Lemur .. 44
2.7.4 Haken Continuum ... 45
2.7.5 SLABS .. 45

2.8 Wearable controllers .. 45
2.8.1 The Hands ... 45

2.8.2 Lady’s glove .. 46
2.8.3 P5 glove ... 46
2.8.4 Hot hand .. 46

2.9 Communication protocols .. 47
2.9.1 MIDI .. 47

2.9.2 ZIPI ... 47
2.9.3 OSC ... 48

2.10 Real-time software ... 48

4

2.10.1 Csound .. 48

2.10.2 Max ... 49
2.10.3 Pure Data ... 49
2.10.4 SuperCollider .. 49
2.10.5 Music Mouse ... 49

2.10.6 Ableton Live.. 50
2.11 Discussion .. 50
2.12 Conclusion ... 55

Chapter 3. Digital musical instrument design .. 56
3.1 Core concepts ... 57

3.2 Classification of digital musical instruments ... 62
3.2.1 The Hornbostel-Sachs system ... 62
3.2.2 Atau Tanaka – physical/mechanical.. 63
3.2.3 Miranda and Wanderley – acoustic similarity .. 64

3.2.4 Controllerism – ITCH system ... 66
3.2.5 Human-machine interaction approach .. 68
3.2.6 Timeline-oriented versus procedural performance 70
3.2.7 Taxonomy of sequencer user-interfaces.. 71

3.2.8 Thoughts on classification... 73

3.3 The instrumental paradigm .. 74
3.4 Mapping ... 76
3.5 The design cycle ... 82

3.6 Evaluation .. 84
3.7 Conclusion ... 85

Chapter 4. Interaction design for the digital musician ... 87
4.1 The importance of a conceptual foundation ... 89
4.2 Models .. 91

4.2.1 Predictive models .. 92

4.2.2 Descriptive models .. 92
4.3 Describing sensors ... 93

4.3.1 Degrees of freedom vs. dimensions .. 93

4.3.2 Resolution ... 95
4.4 A modular approach ... 96

4.5 Interaction strategies .. 98
4.5.1 One DOF sensors with low resolution (on/off) ... 99

4.5.2 One DOF sensors with high resolution ... 101
4.6 Independent controllers .. 103
4.7 Interdependent controllers .. 105
4.8 Strategies for combining controllers .. 107

4.8.1 No interdependence ... 108

4.8.2 Different essential parameters ... 108
4.8.3 Different non-essential parameters ... 108

4.8.4 Many-to-one controllers .. 108
4.8.5 Interactive controllers ... 109

4.9 Abstract controllers .. 109
4.9.1 Statistical variables.. 110
4.9.2 Modal behaviour ... 112

4.9.3 Automation .. 117
4.9.4 Saving and recalling settings ... 119

4.10 Case study: LoopBlender ... 120

5

4.10.1 Background ... 120

4.10.2 Design brief ... 121
4.10.3 Hardware selection .. 122
4.10.4 Interface components .. 122
4.10.5 Discussion ... 129

4.10.6 Future work ... 132
4.11 Conclusion ... 134

Chapter 5. Recontextualising the multi-touch surface ... 136
5.1 Surface-based interfaces... 137

5.1.1 Historical roots .. 137

5.1.2 XY pads ... 138
5.1.3 Grid-based interfaces .. 140
5.1.4 Multi-touch surfaces.. 141

5.2 Designing multi-touch interfaces ... 143

5.2.1 Rethinking the GUI ... 143
5.2.2 Beyond the GUI .. 145

5.3 SurfacePlayer ... 149
5.3.1 Aims and objectives .. 149

5.3.2 Dependencies .. 150

5.3.3 Implementation ... 150
5.3.4 Example of use .. 151
5.3.5 Results ... 153

5.4 Conclusion ... 154
Chapter 6. Designing a new multi-touch instrument ... 156

6.1 Introduction to Oscar.. 157
6.2 Design objective ... 158
6.3 Gestural interface ... 159

6.3.1 Clusters .. 161

6.3.2 Touches ... 165
6.3.3 Taps ... 166
6.3.4 Flicks ... 168

6.4 Hidden menus .. 169
6.5 Customisable graphical feedback ... 170

6.6 Import user programs and audio .. 171
6.7 Hot-swapping of programs ... 172

6.8 Csound template ... 173
6.8.1 CsOptions and global variables ... 174
6.8.2 UDOs for touch and cluster events ... 175
6.8.4 Instrument definitions for touch and cluster events 177
6.8.5 Instrument definitions for tap and flick events 178

6.8.6 Reverb, master and accelerometer instruments 180
6.8.7 CsScore ... 181

6.9 iPad sensors .. 181
6.9.1 Hard-linking motion data to global variables.. 182
6.9.2 Combined touch and motion gestures ... 182
6.9.3 Changing behaviour based on device orientation 183
6.9.4 Purely motion-based gesture recognition .. 185

6.10 Wireless control ... 186
6.11 Typical workflow ... 187
6.12 Case study: DroneTilt .. 188

6

6.12.1 Concept ... 188

6.12.2 Loop parameters .. 190
6.12.3 Low pass resonant filter .. 190
6.12.4 Accelerometer ... 190
6.12.5 Code excerpts .. 192

6.12.6 Discussion ... 195
6.13 Linking Oscar to the descriptive model ... 196
6.14 Assessment of Oscar .. 198
6.15 Conclusion ... 199

Chapter 7. Conclusion .. 201

Bibliography ... 206
Appendix A: Oscar program template ... 223
Appendix B: CD contents .. 229
Appendix C: Papers and publications .. 230

7

Table of figures

Figure 3.1 Basic representation of a digital musical instrument 57

Figure 3.2 Adding ‘the performer’ to the digital musical instrument model 60

Table 3.1 Frequent comments on the positive and negative aspects of acoustic

instruments and digital instruments ... 61

Figure 3.3 Comparing controllers with respect to their resemblance to existing

acoustic instruments ... 64

Figure 3.4 A visualisation of interaction and musical context based on Jens

Rasmussen’s model of human information processing .. 68

Figure 4.1 Summary of strategies for single devices and combined controllers 97

Figure 4.2 Summary of abstract control strategies .. 98

Figure 4.3 T-EMP ensemble performance at Rockheim, Trondheim 120

Figure 4.4 Bimanual division of Korg NanoKontrol2 ... 123

Figure 4.5 Control section for sample group A.. 124

Figure 4.6 Sample buttons for group A .. 125

Figure 4.7 Master volume and reverb send for group A .. 126

Figure 4.8 Loop start and length controls for group A .. 127

Figure 4.9 Articulation controls ... 128

Figure 5.1 Comparison of development options for multi-touch musical apps 148

Figure 5.2 SurfacePlayer in use ... 152

Figure 6.1 Oscar running on a 2
nd

 generation iPad .. 157

Figure 6.2 Two separate clusters .. 161

Figure 6.3 Individual finger touches represented by grey circles 165

Figure 6.4 Tap event .. 166

Figure 6.5 Flick event .. 168

Figure 6.6 Accessing the hidden menu .. 169

Figure 6.7 Graphics selection menu ... 170

Figure 6.8 Dropbox menu .. 171

Figure 6.9 Selecting a hot-swappable program .. 172

Figure 6.10 csOptions and global variables ... 175

Figure 6.11 Touch event UDO ... 176

Figure 6.12 Cluster event UDO ... 177

Figure 6.13 Instrument 1 – touch event ... 178

Figure 6.14 Instrument 2 – cluster event .. 178

Figure 6.15 Tap and flick instrument definitions ... 180

Figure 6.16 Reverb, master and accelerometer instrument definitions 181

Figure 6.17 CsScore ... 181

Figure 6.18 OSC message format .. 187

Figure 6.19 Visualisation of accelerometer axes ... 191

Figure 6.21 Looping instrument with X/Y auxiliaries ... 193

Figure 6.22 Except from cluster instrument controlling loop and filter 195

8

Acknowledgments

I am indebted to Dr. Victor Lazzarini and Dr. Gordon Delap for their support,

encouragement and expertise throughout my time here at NUI Maynooth. Their

collective influence has enabled me to grow in so many ways as a teacher and

student – thank you so much for the countless opportunities that you have opened up

for me.

I cannot adequately express the gratitude I feel for my patient, loving and

endlessly generous family. Killian, Margaret and James McGlynn have never failed

to infuse me with the strength, inspiration and belief that I need to follow my passion

in life and keep my feet on the ground – thank you from the bottom of my heart.

 I must also acknowledge especially the extraordinary roles played by David

O’Connor, Simon Kenny, Nora O’Grady and Momo Furniss. It would take me a

lifetime to describe all of the little kindnesses you have shown me, let alone repay

them – thank you so, so much.

In no particular order, my sincere gratitude to: Prof. Palmer, Marie Breen,

Paul Keegan and the whole staff of the NUI Maynooth Music Department for always

making me feel like a welcome member of a dynamic community; Owen Laverty

and Lorraine Kane from the Commercialisation Office for your invaluable help and

advice; Dr. Charles Markham, Dr. Tom Lysaght and Dr. Joe Timoney from the

Computer Science Department for your time and assistance with so many little

things; Eilis Murray, Marie Murphy and Melissa Barbier in Graduate Studies for

your help and support; Aodhan Coffey, Brian Robson, Alan McCarthy and Shane

Byrne for countless fascinating Friday afternoon conversations in the Maker’s Club;

Jo Mangan and Tom Swift of the Performance Corporation for inviting me into their

9

delightful and surprising projects; Øyvind Brandtsegg, Bryan Quigley and the T-

EMP ensemble for an amazing musical journey; The Ubiquitous Music Group for

their inspiring ideas; the wonderful, welcoming people of Ann Arbor; the staff of An

Foras Feasa for providing a safe haven to work and grow; Prof. Fischman, Prof.

Reilly and John Bradley for a simulating and motivating viva; Jennifer, Barbara,

Gráinne, Michael, Feargal, Ciaran and all my fellow Iontas lab dwellers for the good

cheer and chats; the security staff of NUI Maynooth for their friendly conversations

at odd hours; and all of the beautiful Earthsong folk – Richard Auler, Tom Quinn,

Sinead Harte, Jake Quinn, Sarah Ryan, Jack Quinn, Liam Cox, Shane, Samantha

Kavanagh, John Harrison, Dave Patterson, Treacy O’Connor, Coralie Mureau, and

countless others – for opening my mind and heart.

Finally, I could never have completed this thesis without the unyielding

support of the terrific friends who have stood by me over the years: Maghnus

Monaghan, Bernard O’Farrell, Steve Kelly, Kevin Coyle, Mark Brennan, Sarah Gill,

Eoin Byrne, Simon Greene, Ger Healy, Paul Donnelly, Dr. Mindflip, Edel Doran

(and all the Milk & Cookies crew), Luke Kelly, Joe Byrne, Sinead Mawe, Colín

ÓhAiseadha, Trina Hanlon, Elaine Hanlon, Lead Balloon, John Power, Mark

Farrelly, Joe Hughes, Philip Horan, The Room Appreciation Society, Aidan

Guilfoyle, Darryl O’Connell, Mark O’Connell, Brian Connolly, Ben McHugh, James

Garvey, Sean Kenny, Eoin Kenny, Lisa Murphy, Thomas O’Boyle, Emma Higgins,

Luke Folan, Rory O’Connor, T, Cliffy, Dervil Cody, Dave Byrne, Liz Broderick,

Harry Kelly, Bunny Armstrong-Miller, Mary Walton, Denis O’Grady, Brian Carty,

Teffia Ki, Donal O’Neil, Michael Gregoire, Fr. O’Gorman and Philip Edmondson.

 This work, and any music that arises from it, belongs to all of you. Thank you

for sharing this journey with me.

10

Abstract

The thesis aims to elucidate the process of designing interactive systems for musical

performance that combine software and hardware in an intuitive and elegant fashion.

The original contribution to knowledge consists of: (1) a critical assessment of recent

trends in digital musical instrument design, (2) a descriptive model of interaction

design for the digital musician and (3) a highly customisable multi-touch

performance system that was designed in accordance with the model.

Digital musical instruments are composed of a separate control interface

and a sound generation system that exchange information. When designing the way

in which a digital musical instrument responds to the actions of a performer, we are

creating a layer of interactive behaviour that is abstracted from the physical controls.

Often, the structure of this layer depends heavily upon:

1. The accepted design conventions of the hardware in use

2. Established musical systems, acoustic or digital

3. The physical configuration of the hardware devices and the grouping of

controls that such configuration suggests

This thesis proposes an alternate way to approach the design of digital musical

instrument behaviour – examining the implicit characteristics of its composite

devices. When we separate the conversational ability of a particular sensor type from

its hardware body, we can look in a new way at the actual communication tools at

the heart of the device. We can subsequently combine these separate pieces using a

series of generic interaction strategies in order to create rich interactive experiences

that are not immediately obvious or directly inspired by the physical properties of the

hardware.

11

This research ultimately aims to enhance and clarify the existing toolkit of

interaction design for the digital musician.

12

“I am standing in a large hall at the sonar festival in Barcelona. On stage is the trio

of Christian Fennesz, Jim O'Rourke and Peter 'Pita' Rehberg. All three are playing

laptop computers and the movements of their fingertips on trackpads are projected

on screens. This assertion of human presence within the improvised evolution of

their performance - a dense layering of musical samples and digital processing -

adds to the disorientation of the music created in the moment, with minimal

physicality and a technology that conceals, rather than reveals. The discomfort of

hearing it in a large hall, standing up, surrounded by a half-interested crowd that

mills and chatters, leaves me stranded in a mood of ennui. The music sounds

wonderful but this is not how I want to hear it.”

-David Toop, Haunted Weather: Music, Silence and Memory [185]

13

Chapter 1. Introduction

“Making music is a process. How well you relate to your tools has an enormous

impact on the success of achieving your goals. If you look at the endpoint only and

ignore the process, you’re depriving yourself of a vital component of the act of

creation.”

-Stretta, Making music is process [176]

This thesis proposes a descriptive model for digital musical instrument design that

focuses upon the individual sensor components of an input device, the data that can

be derived from their separate and combined behaviours, and the creation of

interaction schemes based upon that data. It is proposed that this model can reveal

non-obvious and underused aspects of a physical device. This method is used to

design a new generic musical controller - Oscar - that reveals fertile and novel

interaction modalities specific to the multi-touch surface.

This chapter provides a map of the research project and outlines the evolution

of its hypotheses throughout the rest of the thesis. There are three main goals:

 Situate the research within the context of live electronic music

performance and digital instrument design (1.1). This section

highlights some of the most fundamental issues at the heart of the

field and distinguishes the questions being addressed within this text

from several related, yet separate, topics.

 Summarise the concepts central to the research and trace their

development throughout the thesis (1.2). This section defines the

14

central issues under investigation and references the chapters where

they are discussed.

 State clearly the original contribution this thesis makes to the field of

computer music research and identify the future research that it makes

possible (1.3).

1.1 Context of research

The foundation for this entire research project can be summarized by the quote that

opens this chapter. This remarkable concept has paved the way for unique challenges

and inventions alike in the field of music composition and performance. It is clear,

especially from the explosive growth of innovation and publication in this area over

the past two decades, that the concept of an electronic or digital musical instrument

has progressed far beyond the idea of simply interpreting the language of acoustic

musicianship using digital equipment [67].

 The design of digital musical instruments is no longer a specialized task for a

select few who possess arcane equipment and the skills to manipulate it; it has

become a legitimate, some would say necessary, aspect of the creative process for

any musician who employs digital technology in their live performances. The

affordability and flexibility of modern musical interfaces and software coupled with

the limitless guidance and inspiration of a dedicated online community have all

helped to dissolve the boundaries between performance and creation for the digital

musician [67].

This research area is multifaceted and richly influenced by a variety of other

fields – including, but not limited to, music performance, human-computer

interaction, cognitive psychology, product design, software engineering, interface

15

design, etc. [78] This thesis draws together aspects of many of these areas of study

and aims to synthesise their collective influence in a practical manner.

There are also many sub-categories of research question that are associated

with the design of digital musical instruments. This thesis is primarily concerned

with investigating the expressive potential of digital interfaces through non-obvious

interaction-schemes and design concepts. To ensure a cogent argument throughout

this work, it is perhaps wise to identify some of the topics which are influential

(inseparable, in some cases) to this discussion but are definitively not the main topic

under scrutiny:

 The classification of digital musical instruments:

A detailed overview of the musical applications of sensor

technologies can be found in [120], along with a system of

classification according to their similarity, or lack thereof, to acoustic

instruments. An interesting alternative to this, that focuses more upon

the performer’s relationship to the equipment as opposed to the

functionality of the equipment itself, is the ITCH system. Both of

these are described in detail in Chapter 3.

 The classification of performance gestures:

There are many interesting studies available on this topic ([127, 95

and 68] all provide good starting points). A concise summary of

various schemes of classification can be found in pp5-18 of [120].

 Measuring the effectiveness of mapping schemes:

This is a rich area of study, with plenty of diverse work taking place,

that is beyond the scope of this thesis. Solid foundations for

discussion can be found in [69, 70, 120 and 194].

16

 Types of sensors and microcontrollers

For an overview of the kind of hardware that is typically used for

sensing performer input, see the chapters on Sensors &Sensor-to-

Computer Interfaces and Biosignal Interfaces in [110, 120 and 142].

A comprehensive summary of more conventional musical controllers

can be found in [158].

 Assessing the suitability of controllers for different tasks

The section entitled Comparing Gestural Controllers in [120] provides

a clear introduction to this topic. Further discussion can be found in

[12, 13, 65, 76 and 202].

1.2 Summary of hypotheses

This section highlights the main points of interest under investigation and identifies

the section of the thesis where they are discussed:

 We are operating within an era where the emphasis is firmly upon the

development of ergonomic and flexible control devices, as opposed to

standalone systems that adhere to the instrumental paradigm (Chapter

2)

 While an analytical language is useful for the design, classification

and evaluation of digital musical instruments, the most critical aspect

of a system is the relationship between user and interface that arises

during performance (Chapter 3)

 A concise and efficient conceptual toolkit for interaction design,

compiled especially with the digital musician in mind, has the

potential to both expedite and enhance the development process.

17

Identifying the optimal strategies for combining various control

signals can assist the designer in creating more elegant and intuitive

interactive systems (Chapter 4)

 The rich expressive capacity of multi-touch interfaces has a tendency

to be overlooked due to a widespread over-reliance upon graphics-

based interaction paradigms (Chapter 5)

 Oscar takes an alternative approach to multi-touch music control and

represents a non-obvious, versatile means to develop and perform

with interactive audio software on a tablet device. It facilitates the

creation of multi-modal interfaces and demonstrates the usefulness of

the research concepts that have been defined in previous chapters

(Chapter 6)

1.3 Original contribution of thesis

The core contributions of this work are:

 A descriptive model to aid in the design of digital musical instruments

independent of the idiosyncrasies of specific devices. This model is

presented as a catalogue of useful conceptual tools that can be applied

in a wide variety of musical tasks and also provides a comprehensive

vocabulary to aid potential developers. It comprises two distinct

sections:

o A micro-level interaction design method that categorises the

separate input devices of the digital musical instrument

according to the kind of data they generate.

18

o A variety of strategies for the interpretation of data generated

by these input devices. These strategies accommodate

individual devices, devices combined with each other, and

abstract controllers such as statistical variables, modes, etc.

 A critical analysis of touch screen music performance applications.

This highlights a number of potentially rich control modalities that are

underused and describes a proof-of-concept project that investigates

their feasibility (Chapter 5).

 A customisable and novel approach to music control using multi-

touch surfaces entitled Oscar. This is implemented as an iPad /

Android application, due for release in late 2014, that embodies many

of the design principles discussed throughout the thesis. The software

also demonstrates the value of the descriptive model developed

throughout Chapter 4 and illustrates how it can be applied to

maximize the musical potential of the output generated by any piece

of hardware. Oscar is discussed in detail in Chapter 6.

The results described in this thesis are derived from intensive practice-based

research. This project has been undertaken with the explicit goal of producing a set

of concise, useful and versatile concepts that are universally-applicable by the

computer music community. The Oscar system is also being prepared for general

release, subsequent to the completion of this PhD programme, and it will hopefully

provide a unique solution for musicians who use multi-touch devices in their live

performances.

It is intended that this work will facilitate future research in three different

ways. Firstly, as a practical resource for musicians designing interfaces and/or

19

educators teaching music programming languages – the incremental introduction of

various interaction building-blocks on a micro level and their subsequent use on a

macro level would form a useful structure for a class, workshop series or course on

digital musical instrument design. Secondly, as a starting point for further discussion

on design – the strategies described within can doubtlessly be adapted, enhanced or

re-framed in a wide variety of contexts. Finally, Oscar and its supporting

documentation will be released to the general public as the first entirely

programmable multi-touch synthesiser app – this will hopefully lead to a wide

selection of musicians developing interesting performance techniques using the app

and further advance our collective understanding of good practice in multi-touch

musical interface design.

To summarise – this research attempts to enhance and clarify the existing

vocabulary for interaction design for digital musicians. Future work at post-doctoral

level will use Oscar to investigate a variety of new approaches to live electronic

performance and improvisation.

20

Chapter 2. A century of electronic musical controllers

“If the process of creating electronic music produces few fine violinists, it

nevertheless engenders a new awareness of the nature of sound and our responses to

it. In each new experiment, the dynamic between life and its musical reflection is

held up to scrutiny…music with new boundaries makes us hear ourselves anew.”

-W.A. Mathieu, The Musical Life: Reflections on what it is [112]

This chapter proposes that the most influential changes in electronic music

performance technique have been prompted, not by technological progress (as is

commonly assumed), but by innovations in design approach. This is supported by a

selective catalogue of important developments in electronic musical performance

with a particular emphasis placed upon instruments that feature novel control

methods and/or interfaces. Informed by this survey, the chapter concludes with a

discussion of the relationship between contemporary electronic musicians and their

equipment.

Note that the purpose of this chapter is not to provide an exhaustive list of

developments in this field (abundant resources are available in [32, 120,

NIME.com]). This chapter aims to contextualise the current state of affairs - the

controller era - where the emphasis is very much upon developing ergonomic and

flexible control surfaces, as opposed to standalone systems that follow the

instrumental metaphor (see 3.1 in [144]).

The goal is not to give an accurate commercial or musical history, but to

highlight examples of innovative design or shifts in thinking with regard to the role

21

of the performer in a live electronic music performance scenario. These examples

reveal a tendency towards intelligent repurposing of existing technology, as opposed

to entirely new systems created specifically for musical expression.

The following sections categorise electronic instruments in relation to their

primary means of control. These categories serve to highlight the most influential

developments with regard to a particular input method. However, many of the

technologies featured could easily be situated in several categories at once –

particularly when it comes to the later 20
th

 Century designs.

2.1 Keyboard based instruments

2.1.1 The Musical Telegraph

The Musical Telegraph was invented by Elisha Gray in 1874 [47]. It consisted of a

number of oscillating steel rods and transmitted sound via a telephone line. Later

models featured a built-in loudspeaker. The tones were controlled by a two-octave

piano-style keyboard – a trend which still prevails in synthesiser design over a

century later.

2.1.2 Teleharmonium

Work began on the Teleharmonium in 1898 [26]. Its creator, Thaddeus Cahill,

envisaged an electronic musical synthesiser that would broadcast music via

telephone lines to public spaces (restaurants, bars, etc.) and private homes alike. The

components for this huge device weighed over 200 tons – both installation and

maintenance were labour-intensive processes. It featured a complex series of

controls that centred upon a touch-sensitive piano keyboard.

22

2.1.3 Optophonic piano

Invented in 1916 by Futurist painter Vladimir Baranoff Rossiné, the Optophonic

piano [11] projected a selection of revolving patterns onto a wall or ceiling using a

system of disks, filters and lenses. While it generated no sound, it was conceived as a

live performance tool that might be used to accompany a musical performance – a

clear forerunner of the modern practice of generating live visuals in response to

electronic music (practitioners are often referred-to as VJs or ‘visual-jockeys’)

2.1.4 Sphaerophone

The Sphaerophone [3] was an expansion of Jörg Mager’s Electrophon and

Kurbelsphäraphon instruments (see 2.2). Dispensing with the handle mechanisms,

the controls featured two small keyboards that could be operated simultaneously,

making the Sphaerophone a duophonic instrument.

2.1.5 Hammond organ

Laurens Hammond completed the first design of what would become one of the most

enduring and distinctive electronic instruments in April 1935 [32]. The Hammond

Organ built upon many of the innovations of the Teleharmonium – with stable

intonation and a unique system of timbre control that used drawbars for additive

synthesis. Pedal boards and multiple rows of keys, inspired by conventional organs,

are common to most instruments inspired by the Hammond.

2.1.6 Electronic Sackbut

Hugh Le Caine built the world’s first voltage-controlled synthesizer between 1945

and 1948 [66]. Le Caine had particular ideas about the use of force-sensitive keys for

the simultaneous control of volume, pitch and timbre. However, the timbre controls

23

became more detailed and were designed to be operated by the left hand using a

selection of controls separate to the main piano keyboard. These controls allowed the

performer to adjust the waveforms and formants of the output. The practice of

playing keyboard melodies with one hand while adjusting peripheral controls with

the other has become an enduring control technique that is built-into and encouraged

by many contemporary keyboard synthesisers.

2.1.7 Mellotron

Produced from 1963 to 1986, the Mellotron was the forerunner of the modern digital

sample-based keyboard [160]. Each key triggered a unique strip of magnetic tape for

the appropriate pitch, with moveable tape heads permitting the selection and

blending of different timbres.

2.1.8 Moog modular

The first production model of Robert Moog’s modular synthesiser design was

released in 1967. The innovative approach of designing individual modules

dedicated to specific signal processing tasks, coupled with the musician-friendly and

jargon-free interfaces, rapidly established Moog’s influence upon the music world.

The inclusion of a touch-sensitive ribbon controller, to complement the standard

piano key layout, became a recurrent theme in many of Moog’s designs [75].

2.1.9 Optigan

The Optigan was an unusual novelty instrument – a keyboard controlled optical

sampler released in 1971 that read a selection of loops from LP-sized discs [63].

Various discs were sold featuring different samples from a variety of genres and

musical styles. In addition to the main instrumental sounds that were controlled via

24

the keyboard interface (with a different loop for each key, analogous to the

Mellotron), there were a series of rhythms and sound effects that were triggered via a

small matrix of buttons next to the keys.

2.1.10 Synclavier

The first prototype of the Synclavier was developed in 1975 and the basic design

continued to advance and improve throughout the 70s and 80s [109]. A highly-

influential digital sampling workstation, it was used extensively by composers such

as Frank Zappa, Chick Corea and Joel Chadabe. The powerful FM synthesis

capabilities were complemented by a user-friendly interface that was designed

especially to appeal to the creative process of the working musician, not just the

academic research institutes central to its creation. The use of buttons and a large

control wheel for editing values was celebrated as an accessible alternative to

patching and algorithms.

2.1.11 ADS 100

The Advanced Digital Synthesizer was a high-end analogue device released in 1978

[192]. It featured a dual keyboard design that was microtonally tuneable in addition

to a video display for envelopes and disk drive. Only a small number of these

synthesisers and their descendants were made, with a retail price of tens of thousands

of dollars.

2.1.12 EDP wasp

The Wasp was a budget monosynth released in 1978 that had a 2-octave keyboard

with non-moving keys that responded to electro-static touch [192]. Its portability,

low cost and quirky design ensured its popularity and later models such as the Wasp

25

Deluxe and the Wasp Special featured real keys. A modified ‘keytar’ Wasp was also

produced by EDP in the early 80s.

2.1.13 Fairlight CMI

The Computer Music Instrument family were a series of powerful

sampling/sequencing workstations produced from 1979 to 1985. Aside from the

advanced sample manipulation tools built into the software, the CMIs were equipped

with a variety of input devices including pitch and modulation wheels, QWERTY

keyboard and a graphics tablet for drawing custom waveforms.[158]

2.1.14 Syntar

Created in 1979 by George Mattson, the Syntar was a monophonic performance

synthesizer designed to be worn like a guitar in order to free up the musician from

behind the keyboard [192]. The neck control featured nine spring-loaded continuous

controllers and three switches that allowed the user to perform pitch bends, filter

sweeps, modulation and other timbre-shaping effects. These controls in particular

allowed experienced players to develop a very smooth and expressive lead style

2.1.15 Roland SH-101

Roland’s 1980 SH-101 was a monophonic bass synthesizer that allowed the

performer to alter the VCF, pitch and LFO from the pitch bend control [192]. An

optional hand grip controller fitted onto the side of the casing to facilitate keytar-

style playing using a shoulder strap and featured an assignable button and

modulation wheel.

26

2.1.16 Yamaha DX7

Released in 1983, the Yamaha DX7 became massively popular as the first affordable

digital synthesizer [165]. Its distinctive FM synthesis sounds can be heard in many of

the most influential recordings of the 1980s. Some interesting design choices are also

worth taking note of – it was one of the first commercial synthesizers to have a full

set of MIDI ports and also featured a breath controller input. The lack of a familiar

interface of dials (programming was performed using a set of buttons, an LCD

screen and a single slider) was a barrier to learning how to customise patches for

many users. However, Yamaha would later release a range of expansion cartridges to

cater for a range of different sounds and styles.

2.2 Buttons and dials

2.2.1 Electrophon & Kurbelsphäraphon

The Electrophon was developed by Jörg Mager in 1921 for the performance of

microtonal music. The performer moves a handle across a semi-circular dial to

control a continuous pitch; there was no keyboard control. A later modification,

named the Kurbelsphäraphon, featured two switchable tuning handles and a double-

pedal mechanism to control volume. [43]

2.2.2 Dynaphone

The Dynaphone was a portable monophonic instrument invented by René Bertrand

in 1927 with the support of his friend and collaborator, the composer Edgard Varèse

[30]. Like the earlier inventions of Mager, the Dynaphone was operated without a

keyboard using a dial. Additional buttons and stops allowed the performer to alter

27

the timbre and volume of the output – foreshadowing the multi-controller approaches

of the latter half of the 20
th

 century.

2.2.3 Voder speech synthesizer

Homer Dudley’s 1939 invention was the first device capable of generating human-

like speech in realtime [53]. The Voder was operated using a combination of

specially-designed keyboards, a wrist bar and a foot pedal. The thirteen keys provide

access to a selection of vowel and consonant sounds, the wrist bar alternates between

a buzz tone and a hissing noise (for vowels and sibilants, respectively) and the foot

pedal controls the intonation. Live demonstrations of the Voder were given by expert

operaters, who could clearly hold conversations and even perform simple tunes using

the device.

2.2.4 Electronium Scott

The Electronium-Scott, created by Raymond Scott during the 50s, was an

instantaneous composition machine that was operated entirely via a series of buttons,

patch leads and dials [63]. It had no keyboard controls and is considered to be the

first ‘self-composing’ electronic instrument, using randomness and algorithms to

spontaneously generate music – the precursor of automation and generative

techniques that would form such an important part of live electronic music in the

digital age.

2.2.5 Wurlitzer Side Man

The Side Man was released in 1959 as a percussive accompaniment tool for

Wurlitzer’s range of organs [164]. It is the first drum machine to use electronically-

generated drum sounds. As well as providing a slider to change the tempo of the pre-

28

arranged beats, the Side Man featured 10 separate buttons which allow the user to

trigger individual drum sounds manually.

2.2.6 Roland TR-808

The 808 Rhythm Composer has an instantly-recognisable sound and visual layout –

the ubiquitous drum machine of the 80s and a vital tool for hip-hop and electronic

producers of the decade and beyond [192]. The simple, unambiguous sequencer

layout has been adopted many times in both hardware and software drum machine

controls.

2.2.7 Linn LM-1

Roger Linn’s classic drum machine used sampled sounds, in contrast to the analog

synthesis techniques used by the 808. It was followed in 1982 by the LinnDrum

which boasted an improved layout, more samples, live triggering capabilities and the

capacity for expanding the onboard samples using upgrade chips [158].

2.2.8 Dynachord Rhythm Stick

Another MIDI controller that is designed to be held like a guitar, the Rhythm Stick

(later renamed to The Jamma) was invented by Pete Jones specifically for the live

performance of electronic or sampled drum sounds [191]. An intuitive strumming

motion and clever fretboard-style design made it possible for performers to develop

quite an individual style with the instrument.

2.2.9 Akai MPC60

Designed by Roger Linn and released in 1988, the MPC60 was an integrated drum

machine, sequencer and sampling workstation that became very popular in

rap/R&B/hip-hop genres [109]. The drum pads, featuring aftertouch and velocity

29

sensitivity, are still regarded as some of the most ergonomic and highly expressive

controllers found in a synthesizer.

2.2.10 Axis 64

Peter Davies’ alternative keyboard controller utilises an isomorphic layout based

upon the Harmonic Table – replacing the standard manual keyboard design with a

honeycomb lattice of hexagonal keys [36]. Standard assignable potentiometers and

modulation/pitch bend wheels are also provided. The note assignments of the

keyboard itself are highly-customisable and particularly well-suited to alternate

tunings, microtonal music and strange keyboard layouts.

2.2.11 Jammer

Invented by Jim Plamondon in 2003, the Jammer is a style of musical interface that

is comprised of one (or more) isomorphic keyboard devices and set of thumb-

operated expressive controls, similar to those found in contemporary videogame

controllers [6]. Jammer-style keyboards utilise the Wicki-Hayden pitch layout which

allows players to perform a large variety of scales and patterns quickly and with

minimal hand movement. The thumb sticks provide an ergonomic means to control

further expressive parameters without compromising finger dexterity.

2.2.12 Monome

The Monome was responsible for igniting a global interest in minimalist generic

music controllers [124]. Released in 2006, it consists of a matrix of plain backlit

buttons in a wooden casing with a USB outlet. Its abstract appearance and flexibility

prompted a growing community of enthusiastic users to write and share software for

using the simple device for a huge variety of musical tasks – from the obvious step-

30

sequencing and pattern writing, to generative systems based upon cellular automata.

The Novation Launchpad controller, originally designed for use with Ableton Live,

has become a popular alternative for similar interface tasks due to its ready

availability (Monome units are produced in small runs and difficult to come by) and

significantly lower price [2].

2.2.13 Samchillian

The full name of this unique instrument design is ‘Samchillian Tip Tip

Tip Cheeepeeeee’ – a novel melodic lead instrument invented by Leon Gruenbaum.

The physical layout of the Samchillian is a standard QWERTY computer keyboard,

but the means of pitch selection is unique to the instrument. Rather than each key

triggering its own pre-assigned pitch or sound, the Samchillian layout assigns

various positive and negative interval types to each key (referred to as a ‘relativistic’

keyboard [56]). This facilitates rapid, pattern-based improvisations while making

pre-composed melody lines of any reasonable complexity quite difficult to perform

indeed. Nevertheless, the unique properties of the instrument make it a most

interesting example of the expressive potential of repurposed non-musical hardware.

2.2.14 Maschine

Maschine is a combination of music production and performance software and a

complementary hardware controller that offers the immediacy and physicality of a

hardware sampler with the added flexibility and depth of software sampling [130].

The device itself features a 4x4 matrix of multi-coloured velocity sensitive buttons

alongside a series of buttons, endless potentiometers and an endless rotary encoder.

Maschine has a well-supported and large user community and has become a popular

alternative to Ableton Live for live sample-based performance using controllers.

31

2.2.15 Arc

The Arc is a high-quality minimalist controller manufactured by Monome and

originally released in 2011 [89]. The continuous equivalent of the Monome grid

controllers, the Arc consists of two large endless rotary encoders (with push-button

functionality) surrounded by a strip of LEDs.

2.2.16 Tenori-on

Toshio Iwai, Japanese multimedia artist, designed this distinctive grid-based

performance tool which was released by Yamaha in 2007 [183]. Iwai explicitly

discussed his goal of reuniting the concepts of form and functionality in the age of

digital instruments, and the aesthetic qualities of the Tenori-on (frame, LED

patterns) are integral to the operation of the device itself. The high price was

prohibitive for many musicians, prompting the eventual release of a slightly cheaper

variant (TRN-O) and a mobile app (TNR-i) [182].

2.2.17 Zendrum

The Zendrum is a MIDI controller designed specifically for performing rhythmic and

percussive material in a live context [226]. The original design was based upon the

Drumitar, which was invented by the musician and composer Future Man. Zendrum

is distinct from other performance sampler style controllers for a number of reasons

– its ergonomic design, guitar shaped body and use of piezo microphones to detect

user input (far more sensitive than the force-sensing resistors found in most pad

controllers) are all indicative of a serious musician’s tool and the rise of ‘finger

drumming’ as a complex and respected form of musical expression.

32

2.2.18 Faderfox

Faderfox describes a line of generic MIDI controllers that feature a selection of

common input devices in various combinations and spatial arrangements [49].

Established by Mathias Fuch in 2004, the range is renowned for its build-quality and

versatility. While there is nothing especially novel about the sensors themselves, the

variety of potentiometers, buttons, faders and encoders point strongly towards the

modern digital musicians’ need for robust and non-prescriptive interfaces.

2.3 Ribbons and strips

2.3.1 Ondes Martenot

The inventor of this instrument, Maurice Martenot, was directly inspired to expand

upon the potential of the Theremin after meeting its creator in 1923 [26]. There are a

variety of control devices used in the more advanced forms of the Ondes Martenot –

including a ‘floating’ keyboard (with moveable keys that controlled vibrato of

discrete pitches), a ring attached to a wire (manipulated by the user to control a

continuous pitch, much like the Theremin, and forerunner of modern ‘ribbon’

controllers) and a removable drawer on the left of the instrument body featuring

switches that controlled timbre and an articulation key. This key is perhaps the most

influential on the playing style itself – whether the performer is playing using the

keyboard or the ribbon controller, no sound is generated unless the articulation key is

depressed. The key is also touch sensitive, allowing the performer to control the

dynamic range and duration of notes simultaneously. This interesting combination of

control modalities was inspired by Marenot’s own career as a cellist and resulted in

an expressive instrument that is still used in specialist cases today.

33

2.3.2 Hellertion & Helliophon

In 1929, Peter Lertes and Bruno Helberger designed one of the first electronic

instruments to use a fingerboard controller [32]. A conductive strip was pressed by a

performer, with the horizontal position controlling pitch and the pressure controlling

volume. Later models featured several strips arranged in a parallel formation to

facilitate polyphonic playing. In 1936, the Helliophon expanded the range of controls

to include two piano style keyboards, foot pedals for volume control and a knee lever

that controlled vibrato.

2.3.3 Trautonium

Adolf Trautwein first demonstrated his Trautonium in Berlin in 1930 – an electronic

instrument controlled by pressing a resistance wire suspended over a metal rail

[145]. Switches allowed the user to transpose the instrument and change the

combinations of harmonics in the tone, allowing a flexible control of timbre, while a

foot pedal changed the output volume. The playing style of the Trautonuim inspired

the modern ribbon controller. The composer Oskar Sala composed many pieces

specifically for the Trautonium – most famously the soundtrack to Alfred

Hitchcock’s 1963 movie The Birds.

2.3.4 Theremin cello

The Theremin cello (1930) resembles its acoustic counterpart in shape and size, but

features a black plastic film fingerboard instead of strings [63]. This allows the

performer to select a pitch while volume was controlled using a side-mounted lever.

Two rotary dials built into the body of the instrument itself allowed for timbre

modifications.

34

2.3.5 Buchla Thunder

A unique and visually striking controller designed by Donald Buchla in 1991, the

Thunder is a pure MIDI controller that consists of a selection of finger strips

distributed across a flat, portable surface [19]. The main strips can sense impact

velocity, finger position and touch pressure and can also be split into two virtual

strips each to double up on the number of control channels. The rest of the strips

sense velocity and pressure, but not position. The Thunder remained very much a

specialist device, due to its high price tag and complex programming system.

2.3.6 Swarmatron

The Swarmatron was released in 2009 and made famous by its use by Trent Reznor

in the soundtrack to the 2010 film The Social Network [129]. The eight built-in

oscillators can be tuned and detuned finely using the array of potentiometers, but the

main feature is the pair of ribbon controllers that can be used to move the overall

pitch centre independent of the other controls. The ability to simultaneously control

the relative pitch of all eight oscillators facilitates the creation of dense chordal

structures and smooth glissandi.

2.4 Gesture based systems

2.4.1 Theremin

The Theremin was invented in 1917 by Leon Theremin [26] and consisted of a

cabinet with two antennae – a vertical pitch antenna and a looped volume antenna

protruding from the side of the instrument (although earlier experiments used a foot

pedal for volume control). The performer controls a monophonic continuous tone

using the proximity of their hands to the antennae. While difficult to play, given the

35

complete lack of tactile feedback and the resulting need for great physical discipline

on behalf of the performer, virtuosic performers such as Clara Rockmore and Lydia

Kavina helped to establish the Theremin as more than just a novelty instrument. The

Theremin’s bimanual, open-handed control system has had particular resonance in

recent years for the digital musician, with the advent of portable and affordable

motion capture systems such as the Kinect and Leap Motion. One of the first

experiments typically undertaken by digital musicians when working with new

control devices is to model the behaviour of a Theremin.

2.4.2 Radio Baton

Max Matthews developed this unique control system with Bob Boie in the early

1980s [113]. The instrument uses electric field sensing to track the three-dimensional

movements of two batons above a sensing board. A number of foot pedals and

potentiometers could also be attached to the system. Matthews performed and

lectured with his Radio Baton for many years, demonstrating its usefulness at tasks

as diverse as triggering a preset series of notes, moving in three-dimensional

parameter spaces and as a percussion instrument.

2.4.3 Laser harp

The Laser Harp is a visually-stunning instrument that was made popular by the

composer Jean-Michel Jarre in his live shows [175]. There are a variety of different

techniques that can be used to accomplish the effect of a laser harp, all of which

depend heavily on the budget and ambient lighting conditions of the performance.

There are two main approaches to a laser harp design – framed and unframed (also

known as ‘infinite’) beams. Framed instruments can resemble an acoustic harp

design and use photoresistors to detect blocking of the beams, whereas unframed

36

instruments employ far more powerful lasers that rely upon the light being reflected

back for hand detection.

2.4.4 Buchla Lightning

The Buchla Lightning controller consisted of two infra-red light emitting wands that

are waved in front of a remote sensor head in front of the performer [20]. Both

horizontal and vertical positions are sensed by the Lightning and the wands also

feature switches for additional control.

2.4.5 Very Nervous System

David Rokeby’s Very Nervous System is a good example of a very popular approach

to musical interaction for art installations, galleries, dance, and other art forms

featuring camera-based motion tracking instruments [120]. The instrument is

markedly diffuse, as opposed to other interfaces that are small and focused, and this

characteristic was frequently exploited in the many pieces that Rokeby composed

specifically for the system. This immersive contactless style of interface would re-

emerge in popularity thanks to the development of affordable webcams and gestural

control systems in recent years.

2.4.6 Wii Remote

Launched in late 2006, the Nintendo Wii Remote (or Wiimote, as it is often named)

has become a popular tool for musical experimentation due to its low price,

portability, ergonomic design and sheer range of sensors [131]. The remote itself

features 12 digital buttons, an accelerometer, an infrared camera and can be

expanded to include a gyroscope (via the Wii Remote Plus module). The ‘remote’

label is something of a misnomer when the device is isolated from the gaming

37

console it was originally designed for – the unit communicates via Bluetooth and

therefore does not restrict the user to pointing at any receiving device (with the

singular exception of the infrared camera which is used with a peripheral sensor bar

or any source of infrared light). Additional features include a small speaker and four

LEDs on the body itself and the ability to vibrate. There are a range of accessories

that can be attached to expand upon these sensors, the most popular of these being

the Nunchuk – an additional handheld controller that features an analog joystick, two

trigger buttons and another 3-axis accelerometer. The Wii Remote has been used for

a wide variety of musical tasks and experiments, with many popular computer music

languages and software featuring dedicated libraries and features designed to work

with the controller (see section 7.9.4 for more information).

2.4.7 Airpiano

The Airpiano is a control surface developed in 2007 that consists of 8 infrared

proximity sensors mounted in a flat rectangular frame [4]. These sensors are capable

of creating up to 24 virtual keys and 8 virtual faders, which are manipulated by the

performer moving their hands over the device. A total of 40 LEDs provide visual

feedback to the performer. The Airpiano can also take input from an optional

footswitch.

2.4.8 SoundCatcher

SoundCatcher is a live-looping and sample manipulating tool from 2009 that uses

two ultrasonic sensors to capture open-air gestures from a performer [195]. It was

designed primarily with vocalists in mind and can be mounted on a microphone

stand for live performances. Vibrotactile and visual feedback cues are used to ensure

that the vocalist remains within the active sensing range and a footswitch provides a

38

further unobtrusive control channel. Typical looping parameters (such as start/end

points, crossfade size, etc.) can be controlled in realtime by the performer as they

sing.

2.4.9 Peacock

Developed in 2009 as an alternative to wearable and camera-based open handed

gestural control systems, Peacock consists of a box shaped interface with 35 infrared

proximity sensors facing upwards towards the performer [122]. The instrument can

detect three-dimension movements above the surface, without any disruptions from

ambient lighting conditions, and send the data to a custom PD patch for musical

output.

2.5 Wind controllers

2.5.1 Lyricon

Invented by Bill Bernardi, the Lyricon was the first commercial wind-controlled

synthesizer [75]. It paved the way for the Yamaha WX series and Akai’s EWI

controllers.

2.5.2 Casio DH range

From 1986, Casio released a series of breath-controlled synthesizers known as the

Digital Horn range [143]. The instruments were toy-like, resembling a plastic

saxophone, but had a number of interesting features that appealed to the more serious

musician – chiefly, the ability to use external amplification instead of the built-in

speaker and the inclusion of MIDI out.

39

2.5.3 Yamaha WX range

Yamaha’s range of wind controllers hit the consumer market in the mid to late 80s

with a variety of interesting interface features – including a choice of mouthpieces,

wind and lip control sensors, pitch bend wheel, LED tuning indicators, assignable

fingerings and MIDI out [120].

2.6 Combined controllers

2.6.1 Composer-Tron

Osmond Kendall’s 1953 invention was, like Scott’s Electronium, a step towards

making electronic instruments for the composer as well as the performing musician.

The unique innovation of the Composer-Tron was its ability to ‘read’ shapes drawn

upon its surface using a special grease pencil [153]. These shapes could be used to

represent anything from note envelope shapes to rhythmic passages. The idea of

using a graphics tablet or pen as a musical performance tool would be revisited later

in the century, both by Iannis Xenakis’ Unité Polyagogique Informatique CEMAMu

(UPIC) in 1977 and also by the use of Wacom tablet devices as musical interfaces at

UC Berkeley’s Center for New Music and Audio Technologies (CNMAT).

2.6.2 Buchla

From 1963, Donald Buchla’s early synthesiser designs were intended for the

performance of experimental music and had some unusual control features –

including touch and resistance sensitive plates. Synthesisers such as the Multiple

Arbitrary Function Generator and the Source of Uncertainty allowed users to

dynamically generate random values for many different parameters. [18]

40

2.6.3 VCS3

The VCS3 was a unique monosynth with a distinctive appearance that was first

released in 1969. Despite its portable design, the VCS3 was in fact a modular

synthesiser which permitted a variety of complex patching and signal routing

techniques. This was accomplished via a small pin-grid which replaced the more

cumbersome wired patch bays common to other modular systems at the time. A

joystick was also used to control modulation effects. Later versions produced in the

1970s both expanded the system into larger units (Synthi 100) and packaged it in an

ultra-portable case (Synthi A / Synthi AK) [145].

2.6.4 GROOVE system

The GROOVE (Generated Real-time Output Operations on Voltage-controlled

Equipment) system was developed by Max Matthews and F. Richard Moore in 1970

[30]. A highly-adaptable system for music composition and live manipulation of pre-

composed material, the system was able to store the input actions of a user (keyboard

operation, turning dials, etc.) and use the data selectively to control the variables of

an analog synthesiser. It represented a large step forward in the development of

versatile, continuous parameter control, as distinct from event-based control.

2.6.5 Casio VL-1

Also known as the VL-Tone, this extremely-simple and portable synthesiser enjoyed

great popularity throughout its lifespan (1979-1984) [199]. The keys were tiny and

soft, with no aftertouch, weight or velocity control, but this led to some interesting

and unexpected uses of the hardware – for example, the built-in speaker was

commonly cupped with the performer’s hand and used to generate a rudimentary

filter and/or vibrato effect [222].

41

2.6.6 Synthaxe

Synthaxe was a guitar-like MIDI controller that was originally produced in 1986

[201]. It generated no sound itself, instead sending performance data to an external

synthesizer module. Two sets of strings, nine keyboard keys for note triggering and

an assignable tremolo handle made this a powerful controller, but the prohibitive

cost (c. £10k) prevented any kind of mainstream use. The Synthaxe did, however,

pave the way for more cost effective guitar-to-MIDI solutions in later years, such as

those produced by Roland.

2.6.7 Ztar

The Ztar range of MIDI controllers are characterised by their guitar-like bodies and

fretboards – unlike a keytar, there are no keyboard style keys present. Instead, the

Ztar features separate buttons for each individual fret position and a set of stringlike

triggers for actuating notes [173]. Newer models feature additional sensors such as

breath controllers, ribbon controllers and joysticks and the overall design approach

remains a popular choice for serious guitar synthesizer players.

2.6.8 You Rock Guitar

The You Rock Guitar is an affordable dedicated MIDI guitar controller that uses

‘virtual strings’ on the fretboard as opposed to the buttons common to many similar

controllers [101]. The pressure-sensitive frets detect finger positions while a

stringlike device on the body of the guitar detects note on events and velocity. The

controller also provides a selection of complementary input devices built into the

body, including a modulation wheel, tremolo arm and ‘damping bar’ to simulate

string muting. Starr Labs also produces a variety of alternate keyboard layout

controllers in a similar style. [173]

42

2.6.9 Reactable

Developed at the Pompeu Fabra University of Barcelona in 2005, the Reactable is a

unique tangible tabletop instrument that uses camera-sensing of unique symbols

(fiducial markers) mounted on the bottom of plastic blocks to create and modify

digital modular synthesizer setups in real time [77]. The Reactable is a visually-

striking instrument that is collaborative, intuitive and employs an unambiguous

feedback system with no hidden values or confusing menus – making it ideal for

galleries, art installations and interactive performances with nonexpert users. The

Tangible User Interface Objects protocol (TUIO) [187]

and computer vision software

ReacTIVision that were both developed as part of the Reactable project have become

important tools in their own right, with ports and libraries available for most

operating systems and programming languages. A mobile software emulation of the

Reactable was released in 2010 [150].

2.6.10 Silent drum

The Silent Drum, developed in 2006 by Jaime Oliver and Matthew Jenkins, was

originally designed as a percussion controller [137]. However an alternative

approach to using the device without sticks or mallets emerged – the performer

manipulates the drum membrane with their hands in order to control the output. This

Silent Drum has been made open source and has won numerous prestigious design

awards.

2.6.11 T-Stick

The T-Stick instrument has been developed and refined by Joseph Malloch since

2005 [108]. It is a gestural controller comprising numerous sensors installed within a

large tube, which the performer manipulates during performance. Touches, taps,

43

twists, squeezes and shakes are amongst the variety of possible gestures that can be

detected by the device, which has been used extensively to perform experimental

pieces written especially for the instrument.

2.6.12 Eigenharp

The Eigenharp is a high-end controller designed by John Lambert and launched in

2009 [44]. The instrument encompasses several different types of control surface in

an ergonomic stick-like shape – these include a matrix of velocity sensitive keys

(that also act as joysticks, with 6 possible directions of movement), a wind controller

style mouthpiece, a number of ribbon controllers, and percussion keys on the larger

models.

2.6.13 Orbit

The Numark Orbit is a handheld remote MIDI controller whose central feature is a

dual-axis accelerometer [135]. In addition to the X and Y data, the controller features

a large central jogwheel and 16 assignable buttons split into 4 separate banks. An

affordable price and striking tech demos have made the Orbit quite a popular

interface during its short lifespan.

2.7 Two-dimensional surfaces

A more detailed discussion of two-dimensional surfaces for music control can be

found in Chapter 6. This section lists a number of devices not explicitly covered

elsewhere in the thesis.

2.7.1 Misa Kitara

The Misa Kitara was demonstrated in videos online from 2011 – an electronic guitar

controller and synthesizer with 24 button frets and an 8-inch touchscreen in place of

44

the strings on the body itself [121]. A wide variety of synthesizer patches are

provided, which can be customised by the user, and played via various multi-touch

gestures upon the screen while the other hand selects notes and chords. The device

was popularised by Chris Wolstenholme from Muse, who uses it in lieu of a bass

guitar in a number of their songs (most notably, the 2012 single ‘Madness’)

2.7.2 Madrona Soundplane

The Soundplane, released in 2011, is a continuous force-sensing membrane set in a

rectangular walnut shell [105]. Multiple touches are sensed in three dimensions –

horizontal, vertical and pressure values are all available for individual touches. The

playing surface can be set up to emulate a fretted string instrument, divided into an

arbitrary number of zones, or used in a continuous style analogous to a fretless

stringed instrument.

2.7.3 Lemur

The Lemur was first demonstrated in 2004 and released worldwide the following

year to great acclaim [74]. A dedicated multi-touch music controller, the Lemur

boasted a sturdy metal casing, sleek aesthetic and highly-customisable interface that

appealed to professional electronic musicians. The virtual canvas of faders, buttons

and other interactive graphical objects could be changed to suit a variety of musical

tasks, and the addition of a few hardware buttons ensured that changing layouts

during performance was a simple and efficient task. The Lemur was discontinued in

light of the competition from tablet applications in later years, but has subsequently

been released as an app for iPad and Android devices [99].

45

2.7.4 Haken Continuum

The Continuum was developed by Lippold Haken and released commercially in

2002 [58]. A large fingerboard controller with a distinctive red playing surface, the

Continuum features three dimensions of control – horizontal position, vertical

position and pressure. The standard style of setup uses the x-axis for pitch selection

(analogous to a manual keyboard layout), y-axis for timbre-shifting effects and the z-

axis or pressure to determine amplitude. Jordan Rudess, keyboard player for the band

Dream Theatre, is an active user and promoter of the instrument.

2.7.5 SLABS

SLABS consists of two arrays of pressure sensitive touch pads (comprising 24 and

32 pads) designed to be played by separate hands. Each individual pad outputs three

values – X, Y and pressure – to a series of programs written in Max/MSP. The

creator of SLABS, David Wessel, composes and performs frequently using the

instrument [207].

2.8 Wearable controllers

2.8.1 The Hands

Michael Waisvisz created this unique interface in 1984 in an attempt to fully exploit

the expressive potential of hand, arm and finger gestures for musical performance

[200]. Two ergonomically shaped plates were equipped with various switches and

potentiometers while also measuring the hand-tilt angle (using mercury switches)

and the distance between both hands (using ultrasound sensing). Apart from the

physical interface, The Hands system used a selection of Control Signal Processing

Algorithms to introduce randomness and artificial ‘friction’ with a view to enhancing

46

the expressiveness of the performance. Waisvisz’s work was far-reaching and

illustrated to many the exciting potential of what he referred to as live composition.

2.8.2 Lady’s glove

Sound artist and performer Laetitia Sonami began work on the first version of her

Lady’s Glove in 1991 – a set of kitchen gloves with Hall effect transducers in the

fingertips and a magnet on the right hand allowing varying voltages to be sent to a

MIDI convertor and used to control synthesizers. Later versions added

microswitches, a pressure pad, resistive strips, wrist-mounted accelerometers and

even a miniature microphone. Sonami has performed extensively with her invention,

and the successive improvements and modifications of her design are indicative of

the important role of feedback, reflection and refinement for the digital musician.

Sonami describes her creation:

The intention in building such a glove was to allow movement without

spatial reference, and most importantly to allow for multiple, simultaneous

controls. The sounds are now "embodied", the controls intuitive, and the

performance fluid. It has become a fine instrument. [170]

2.8.3 P5 glove

The p5 glove was released in 2002 and functioned as a regular mouse as well as a 3D

controller for a small number of PC and Mac games. Its wide availability and low

cost have made it a popular option for homebrew musical applications [230].

2.8.4 Hot hand

Initially released in combination with a series of specialist effects pedals in 2006, the

Source Audio’s Hot Hand is a wireless controller that is strapped onto the users’

47

hand or wrist and sends MIDI control messages to a remote piece of software or

hardware [171]. The device contains a three axis accelerometer that can be mapped

to, for example, cutoff and resonance of a filter. More unusual applications employ

the device as a gestural compliment to standard electronic performance tools [218].

2.9 Communication protocols

2.9.1 MIDI

The MIDI (Musical Instrument Digital Interface) standard was introduced in 1983 to

facilitate communication between different synthesizers that supported the protocol

[119]. MIDI has had a significant influence upon the development of the commercial

synthesizer world and has endured for over three decades in various forms. Its initial

goal, communicating between different pieces of hardware, expanded to include

sharing of sequences and notation, composition using computers, creating generic

control devices to control different synthesizer modules, etc. For all of its usefulness,

MIDI retains a narrow focus upon event driven music creation and discrete pitch

structures. It was introduced at a time when keyboard interfaces were the norm for

electronic music control in the commercial sphere and helped to establish the

arguably-limiting predominance of musical controllers modelled upon the traditional

piano or organ design. MIDI, despite these shortcomings, is still very much the most

widely-supported protocol for communication between electronic music software

and hardware.

2.9.2 ZIPI

A (now-defunct) musical protocol that was developed as a collaboration between

Zeta Music and the Centre for New Music and Audio Technology at the University

48

of California, Berkeley (CNMAT) [111]. ZIPI was a comprehensive musical

protocol that sought to address the lack of support offered by MIDI in the case of

non-keyboard instruments. Additional parameters related to sound generation and

timbre were also proposed (e.g. brightness, roughness, etc.). Despite the efforts of its

creators to promote it, ZIPI was never adopted by a significant enough number of

users to ensure its survival.

2.9.3 OSC

The Open Sound Control specification, or OSC, was designed to address and surpass

many of the limitations of the MIDI standard [141]. It uses a system of generic

message bundles that, unlike MIDI, can contain multiple types of data and are

identified via a customisable hierarchical system of unique descriptive names. OSC

data is of a significantly higher resolution than MIDI and can be easily transmitted

over the internet and wireless networks, as well as physically linked devices, at high

speed. Its flexibility can be somewhat problematic, due to the infinite variety of

naming schemes that different users can employ, but it remains the most efficient

and flexible communication protocol for interactive digital multimedia systems.

2.10 Real-time software

2.10.1 Csound

Csound is an open source, cross-platform music programming language which

evolved from the MUSIC-N series. Csound has an extremely rich catalogue of unit

generators (essentially building blocks for synthesis and signal processing

algorithms) and an active worldwide community that continues to contribute openly

to its development [33].

49

2.10.2 Max

Max is a visual programming language for music and multimedia applications that

was originally designed by Miller Puckette at IRCAM during the 1980s. Max is

highly extensible, with a large, ever-growing database of user-generated routines,

and remains a popular choice for live signal processing, installations and

performance [227].

2.10.3 Pure Data

Pure Data is an open source visual programming language originally developed by

Miller Puckette. It has many similarities to Max, most notably its visual patching

interface, but also features a wide variety of graphical data structures which can be

employed to generate GUIs, graphic scores, etc. The open nature of the software has

also led to a large user community that share reusable, modular pieces of code

(known as patches) that are often usable as standalone programs [229].

2.10.4 SuperCollider

SuperCollider is a relatively new music programming language (originally released

in 1996 by James McCartney) that is largely used for real-time audio processing and

algorithmic composition [231]. The environment operates in two parts, scsynth (the

server) and sclang (the client), that communicate using Open Sound Control. While

it is freely available on most platforms, users generally prefer Mac or Linux

operating systems as the Windows development tends to lag behind.

2.10.5 Music Mouse

Music Mouse was a piece of software written by Laurie Spiegel in 1985 for the Mac,

which was later ported to the Commodore Amiga, Atari ST and other popular

50

systems of the era. Essentially a live performance tool, Music Mouse automates

many aspects of the generation of musical material – with the ability to use preset

chords, melody and rhythmic patterns, harmony etc. The performer is thus free to

concentrate on more high-level concerns such as orchestration and articulation.

Spiegel championed the use of automation and logic to liberate the creativity of the

user, and proposed that such structures can serve to support, extend, and amplify our

ability to express and embody the undefinable qualities of aesthetic meaning which

we are forever trying to capture [172].

2.10.6 Ableton Live

Since its first release in 2001, Ableton Live has changed the way that musicians

interact with and think about computers in live performance [1]. Live is aesthetically

and functionally similar to most other Digital Audio Workstations (DAWs), but its

particular focus upon live sound manipulation and its myriad features for the

preparation of sequences and samples for performance have made it an indispensable

tool for a vast number of electronic musicians worldwide. The binary functionality

of the Arrangement View and Session View is particularly of note – the former

resembles a typical linear audio/MIDI editing program, while the latter has more in

common with a hardware sampler or mixing desk and is mostly used for triggering

of loops, samples and sequences.

2.11 Discussion

Reviewing the contents of this chapter, we can infer a series of aphorisms that are

informed by the trends in electronic music performance tools developed throughout

the past century. These observations represent a concise way for us to contextualise

our complex relationship with music performance and technology:

51

1. Powerful tools for the performance of electronic music are not necessarily

reliant upon new technological innovations

This statement becomes more apposite as we progress into the latter half of

the 20
th

 century. Some of the most radically influential and widely-used

control modalities for the performance of electronic music have been based

upon a simple repurposing of readily-available hardware. Buttons (Roland

TR-808, Linn LM-1, Akai MPC60, Monome, Axis 64), cameras (Very

Nervous System, Kinect), and accelerometers (Wii Remote, Hot Hand, Orbit)

have all, like the vinyl turntable, been re-appropriated for a wide variety of

musical tasks.

2. Cost-effective digital circuitry and high-capacity storage devices led to a

homogenisation of keyboard-based synthesisers

Analogue circuitry was used in the 1950s because it was cheap, easy to

integrate into new systems and well-understood. The same could be said of

subtractive synthesis and the keyboard interface which still dominates the

commercial market. The development of cost-effective digital circuitry for

FM synthesis, coupled with ROM chips that could accommodate large banks

of samples, led to a surge of interest in FM and sample-based synthesis. Once

this technology became powerful and popular enough, the distinctions

between various synthesiser and keyboard manufacturers started to blur and

break down. This prompted a mass homogenisation of digital music

workstations in the late 1980s and throughout the 1990s, as manufacturers

focused upon packing a wide selection of sampled instruments into their

products.

52

3. The introduction of standard communications protocols for digital musical

instruments, alongside the widespread availability of personal computing

systems, has prompted a change in direction

MIDI has, for all its limitations, been instrumental in the movement towards

more expressive performance equipment for the digital musician. The

separation of synthesiser modules and control surfaces in the commercial

sphere has made the development and acquisition of high-quality controllers

a priority for performers. While MIDI was at the forefront of a wave of

keyboard-based controllers, the gradual adoption of OSC seems to have

enabled a further shift away from single-purpose instrumental designs.

4. The development of performance control surfaces has been heavily-

influenced by the development of synthesiser hardware

Early modular systems relied heavily upon patching for synthesis control,

leading to a predominance of cables and sockets on the front panel of the

instrument. As the technology developed, common signal flow decisions

were allocated switches and knobs that began to dominate the control

surfaces of the late 1970s and early 1980s. The digital technology of the

1980s led to a much more minimalist style of interface, with multi-function

buttons and LCD displays becoming commonplace. Again, lowering costs

and increasing processor power led to the widespread and heavy use of built-

in screens on devices, with more expensive models featuring detailed multi-

menu operating systems. Hardware controls, such as knobs, buttons and

faders, briefly became ancillary devices. The desire for customisation,

alongside the rapid rise of the touch screen or tablet computer as a musical

controller in its own right, has since ushered in a new level of interest in

53

generic, assignable control devices – modern controllers typically feature a

mixture of knobs, faders, dials and buttons with indeterminate functionality.

5. The production and/or preparation of musical material has become a more

integral part of live performance practice

In the past, a combination of ergonomic concerns, processing speeds and the

predominance of single-purpose hardware/software tools led to a separation

of multiple processes common to digital music creation. Composing,

recording, processing, arranging and playing material were, out of necessity,

separate activities. The integration of many of these processes into popular

performance software, such as Ableton Live, has led to a rise in techniques

such as live sample manipulation, pattern editing and loop-based

performances. Many musicians using digital technology (particularly in the

case of looping and sampling) expose their audience to the creative process

by generating their material entirely on stage.

6. There has been a significant rise in the popularity of contactless gestural

sensors

The use of nonphysical, nonmechanical gestures (see section 3.2.2) for

musical control was, until quite recently, restricted to very specialised

contexts due to both the expense of the hardware and the particular ambient

conditioners necessary for it to function correctly. The emergence of

affordable and powerful camera-based systems such as the Playstation

Eyetoy, Microsoft Kinect and the Leap Motion controller has opened up the

possibilities of contactless gestural music performance to a widespread

community, whose interest in motion control has already been piqued by

devices such as the Nintendo Wii Remote.

54

7. Electronic instruments can no longer be easily divided into categories of solo

or accompaniment instruments – recent designs favour an integrated

approach

A wide variety of acoustic instruments from around the world can be

categorised according to their typical role in a group performance, either as

solo or accompaniment instruments. Until quite recently, electronic

instruments often followed this pattern. Drum machines, sequencers, chord or

pad-based synthesiser patches and samplers could, depending on the context,

be allocated an accompanying role in relation to more melodically-focused

devices such as the Theremin or monophonic synthesisers. Modern systems

can operate equally well in both roles and often permit the performer to

accompany themselves using layers of pre-arranged material or similar

automated processes.

8. We are currently operating within the controller era – where generic

customisable tools are preferred over single-purpose digital instruments

The concurrent and complementary roles of the digital musician – as

composer, sound engineer, producer, programmer and performer – are both

reflected and enabled by the wide variety of generic control devices that are

available today. Contemporary electronic musicians are far more likely to be

found using a laptop and USB control device than a keyboard synthesiser –

the separation of software and hardware (alongside the variety of generic

controllers available) allows musicians to choose the precise set of controls

that best suit their live performance requirements. Today, the ability to

radically customise a new piece of musical equipment and incorporate it into

an existing system is not just highly praised, it is expected.

55

2.12 Conclusion

We have examined a wide selection of influential tools for the performance of

electronic music from the late 19
th

 century to the present day. While there are several

strong examples of technological innovation acting as a catalyst for dramatic musical

invention (Teleharmonium, Theremin, Moog modular, Reactable) there are many

more instances where a novel, apposite juxtaposition of existing technologies has led

to the development of radically-experimental instrument designs and performance

techniques.

 There is clear evidence of this trend in the popular and new interface designs

of the past two decades – where some of the most highly respected and coveted

interfaces (Monome, Arc, Haaken Contiuum, Zendrum) are designed entirely around

a selection of well-established and relatively simple sensors. Informed by this

survey, we arrive at a series of design aphorisms that support the concept of a

controller era. This recent interest in generic controllers is indicative of a worldwide

community that is beginning to look beyond the facile features of novel controllers

and take a greater interest in the interactive processes at the heart of digital musical

instrument design.

56

Chapter 3. Digital musical instrument design

“Perhaps uniquely in the history of the performance of music, we are able to

separate entirely the production of sound from the means used to control it.”

-Ross Kirk, in New Digital Musical Instruments:

Control and Interaction Beyond the Keyboard [120]

This chapter outlines the key concepts of digital musical instrument design –

discussing the literature, definitions and design conventions of modern musical

controllers. It contains a comprehensive summary of conceptual models that are

useful for understanding the current state of the art – including traditional

organology, control dislocation, the digital musical instrument, Miranda &

Wanderley’s classification system (hyper/extended instruments, instrument-like

controllers, alternative controllers, etc.), the controllerist ITCH model (Instrument,

Transfiguration, Conjuration, Hybrid), various types of mapping schemes (one-to-

many, many-to-one, etc.) and so on.

This chapter also allocates some space to the philosophical discussion that

has taken place regarding the difference between a ‘controller’ and an ‘instrument’.

This, in turn, introduces the importance of considering the performer’s point of view,

a vital recurring theme throughout the rest of this thesis. We are also introduced to

the argument concerning the separation between the music and the means by which

it is performed. The main purpose of this discussion is to map-out the conceptual

landscape that is explored, in greater detail, throughout subsequent chapters.

57

3.1 Core concepts

This section introduces the concept of a digital musical instrument and differentiates

it from both electronic instruments and controllers. The model of control dislocation,

a vital aspect of any digital musical instrument, is described in detail and the roles of

its constituent parts are made explicit.

The term digital musical instrument is used to denote any musical system

that contains both:

 A control surface (also referred to as a gestural or performance controller, an

input device, or a hardware interface)

 A sound generation unit

Both of these modules are independent entities that exchange information via

mapping strategies [120] – the diagram below is a basic representation of this model.

Figure 3.1: Basic representation of a digital musical instrument

The most fundamental aspect of this concept is the separation of the

instrument into two distinct units. The gestural controller is where physical

58

interactions performed by the user are sensed. The sound production unit interprets

data from the controller and uses it to drive some kind of synthesis or digital signal

processing algorithms. This basic model is shown in Figure 3.1.

The concept of this division of the system into two distinct parts, referred to

here as control dislocation is critical to understanding the design issues that face

musicians using digital musical instruments. The term has been used to describe the

difficulties faced by performers using tape/electronics live [45] but for the purposes

of this description no pejorative connotations are intended. It is best described via a

comparison with traditional (acoustic) instruments, which relied exclusively upon the

acoustic properties of tubes, strings and membranes until the invention of the first

electronic instruments in the late 19
th

 century [120].

This means, in essence, that the sound being produced and the means of

performance were inexorably and intrinsically-linked. In other words, the playing

methods imposed by acoustic instruments are determined by their physical

construction [78]. This connection is totally-absent in the case of digital musical

instruments: the connection between the action of a performer and the resulting sonic

behaviour is completely arbitrary and designed.

The nature of this connection determines the relationship between the two

units and is referred to as the mapping layer. This consists of the liaison strategies

between the actions of the performer and the sonic behaviour that they cause or

influence and will be the subject of much discussion throughout this thesis. Two

digital musical instruments that consist of identical pairs of gestural controller and

sound production units may behave in any number of entirely different ways

according to the mapping strategy in use: it is the very essence of a digital musical

59

instrument and determines to a large extent the psychological and emotional state of

the user during performance [70].

The presence of feedback in this system should also be noted. Contrary to

what initial impressions might suggest, primary feedback has little to do with sound

output. The primary feedback of any digital musical instrument comes from the

physical interactions, if any, that the performer has with the control surface itself.

The experience of sound (or any media) that is generated in response to user input is

considered secondary feedback, for the purposes of this model, in keeping with the

model proposed by Wanderley in [233]. Regardless of the source, the feedback

mechanisms employed within a digital musical instrument act as cues-for and

reinforcements-of user articulation. In some cases, the feedback mechanism can

exert a direct influence upon the control of the instrument itself – audio within a

feedback loop can be analysed and used to generate or influence control signals, for

example. The model of digital musical instrument presented here will obviously

require some modification in special cases like these, as the feedback becomes part

of the controller itself, but the vast majority of designs fit into this diagram

comfortably.

This diagram serves mainly to illustrate the basic structure common to all

digital musical instruments - there are many, many more factors at play that could

potentially be incorporated into this view. Research on new digital musical

instruments often focuses upon a specific aspect of this model (input devices,

mapping, feedback, etc.) and attempts to expand our understanding of it. For

example, a more detailed diagram is presented as Figure 3.2 which shows an

expanded view of the user experience in addition to the units described above.

60

Figure 3.2: Adding ‘the performer’ to the digital musical instrument model

61

The relationship between our perception of acoustic instruments and digital

instruments is something that is worth examining for the prospective designer; an

awareness of the relative strengths and weaknesses of both fields can often act as a

catalyst for both stimulating discussion and design innovation. The comments

gathered by Magnusson and Mendieta in their 2006 survey (reproduced here as

Table 3.1) provide a succinct introduction to some of the most pertinent issues that

arise when comparing both types of instrument:

Acoustic – Positive Acoustic - Negative

Tactile feedback

Limitations inspiring

Traditions and legacy

Musician reaches depth

Instrument becomes 2
nd

 nature

Each instrument is unique

No latency

Easier to express mood

Extrovert state when playing

Lacking in range

No editing out of mistakes

No memory or intelligence

Prone to cliché playing

Too much tradition/history

No experimentation in design

Inflexible – no dialog

Less microtonality or tunings

No inharmonic spectra

Digital – Positive Digital - Negative

Free from musical traditions

Experimental – explorative

Any sound and any interface

Designed for specific needs

Freedom in mapping

Automation, intelligence

Good for composing with

Easier to get into

Not as limited to tonal music

Lacking in substance

No legacy or continuation

No haptic feedback

Lacking social conventions

Latency frequently a problem

Disembodied experience

Slave of the historical/acoustic

Imitation of the acoustic

Introvert state when playing

Table 3.1: Frequent comments on the positive and negative aspects of

acoustic instruments and digital instruments [106]

62

3.2 Classification of digital musical instruments

There is a very real danger, when looking at the vast selection of musical devices at

our disposal today, of becoming distracted by the sheer variety of approaches to

electronic music creation [107]. Systems of classifying digital musical instruments

vary in their approach due to the somewhat abstract nature of their composition, as

seen in the previous section. Regardless of their different priorities, these systems

provide useful conceptual tools for discussing and developing our understanding of

interactive musical systems.

3.2.1 The Hornbostel-Sachs system

The science of classifying musical instruments is known as organology. The most

widely-adopted system was proposed by Erich von Hornbostel and Curt Sachs in

1914. This macrotaxonomy – known as the Hornbostel-Sachs system – groups

instruments in a hierarchical structure with a numerical referencing system based-

upon the Dewey Decimal System. Traditionally the Hornbostel-Sachs system had

four main categories, each of which are divided into a multitude of sub-

classifications:

1. Idiophones: “The substance of the instrument itself, owing to its solidity and

elasticity, yields the sounds, without requiring stretched membranes or

string”

2. Membranophones: “The sound is excited by tightly-stretched membranes”

3. Chordophones: “One or more strings are stretched between fixed points”

4. Aerophones: “The air itself is the vibrator in the primary sense” [64]

Two different approaches to accommodating electronic instruments within the H-S

system are introduced in [64]. The first of these emphasises the importance of the

63

presence of an oscillator in an authentic member of the electrophone family [10].

The second adopts a more modular view – seeing the electronic instrument as an

assemblage of distinct elements and using a mathematical system to give a more-

complex and accurate description of its constituent parts.

 These discussions, while lively and thought-provoking, serve to illustrate the

futility of classifying devices of such intrinsic malleability as electronic musical

instruments within a scheme that was not originally designed to accommodate them.

The rapid growth of new musical ideas, technology and ways to combine the two has

established electronic instruments as the perfect reinforcement to Hornbostel and

Sach’s opening caveat:

Treatises on systems of classification are by and large of uncertain value. The

material to be classified, whatever it may be, came into existence without any

such system, and grows and changes without reference to any conceptual

scheme. The objects to be classified are alive and dynamic, indifferent to

sharp demarcation and set form, while systems are static and depend upon

sharply-drawn demarcations and categories. [64]

3.2.2 Atau Tanaka – physical/mechanical

Atau Tanaka was the first musician to work with BioMuse – a unique performance

system that generated control data for music and visuals by measuring bioelectric

signals produced by the human body. Tanaka used the system to perform with a trio

called Sensorband (alongside Zbigniew Karkowski and Edwin van der Heide)

from1993-2003 [163]. His classification for gestural controllers is concise and

focuses upon the relationship between the performer’s body and the system [179].

Controllers are simply grouped according to two different categories – namely, their

64

mode of interaction (physical or nonphysical) and the kind of manipulation which

takes place (mechanical or nonmechanical).

 Although it may appear basic at first glance, this approach serves to illustrate

how a simple descriptive model can enable a designer to clearly differentiate actions

such as turning a potentiometer (physical and mechanical) from performing gestures

in front of a camera (nonphysical and nonmechanical) or using biosignals such as

electroencephalogram/EEG (physical and nonmechanical). It is primarily a system

which focuses upon the nature of the sensors themselves and the means through

which the performer engages with them.

3.2.3 Miranda and Wanderley – acoustic similarity

 Figure 3.3: Comparing controllers with respect to their resemblance to existing

acoustic instruments [120]

Miranda and Wanderley propose a didactical method of comparison based upon the

similarities between gestural controllers and existing acoustic instruments. This is

best seen as a continuum, rather than a series of rigidly-defined categories – a fact

that is reflective of the organic evolution of digital musical instruments in recent

decades. The four categories are shown in Figure 3.3 (along with some examples of

how controllers can be placed within this model) and are described as follows:

65

1. Augmented musical instruments: Also known as hybrid instruments,

hyperinstruments or extended instruments – these are acoustic (sometimes

electric) instruments that have been extended by the addition of extra sensors.

In general, the instrument functions exactly as it would have prior to

modification – the technological components serve to increase the range of

expression through added extra features or parameters to alter the sound.

2. Instrument-like gestural controllers: These instruments feature a control

surface that is modelled after an existing acoustic or electric instrument with

the goal of emulating the original. These are often used by musicians who

wish to expand-upon the sonic capabilities of their existing instrumental

technique.

3. Instrument-inspired gestural controllers: These instruments feature control

surfaces that are directly-derived from those of an existing instrument, yet

they do not aim to reproduce exactly the functionality of their acoustic

counterparts. Sometimes they can be designed with a view to overcoming

some of the intrinsic physical limitations of the original and provide

alternative ways to employ existing instrumental skills (e.g. by providing an

alternate fingering system for a flute-like controller).

4. Alternate gestural controllers: Instruments that belong in this category do not

bear any striking resemblance, in appearance or means of operation, to any

existing instruments. Given the rather broad spectrum of devices that might

be placed in this category, a number of subdivisions have been proposed. For

example, in [127], Mulder suggests a further breaking-down into one of the

following three groups:

66

a. Touch controllers that require the performer to make physical contact

with the control surface and provide a haptic representation.

b. Expanded-range controllers that may require a limited form of

physical contact or do not require any physical contact but have a

limited ‘range’ – that is to say, the performer is free to make certain

movements that do not have musical consequences.

c. Immersive controllers have few or no restrictions on performer

movements. Consequentially, the performer is within the sensing field

of the controller at all times. A further three subdivisions are

suggested according, not to the actual physical form of the controller

or sensors, but to the visualisation of the surface and the

accompanying mapping strategies used:

i. Internal controllers: The control surface visualisation is the

physical shape of the human body itself.

ii. External controllers: The control surface is visualised as

separate from the performer’s body. It may even be impossible

to visualise it as a physical shape.

iii. Symbolic controllers: The control surface is not visible; it

requires some sort of formalised gesture set (sign language,

conducting) to be operated.

A catalogue of interesting examples for each of the above categories can be found in

[120], pp.21-101.

3.2.4 Controllerism – ITCH system

An interesting alternative approach is to look at technique and practice, as opposed

to physical characteristics or acoustic similarities, when classifying devices. An

67

example of this kind of system is proposed by a contributor to Controllerism.com (an

online community of electronic musicians that use generic controllers in their live

performances) in an article entitled ‘Types of Controllerism’ [28]. The ITCH system

is an abbreviation of the four categories it comprises (Instrument, Transfiguration,

Conjuration and Hybrid) and groups interfaces and/or musicians into one of these

categories based entirely upon their personal approach to audio creation during

performance. This of course means that two physically-identical interfaces, when

used by two musicians with contrasting styles of performance, will be placed in two

totally-different categories. With regard to versatile control surfaces, which can be

employed in a theoretically-limitless variety of ways, this seems to make a lot of

sense for the practicing musician. The categories are defined as follows:

1. Instrument: Musicians in this group use an external audio source (e.g. an

electric guitar, a didgeridoo, a hardware synth, an MPC, beatboxing, etc.) in

conjunction with audio created by the software. This category can be

combined with any of the following approaches.

2. Transfiguration: The focus of the interaction is changing elements into

something else. For example, using pre-recorded loops and patterns that are

altered using effects and combined together in various ways to create a track

or live set.

3. Conjuration: Creating something out of nothing. The focus here is using

virtual instruments or a collection of samples to create a track or live set

through overdubbing, live looping or playing everything manually from start

to finish.

68

4. Hybrid: Performance setups in this category rely heavily upon techniques

from both the Transfiguration and Conjuration groups. While ‘C’ performers

might use some occasional loops and backing, and ‘T’ performers might

occasionally play one-shot samples/rhythms/melodies manually, ‘H’

performers use both to the extent that the omission of either would result in

an incomplete or impossible setup.

This approach is proposed with a very definite audience and type of performer in

mind but it has an extremely useful core concept: if we do insist upon classifying

interfaces for this purpose, perhaps we should focus upon the individual

configuration, intent and style of a given performer. This certainly seems like a line

of thought that begs further investigation.

3.2.5 Human-machine interaction approach

Figure 3.4: A visualisation of interaction and musical context based on Jens

Rasmussen’s model of human information processing [232]

69

This model focuses upon the context of a performance and views the computer as “a

semiotic, connotative machine that hypothesizes design criteria” [107]. It is based

upon Jens Rasmussen’s model of human information processing and defines three

distinct types of performance behaviour: skill-, rule- and knowledge-based. The latter

is renamed model-based interaction behaviour in accordance with a suggestion of

Rasmussen himself and also to avoid the conflicting connotations that might arise

with the concept of musical knowledge. The categories of behaviour are shown in

Figure 3.4 and are described as follows:

1. Skill-based: Typified by physical gestures made in response to a continuous

signal, this behaviour is closest to the typical understanding of instrumental

performance (in the traditional, acoustic sense). It has been observed that

very few activities are restricted entirely to the skill-based category – a

musician usually depends on the experience of previous attempts in

conjunction with the real-time signal input that characterises this section.

2. Rule-based: This category sees the performer’s focus shift away from

controlling a signal towards controlling higher-level processes, such as

selecting and sequencing previously-arranged material. As in the skill

domain, interactions and interfaces within this category can be further

differentiated according to the rate at which the performer can effect change.

3. Model-based: A musician operating at this level can only exert a low level of

control over the outcome at a low rate. Interactions in this domain are goal-

oriented and goal-controlled – the performer is typically involved with the

rational formulation of a plan to reach a particular goal.

70

The lower portion of the accompanying diagram also shows how these three types of

behaviours can be coupled with Rasmussen’s categories of human information

processing in accordance with the performance context and environmental

conditions therein: signals, signs, and symbols are representative of the kind of

information that is being processed in a given domain (i.e. skill-based=signals, rule-

based=signs, model-based=symbols).

 Despite coming from two very different perspectives, we can see a clear

correlation between this model and the ITCH system:

 Conjuration-type performances/interfaces operate primarily on the level of

signals and thus can be placed comfortably within the skill-based domain.

 Tranfiguration-type setups place more of an emphasis upon the manipulation

of signs and occupy the rule-based domain.

 As the human-machine interaction model is represented as a continuum,

rather than discrete categories, Hybrid-types can be accommodated by an

appropriate location between the skill-based and rule-based domains

according to their primary reliance upon either signs or signals.

The model-based domain has no close counterpart in the ITCH model but this is

understandable given the live-performance focus of the Controllerism.com

community.

3.2.6 Timeline-oriented versus procedural performance

This framework is concerned more with the design and use of software interfaces

onscreen in laptop-based performances, rather than hardware devices, but it

contributes further to the discussion on approaches to practice that has been

established by 3.2.4 and 3.2.5.

71

This model, proposed by Zadel and Scavone in [223], differentiates music

performance software based upon the way that it handles sequencing tasks and

control data. Two categories emerge:

 Timeline-oriented performance control: This solution focuses upon linear

pieces of audio and control data that are positioned in time, processed and

overlaid to create full pieces of music. Analogous to offline sequencing

except that certain aspects of the piece are left to be triggered and/or

manipulated in real-time during a performance. Both Ableton Live and

Reason are cited as examples of this kind of system.

 Procedural performance control: These interfaces focus-upon allowing the

user to define and modify processes in real-time to shape the musical output

during a performance. For visual dataflow languages, such as Pure Data and

Max/MSP [147], this typically involves the manipulation of a patch

comprising signal generators and modifiers that has been prepared prior to

the performance. In the case of more text-centric languages, such as Csound

[33], SuperCollider [116] and ChucK [204], the practice of live coding is

more common. The authors point out that, in this latter case, the creation of

the procedure itself is the performance, or at least part of it.

3.2.7 Taxonomy of sequencer user-interfaces

A music sequencer is, in some respects, analogous to a written score in traditional

music composition. It comprises a piece of hardware or software that stores data

related to a piece of music (e.g. note values, melodies, timing) and sends this data to

a sound generation module. This model aims to provide an analytical framework for

the categorisation of sequencer-based user-interfaces or indeed any interface that

72

features a sequencing component for the linear arrangement of musical material in

time [42]. There are five axes defined within this system:

1. Medium: This can be more textual or graphical. The extent to which the

interface relies upon either visual or text-based abstractions – the immediacy

and learnability of the former is in marked contrast to the flexibility and

customisation-potential of the latter.

2. Abstraction level: This can be more predetermined or custom. Abstractions

reduce cognitive load during performance by highlighting relationships

between similar objects and hiding/reusing details. Common predetermined

abstractions include MIDI and audio ‘clips’. Custom abstractions require

more of an initial investment on behalf of the user, to understand and create

their own hierarchies of objects and their associated behaviours, but they can

offer more flexibility and control in a well-designed system.

3. Linearisation stage: This can be more delayed or eager. The linear ordering

of musical material can occur at different stages throughout the

composition/preparation process of a performance. At its most extreme, or

delayed, the ordering is not determined until the actual moment of

performance itself. More eager systems demand a predetermined ordering of

material which can, in turn, lead to more simple interfaces and allow the

musician to concentrate on other aspects of their performance.

4. Event-ordering: This can be more data or control-flow based. Control-flow

systems allow the user to specify the final order of sequencing in terms of

events. This may include programming techniques such as conditional tests,

loops and suchlike. The data-flow paradigm, on the other hand, is found in

systems where the user must determine the final sequence of data flowing

73

through a computational system. This is commonly-used for effects-control

and automation in digital audio workstation software, for example.

5. Applicability: This can be more special or general-purpose. Special-purpose

sequencers are defined as demonstrating a preference towards a particular

style or styles of musical sequencing. This can allow certain aesthetic

considerations to be taken into account when designing the interface and

therefore increase the simplicity and efficiency of the interface. General-

purpose applicability refers to systems which are equally-useful when

performing a variety of sequencing styles.

Combining these characteristics in all of their various permutations gives a total of

28 distinct types of sequencer. The authors also apply the taxonomy to a number of

common performance applications in order to demonstrate its use.

3.2.8 Thoughts on classification

The selection of taxonomies outlined in this section represent a broad spectrum of

approaches – from the simple and universal down to the most complex and specific.

It is most striking to observe how difficult it can be to develop a single all-

encompassing model for digital musical instrument classification in the same vein of

the H-S system – the sheer expanse of creative ground covered by even the most

basic of computer music tools makes it hard to conceive of such a system. Perhaps

this is the wrong goal to be aiming towards. While no one system that we have

outlined above can claim to include all the factors as broad as sensor-type, interface-

type, performance-style, musical-context, etc., each one manages to shed a little

more light on a different aspect of arguably the most rapidly-evolving approach to

musical expression in history. As musicians, designers and scholars we should

welcome any opportunity to view our discipline in a new way – every new taxonomy

74

that might be proposed should be considered as offering a unique new perspective on

the field, rather than a prescriptive labelling system.

3.3 The instrumental paradigm

Issues of terminology often arise when discussing digital musical instruments. A

musical instrument consists of an excitation source which the performer causes to

oscillate using their own physical energy. The sound may be modified by the

performer using the available control mechanisms of the instrument before, during or

after it reaches a resonating system that conveys the resulting vibrations to the air.

On the other hand, the only part of a digital musical instrument that the performer

comes into contact with – the controller – merely sends data to a sound generating

system. It does not allow the performer to directly excite or modify the sound from a

physical standpoint in the same way that an acoustic instrument does – so where

does the instrument live in the digital musical instrument?

 The acoustic piano provides an interesting discussion point – the strings

(excitation source) are excited by the hammer mechanism and subsequently send

vibrations throughout the frame of the piano (resonating system). The performer,

however, does not have any direct physical contact with this system – it is all

enclosed within the body of the instrument. By applying our basic mapping model to

the acoustic piano, it could be said that the user (pianist) interacts with the gestural

controller (piano keys) which sends instructions to the sound generator (hammer and

strings) and hence produces music. Of course the piano still relies upon the laws of

physics to excite, modify and sustain sound, but from the performer’s perspective

these aspects are obscured by the elaborate and sophisticated interface that we call

the piano keyboard. It is interesting to consider, physically speaking, that the only

control afforded to the performer is the ability to determine the speed and depth with

75

which the key is struck and subsequently released [128] . The organ takes another

step towards the digital, conceptually-speaking, as the energy used to excite the

vibrations in its pipes comes from a mechanical or electric bellows, not from the

performer at all, and the modern organ keyboard is effectively a set of binary

switches.

 This might seem like an exercise in polemics – as far as the pianist is

concerned, this distinction between his/her musical gestures and the actual means of

sound production is understandably arbitrary. However, the purpose of this

comparison is not to critique the piano but rather to situate it as a kind of stepping-

stone between acoustic/mechanical instruments and electronic/digital systems. The

same feeling is shared by the digital musician: “during the process of production or

performance, [the music and the means of its generation] are inseparable” [88]. A

well-designed digital musical instrument is identical to a well-designed acoustic

instrument in the sense that they are both “vessels for expression of human thought”.

The physical object that we refer to as the instrument is really just “an energy

conversion device” that is employed in a musical context [78].

Perhaps it is better to think of the instrument as a concept, rather than a

physical object? For example, an oil drum is clearly not designed with musical

expression in mind – it is not an instrument, but can become one when it is added to

a percussion ensemble. When does this change occur? Is it when it is played upon

like an instrument, or placed alongside the other ‘intentional’ instruments, or even

when the musician first considers the possibility of playing it? The perceptual

structure of tasks is key to understanding this transformation in that it determines

how we chose to use a particular input device [73]. We can use the concept of

affordances here to describe the perceived properties of an object that determine how

76

we approach interacting with it. Research by the Ubiquitous Music Group [190] has

pointed-out that the musical affordances of a system “are not properties of the

environment or properties of the actors. They are relational properties that arise

while activities are been carried out” [85].

In this line of thought, the instrument becomes an abstract concept: the

point of intersection between tools, concepts and activities [85]. This perspective

liberates the digital musician from steering their interaction metaphors towards the

restrictive ideal of Western classical virtuosity – an ideal that has led to the

predominant view that tightly-coupled interactive systems, analogous to acoustic

instruments, provide the best support for creative musical expression. The

Ubiquitous Music group has also suggested that this instrumental paradigm [86]

might not be the best approach. Systems where agent and object are tightly-coupled

can prevent the natural emergence of affordances and the implicit interdependence of

modules in tightly-coupled systems also serves to reduce code reusability – making

testing, maintaining and modifying the individual components difficult and time-

consuming. Loose-coupling has been proposed as a more-suitable solution – by

sharing the performance demands between agent and object, we allow users to

“explore the epistemic space of relationships among material objects and creative

outcomes…[i.e.] loose coupling fosters natural affordance formation”.

Armed with this new perspective on what exactly we are doing when creating

a digital musical instrument, we can make further enquiries into the most effective

design strategies than can be adopted.

3.4 Mapping

In a digital musical instrument, mapping describes the manner in which data

gathered by the input device(s) is related to the musical parameters of a system. The

77

importance of selecting or devising an appropriate mapping scheme cannot be

understated – effective and elegant systems can lead to “a more holistic performance

exploration of the parameter space” [69].

This is not to say that a performance system should necessarily be overly

simplistic or immediately accessible. In the study of human-computer interaction

(hereafter referred to as HCI), it has been suggested that the distinct practices of (a)

designing for efficiency, and (b) focusing upon aesthetic considerations and the user

experience cannot successfully proceed in isolation [39]. In a musical context, an

expressive interface design must accommodate the capacity to practise, learn, make

mistakes, and develop skill:

Mapping is at least as important to musicians as the physical interface, and

even more so over the long term. Using a different mapping strategy results

in a new control paradigm to explore [25].

Literature devoted specifically to the definition of effective mapping schemes is

scarce – the theoretically limitless combinations of devices and musical goals that a

musician might seek to accommodate render the discussion of general mapping

principles quite difficult. However, there has been growing interest in the

development of more detailed conceptual frameworks for mapping – examples

include strategies specific to sound synthesis [203], digital audio effects [194],

Max/MSP [15], PD [174] and algorithmic composition [40].

Musical mapping schemes are generally classified according to the number of

parameters over which the user can exert control at once - the most straightforward

of these being one-to-one mapping, where a single control device influences a single

parameter. This kind of precision is exactly what is needed in, for example, a mixing

console. However it has been suggested that human operators naturally expect more

78

complex schemes and ultimately find these interactions more rewarding and intuitive

than simple one-to-one mappings [69]. More complex setups can be said to employ

convergent and divergent mapping. Convergent mapping employs a number of

devices to control a single parameter (many-to-one) whereas devices which use

divergent mapping operate several parameters at once (one-to-many). Most acoustic

musical instruments can be thought of as combining elements of both of these

schemes.

Outside of a musical context, mapping schemes for human-technology

interaction are more efficiency-focused and hence easier to discuss. In The Design of

Future Things, Donald A. Norman encourages designers to utilize what he refers to

as natural mappings wherever possible (citing the oft-inconsistent positioning of

hobs and their controls on a cooker as an example). In this context, it is preferable

that controls should be laid out “in a manner spatially analogous to the layout of the

devices they control” and that the principle can be extended to “numerous other

domains” including sound [132]. With this consideration in mind, it is surprising

how many supposedly-intuitive musical performance systems opt for the most

convenient or visually-appealing layout for their controls, rather than considering the

perception of the user.

In the same volume, Norman provides a summary of the essential design

considerations discussed throughout his work. His rules of interaction state that

interactive technology should:

1. Provide rich, complex, and natural signals

2. Be predictable

3. Provide a good conceptual model

4. Make the output understandable

79

5. Provide continual awareness, without annoyance

6. Exploit natural mappings to make interaction understandable and

effective

It should be stressed that these considerations are clearly intended for

functional applications which can be effectively used almost instantly - a description

which cannot reasonably accommodate the level of skilled practice and gradual

progress that we associate with learning a musical instrument. However, they do

provide a model of simplicity and efficiency which can be useful to bear in mind

while working on more complex multimedia environments.

Another interesting set of general design principles, in this case specific to

digital musical instrument design, have been defined by Perry Cook in [29] (the

explanations following each principle have been added by the author of this thesis) :

Human/Artistic Principles:

1. Programmability is a curse

This refers to the danger of versatile and customisable systems – namely,

their ability to facilitate endless experimentation, modification, paper

writing and time wasting without ever producing any artistic or musical

product.

2. Smart instruments are often not smart

Instruments that are capable of learning and modifying their behaviour in

response to user input are hazardous in that they react differently to

conventional physical interactions and potentially lead to frustration and

confusion. Instruments that constantly change prevent the user from

developing and refining their own interactions accurately.

3. Copying an instrument is dumb, leveraging expert technique is smart

80

Attempting to emulate an existing instrument, while an interesting

technical exercise, seldom leads to exciting or practical designs. However,

devising new ways to utilise the fine motor skills of expert musicians can

be a fertile starting-point for musical innovation.

4. Some players have spare bandwidth, some do not

Taking a combination of individual musical ability and the physical

demands of certain instruments into account, some cases are better suited

to the addition of extra control devices and sensors than others.

5. Make a piece, not an instrument or controller

Setting out to design a ‘super instrument’, with endless expressive

potential, generally yields plenty of interesting research questions but not

so much interesting music.

6. Instant music, subtlety later

This observation refers to the (almost) universal ability of acoustic

instruments to react and produce sound instantly in response to even the

most basic of beginner interactions. Electronic instruments that follow this

pattern, as opposed to front-loading their more complex features, are often

more likely to encourage and stimulate the user.

Technological Principles:

7. MIDI = Miracle, Industry Designed, (In)adequate

A simple cautionary point – while MIDI is often a quick and easy solution

to get new systems communicating, it was designed with very particular

commercial concerns in mind and far from a perfect protocol.

8. Batteries, Die (a command, not an observation)

81

Another simple warning against the use of unpredictable power sources

unless they are absolutely necessary.

9. Wires are not that bad (compared to wireless)

Designers are often eager to dispense with wires for ergonomic and

aesthetic reasons. However, the added complexity, expense and potential

inaccuracy of wireless systems can sometimes lead to problems. In

situations where performers are mostly stationary or seated, wires are still a

reasonable option.

Some Other Principles:

10. New algorithms suggest new controllers

The development of new synthesis or signal processing techniques can

often prompt investigation into new methods of control.

11. New controllers suggest new algorithms

In a similar fashion, novel controller designs can often be the catalyst for

the development of unusual or radical musical processes.

12. Existing instruments suggest new controllers

A reference to the wide variety of ergonomic, musical and technical

insights that can be derived from studying established musical instruments.

13. Everyday objects suggest amusing controllers

We possess a remarkably broad vocabulary of techniques for interaction

with objects in our daily lives. Electronic instruments that utilise or

repurpose our non-musical interactions can be entertaining and stimulating.

This kind of reflective practice with regard to mapping is indicative of a community

seeking to deepen the collective understanding of a neglected area, and it is maturing

rapidly. The importance of developing an objective approach, one that avoids

82

didacticism and device-specific discussion, is outlined clearly by Hunt, Wanderley

and Paradis:

Since there will not always be ready models for inspiration when designing

mapping strategies for new digital musical instruments, the task then

becomes one of proposing guidelines for mapping and also, if possible,

devising models that can facilitate the implementation of mapping strategies

other than simple one-to-one relationships. [70]

3.5 The design cycle

Cooper and Reimann give a succinct summary of the process of interaction design in

[31]:

1. Researching the domain

2. Understanding the users and their requirements

3. Defining the framework of a solution

4. Filling in the design details

5. Testing the validity of the solution with users

Note the emphasis on users and solutions, as opposed to technology and features –

this approach to interaction design encourages a behaviour-oriented design approach

that is strongly influenced by cognitive principles and user perception. In other

words, goal-directed design. The process of identifying, empathizing with and

facilitating user goals is the most important part of this approach and is referred-to as

the “bedrock upon which interaction design is practiced.”

This philosophy, and the comprehensive documentation that accompanies it,

places a high priority on achieving elegant communication between the user and the

system. According to the arguments presented in this chapter so far, the designer of

83

digital musical instruments should make every effort to develop their understanding

of this process which is at the heart of every successful interactive experience.

Having established this priority, we can explore approaches to design that

have been developed specifically with musical expression in mind. Miranda and

Wanderley propose a 5-step design process for the creation of digital musical

instruments:

1. Decide on the gestures that will be used to control the system

2. Define gesture capture strategies that will best translate these movements into

electrical signals. This is typically done using a variety of sensors to measure

hand, arm, lip, or other body movement, velocity of movement, pressure, or

any other variables of interest.

3. Define sound synthesis algorithms that will create the sounds to be played;

or, define the music software to be used for control of prerecorded musical

processes.

4. Map the sensor outputs to the synthesis and music-control inputs. This

mapping can be arbitrary, so any unusual combinations would be as feasible

to instantiate as any coupling of gesture to sound known in acoustic

instruments.

5. Decide on the feedback modalities available (apart from the sound generated

by the system): visual, tactile and/or kinaesthetic. [120]

Depending on the circumstances, the available technology or musical goal at the

heart of a particular project might very well provide the answer to several of these

questions before the design process even begins. Therefore it is highly unlikely that

these steps will proceed in a strict order, both for this reason and the fact that

84

adjustments will often need to be made before the desired functionality is attained

[120].

The effective design process, therefore, should be conceived of as a cyclical

rather than a linear process. In order to facilitate a smooth and efficient transition

between designing and refining, some process of evaluation is necessary.

3.6 Evaluation

There has been relatively little research dedicated solely towards the evaluation of

digital musical instruments (see Figure 1 in [13]). Traditional methods of evaluating

user interfaces from the field of HCI focus upon efficiency and clarity. Fitt’s law is a

prime example of this emphasis – measuring the difficulty of movement-related

tasks and the human rate of information-processing as these tasks are realised [102].

However, the evaluation of digital musical instruments must take into account

concepts as diverse and far-reaching as efficiency, potential for extension, difficulty,

learning curve, and so on [76] – prompting the suggestion of categories such as

“reproducibility, reliability and expressive potential” [51]. Furthermore, there are a

variety of perspectives, each demanding different techniques, from which we can

evaluate digital performance tools [140].

To illustrate the difference between evaluating traditional interactive

systems and digital musical instruments, consider the presence of the spectator or

audience implicit in the musical context of the latter. It has been perspicaciously

observed that we cannot simply transplant our understanding of spectatorship from

the domain of acoustic musicianship to that of digitally-mediated performance [57].

Accordingly the creation of meaningful and perceivable connections between human

action and sound has been identified as a key point for making a performance

convincing for the audience [140]. The ability to evaluate the extent to which an

85

audience can understand these connections would prove a valuable asset to digital

musical instrument designers.

According to Davis [38], a performance ecosystem comprises four parts: the

instrument – an artefact that is manipulated to produce music; the performer – an

agent who directly interacts with the instrument; the listener (referred-to here as ‘the

audience’) – who watches the interaction and has an indirect relationship with the

instrument; and the environment – the place where the performance takes place.

In traditional HCI design, there is no equivalent to the audience as defined

above. Its models focus almost exclusively upon the direct user of the system. In

digital musical instrument research, this has led to a predominance of performer-

centred design (assisted by the instrumental paradigm, as previously discussed in

3.3) and an insufficient treatment of the audience. A synthesis of techniques is

proposed in [13] to address this deficit – this is indicative of a new interest in

evaluation methodologies tailored-specifically to the needs of the digital performer.

Further discussion on the issue of evaluation can be found in [120], pp95

and in [16].

3.7 Conclusion

This chapter has given a comprehensive overview of the concepts at the heart of

digital musical instrument design. The basic model is explained and expanded-upon

with regard to the concept of control dislocation and its effect upon the user

experience. Several different approaches to classifying digital musical instruments

are summarised to illustrate the broad selection of taxonomic approaches that may be

taken to aid design, practice and pedagogy.

Having established a clear picture of the role played by the digital musical

instrument and the different ways that researchers have tried to classify it, the

86

chapter progresses onto a more conceptual treatment of the subject, albeit one that

has considerable practical application. The idea of the instrument itself is challenged

in order to highlight the shortcomings of sticking too closely to established

conventions of performer-instrument relationships when using computers.

With the emphasis now firmly upon the emergent perceptions of the

performer, we discuss the importance of mapping and justify its position of

determining the essence of the interactive experience. Finally, the chapter outlines

several pertinent strategies for approaching the design process itself and introduces

the promising new developments taking place concerning the evaluation of digital

musical instruments.

87

Chapter 4. Interaction design for the digital musician

“The interface defines a sort of landscape, creating valleys into which users tend to

gather, like rainwater falling on a watershed. Other areas are separated by

forbidding mountain ranges, and are much less travelled. A good interface designer

optimizes the operations that will be most often used.”

-David Rockeby, The Construction of Experience: Interface as Content [157]

This chapter discusses an alternative approach to digital musical instrument design.

By treating an input device as a selection of independent data-generating sensors, we

can define a system of modular interaction components. These, in turn, can be

combined in various ways in order to create effective interactive systems for musical

performance.

The chapter begins with a summary of the reasons behind this approach and

the intended goals of developing it (4.1). Sections 4.2 and 4.3 establish a vocabulary

for discussing design models and different categories of input sensor, respectively.

Section 4.4 proposes a modular approach to interaction design and summarises the

core concepts in a series of tables. Section 4.5 lays the foundation for this approach

by outlining a selection of simple one-to-one interaction strategies for dealing with

live sensor input.

 While separating these elements is useful for illustrative purposes, in

reality they are seldom used in isolation. Therefore, this rest of this chapter discusses

strategies for combining inputs and distinguishing various layers of functionality

from one another in a digital musical instrument. It also introduces more abstract

88

concepts which can be used to augment the functionality of a system's actual

physical controls.

Section 4.6 discusses multiple controllers which operate independently of one

another – both in order to perform different musical tasks or in order to control

multiple instances of similar tasks (polyphony). Next we classify different ways in

which controllers can inform the behaviour of other controllers in a system – symbol,

executive and modifier keys (Buxton’s key-action-model), interdependent controls

that only operate in combination (selection + excitation model, such as the guitar,

Theremin etc.) and controllers that occasionally interact when a given condition is

met (4.7). This is followed by a discussion on various ways to combine controllers

that ideally may lead to synergistic roles and complementary modalities (4.8).

This section is followed by a description of ‘virtual’ controllers – abstract

variables that can be used to alter the behaviour of a system (4.9). These are further

divided into two categories – statistical variables (including those influenced by

time, averages, etc.) and variables related to modal behaviour. The section on modes

identifies several different types of modes and suggests strategies for accessing them

fluidly within the context of a live performance (toggling modes, quasi-modal

systems, advancing systems, etc.). It also discusses the importance of clearly

delimiting different functionalities and the construction of unambiguous state

transitions (Buxton’s 3-state model of graphical input is used as an example).

The chapter concludes with a case study that discusses an interface designed

for a series of performances with the Trondheim Electroacoustic Music Performance

group (4.10). Particular attention is given to those aspects of the instrument that

embody the ideas described so far – goals are identified and refined, the design

process is discussed in detail and personal reflections upon the success of the project

89

are outlined. This section provides a conclusion of sorts to the first half of the thesis

– subsequent chapters focus upon the development of a complex software controller

for a specific type of technology (multi-touch) that is also intended to facilitate the

design approach embodied by the opening chapters.

4.1 The importance of a conceptual foundation

The field of live electronic music has always been markedly innovative - for many

practitioners, the design of a personalised interactive system is considered a

significant component of their artistic statement which is just as important as the live

performance itself. Andrew Hugill describes this important relationship:

The types of interface to be used…how those map onto the sounds that will

be produced…these are all performative decisions, equivalent in significance

and musical qualities to the traditional ‘tone’ that an instrumentalist might

produce from their instrument. In other words, the technological set-up is not

just a way of making an ‘instrument’ upon which to perform, it is integral to

the nature of the sound that is produced, to the distinctive sound that makes

the digital musician into the performer, to the musicianship itself. [67]

This tendency towards idiosyncratic technique, combined with the considerable

variations in digital musicians' available resources, has made generalising about

design processes difficult unless specific hardware or software is involved. While

studies on the use of specific devices can be useful in assessing the suitability of a

particular controller to a particular musical task, it is unreasonable to expect a

general model of human performance to emerge from such studies [21].

This system has been developed with a strong awareness of these factors.

The goal is not to devise a linear, instructive or didactic system for digital musical

90

instrument design - instead it is proposed that a conceptual toolkit, independent of

any particular musical style, hardware requirements, or programming languages, will

prove a useful addition to the pre-existing theory on interaction design for the digital

musician. The toolkit will ideally provide:

 A simple, incremental and easily-taught system of musical interaction

design which is not hardware or software-dependant

 A selection of independent input paradigms which can be combined into

more complex input metaphors

 Guidelines to help construct complex and flexible interfaces using simple

hardware

 A way to assess the suitability of a piece of hardware for a given musical

task

 A starting point in the design process which encourages incremental and

methodical design

 A means of looking beyond the common usage trends and design clichés

of a given piece of hardware

A concise and efficient vocabulary for interaction design, written especially with the

digital musician in mind, has the potential to both expedite and enhance the

development process. With a clear idea of the logical tools at his disposal, the digital

luthier is well-equipped to articulate his musical ideas by breaking-down a complex

interaction into its constituent processes. This, in turn, facilitates the tight matching

of the device’s control structure with the perceptual structure of the task as perceived

by the user – arguably the best way to improve the responsiveness of an interface

[107].

91

Note that the strategies being discussed in this thesis are primarily in terms of

imperative programming – other programming paradigms may not make use of these

tools in the same way. A familiarity with basic programming tools or building blocks

is essential for constructing even the most basic of interactive behaviours. A

selection of pedagogical references for beginning programmers can be found in [50,

142, 166, 209].

At its most basic operational level, the digital musical instrument consists of

an array of interdependent interactive processes. While the overall design might

behave in a very complex and nuanced fashion, the individual processes can often be

quite simple in programming terms. The following section serves as a bridge

between the language of the digital musician and the language of computer logic.

While the approach being proposed might sound overly straightforward, dry or

methodical in the context of musical projects, one must remember that "these are

precisely the kinds of physical computing projects that need this kind of planning the

most” [142].

4.2 Models

Models, in the design context, are simplifications of real-world scenarios. They can

be especially useful for the digital musician - permitting an exploration of the

validity of an instrument design concept prior to embarking upon the often costly,

and time-consuming, process of implementation. In [103], models are described as

existing on a continuum - with predictive and descriptive models occupying the

extrema.

92

4.2.1 Predictive models

Predictive models represent a hypothetical analysis of how users will perform using

a proposed interactive system [103]. These predictions are generated a priori and

therefore circumvent the time and effort that might be required to both implement a

system and perform observational testing with real users. Predictive models are

commonplace in HCI where the measurement of efficiency and motor skills are

concerned.

4.2.2 Descriptive models

Descriptive models are not designed to generate empirical or quantitative analyses of

user performance in the same way as predictive models. Instead, they aim to equip

the designer with a new conceptual framework or perspective on the user experience

of a proposed interactive system [103]. This framework can take the form of a

graphical representation, verbal description, or re-structuring of the system using

categories, comparisons or metaphors.

Generating descriptive models for existing digital musical instruments can

be a powerful tool for highlighting important issues that might otherwise be obscured

by the creative and/or technical aspects at play. The role of a descriptive model in

this case is to present a useful way of thinking or categorising the behaviour of an

interactive system. Their simplicity, ease of use and potential for problem-solving

makes them a valuable asset to the digital musician. The modular system of

interaction design that follows is an example of applying this type of planning with

regard to musical use. Some non-musical examples that illustrate the role of

descriptive modelling in a concise manner are the Key-Action Model/KAM [103]

and Buxton's 3 State Model [21].

93

4.3 Describing sensors

The following section establishes some terminology needed to discuss digital

musical instrument design.

4.3.1 Degrees of freedom vs. dimensions

Two terms that are often used interchangeably are dimensions (D) and degrees of

freedom (DOF), referring to the number of parameters in a system that are free to

change independently of one another. Here we use degrees of freedom to describe

the number of data streams that the user can manipulate independently using a given

device.

 A mouse is often described as a 2-D input device, with respect to the X and Y

planes of the graphical environment that it typically navigates. This might also be

hastily-described as having 2-DOF. However, as pointed out in [103], a true 2-D

device actually has 3-DOF - translation across the X-axis, Y-axis and rotational

motion around the Z-axis. It is true to say that a standard mouse does not permit

movement in this way, unlike a 2-ball mouse or a device such as the Reactable [77]

which allows rotational movement of its control cubes.

For the purposes of digital musical instrument design, it is advisable that the

term 'dimensions' is avoided, due to the spatial/graphical connotations illustrated by

the previous example. Instead, when referring to the number of data streams that a

user can manipulate independently via a given device, it is preferable that the term

degrees of freedom or DOF is used. A standard mouse device in this context

possesses 4-DOF - that is to say, independent freedom of movement on the X and Y-

axes combined with the left and right mouse buttons. If a scroll-wheel is present, the

94

device can be said to have 5-DOF, if the scroll-wheel happens to be clickable, 6-

DOF, etc.

There are complications with this model. Firstly, ergonomic and

physiological concerns must be accounted for (see, for example, the introduction to

kinesiology in Chapter 2 of [159]). While a simultaneous rotating and clicking of the

scroll-wheel is certainly technologically possible, there is no doubt that one must

influence the other in terms of the comfort and accuracy with which such a

combination can be performed by the user. Any statement of a device’s DOF,

therefore, should be accompanied with a caveat as to which channels of control

might reasonably interfere with one another in practice. It should also be noted that

sensor combinations that are difficult to operate simultaneously can be advantageous

- by using data from these sensors to control aspects of the musical output that

should not function together, user error and accidental triggering of certain functions

can be reduced significantly.

A further complication is introduced by our means of interpreting the input

data. It is perfectly possible, for example, to take a simple X/Y-axis reading from a

mouse and derive a further speed value using simple mathematics. This speed value

can be further broken-down into horizontal and vertical speed, and so on. These

kinds of augmentations to a device are very useful indeed and are covered in detail

below. However, it cannot strictly be said that they are integral to the sensor itself.

Furthermore, depending on how the various channels of control are utilised, these

values may not be entirely independent from others - making it difficult to apply our

definition as outlined at the start of this section.

It must be concluded that, while the term degrees of freedom is indeed a

useful tool when designing interaction strategies, it is not a fixed value when

95

anything other than a simple one-to-one mapping is concerned. One must be careful

to distinguish between the DOF property of a device in a strictly hardware-related

sense (out-of-the-box) and the DOF property that is arrived-at when mapping

strategies and musical output have been established. A variety of such strategies for

obtaining useful performance information are outlined below (section 4.5). It is

important, however, to remember that an interface is not-necessarily improved by the

addition of more DOF – rather it is how closely the control structure of the interface

matches the perceptual structure of the user approaching the task [73].

4.3.2 Resolution

A further property that will be utilised in discussing design strategies for digital

musical instruments is resolution. It is used here to indicate the smallest change that

can be detected in the input of a given sensor and, as such, can be used as an

indicator of the potential accuracy of the sensor. For example, a 2-button mouse

being used to navigate a graphical environment has 4 sensors - two of which have a

high-resolution (the X and Y axes) and two of which have a low-resolution (the

buttons, which can be said to have a binary resolution, on/off or simply 0-1).

Examples of typical musical devices would be a 4x4 button matrix (16 DOF /

0-1 RES) and simple MIDI mixer with 4 faders and 4 dials (8 DOF / 0-127 RES).

These properties become useful when selecting what interaction strategies to use as

well as deciding upon appropriate mappings to musical parameters. The exact

resolution of a sensor is somewhat trivial for the purposes of this discussion - what is

important is the ability to distinguish between those sensors which simply behave as

switches and those which allow for a greater degree of expression.

96

4.4 A modular approach

In the following sections we will look at micro-strategies for interpreting the data

generated by individual controller devices. While designing highly-minimalistic

interfaces is a useful exercise for digital musicians of all levels of experience, in

practice we will generally be dealing with hardware that comprises a wide variety of

input devices in various combinations. The major advantage of a modular design

approach is the ability to quickly experiment with different ways of using the devices

available in a given piece of hardware. This in turn facilities rapid prototyping,

compared to more tightly-coupled systems, which allows for more time testing and

refining the design with the performer’s experience in mind. This reflective space is

a vital commodity in digital musical instrument design; our ability to add new

features “is constrained by the musician’s physical and psychological capacities of

accomplishing multiple and simultaneous tasks” [96]. Rapid prototyping affords the

designer more opportunities to assess the performer’s capacity for expression using

the current interface.

The following sections discuss the modular building blocks of musical

interface design. Perry Cook’s caveat that digital musical instrument design

“proceeds as more art than science” [29] is particularly pertinent in this chapter –

these strategies and rules are useful when followed but even better, in some cases,

when they are broken correctly.

97

Figure 4.1: Summary of strategies for single devices and combined controllers

98

Figure 4.2: Summary of abstract control strategies

4.5 Interaction strategies

This section defines a series of original strategies for interpreting the input of various

sensors. These relatively simple strategies are grouped according to the criteria

established above and form the foundations of a novel and concise framework of

interaction design for the digital musician. The concepts and logic behind the

strategies are generic, enabling them to be applied to a variety of different sensor

types.

Several of the strategies may seem redundant, obvious or a waste of potential

data from a given sensor (the Contact strategy from section 4.5.2, for example). In

these cases, it is important to consider that the strength of this approach can often lie

in the ability to combine the strategies with one another to generate complex results.

99

The explicit definition and demonstration of even simple strategies makes for a

comprehensive inventory of design components with which to construct elegant

interfaces.

4.5.1 One DOF sensors with low resolution (on/off)

Examples include QWERTY keyboard keys, non-pressure sensitive buttons and

pads, piano-style keyboards without touch sensitivity, mouse buttons, many

videogame buttons, switches, etc. Note that sensors with a higher-resolution can be

used in conjunction with these strategies by employing a threshold, or similar

technique (see 4.5.2.9). The first three strategies that follow can be thought of as

basic one-to-one mappings.

4.5.1.1 Touch

The sensor causes something to happen while it is depressed, but ceases to have an

effect once contact is broken. Typical uses include sample-playback, toggling

temporary effects, non-progressive sustain pedal on keyboard, non-velocity sensitive

synth playing, etc.

4.5.1.2 Trigger

Description: The sensor causes something to happen when it is pressed, typically an

event that resolves of its own accord, breaking contact makes no difference. Typical

uses include playing drum-like or percussive samples.

4.5.1.3 Toggle

Pressing the sensor once causes a change in how the system works, pressing it a

second time returns the system to its initial state. Typical uses include switching

on/off effects.

100

4.5.1.4 Repeat

Holding down the sensor causes an event to repeatedly occur at a certain interval

until contact is broken. 'Stuttering' effects of sample playback are often achieved in

this way.

4.5.1.5 Counter

Pressing the sensor generates a different result each time, incrementally cycling

through a preset array of results.

4.5.1.6 Time since last action

Pressing the sensor generates a different result, depending on the time that has

elapsed since its last action.

4.5.1.7 Hold time

The amount of time the sensor is activated is recorded and subsequently used to

trigger different behaviour.

4.5.1.8 Excitation

While the sensor is activated, a value increases at a preset rate. While idle, the value

decreases at a preset rate.

4.5.1.9 Average/median time

May apply to any of the time-based strategies. An array of recent values from the

sensor is maintained, with either the average or median value of the array being used

to influence behaviour.

101

4.5.2 One DOF sensors with high resolution

Examples include dials/potentiometers, faders, touch sensitive piano keys, pads or

buttons, ribbon controllers, modulation wheels, etc. While these sensors all fall under

this category, it is important to take the physical means of operation into account as

there are some notable differences.

For some of these sensors, hereafter referred to as fixed-state sensors, the

value being output remains the same after the user has manipulated it - for example,

dials/potentiometers, faders, certain modulation wheels (that don't spring back into

place). These sensors also serve to provide feedback on their current state, which can

be noted at a glance or, in some cases, kinaesthetically without actually disturbing

the sensor.

In other cases, the extra resolution is due to a velocity or pressure component,

which may only be delivered upon impact (pressure/velocity sensitive keyboard keys

and pads/buttons). These could be said to be analogous to the 'ballistic' playing style

of acoustic percussion or piano in the sense that, once the initial impact has taken

place, the velocity component has been determined and cannot be changed. The

exceptions are cases wherein it is possible to continually-measure the pressure being

applied to a sensor, for example, certain ribbon controllers, pads, spring-loaded

modulation wheels, etc. Another important characteristic of these sensors to bear in

mind is the fact that the output will always start and end at zero, unless some kind of

alternative or auxiliary control is implemented.

A final idiosyncrasy to consider is the ability of some of these sensors to

allow discontinuous output, or teleporting of values. This is best explained by

comparing a fader and a ribbon sensor, both being used to control the volume of a

track. In order to bring the volume from the minimum possible level up to the

102

maximum using the fader it is necessarily to progress (however rapidly) through the

full range of values in between. The ribbon, conversely, allows the user to make

jumps in the signal by simply breaking contact with the sensor and depressing their

finger elsewhere. Whether or not this kind of behaviour is a help or a hindrance, or

even acknowledged, depends on the application, but it is certainly important to be

aware of.

4.5.2.1 Contact

A behaviour is triggered when the user makes contact with the sensor (not possible

with fixed-state sensors, for which the next strategy is a close alternative)

4.5.2.2 Movement

A behaviour is triggered when the user changes the value of the sensor

4.5.2.3 One-to-one

The value of the sensor is tied to the value of a musical parameter

4.5.2.4 Velocity

The rate of change in the sensor is tied to a musical parameter

4.5.2.5 Direction

The direction of movement (incrementing/decrementing) is used to influence a

parameter

4.5.2.6 Average/median

An array of recent values from the sensor is maintained, with either the average or

median value of the array being used to influence behaviour. The size of the

sampling window must be adjusted, according to the speed of changes in the value,

103

in order to provide the most accurate reading. The average/median velocity or

direction can also be calculated.

4.5.2.7 Hold

A behaviour is triggered when the sensor remains at a specified value for a

predetermined period of time

4.5.2.8 Idle

A behaviour is triggered when the sensor remains untouched for a predetermined

period of time

4.5.2.9 Threshold

A value, or number of values, is designated as a crossing-point. When the sensor

passes a point, a behaviour is triggered. Alternatively, thresholds may be used to

assign different functions to several areas over the total range of the sensor. One or

more of these areas may be 'dead', where nothing happens or a previous effect is

negated. Analogous to splitting up a visual control surface into 'zones'. Many of the

strategies outlined above can be applied once areas are split up in this fashion.

4.6 Independent controllers

In this context, the term ‘independent controllers’ refers to the use of more than one

input device simultaneously in an interface but without the data interacting in any

significant way. The devices remain separate both physically, in terms of the

hardware itself, and computationally.

 The most common approach in this category can be referred to as

polyphony – where a selection of similar input devices allow the user to control

multiple instances of similar events. Dissecting the ubiquitous digital keyboard

104

provides us with a clear example of this model: each key provides access to a single

musical note and allows the performer to independently actuate, sustain and

terminate individual instances of notes across the range of the keyboard. Difficult

combinations, temporally and spatially-speaking, can be accommodated through

practice and appropriate fingering technique.

 We can extend this understanding of the digital keyboard without any

modification to the performance sampler or drum machine. Any piece of hardware

that is designed primarily with live triggering of samples in mind will feature an

array of buttons or pads that each provide the user with access to a particular sound.

In both cases, external modifiers are available: additional velocity sensors for each

key/button/pad are a standard feature in middle to high-range equipment, the piano

keyboard is typically augmented by pedals and the sampler will generally provide a

means of switching between ‘banks’ of different preprogrammed sounds. These

features will be discussed in 4.7 and 4.8.

 The concept of integrality and separability as two classes of perceptual

structure are useful in this context. Primary input devices found on a piece of

hardware are seldom 1DOF, as in the example of velocity above. When separate

attributes of a single device are used to control more than one parameter, we can

characterise the device as multidimensional. When a number of attributes combine

perceptually, they become integral; attributes that remain distinct are separable [73].

In the example of the velocity-sensitive piano keyboard, the act of individual note-

selection and volume/timbre-selection can be classified as an integral action as the

movement “is in Euclidian space and cuts across all dimensions of control” [73].

 It is important to consider this perceptual structure of individual input

devices when approaching the design of an interactive system. Some devices with

105

more than 1DOF are better characterised as integral as opposed to separable. These

are better-suited to controlling aspects of the musical output that are perceptually

similar or closely related in terms of their effect on the sound. One device which is

typically used to control two variables independently with a single gesture is the XY

pad. Some observations upon typical mapping schemes are provided in 5.1.2.

4.7 Interdependent controllers

Devices that are used together, without influencing one another, are covered by the

previous definition of independent controllers. Interdependent controllers are

different in that they can be said to inform one another’s decisions upon how to

classify a given input action by the user. There are varying degrees to which one

controller can influence the behaviour of another but the defining characteristic here

is the necessity for the devices in question to be operated together in order to achieve

their full functionality within the system.

 The prevalence of software user-interface design conventions within the

field of music technology tends to discourage complex interdependent and multi-

functional interfaces (see Chapter 5 for a specific commentary upon this). However,

it has been proposed that these are precisely the kinds of interfaces that generate

interesting and rewarding interactive experiences [69, 39]. When combining

controllers we are aiming, ideally, to define synergistic roles and discern

complementary modalities [60]. Some of our most powerful tools when working-

towards this ideal are descriptive models.

 The key-action model (KAM) proposed by MacKenzie in [103] is a

descriptive model that illustrates an everyday example of interdependent controllers.

KAM sorts the keys on a standard QWERTY keyboard into three distinct categories:

symbol keys (deliver graphic symbols such as alphanumeric characters, punctuation

106

marks etc. to the system), executive keys (perform meta or system-level tasks such

as the function keys, ENTER or ESC) and modifier keys (SHIFT, ALT, CTRL, etc.).

Modifier keys establish a condition that alters the effect of a subsequent key press

but do not immediately or directly invoke behaviours or deliver symbols in the same

way as the other two categories. This can be categorised as the most separate method

of using interdependent controllers – the modifier keys change the functionality of

the symbol keys entirely (e.g. holding SHIFT capitalises simultaneously character

entry) but the symbol keys can be operated without using the modifier keys. The

modifying controllers augment the functionality of the basic controllers, but they are

not required for simple tasks.

 We can identify a further variation on this idea without leaving the

QWERTY keyboard – keys such as CAPS LOCK and INSERT can be described as a

hybrid between the modifier and executive key categories. Both affect the behaviour

of subsequent key-presses while also toggling an application-level change of

functionality. This can also be categorised as modal behaviour (covered in detail in

4.9.2).

 Further along the continuum of interdependency we encounter controllers

that only function correctly when used simultaneously. Acoustic instruments that can

be classified in this way are typically designed for bimanual operation where each

hand performs a different task (separate selection and articulation of notes). Most

chordophones are designed with this kind of interaction in mind. The same could be

said of many wind instruments, where note selection (keys/holes) and articulation

(mouthpiece) are two interaction modalities that are, in normal circumstances,

entirely dependant on one another. In both cases there are certain musical results that

omit one of the channels (e.g. fretboard-tapping and open notes on guitar, key-noises

107

and open notes in wind instruments) but these are the results of physical, rather than

musical, design conventions. It is interesting to note that the Theremin closely

adheres-to this paradigm of dual-channel control – with each hand allocated separate

control of the instruments pitch and volume – while remaining a difficult instrument

that requires great physical discipline to master [26].

 Somewhere between these two extremes we encounter occasionally-

interdependent controllers – control devices or techniques that become co-dependant

when a certain condition is met. Examples of this kind of behaviour can be found in

Akustich [5] (when the user’s hands cross over to trigger a distortion effect) and

Subcycle Labs [178] (where touch points moving above/below one another switch

the kind of effect being applied). When applied intelligently, with clear delimiting

considerations and feedback to indicate the newly-activated interdependence of the

controllers, this can be an elegant technique to nest a variety of behaviours within a

system without introducing new hardware or confusing layers of functionality.

4.8 Strategies for combining controllers

Having clearly distinguished between independence and interdependence between

devices in digital musical instruments, we can identify a number of distinct

approaches towards combining their functionality. Device/hardware-specificity and

ergonomic considerations weigh heavily on these decisions and vary massively from

case to case – therefore the following categories assume that the designer is

proposing a combination that is physically possibly, both from the perspective of the

technology being used and the reasonable ability of the intended performer.

 These definitions are not to suggest a strict categorisation of approaches

towards combining controllers – a difficult and redundant task, given the infinite

variety of devices and applications. However they do allow us to look a little more

108

closely at the relationships that exist between different parts of a digital musical

instrument’s input components and assess their role in creating a satisfying and

robust channel of communication between man and machine.

4.8.1 No interdependence

Both controllers affect different, unrelated parameters of the instrument.

Included for completion – no interdependence is implied in this case.

4.8.2 Different essential parameters

Both controllers affect different, but related, essential parameters of the instrument.

As seen in the Theremin example – the parameters of pitch and volume are related to

the same sonic event and are perceptually integral. Both parameters are also

necessary for the basic operation of the instrument.

4.8.3 Different non-essential parameters

Both controllers affect different, but related, non-essential parameters of the

instrument.

In this case, the parameters might be pitch and some kind of timbre-shaping property

– both parameters are perceptually-integral but one or more can be deemed

optional/non-essential in terms of the system’s priorities.

4.8.4 Many-to-one controllers

Both controllers affect the same parameter in the instrument.

Data that describes the relationship between the behaviour of both controllers can be

used – for example, the cumulative velocity of a pair of trackballs or the distance

between two touch points. Further levels of abstraction can also be introduced to

109

invoke different types of behaviour – for example, which of the two controllers was

activated first, which is moving faster, positioned higher/lower etc.

4.8.5 Interactive controllers

One controller alters the functionality of another.

This is closest to the acoustic model, typical of chordophones, that is described in

section 4.7. The piano sustain pedal can also be placed in this category. The

behaviour of one device acts as a modifier – for example, a fader selects a position

within a stored audio loop and a button triggers playback from that position.

Depending on the context of use, and the level of influence being exerted upon the

system as a whole, it may be helpful to categorise this strategy as modal or

quasimodal behaviour (see section 4.9.2).

4.9 Abstract controllers

Alongside the control opportunities that are afforded by any physical hardware, we

also have access to a variety of abstract controllers. These are programming

techniques that are distinct from those summarised in 4.5 in that they are not

designed explicitly to interpret or modify data that is generated by the user

interacting with the hardware, although they may often be employed in that way.

These virtual controllers provide the designer with additional tools to contextualise

and delimit the behaviour of a digital musical instrument without requiring

additional hardware or sensors. It must be pointed out, however, that the use of any

abstract controllers should be clearly signposted to the user – either via some kind of

feedback mechanism or through prior explanation – in order to avoid confusion.

110

4.9.1 Statistical variables

Statistical variables are global values that exist separately to individual sensor

readings, although they may be derived from or influenced by them, and usually

have a temporal component. They can be used to imbue a digital musical instrument

with a sense of movement and activity by fluctuating parameters in response to, or

independent from, user input. Some examples include:

1. Global time

Values related to the time since the system or performance began can be

useful in cases where the duration of the performance, and certain

changes associated with its progress, are known. A timer can be used to

ascertain when a new section of the performance should begin and used

to automate some of the processes required (see also 4.9.3)

2. Local/event time

Smaller timers that are started in response to individual events or actions

can be extremely useful for delimiting certain behaviours. The most

commonly-used example is a tap-and-hold style gesture on a touch screen

which is often used to invoke alternative behaviour. Figure 3 in [60]

shows a wide variety of touch gestures that are differentiated from regular

interactions using a simple time-based hold cue. This kind of cue (holding

a posture/button/etc. for a predetermined period) is very difficult to

perform by accident and represents a powerful way to move between

states. However, it should be avoided in the case of rhythmic or time-

critical events that might be rendered inaccurate or flimsy as a result of

the implied delay. Aside from providing a convenient means to construct

delimiting functions, the values from local timers can also be useful when

111

used directly for synthesis and signal processing. For example, a sound

that is initiated by a button press can be made to increase in volume using

the value of a timer, with the button release signifying a note release at

the final volume that is reached. This kind of non-obvious interpretation

of user input can be used to give a sense of dynamics to even the most

basic of hardware inputs.

3. Average

Aside from its use as a tool for smoothing noisy input data, averaging can

be used to generate interesting values for synthesiser control. A fader

which uses an average value, rather than its current value, to control the

pitch of an oscillator, for example, will ‘drift’ smoothly from the

previously-held value to its destination. This can be used to implement a

portamento-style effect and also, at slower speeds, to free up the

performer to concentrate on other tasks – the delayed reaction that this

technique produces can be used like an instant form of automation

programming, where the performer selects a value that the controller will

move gradually towards and proceeds to concentrate on other aspects of

the performance.

4. Excitation/agitation

This is a metaphorical implementation of unsettling a physical system. A

threshold is set for a particular sensor input – for example, the velocity of

a mouse being moved – along with a simple conditional loop. When the

value being output from the device exceeds the threshold, an additional

‘excitation/agitation’ value is incremented. Conversely, when the sensor

input drops below the threshold the value decreases. This value is used

112

elsewhere to control volume, distortion ratios, effects sends, etc.

Experimenting with different threshold positions and the rate of

addition/subtraction to/from the excitation variable can lend a sense of

life to properties of a synthesis or signal processing algorithm that might

otherwise be static or linear-sounding. A simple example is described in

5.3 of [117].

4.9.2 Modal behaviour

We have already encountered the concept of modes when discussing the keyboard

action model in 4.6 – the modifier keys (SHIFT, CAPS LOCK, INSERT, etc.) all

alter the interaction scheme and allow the same interface, the QWERTY keyboard

buttons, to be used for entirely-different purposes. The concept of a modal interface

is described as follows in The Humane Interface:

A human-machine interface is modal with respect to a given gesture

when (1) the current state of the interface is not the user’s locus of

attention and (2) the interface will execute one among several different

responses to the gesture depending on the system’s current state [149].

Thus we can describe a digital musical instrument as modal if it comprises multiple

states or modes that each exhibit a distinct set of behaviours and rules for the

interpretation of user input.

 There are mixed opinions as to the inclusion of modes in physical

computer interfaces due to their capacity to cause confusion and ‘mode errors’ (i.e.

any kind of unpredictable or unwanted response to user input as a result of a system

being in a different mode than the user assumes). Many designers advocate the

avoidance of modal systems altogether [149] and cite a preference for mapping each

control “to a unique and consistent response” [142]. However, modes are very useful

113

for the digital musical instrument designer: a well-designed modal interface allows

the performer to employ the same physical gestures and devices for multiple

purposes both quickly and unambiguously. Modes can be used to reduce the number

of gestures that a user needs to learn and also dispense with the need for extra

devices or sensors.

 The primary concern in such a system is the avoidance of mode errors –

there are several pertinent strategies that can be employed:

1. Provide immediate, clear and unambiguous feedback

Signifying that an alternative mode has been triggered is the most direct

and simple way to avoid mode errors. The system can alert the user

immediately once a new mode is engaged, provide some kind of

consistent ambient indication while it is engaged, or some combination of

both. Visual indicators (e.g. lights, screens, colour-changes, etc.) are

usually convenient, provided that they do not disrupt the performance, as

they can be ignored once the user becomes proficient. Sonic cues may

also prove useful in certain cases where the change of mode has a drastic

effect on the sound anyway (e.g. entering a mode that applies a granular

distortion effect on the sound) but can be disruptive or fatiguing in many

scenarios. If it is available, haptic feedback can provide subtle

reinforcement cues in response to user input without alerting the

audience.

2. Allow the user to rapidly cancel accidental mode changes

Providing some kind of dedicated ‘escape’ button can assist the user in

rapidly correcting a false switching of modes and returning the system to

its previous, or default, state. One example in a popular application is the

114

use of the ESC key to exit note editing mode in the Sibelius family of

digital notation software [167]. Both this technique and the one that

follows differ slightly from the rest of the strategies in this section in that

they aim to retrospectively amend errors related to modal behaviour.

Aside from the practical benefits of rapid error-correction, this kind of

feature can help users learn to navigate through complex performance

systems by reducing the damage, and hence frustration, caused by

mistakes.

3. Allow the user to rapidly undo possible mode errors

In cases where mode errors can potentially have a devastating result on

the performance (e.g. deleting an entire sequence of notes or altering a

live-looping setup) it can be necessary to provide an emergency button

analogous to the undo function featured in most desktop applications.

This should be immediately accessible and difficult to trigger by accident.

For more advanced applications, the ability to save and recall various

states can be a practical extension of this idea (4.9.4).

4. Use quasimodes whenever possible

Quasimodes, also known as “spring-loaded modes” [149], invoke

changes of behaviour in a system in exactly the same sense as a mode but

they require a conscious and sustained input cue from the user in order to

remain active. Once more, we can refer to the key-action model and the

concept of modifier keys (4.6) for an everyday example: the altered

functionality modes of the SHIFT, CTRL and ALT keys are seldom

activated by mistake because they require a constant physical effort on

behalf of the user and cease to have an effect once the key is released.

115

The sustain pedal on a piano provides us with another good example –

despite completely altering the behaviour of the instrument, it is seldom

triggered in error due to the decisive physical effort required. The

kinaesthetic aspect of maintaining a quasimode serves as a form of

natural feedback, which further reduces the capacity for errors, but also

necessitates a comfortable and ergonomic design in order to avoid strain

or injury.

5. Ensure that mode changes are clearly delimited

The user actions that result in a transition between states or modes should

be clearly defined and distinct (both from one another and any other kinds

of action that use the same input channel or device). While quasimodes,

as described above, provide a relatively safe way to accomplish this, they

are impractical for invoking modes that are sustained for long periods of

time due to cognitive load on the user, the compromised physical

faculties of the user and the potential for fatigue. Careful attention should

be given to this issue with regard to the choice of hardware, number of

different modes and the frequency/speed with which they need to be

changed. A robust example of a comparison between several input

devices and their states can be found in Buxton [21].

6. Associate individual modes with unique gestures

Reserving specific gestures (e.g. unique button combinations) for

toggling modal behaviours is a worthwhile option to consider for digital

musical instruments that require a variety of operating states. This

presents a more abstract or symbolic approach that requires the user to

commit a set of executive gestures and the modes associated with them to

116

memory. While this approach implies an investment of time and an

adjustment period on the users’ behalf, there are considerable benefits in

terms of user familiarity and the potential for layering many different

levels of functionality without confusing. The ability to rapidly and

unambiguously switch between a variety of layered performance modes

in, for example, hardware samplers and drum machines has enabled

dedicated users to develop an extraordinary level of precision and

efficiency while generating and editing patterns and samples in real-time.

The primary difficulty with interfaces designed in this style is that many

of the features are obscured from the user due to the level of abstraction

that is involved. Care must be taken, therefore, to ensure that the user has

quick and easy access to the most salient features of the system when it

comes to live performance. A contemporary commercial example is

Yamaha’s Tenori-On [183] which features ten hardware buttons on either

side of the main interface that provide access to a variety of functions –

changing tempo, altering note lengths and octaves, transposing, etc.

Holding the R1 button and selecting a horizontal row from the main grid

interface changes between one of sixteen different ‘layers’ – each of

which are pre-assigned to use one of the Tenori-On’s six distinct

‘performance modes’, which range from a step sequencer (Score Mode)

to more generative behaviours (Random Mode, Bounce Mode). While

initially quite complex and overwhelming, each layer (and hence

behaviour) can be associated with a simple two-button combination that

allows habitual users to navigate between them with speed and accuracy.

117

4.9.3 Automation

The concept of using time as a variable was introduced in 4.9.1 – the extent to which

the use of system time as a cue can be classified as automation depends largely on

the level of complexity that is involved. Without necessarily adopting this approach,

and hence moving towards the design of a predetermined interactive score, several

more subtle forms of automation can be used to reduce cognitive load and therefore

permit the user to focus upon more critical aspects of the performance:

1. Use an incrementing integer to change behaviour

This is an extremely simple yet powerful technique. One or more global

variables store an integer that the user can increment/decrement at will.

These variables are used elsewhere in the code to alter aspects of the

system – examples could be to transpose a section, alter the scale that is

being used, change the sample bank assigned to a certain device, move on

to the next part of a looped sequence, etc. The most powerful aspect of

this approach is the ability to invoke a large number of changes in

response to a simple user action. It can also be used to simultaneously

change operating mode, as discussed above, and musical material in a

system where the general progression of events is known in advance of a

live performance.

2. Count the occurrences of a particular event

This strategy is a variation of the previous concept that uses the same

technique of incrementing abstract counters. The difference is that these

counters are tied to a particular event, such as a note/sample trigger,

rather than being manipulated by the user directly. Aspects of a system

can, therefore, be set to evolve in direct response to the performer’s

118

actions without requiring specific attention, manipulation or devices to

control. These evolutions can take the form of anything from subtle

drifting of sample-playback positions and reverb parameters, to more

drastic effects such as changing the note value or volume of a particular

key every time it is struck.

3. Use predetermined material (micro)

The use of pre-prepared samples, sequences, loops and patterns in live

performance is taken for granted in most forms of electronic music.

However it is worth declaring this strategy explicitly in order to highlight

that the ‘predetermined material’ in question need not be audio or note

event data. All sample-based performance systems use predetermined

amplitude envelopes on a micro-scale to ensure smooth playback of

samples, but the ability to define and trigger more macro-level parameter

control envelopes is featured less frequently. Commonly-used musical

techniques such as fade-ins/outs, crossfades, sustaining of notes,

scrubbing through samples, and suchlike can also be automated and set to

begin in response to a specific input device or gesture. Once more, it must

be stated that this kind of functionality is not intended to make

performing easier or less-human, but rather to free the faculties of the

user in order to concentrate more fully on other aspects of the music.

4. Allow the user to trigger predetermined events (macro)

This technique does not refer to the use of smaller, composite parts such

as those described in the previous strategy. The approach in question

refers to the preparation of key transitions, musical gestures and

transformations that are likely to form part of the overall performance at

119

some stage – a loose analogy can be made with motivic jazz

improvisation [87]. Unlike the use of a timer or linear score, the user is

provided with the means to trigger certain automated processes at will

throughout the performance. This method allows complex hooks and

progressions to be preserved and produced at will during the performance

without restricting the user to a preset timing, duration or score.

Obviously the boundary between this strategy and the previous is loosely-

defined and depends largely on the structure of the music and the role of

the performer.

4.9.4 Saving and recalling settings

The ability to save and recall preset sounds, arrangements and parameter settings is

typically reserved for the preparatory stages of developing a live performance –

patches and presets are often loaded up during a show, but seldom edited and saved

again. Interfaces for memory access on both hardware and software instruments

generally reflect this trend, with detailed multi-level menus and file system

navigation being the norm.

 The only scenarios where performers typically generate, store and recall

material onstage tend to be where live looping/sampling or sequencing is taking

place. In such cases it is common for dedicated hardware/software to provide a set of

quick-access banks, patches or presets that can be altered, saved and recalled rapidly

during performance. With respect to dynamic control of a system, there is ample

reason to explore the ability to save/recall the current state of an instrument, its

parameters, and other abstract variables such as those discussed in this section.

Analogous to a ‘screengrab’, ‘snapshot’, ‘bookmark’ or ‘quick-save’ in gaming and

other media, digital musical instruments that allow the user to dynamically store and

120

retrieve information during a performance can facilitate a sense of freedom and

complexity with regard to developing musical material live.

4.10 Case study: LoopBlender

Figure 4.3: T-EMP ensemble performance at Rockheim, Trondheim

This section describes the creation of a digital musical instrument using the strategies

defined in the preceding chapters. LoopBlender was used in a series of improvised

performances with the Trondheim Electroacoustic Music Performance ensemble (T-

EMP) in August 2012.

4.10.1 Background

The T-EMP ensemble (shown in Figure 4.3) explores some of the peculiarities of

digital musicianship through live performance and group improvisation [152]. The

author was invited to play as a guest musician for a small tour in August 2012 with

two days of rehearsal and two consecutive concerts – each consisting of a 50-minute

performance comprising three sets. The intention was to bring two separate sources

of sound – acoustic and electronic – in order to accommodate a broad range of

121

improvisatory material. The acoustic source was an unmodified shakuhachi flute, but

it was decided that an entirely new interface should be designed for the manipulation

of electronic material.

 For both of the concerts in question, the ensemble consisted of: Øyvind

Brandtsegg (Hadron partikkel synthesizer), Trond Engum (guitar & electronics),

Bernt Isak Wærstad (guitar & electronics), Tone Åse (voice & electronics), Ingrid

Lode (voice & electronics), Carl Haakon Waadeland (drums), Bryan Quigley

(acoustic bass) and Patrick McGlynn (shakuhachi & electronics). The large size of

the ensemble, improvised concert format, predominance of electronic instruments

and unfamiliarity of the author with the group’s performance style meant that the

development of a robust, versatile and adaptable digital musical instrument was key

to a successful integration with the group.

4.10.2 Design brief

Preparation for the sessions was guided entirely by three points of interest that had

been conveyed by the T-EMP ensemble:

1. Emphasis upon a non-visual performance style

Visual communication between members of the ensemble was not

encouraged. While visual cues (both predetermined and spontaneous)

are frequently used to communicate in improvised settings [136], the

intention was to build a group rapport solely based-upon audio stimulus.

2. No monitors for individual performers

In a live concert setting, particularly where amplified and electronic

instruments are used, it is common practice to provide a monitoring

system to allow the performers to clearly hear their own contribution

alongside the rest of the parts. In order to maintain a sense of focus upon

122

the overall textures and gestures taking place within the group, there

were to be no individual monitors or mixes for the musicians. The only

form of feedback would be a stereo mix delivered to the stage which

would be identical to the front-of-house mix heard by the audience.

Musicians were thus expected to be self-regulating with regard to their

overall dynamic placement in the mix.

3. Performers need to be able to respond quickly

This was the most striking of the guidelines provided – the ability to

rapidly exchange more percussive or rhythmic gestures with the rest of

the group was made a priority when designing the performance

interface.

4.10.3 Hardware selection

The ideal controller for this scenario would be lightweight, compact, and feature an

equal mix of continuous and discrete control devices. Physical interfaces and

traditional mechanical input devices such as potentiometers and buttons were given

preference over digital systems due to the necessity to accommodate rapid and

dynamic responses to fellow musicians. The Korg NanoKontrol2 was identified as

the optimum available controller – a slimline USB mixing desk [94].

4.10.4 Interface components

The interface was designed to perform sample-based synthesis using a set of

preloaded loops. The user can individually control the volume of both a dry and

reverb-effected signal from four separate sample banks – each of which contains six

loops that can be muted/played independently. The loop start point and loop length

of each bank can also be altered dynamically by the user.

123

 In addition to this main sound-generating architecture, a selection of

articulatory tools are implemented as toggle-able master effects – including a

killswitch, selection of filters (LP, HP, BP), bit depth/resolution reducer and

overdrive effect. Finally, the unexpected nature of both the individual performances

and the dynamic of the ensemble itself made the integration of a vast and varied

sample library a necessary addition – a separate and independent ‘layer’ of banks

was added, with an alternate selection of samples loaded into each slot, in order to

increase the sound material available to the performer.

4.10.4.1 Bimanual interface for selection and articulation

Figure 4.4: Bimanual division of Korg NanoKontrol2

Partly inspired by the layout of the control surface itself, and partly due to the

intrinsic seperability of the tasks taking place (sample selection/manipulation and

master effects triggering), a bimanual model of interaction was adopted. This

involved an abstract division of the physical control surface into two halves:

selection and articulation. Selection tasks (sample triggering, looping and scrubbing)

are performed using the faders, potentiometers and buttons of the right side of the

interface, and articulation tasks (master effects and killswitch) are performed on the

left side.

124

This model of allocating distinct yet complementary tasks to the left and right

hands was inspired by the research of Bill Buxton into framing and articulatory [98]

roles in two-handed input and also Guiard’s kinematic chain model [213]. With

regard to Guiard’s model, this instrument design represents a hybrid between the

orthogonal and serial categories of bimanual interaction – both hands perform

different tasks (orthogonal approach) but the output of the right-hand sample banks

also provides the input for the left-hand effects processors (serial approach).

4.10.4.2 Modal sample toggles with LED flags

Figure 4.5: Control section for sample group A

A wide variety of sounds from the author’s personal collection were auditioned,

edited and categorised in preparation for the performances – including found sounds,

field recordings, synthesized material and excerpts from compositional work-in-

progress. To facilitate rapid memorising of sample locations and enable fluid access

onstage, four abstract categories were defined based upon the sonic qualities of the

samples:

 Group A: Low-frequency / low-energy sounds

(e.g. rumbling, dense, slow-moving textures)

 Group B: Low-frequency / high-energy sounds

125

(e.g. active, dark, rhythmic, alive textures)

 Group C: High-frequency / low-energy sounds

(e.g. subtle, high-pitched, gradual, airy textures)

 Group D: High-frequency / high-energy sounds

(e.g. busy, dynamic, shrill, cutting textures)

Each separate category or bank is allocated a section with two faders, two

potentiometers and six buttons. In addition, toggling the alternate bank mode gives

access to a second layer of samples, all of which are organised using the same

system. Each group therefore contains 12 samples giving a total of 48 unique

samples to draw-upon. Each button on the NanoKontrol2 features an LED light that

is used here as a flag to indicate that a given sample is active. The samples range

from short (<5 second) clips to longer (c. 2 minutes) montages that can be scrubbed-

through and looped in different ways to generate new rhythms and textures live

during performance.

4.10.4.3 Touch versus toggle behaviour

Figure 4.6: Sample buttons for group A

At any given time, each bank features 6 samples that are assigned to individual

buttons. The buttons behave as switches and use the toggle behaviour described in

126

4.5.1.3. Once activated, each button lights-up and loops a sample continually until

pressed again. An initial prototype design used the touch strategy (4.5.1.1) but this

was deemed impractical due to the difficult and uncomfortable hand positions that

certain combinations of sample required. Access to more sudden, rhythmic and

percussive gestures was delegated to the articulation section (4.10.4.6 below).

4.10.4.4 Integrality and multiple outputs of banks

 Figure 4.7: Master volume and reverb send for group A

The pair of faders in each group are dedicated towards controlling a dry and reverb-

effected mix of the currently looping samples within that group. In both cases, a

simple one-to-one mapping scheme is used. There are no individual volume controls

for the samples themselves – each group is used as a sound collage generator. This

approach was chosen in order to emphasise the integrality (see 4.7) of each bank in

terms of the timbral similarity of the material (4.10.4.2). The result is a system which

emphasises the cumulative product of each bank and thus mirrors the concept of the

self-regulating performer defined in the brief (point 2 in 4.10.2).

127

4.10.4.5 Combined looping controllers

 Figure 4.8: Loop start and length controls for group A

There are 2 variables related to looping behaviour that are unique to each group –

loop start point and loop length. These variables are controlled by pairs of

potentiometers that are linked using the second strategy described in section 4.8:

Both controllers affect different, but related, essential parameters of the instrument.

Each value is controlled via one of the potentiometers and is dynamically-scaled in

order to prevent read-errors (i.e. loop start time and length are both expressed as a

percentage of each individual loops size). Integrating the controls for multiple loops

within the same group in this way prevents micro-management of sample playback

and encourages the performer to explore the sample library in search of interesting

emergent patterns.

128

4.10.4.6 Touch strategy for articulation

 Figure 4.9: Articulation controls

As discussed in 4.10.4.1 above, the articulation section was designed explicitly to

assign the left-hand to a more percussive and rhythmic role. The right-hand selection

section tends to provide an analytical and measured way to blend the various

samples together, so the left-hand section needed to inject a sense of immediacy and

spontaneity into the instrument.

 The killswitch (labelled [A] in Figure 4.9) was included as a direct result of

the toggle behaviour used for the sample buttons (4.10.4.3). The need for two

consecutive button presses in order to quickly start and stop a sample led to a poor

response time when rapid bursts of silence and sound were needed. Also, the extra

effort required on behalf of the performer was fatiguing and inelegant. Therefore a

dedicated percussive button was introduced – the killswitch, when depressed, mutes

all outgoing audio from the instrument. When released, playback immediately

continues (the button uses a touch strategy, as described in 4.5.1.1). This muted state

can be described as a quasimode, as it requires the user to physically maintain

contact with the button, and is impossible to invoke by accident. During

performance, the killswitch is typically operated using the thumb while the right-

hand alters the configuration of the material being looped.

129

 The layer switch (labelled [B] in Figure 4.9) uses a simple toggle strategy to

invoke the only constant mode change within the instrument design – switching

between the two banks of samples. Any sample-slots that are currently playing are

replaced with their counterparts. While this prevents material from the first and

second layers being used simultaneously, it is preferable to having loops running in

the background that are not represented by a lit button on the device itself. Every

loop being played is represented by a lit button.

 Finally, the effects section (labelled [C] in Figure 4.9) comprises 5 larger

buttons in a row, each of which activates a different effect on the master output

channel. From left to right these effects are: low-pass filter, high-pass filter, band-

pass filter (fixed to a mid-range), bit depth/resolution resampler and overdrive. Like

the killswitch, these effects are all quasimodes that use the touch strategy – the effect

remains active while the button is depressed. The effects are not mutually-exclusive

and can be triggered in various combinations for interesting and distinctive results

(e.g. LP filter + resampling effect generally generates brittle, low textures). An

important role of the effects is to allow the performer to instantly modify sampled

material to fit loosely within a spectral or timbral space that is being established by

the other performers during an improvisation. The spatial configuration of these

buttons lends itself well to this role – the fingers of the left-hand can rest

comfortably upon the buttons and operate them fluidly, after some practice, without

the need for the performer to glance at the interface.

4.10.5 Discussion

Analysis of this case study can be undertaken with regard to two separate issues: (a)

the effectiveness of applying the interaction design strategies developed throughout

this thesis, and (b) the success of the LoopBlender interface itself in practice.

130

 Every sensor on the NanoKontrol2 was reappropriated in some way to suit

the requirements of the performance. Once the intended functionality of the interface

was outlined, the interaction strategies allowed for rapid prototyping using the

available potentiometers, faders and buttons. For example, individual samples were

initially activated using the touch strategy (4.5.1.1) to facilitate rapid, percussive

play, but this was quickly deemed impractical due to both the physical layout of the

buttons and the tendency for the user’s hands to obscure other vital controls (faders

and potentiometers) while maintaining contact. A quick survey of the available

strategies revealed toggle (4.5.1.3) to be a viable alternative. The touch behaviour

was subsequently assigned to the left-hand, or articulation, section in order to

provide a comparable amount of percussive or rhythmic control.

 An awareness of modes and strategies for combining controllers (4.9.2 and

4.8, respectively) led to the simultaneous and independent activation of the various

master effects. Although the effects were perceptually very different, their similar

method of activation and close physical location coupled them together into a single

control modality that encouraged a particular style of play – the juxtaposition of

various combinations of effects became associated with particular fingering patterns.

 While the strategies proved useful and easy to apply, the instrument design

itself has a number of shortcomings when it comes to performance. Navigating the

sample library is heavily-reliant upon the user’s memory. This had the dual

disadvantage of lowering reaction time and discouraging intrepid explorations

through the samples due to the significant risk of triggering unwanted sounds. Also,

the effects section was allocated half the physical space of the sample section and

none of the continuous controllers (faders and potentiometers), yet it swiftly became

apparent that its features were far more practical in an improvisatory context. A

131

direct reversal of priorities, providing more emphasis on the articulatory controls and

effects, would possibly lead to a more versatile instrument.

However, there were also many interesting benefits to the design. Most

performance-oriented samplers do not provide the user with a quick, non-destructive

means to navigate-through and modify loop points – LoopBlender facilitates rapid

and precise modification of samples during playback without permitting the user to

enter a distracted or analytical state. The experience of performing with this

instrument in an improvisatory context, once the sample locations themselves have

been memorised sufficiently, is similar to playing with a collection of found objects

and physical sound sources. LoopBlender afforded the author the ability to partake in

a series of long-form improvised performances, using exclusively pre-recorded

material, without becoming repetitious or requiring a visual display.

 It is interesting to revisit the design brief subsequent to implementing and

performing with LoopBlender and note how the apparent-limitations of the goals in

fact led to some liberating performance concepts:

1. Emphasis upon a non-visual performance style

The lack of visual communication between the improvising musicians

meant that the instrument itself could feature a visually-complex

interface without compromising the performer.

2. No monitors for individual performers

The ability of the performer to identify and modify their material

unambiguously during performance was vital. Therefore, the clear

organisation of samples and the ability to rapidly respond to changing

dynamics (using both the killswitch and the faders) became vital

features.

132

3. Performers need to be able to respond quickly

The sudden changes and reactions that the musical style demanded led

to a system where play modes could be quickly switched in an intuitive

and error-free way. Once memorised, the simple toggle controls in the

articulation section become an unambiguous and versatile expressive

tool.

4.10.6 Future work

There is scope for both development and improvement with this concept in the

future. Performance oriented samplers generally place a high priority, in terms of the

layout of the control surface, upon turning on and off individual samples – features

dedicated towards the editing of samples are usually restricted to a set of hierarchical

menus. The close physical relationship between continuous controllers

(potentiometers and faders) and discrete controllers (buttons) upon the

NanoKontrol2 makes the hardware well-suited to a performance approach that places

equal importance upon triggering and scrubbing through looped material. However,

the controllers in question are amongst the most common found on music hardware –

distributing these roles across a number of dedicated fader, potentiometer and button

control surfaces might lead to a more evenly-distributed instrument design in terms

of its functionality.

 Therefore, expanding the hardware setup is a planned development for the

future. The controller itself is lightweight, compact and ideal for mounting onto

additional pieces of equipment. An additional button array or touchscreen device

would expand LoopBlender’s capacity for supporting complex sample triggering

behaviour or real-time manipulation of effects, respectively. Integration with the

133

Oscar system, as described in Chapter 6, would also greatly enhance the number of

control modalities open to the performer.

In response to these observations, a number of guideline questions can be

generated in order to help musicians approach a similar interface design project in

the future:

1. Does the performer need to simultaneously operate a large number

of samples?

If so, an interface that accommodates a large number of 1D controllers

(i.e. buttons) should be used, ideally without allocating multiple samples

to the same controllers. Consider an alternative, ergonomic layout that

might allow smooth playing (see 2.2 for some suggestions).

2. Does the performer need to pay close attention to visual stimulus?

If so, the interface should avoid using screens or other forms of input

that rely heavily upon visual communication. Visual feedback should be

simple, unambiguous and available at a glance (e.g. LEDs, fader

positions, etc.).

3. To what extent can the performer edit the loop contents live?

If the performer just needs to trigger the loops at a set volume, a simple

button will suffice. Additional mixer-style controls allow for some

variation (e.g. of volume, panning, etc.) but more precise real-time

editing, such as loop boundaries and playback speed, demand a further

set of responsive, dedicated controllers.

4. Is it important to be able to manipulate effects parameters?

For more dynamic live sample processing, consider adding an additional

control surface dedicated towards effects and parameter control.

134

Frequently used effects, such as the killswitch in loopblender, should be

assigned to a comfortable and accurate input device.

4.11 Conclusion

This chapter has proposed a modular approach for the construction of interactive

strategies in digital musical instrument design. Having established the key benefits of

a modular system and highlighted the goals this approach aims towards, a selection

of essential programming concepts are discussed in relation to musical application

development. A concise comparison of predictive models and descriptive models

reaffirms the direction of this approach. The next section takes a critical look at some

easily-misused terminology – degrees of freedom, dimensions and resolution – and

clarifies the distinction between them for the purposes of discussing hardware

devices when used for musical interaction.

Following this groundwork, a list of interactive strategies is proposed for

both high and low-resolution controllers with one degree of freedom. These

strategies, while quite simple, represent a new way of seeing a piece of hardware: as

a selection of flexible devices that are open to interpretation individually and as a

group. This perspective highlights the expressive potential of even the most basic

devices and actively discourages the kind of simple one-to-one mapping techniques

that were criticised in Chapter 3.These strategies form the fundamental building-

blocks of a new conceptual toolkit which is expanded-upon in the following sections.

 Having outlined the benefits of a modular approach to digital musical

instrument design, we looked at the distinction between controllers operating

independently and interdependently, from the performer’s perspective, and thus

identified a number of different strategies for combining controllers.

135

 Another important category of tools – abstract controllers – was then

introduced to complete our model. A summary of interaction techniques that employ

statistics, modal behaviour, automation and the saving/recalling of settings were

discussed in terms of their ability to augment the hardware components of digital

musical instruments. The complete model is illustrated, in brief, by the tables

provided in Figures 4.1 and 4.2. Finally, we took a detailed look at the design of

LoopBlender – a sample-based performance instrument designed for use in an

improvisatory context. The utility of the terminology we have established throughout

this chapter is demonstrated via this case study, which employs many of the

interaction strategies that have already been discussed.

136

Chapter 5. Recontextualising the multi-touch surface

“Through eons of human evolution, we have developed sophisticated skills for

sensing and manipulating our physical environment. However, most of them are not

used when interacting with the digital world where interaction is largely confined to

graphical user interfaces.”

-Hiroshi Ishii, The tangible user interface and its evolution [72]

This chapter discusses design issues for digital musical instruments which utilize

multi-touch technology. The focus is firmly upon experimental and/or innovative

instrument designs which engage with the users’ sense of tacit knowledge [132] and

facilitate spontaneity and improvisation. There are four main sections:

 Surface-based Interfaces (5.1) describes in detail the data generated by two

popular types of controller – the XY pad and button array – and how it

influences their use in digital musical instrument design. The multi-touch

interface is then discussed in the same context and a summary of notable uses

is provided.

 Designing Multi-touch Interfaces (5.2) discusses the often-restrictive use of

graphic user interfaces (GUIs) in multi-touch systems and suggests an

alternative approach with an emphasis on gestural, as opposed to visual,

interaction.

 SurfacePlayer (5.3) describes the development of a multi-touch interface

paradigm designed with non-graphical performance techniques in mind. This

tool moves beyond the simple use of coordinate data to the development of

137

multi-touch interaction algorithms using a standard tangible interface

protocol. This work became the foundation of a new interface design,

featured in Chapter 6.

 The conclusion (5.4) summarises the main points made within the chapter

and describes the link between these findings and the proof-of-concept

described in the next chapter.

5.1 Surface-based interfaces

This section consists of a review of various surface-based interfaces when used as

musical controllers. The surfaces in question are simple XY pads, button arrays (also

known as ‘grids’) and multi-touch surfaces. The grouping of these devices under the

heading ‘surface-based interfaces’ is not to suggest some kind of abstract category,

but rather to emphasize their shared physical characteristics – all are basically flat

sensor devices which respond to human finger-touches, albeit in different ways.

5.1.1 Historical roots

There is a rich history of analog synthesizers designed to respond to touch – the

Ondes Martenot (see 2.3.1), Trautonium (2.3.3), and Theremin Cello (2.3.4) all used

precise finger movements as their primary means of control and laid the foundation

for more contemporary devices such as the ribbon controller – a popular addition to

performance setups since Robert Moog’s modular synthesizers (2.1.8) [26]. Pen-

based interfaces such as UPIC (conceived by Xenakis and implemented by Centre

d'Etudes de Mathématique et Automatique Musicales (CEMAMu) in Paris) also

inspired computer musicians to begin working with tablets. The “quantitative merits”

of the tablet as a musical controller have been well-established, practically as well as

138

theoretically, by research carried out at the Centre for New Music and Audio

Technologies at University of California, Berkeley (CNMAT) [224, 225].

5.1.2 XY pads

The XY pad is a control surface which offers 2 degrees of freedom via its horizontal

and vertical axes (note that the strategies outlined in Chapter 4 can augment this

number – in this case, we are just considering the basic physical properties of the

interface). Resolutions vary, but are typically high enough to accommodate

continuous parameter control. The XY pad can be seen as combining the

functionality of two faders into a single interface, as it offers simultaneous and

independent control of two streams of data (although this comparison highlights

some interesting differences, as discussed below).

The Korg Kaoss Pad (1999) [91] range brought mainstream attention to the

use of XY pads for a variety of musical tasks with a selection of high-profile users

from genres as diverse as experimental rock (Radiohead’s Johnny Greenwood

[221]), dance (Jon Hopkins [214]), ambient electronic (Brian Eno [215]), beatboxing

(Beardyman [216]), and alternative rock (Muse’s Matt Bellamy [220]). The KP [93]

range use the surface to control various live signal processing patches while the spin-

off Kaossilator (2007) series are designed for pattern recording/playback using a

selection of onboard synthesis patches. The manual for the Kaoscillator Pro (2010)

[92] gives a comprehensive list of the mapping schemes employed and is indicative

of the typical function of these devices within a performance setup.

The continuous nature of the output means that this kind of device lends itself

well to glissandi and sweeping effects. Typical mapping schemes establish a one-to-

one connection between each axes and a pair of parameters – cutoff/resonance of a

filter, for example, or pitch/ loudness of a synthesizer. Some interesting observations

139

upon the combinations of parameters are discussed in [168]. It has been suggested

that any two parameters mapped in this way (i.e. controlled by a single point of

contact from the user) have a high degree of integration [73] and should ideally

influence closely-related elements of the sound. Of the examples given above, the

cutoff/resonance combination is preferable as it deals exclusively with the behaviour

of the filter and allows users to associate a particular space on the surface with a

certain type of sound or effect. Pitch/loudness are not so closely-coupled, as they

deal with perceptually-separate aspects of the sound, and it has been observed that

users may find this kind of mapping less intuitive [168].

As mentioned above, it is worth noting a number of differences not made

explicit in the pair of faders analogy. While the potential for simultaneous and

independent manipulation of a pair of data streams is theoretically identical in both

cases, there are three major differences between an XY pad and two faders:

1. The ability to jump from one value to another while skipping the intermittent

values (‘teleportation’) – it is possible for a user of an XY pad to break

contact with the surface and reconnect at a higher/lower position.

2. Lack of feedback – an XY pad does not provide any feedback (unless it is

combined with a visual display) – a fader provides both tactile and visual

feedback indicative of its current state.

3. One-touch input - an XY pad can be manipulated with a single fingertip,

whereas certain manipulations with the faders are difficult without the use of

multiple fingers or hands.

XY pads are typically allocated an ancillary role in a performance system – playing a

similar role to pitch-bend/modulation wheels or controlling effects – while primary

tasks such as note selection or event triggering are left to devices such as keyboards

140

or samplers. While they are often used to control the continuous parameters of

various effects, it should be noted that XY pads do have a certain resolution. This

may not be audible and depends mostly on the hardware and communications

protocol being used.

5.1.3 Grid-based interfaces

A style of interface that has seen comparatively more musical experimentation is the

grid-based layout popularized by devices such as the Tenori-On [182], Monome

[124] and Novation Launchpad [2]. While generally represented by an array of

separate buttons, the device is essentially a discretized version of the XY pad –

replacing a high-resolution 2 degrees-of-freedom controller with a matrix of low-

resolution (binary) 1-degree-of-freedom controllers. The grid-interface can therefore

be described as an array of switches.

Given the relative lack of precision that this description seems to imply, one

could be forgiven for assuming that the usage scenarios are comparatively less-

musical and flexible compared to those of the continuous XY pad. However, the

opposite is true – grid-based interfaces have been employed in a vast array of

musical tasks including sample-triggering [219], multi-effects processing [217], FM

synthesis [125], step sequencer-control [177], visualization [196] and animation

[197].

There are a number of reasons why this is the case. Firstly, the physical

nature of an array of buttons provides a kind of tactile feedback which an XY pad

cannot replicate. The importance of a tactile relationship between performer and

instrument is well-acknowledged [139]. With an array of buttons, it is possible to

discern the location of your fingers without relying upon visual feedback or actually

triggering a reaction from the device. Secondly, many button-array controllers

141

(including those listed above) light up individual buttons in order to indicate their

individual status or to form a collective abstract shape. This capacity for

unambiguous, immediate visual feedback is significant, as it allows the user to

maintain a relationship with any number of abstract variables or multiple layers of

functionality once the corresponding symbolism has been established and committed

to memory. Accordingly, this added channel of communication with the user

encourages more complex multimodal systems. Finally, it should be mentioned that

the visual appeal of the lights themselves can be a motivation for employing these

devices in a live context, even as works of art in themselves [198].

Together these factors give an impression of the increased potential of the

button array as part of a robust live performance system. What appear to be trivial

additions (buttons and lights) are actually partly-responsible for the variety of

creative digital musical instrument designs that employ button arrays.

5.1.4 Multi-touch surfaces

This section discusses approaches to musical performance using multi-touch

surfaces within three categories – covering hardware, academic and mobile

application development, respectively.

5.1.4.1 Commercial hardware

Commercial hardware for multi-touch music performance began with the

JazzMutant Lemur [74] - a high-resolution touchscreen with a flexible and powerful

interface editor. The Lemur arguably set the standard for multi-touch music control –

the direct influence of its approach, from the futuristic visual style to its use of Open

Sound Control (or OSC, see 2.9.3 or [141]), can be seen across a broad range of

projects today.

142

While the Lemur was a generalized controller, recent trends in multi-touch

music interfaces tend to be designed with more specific tasks in mind such as mixing

(Line 6 Stagescape [100], KS-1974 [169], Mackie DL1608 [104]), synthesizer

performance (Haaken Continuum [58], Soundplane [105] and Misa Kitara Era

[121]) and portable composition (KDJ-One [82]). One notable exception is QuNeo

from Keith McMillen Instruments [83] - a multi-touch pad controller that first

appeared on the crowd funding site Kickstarter [84].

5.1.4.2 Academic research

Academic research into multi-touch music performance is widespread and diverse.

Projects such as the Reactable [77], Linnstrument [156] and David Wessel’s SLABS

[207] provide interesting and progressive examples of contemporary work. One

particularly useful online presence is maintained by the Natural User Interface Group

– both their forum [134] and free book Multi-Touch Technologies are invaluable

sources of up-to-date information and advice [181].

5.1.4.3 Mobile applications

Mobile applications are understandably a popular way to package and

distribute multi-touch music software. There is a vast selection of musical ‘toys’

available on both the iOS App Store and the Google Play store which demonstrate an

extremely-limited range of possibilities and are accordingly of little interest to

musicians. There have been a number of attempts at ‘serious’ instruments – most of

which are designed to resemble an existing piece of hardware (Yamaha TNR-i [182],

Korg iElectribe [90]), though exceptions do exist (TC-11 [180], Mugician [155]).

Some of the more flexible musical tools available on mobile devices are

dedicated ‘controller’ applications. These perform tasks only at the input stage of the

143

digital musical instrument architecture and produce no sound. Instead, the users’

interactions with onscreen widgets prompt the device to send data wirelessly to a

computer via protocols such as MIDI (2.9.1), OSC (2.9.3) and TUIO (2.6.9) [79].

The host computer can then use this data to control synthesis or signal processing.

While a number of applications are specifically designed to complement

existing hardware or software (DL1608 Master Fader [104], V-Control Pro [193],

Omni TR [138]) the majority of controller applications allow the user to customize

the layout of the screen in some respect – for example, to accommodate alternative

keyboard layouts (Musix [114], ExpressionPad [48]). Most applications consist of a

widget-based GUI - in this case the screen forms a canvas which can be populated by

a selection of pre-designed faders, buttons, dials and touchpads (Control [27], mrmr

[126], TouchOSC [186], Lemur [99]). This approach to musical performance using

multi-touch technology is by far the most popular due to its relative ease-of-use and

familiar visual associations.

5.2 Designing multi-touch interfaces

5.2.1 Rethinking the GUI

As outlined above, the most popular way to design multi-touch user-interfaces is via

a toolkit of widgets that provide typical GUI-like elements such as windows and

menus. For musical interfaces, these toolkits usually contain a selection of hardware-

inspired widgets such as faders, dials, drum pads, etc. While multi-touch interfaces

often resemble typical GUIs, there are vastly different design issues that need to be

considered. These issues are well-established and have been under investigation for

many years (see [159] for a comprehensive introduction and the work of Bill Buxton

144

[23] for more detailed analysis). We must be cautious not to blindly apply design

strategies that are ill-suited to the medium of multi-touch itself.

The explanation can be illustrated with a comparison to music controllers in

general. A well-established criticism of MIDI interfaces has been their over-reliance

upon the piano-keyboard metaphor, which by its nature cannot accommodate many

of the features unique to synthetic sound (freedom from discrete pitch-structures,

continuous control over timbre, etc.). There are many practical reasons, however,

why the keyboard interface dominates – the most prevalent being that it allows

pianists to leverage their existing musical skills and explore new sounds by

interacting with a wide range of hardware/software [120]. It is for this reason also

that basing a new controller or synthesizer around the keyboard interface represents

less of a financial risk to manufacturers, causing some speculation as to the

developmental distortions that can arise when commercial interests influence the

evolution of musical interfaces [120].

For the same reason, it makes perfect sense for designers of new digital

musical instruments to adhere to familiar GUI/WIMP (Windows, Icons, Menus,

Pointers) paradigms. These design clichés allow us to exploit several decades-worth

of embedded cultural and technological knowledge in our interfaces and there are

abundant resources which enable us to do so. However, in much the same way as the

piano keyboard was not designed to accommodate continuous pitch changes or

gradual manipulation of timbre, the GUI was not designed with multi-touch input or

live music performance in mind.

The GUI paradigm has been optimized for use with a keyboard and mouse

combination – it is therefore misguided to adopt this style of interaction on multi-

touch surfaces without any modification [69]. There are arguably some benefits to

145

using a multi-touch GUI in performance – the inability of a mouse to manipulate

more than one onscreen object simultaneously is a limitation that the multi-touch

surface does indeed surmount. However, there is a vast array of negative

repercussions – for example, over-reliance upon visual feedback, tendency for users’

hands to obscure the screen (and hence, the only source of feedback) and the

rigorous precision demanded by most multi-touch GUIs make them a less-than-ideal

solution for live musical performance.

Widget-based GUIs by their very nature encourage one-to-one mapping and

tight-coupling at the procedural stage of digital musical instrument design – both

restrictive approaches that lead to systems bound by ‘the instrumental paradigm’ [69,

86]. This kind of design approach imposes a cognitive load on the user which can

impair their level of engagement with the performance, especially when other

musicians are involved. It has been acknowledged that the emergence of social

affordances during music-making can be seriously compromised by tightly-coupled

digital musical instruments [85].

This is not to suggest that robust and innovative GUI-based digital musical

instruments cannot be designed for multi-touch surfaces. Rather it is being proposed

that we should investigate, with equal vigour, the possibility of creating new

interaction paradigms that best exploit the unique properties of the multi-touch

surface as a performance interface.

5.2.2 Beyond the GUI

Interactions with multi-touch surfaces generate extremely rich data. A cursory glance

at the capabilities of any multi-touch device which uses, for example, the TUIO

protocol allows us to infer the following:

146

 The location of individual fingers at any given point in time

 Whether or not the surface is being touched

 The total number of fingers in contact with the surface

 The distance and angle between any of these points

 The location, area, perimeter and shape of a space defined by these points

 Whether or not a point is static or moving

 The speed at which a point is moving

 The direction in which a point is moving

 The length of time a point has been present on the surface

 The previous movements and average position of a given point…etc.

This list serves to illustrate the problem with widget-based music software on a

multi-touch platform. Such environments solely employ the first point above, the

location of individual fingers at any given point in time, to interact with various

onscreen widgets such as buttons, faders, etc. The other types of data outlined

above, while they might appear abstract or trivial, can in fact be combined in a wide

variety of ways to create rich metaphors and gestural cues. It is plain to see how, in

terms of designing software for a role as potentially nuanced as musical

performance, the dominant GUI-based approach fails to utilize the available data in

an intelligent manner.

There are many resources which can help digital musical instrument

designers to access this data – Reactivision [151], TUIO [187], CCV [133] and the

NUI Group all provide a variety of tools for accessing raw touch data and generating

higher-level information such as speed of travel, point history, etc. A number of

interesting projects have sought to utilize this data for musical performance and

fittingly treat the multi-touch surface as a complex and sensitive tool rather than just

147

a novelty controller. Kevin Schlei’s MDrumSynth and MStretchSynth both rely

heavily upon relationship-based analysis for multiple parameter control [161] and his

iPad app TC-11 presents a customisable synthesiser engine that is especially

designed to respond to multi-point performance [180]. Balz Rittmeyer’s Akustisch

recognizes and responds to a selection of expressive gestures using an elegant

interpreter [5]. Christian Bannister’s Subcycle Labs cleverly analyses the number of

touches present on the surface to toggle various DSP effects [178]. However, the

vast majority of applications fail to make use of this data in any meaningful way.

One possible reason is the volatility of geometrically-derived data. Some of

the examples mentioned use algorithms that calculate, for example, the angle to the

previous point or the distance to the first touch. There is a danger in mapping this

kind of data to any kind of prominent synthesis parameter as it is highly-dependent

upon the order of touch initialization upon the surface – two perceptually-identical

gestures can quite easily result in the establishment of totally different point-

relationships.

Another reason is the difficulty of implementing high-level ‘gestural’

response systems. Anyone intending to design a gesture-based multi-touch digital

musical instrument must have, at the very least, a competent grasp of the hardware

and protocol being used, coordinate geometry and intermediate programming

concepts such as event handling, control flow and multi-threading. This overhead is

a significant deterrent to any musician, composer or performer who wants to explore

multi-touch interaction. There are many solutions which offer high-level gesture

support, but none specifically-designed for musicians.

 Figure 5.1 is a purely illustrative graph which places some popular

approaches to multi-touch music control on a two-dimensional continuum. The

148

different systems are situated according to the programming expertise required

(vertical axis) and how closed-off they are (horizontal). Naturally, these systems all

function very well in certain contexts – the purpose of this diagram is to suggest how

these approaches relate to one another and also to establish a point at which there

may be a deficit of resources.

Figure 5.1: Comparison of development options for multi-touch musical apps

We can hypothesise that the area in the lower left of the diagram is an ideal

space to aim for when developing tools for digital musical instrument design. An

approach that could be placed within this area would allow more freedom to

experiment, with less specialist requirements and prescriptive boundaries influencing

the design process.

The ability to engage in reflective practice is indispensable to the digital

musician [67] – therefore, a fluid transition from evaluation to implementation (and

indeed all stages of the digital musical instrument design cycle) is vital [13, 140].

Tools which allow rapid and transparent development ensure that the designer can

concentrate upon the critical aspects of mapping and user experience.

149

5.3 SurfacePlayer

This section describes SurfacePlayer – a project which was developed in order to

explore the space identified above. It is designed with non-graphical interaction

techniques in mind – treating the multi-touch surface as a sensitive data-gathering

device rather than a canvas for widget-based interactions. This was the first step

towards developing research tools which will enable future studies into multi-touch

interface design for music performance and subsequently inspired the creation of a

standalone app, Oscar, which is described in-depth in Chapter 6.

5.3.1 Aims and objectives

One of the main reasons for the relative scarcity of experimental interfaces, such as

those mentioned above, is the amount of work required to analyse the data generated

by the multi-touch surface. The requisite knowledge of basic networking, control

flow, geometry and human-computer interaction serves to form a significant barrier

for even the most experienced users. While there are plenty of libraries and

applications available to obtain raw touch data, there is a lack of support for high-

level data which may prove to be more perceptually-relevant in a live performance

context.

The objective of SurfacePlayer was to develop a modular set of tools to

facilitate the construction of expressive touch-based performance interfaces. A set of

high-level interpretive tools, devised specifically with musical interaction in mind,

could allow designers to concentrate their attention on more musically-critical

aspects of the interface, such as mapping, and encourage more experimentation with

multi-touch music performance.

150

5.3.2 Dependencies

The algorithms for SurfacePlayer were developed within Processing – an open-

source creative coding platform launched by Casey Reas and Benjamin Fry in 2001

[146]. The language is based upon Java but features a simplified syntax and

emphasis upon graphics to help non-programmers learn to code. Processing is

especially popular amongst graphic designers, musicians and visual artists.

 The Tangible User Interface Objects protocol, or TUIO, was initially

developed as part of the Reactable project at Universitat Pompeu Fabra [77]. The

TuioObject class handles data for tangible interface objects (such as the coloured

blocks of the Reactable) and the TuioCursor class is used to represent user

touches directly upon the surface itself. The SurfacePlayer algorithms were designed

to derive high-level gestural cues from TuioCursor data sent from an external

interface (in this case, a tablet device).

5.3.3 Implementation

The project comprises a selection of algorithms which generate high-level

information in response to multi-touch data. This information can be quickly

accessed via concise function calls, thus allowing the user to circumvent a

considerable amount of programming.

Prior to this work, designers using Processing were restricted to the use of

raw data which describes the coordinates, speed and path history of a point, for

example. Hard-coding even simple gestures using this raw data can be a time-

consuming and tedious process. The SurfacePlayer algorithms assist in this process

via a selection of functions that represent common multi-touch gestures – such as

taps, flicks, etc. These are set to receive TUIO data and check for certain conditions.

151

When these conditions are met, a gesture is recognized and relevant data related to

that gesture can be used within the performance patch.

For example, in order to infer the direction of movement for a given touch,

it has previously been necessary to undertake a cumbersome analysis of the path

history and the average angle between points (or, alternatively, devise an algorithm

which infers the direction based upon the relative speeds of X and Y-axis

movement). Similarly, an action as ubiquitous as a ‘multiple-tap’ (where taps made

using more than one finger are differentiated) requires an analysis of touch

coordinates, birth/death time and the use of multithreading in order to be of any

practical use. The complexity of these processes is likely to discourage the

widespread use of the often useful information which they can generate.

In response to this issue, the SurfacePlayer functions allow access to this

kind of information using succinct and easily-readable commands such as

movementDirection() and multiTap(). This made it possible to experiment

with different combinations and sequences of cues which were previously difficult

and time-consuming to implement.

The functions are all defined separately in the code, allowing for the

possibility of user-defined algorithms, and are compatible with existing TUIO

implementations for Processing.

5.3.4 Example of use

This section describes how SurfacePlayer was integrated into the architecture of a

prototype multi-touch music performance system.

A typical use of SurfacePlayer may be broken into three distinct

components – the input layer, interpretation layer, and output layer. These layers are

illustrated in Figure 5.2 and described in the following sections.

152

Figure 5.2: SurfacePlayer in use

5.3.4.1 Input layer

This layer consists of any device, or number of devices, capable of generating TUIO

data in response to user gestures. In the example above, an iPad running the open-

source application TuioPad [188] sends multi-touch data to a computer via a wireless

network. TuioDroid[189], available on Android devices, is also open-source and free

to download.

 The TUIO protocol was chosen due to its flexibility and active user

community. It also renders the system hardware-independent – allowing the

algorithms implemented within SurfacePlayer to be used with any device capable of

outputting TUIO-formatted cursor data.

153

5.3.4.2 Interpretation layer

The composite elements of this layer are implemented within the Processing

development environment. The Processing TUIO Client API [80] listens for

incoming TUIO events and generates data related to touch positions, such as time

tags and coordinate paths. This data is subsequently interpreted by the SurfacePlayer

functions which are called from within the user-created performance patch.

5.3.4.3 Output layer

According to the needs of the user, the gestures described by SurfacePlayer’s

functions can be used to send OSC or MIDI data to other applications. Generating

simple visual feedback in response to these gestures is easy to implement using

Processing itself; projected or displayed on a convenient screen during performance,

this feedback can eliminate the need for a performer to look down at the surface

itself constantly while playing.

5.3.5 Results

The SurfacePlayer algorithms provided easy access to some of the most commonly-

used multi-touch cues – such as tap and double-tap recognition, multiple-taps

supporting up to ten fingers, and directional swipes of varying speeds. They could

also be used to determine the surface area, diameter, centroid and perimeter of

shapes formed by surface touches. These cues were combined in complementary

ways, using the strategies described in previous chapters, to investigate the

feasibility of creating novel and expressive musical interfaces based mostly around

multi-touch gestures.

 While the architecture described above was useful as a prototyping platform,

it became apparent that the highly specific components and investment of time

154

required to design a new interface using the software might be a significant deterrent

for potential users. A more tightly integrated system, with specific musical

functionality, would represent a more efficient and elegant way to utilise the

algorithms for musical performance. This new system, Oscar, represents the final

embodiment of the research described so far in this thesis and is discussed in detail

in Chapter 6.

5.4 Conclusion

This chapter has discussed in detail many of the design issues particular to digital

musical instruments that employ multi-touch surfaces. Through a comparison with

two other touch devices that are used in a similar context – the XY pad and button

array – we have looked at how the implicit physical characteristics of a device exert

a strong influence upon their optimum role within a live performance context. A

more detailed look at specific musical applications of multi-touch technology in

recent years allows us to paint a picture of accepted design conventions.

These conventions are challenged on the grounds that they are not ideally-

suited to the means of interaction provided by multi-touch technology and tend to

overlook some of the more unique properties of this kind of device – in particular,

the rich gestural cues that can be inferred from point data. Several unusual music

interfaces are cited as examples that demonstrate successful alternative approaches.

An explanation for the markedly-conservative design conventions is offered

by identifying a gap in the selection of development tools that are open to musicians

using multi-touch. SurfacePlayer, a set of algorithms implemented in the Processing

development environment, is introduced as a first step into exploring this promising

space. The work described in Chapter 6 carries on directly from these findings and

155

attempts to establish a stronger grasp upon the concepts of non-visual-centred

interfaces that have been established over the course of this chapter.

156

Chapter 6. Designing a new multi-touch instrument

“Often overlooked is the need to work on an instrument that responds sufficiently to

the nuances of touch.”

-Boris Berman, Notes from the pianist’s bench [14]

This chapter describes the development of a new multi-touch interface called Oscar

that is designed especially to facilitate the creation of multi-layered performance

tools using the model established in Chapter 4. Oscar is a generic controller and

stand-alone synthesizer for tablet devices that uses a novel non-visual interaction

model inspired by the research described in this thesis. We discuss the motivation for

designing Oscar, establish an explicit list of design goals, and describe in detail the

various interface features at the heart of the software. This chapter concludes with a

description of DroneTilt – an example of an alternative performance instrument

designed with Oscar – and a description of how the interaction strategies described

in Chapter 4 can be implemented using Oscar’s gestural interface.

157

6.1 Introduction to Oscar

Figure 6.1: Oscar running on a 2
nd

 generation iPad – the graphical feedback

represents user touches, groups of touches and their centre-points, discreet zones

and the direction of movement

Oscar is a music synthesizer and OSC controller that runs on iPad and Android. It

utilises a unique interface paradigm that relies exclusively upon multi-touch gestures

- there are no widgets or GUI controls employed during play. Oscar is powered by

the audio programming language Csound [33] which can be used to generate and

process sound in response to user input. Dropbox [41] is also integrated into the app

to enable users to easily import their own Csound code and audio files. All of the

data generated in response to user input can be sent to external hardware/software

via OSC messages over a wireless connection - allowing remote control of other

music software, synthesizers, graphics, etc.

 Oscar was designed to test the viability of the descriptive model that we have

already established (Chapter 4) and serves to demonstrate how this approach can

maximise the musical potential of the output from a given piece of hardware. Note

that the same ideas could be applied to any type of interface and not just multi-touch

158

devices. Also, while Oscar might have the potential to facilitate more ergonomic,

minimalistic interaction styles (due to the simplicity of its gestures and the rich data

they produce) it is, in essence, a development environment. It is intended that

Oscar’s flexible interface will provide ample room for experimentation with new

approaches to music control using tablets.

6.2 Design objective

The overall goal of Oscar is to provide electronic musicians - composers and

performers - with an elegant, portable and highly-customisable tool for live

performance using multi-touch surfaces. Existing solutions were either too complex

(programming a gesturally-controlled music app from scratch) or too simplistic

(commercial music apps with a particular performance or musical style in mind) to

accommodate the digital musician who wants to experiment with the multi touch

surface as a unique interface in its own right. Achieving this balance between

complexity and accessibility is essential for a new musical interface – under the right

circumstances, the user will gradually adapt the controller to suit their own musical

needs and therefore prolong its lifespan [25].

Through experimentation with various techniques of multi-touch music

control, and a comprehensive study of existing research, a number of explicit design

goals were identified and implemented. It was decided that, in order to offer a

genuinely useful platform for musical interface development, the app must provide a

number of key features. To summarise, Oscar must:

 Incorporate an entirely gesturally-controlled performance mode that does

not rely upon platform-specific widgets or GUI elements

 Ensure that performance mode cannot be interrupted by the accidental

opening of menus, options, etc.

159

 Provide graphical feedback relating to the processing of user input and

allow users to change the visual layout for aesthetic and/or feedback

purposes

 Allow users to easily import their own Csound programs and audio

material for rapid prototyping [13, 54]

 Allow users to quickly switch programs ('hot-swapping') during

performance without needing to negotiate through the menu

 Be accompanied by a clearly-commented and easily-customisable

template

 Allow users to employ the iPad's built-in sensors in their program designs

(i.e. easy access to accelerometer and gyroscope data)

 Send gesture data via a wireless connection for control of external audio

and visual software

The following sections describe, in order, how each of these features were

implemented.

6.3 Gestural interface

This section contains an explicit step-by-step explanation of how Oscar processes

user input. The interface was designed and modified over a lengthy period to

accommodate the largest number of unambiguous, data-rich and complementary

gestures possible.

 The system organises individual persistent touches (i.e. fingers) into groups

called ‘clusters’ which represent the users’ hands. The process by which this is

achieved is laid-out below in section 6.3.1. This concept leverages the users’ own

intuitive knowledge about the movement of their hands and gathers data about the

kind of gesture being performed. This data is made accessible to the user via

160

variables defined within the Csound template (see 6.8) or output over a wireless

network (6.10).

Unlike many other multi-touch gestural systems there are no separate events

that represent, for example, pan/drag or pinch/zoom gestures. The information

required to invoke musical behaviour in response to these gestures is indeed present

(see the definitions of kdirection, kvelocity and kisZooming in 6.3.1.

below) but the way that it is utilised is very much left up to the designer of the

Csound code. There are several reasons for this – chiefly, the goal of Oscar to

circumvent interface paradigms such as these that were created solely to interact with

graphical systems and also the desire to accommodate users who wish to experiment

with new approaches to multi-touch musical control.

Positional information, where applicable, is given by a point in two-

dimensional space. The x and y values are translated from the native coordinate

system of the iPad’s own sensors to a range between 0.0 and 1.0. All positional data

is recorded in pairs – i.e. the current position and the last position. This is an

alternative to keeping a complete point history, most of which will never be used,

which still allows the accurate detection of all the gestures that Oscar

accommodates. The origin of the native coordinate system of Oscar is located at the

top-left corner of the iPad itself in a landscape orientation. This is fixed and

unaffected by device movement (analogous to the ‘screen-lock’ option present in

many apps) in order to accommodate the fullest possible use of the other motion

sensors in the iPad (see section 6.9).

The Oscar interface responds to four different gestures: clusters, touches,

taps and flicks. These are perhaps best described as four varieties of event, each with

161

a selection of unique properties or attributes (although some properties, such as x and

y location, are common to all four). Each gesture is described in detail below.

6.3.1 Clusters

Figure 6.2: Two separate clusters, represented by large green circles that

encompass the user’s individual finger touches (shown as smaller grey circles)

The cluster abstraction is a key component of the Oscar interface. A cluster is a

group of individual touches, where a touch is a persistently-tracked point with a

unique ID that represents a finger making contact with the surface. The purpose of

the cluster is to act as an abstraction of the user’s physical hands. This allows a

variety of high-level data relating to the group of touches to be calculated and

subsequently interpreted by the synthesis engine. Each cluster is a continuous entity -

its properties are updated constantly throughout its life-cycle – that is represented by

its own instrument in the Csound environment. Therefore, events like cluster

creation and destruction can be used to trigger various behaviours without the need

for any separate ‘cluster-is-created/destroyed’-style events.

A maximum of two clusters can exist at any given time. Each cluster can

accept up to five separate touches, which are added according to their distance to the

162

cluster centroid. There is a very brief intentional delay between touches arriving on

the surface and cluster creation/modification – this is to facilitate the independent

articulation of discrete gestures, such as taps and flicks, without invoking musical

behaviour associated with clusters (see 6.3.3. and 6.3.4.). A cluster is destroyed if all

of its touches leave the surface. New clusters are created when a touch is added to

the surface and one of the following conditions is met:

 There is no other cluster present

 In the case of there being one other cluster present, the touch is too far away

to join it

 The nearest cluster contains five touches and cannot accept any more

Each cluster has the following properties (note the use of Csound variable name

formats, where an i signifies an initialisation-time variable that does not change

during play and a k signifies a control-rate variable that is updated dynamically) –

iclusterID, ix, iy, izone, izonex,izoney, inumTouches,kx, ky,

kzone, kzoneX, kzoneY, knumTouches, ksize, kdir, kvel,

kisHeld, kisZooming. Each property is described in detail as follows:

 iclusterID (int) – the unique identifier of the cluster.

 ix, iy (int) – the centroid of the cluster at the time of its creation. This is

calculated by averaging the position of each touch contained in the cluster.

The centroid is therefore given by:

Where n is the number of touches in the cluster. Note that n cannot equal zero

as a cluster must contain at least one touch.

163

 izone, izoneX and izoneY (int) – integers that represent a discretised

location upon the surface where the cluster centroid was located at the time

of its creation. The default settings divide the surface into 12 distinct zones in

a 3x4 matrix (assuming portrait orientation). The izoneX and izoneY values

provide convenient access to the column and row values respectively.

 inumTouches (int) – the number of touches contained within the cluster at

the time of creation.

 kx, ky (int) – the current centroid of the cluster. See notes for ix, iy

above.

 kzone, kzoneX and kzoneY (int) – the current discrete location of the

cluster centroid. See notes for izone, izoneX and izoneY above.

 knumTouches (int) – the number of touches currently contained within the

cluster.

 ksize (float) – a numerical value that represents the radius of a circle

whose centre point is the cluster centroid and which contains the position of

each touch in the cluster. If the number of touches, n, equals one then size =

0.1. Otherwise size is given by the distance from the centroid to the touch

position which is located farthest away from it. This value is multiplied by a

scaling factor in order to scale the largest comfortable hand span to equal 1.0.

This scaled value cannot exceed 1.0.

 kdir (int) – the current direction the cluster is travelling in. The direction is

represented discretely by one of several integer values representing the

cardinal (N, S, E, W) and intercardinal/ordinal (NE, SE, SW, NW) directions.

While the cluster is in motion, this value ranges from 1-8 in a clockwise

fashion where 1=N, 2=NE, 3=E, etc. When the cluster is static kdir=0.

164

 kvel (float) – a numerical value denoting the speed at which the centroid of

the cluster is moving. This can be used, in combination with kdir, to delimit

behaviour that might be expressed via a panning/dragging movement. The

speed is expressed in positional units per second. This value is normalised,

for convenience of mapping to musical parameters, and cannot exceed 1.0.

 kisHeld (boolean) – a true/false value which specifies if the cluster has

remained stationary since its creation. This is determined by checking how

far the centroid has moved since its initial creation values. There is a margin

of error to accommodate natural slight movements (<0.05 positional units)

and a time delay (2 seconds) between the cluster creation time and the setting

of this variable state. When the kisHeld check is successful, the value is set

permanently (i.e. until the cluster is destroyed) and the graphical feedback

that represents the cluster changes colour to reflect the fact. The user is then

free to move the cluster without cancelling the kisHeld state and any audio

processes that might be associated with it.

 kisZooming (boolean) – a true/false value that indicates whether or not the

size of a cluster is increasing or decreasing. There is a small margin of error

to accommodate natural fluctuations on behalf of the user or sensors. This

property exists as an alternative to explicit ‘pinch/zoom’ gestures common to

multi-touch systems – users can, if needs be, make use of this value to delimit

certain behaviours without cancelling or overriding other gestures associated

with the cluster.

165

6.3.2 Touches

Figure 6.3: Individual finger touches represented by grey circles

Touches represent individual fingertips in contact with the multi-touch surface.

Unlike many other gesture-recognition systems, touches in Oscar are not

‘swallowed-up’ or consumed when they join a cluster or become part of a gesture.

This gives the user a great deal of freedom when designing a Csound program – if

the interface in question requires individual touch data, but no clusters, the user

simply ignores the cluster data in the code (and vice versa). As stated in the cluster

definition above, this gives a great deal of flexibility and contributes to the non-

prescriptive flavour of Oscar.

 Another important benefit of giving the user access to touches that are

independent of taps, flicks and clusters is the immediacy they provide. As described

in the following section (6.3.3.), tap recognition involves a certain latency that may

be unsuitable for rhythmic or time-critical event-triggering. It is recommended that

the touch gesture is used for any events that require precision timing.

166

 Touches are also represented by individual and unique instrument-instances

within Csound with the following properties - itouchID, ix, iy, izone,

izonex,izoney,kx, ky, kzone, kzoneX, kzoneY:

 itouchID (int) – the unique identifier of the touch.

 ix, iy (int) – the location of the touch at the time of its creation.

 izone, izoneX and izoneY (int) – the discrete location of the touch at the

time of its creation. See equivalent description in 6.3.1.

 kx, ky (int) – the current location of the touch.

 kzone, kzoneX and kzoneY (int) – the current discrete location of the

touch centroid. See equivalent description in 6.3.1.

6.3.3 Taps

Figure 6.4: A tap event being recognised

The ubiquitous tap gesture common to most touch-screen devices. Taps in Oscar are

discrete, one-off events that launch a brief (0.05 seconds) instance of a dedicated

Csound instrument. This gesture is perfectly-suited to the triggering of

samples/notes/events, changing modes, toggling various effects, etc.

167

There are two important points to note regarding the way Oscar processes tap

events. Firstly, there is a small intentional delay between a touch arriving upon the

surface and cluster-related behaviour (i.e. the touch being added to an existing

cluster or forming a new cluster of its own). This allows the user to perform swift tap

events without triggering any behaviour related to clusters – the graphical feedback

clearly shows the brief delay between touch addition and cluster activity. Secondly,

there is a further latency between tap performance and recognition that is necessary

to allow the Oscar to recognise multi-finger taps. While the ability to accurately

differentiate between taps of up to 5 fingers opens up many options for the designer,

the inevitable latency may prove troublesome when it comes to time-critical event-

triggering (e.g. MPC-style sample-triggering, playing notes like a piano, etc.). For

this reason it is strongly-suggested that rhythmic activity is triggered using touch

events (as described in 6.3.2.) and that taps are reserved for making more global

decisions or triggering quantised samples, for example.

Tap events have the following properties - ix iy izone izoneX izoneY

inumTouches:

 ix, iy (int) – the location where the tap was performed. This is obtained by

calculating the average position of the taps constituent touches using the

cluster centroid formula as described in 6.3.1.

 izone, izoneX and izoneY (int) – the discrete location of the tap. See

equivalent description in 6.3.1.

 inumTouches (int) – the number of fingers used to perform the tap.

168

6.3.4 Flicks

Figure 6.5: A flick event being recognised

The flick gesture is similar to tap in that it is a discrete, once-off event with a short

duration (0.05). The only difference from an articulatory standpoint is that the user’s

touches deviate significantly from the initial point of contact prior to leaving the

surface – hence the additional direction property. All considerations related to timing

and latency using the tap gesture are equally-applicable here.

Flick events have the following properties - ix iy izone izoneX

izoneY inumTouches, idir:

 ix, iy (int) – the location where the flick was performed.

 izone, izoneX and izoneY (int) – the discrete location of the flick.

 inumTouches (int) – the number of fingers used to perform the flick.

 idir (int) – the direction of the flick. See the description of kdir in 6.3.1

169

6.4 Hidden menus

Figure 6.6: Accessing the hidden menu

Oscar was designed specifically to facilitate experimentation and non-standard

performance techniques - therefore, it was vital to ensure that a performance could

not be disrupted by a user accidentally switching out of performance mode and into

the menu system. Other full-screen apps place menus on the edge of the screen

(Mugician [154]), provide a small icon that requires a double-tap (TC-11 [180]), or

use a shaking gesture (TUIOpad [188]) to access options while still retaining most of

the screen real-estate for actual gesture performance. The first two options were

considered inappropriate, given the emphasis on non-visual interaction at the heart of

the gesture engine itself, and the shake-to-exit approach would make it impossible

for musicians to fully-utilise the gyroscope data in their performance programs.

After considerable experimentation with a number of gestures, a hybrid

approach was chosen to allow access to the menu without compromising the main

performance area or risking accidental activation. Rather than reserve a specific

gesture, and therefore prohibit its use for actual performance, a combination of

location, movement and time data is used. The user must place a single touch in the

extreme top-left hand corner of the screen (location) and keep it reasonably still

170

(movement) for a count of two seconds (time). The touch point also appears red to

signify that the user is about to open the menu.

In practice, this has been a successful solution - the menu is easy to open

once the user has learned how to do so and almost impossible to trigger by accident.

The highly-specific nature of the gesture itself makes it unlikely to compromise any

design that a programmer might have.

6.5 Customisable graphical feedback

Figure 6.7: Graphics selection menu

Early iterations of the Oscar concept [118] did not feature any graphics - with all of

the options hidden in the iPad's Preferences menu. This proved unsatisfactory for

many reasons but mostly made it difficult for a user to comprehend how the system

perceived his/her actions onscreen.

The initial priority during design was to visualise as many aspects of the

gesture processing activity as possible - for debugging and fine-tuning the engine. It

quickly became apparent that too much information might also be a problem - for

example, seeing the individual touches represented graphically in a performance

171

patch that only uses clusters might obscure the process and confuse performer and

audience alike.

Therefore a customisable graphics feature was added in order to allow users

to select from a range of colour schemes and data visualisations. This feature also

supports the idea that Oscar is not limited to a particular genre of music or style of

performance - combinations can range from the subtle, to the informative, and to the

futuristic and garish, as the performance context demands.

6.6 Import user programs and audio

Figure 6.8: Dropbox menu

Oscar’s behaviour is determined by customisable code written in the Csound Unified

File Format (often abbreviated to, and hereafter referred to, as a CSD file [35]).

These files can be easily created and modified using the template designed especially

for Oscar (see 6.8 below).

Programming even a simple CSD for Oscar typically involves an iterative

trial-and-error approach, as different gesture types are combined with different audio

outputs and bugs/typos are hunted down. It was vital to ensure that the process of

172

downloading and testing a new version of a CSD is as simple, easy and fast as

possible.

By syncing up the app with their Dropbox account, users can store their CSD

files in a Dropbox folder, open and edit them using another app or computer, and

simply press 'update' in Oscar's menu when they want to download and test their

code. Audio files are stored and retrieved in the same way which allows users to play

and process pre-arranged material in their Oscar patches.

6.7 Hot-swapping of programs

Figure 6.9: Selecting a hot-swappable program

The ability to switch patches or presets fluidly during performance is a key feature of

many hardware synthesisers. Different patches are typically accessed via entering an

ID number via a numeric keypad, but some manufacturers provide a jogwheel or

customisable banks to ensure quick and error-free switching mid-performance. It

was important to facilitate this kind of play to encourage the creation of small,

modular programs for Oscar or even re-using of the same program with different

content (e.g. two versions of the same sampler program that load different banks of

173

samples into memory). It was also vital to ensure that this behaviour could not be

triggered by mistake or confused with the other gestures that Oscar provides.

A similar approach to the hidden menu system described in 6.4 above was

implemented - the user must place a single touch in one of the remaining corners of

the screen (top-right, bottom-left and bottom-right) and hold it in place for a count of

two seconds. These three gestures instruct Oscar to change immediately to one of

three pre-selected CSD files labelled A, B and C. These labels can be assigned via

the file browser in the main menu system. While there is a slight compromise on

time, due to the mandatory two second delay, it was deemed more important to

ensure that accidental-triggering was made impossible than to allow split-second

switching of patches during play. The intended use of this feature is to change the

functionality of Oscar in-between sections of a piece, separate songs or sets - there

are ample gestures described in 6.3 that can potentially be used to alter program

functionality during play if necessary (e.g. tapping in a particular zone to select a

particular musical scale).

6.8 Csound template

A comprehensive and clearly-commented Csound CSD template has been developed

and maintained throughout the design process. The template features default audio

settings for iPad, user-defined-opcodes for Cluster and Touch events, blank

instruments that are called in response to Cluster, Touch and

accelerometer/gyroscope updates and Tap/Flick events, global reverb and master

channels. Each section is explained clearly via comments and variables related to

Oscar are pre-cast and ready for use in instrument definitions.

174

6.8.1 CsOptions and global variables

Default audio settings for Oscar are provided in CsOptions. In order to allow the

user to access their own audio within the program, Oscar needs to know the

directory where files imported from Dropbox are stored. As the iOS file structure is

not made explicit to the user and is difficult to read, the chnexport opcode is

used to receive a directory path from the Csound API. This is stored as a string

named gSresourcePath which can be prepended to any references to filenames

within the code (e.g. for reading an audio file into a table). Finally, global variables

to keep track of accelerometer values (gkaccX, gkaccY, gkaccZ) are initialised

alongside left/right audio-rate channels for reverb and master output

(gareverbL/R and gamasterL/R respectively).

<CsoundSynthesizer>

/*

Oscar program template

1st of April 2014

*/

<CsOptions>

-odac -dm0 -+rtmidi=null -+rtaudio=null -+msg_color=0 -

M0

</CsOptions>

<CsInstruments>

sr = 44100

ksmps = 32

nchnls = 2

0dbfs = 1

/* GLOBAL SETUP */

; Resource path

gSresourcePath chnexport "resourcePath", 1

; Accelerometer variables

175

gkaccX init 0

gkaccY init 0

gkaccZ init 0

; Global reverb channel

gareverbL init 0

gareverbR init 0

; Master output channel

gamasterL init 0

gamasterR init 0

Figure 6.10: csOptions and global variables

6.8.2 UDOs for touch and cluster events

Two user-defined opcodes (or UDOs) are used as a bridge between the data arriving

from the Oscar interface itself and the local variables in Csound. The main purpose

of these opcodes is to streamline the process of mapping the gestures to audio output

by distancing this process from the instrument definitions as much as possible. The

user does not ever need to alter the contents of this section and it is intended that this

code will be hidden from the end user in the final release version of Oscar (within a

text document that is accessed in the header via an #include command).

 The sprintf opcode is used to generate strings referencing the appropriate

variables being passed from Oscar intro the API. These strings are subsequently

used to assign the values to local Csound variables using chnget.

; UDO for Touch events

opcode Touch, iiiiiikkkkk, iiiiii p4, p5, p6, p7, p8, p9

xin

itouchID = p4

; Dynamically-generated channel names

S_x sprintf "touch.%d.x", itouchID

S_y sprintf "touch.%d.y", itouchID

S_zone sprintf "touch.%d.zone", itouchID

S_zoneX sprintf "touch.%d.zoneX", itouchID

176

S_zoneY sprintf "touch.%d.zoneY", itouchID

; K-rate variables for touch

kx chnget S_x

ky chnget S_y

kzone chnget S_zone

kzoneX chnget S_zoneX

kzoneY chnget S_zoneY

xout p4, p5, p6, p7, p8, p9, kx, ky, kzone, kzoneX,

kzoneY

endop

Figure 6.11: Touch event UDO

; UDO for Cluster events

opcode Cluster, iiiiiiikkkkkkkkkkk, iiiiiii p4, p5, p6,

p7, p8, p9, p10 xin

iclusterID = p4

; Dynamically-generated channel names

S_x sprintf "cluster.%d.x", iclusterID

S_y sprintf "cluster.%d.y", iclusterID

S_zone sprintf "cluster.%d.zone", iclusterID

S_zoneX sprintf "cluster.%d.zoneX", iclusterID

S_zoneY sprintf "cluster.%d.zoneY", iclusterID

S_numTouches sprintf "cluster.%d.numTouches", iclusterID

S_size sprintf "cluster.%d.size", iclusterID

S_direction sprintf "cluster.%d.direction", iclusterID

S_velocity sprintf "cluster.%d.velocity", iclusterID

S_isHeld sprintf "cluster.%d.isHeld", iclusterID

S_isZooming sprintf "cluster.%d.isZooming", iclusterID

; K-rate variables for cluster

Kx chnget S_x

ky chnget S_y

kzone chnget S_zone

kzoneX chnget S_zoneX

kzoneY chnget S_zoneY

knumTouches chnget S_numTouches

ksize chnget S_size

kdir chnget S_direction

kvel chnget S_velocity

kisHeld chnget S_isHeld

kisZooming chnget S_isZooming

177

xout p4, p5, p6, p7, p8, p9, p10, kx, ky, kzone, kzoneX,

kzoneY, knumTouches, ksize, kdir, kvel, kisHeld,

kisZooming

endop

Figure 6.12: Cluster event UDO

6.8.4 Instrument definitions for touch and cluster events

Instruments 1 and 2 are reserved for receiving data from touch and cluster events

(this is an important factor to remember when using external MIDI with Oscar,

given the default mapping of MIDI channels to instruments in Csound). This is

necessary to facilitate dynamic instrument number allocation - each new touch

and/or cluster that is detected creates a new instance of its corresponding instrument

with an incremental decimal point naming system.

 These instrument definitions are kept relatively free from clutter through the

use of the UDOs – a single line of code pulls-in all of the gesture event data and

assigns it to a selection of local variables (as described in 6.3). All the user needs to

do is add synthesis and/or processing code that makes use of these variables.

instr 1

/* ---TOUCH---

Score format: i1.N 0 -1 N x y zone zoneX zoneY

Each individual touch generates a new instance of this

instrument, which is killed upon touch removal. */

; Touch properties

itouchID, ix, iy, izone, izonex,izoney,kx, ky, kzone,

kzoneX, kzoneY Touch p4, p5, p6, p7, p8, p9

;-----Add synths here-----;

; Master output

; gamasterL = gamasterL +

; gamasterR = gamasterR +

; Reverb send

; gareverbL = gareverbL +

178

; gareverbR = gareverbR +

endin

Figure 6.13: Instrument 1 – touch event

instr 2

/* ---CLUSTER---

Score format:i2.N 0 -1 N x y zone zoneX zoneY numTouches

Touches arriving within a certain distance of one

another are grouped into a cluster. Each cluster has a

set of shared parameters (number of touches, size, etc.)

There can only be a maximum of 2 clusters present,

intended to be used for left and right-hand. Clusters

die when all of their touches are removed. */

; Cluster properties

iclusterID, ix, iy, izone, izonex,izoney,

inumTouches,kx, ky, kzone, kzoneX, kzoneY, knumTouches,

ksize, kdir, kvel, kisHeld, kisZooming Cluster p4, p5,

p6, p7, p8, p9, p10

;-----Add synths here-----;

; Master output

; gamasterL = gamasterL +

; gamasterR = gamasterR +

; Reverb send

; gareverbL = gareverbL +

; gareverbR = gareverbR +

endin

Figure 6.14: Instrument 2 – cluster event

6.8.5 Instrument definitions for tap and flick events

Tap and flick events are both sent to Oscar in the form of score statements - this

negates the need to create UDOs (there is no messy patching to do) and also allows

the use of non-numeric instrument names.

instr tap

/* ---TAP---

Score format: i "tap" 0 0.05 x y zone zoneX zoneY

numTouches

179

When a group of touches hits and leaves the surface

quickly, without moving far, a tap event is triggered.

*/

; Tap properties

ix = p4

iy = p5

izone = p6

izoneX = p7

izoneY = p8

inumTouches = p9

;-----Add synths here-----;

; Master output

; gamasterL = gamasterL +

; gamasterR = gamasterR +

; Reverb send

; gareverbL = gareverbL +

; gareverbR = gareverbR +

endin

instr flick

/* ---FLICK---

Score format: i "flick" 0 0.05 x y zone zoneX zoneY

numTouches dir

Identical to a Tap event, except the touches have moved

prior to leaving the surface. Gives direction value. */

; Flick properties

ix = p4

iy = p5

izone = p6

izoneX= p7

izoneY = p8

inumTouches = p9

idir= p10

;-----Add synths here-----;

; Master output

; gamasterL = gamasterL +

; gamasterR = gamasterR +

; Reverb send

180

; gareverbL = gareverbL +

; gareverbR = gareverbR +

endin

Figure 6.15: Tap and flick instrument definitions

6.8.6 Reverb, master and accelerometer instruments

A simple reverb channel is included to demonstrate how to use auxiliaries and a

master channel is also provided to ease workflow during patch design. The latter is

equipped with a clip opcode to prevent new users from damaging their speakers

and/or hearing while getting to grips with the Csound language. A final helper

instrument reads the accelerometer values and feeds their values into the global

variables described in 6.8.1.

instr reverb

/* ---REVERB---

Score format: i "reverb" 0 3600

A basic global reverb instrument. */

aL, aR reverbsc gamasterL*0.05, gamasterR*0.05, 0.9,

10000

outs aL, aR

clear gareverbL, gareverbR

endin

instr master

/* ---MASTER---

Score format: i "master" 0 3600

Master output bus */

aoutL clip gamasterL

aoutR clip gamasterR

 outs aoutL, aoutR

 clear gamasterL, gamasterR

endin

instr accel

; Accelerometer update instrument

gkaccX chnget "accelX"

gkaccY chnget "accelY"

181

gkaccZ chnget "accelZ"

; printks "X = %f, Y = %f, Z = %f\\n", 0.25, gkaccX,

gkaccY,gkaccZ

endin

Figure 6.16: Reverb, master and accelerometer instrument definitions

6.8.7 CsScore

The score section is typical of live Csound programs and simply contains commands

to run Csound and the three helper instruments from section 6.8.7 indefinitely.

<CsScore>

; Run Csound indefinitely

f 0 6600

; Run reverb instrument

i "reverb" 0 6600

; Run master instrument

i "master" 0 6600

; Run accelerometer instrument

i "accel" 0 6600

e

</CsScore>

Figure 6.17: CsScore

A copy of the template in its entirety is provided as Appendix A.

6.9 iPad sensors

While the original intention of Oscar was to provide a purely multi-touch driven

interface, it made little sense to omit the other iPad sensors from the selection of

potential controls available to the user. We have focused upon the accelerometer and

gyroscope sensors - which can detect acceleration and rotation, respectively, along

the x, y and z-axes. Simply reading the gyroscope and accelerometer data within

182

Oscar opens up a number of exciting possibilities by offloading aspects of “what

would otherwise be purely touch-based visual interactions onto the motion channel”

[60] and allows the integration of ancillary gestures into performance setups [24]. As

seen in the examples below, this data can be used to facilitate background interaction

that complements the foreground interaction offered by the multi-touch gestures

themselves [59]. Some of the possibilities are described as follows.

6.9.1 Hard-linking motion data to global variables

Simply using the variables associated with the device orientation (pitch/yaw/roll)

within the Csound file can give interesting and dynamic results. Examples include

scaling the volume of various channels according to the orientation, changing effects

sends, modulation of synthesised sounds, etc. This technique is used as the main

form of interaction for the ambient drone performance instrument described below in

6.12. It can also be used to enhance the articulatory options available to a performer

for a sound event that is being triggered by a multi-touch gesture. Depending on the

respective influence that the touch and motion data exert over the parameters of a

musical event, this kind of approach might be more suited to the next category. Even

if they are not actually part of the same gesture, with regard to how the program

itself processes user input, from a phenomenological perspective they appear to be

linked during performance and can hence be considered a cross-modal gesture –

combining aspects of both motion and touch [62].

6.9.2 Combined touch and motion gestures

There are many different ways that sensor data can be used to augment the user’s

touch input, and vice versa. Gestures that are comprised of both touch and motion

data exhibit a number of interesting properties that make them a valuable addition to

183

the vocabulary of the mobile application designer [46]. These can be further divided

into Touch-Enhanced Motion Techniques and Motion-Enhanced Touch Techniques.

Touch-Enhanced Motion Techniques can be used to infer the context of use

or add detail to the expression of a touch gesture using the incidental vibrations

induced by finger contact [46]. In the case of Oscar, for example, a held touch could

generate a tone using a VCO (voltage controlled oscillator) and subsequent device

motion could be used to control the depth of an LFO (low frequency oscillator). The

essential factor to consider in this kind of interaction is how to differentiate

intentional motion gestures from incidental device-handling. Hinckley and Song

advocate the use of a “comfortable and imprecise target to delimit motion…[e.g.] let

the user gently rest a finger anywhere on the screen while moving the device. Such

motions demand less attention, do not impose a particular hand-grip, and may be

more comfortable to articulate” [46].

Motion-Enhanced Touch Techniques use the accelerometer/gyroscope data to

infer characteristics of a touch event that cannot be detected solely by the touch

screen. This can be used as a proxy for pressure sensitivity - the gap between the

successive accelerometer peaks generated by a tap can be measured and used to

differentiate between different intensities or strengths of touch impact. This can be

used to assign varying functionality to hard and soft taps, due to the "clear

signatures" of the impacts themselves, but more complex emulation of acoustic-style

pressure sensitivity with this method has proven unreliable due to the sheer range of

variability that the signal can exhibit [46].

6.9.3 Changing behaviour based on device orientation

The process of changing behaviour based upon device orientation is a familiar

paradigm in mobile/tablet applications that is used to facilitate context-sensitive

184

interaction [22]. The most commonly-used application of this technique is to rotate

the view of a web-browser, document reader or photo viewer according to the

orientation of the device - this allows the user to seamlessly switch between

landscape and portrait-style views without the need for additional onscreen controls.

In a musical context, depending on the intended use, this kind of threshold

based mode switching can be used to add several different layers of control to a

program. Assuming that the intended use scenario facilitates the changing of device

orientation, this means of mode-switching has many advantages - it is unambiguous,

requires physical effort to change and maintain, is usually impossible to trigger by

accident and the physical state of the hardware itself provides naturally-occurring

feedback on the state of the program – a contextual cue that is sensed in the

background without disrupting other performance gestures [61]. A mode of

operation that is selected in this way is intrinsically delimited by the physical tension

required to hold the device in a specific way [61]

It should be noted that, in order to implement this type of behaviour

effectively, it is important to take into account the default or 'resting' position of the

device. This can be hard-coded into the Csound program in cases where the

orientation changes can be clearly defined and differentiated. Another option is to

provide a calibration function within the code which reads the current sensor data

and sets this as the point (0, 0, 0). In this case the device can be held in a variety of

ways and the displacement can still be calculated and subsequently used to invoke

behavioural changes. This can be useful, for example, for performance setups that

are designed to be played while suspended from the musician like a guitar. This can

be used to detect and facilitate both left and right-handed guitar playing styles.

185

In any case it is advisable to provide a means to re-calculate the resting

position dynamically during performance. This allows the performer to drift

considerably from their initial physical posture, a reasonable phenomenon, without

jeopardising the accuracy of the system’s response to their playing. A button upon an

external input device or an obscure multi-touch gesture can be reserved for this

'orientation-reset' function for performance setups that are likely to involve

performer movement.

6.9.4 Purely motion-based gesture recognition

It is also possible to infer certain gestures solely based upon a statistical

analysis of the accelerometer/gyroscope readings. There are currently no plans to

implement features within Oscar to assist in this process - the usefulness of any

motion-based gesture depends entirely on how the device is intended to be held and

touched in a given performance setup. The strength of Oscar lies in its flexibility and

any explicit indicators of how it is supposed to be held or operated run contrary to

the design goals.

There have been, however, numerous musical projects in recent years that

make extensive use of this kind of gesture. Literature describing digital musical

instruments that use the Nintendo Wii Remote as a primary input device can give a

clear sense of how to analyse 3D motion data from a held device [211, 52, 162] and

software such as Wiigee [208] and GlovePIE [55] can assist users in defining and

recognising such exclusively motion-based gestures. Certain non-obvious gestures

that can be detected using this data have also been identified - for example, detecting

taps upon different corners of the device body without using multi-touch information

[62].

186

These categories provide some indication of the vast potential opened-up by

simply reading the accelerometer and gyroscope sensors into Oscar. The key to

creating successful interaction paradigms in this way is congruency - designers who

seek to explore the "untapped possibilities" of contextual sensing must carefully

consider the aesthetic and ergonomic experience of the intended performer [59].

Generating a logical and separated list of recognised multi-modal gestures and their

associated behaviour (see Figure 3 of [60]) can be a useful way to identify potential

problems or heavily-weighted gestures.

6.10 Wireless control

Oscar can be used as a wireless controller for external audio, graphics, or gaming

software. All of the gestural data that is generated internally and used by the Csound

engine can be made available to other devices on the same wireless network as the

iPad itself. This data can be sent alone, in order to use Oscar’s gestures as a remote

control, or also in combination with the on-board synthesis engine for the control of

additional, external graphics or sound alongside those generated within the app.

Gesture data is sent wirelessly via Open Sound Control (OSC) messages. The

messaging format is defined as follows:

/oscar/touchadded -

 float x, float y, int zone, int zoneX, int zoneY

/oscar/tap -

 float x, float y, int zone, int zoneX, int zoneY, int n

umTouches

/oscar/flick -

 float x, float y, int zone, int zoneX, int zoneY, int n

umTouches, int dir

…

187

/oscar/zoom -

 int clusterId, float x, float y, int zone, int zoneX, i

nt zoneY, int numTouches, float size, int type, float ve

locity

/oscar/pan -

 int clusterId, float x, float y, int zone, int zoneX, i

nt zoneY, int numTouches, int dir, float velocity

/oscar/held -

 int clusterId, float x, float y, int zone, int zoneX, i

nt zoneY, int numTouches

Figure 6.18: OSC message format

6.11 Typical workflow

The ideal work scenario for designing Oscar programs involves a computer and an

iPad running Oscar – both of which should be online. The user opens the Oscar

template in a code editor on the computer (e.g. CsoundQT [148]) and adds some

content. The modified template is then saved/uploaded to a Dropbox folder using the

same account that is synced with Oscar. Once the file is uploaded successfully, the

user accesses the Dropbox menu in Oscar and searches for new content by clicking

‘refresh’. Oscar will then download and overwrite any existing programs, where

applicable, with the newly-edited files. The user tests the file running on Oscar,

notes any changes that need to be made, and returns to QuteCsound to refine the

design.

 Needless to say it is possible to use any iPad word-processing app that can

access Dropbox to edit Oscar templates – all that is necessary is an internet

connection in order to sync up content. A future design goal of Oscar is to integrate

a code editor and debugger into the app itself – this would serve the dual purpose of

completely integrating the design process and also dispensing with the need for an

internet connection when developing new programs. Another future development

188

that will increase the flexibility of Oscar programs is the addition of individual in-

app settings for each template that allow the user to change parameters like zone size

and configuration, tap/flick recognition speed, tempo/BPM and musical scale.

6.12 Case study: DroneTilt

DroneTilt is a performance instrument that uses Oscar, with no peripheral

equipment, to generate and modify a sample-based dronescape using a combination

of cluster objects and the accelerometer data. It is an example of what Miranda and

Wanderley describe as an ‘alternate gestural controller’ and demonstrates Oscar’s

ability to facilitate diverse multimodal interface design (see [120] and 4.11.2). A

video example of DroneTilt being played is included on the CD that accompanies

this thesis.

6.12.1 Concept

The central goal of this instrument design was to allow the performer to make subtle

and nuanced changes to the texture of a drone-based soundscape in a physical, non-

analytical sense. In other words, the typical approach of slowly-modifying a large

selection of parameters via faders or the equivalent was to be avoided in favour of a

more complex, one-to-many mapping scheme that would allow the coupling of

gestures to particular ‘flavours’ or ‘colours’ of sonic texture. One of the core

strengths of Oscar as a controller is its wide array of continuous controls and the

gradually-shifting evolution of drone music was identified as an interesting means to

explore the potential of these controls.

 While drones are found in many different musical genres and ethnic

traditions around the world, the aesthetic in this case belongs to a more modern

school of composition that traces its roots back to the compositions of Terry Riley

189

and La Monte Young. The key aspect of a drone-based composition is the sustained

tone that usually persists, albeit in different forms, throughout the development of

the piece:

…sustained intonation that establishes a harmonic center for its

accompanying elements…the drone might utilize a single note

repeated indefinitely or, at the opposite extreme, all of the scale’s

notes spread across numerous octaves. Other key aspects include

extended duration, modular repetition, and a focus on

overtones…the trance-inducing drone with its extended tones

and layered pitches does change but glacially…[184]

Drone-based music is strongly centred upon the listening experience and artists

working in the genre often aim to induce a kind of altered-state of consciousness in

their audience: the listener often discovers “what seemed to be a single drone sound

shifts and changes as the listener scans and focuses on different parts of it, opening

up into a universe of overtones, microtones and combination tones” [17]. The

primary goal in mind when designing this particular instrument was to ensure that

the performers could access the same holistic listening space as the audience and feel

like they were navigating through the soundscape rather than just shaping it through

the manipulation of abstract parameters. A secondary goal was to utilise the built-in

accelerometers of the iPad as the main channel of expression in order to investigate

their usefulness as the main performance sensor, rather than the ancillary role they

are typically allocated in mobile performance apps.

The performer cradles the iPad in one hand and uses the other to touch the

surface itself. This divides up the roles between both hands – the touching hand

performs selection gestures (altering individual loop parameters and triggering

190

effects) while the cradling hand is responsible for articulation gestures (using the tilt

sensors to control the complexity of the overall drone texture).

6.12.2 Loop parameters

The main texture is comprised of three samples that loop continuously throughout

performance: a high-pitched tonal texture, a low-pitched tonal texture, and an

abstract percussive sample. The loops used are provided in the appendix. Each loop

has three parameters – start time, length/end time and volume – that can be changed

by touching the surface.

 The screen is divided lengthwise into three sections, each representing one of

the loops and responding to one and two-finger clusters. A single touch along any of

the loop sections sets the volume of the loop and a two-finger cluster sets both the

start position (the lengthwise location of the cluster) and the length (size of cluster)

of the portion of the sample being repeated.

6.12.3 Low pass resonant filter

A low pass filter can be applied to the whole texture by performing a held two-finger

cluster gesture. The x and y locations of the cluster control the cutoff and Q

properties, respectively, and the size of the cluster alters the pre-gain of a slight

distortion that is incorporated into the effect.

6.12.4 Accelerometer

The primary means of altering the texture of a DroneTilt performance is by changing

the orientation of the device from its default, face-up position. Each axes has a

different effect on the overall timbre of the drone and uses a different physical

movement, assuming the suggested way of holding the device.

191

Figure 6.19: Visualisation of accelerometer axes

The x-axis value is changed using wrist-rotation – tilting controls the volume of two

copies of the drone signal, hard-panned left and right, that have been pitch-shifted

slightly up and down. Negative x-values (tilting towards the performer’s body) have

different detuning ratios than positive x-values (tilting away) to provide a clearly-

delineated choice of timbre using a similar gesture. There is also a small threshold

above the resting position (±0.25) that must be exceeded – this serves to allow for

slight deviations and a comfortable holding position for the hand supporting the

device.

 Y-axis tilting is performed by relaxing and tensing the bicep and elbow joint.

This gesture works in a similar way to the wrist-tilt and allows the user to fade

between the original drone texture and a copy that is being fed through a multi-tap

delay line and pitch shifted using a phase vocoder. Positive and negative y-axis tilts

produce the exact same behaviour, unlike the x-axis, due to the ergonomic difficulty

of suspending the iPad and raising it to face the body.

 Z-axis movement is a special gesture that is difficult to perform and reserved

for the closing of a performance. The z-value ranges from -1 (device is face-up) to 0

(device is on its side) to 1 (device is face-down). Once a threshold is exceeded

192

(>0.25) a fourth sample is faded-in to replace the main soundscape, which is faded-

out at the same rate. This extra sample, a noisy granular rumbling, overwhelms the

entire piece and acts as a final punctuation to the performance.

6.12.5 Code excerpts

instr 10

kSpeed init 1; playback speed

iSkip init 0; inskip into file (in seconds)

iLoop init 1; looping switch (0=off 1=on)

ifn = p4

ichns = ftchnls(ifn)

isamps = ftlen(ifn)

ilength = (isamps/sr)/ichns

if (ifn == 1) then

kamp = gkloop1vol

kloopstart = gkloop1start

klooplength = gkloop1length

elseif (ifn == 2) then

kamp = gkloop2vol

kloopstart = gkloop2start

klooplength = gkloop2length

else

kamp = gkloop3vol

kloopstart = gkloop3start

klooplength = gkloop3length

endif

kpitch = 1

kloopend = (klooplength*8)+0.05

kcrossfade = 0.05

asig flooper2 kamp, kpitch, kloopstart, kloopend,

kcrossfade, ifn

if (abs(gkaccX)>=0.25) then

193

kshift1 = (abs(gkaccX)-0.25)*(1/(1-0.25))

printk 0.25, gkaccX

if(gkaccX>0.1) then

asigShift1 flooper2 kamp*(kshift1*0.5), 0.74, kloopstart,

kloopend, kcrossfade, ifn, 0, 2

asigShift2 flooper2 kamp*(kshift1*0.5), 1.22, kloopstart,

kloopend, kcrossfade, ifn, 0, 2

else

asigShift2 flooper2 kamp*(kshift1*0.5), 0.33, kloopstart,

kloopend, kcrossfade, ifn, 0, 2

asigShift1 flooper2 kamp*(kshift1*0.5), 1.62, kloopstart,

kloopend, kcrossfade, ifn, 0, 2

endif

gamasterL = gamasterL + asigShift1

gamasterR = gamasterR + asigShift2

endif

multitap asig, 0.1, 0.4, 0.5, 0.3, 0.7, 0.2, 0.9,

fsig1 pvsanal adelayL, 1024, 256, 2048, 1

fsig2 pvscale fsig1, 4*((gkwob*0.5)+1), 0, 1.5

abackL pvsynth fsig2

adelayR multitap abackL, 0.2, 0.4, 0.6, 0.3, 1, 0.2,

1.3, 0.1

gamasterL = gamasterL + asig + abackL*(gkaccY*0.4)

gamasterR = gamasterR + asig + adelayR*(gkaccY*0.4)

endin

Figure 6.20: Looping instrument with X/Y auxiliaries. Each flooper2 instance holds

a pitch-shifted variant on the loop, while the pvsanal/pvscale/pvsynth chain uses a

phase vocoder to perform pitch shifts.

kflag release

if(kflag==1) then

gkeffect=0

endif

194

if(kisHeld==1)then

if(knumTouches==2)then

gkeffect=2

gkpregain = ksize*5

gkcf = kx*9000

gkq = ky*15

gkwob=1

endif

else

if(knumTouches==1) then

if(izoney==0) then

gkloop1vol = kx

elseif(izoney==1)

then gkloop2vol = kx

elseif(izoney==2)

then gkloop3vol = kx

endif

elseif(knumTouches==2) then

if(izoney==0) then

gkloop1start = kx

if(ksize!=0) then

gkloop1length = ksize

endif

elseif(izoney==1) then

gkloop2start = kx

if(ksize!=0) then

gkloop2length = ksize

endif

elseif(izoney==2) then

gkloop3start = kx

if(ksize!=0) then

gkloop3length = ksize

endif

195

endif

endif

endif

endin

Figure 6.21: Except from cluster instrument controlling loop parameters and filter.

The variable kisHeld activates a bandpass filter controlled by a cluster of two

fingers. Otherwise, single touches scale the volume of each loop while two-finger

clusters control the loop start point and length.

6.12.6 Discussion

DroneTilt was used to perform a live improvisation as part of a small concert entitled

‘Interfaces & Psychoacoustics’ [71] that was organised and co-hosted by fellow PhD

candidate Brian Connolly. The performer found the design both expressive and easy-

to-operate and the performance proceeded without any problems.

 The most surprising aspect of playing with DroneTilt was the expressive

power of the accelerometer data. In most interactive music applications this

information is normally employed in a very simple way – either to detect discrete

‘shaking’ type movements or to change menu orientation. Allocating a primary

performance role to the motion sensors is impossible in most cases due to the

predominance of the graphical interface and/or the need for the user employ both of

their hands during performance – leaving no way to move the device itself. The lack

of visual emphasis required to operate this particular design allowed for a great deal

of freedom to change the position of the device while carefully monitoring the

resulting change in drone texture.

 Brief timbral fluctuations caused by sudden movements also provided an

interesting, if unpredictable, contribution to the performance – a quick jerking of the

device in space results in a momentary teleportation of values and a jarring glimpse

196

into the timbre present at another orientation. It was observed that jerking the device

in different directions produced markedly different results – especially in relation to

up/down movements which provided a way to foreshadow the arrival of the final

sample.

 The posture used throughout the performance, with one-hand suspending the

device like a clipboard, was comfortable and not as limiting as expected. It also

prompted an investigation into ways to suspend the iPad during performance so as to

enable the use of the accelerometer data without disabling one or more of the

performer’s hands, which will be explored in future performances.

6.13 Linking Oscar to the descriptive model

Oscar is a configurable platform with a gestural interface that is particularly well-

suited to designing performance tools using the descriptive model established in

Chapter 4. Many of Oscar’s core components can be used to construct instances of

the interaction strategies outlined in sections 4.4 – 4.9, as demonstrated in the

following examples:

 The Touch strategy is easily used – every touch and/or cluster creates a

unique instance of itself (as a Csound instrument) which can be populated

with sound generating code. Repeat and contact behaviours are easily

performed in the same way.

 Trigger behaviour can be easily invoked by sending a statement to the

Csound score using the event opcode.

 Toggles can be implemented as above, with the addition of a boolean flag

variable, or in response to Oscar’s tap or flick gestures.

197

 Counter can be implemented with the use of a global variable holding an

integer.

 Time since last action, hold time, idle and excitation strategies can all be

performed by creating a counting behaviour either within touch/cluster

instruments or by defining a separate, dedicated counter instrument that

updates a global variable. Other instruments can access this number to affect

their parameters and the average/median time strategy can also be derived

from it.

 One-to-one mapping is easily to perform by plugging the properties of

Oscar’s gestures into sound generating parameters. Movement can be

detected by keeping a record of the last known value and performing

comparisons with the current value or (as velocity values are provided

directly in the case of clusters and touches) simply setting a threshold of

speed above which action is taken.

 Thresholds are also built-in to Oscar’s interface in the form of the zones.

Conditional zone checks (as shown in Figure 6.21) can be used quickly and

effectively to reserve sections of Oscar’s surface for the control of specific

tasks.

 Modal behaviours are strongly supported by the variety of independent

variables available to the user. The number of clusters, number of touches

within a cluster, starting location, current zone, ‘is held’ property and the

device orientation are all well-suited to delimiting various modes of operation

depending on the needs of the user.

 Automation strategies of varying complexity are easily created and accessed

via Csound’s vast library of opcodes for storing information in tables. Pre-

198

arranged scores or event lists can be copied directly into the Oscar template

and read without any additional configuration.

 Strategies for combining controllers are well-supported between the various

gestures within Oscar itself and also the ability to use external MIDI devices

via USB. MIDI signals from a connected device can be read directly into an

Oscar template and combined with the built-in gesture data to control

performance.

6.14 Assessment of Oscar

While formal assessment of Oscar’s suitability as a multi-touch music performance

system is beyond the scope of this thesis, anecdotal evidence suggests that it has the

potential to be a useful development platform:

 Beta-testing of the app has gathered very positive feedback from subjects

with a self-described knowledge of computer music tools ranging from

‘expert’ to ‘none’.

 An undocumented performance program was demonstrated successfully by

Dr. Victor Lazzarini at the 2013 UbiMus workshop. Participants were easily

able to figure out how the gestures corresponded to the sonic results.

 An Oscar workshop was given to students of the MA in Computer Music at

NUI Maynooth – over the course of two hours, students with some Csound

training and no prior experience of Oscar were able to create fully-functional

programs to control synthesized sounds and mix together pre-recorded

samples. Several students remarked that the session helped their

understanding of signal flow within Csound and suggested that having access

199

to a tool like Oscar would be very helpful when learning synthesis and music

programming languages.

Oscar is still being developed and refined. In the near future, a team of sound

designers and programmers will be contracted to develop interesting sound programs

for Oscar and explore its abilities for various genres of music. Further academic

research is also planned with the Ubiquitous Music Group – performing experiments

on usability and expression with Oscar as the test platform.

6.15 Conclusion

An overview of Oscar has been given in this chapter, followed by a detailed

description of the design goals and the steps taken in order to achieve them. This is

complemented by a breakdown of the template that Oscar uses to communicate with

the Csound API and an example of a performance tool developed using the system.

The concepts embodied in Oscar represent an alternative way of designing a

digital musical instrument, inspired by the interaction strategies established in earlier

chapters. Oscar demonstrates the viability of dissecting a gestural controller into its

composite parts and reassembling them using the descriptive model outlined in this

thesis. This model is not limited to touch screen devices – the versatility and modular

nature of this approach makes it easy to apply to any kind of human-computer

interface device. The strategies integral to Oscar could, with little modification, be

ported to devices that detect hand and finger movement in a different way, such as

the contactless tracking offered by the Leap [97]. The cluster abstraction could be

repurposed in this case, to accommodate the Leap’s system of tracking finger/hand

relationships, possibly causing a number of subtle changes in how the model works.

As a standalone tool, Oscar represents a novel and versatile means to develop

interactive audio software on a tablet device. It occupies a unique middle-ground

200

between controller and synthesizer, and also allows users to develop their own

standalone programs without the need for a Mac, a developer account, or knowledge

of any programming language beyond Csound. Oscar has become an invaluable part

of the author’s own creative process – it is hoped that its commercial release will

inspire a wide variety of musicians and artists to express their musical ideas in a new

way.

201

Chapter 7. Conclusion

“The goal we seek is nothing less than the free expression of our imaginations. No

one else should decide for us the best way to get there. All hardware and software

intended for musical use should be designed with that in mind.”

-Simon Emmerson, The Language of Electroacoustic Music [45]

This thesis set out to enhance the existing vocabulary of the digital musician by

establishing new conceptual tools for musical interaction design. An account of

influential developments in the field of live electronic music performance, followed

by a comprehensive survey of existing theory and practice, served to contextualise

the work and introduce the core concepts of digital musical instrument design. The

thesis then presented a system of modular interaction strategies and defined a variety

of complementary techniques for augmenting their functionality. This section of the

work concluded with a case study that used the strategies to approach a typical

performance technique: live sample playback and manipulation.

 Having established a theoretical framework, the thesis focused in upon a

particular kind of device – the multi-touch surface – in order to investigate its

musical potential from a new perspective. A survey of multi-touch musical

applications, followed by some preliminary experiments with alternative interaction

techniques, led to the development of Oscar – a novel system for musical

performance using multi-touch. The discussion following this section consisted of a

detailed description of the design philosophy, gestural interface, feature

202

implementation and user template of Oscar and concluded with a final case study

that demonstrates the system in action.

In terms of original contributions to the field of study, three main aspects of

this thesis should be considered: (i) a critical assessment of recent trends in digital

musical instrument design, (ii) a descriptive model for digital musical instrument

design using modular interaction strategies, and (iii) a novel, customisable,

integrated platform for the development of multi-touch music performance systems.

 The critical assessment of digital musical instrument design has its basis in a

number of design aphorisms inspired by the design trends of the last century

(discussed in section 2.11). While it is difficult to predict the direction that future

developments will take, an understanding of the dynamic developmental history of

controllers for electronic music is vital in order to appreciate, and contribute to, the

current state of the art. Chapter 5 builds upon this understanding to present a critical

comparison of the design techniques common to popular contemporary hardware

controllers (i.e. button grids, XY pads and multi-touch screens).

The descriptive model was developed in Chapter 4, which summarised basic

programming techniques, and discussed various data-handling strategies, predictive

and descriptive models, describing sensors in terms of degrees of freedom (DOF),

dimensions and resolution, and a series of fundamental interaction strategies for

1DOF sensors with high and low resolutions.

We then discussed the application of the modular approach and provided

strategies for using controllers independently and interdependently, with a summary

of techniques to combine the data from several different input sensors. Chapter 4

also proposed a complementary toolkit of abstract controllers that employ statistics,

multi-modal behaviour, automation and saving/recalling of settings to augment the

203

functionality of the physical sensors present in the system. These findings are

supported by a thorough literature review that documents the evolution of controllers

for the performance of live electronic music (Chapter 2) and provides a

comprehensive summary of conceptual tools that have been developed to assist in

the design and classification of digital musical instruments (Chapter 3). The practical

application of the descriptive model was illustrated via a detailed account of the

design of a live performance sampler interface – LoopBlender.

 The development of a novel multi-touch performance platform was informed

by a detailed study of surface-based interfaces, encompassing contemporary musical

applications of XY pads, grid-based interfaces and multi-touch surfaces (Chapter 5).

This survey examined popular approaches to musical interface design using multi-

touch devices and proposed an alternative control strategy that aims to leverage the

intrinsic strengths of multi-touch technology for expressive and nuanced musical

control. This strategy was investigated by devising and refining a series of gesture

recognition algorithms – described herein as SurfacePlayer.

 Both the descriptive model and these algorithms were used to create a

standalone platform for the design of expressive multi-touch performance systems –

Oscar. In Chapter 6, we discussed the goals that motivated the creation of Oscar and

described their realisation in terms of the application’s features and how they were

implemented. In particular, we examined closely the core components of the gestural

interface (clusters, touches, taps and flicks), the template for designing new

performance programs, and the various strategies that can be employed to combine

the motion data generated by the iPad’s built-in sensors with multi-touch gestures

performed by the user. The chapter concluded with a second design case study –

DroneTilt – which combines the interaction strategies from our descriptive model

204

with some of Oscar’s unique features to create an expressive live performance

instrument.

 The work presented in this thesis has been motivated by a dedication to the

development of practical and universally-applicable tools that encourage more

expressive, radical and intuitive digital musical instrument designs. The descriptive

model is both practical and generic – the interaction strategies and concepts at its

core can be used with any kind of sensor or interface that generates digital data. It is

also not a closed system – there is ample room for designers to discover and

contribute new strategies within the prescribed framework.

 Oscar is a unique addition to the selection of multi-touch software designed

for serious musicians. It is a fully-customisable, integrated platform that anyone can

develop programs for, with a basic knowledge of the Csound language. The software

occupies a unique space with regard to the level of flexibility it provides and the

accessibility of writing new code for it – the end user can design new programs for

Oscar, and modify existing programs, using nothing but a basic text editor and

Dropbox account. Aside from this specific implementation, the gestural interface at

the core of Oscar can be easily adapted to other devices that use manual, open-

handed control, such as the Leap Motion [97].

The electronic music community’s growing interest in ergonomic, intuitive

and flexible control devices is evidence of an evolution in our collective approach to

technology in performance. Our emphasis is moving away from the powerful

equipment at our disposal towards the development of powerful musical interactions

using that equipment. It is my hope that this thesis will make a significant

contribution to our understanding of interactive systems, multi-touch controllers, and

the unique art that is the design of digital musical instruments.

205

206

Bibliography

[1] https://www.ableton.com/, accessed April 2014

[2] http://www.ableton.com/launchpad, accessed April 2014

[3] http://acousmata.com/post/27443169341/jorg-mager, accessed April 2014

[4] http://www.airpiano.de/concept, accessed April 2014

[5] http://akustisch.digitalaspekte.ch/, accessed April 2014

[6] http://www.altkeyboards.com/instruments/jammer, accessed April 2014

[7] http://www.altkeyboards.com/instruments/sonomes, accessed April 2014

[8] http://www.apple.com/ipad/, accessed April 2014

[9] https://developer.apple.com/technologies/ios/cocoa-touch.html, accessed

April 2014

[10] Bakan, M., Bryant, W., Li, G., Martinelli, D. and Vaughnm, K. Demystifying

and Classifying Electronic Music Instruments, Selected Reports in

Ethnomusicology 8: 37–63, 1990

[11] http://baranoff-rossine.com/optophonic-piano/, accessed April 2014

[12] Barbosa, J., Calegario, F., Magalhães, F., Teichrieb, V., Ramalho, G. and

Cabral, G. Towards an evaluation methodology for digital music instruments

considering performer’s view: a case study, SBCM, 2011

[13] Barbosa, J., Calegario, F., McGlynn, P., Teichrieb, V., Ramalho, G.

Considering Audience's View Towards an Evaluation Methodology for

Digital Musical Instruments, NIME, 2012

[14] Berman, B. Notes from the Pianist’s Bench, Yale. University Press, New

Haven and London, 2000

https://www.ableton.com/
http://www.ableton.com/launchpad
http://acousmata.com/post/27443169341/jorg-mager
http://www.airpiano.de/concept
http://akustisch.digitalaspekte.ch/
http://www.altkeyboards.com/instruments/jammer
http://www.altkeyboards.com/instruments/sonomes
http://www.apple.com/ipad/
https://developer.apple.com/technologies/ios/cocoa-touch.html
http://baranoff-rossine.com/optophonic-piano/

207

[15] Bevilacqua, F., Muller, R. and Schnell, N. MnM: aMax/MSP mapping

toolbox, NIME, 2005

[16] Birnbaum, D., Fiebrink, R., Malloch, J. and Wanderley, M. M. Towards a

dimension space for musical devices, NIME, 2005

[17] Boon, M. The Drone. In Young, R. (Ed.), Undercurrents: The Hidden Wiring

of Modern Music, Continuum Books, 2003

[18] http://www.buchla.com/historical/, accessed April 2014

[19] http://www.buchla.com/historical/thunder/index.html, accessed April 2014

[20] http://www.buchla.com/lightning3.html, accessed April 2014

[21] Buxton, W. Three-state model of graphical input, INTERACT, 1990

[22] Buxton, W. Integrating the Periphery and Context: A New Model of

Telematics, Proceedings of Graphics Interface’95, 239-246, 1995

[23] http://www.billbuxton.com/papers.html#anchor1442822, accessed April 2014

[24] Cadoz, C. and Wanderley, M. M. Gesture-Music. From Trends in Gestural

Control of Music. Paris: IRCAM (PDF version), 2000

[25] Casciato, C. and Wanderley, M. M. Lessons from Long Term Gestural

Controller Users, ENACTIVE, 2007

[26] Chadabe, J. Electric Sound: The Past and Promise of Electronic Music,

Prentice Hall, New Jersey, 1997

[27] http://charlie-roberts.com/Control/, accessed April 2014

[28] http://www.controllerism.com/types-of-controllerism, accessed April 2014

[29] Cook, P. Principles for designing computer music controllers, NIME, 2001

[30] Collins, N., Schedel, M. and Wilson, S. Cambridge Introductions to Music:

Electronic Music, Cambridge University Press, 2013

http://www.buchla.com/historical/
http://www.buchla.com/historical/thunder/index.html
http://www.buchla.com/lightning3.html
http://www.billbuxton.com/papers.html#anchor1442822
http://charlie-roberts.com/Control/
http://www.controllerism.com/types-of-controllerism

208

[31] Cooper, A. and Reimann, R. About Face 2.0: The essentials of interaction

design, Wiley, 2003

[32] Crab, S. 120 Years of Electronic Music,

http://www.mathieubosi.com/zikprojects/120YearsOfElectronicMusic.pdf,

2004

[33] http://www.csounds.com/, accessed April 2014

[34] http://csound.sourceforge.net/doc/html/index.html, accessed April 2014

[35] http://www.csounds.com/manual/html/CommandUnifile.html, accessed April

2014

[36] http://www.c-thru-music.com/cgi/?page=prod_axis-64, accessed April 2014

[37] http://www.davidrokeby.com/vns.html, accessed April 2014

[38] Davis, T. Towards a Relational Understanding of the Performance

Ecosystem, Organised Sound, 16, 2011

[39] Djajadiningrat, J.P., Matthews, B. and Stienstra, M. Easy doesn’t do it: skill

and expression in tangible dynamics, Personal and Ubiquitous Computing,

vol. 11, no. 8, pp. 657-676, 2007

[40] Doornbusch, P. Composers’ views on mapping in algorithmic composition,

Organised Sound, 7(2), 145 – 156, 2002

[41] https://www.dropbox.com/, accessed April 2014

[42] Duignam, M. A Taxonomy of Sequencer User-Interfaces, ICMC, 2005

[43] Dunn, D. A History of Electronic Music Pioneers, Eigenwelt der Apparate-

Welt.(Katalog), Linz, 1992

[44] http://www.eigenlabs.com/, accessed April 2014

[45] Emmerson, S. Living Electronic Music, Ashgate Publishing Ltd., 2007

http://www.mathieubosi.com/zikprojects/120YearsOfElectronicMusic.pdf
http://www.csounds.com/
http://csound.sourceforge.net/doc/html/index.html
http://www.csounds.com/manual/html/CommandUnifile.html
http://www.c-thru-music.com/cgi/?page=prod_axis-64
http://www.davidrokeby.com/vns.html
https://www.dropbox.com/
http://www.eigenlabs.com/

209

[46] Essl, G., Rohs, M. and Kratz, S. Use the Force (or something) - Pressure and

Pressure-Like Input for Mobile Music Performance, NIME, 2010

[47] https://emhistory.wikispaces.com/1876+Musical+Telegraph, accessed April

2014

[48] http://expressionpad.com/, accessed April 2014

[49] http://faderfox.de/home.html, accessed April 2014

[50] Farrell, J. Just Enough Programming Logic and Design. Course Technology,

2010

[51] Ferguson, S. and Wanderley, M. M. The McGill Digital Orchestra:

Interdisciplinarity in Digital musical Instrument Design, CIM, 2009

[52] Fitz-Walter, Z., Jones, S., and Tjondronegoro, D. Detecting gesture force

peaks for intuitive interaction, IE, 2008

[53] Flanagan, J. L. Speech Analysis, Synthesis and Perception, Springer-Verlag,

1965

[54] Frisson, C., Macq, B., Dupont, S., Siebert, X., Tardieu, D. and Dutoit, T.

DeviceCycle: rapid and reusable prototyping of gestural interfaces, applied to

audio browsing by similarity, NIME, 2010

[55] https://sites.google.com/site/carlkenner/glovepie, accessed April 2014

[56] Gruenbaum, L. The Samchillian Tip Tip Tip Cheeepeeeee: A Relativistic

Keyboard Instrument, NIME, 2007

[57] Gurevich, M. and Fyans, A. Digital Musical Interactions: Performer–system

relationships and their perception by spectators. Organised Sound, 16(02),

pp.166-175, 2011

[58] http://www.hakenaudio.com/Continuum/, accessed April 2014

https://emhistory.wikispaces.com/1876+Musical+Telegraph
http://expressionpad.com/
http://faderfox.de/home.html
https://sites.google.com/site/carlkenner/glovepie
http://www.hakenaudio.com/Continuum/

210

[59] Hinckley, K., Pierce, J., Sinclair, M., and Horvitz, E. Sensing techniques for

mobile interaction, UIST, 2000

[60] Hinckley, K., and Song, H., Sensor Synaesthesia: Touch in Motion, and

Motion in Touch, CHI, 2011

[61] Hinckley, K. Manual deskterity: Combining pen and touch,

http://kenhinckley.wordpress.com/2011/08/02/classic-manual-deskterit/,

2011, accessed April 2014

[62] Hinckley, K. The hidden dimension of touch,

http://kenhinckley.wordpress.com/2011/09/07/classic-post-the-hidden-

dimension-of-touch/, 2011, accessed April 2014

[63] Holms, T. Electronic and Experimental Music: Technology, Music and

Culture, Routledge, 2008

[64] von Hornbostel, E. M. and Sachs, C. Classification of Musical Instruments:

Translated from the Original German by Anthony Baines and Klaus P.

Wachsmann, The Galpin Society Journal, Vol. 14, pp. 3-29, 1961

[65] Hsu, W. and Sosnick, M. Evaluating interactive music systems: An HCI

approach, NIME, 2009

[66] http://www.hughlecaine.com/en/sackbut.html, accessed April 2014

[67] Hugill, A. The Digital Musician, Routledge, 2008

[68] Hummels, C., Smets, G. and Overbeeke, K. An intuitive two handed gestural

interface, Journal of KISS, 1997

[69] Hunt, A. Radical User Interfaces for Real-time Musical Control, PhD thesis,

University of York, 1999

[70] Hunt, A., Wanderley, M. M. and Paradis, M. The Importance of Parameter

Mapping in Electronic Instrument Design, NIME, 2002

http://kenhinckley.wordpress.com/2011/08/02/classic-manual-deskterit/
http://kenhinckley.wordpress.com/2011/09/07/classic-post-the-hidden-dimension-of-touch/
http://kenhinckley.wordpress.com/2011/09/07/classic-post-the-hidden-dimension-of-touch/
http://www.hughlecaine.com/en/sackbut.html

211

[71] http://direct.journalofmusic.com/listing/04-04-13/interfaces-and-

psychoacoustics, accessed April 2014

[72] Ishii, H. The tangible user interface and its evolution, Communications of the

ACM: Organic user interfaces, Volume 51(6):32-36, 2008

[73] Jacob, R., Sibert, L., McFarlane, D. and Mullen Jr., M. P. Integrality and

separability of input devices, ACM Trans. Human Computer Interaction, vol.

1, no. 1, pp.3–26, 1994

[74] http://www.jazzmutant.com/lemur_overview.php, accessed April 2014

[75] Jenkins, M. Analog Synthesizers: Understanding, performing, buying, Focal

Press, 2007

[76] Jorda, S. Digital instruments and players: Part I - Efficiency and

Apprenticeship, NIME, 2004

[77] Jorda, S., Kaltenbrunner, M., Geiger, G. and Bencina, R. The Reactable*,

ICMC, 2005

[78] Jorda, S. Digital Lutherie, PhD thesis, Universitat Pompeu Fabra, 2005

[79] Kaltenbrunner, M., Bovermann, T., Bencina, R. and Costanza, E., TUIO - A

Protocol for Table-Top Tangible User Interfaces, GW, 2005

[80] Kaltenbrunner, M. Processing TUIO, http://www.tuio.org/?processing,

accessed April 2014

[81] Kartomi, M. The Classification of Musical Instruments: Changing Trends in

Research from the Late Nineteenth Century, with Special Reference to the

1990s, Ethnomusicology, Vol. 45, No. 2, pp. 283-314, 2001

[82] http://www.kdj-one.com/, accessed April 2014

[83] http://www.keithmcmillen.com/QuNeo/tech-specs/, accessed April 2014

[84] http://kck.st/taqBsn, accessed April 2014

http://direct.journalofmusic.com/listing/04-04-13/interfaces-and-psychoacoustics
http://direct.journalofmusic.com/listing/04-04-13/interfaces-and-psychoacoustics
http://www.jazzmutant.com/lemur_overview.php
http://www.tuio.org/?processing
http://www.kdj-one.com/
http://www.keithmcmillen.com/QuNeo/tech-specs/
http://kck.st/taqBsn

212

[85] Keller, D., Barreiro, D. L., Queiroz, M. and Pimenta, M. S. Anchoring in

Ubiquitous Musical Activities, ICMC, 2010

[86] Keller, D., Flores, L. V., Pimenta, M. S., Capasso, A. and Tinajero, P.

Convergent Trends Toward Ubiquitous Music, Journal of New Music

Research 40 (3): 265-276, 2011

[87] Kernfeld, B. What to Listen For in Jazz, Yale University Press, 1997

[88] Kirn, P. Why DIY Music? Reflections from STEIM's Patterns & Pleasure

Fest, Handmade Music Amsterdam,

http://createdigitalmusic.com/2011/09/why-diy-music-reflections-from-

steims-patterns-and-pleasure-fest-handmade-music-amsterdam/, 2011,

accessed April 2014

[89] Kirn, P. Reinventing the Whee: Engineering arc2 – Digital Instrument from

Monome Creator, http://createdigitalmusic.com/2012/10/reinventing-the-

wheel-engineering-arc2-digital-instrument-from-monome-creator-gallery-

interview/, 2012, accessed April 2014

[90] http://www.korg.com/ielectribe, accessed April 2014

[91] http://korg.com/products.aspx?ct=4, accessed April 2014

[92] http://www.korg.com/uploads/Support/KAOSSILATOR_

PRO_OM_EFG1_634067737513300000.pdf, accessed April 2014

[93] http://www.korg.com/uploads/Support/KP3_OM_EFG1_6336592616677200

00.pdf, accessed April 2014

[94] http://www.korg.com/nanoseries2, accessed April 2014

[95] Kurtenbach, G. and Hulteen, E. Gestures in human-computer communication.

The Art of Human-Computer Interface Design, Addison-Wesley Publishing

Co., 1990

http://createdigitalmusic.com/2011/09/why-diy-music-reflections-from-steims-patterns-and-pleasure-fest-handmade-music-amsterdam/
http://createdigitalmusic.com/2011/09/why-diy-music-reflections-from-steims-patterns-and-pleasure-fest-handmade-music-amsterdam/
http://createdigitalmusic.com/2012/10/reinventing-the-wheel-engineering-arc2-digital-instrument-from-monome-creator-gallery-interview/
http://createdigitalmusic.com/2012/10/reinventing-the-wheel-engineering-arc2-digital-instrument-from-monome-creator-gallery-interview/
http://createdigitalmusic.com/2012/10/reinventing-the-wheel-engineering-arc2-digital-instrument-from-monome-creator-gallery-interview/
http://www.korg.com/ielectribe
http://korg.com/products.aspx?ct=4
http://www.korg.com/uploads/Support/KAOSSILATOR_PRO_OM_EFG1_634067737513300000.pdf
http://www.korg.com/uploads/Support/KAOSSILATOR_PRO_OM_EFG1_634067737513300000.pdf
http://www.korg.com/uploads/Support/KP3_OM_EFG1_633659261667720000.pdf
http://www.korg.com/uploads/Support/KP3_OM_EFG1_633659261667720000.pdf
http://www.korg.com/nanoseries2

213

[96] Lähdeoja, O., Wanderley, M. M. and Malloch, J. Instrument Augmentation

using Ancillary Gestures for Subtle Sonic Effects, SMC, 2009

[97] https://www.leapmotion.com/, accessed April 2014

[98] Leganchuk, A., Zhai, S. and Buxton, W. Manual and Cognitive Benefits of

Two-Handed Input: An Experimental Study. Transactions on Human-

Computer Interaction, 5(4), 326-359, 1998.

[99] http://liine.net/en/products/lemur/, accessed April 2014

[100] http://line6.com/stagescape-m20d/, accessed April 2014

[101] Lockwood, D. Inspired Instruments – You Rock Guitar, Sound on Sound,

August 2011

[102] MacKenzie, I. S. Fitts' law as a performance model in human-computer

interaction. Unpublished Doctoral Dissertation, University of Toronto, 1991

[103] MacKenzie, I. S. Motor behaviour models for human-computer interaction.

In J. M. Carroll (Ed.) HCI models, theories, and frameworks: Toward a

multidisciplinary science, pp. 27-54. San Francisco: Morgan Kaufmann, 2003

[104] http://www.mackie.com/products/dl1608/, accessed April 2014

[105] http://madronalabs.com/hardware, accessed April 2014

[106] Magnusson, T. The Acoustic, the Digital and the Body: A Survey on Musical

Instruments, NIME, 2007

[107] Malloch, J., Birnbaum, D., Sinyor, E. and Wanderley, M. M. Towards a new

conceptual framework for digital musical instruments, DAFx, 2006

[108] Malloch, J. and Wanderley, M. M. The T-Stick: From Musical Interface to

Musical Instrument, NIME 2007

[109] Manning, P. Electronic and Computer Music, Oxford University Press, 2013

https://www.leapmotion.com/
http://liine.net/en/products/lemur/
http://line6.com/stagescape-m20d/
http://www.mackie.com/products/dl1608/
http://madronalabs.com/hardware

214

[110] Marshall, M. and Wanderley, M. M. Evaluation of Sensors as Input Devices

for Computer Music Interfaces, CMMR, 2006

[111] McMillan, K. ZIPI: Origins and Motivations, Computer Music Journal, vol.

18, no. 4, pp. 48–96, 1994

[112] Mathieu, W.A. This Musical Life: Reflections on what it is and how to live it,

Shambhala, 1994

[113] Matthews, M. V. Radio-Baton Instruction Manual. MARMAX, 2000

[114] Maupin, S., Gerhard, D. and Park, B. Isomorphic Tessellations for Musical

keyboards. SMC, 2011.

[115] http://www.maxforlive.com/library/device.php?id=534, accessed April 2014

[116] McCartney, J. Continued evolution of the SuperCollider real time synthesis

environment, ICMC, 1998

[117] McGlynn, P. Towards more effective mapping strategies for digital musical

instruments, LAC, 2011

[118] McGlynn, P., Lazzarini, V., Delap, G., and Chen, X., Recontexualizing the

Multi-touch Surface, NIME, 2012

[119] http://www.midi.org/techspecs/, accessed April 2014

[120] Miranda, E.R. and Wanderley, M. M. New Digital Musical Instruments:

Control and Interaction Beyond the Keyboard, A-R Editions Inc., 2006

[121] http://www.misadigital.com/, accessed April 2014

[122] Miyama, C. Peacock: A Non-Haptic 3D Performance Interface, NIME 2010

[123] http://www.moldover.com/press/Moldover_Remix_Oct-2007_w.jpg,

accessed April 2014

[124] http://monome.org/, accessed April 2014

[125] http://docs.monome.org/doku.php?id=app:straw, accessed April 2014

http://www.maxforlive.com/library/device.php?id=534
http://www.midi.org/techspecs/
http://www.misadigital.com/
http://www.moldover.com/press/Moldover_Remix_Oct-2007_w.jpg
http://monome.org/
http://docs.monome.org/doku.php?id=app:straw%20

215

[126] http://mrmr.noisepages.com/, accessed April 2014

[127] Mulder, A. Towards a choice of gestural constraints for instrumental

performers, From Trends in Gestural Control of Music. Paris: IRCAM (PDF

version), 2000

[128] Nadolski, K. Listening to Our Bodies: How Pianists Can Create Unnecessary

Difficulties Through Excessively Rule-Bound Approaches to Legato and

Fingering, PhD Thesis, Texas Tech University, 2012

[129] Nagle, P. Dewanatron Swarmatron, Sound on Sound, June 2011

[130] http://www.native-instruments.com/en/products/maschine/, accessed April

2014

[131] http://www.nintendo.com/wii/console/controllers, accessed April 2014

[132] Norman, D. A. The Design of Future Things. Basic Books, New York, 2007

[133] http://ccv.nuigroup.com/, accessed April 2014

[134] http://nuigroup.com/forums/, accessed April 2014

[135] http://www.numark.com/product/orbit, accessed April 2014

[136] Nunn, T. The Wisdom of the Impulse: On the nature of musical free

improvisation,

http://www20.brinkster.com/improarchive/tn_wisdom_part1.pdf, 2008,

accessed April 2014

[137] Oliver, J. and Jenkins, M. The Silent Drum Controller: A New Percussive

Gestural Interface, ICMC 2008

[138] http://www.spectrasonics.net/products/omni_tr.php, accessed April 2014

[139] O’Modhrain, S. Playing by Feel: Incorporating Haptic Feedback into

Computer-Based musical Instruments, Ph.D. Thesis, Stanford University,

2000

http://mrmr.noisepages.com/
http://www.native-instruments.com/en/products/maschine/
http://www.nintendo.com/wii/console/controllers
http://ccv.nuigroup.com/
http://nuigroup.com/forums/
http://www.numark.com/product/orbit
http://www20.brinkster.com/improarchive/tn_wisdom_part1.pdf
http://www.spectrasonics.net/products/omni_tr.php

216

[140] O’Modhrain, S. A framework for the evaluation of digital musical

instruments, Computer Music Journal, vol. 35, no. 1, pp. 28–42, 2011

[141] http://opensoundcontrol.org/, accessed April 2014

[142] O’Sullivan, D. and Igoe, T. Physical Computing: Sensing and controlling the

physical world with computers, Thomson Couse Technology, 2004

[143] http://www.patchmanmusic.com/manuals/DH100Manual.pdf, accessed April

2014

[144] Pimenta, M.S., Flores, L., V., Capasso, A., Tinajero, P. and Keller, D.

Ubiquitous Music: Concepts and Metaphors, SBCM 2009

[145] Prendergast, M. J. The Ambient Century: From Mahler to Trance – The

Evolution of Sound in the Electronic Age, Bloomsbury Publishing PLC, 2000

[146] http://processing.org/, accessed April 2014

[147] Puckette, M. Max at seventeen, Computer Music Journal 26(4), 31–43, 2002

[148] http://qutecsound.sourceforge.net/index.html, accessed April 2014

[149] Raskin, J. The humane interface: New directions for designing interactive

systems, Addison Wesley, 2000.

[150] http://www.reactable.com/, accessed April 2014

[151] http://reactivision.sourceforge.net/, accessed April 2014

[152] http://www.researchcatalogue.net/view/48123/53020, accessed April 2014

[153] Roads, C. The Computer Music Tutorial, MIT Press, 1996

[154] https://github.com/rfielding/Mugician, accessed April 2014

[155] http://rrr00bb.blogspot.com/2010/08/mugician-heiroglyphics.html, accessed

April 2014

[156] http://www.rogerlinndesign.com/preview-linnstrument.html, accessed April

2014

http://opensoundcontrol.org/
http://www.patchmanmusic.com/manuals/DH100Manual.pdf
http://processing.org/
http://qutecsound.sourceforge.net/index.html
http://www.reactable.com/
http://reactivision.sourceforge.net/
http://www.researchcatalogue.net/view/48123/53020
https://github.com/rfielding/Mugician
http://rrr00bb.blogspot.com/2010/08/mugician-heiroglyphics.html
http://www.rogerlinndesign.com/preview-linnstrument.html

217

[157] Rokeby, D. The Construction of Experience : Interface as Content, in

Dodsworth Jr., C. (Ed.), Digital Illusion: Entertaining the Future with High

Technology, ACM Press, 1998

[158] Russ, M. Sound Synthesis and Sampling, Focal Press, 2009

[159] Saffer, D. Designing Gestural Interfaces: Touchscreens and Interactive

Devices. O'Reilly Media, Sebastopol, CA, 2009

[160] Samagaio, F. The Mellotron Book, artistpro.com LLC, 2002

[161] Schlei, K. Relationship-Based Instrument Mapping of Multi-Point Data

Streams Using a Trackpad Interface, NIME, 2010

[162] Schlömer, T., Poppinga, B., Henze, N. and Boll, S. Gesture recognition with

a Wii controller, TEI, 2008

[163] http://www.sensorband.com/, accessed April 2014

[164] Shapiro, P. Turn the Beat Around: The Secret History of Disco, Faber &

Faber, 2006

[165] Shepard, B. K. Refining Sound: A Practical Guide to Synthesis and

Synthesizers, OUP USA, 2013

[166] Shiffman, D. Learning Processing: A beginner’s guide to programming

images, animation, and iteration, Morgan Kaufman Publishers, 2008

[167] http://www.sibelius.com/, accessed April 2014

[168] Sinclair, S. A guitar-inspired touch pad controller,

http://www.music.mcgill.ca/~sinclair/touchpad-guitar_sinclair.pdf, accessed

April 2014

[169] http://www.smithsonmartin.com/kontrol-surface-ks-1974/, accessed April

2014

[170] http://www.sonami.net/works/ladys-glove/, accessed April 2014

http://www.sensorband.com/
http://www.sibelius.com/
http://www.music.mcgill.ca/~sinclair/touchpad-guitar_sinclair.pdf
http://www.smithsonmartin.com/kontrol-surface-ks-1974/
http://www.sonami.net/works/ladys-glove/

218

[171] http://www.sourceaudio.net/products/hothand/, accessed April 2014

[172] Spiegel, L. Music Mouse manual,

http://retiary.org/ls/progs/mm_manual/mouse_manual.html, 1986, accessed

April 2014

[173] http://www.starrlabs.com/, accessed April 2014

[174] Steiner, J. C. [hid] toolkit: a unified framework for instrument design, NIME,

2005

[175] http://www.stephenhobley.com/blog/laser-harp-2009/the-laser-harp-pages/,

accessed April 2014

[176] Stretta, Making music is process, http://stretta.blogspot.com/2011/07/making-

music-is-process.html#disqus_thread, 2011, accessed April 2014

[177] Stretta, Plane – m | vi | cv, http://stretta.blogspot.com/2011/05/plane-m-vi-

cv.html, 2011, accessed April 2014

[178] http://www.subcycle.org/, accessed April 2014

[179] Tanaka, A. Musical performance practice on/with sensor based instruments.

From Trends in Gestural Control of Music. Paris: IRCAM (PDF version),

2000

[180] http://www.bitshapesoftware.com/instruments/tc-11/ , accessed April 2014

[181] Teiche, A., Rai, A., Yanc, C., Moore, C., Solms, D., Cetin, G., Riggio, J.,

Ramseyer, N., D’Intino, P., Muller, L., et al. Multi-touch technologies. NUI

Group, 2009

[182] http://www.global.yamaha.com/tenori-on/, accessed April 2014

[183] http://download.yamaha.com/api/asset/file/?language=en&site=au.yamaha.co

m&asset_id=13041, accessed April 2014

http://www.sourceaudio.net/products/hothand/
http://retiary.org/ls/progs/mm_manual/mouse_manual.html
http://www.starrlabs.com/
http://www.stephenhobley.com/blog/laser-harp-2009/the-laser-harp-pages/
http://stretta.blogspot.com/2011/07/making-music-is-process.html#disqus_thread
http://stretta.blogspot.com/2011/07/making-music-is-process.html#disqus_thread
http://stretta.blogspot.com/2011/05/plane-m-vi-cv.html
http://stretta.blogspot.com/2011/05/plane-m-vi-cv.html
http://www.subcycle.org/
http://www.bitshapesoftware.com/instruments/tc-11/
http://www.global.yamaha.com/tenori-on/
http://download.yamaha.com/api/asset/file/?language=en&site=au.yamaha.com&asset_id=13041
http://download.yamaha.com/api/asset/file/?language=en&site=au.yamaha.com&asset_id=13041

219

[184] Textura. A History of Dronology,

http://www.textura.org/archives/articles/dronesarticle.htm, accessed April

2014

[185] Toop, D. Haunted Weather: Music, Silence and Memory, Serpent’s Tale,

2005.

[186] http://hexler.net/software/touchosc, accessed April 2014

[187] http://www.tuio.org/, accessed April 2014

[188] https://code.google.com/p/tuiopad/, accessed April 2014

[189] https://code.google.com/p/tuiodroid/, accessed April 2014

[190] http://compmus.ime.usp.br/ubimus/en, accessed April 2014

[191] http://www.uusikaupunki.fi/~patalus/new_stuff/Dynacord%20Rhythm%20Sti

ck/Dynacord%20Rhythm%20Stick%20manual.pdf, accessed April 2014

[192] Vail, M. Vintage Synthesizers: Groundbreaking Instruments and Pioneering

Designers of Electronic Music Synthesizers, Backbeat Books, 2000

[193] http://www.neyrinck.com/en/products/v-control-pro, accessed April 2014

[194] Verfaille, V., Wanderley, M. M. and Depalle, P. Mapping strategies for

gestural and adaptive control of digital audio effects, Journal of New Music

Research 35(1):71–93, 2006

[195] Vigliensoni, G. and Wanderley, M.M. Soundcatcher: Explorations in Audio-

Looping and Time-Freezing using an Open-Air Gestural Controller, ICMC

2010

[196] http://vimeo.com/29517018, accessed April 2014

[197] http://vimeo.com/30976072, accessed April 2014

[198] http://vimeo.com/1338613, accessed April 2014

[199] http://www.vintagesynth.com/casio/vl1.php, accessed April 2014

http://www.textura.org/archives/articles/dronesarticle.htm
http://hexler.net/software/touchosc
http://www.tuio.org/
https://code.google.com/p/tuiopad/
https://code.google.com/p/tuiodroid/
http://compmus.ime.usp.br/ubimus/en
http://www.uusikaupunki.fi/~patalus/new_stuff/Dynacord%20Rhythm%20Stick/Dynacord%20Rhythm%20Stick%20manual.pdf
http://www.uusikaupunki.fi/~patalus/new_stuff/Dynacord%20Rhythm%20Stick/Dynacord%20Rhythm%20Stick%20manual.pdf
http://www.neyrinck.com/en/products/v-control-pro
http://vimeo.com/29517018
http://vimeo.com/30976072
http://vimeo.com/1338613
http://www.vintagesynth.com/casio/vl1.php

220

[200] Waisvisz, M. The Hands: A set of remote MIDI controllers, ICMC, 1985

[201] Wait, B. Guitar Synth and MIDI, H. Leonard Books, 1988

[202] Wanderley, M. M. and Orio, N. Evaluation of Input Devices for Musical

Expression: Borrowing Tools from HCI. Computer Music Journal, 26(3):62-

76, 2002

[203] Wanderley, M.M. and Depalle, P. Gestural control of sound synthesis.

Proceedings of the IEEE, Special Issue on Engineering and Music—

Supervisory Control and Auditory Communication, 92(4), 2004

[204] Wang, G. and Cook, P. On-the-fly programming: Using code as an expressive

musical instrument, NIME, 2004

[205] Weisser, S. and Quanten, M. Rethinking Musical Instrument Classification:

Towards a Modular Approach to the Hornbostel-Sachs System, Yearbook for

traditional music , Vol. 43, pp. 122-146, 2011

[206] Wessel, D. An enactive approach to computer music performance. In

Orlarey, Y. (ed.) Le Feedback dans la Creation Musical, pp. 93–98, Lyon,

France: Studio Gramme, 2006

[207] http://cnmat.berkeley.edu/user/david_wessel/blog, accessed April 2014

[208] http://www.wiigee.org/index.html, accessed April 2014

[209] Willoughby, G. Purebasic: A beginner’s guide to computer programming.

http://www.purearea.net/pb/download/PureBasicBook.pdf, 2006, accessed

April 2014

[210] Wobbrock, J.O., Wilson, A.D. and Li, Y. Gestures without libraries, toolkits

or training: A $1 recognizer for user interface prototypes. UIST, 2007

http://cnmat.berkeley.edu/user/david_wessel/blog
http://www.wiigee.org/index.html
http://www.purearea.net/pb/download/PureBasicBook.pdf

221

[211] Wong, E., Yuen, W. and Choy, C. Designing Wii Controller - A Powerful

Musical Instrument In An Interactive Music Performance System, MoMM,

2008

[212] http://www.xbox.com/kinect/, accessed April 2014

[213] Xia, X., Irani, P. and Wang, J. Evaluation of Guiard’s Theory of Bimanual

Control for Navigation and Selection, EHAWC, 2007

[214] http://www.youtube.com/watch?v=1t3fk4QPlD4, accessed April 2014

[215] http://youtu.be/yw3Gs3tx8xo, accessed April 2014

[216] http://www.youtube.com/watch?v=apqF40rf5FY, accessed April 2014

[217] http://youtu.be/umsO-KLjRX8, accessed April 2014

[218] http://youtu.be/WyNDWZhYZ3U, accessed April 2014

[219] http://youtu.be/CYv5jqHMe5c, accessed April 2014

[220] http://www.youtube.com/watch?v=aulbMkOLqKg, accessed April 2014

[221] http://www.youtube.com/watch?v=PwdWfPxpq8g, accessed April 2014

[222] http://www.youtube.com/watch?v=WVDw7uPnfa8, accessed April 2014

[223] Zadel, M. and Scavone, G. Laptop Performance: Techniques, Tools, and a

New Interface Design, ICMC, 2006

[224] Zbyszynski, M., Wright, M., Momeni, A. and Cullen, D. Ten years of tablet

musical interfaces at CNMAT, NIME, 2007

[225] Zbyszynski, M. An Elementary Method for Tablet, NIME, 2008

[226] http://www.zendrum.com/, accessed April 2014

[227] http://cycling74.com/products/max/, accessed April 2014

[228] http://www.nime.org/, accessed April 2014

[229] http://puredata.info/, accessed April 2014

[230] http://scratchpad.wikia.com/wiki/P5_Glove:Musical, accessed April 2014

http://www.xbox.com/kinect/
http://www.youtube.com/watch?v=1t3fk4QPlD4
http://youtu.be/yw3Gs3tx8xo
http://www.youtube.com/watch?v=apqF40rf5FY
http://youtu.be/umsO-KLjRX8
http://youtu.be/WyNDWZhYZ3U
http://youtu.be/CYv5jqHMe5c
http://www.youtube.com/watch?v=aulbMkOLqKg
http://www.youtube.com/watch?v=PwdWfPxpq8g
http://www.youtube.com/watch?v=WVDw7uPnfa8
http://www.zendrum.com/
http://cycling74.com/products/max/
http://www.nime.org/
http://puredata.info/
http://scratchpad.wikia.com/wiki/P5_Glove:Musical

222

[231] http://supercollider.sourceforge.net/, accessed April 2014

[232] Rasmussen, J. Information Processing and Human-Machine

Interaction: An Approach to Cognitive Engineering, Elsevier

Science Inc., New York, NY, USA, 1986.

[233] Wanderley, M. Performer-Instrument Interaction: Applications to Gestural

Control of Sound Synthesis, Ph.D. Thesis, Université Pierre et Marie Curie,

Paris VI, 2001.

http://supercollider.sourceforge.net/

223

Appendix A: Oscar program template

<CsoundSynthesizer>

/*

Oscar program template

1st of April 2014

*/

<CsOptions>

-odac -dm0 -+rtmidi=null -+rtaudio=null -+msg_color=0 -

M0

</CsOptions>

<CsInstruments>

sr = 44100

ksmps = 32

nchnls = 2

0dbfs = 1

/* GLOBAL SETUP */

; Resource path

gSresourcePath chnexport "resourcePath", 1

; Accelerometer variables

gkaccX init 0

gkaccY init 0

gkaccZ init 0

; Global reverb channel

gareverbL init 0

gareverbR init 0

; Master output channel

gamasterL init 0

gamasterR init 0

; UDO for Touch events

opcode Touch, iiiiiikkkkk, iiiiii p4, p5, p6, p7, p8, p9

xin

224

itouchID = p4

; Dynamically-generated channel names

S_x sprintf "touch.%d.x", itouchID

S_y sprintf "touch.%d.y", itouchID

S_zone sprintf "touch.%d.zone", itouchID

S_zoneX sprintf "touch.%d.zoneX", itouchID

S_zoneY sprintf "touch.%d.zoneY", itouchID

; K-rate variables for touch

kx chnget S_x

ky chnget S_y

kzone chnget S_zone

kzoneX chnget S_zoneX

kzoneY chnget S_zoneY

xout p4, p5, p6, p7, p8, p9, kx, ky, kzone, kzoneX,

kzoneY

endop

; UDO for Cluster events

opcode Cluster, iiiiiiikkkkkkkkkkk, iiiiiii p4, p5, p6,

p7, p8, p9, p10 xin

iclusterID = p4

; Dynamically-generated channel names

S_x sprintf "cluster.%d.x", iclusterID

S_y sprintf "cluster.%d.y", iclusterID

S_zone sprintf "cluster.%d.zone", iclusterID

S_zoneX sprintf "cluster.%d.zoneX", iclusterID

S_zoneY sprintf "cluster.%d.zoneY", iclusterID

S_numTouches sprintf "cluster.%d.numTouches", iclusterID

S_size sprintf "cluster.%d.size", iclusterID

S_direction sprintf "cluster.%d.direction", iclusterID

S_velocity sprintf "cluster.%d.velocity", iclusterID

S_isHeld sprintf "cluster.%d.isHeld", iclusterID

S_isZooming sprintf "cluster.%d.isZooming", iclusterID

; K-rate variables for cluster

Kx chnget S_x

ky chnget S_y

kzone chnget S_zone

kzoneX chnget S_zoneX

kzoneY chnget S_zoneY

knumTouches chnget S_numTouches

225

ksize chnget S_size

kdir chnget S_direction

kvel chnget S_velocity

kisHeld chnget S_isHeld

kisZooming chnget S_isZooming

xout p4, p5, p6, p7, p8, p9, p10, kx, ky, kzone, kzoneX,

kzoneY, knumTouches, ksize, kdir, kvel, kisHeld,

kisZooming

endop

instr 1

/* ---TOUCH---

Score format: i1.N 0 -1 N x y zone zoneX zoneY

Each individual touch generates a new instance of this

instrument, which is killed upon touch removal. */

; Touch properties

itouchID, ix, iy, izone, izonex,izoney,kx, ky, kzone,

kzoneX, kzoneY Touch p4, p5, p6, p7, p8, p9

;-----Add synths here-----;

; Master output

; gamasterL = gamasterL +

; gamasterR = gamasterR +

; Reverb send

; gareverbL = gareverbL +

; gareverbR = gareverbR +

endin

instr 2

/* ---CLUSTER---

Score format:i2.N 0 -1 N x y zone zoneX zoneY numTouches

Touches arriving within a certain distance of one

another are grouped into a cluster. Each cluster has a

set of shared parameters (number of touches, size, etc.)

There can only be a maximum of 2 clusters present,

intended to be used for left and right-hand. Clusters

die when all of their touches are removed. */

; Cluster properties

226

iclusterID, ix, iy, izone, izonex,izoney,

inumTouches,kx, ky, kzone, kzoneX, kzoneY, knumTouches,

ksize, kdir, kvel, kisHeld, kisZooming Cluster p4, p5,

p6, p7, p8, p9, p10

;-----Add synths here-----;

; Master output

; gamasterL = gamasterL +

; gamasterR = gamasterR +

; Reverb send

; gareverbL = gareverbL +

; gareverbR = gareverbR +

endin

instr tap

/* ---TAP---

Score format: i "tap" 0 0.05 x y zone zoneX zoneY

numTouches

When a group of touches hits and leaves the surface

quickly, without moving far, a tap event is triggered.

*/

; Tap properties

ix = p4

iy = p5

izone = p6

izoneX = p7

izoneY = p8

inumTouches = p9

;-----Add synths here-----;

; Master output

; gamasterL = gamasterL +

; gamasterR = gamasterR +

; Reverb send

; gareverbL = gareverbL +

; gareverbR = gareverbR +

endin

instr flick

/* ---FLICK---

227

Score format: i "flick" 0 0.05 x y zone zoneX zoneY

numTouches dir

Identical to a Tap event, except the touches have moved

prior to leaving the surface. Gives direction value. */

; Flick properties

ix = p4

iy = p5

izone = p6

izoneX= p7

izoneY = p8

inumTouches = p9

idir= p10

;-----Add synths here-----;

; Master output

; gamasterL = gamasterL +

endin

instr reverb

/* ---REVERB---

Score format: i "reverb" 0 3600

A basic global reverb instrument. */

aL, aR reverbsc gamasterL*0.05, gamasterR*0.05, 0.9,

10000

outs aL, aR

clear gareverbL, gareverbR

endin

instr master

/* ---MASTER---

Score format: i "master" 0 3600

Master output bus */

aoutL clip gamasterL

aoutR clip gamasterR

 outs aoutL, aoutR

 clear gamasterL, gamasterR

endin

instr accel

; Accelerometer update instrument

228

gkaccX chnget "accelX"

gkaccY chnget "accelY"

gkaccZ chnget "accelZ"

; printks "X = %f, Y = %f, Z = %f\\n", 0.25, gkaccX,

gkaccY,gkaccZ

endin

<CsScore>

; Run Csound indefinitely

f 0 6600

; Run reverb instrument

i "reverb" 0 6600

; Run master instrument

i "master" 0 6600

; Run accelerometer instrument

i "accel" 0 6600

e

</CsScore>

</CsoundSynthesizer>

229

Appendix B: CD contents

 T-EMP 29-08-12.mp4

Video recording of T-EMP ensemble performance (Rockheim, 29
th

 August

2012) featuring the loopblender performance interface discussed in Chapter 4

 DroneTilt demo.mp4

Video recording of the author demonstrating the DroneTilt instrument design

from Chapter 6 with Oscar running on a 2
nd

 generation iPad

 OSCAR project folder

XCode project for Oscar application
*

 McGlynn, P. Interaction Design for Digital Musical Instruments.pdf

Digital copy of thesis

*
 Copyright © 2013-2014 Patrick McGlynn & Simon Kenny (Surface Tension Limited). All Rights

reserved. No part of this code may be reproduced or modified without the express consent of Patrick

McGlynn & Simon Kenny.

230

Appendix C: Papers and publications

26/04/2013 Carte blanche: Designing for live performance with a novel

interface

Music Department Postgraduate Conference, NUI Maynooth.

02/08/2012 Spatial Tagging: A Preliminary Study

(with Victor Lazzarini, Damián Keller, Marcelo Soares

Pimenta & Marcelo Queiroz)

2
nd

 Irish Sound, Science & Technology Convocation,

Cork School of Music, Cork.

07/07/2012 Multi-touch gestures for Musical Performance – live

demo, singing bowls

Sonic Arts Forum, School of Music, University of Leeds,

UK

22/05/2012 Recontextualizing the Multi-touch Surface

(with Victor Lazzarini, Gordon Delap & Xiaoyu Chen, NUIM)

12th International Conference on New Interfaces for Musical

Expression, University of Michigan, Ann Arbor, USA.

22/05/2012 Considering Audience’s View Towards an Evaluation

Methodology for Digital Musical Instruments

(with Jerônimo Barbosa, Filipe Calegario, Veronica Teichrieb

& Geber Ramalho)

12
th

 International Conference on New Interfaces for Musical

Expression, University of Michigan, Ann Arbor, USA.

231

04/05/2012 OSCar: A non-visual multi-touch controller

3
rd

 Ubiquitous Music Workshop, Sao Paulo, ES. Brazil.

27/04/2012 Live demonstration/performance of work

International Festival for Innovation in Music Production &

Composition, Leeds College of Music, UK.

20/01/2012 Non-Visual Interfaces for Musical Performance using Multi-

touch

(with Edward Costello, NUIM)

Society for Musicology in Ireland Postgraduate Conference,

DIT Conservatory of Music & Drama, Dublin.

25/11/2011 Expression through Design: Unifying the Creative Tools of the

Electronic Performer

‘Echoes and reflections’ Inaugural Interdisciplinary Seminar,

An Foras Feasa, NUI Maynooth.

02/9/2011 Developing a Method for Multi-touch

2
nd

 Ubuiquitous Music Workshop, Vitória, ES. Brazil.

01/09/2011 Analysing Multi-touch Data for Expressive Musical Control

13
th

 Brazilian Symposium on Computer Music, Vitória, ES.

Brazil.

09/07/2011 Improving the Efficiency of Open Sound Control with

Compressed Address Strings

(with Jari Kleimola, Aalto University, Finland)

8
th

 Sound & Music Computing Conference, Padova, Italy.

25/06/2011 Evaluating the Expressive Potential of New Gestural

Interfaces through Experimental Musical Application

232

Development

9
th

 Annual Society for Musicology in Ireland Conference,

RIAM, Dublin.

07/05/2011 Towards More Effective Mapping Strategies for Digital

Musical Instruments

9
th

 Annual Linux Audio Conference, NUI Maynooth.

13/04/2011 Sound Augmented Vision

Irish National Finals ‘Imagine Cup’, Microsoft, Dublin.

27/01/2011 Motion & Metaphor

Society for Musicology in Ireland Postgraduate Conference,

Queen’s University, Belfast.

14/01/2011 Intelligent Mapping in Digital Musical Instrument Design

Irish Workshop on Music and Audio Signal Processing,

Trinity College, Dublin.

12/07/2010 Sound Sculptures: Exploring Music through Motion

3 Minute Gong Competition, NUI Maynooth.

05/03/2010 Acoustic Intimacy and Electronic Possibility: Exploring the

Expressive Potential of Gesture in Performer-Instrument

Interfaces

Music Department Postgraduate Conference, NUI Maynooth.

