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Abstract 

The thesis aims to elucidate the process of designing interactive systems for musical 

performance that combine software and hardware in an intuitive and elegant fashion. 

The original contribution to knowledge consists of: (1) a critical assessment of recent 

trends in digital musical instrument design, (2) a descriptive model of interaction 

design for the digital musician and (3) a highly customisable multi-touch 

performance system that was designed in accordance with the model. 

Digital musical instruments are composed of a separate control interface 

and a sound generation system that exchange information. When designing the way 

in which a digital musical instrument responds to the actions of a performer, we are 

creating a layer of interactive behaviour that is abstracted from the physical controls. 

Often, the structure of this layer depends heavily upon: 

1. The accepted design conventions of the hardware in use 

2. Established musical systems, acoustic or digital 

3. The physical configuration of the hardware devices and the grouping of 

controls that such configuration suggests 

This thesis proposes an alternate way to approach the design of digital musical 

instrument behaviour – examining the implicit characteristics of its composite 

devices. When we separate the conversational ability of a particular sensor type from 

its hardware body, we can look in a new way at the actual communication tools at 

the heart of the device. We can subsequently combine these separate pieces using a 

series of generic interaction strategies in order to create rich interactive experiences 

that are not immediately obvious or directly inspired by the physical properties of the 

hardware.  
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This research ultimately aims to enhance and clarify the existing toolkit of 

interaction design for the digital musician.  
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“I am standing in a large hall at the sonar festival in Barcelona. On stage is the trio 

of Christian Fennesz, Jim O'Rourke and Peter 'Pita' Rehberg. All three are playing 

laptop computers and the movements of their fingertips on trackpads are projected 

on screens. This assertion of human presence within the improvised evolution of 

their performance - a dense layering of musical samples and digital processing - 

adds to the disorientation of the music created in the moment, with minimal 

physicality and a technology that conceals, rather than reveals. The discomfort of 

hearing it in a large hall, standing up, surrounded by a half-interested crowd that 

mills and chatters, leaves me stranded in a mood of ennui. The music sounds 

wonderful but this is not how I want to hear it.” 

-David Toop, Haunted Weather: Music, Silence and Memory [185] 
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Chapter 1. Introduction 

 

“Making music is a process. How well you relate to your tools has an enormous 

impact on the success of achieving your goals. If you look at the endpoint only and 

ignore the process, you’re depriving yourself of a vital component of the act of 

creation.” 

-Stretta, Making music is process [176] 

 

This thesis proposes a descriptive model for digital musical instrument design that 

focuses upon the individual sensor components of an input device, the data that can 

be derived from their separate and combined behaviours, and the creation of 

interaction schemes based upon that data. It is proposed that this model can reveal 

non-obvious and underused aspects of a physical device. This method is used to 

design a new generic musical controller - Oscar - that reveals fertile and novel 

interaction modalities specific to the multi-touch surface. 

This chapter provides a map of the research project and outlines the evolution 

of its hypotheses throughout the rest of the thesis. There are three main goals: 

 Situate the research within the context of live electronic music 

performance and digital instrument design (1.1). This section 

highlights some of the most fundamental issues at the heart of the 

field and distinguishes the questions being addressed within this text 

from several related, yet separate, topics. 

 Summarise the concepts central to the research and trace their 

development throughout the thesis (1.2). This section defines the 
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central issues under investigation and references the chapters where 

they are discussed. 

 State clearly the original contribution this thesis makes to the field of 

computer music research and identify the future research that it makes 

possible (1.3). 

1.1 Context of research 

The foundation for this entire research project can be summarized by the quote that 

opens this chapter. This remarkable concept has paved the way for unique challenges 

and inventions alike in the field of music composition and performance. It is clear, 

especially from the explosive growth of innovation and publication in this area over 

the past two decades, that the concept of an electronic or digital musical instrument 

has progressed far beyond the idea of simply interpreting the language of acoustic 

musicianship using digital equipment [67]. 

 The design of digital musical instruments is no longer a specialized task for a 

select few who possess arcane equipment and the skills to manipulate it; it has 

become a legitimate, some would say necessary, aspect of the creative process for 

any musician who employs digital technology in their live performances. The 

affordability and flexibility of modern musical interfaces and software coupled with 

the limitless guidance and inspiration of a dedicated online community have all 

helped to dissolve the boundaries between performance and creation for the digital 

musician [67]. 

This research area is multifaceted and richly influenced by a variety of other 

fields – including, but not limited to, music performance, human-computer 

interaction, cognitive psychology, product design, software engineering, interface 



15 

 

design, etc. [78] This thesis draws together aspects of many of these areas of study 

and aims to synthesise their collective influence in a practical manner. 

There are also many sub-categories of research question that are associated 

with the design of digital musical instruments. This thesis is primarily concerned 

with investigating the expressive potential of digital interfaces through non-obvious 

interaction-schemes and design concepts. To ensure a cogent argument throughout 

this work, it is perhaps wise to identify some of the topics which are influential 

(inseparable, in some cases) to this discussion but are definitively not the main topic 

under scrutiny: 

 The classification of digital musical instruments: 

A detailed overview of the musical applications of sensor 

technologies can be found in [120], along with a system of 

classification according to their similarity, or lack thereof, to acoustic 

instruments. An interesting alternative to this, that focuses more upon 

the performer’s relationship to the equipment as opposed to the 

functionality of the equipment itself, is the ITCH system. Both of 

these are described in detail in Chapter 3. 

 The classification of performance gestures: 

There are many interesting studies available on this topic ([127, 95 

and 68] all provide good starting points). A concise summary of 

various schemes of classification can be found in pp5-18 of [120]. 

 Measuring the effectiveness of mapping schemes: 

This is a rich area of study, with plenty of diverse work taking place, 

that is beyond the scope of this thesis. Solid foundations for 

discussion can be found in [69, 70, 120 and 194]. 
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 Types of sensors and microcontrollers 

For an overview of the kind of hardware that is typically used for 

sensing performer input, see the chapters on Sensors &Sensor-to-

Computer Interfaces and Biosignal Interfaces in [110, 120 and 142]. 

A comprehensive summary of more conventional musical controllers 

can be found in [158]. 

 Assessing the suitability of controllers for different tasks 

The section entitled Comparing Gestural Controllers in [120] provides 

a clear introduction to this topic. Further discussion can be found in 

[12, 13, 65, 76 and 202]. 

1.2 Summary of hypotheses  

This section highlights the main points of interest under investigation and identifies 

the section of the thesis where they are discussed: 

 We are operating within an era where the emphasis is firmly upon the 

development of ergonomic and flexible control devices, as opposed to 

standalone systems that adhere to the instrumental paradigm (Chapter 

2) 

 While an analytical language is useful for the design, classification 

and evaluation of digital musical instruments, the most critical aspect 

of a system is the relationship between user and interface that arises 

during performance (Chapter 3) 

 A concise and efficient conceptual toolkit for interaction design, 

compiled especially with the digital musician in mind, has the 

potential to both expedite and enhance the development process. 
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Identifying the optimal strategies for combining various control 

signals can assist the designer in creating more elegant and intuitive 

interactive systems (Chapter 4) 

 The rich expressive capacity of multi-touch interfaces has a tendency 

to be overlooked due to a widespread over-reliance upon graphics-

based interaction paradigms (Chapter 5) 

 Oscar takes an alternative approach to multi-touch music control and 

represents a non-obvious, versatile means to develop and perform 

with interactive audio software on a tablet device. It facilitates the 

creation of multi-modal interfaces and demonstrates the usefulness of 

the research concepts that have been defined in previous chapters 

(Chapter 6) 

1.3 Original contribution of thesis 

The core contributions of this work are: 

 A descriptive model to aid in the design of digital musical instruments 

independent of the idiosyncrasies of specific devices. This model is 

presented as a catalogue of useful conceptual tools that can be applied 

in a wide variety of musical tasks and also provides a comprehensive 

vocabulary to aid potential developers. It comprises two distinct 

sections: 

o A micro-level interaction design method that categorises the 

separate input devices of the digital musical instrument 

according to the kind of data they generate. 
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o A variety of strategies for the interpretation of data generated 

by these input devices. These strategies accommodate 

individual devices, devices combined with each other, and 

abstract controllers such as statistical variables, modes, etc. 

 A critical analysis of touch screen music performance applications. 

This highlights a number of potentially rich control modalities that are 

underused and describes a proof-of-concept project that investigates 

their feasibility (Chapter 5).  

 A customisable and novel approach to music control using multi-

touch surfaces entitled Oscar. This is implemented as an iPad / 

Android application, due for release in late 2014, that embodies many 

of the design principles discussed throughout the thesis. The software 

also demonstrates the value of the descriptive model developed 

throughout Chapter 4 and illustrates how it can be applied to 

maximize the musical potential of the output generated by any piece 

of hardware. Oscar is discussed in detail in Chapter 6. 

The results described in this thesis are derived from intensive practice-based 

research. This project has been undertaken with the explicit goal of producing a set 

of concise, useful and versatile concepts that are universally-applicable by the 

computer music community. The Oscar system is also being prepared for general 

release, subsequent to the completion of this PhD programme, and it will hopefully 

provide a unique solution for musicians who use multi-touch devices in their live 

performances. 

It is intended that this work will facilitate future research in three different 

ways. Firstly, as a practical resource for musicians designing interfaces and/or 
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educators teaching music programming languages – the incremental introduction of 

various interaction building-blocks on a micro level and their subsequent use on a 

macro level would form a useful structure for a class, workshop series or course on 

digital musical instrument design. Secondly, as a starting point for further discussion 

on design – the strategies described within can doubtlessly be adapted, enhanced or 

re-framed in a wide variety of contexts. Finally, Oscar and its supporting 

documentation will be released to the general public as the first entirely 

programmable multi-touch synthesiser app – this will hopefully lead to a wide 

selection of musicians developing interesting performance techniques using the app 

and further advance our collective understanding of good practice in multi-touch 

musical interface design.  

To summarise – this research attempts to enhance and clarify the existing 

vocabulary for interaction design for digital musicians. Future work at post-doctoral 

level will use Oscar to investigate a variety of new approaches to live electronic 

performance and improvisation.  
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Chapter 2. A century of electronic musical controllers 

 

“If the process of creating electronic music produces few fine violinists, it 

nevertheless engenders a new awareness of the nature of sound and our responses to 

it. In each new experiment, the dynamic between life and its musical reflection is 

held up to scrutiny…music with new boundaries makes us hear ourselves anew.” 

-W.A. Mathieu, The Musical Life: Reflections on what it is [112] 

 

This chapter proposes that the most influential changes in electronic music 

performance technique have been prompted, not by technological progress (as is 

commonly assumed), but by innovations in design approach. This is supported by a 

selective catalogue of important developments in electronic musical performance 

with a particular emphasis placed upon instruments that feature novel control 

methods and/or interfaces. Informed by this survey, the chapter concludes with a 

discussion of the relationship between contemporary electronic musicians and their 

equipment. 

Note that the purpose of this chapter is not to provide an exhaustive list of 

developments in this field (abundant resources are available in [32, 120, 

NIME.com]). This chapter aims to contextualise the current state of affairs - the 

controller era - where the emphasis is very much upon developing ergonomic and 

flexible control surfaces, as opposed to standalone systems that follow the 

instrumental metaphor (see 3.1 in [144]). 

The goal is not to give an accurate commercial or musical history, but to 

highlight examples of innovative design or shifts in thinking with regard to the role 
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of the performer in a live electronic music performance scenario. These examples 

reveal a tendency towards intelligent repurposing of existing technology, as opposed 

to entirely new systems created specifically for musical expression. 

The following sections categorise electronic instruments in relation to their 

primary means of control. These categories serve to highlight the most influential 

developments with regard to a particular input method. However, many of the 

technologies featured could easily be situated in several categories at once – 

particularly when it comes to the later 20
th

 Century designs. 

2.1 Keyboard based instruments 

2.1.1 The Musical Telegraph 

The Musical Telegraph was invented by Elisha Gray in 1874 [47]. It consisted of a 

number of oscillating steel rods and transmitted sound via a telephone line. Later 

models featured a built-in loudspeaker. The tones were controlled by a two-octave 

piano-style keyboard – a trend which still prevails in synthesiser design over a 

century later. 

2.1.2 Teleharmonium 

Work began on the Teleharmonium in 1898 [26]. Its creator, Thaddeus Cahill, 

envisaged an electronic musical synthesiser that would broadcast music via 

telephone lines to public spaces (restaurants, bars, etc.) and private homes alike. The 

components for this huge device weighed over 200 tons – both installation and 

maintenance were labour-intensive processes. It featured a complex series of 

controls that centred upon a touch-sensitive piano keyboard. 
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2.1.3 Optophonic piano 

Invented in 1916 by Futurist painter Vladimir Baranoff Rossiné, the Optophonic 

piano [11] projected a selection of revolving patterns onto a wall or ceiling using a 

system of disks, filters and lenses. While it generated no sound, it was conceived as a 

live performance tool that might be used to accompany a musical performance – a 

clear forerunner of the modern practice of generating live visuals in response to 

electronic music (practitioners are often referred-to as VJs or ‘visual-jockeys’) 

2.1.4 Sphaerophone 

The Sphaerophone [3] was an expansion of Jörg Mager’s Electrophon and 

Kurbelsphäraphon instruments (see 2.2). Dispensing with the handle mechanisms, 

the controls featured two small keyboards that could be operated simultaneously, 

making the Sphaerophone a duophonic instrument. 

2.1.5 Hammond organ  

Laurens Hammond completed the first design of what would become one of the most 

enduring and distinctive electronic instruments in April 1935 [32]. The Hammond 

Organ built upon many of the innovations of the Teleharmonium – with stable 

intonation and a unique system of timbre control that used drawbars for additive 

synthesis. Pedal boards and multiple rows of keys, inspired by conventional organs, 

are common to most instruments inspired by the Hammond. 

2.1.6 Electronic Sackbut  

Hugh Le Caine built the world’s first voltage-controlled synthesizer between 1945 

and 1948 [66]. Le Caine had particular ideas about the use of force-sensitive keys for 

the simultaneous control of volume, pitch and timbre. However, the timbre controls 
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became more detailed and were designed to be operated by the left hand using a 

selection of controls separate to the main piano keyboard. These controls allowed the 

performer to adjust the waveforms and formants of the output. The practice of 

playing keyboard melodies with one hand while adjusting peripheral controls with 

the other has become an enduring control technique that is built-into and encouraged 

by many contemporary keyboard synthesisers. 

2.1.7 Mellotron 

Produced from 1963 to 1986, the Mellotron was the forerunner of the modern digital 

sample-based keyboard [160]. Each key triggered a unique strip of magnetic tape for 

the appropriate pitch, with moveable tape heads permitting the selection and 

blending of different timbres. 

2.1.8 Moog modular 

The first production model of Robert Moog’s modular synthesiser design was 

released in 1967. The innovative approach of designing individual modules 

dedicated to specific signal processing tasks, coupled with the musician-friendly and 

jargon-free interfaces, rapidly established Moog’s influence upon the music world. 

The inclusion of a touch-sensitive ribbon controller, to complement the standard 

piano key layout, became a recurrent theme in many of Moog’s designs [75]. 

2.1.9 Optigan  

The Optigan was an unusual novelty instrument – a keyboard controlled optical 

sampler released in 1971 that read a selection of loops from LP-sized discs [63]. 

Various discs were sold featuring different samples from a variety of genres and 

musical styles. In addition to the main instrumental sounds that were controlled via 
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the keyboard interface (with a different loop for each key, analogous to the 

Mellotron), there were a series of rhythms and sound effects that were triggered via a 

small matrix of buttons next to the keys. 

2.1.10 Synclavier 

The first prototype of the Synclavier was developed in 1975 and the basic design 

continued to advance and improve throughout the 70s and 80s [109]. A highly-

influential digital sampling workstation, it was used extensively by composers such 

as Frank Zappa, Chick Corea and Joel Chadabe. The powerful FM synthesis 

capabilities were complemented by a user-friendly interface that was designed 

especially to appeal to the creative process of the working musician, not just the 

academic research institutes central to its creation. The use of buttons and a large 

control wheel for editing values was celebrated as an accessible alternative to 

patching and algorithms. 

2.1.11 ADS 100  

The Advanced Digital Synthesizer was a high-end analogue device released in 1978 

[192]. It featured a dual keyboard design that was microtonally tuneable in addition 

to a video display for envelopes and disk drive. Only a small number of these 

synthesisers and their descendants were made, with a retail price of tens of thousands 

of dollars. 

2.1.12 EDP wasp  

The Wasp was a budget monosynth released in 1978 that had a 2-octave keyboard 

with non-moving keys that responded to electro-static touch [192]. Its portability, 

low cost and quirky design ensured its popularity and later models such as the Wasp 
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Deluxe and the Wasp Special featured real keys. A modified ‘keytar’ Wasp was also 

produced by EDP in the early 80s. 

2.1.13 Fairlight CMI 

The Computer Music Instrument family were a series of powerful 

sampling/sequencing workstations produced from 1979 to 1985. Aside from the 

advanced sample manipulation tools built into the software, the CMIs were equipped 

with a variety of input devices including pitch and modulation wheels, QWERTY 

keyboard and a graphics tablet for drawing custom waveforms.[158] 

2.1.14 Syntar 

Created in 1979 by George Mattson, the Syntar was a monophonic performance 

synthesizer designed to be worn like a guitar in order to free up the musician from 

behind the keyboard [192]. The neck control featured nine spring-loaded continuous 

controllers and three switches that allowed the user to perform pitch bends, filter 

sweeps, modulation and other timbre-shaping effects. These controls in particular 

allowed experienced players to develop a very smooth and expressive lead style 

2.1.15 Roland SH-101 

Roland’s 1980 SH-101 was a monophonic bass synthesizer that allowed the 

performer to alter the VCF, pitch and LFO from the pitch bend control [192]. An 

optional hand grip controller fitted onto the side of the casing to facilitate keytar-

style playing using a shoulder strap and featured an assignable button and 

modulation wheel.  
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2.1.16 Yamaha DX7 

Released in 1983, the Yamaha DX7 became massively popular as the first affordable 

digital synthesizer [165]. Its distinctive FM synthesis sounds can be heard in many of 

the most influential recordings of the 1980s. Some interesting design choices are also 

worth taking note of – it was one of the first commercial synthesizers to have a full 

set of MIDI ports and also featured a breath controller input. The lack of a familiar 

interface of dials (programming was performed using a set of buttons, an LCD 

screen and a single slider) was a barrier to learning how to customise patches for 

many users. However, Yamaha would later release a range of expansion cartridges to 

cater for a range of different sounds and styles. 

2.2 Buttons and dials 

2.2.1 Electrophon & Kurbelsphäraphon 

The Electrophon was developed by Jörg Mager in 1921 for the performance of 

microtonal music. The performer moves a handle across a semi-circular dial to 

control a continuous pitch; there was no keyboard control. A later modification, 

named the Kurbelsphäraphon, featured two switchable tuning handles and a double-

pedal mechanism to control volume. [43] 

2.2.2 Dynaphone 

The Dynaphone was a portable monophonic instrument invented by René Bertrand 

in 1927 with the support of his friend and collaborator, the composer Edgard Varèse 

[30]. Like the earlier inventions of Mager, the Dynaphone was operated without a 

keyboard using a dial. Additional buttons and stops allowed the performer to alter 
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the timbre and volume of the output – foreshadowing the multi-controller approaches 

of the latter half of the 20
th

 century.  

2.2.3 Voder speech synthesizer 

Homer Dudley’s 1939 invention was the first device capable of generating human-

like speech in realtime [53]. The Voder was operated using a combination of 

specially-designed keyboards, a wrist bar and a foot pedal. The thirteen keys provide 

access to a selection of vowel and consonant sounds, the wrist bar alternates between 

a buzz tone and a hissing noise (for vowels and sibilants, respectively) and the foot 

pedal controls the intonation. Live demonstrations of the Voder were given by expert 

operaters, who could clearly hold conversations and even perform simple tunes using 

the device. 

2.2.4 Electronium Scott 

The Electronium-Scott, created by Raymond Scott during the 50s, was an 

instantaneous composition machine that was operated entirely via a series of buttons, 

patch leads and dials [63]. It had no keyboard controls and is considered to be the 

first ‘self-composing’ electronic instrument, using randomness and algorithms to 

spontaneously generate music – the precursor of automation and generative 

techniques that would form such an important part of live electronic music in the 

digital age. 

2.2.5 Wurlitzer Side Man 

The Side Man was released in 1959 as a percussive accompaniment tool for 

Wurlitzer’s range of organs [164]. It is the first drum machine to use electronically-

generated drum sounds. As well as providing a slider to change the tempo of the pre-
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arranged beats, the Side Man featured 10 separate buttons which allow the user to 

trigger individual drum sounds manually. 

2.2.6 Roland TR-808 

The 808 Rhythm Composer has an instantly-recognisable sound and visual layout – 

the ubiquitous drum machine of the 80s and a vital tool for hip-hop and electronic 

producers of the decade and beyond [192]. The simple, unambiguous sequencer 

layout has been adopted many times in both hardware and software drum machine 

controls.  

2.2.7 Linn LM-1 

Roger Linn’s classic drum machine used sampled sounds, in contrast to the analog 

synthesis techniques used by the 808. It was followed in 1982 by the LinnDrum 

which boasted an improved layout, more samples, live triggering capabilities and the 

capacity for expanding the onboard samples using upgrade chips [158]. 

2.2.8 Dynachord Rhythm Stick 

Another MIDI controller that is designed to be held like a guitar, the Rhythm Stick 

(later renamed to The Jamma) was invented by Pete Jones specifically for the live 

performance of electronic or sampled drum sounds [191]. An intuitive strumming 

motion and clever fretboard-style design made it possible for performers to develop 

quite an individual style with the instrument. 

2.2.9 Akai MPC60 

Designed by Roger Linn and released in 1988, the MPC60 was an integrated drum 

machine, sequencer and sampling workstation that became very popular in 

rap/R&B/hip-hop genres [109]. The drum pads, featuring aftertouch and velocity 
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sensitivity, are still regarded as some of the most ergonomic and highly expressive 

controllers found in a synthesizer. 

2.2.10 Axis 64 

Peter Davies’ alternative keyboard controller utilises an isomorphic layout based 

upon the Harmonic Table – replacing the standard manual keyboard design with a 

honeycomb lattice of hexagonal keys [36]. Standard assignable potentiometers and 

modulation/pitch bend wheels are also provided. The note assignments of the 

keyboard itself are highly-customisable and particularly well-suited to alternate 

tunings, microtonal music and strange keyboard layouts. 

2.2.11 Jammer 

Invented by Jim Plamondon in 2003, the Jammer is a style of musical interface that 

is comprised of one (or more) isomorphic keyboard devices and set of thumb-

operated expressive controls, similar to those found in contemporary videogame 

controllers [6]. Jammer-style keyboards utilise the Wicki-Hayden pitch layout which 

allows players to perform a large variety of scales and patterns quickly and with 

minimal hand movement. The thumb sticks provide an ergonomic means to control 

further expressive parameters without compromising finger dexterity. 

2.2.12 Monome 

The Monome was responsible for igniting a global interest in minimalist generic 

music controllers [124]. Released in 2006, it consists of a matrix of plain backlit 

buttons in a wooden casing with a USB outlet. Its abstract appearance and flexibility 

prompted a growing community of enthusiastic users to write and share software for 

using the simple device for a huge variety of musical tasks – from the obvious step-
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sequencing and pattern writing, to generative systems based upon cellular automata. 

The Novation Launchpad controller, originally designed for use with Ableton Live, 

has become a popular alternative for similar interface tasks due to its ready 

availability (Monome units are produced in small runs and difficult to come by) and 

significantly lower price [2]. 

2.2.13 Samchillian 

The full name of this unique instrument design is ‘Samchillian Tip Tip 

Tip Cheeepeeeee’ – a novel melodic lead instrument invented by Leon Gruenbaum. 

The physical layout of the Samchillian is a standard QWERTY computer keyboard, 

but the means of pitch selection is unique to the instrument. Rather than each key 

triggering its own pre-assigned pitch or sound, the Samchillian layout assigns 

various positive and negative interval types to each key (referred to as a ‘relativistic’ 

keyboard [56]). This facilitates rapid, pattern-based improvisations while making 

pre-composed melody lines of any reasonable complexity quite difficult to perform 

indeed. Nevertheless, the unique properties of the instrument make it a most 

interesting example of the expressive potential of repurposed non-musical hardware. 

2.2.14 Maschine 

Maschine is a combination of music production and performance software and a 

complementary hardware controller that offers the immediacy and physicality of a 

hardware sampler with the added flexibility and depth of software sampling [130]. 

The device itself features a 4x4 matrix of multi-coloured velocity sensitive buttons 

alongside a series of buttons, endless potentiometers and an endless rotary encoder. 

Maschine has a well-supported and large user community and has become a popular 

alternative to Ableton Live for live sample-based performance using controllers. 
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2.2.15 Arc 

The Arc is a high-quality minimalist controller manufactured by Monome and 

originally released in 2011 [89]. The continuous equivalent of the Monome grid 

controllers, the Arc consists of two large endless rotary encoders (with push-button 

functionality) surrounded by a strip of LEDs. 

2.2.16 Tenori-on 

Toshio Iwai, Japanese multimedia artist, designed this distinctive grid-based 

performance tool which was released by Yamaha in 2007 [183]. Iwai explicitly 

discussed his goal of reuniting the concepts of form and functionality in the age of 

digital instruments, and the aesthetic qualities of the Tenori-on (frame, LED 

patterns) are integral to the operation of the device itself. The high price was 

prohibitive for many musicians, prompting the eventual release of a slightly cheaper 

variant (TRN-O) and a mobile app (TNR-i) [182].  

2.2.17 Zendrum 

The Zendrum is a MIDI controller designed specifically for performing rhythmic and 

percussive material in a live context [226]. The original design was based upon the 

Drumitar, which was invented by the musician and composer Future Man. Zendrum 

is distinct from other performance sampler style controllers for a number of reasons 

– its ergonomic design, guitar shaped body and use of piezo microphones to detect 

user input (far more sensitive than the force-sensing resistors found in most pad 

controllers) are all indicative of a serious musician’s tool and the rise of ‘finger 

drumming’ as a complex and respected form of musical expression. 
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2.2.18 Faderfox 

Faderfox describes a line of generic MIDI controllers that feature a selection of 

common input devices in various combinations and spatial arrangements [49]. 

Established by Mathias Fuch in 2004, the range is renowned for its build-quality and 

versatility. While there is nothing especially novel about the sensors themselves, the 

variety of potentiometers, buttons, faders and encoders point strongly towards the 

modern digital musicians’ need for robust and non-prescriptive interfaces.  

2.3 Ribbons and strips 

2.3.1 Ondes Martenot 

The inventor of this instrument, Maurice Martenot, was directly inspired to expand 

upon the potential of the Theremin after meeting its creator in 1923 [26]. There are a 

variety of control devices used in the more advanced forms of the Ondes Martenot – 

including a ‘floating’ keyboard (with moveable keys that controlled vibrato of 

discrete pitches), a ring attached to a wire (manipulated by the user to control a 

continuous pitch, much like the Theremin, and forerunner of modern ‘ribbon’ 

controllers) and a removable drawer on the left of the instrument body featuring 

switches that controlled timbre and an articulation key. This key is perhaps the most 

influential on the playing style itself – whether the performer is playing using the 

keyboard or the ribbon controller, no sound is generated unless the articulation key is 

depressed. The key is also touch sensitive, allowing the performer to control the 

dynamic range and duration of notes simultaneously. This interesting combination of 

control modalities was inspired by Marenot’s own career as a cellist and resulted in 

an expressive instrument that is still used in specialist cases today. 
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2.3.2 Hellertion & Helliophon 

In 1929, Peter Lertes and Bruno Helberger designed one of the first electronic 

instruments to use a fingerboard controller [32]. A conductive strip was pressed by a 

performer, with the horizontal position controlling pitch and the pressure controlling 

volume. Later models featured several strips arranged in a parallel formation to 

facilitate polyphonic playing. In 1936, the Helliophon expanded the range of controls 

to include two piano style keyboards, foot pedals for volume control and a knee lever 

that controlled vibrato. 

2.3.3 Trautonium 

Adolf Trautwein first demonstrated his Trautonium in Berlin in 1930 – an electronic 

instrument controlled by pressing a resistance wire suspended over a metal rail 

[145]. Switches allowed the user to transpose the instrument and change the 

combinations of harmonics in the tone, allowing a flexible control of timbre, while a 

foot pedal changed the output volume. The playing style of the Trautonuim inspired 

the modern ribbon controller. The composer Oskar Sala composed many pieces 

specifically for the Trautonium – most famously the soundtrack to Alfred 

Hitchcock’s 1963 movie The Birds. 

2.3.4 Theremin cello  

The Theremin cello (1930) resembles its acoustic counterpart in shape and size, but 

features a black plastic film fingerboard instead of strings [63]. This allows the 

performer to select a pitch while volume was controlled using a side-mounted lever. 

Two rotary dials built into the body of the instrument itself allowed for timbre 

modifications.  
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2.3.5 Buchla Thunder 

A unique and visually striking controller designed by Donald Buchla in 1991, the 

Thunder is a pure MIDI controller that consists of a selection of finger strips 

distributed across a flat, portable surface [19]. The main strips can sense impact 

velocity, finger position and touch pressure and can also be split into two virtual 

strips each to double up on the number of control channels. The rest of the strips 

sense velocity and pressure, but not position. The Thunder remained very much a 

specialist device, due to its high price tag and complex programming system. 

2.3.6 Swarmatron 

The Swarmatron was released in 2009 and made famous by its use by Trent Reznor 

in the soundtrack to the 2010 film The Social Network [129]. The eight built-in 

oscillators can be tuned and detuned finely using the array of potentiometers, but the 

main feature is the pair of ribbon controllers that can be used to move the overall 

pitch centre independent of the other controls. The ability to simultaneously control 

the relative pitch of all eight oscillators facilitates the creation of dense chordal 

structures and smooth glissandi. 

2.4 Gesture based systems 

2.4.1 Theremin 

The Theremin was invented in 1917 by Leon Theremin [26] and consisted of a 

cabinet with two antennae – a vertical pitch antenna and a looped volume antenna 

protruding from the side of the instrument (although earlier experiments used a foot 

pedal for volume control). The performer controls a monophonic continuous tone 

using the proximity of their hands to the antennae. While difficult to play, given the 
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complete lack of tactile feedback and the resulting need for great physical discipline 

on behalf of the performer, virtuosic performers such as Clara Rockmore and Lydia 

Kavina helped to establish the Theremin as more than just a novelty instrument. The 

Theremin’s bimanual, open-handed control system has had particular resonance in 

recent years for the digital musician, with the advent of portable and affordable 

motion capture systems such as the Kinect and Leap Motion. One of the first 

experiments typically undertaken by digital musicians when working with new 

control devices is to model the behaviour of a Theremin.  

2.4.2 Radio Baton 

Max Matthews developed this unique control system with Bob Boie in the early 

1980s [113]. The instrument uses electric field sensing to track the three-dimensional 

movements of two batons above a sensing board. A number of foot pedals and 

potentiometers could also be attached to the system. Matthews performed and 

lectured with his Radio Baton for many years, demonstrating its usefulness at tasks 

as diverse as triggering a preset series of notes, moving in three-dimensional 

parameter spaces and as a percussion instrument. 

2.4.3 Laser harp 

The Laser Harp is a visually-stunning instrument that was made popular by the 

composer Jean-Michel Jarre in his live shows [175]. There are a variety of different 

techniques that can be used to accomplish the effect of a laser harp, all of which 

depend heavily on the budget and ambient lighting conditions of the performance. 

There are two main approaches to a laser harp design – framed and unframed (also 

known as ‘infinite’) beams. Framed instruments can resemble an acoustic harp 

design and use photoresistors to detect blocking of the beams, whereas unframed 
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instruments employ far more powerful lasers that rely upon the light being reflected 

back for hand detection.  

2.4.4 Buchla Lightning 

The Buchla Lightning controller consisted of two infra-red light emitting wands that 

are waved in front of a remote sensor head in front of the performer [20]. Both 

horizontal and vertical positions are sensed by the Lightning and the wands also 

feature switches for additional control.  

2.4.5 Very Nervous System 

David Rokeby’s Very Nervous System is a good example of a very popular approach 

to musical interaction for art installations, galleries, dance, and other art forms 

featuring camera-based motion tracking instruments [120]. The instrument is 

markedly diffuse, as opposed to other interfaces that are small and focused, and this 

characteristic was frequently exploited in the many pieces that Rokeby composed 

specifically for the system. This immersive contactless style of interface would re-

emerge in popularity thanks to the development of affordable webcams and gestural 

control systems in recent years. 

2.4.6 Wii Remote 

Launched in late 2006, the Nintendo Wii Remote (or Wiimote, as it is often named) 

has become a popular tool for musical experimentation due to its low price, 

portability, ergonomic design and sheer range of sensors [131]. The remote itself 

features 12 digital buttons, an accelerometer, an infrared camera and can be 

expanded to include a gyroscope (via the Wii Remote Plus module). The ‘remote’ 

label is something of a misnomer when the device is isolated from the gaming 
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console it was originally designed for – the unit communicates via Bluetooth and 

therefore does not restrict the user to pointing at any receiving device (with the 

singular exception of the infrared camera which is used with a peripheral sensor bar 

or any source of infrared light). Additional features include a small speaker and four 

LEDs on the body itself and the ability to vibrate. There are a range of accessories 

that can be attached to expand upon these sensors, the most popular of these being 

the Nunchuk – an additional handheld controller that features an analog joystick, two 

trigger buttons and another 3-axis accelerometer. The Wii Remote has been used for 

a wide variety of musical tasks and experiments, with many popular computer music 

languages and software featuring dedicated libraries and features designed to work 

with the controller (see section 7.9.4 for more information). 

2.4.7 Airpiano 

The Airpiano is a control surface developed in 2007 that consists of 8 infrared 

proximity sensors mounted in a flat rectangular frame [4]. These sensors are capable 

of creating up to 24 virtual keys and 8 virtual faders, which are manipulated by the 

performer moving their hands over the device. A total of 40 LEDs provide visual 

feedback to the performer. The Airpiano can also take input from an optional 

footswitch. 

2.4.8 SoundCatcher 

SoundCatcher is a live-looping and sample manipulating tool from 2009 that uses 

two ultrasonic sensors to capture open-air gestures from a performer [195]. It was 

designed primarily with vocalists in mind and can be mounted on a microphone 

stand for live performances. Vibrotactile and visual feedback cues are used to ensure 

that the vocalist remains within the active sensing range and a footswitch provides a 
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further unobtrusive control channel. Typical looping parameters (such as start/end 

points, crossfade size, etc.) can be controlled in realtime by the performer as they 

sing. 

2.4.9 Peacock 

Developed in 2009 as an alternative to wearable and camera-based open handed 

gestural control systems, Peacock consists of a box shaped interface with 35 infrared 

proximity sensors facing upwards towards the performer [122]. The instrument can 

detect three-dimension movements above the surface, without any disruptions from 

ambient lighting conditions, and send the data to a custom PD patch for musical 

output.  

2.5 Wind controllers 

2.5.1 Lyricon 

Invented by Bill Bernardi, the Lyricon was the first commercial wind-controlled 

synthesizer [75]. It paved the way for the Yamaha WX series and Akai’s EWI 

controllers. 

2.5.2 Casio DH range  

From 1986, Casio released a series of breath-controlled synthesizers known as the 

Digital Horn range [143]. The instruments were toy-like, resembling a plastic 

saxophone, but had a number of interesting features that appealed to the more serious 

musician – chiefly, the ability to use external amplification instead of the built-in 

speaker and the inclusion of MIDI out. 
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2.5.3 Yamaha WX range 

Yamaha’s range of wind controllers hit the consumer market in the mid to late 80s 

with a variety of interesting interface features – including a choice of mouthpieces, 

wind and lip control sensors, pitch bend wheel, LED tuning indicators, assignable 

fingerings and MIDI out [120]. 

2.6 Combined controllers 

2.6.1 Composer-Tron 

Osmond Kendall’s 1953 invention was, like Scott’s Electronium, a step towards 

making electronic instruments for the composer as well as the performing musician. 

The unique innovation of the Composer-Tron was its ability to ‘read’ shapes drawn 

upon its surface using a special grease pencil [153]. These shapes could be used to 

represent anything from note envelope shapes to rhythmic passages. The idea of 

using a graphics tablet or pen as a musical performance tool would be revisited later 

in the century, both by Iannis Xenakis’ Unité Polyagogique Informatique CEMAMu 

(UPIC) in 1977 and also by the use of Wacom tablet devices as musical interfaces at 

UC Berkeley’s Center for New Music and Audio Technologies (CNMAT). 

2.6.2 Buchla 

From 1963, Donald Buchla’s early synthesiser designs were intended for the 

performance of experimental music and had some unusual control features – 

including touch and resistance sensitive plates. Synthesisers such as the Multiple 

Arbitrary Function Generator and the Source of Uncertainty allowed users to 

dynamically generate random values for many different parameters. [18] 
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2.6.3 VCS3 

The VCS3 was a unique monosynth with a distinctive appearance that was first 

released in 1969. Despite its portable design, the VCS3 was in fact a modular 

synthesiser which permitted a variety of complex patching and signal routing 

techniques. This was accomplished via a small pin-grid which replaced the more 

cumbersome wired patch bays common to other modular systems at the time. A 

joystick was also used to control modulation effects. Later versions produced in the 

1970s both expanded the system into larger units (Synthi 100) and packaged it in an 

ultra-portable case (Synthi A / Synthi AK) [145]. 

2.6.4 GROOVE system 

The GROOVE (Generated Real-time Output Operations on Voltage-controlled 

Equipment) system was developed by Max Matthews and F. Richard Moore in 1970 

[30]. A highly-adaptable system for music composition and live manipulation of pre-

composed material, the system was able to store the input actions of a user (keyboard 

operation, turning dials, etc.) and use the data selectively to control the variables of 

an analog synthesiser. It represented a large step forward in the development of 

versatile, continuous parameter control, as distinct from event-based control. 

2.6.5 Casio VL-1  

Also known as the VL-Tone, this extremely-simple and portable synthesiser enjoyed 

great popularity throughout its lifespan (1979-1984) [199]. The keys were tiny and 

soft, with no aftertouch, weight or velocity control, but this led to some interesting 

and unexpected uses of the hardware – for example, the built-in speaker was 

commonly cupped with the performer’s hand and used to generate a rudimentary 

filter and/or vibrato effect [222]. 
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2.6.6 Synthaxe 

Synthaxe was a guitar-like MIDI controller that was originally produced in 1986 

[201]. It generated no sound itself, instead sending performance data to an external 

synthesizer module. Two sets of strings, nine keyboard keys for note triggering and 

an assignable tremolo handle made this a powerful controller, but the prohibitive 

cost (c. £10k) prevented any kind of mainstream use. The Synthaxe did, however, 

pave the way for more cost effective guitar-to-MIDI solutions in later years, such as 

those produced by Roland. 

2.6.7 Ztar 

The Ztar range of MIDI controllers are characterised by their guitar-like bodies and 

fretboards – unlike a keytar, there are no keyboard style keys present. Instead, the 

Ztar features separate buttons for each individual fret position and a set of stringlike 

triggers for actuating notes [173]. Newer models feature additional sensors such as 

breath controllers, ribbon controllers and joysticks and the overall design approach 

remains a popular choice for serious guitar synthesizer players. 

2.6.8 You Rock Guitar 

The You Rock Guitar is an affordable dedicated MIDI guitar controller that uses 

‘virtual strings’ on the fretboard as opposed to the buttons common to many similar 

controllers [101]. The pressure-sensitive frets detect finger positions while a 

stringlike device on the body of the guitar detects note on events and velocity. The 

controller also provides a selection of complementary input devices built into the 

body, including a modulation wheel, tremolo arm and ‘damping bar’ to simulate 

string muting. Starr Labs also produces a variety of alternate keyboard layout 

controllers in a similar style. [173] 
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2.6.9 Reactable 

Developed at the Pompeu Fabra University of Barcelona in 2005, the Reactable is a 

unique tangible tabletop instrument that uses camera-sensing of unique symbols 

(fiducial markers) mounted on the bottom of plastic blocks to create and modify 

digital modular synthesizer setups in real time [77]. The Reactable is a visually-

striking instrument that is collaborative, intuitive and employs an unambiguous 

feedback system with no hidden values or confusing menus – making it ideal for 

galleries, art installations and interactive performances with nonexpert users. The 

Tangible User Interface Objects protocol (TUIO) [187]
 
and computer vision software 

ReacTIVision that were both developed as part of the Reactable project have become 

important tools in their own right, with ports and libraries available for most 

operating systems and programming languages. A mobile software emulation of the 

Reactable was released in 2010 [150]. 

2.6.10 Silent drum 

The Silent Drum, developed in 2006 by Jaime Oliver and Matthew Jenkins, was 

originally designed as a percussion controller [137]. However an alternative 

approach to using the device without sticks or mallets emerged – the performer 

manipulates the drum membrane with their hands in order to control the output. This 

Silent Drum has been made open source and has won numerous prestigious design 

awards. 

2.6.11 T-Stick 

The T-Stick instrument has been developed and refined by Joseph Malloch since 

2005 [108]. It is a gestural controller comprising numerous sensors installed within a 

large tube, which the performer manipulates during performance. Touches, taps, 
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twists, squeezes and shakes are amongst the variety of possible gestures that can be 

detected by the device, which has been used extensively to perform experimental 

pieces written especially for the instrument. 

2.6.12 Eigenharp 

The Eigenharp is a high-end controller designed by John Lambert and launched in 

2009 [44]. The instrument encompasses several different types of control surface in 

an ergonomic stick-like shape – these include a matrix of velocity sensitive keys 

(that also act as joysticks, with 6 possible directions of movement), a wind controller 

style mouthpiece, a number of ribbon controllers, and percussion keys on the larger 

models. 

2.6.13 Orbit 

The Numark Orbit is a handheld remote MIDI controller whose central feature is a 

dual-axis accelerometer [135]. In addition to the X and Y data, the controller features 

a large central jogwheel and 16 assignable buttons split into 4 separate banks. An 

affordable price and striking tech demos have made the Orbit quite a popular 

interface during its short lifespan. 

2.7 Two-dimensional surfaces 

A more detailed discussion of two-dimensional surfaces for music control can be 

found in Chapter 6. This section lists a number of devices not explicitly covered 

elsewhere in the thesis. 

2.7.1 Misa Kitara 

The Misa Kitara was demonstrated in videos online from 2011 – an electronic guitar 

controller and synthesizer with 24 button frets and an 8-inch touchscreen in place of 
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the strings on the body itself [121]. A wide variety of synthesizer patches are 

provided, which can be customised by the user, and played via various multi-touch 

gestures upon the screen while the other hand selects notes and chords. The device 

was popularised by Chris Wolstenholme from Muse, who uses it in lieu of a bass 

guitar in a number of their songs (most notably, the 2012 single ‘Madness’) 

2.7.2 Madrona Soundplane 

The Soundplane, released in 2011, is a continuous force-sensing membrane set in a 

rectangular walnut shell [105]. Multiple touches are sensed in three dimensions – 

horizontal, vertical and pressure values are all available for individual touches. The 

playing surface can be set up to emulate a fretted string instrument, divided into an 

arbitrary number of zones, or used in a continuous style analogous to a fretless 

stringed instrument.  

2.7.3 Lemur 

The Lemur was first demonstrated in 2004 and released worldwide the following 

year to great acclaim [74]. A dedicated multi-touch music controller, the Lemur 

boasted a sturdy metal casing, sleek aesthetic and highly-customisable interface that 

appealed to professional electronic musicians. The virtual canvas of faders, buttons 

and other interactive graphical objects could be changed to suit a variety of musical 

tasks, and the addition of a few hardware buttons ensured that changing layouts 

during performance was a simple and efficient task. The Lemur was discontinued in 

light of the competition from tablet applications in later years, but has subsequently 

been released as an app for iPad and Android devices [99].  
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2.7.4 Haken Continuum  

The Continuum was developed by Lippold Haken and released commercially in 

2002 [58]. A large fingerboard controller with a distinctive red playing surface, the 

Continuum features three dimensions of control – horizontal position, vertical 

position and pressure. The standard style of setup uses the x-axis for pitch selection 

(analogous to a manual keyboard layout), y-axis for timbre-shifting effects and the z-

axis or pressure to determine amplitude. Jordan Rudess, keyboard player for the band 

Dream Theatre, is an active user and promoter of the instrument.  

2.7.5 SLABS 

SLABS consists of two arrays of pressure sensitive touch pads (comprising 24 and 

32 pads) designed to be played by separate hands. Each individual pad outputs three 

values – X, Y and pressure – to a series of programs written in Max/MSP. The 

creator of SLABS, David Wessel, composes and performs frequently using the 

instrument [207]. 

2.8 Wearable controllers 

2.8.1 The Hands 

Michael Waisvisz created this unique interface in 1984 in an attempt to fully exploit 

the expressive potential of hand, arm and finger gestures for musical performance 

[200]. Two ergonomically shaped plates were equipped with various switches and 

potentiometers while also measuring the hand-tilt angle (using mercury switches) 

and the distance between both hands (using ultrasound sensing). Apart from the 

physical interface, The Hands system used a selection of Control Signal Processing 

Algorithms to introduce randomness and artificial ‘friction’ with a view to enhancing 
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the expressiveness of the performance. Waisvisz’s work was far-reaching and 

illustrated to many the exciting potential of what he referred to as live composition.  

2.8.2 Lady’s glove 

Sound artist and performer Laetitia Sonami began work on the first version of her 

Lady’s Glove in 1991 – a set of kitchen gloves with Hall effect transducers in the 

fingertips and a magnet on the right hand allowing varying voltages to be sent to a 

MIDI convertor and used to control synthesizers. Later versions added 

microswitches, a pressure pad, resistive strips, wrist-mounted accelerometers and 

even a miniature microphone. Sonami has performed extensively with her invention, 

and the successive improvements and modifications of her design are indicative of 

the important role of feedback, reflection and refinement for the digital musician. 

Sonami describes her creation: 

The intention in building such a glove was to allow movement without 

spatial reference, and most importantly to allow for multiple, simultaneous 

controls. The sounds are now "embodied", the controls intuitive, and the 

performance fluid. It has become a fine instrument. [170] 

2.8.3 P5 glove 

The p5 glove was released in 2002 and functioned as a regular mouse as well as a 3D 

controller for a small number of PC and Mac games. Its wide availability and low 

cost have made it a popular option for homebrew musical applications [230]. 

2.8.4 Hot hand 

Initially released in combination with a series of specialist effects pedals in 2006, the 

Source Audio’s Hot Hand is a wireless controller that is strapped onto the users’ 
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hand or wrist and sends MIDI control messages to a remote piece of software or 

hardware [171]. The device contains a three axis accelerometer that can be mapped 

to, for example, cutoff and resonance of a filter. More unusual applications employ 

the device as a gestural compliment to standard electronic performance tools [218]. 

2.9 Communication protocols 

2.9.1 MIDI 

The MIDI (Musical Instrument Digital Interface) standard was introduced in 1983 to 

facilitate communication between different synthesizers that supported the protocol 

[119]. MIDI has had a significant influence upon the development of the commercial 

synthesizer world and has endured for over three decades in various forms. Its initial 

goal, communicating between different pieces of hardware, expanded to include 

sharing of sequences and notation, composition using computers, creating generic 

control devices to control different synthesizer modules, etc. For all of its usefulness, 

MIDI retains a narrow focus upon event driven music creation and discrete pitch 

structures. It was introduced at a time when keyboard interfaces were the norm for 

electronic music control in the commercial sphere and helped to establish the 

arguably-limiting predominance of musical controllers modelled upon the traditional 

piano or organ design. MIDI, despite these shortcomings, is still very much the most 

widely-supported protocol for communication between electronic music software 

and hardware. 

2.9.2 ZIPI 

A (now-defunct) musical protocol that was developed as a collaboration between 

Zeta Music and the Centre for New Music and Audio Technology at the University 
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of California, Berkeley (CNMAT) [111]. ZIPI was a comprehensive musical 

protocol that sought to address the lack of support offered by MIDI in the case of 

non-keyboard instruments. Additional parameters related to sound generation and 

timbre were also proposed (e.g. brightness, roughness, etc.). Despite the efforts of its 

creators to promote it, ZIPI was never adopted by a significant enough number of 

users to ensure its survival. 

2.9.3 OSC 

The Open Sound Control specification, or OSC, was designed to address and surpass 

many of the limitations of the MIDI standard [141]. It uses a system of generic 

message bundles that, unlike MIDI, can contain multiple types of data and are 

identified via a customisable hierarchical system of unique descriptive names. OSC 

data is of a significantly higher resolution than MIDI and can be easily transmitted 

over the internet and wireless networks, as well as physically linked devices, at high 

speed. Its flexibility can be somewhat problematic, due to the infinite variety of 

naming schemes that different users can employ, but it remains the most efficient 

and flexible communication protocol for interactive digital multimedia systems. 

2.10 Real-time software 

2.10.1 Csound 

Csound is an open source, cross-platform music programming language which 

evolved from the MUSIC-N series. Csound has an extremely rich catalogue of unit 

generators (essentially building blocks for synthesis and signal processing 

algorithms) and an active worldwide community that continues to contribute openly 

to its development [33]. 
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2.10.2 Max 

Max is a visual programming language for music and multimedia applications that 

was originally designed by Miller Puckette at IRCAM during the 1980s. Max is 

highly extensible, with a large, ever-growing database of user-generated routines, 

and remains a popular choice for live signal processing, installations and 

performance [227]. 

2.10.3 Pure Data 

Pure Data is an open source visual programming language originally developed by 

Miller Puckette. It has many similarities to Max, most notably its visual patching 

interface, but also features a wide variety of graphical data structures which can be 

employed to generate GUIs, graphic scores, etc. The open nature of the software has 

also led to a large user community that share reusable, modular pieces of code 

(known as patches) that are often usable as standalone programs [229]. 

2.10.4 SuperCollider 

SuperCollider is a relatively new music programming language (originally released 

in 1996 by James McCartney) that is largely used for real-time audio processing and 

algorithmic composition [231]. The environment operates in two parts, scsynth (the 

server) and sclang (the client), that communicate using Open Sound Control. While 

it is freely available on most platforms, users generally prefer Mac or Linux 

operating systems as the Windows development tends to lag behind. 

2.10.5 Music Mouse 

Music Mouse was a piece of software written by Laurie Spiegel in 1985 for the Mac, 

which was later ported to the Commodore Amiga, Atari ST and other popular 
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systems of the era. Essentially a live performance tool, Music Mouse automates 

many aspects of the generation of musical material – with the ability to use preset 

chords, melody and rhythmic patterns, harmony etc. The performer is thus free to 

concentrate on more high-level concerns such as orchestration and articulation. 

Spiegel championed the use of automation and logic to liberate the creativity of the 

user, and proposed that such structures can serve to support, extend, and amplify our 

ability to express and embody the undefinable qualities of aesthetic meaning which 

we are forever trying to capture [172]. 

2.10.6 Ableton Live 

Since its first release in 2001, Ableton Live has changed the way that musicians 

interact with and think about computers in live performance [1]. Live is aesthetically 

and functionally similar to most other Digital Audio Workstations (DAWs), but its 

particular focus upon live sound manipulation and its myriad features for the 

preparation of sequences and samples for performance have made it an indispensable 

tool for a vast number of electronic musicians worldwide. The binary functionality 

of the Arrangement View and Session View is particularly of note – the former 

resembles a typical linear audio/MIDI editing program, while the latter has more in 

common with a hardware sampler or mixing desk and is mostly used for triggering 

of loops, samples and sequences. 

2.11 Discussion 

Reviewing the contents of this chapter, we can infer a series of aphorisms that are 

informed by the trends in electronic music performance tools developed throughout 

the past century. These observations represent a concise way for us to contextualise 

our complex relationship with music performance and technology: 
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1. Powerful tools for the performance of electronic music are not necessarily 

reliant upon new technological innovations 

This statement becomes more apposite as we progress into the latter half of 

the 20
th

 century. Some of the most radically influential and widely-used 

control modalities for the performance of electronic music have been based 

upon a simple repurposing of readily-available hardware. Buttons (Roland 

TR-808, Linn LM-1, Akai MPC60, Monome, Axis 64), cameras (Very 

Nervous System, Kinect), and accelerometers (Wii Remote, Hot Hand, Orbit) 

have all, like the vinyl turntable, been re-appropriated for a wide variety of 

musical tasks. 

2. Cost-effective digital circuitry and high-capacity storage devices led to a 

homogenisation of keyboard-based synthesisers 

Analogue circuitry was used in the 1950s because it was cheap, easy to 

integrate into new systems and well-understood. The same could be said of 

subtractive synthesis and the keyboard interface which still dominates the 

commercial market. The development of cost-effective digital circuitry for 

FM synthesis, coupled with ROM chips that could accommodate large banks 

of samples, led to a surge of interest in FM and sample-based synthesis. Once 

this technology became powerful and popular enough, the distinctions 

between various synthesiser and keyboard manufacturers started to blur and 

break down. This prompted a mass homogenisation of digital music 

workstations in the late 1980s and throughout the 1990s, as manufacturers 

focused upon packing a wide selection of sampled instruments into their 

products.  
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3. The introduction of standard communications protocols for digital musical 

instruments, alongside the widespread availability of personal computing 

systems, has prompted a change in direction 

MIDI has, for all its limitations, been instrumental in the movement towards 

more expressive performance equipment for the digital musician. The 

separation of synthesiser modules and control surfaces in the commercial 

sphere has made the development and acquisition of high-quality controllers 

a priority for performers. While MIDI was at the forefront of a wave of 

keyboard-based controllers, the gradual adoption of OSC seems to have 

enabled a further shift away from single-purpose instrumental designs. 

4. The development of performance control surfaces has been heavily-

influenced by the development of synthesiser hardware 

Early modular systems relied heavily upon patching for synthesis control, 

leading to a predominance of cables and sockets on the front panel of the 

instrument. As the technology developed, common signal flow decisions 

were allocated switches and knobs that began to dominate the control 

surfaces of the late 1970s and early 1980s. The digital technology of the 

1980s led to a much more minimalist style of interface, with multi-function 

buttons and LCD displays becoming commonplace. Again, lowering costs 

and increasing processor power led to the widespread and heavy use of built-

in screens on devices, with more expensive models featuring detailed multi-

menu operating systems. Hardware controls, such as knobs, buttons and 

faders, briefly became ancillary devices. The desire for customisation, 

alongside the rapid rise of the touch screen or tablet computer as a musical 

controller in its own right, has since ushered in a new level of interest in 
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generic, assignable control devices – modern controllers typically feature a 

mixture of knobs, faders, dials and buttons with indeterminate functionality. 

5. The production and/or preparation of musical material has become a more 

integral part of live performance practice 

In the past, a combination of ergonomic concerns, processing speeds and the 

predominance of single-purpose hardware/software tools led to a separation 

of multiple processes common to digital music creation. Composing, 

recording, processing, arranging and playing material were, out of necessity, 

separate activities. The integration of many of these processes into popular 

performance software, such as Ableton Live, has led to a rise in techniques 

such as live sample manipulation, pattern editing and loop-based 

performances. Many musicians using digital technology (particularly in the 

case of looping and sampling) expose their audience to the creative process 

by generating their material entirely on stage. 

6. There has been a significant rise in the popularity of contactless gestural 

sensors 

The use of nonphysical, nonmechanical gestures (see section 3.2.2) for 

musical control was, until quite recently, restricted to very specialised 

contexts due to both the expense of the hardware and the particular ambient 

conditioners necessary for it to function correctly. The emergence of 

affordable and powerful camera-based systems such as the Playstation 

Eyetoy, Microsoft Kinect and the Leap Motion controller has opened up the 

possibilities of contactless gestural music performance to a widespread 

community, whose interest in motion control has already been piqued by 

devices such as the Nintendo Wii Remote. 
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7. Electronic instruments can no longer be easily divided into categories of solo 

or accompaniment instruments – recent designs favour an integrated 

approach 

A wide variety of acoustic instruments from around the world can be 

categorised according to their typical role in a group performance, either as 

solo or accompaniment instruments. Until quite recently, electronic 

instruments often followed this pattern. Drum machines, sequencers, chord or 

pad-based synthesiser patches and samplers could, depending on the context, 

be allocated an accompanying role in relation to more melodically-focused 

devices such as the Theremin or monophonic synthesisers. Modern systems 

can operate equally well in both roles and often permit the performer to 

accompany themselves using layers of pre-arranged material or similar 

automated processes. 

8. We are currently operating within the controller era – where generic 

customisable tools are preferred over single-purpose digital instruments 

The concurrent and complementary roles of the digital musician – as 

composer, sound engineer, producer, programmer and performer – are both 

reflected and enabled by the wide variety of generic control devices that are 

available today. Contemporary electronic musicians are far more likely to be 

found using a laptop and USB control device than a keyboard synthesiser – 

the separation of software and hardware (alongside the variety of generic 

controllers available) allows musicians to choose the precise set of controls 

that best suit their live performance requirements. Today, the ability to 

radically customise a new piece of musical equipment and incorporate it into 

an existing system is not just highly praised, it is expected. 
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2.12 Conclusion 

We have examined a wide selection of influential tools for the performance of 

electronic music from the late 19
th

 century to the present day. While there are several 

strong examples of technological innovation acting as a catalyst for dramatic musical 

invention (Teleharmonium, Theremin, Moog modular, Reactable) there are many 

more instances where a novel, apposite juxtaposition of existing technologies has led 

to the development of radically-experimental instrument designs and performance 

techniques. 

 There is clear evidence of this trend in the popular and new interface designs 

of the past two decades – where some of the most highly respected and coveted 

interfaces (Monome, Arc, Haaken Contiuum, Zendrum) are designed entirely around 

a selection of well-established and relatively simple sensors. Informed by this 

survey, we arrive at a series of design aphorisms that support the concept of a 

controller era. This recent interest in generic controllers is indicative of a worldwide 

community that is beginning to look beyond the facile features of novel controllers 

and take a greater interest in the interactive processes at the heart of digital musical 

instrument design. 
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Chapter 3. Digital musical instrument design 

 

“Perhaps uniquely in the history of the performance of music, we are able to 

separate entirely the production of sound from the means used to control it.” 

-Ross Kirk, in New Digital Musical Instruments: 

Control and Interaction Beyond the Keyboard [120] 

 

This chapter outlines the key concepts of digital musical instrument design – 

discussing the literature, definitions and design conventions of modern musical 

controllers. It contains a comprehensive summary of conceptual models that are 

useful for understanding the current state of the art – including traditional 

organology, control dislocation, the digital musical instrument, Miranda & 

Wanderley’s classification system (hyper/extended instruments, instrument-like 

controllers, alternative controllers, etc.), the controllerist ITCH model (Instrument, 

Transfiguration, Conjuration, Hybrid), various types of mapping schemes (one-to-

many, many-to-one, etc.) and so on. 

This chapter also allocates some space to the philosophical discussion that 

has taken place regarding the difference between a ‘controller’ and an ‘instrument’. 

This, in turn, introduces the importance of considering the performer’s point of view, 

a vital recurring theme throughout the rest of this thesis. We are also introduced to 

the argument concerning the separation between the music and the means by which 

it is performed. The main purpose of this discussion is to map-out the conceptual 

landscape that is explored, in greater detail, throughout subsequent chapters. 
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3.1 Core concepts  

This section introduces the concept of a digital musical instrument and differentiates 

it from both electronic instruments and controllers. The model of control dislocation, 

a vital aspect of any digital musical instrument, is described in detail and the roles of 

its constituent parts are made explicit. 

The term digital musical instrument is used to denote any musical system 

that contains both: 

 A control surface (also referred to as a gestural or performance controller, an 

input device, or a hardware interface) 

 A sound generation unit 

Both of these modules are independent entities that exchange information via 

mapping strategies [120] – the diagram below is a basic representation of this model. 

 

Figure 3.1: Basic representation of a digital musical instrument 

The most fundamental aspect of this concept is the separation of the 

instrument into two distinct units. The gestural controller is where physical 
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interactions performed by the user are sensed. The sound production unit interprets 

data from the controller and uses it to drive some kind of synthesis or digital signal 

processing algorithms. This basic model is shown in Figure 3.1. 

The concept of this division of the system into two distinct parts, referred to 

here as control dislocation is critical to understanding the design issues that face 

musicians using digital musical instruments. The term has been used to describe the 

difficulties faced by performers using tape/electronics live [45] but for the purposes 

of this description no pejorative connotations are intended. It is best described via a 

comparison with traditional (acoustic) instruments, which relied exclusively upon the 

acoustic properties of tubes, strings and membranes until the invention of the first 

electronic instruments in the late 19
th

 century [120].  

This means, in essence, that the sound being produced and the means of 

performance were inexorably and intrinsically-linked. In other words, the playing 

methods imposed by acoustic instruments are determined by their physical 

construction [78]. This connection is totally-absent in the case of digital musical 

instruments: the connection between the action of a performer and the resulting sonic 

behaviour is completely arbitrary and designed.  

The nature of this connection determines the relationship between the two 

units and is referred to as the mapping layer. This consists of the liaison strategies 

between the actions of the performer and the sonic behaviour that they cause or 

influence and will be the subject of much discussion throughout this thesis. Two 

digital musical instruments that consist of identical pairs of gestural controller and 

sound production units may behave in any number of entirely different ways 

according to the mapping strategy in use: it is the very essence of a digital musical 
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instrument and determines to a large extent the psychological and emotional state of 

the user during performance [70]. 

The presence of feedback in this system should also be noted. Contrary to 

what initial impressions might suggest, primary feedback has little to do with sound 

output. The primary feedback of any digital musical instrument comes from the 

physical interactions, if any, that the performer has with the control surface itself. 

The experience of sound (or any media) that is generated in response to user input is 

considered secondary feedback, for the purposes of this model, in keeping with the 

model proposed by Wanderley in [233]. Regardless of the source, the feedback 

mechanisms employed within a digital musical instrument act as cues-for and 

reinforcements-of user articulation. In some cases, the feedback mechanism can 

exert a direct influence upon the control of the instrument itself – audio within a 

feedback loop can be analysed and used to generate or influence control signals, for 

example. The model of digital musical instrument presented here will obviously 

require some modification in special cases like these, as the feedback becomes part 

of the controller itself, but the vast majority of designs fit into this diagram 

comfortably. 

This diagram serves mainly to illustrate the basic structure common to all 

digital musical instruments - there are many, many more factors at play that could 

potentially be incorporated into this view. Research on new digital musical 

instruments often focuses upon a specific aspect of this model (input devices, 

mapping, feedback, etc.) and attempts to expand our understanding of it. For 

example, a more detailed diagram is presented as Figure 3.2 which shows an 

expanded view of the user experience in addition to the units described above.



60 

 

 

Figure 3.2: Adding ‘the performer’ to the digital musical instrument model
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The relationship between our perception of acoustic instruments and digital 

instruments is something that is worth examining for the prospective designer; an 

awareness of the relative strengths and weaknesses of both fields can often act as a 

catalyst for both stimulating discussion and design innovation. The comments 

gathered by Magnusson and Mendieta in their 2006 survey (reproduced here as 

Table 3.1) provide a succinct introduction to some of the most pertinent issues that 

arise when comparing both types of instrument: 

Acoustic – Positive Acoustic - Negative 

Tactile feedback 

Limitations inspiring 

Traditions and legacy 

Musician reaches depth 

Instrument becomes 2
nd

 nature 

Each instrument is unique 

No latency 

Easier to express mood 

Extrovert state when playing 

Lacking in range 

No editing out of mistakes 

No memory or intelligence 

Prone to cliché playing 

Too much tradition/history 

No experimentation in design 

Inflexible – no dialog 

Less microtonality or tunings 

No inharmonic spectra 

Digital – Positive Digital - Negative 

Free from musical traditions 

Experimental – explorative 

Any sound and any interface 

Designed for specific needs 

Freedom in mapping 

Automation, intelligence 

Good for composing with 

Easier to get into 

Not as limited to tonal music 

Lacking in substance 

No legacy or continuation 

No haptic feedback 

Lacking social conventions 

Latency frequently a problem 

Disembodied experience 

Slave of the historical/acoustic 

Imitation of the acoustic 

Introvert state when playing 

Table 3.1: Frequent comments on the positive and negative aspects of 

acoustic instruments and digital instruments [106] 
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3.2 Classification of digital musical instruments 

There is a very real danger, when looking at the vast selection of musical devices at 

our disposal today, of becoming distracted by the sheer variety of approaches to 

electronic music creation [107]. Systems of classifying digital musical instruments 

vary in their approach due to the somewhat abstract nature of their composition, as 

seen in the previous section. Regardless of their different priorities, these systems 

provide useful conceptual tools for discussing and developing our understanding of 

interactive musical systems. 

3.2.1 The Hornbostel-Sachs system 

The science of classifying musical instruments is known as organology. The most 

widely-adopted system was proposed by Erich von Hornbostel and Curt Sachs in 

1914. This macrotaxonomy – known as the Hornbostel-Sachs system – groups 

instruments in a hierarchical structure with a numerical referencing system based-

upon the Dewey Decimal System. Traditionally the Hornbostel-Sachs system had 

four main categories, each of which are divided into a multitude of sub-

classifications:  

1. Idiophones: “The substance of the instrument itself, owing to its solidity and 

elasticity, yields the sounds, without requiring stretched membranes or 

string” 

2. Membranophones: “The sound is excited by tightly-stretched membranes” 

3. Chordophones: “One or more strings are stretched between fixed points” 

4. Aerophones: “The air itself is the vibrator in the primary sense” [64]  

 

Two different approaches to accommodating electronic instruments within the H-S 

system are introduced in [64]. The first of these emphasises the importance of the 
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presence of an oscillator in an authentic member of the electrophone family [10]. 

The second adopts a more modular view – seeing the electronic instrument as an 

assemblage of distinct elements and using a mathematical system to give a more-

complex and accurate description of its constituent parts. 

 These discussions, while lively and thought-provoking, serve to illustrate the 

futility of classifying devices of such intrinsic malleability as electronic musical 

instruments within a scheme that was not originally designed to accommodate them. 

The rapid growth of new musical ideas, technology and ways to combine the two has 

established electronic instruments as the perfect reinforcement to Hornbostel and 

Sach’s opening caveat: 

Treatises on systems of classification are by and large of uncertain value. The 

material to be classified, whatever it may be, came into existence without any 

such system, and grows and changes without reference to any conceptual 

scheme. The objects to be classified are alive and dynamic, indifferent to 

sharp demarcation and set form, while systems are static and depend upon 

sharply-drawn demarcations and categories. [64]  

3.2.2 Atau Tanaka – physical/mechanical 

Atau Tanaka was the first musician to work with BioMuse – a unique performance 

system that generated control data for music and visuals by measuring bioelectric 

signals produced by the human body. Tanaka used the system to perform with a trio 

called Sensorband (alongside Zbigniew Karkowski and Edwin van der Heide) 

from1993-2003 [163]. His classification for gestural controllers is concise and 

focuses upon the relationship between the performer’s body and the system [179]. 

Controllers are simply grouped according to two different categories – namely, their 
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mode of interaction (physical or nonphysical) and the kind of manipulation which 

takes place (mechanical or nonmechanical).  

 Although it may appear basic at first glance, this approach serves to illustrate 

how a simple descriptive model can enable a designer to clearly differentiate actions 

such as turning a potentiometer (physical and mechanical) from performing gestures 

in front of a camera (nonphysical and nonmechanical) or using biosignals such as 

electroencephalogram/EEG (physical and nonmechanical). It is primarily a system 

which focuses upon the nature of the sensors themselves and the means through 

which the performer engages with them. 

3.2.3 Miranda and Wanderley – acoustic similarity 

 Figure 3.3: Comparing controllers with respect to their resemblance to existing 

acoustic instruments [120] 

Miranda and Wanderley propose a didactical method of comparison based upon the 

similarities between gestural controllers and existing acoustic instruments. This is 

best seen as a continuum, rather than a series of rigidly-defined categories – a fact 

that is reflective of the organic evolution of digital musical instruments in recent 

decades. The four categories are shown in Figure 3.3 (along with some examples of 

how controllers can be placed within this model) and are described as follows: 
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1. Augmented musical instruments: Also known as hybrid instruments, 

hyperinstruments or extended instruments – these are acoustic (sometimes 

electric) instruments that have been extended by the addition of extra sensors. 

In general, the instrument functions exactly as it would have prior to 

modification – the technological components serve to increase the range of 

expression through added extra features or parameters to alter the sound. 

2. Instrument-like gestural controllers: These instruments feature a control 

surface that is modelled after an existing acoustic or electric instrument with 

the goal of emulating the original. These are often used by musicians who 

wish to expand-upon the sonic capabilities of their existing instrumental 

technique. 

3. Instrument-inspired gestural controllers: These instruments feature control 

surfaces that are directly-derived from those of an existing instrument, yet 

they do not aim to reproduce exactly the functionality of their acoustic 

counterparts. Sometimes they can be designed with a view to overcoming 

some of the intrinsic physical limitations of the original and provide 

alternative ways to employ existing instrumental skills (e.g. by providing an 

alternate fingering system for a flute-like controller). 

4. Alternate gestural controllers: Instruments that belong in this category do not 

bear any striking resemblance, in appearance or means of operation, to any 

existing instruments. Given the rather broad spectrum of devices that might 

be placed in this category, a number of subdivisions have been proposed. For 

example, in [127], Mulder suggests a further breaking-down into one of the 

following three groups: 
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a. Touch controllers that require the performer to make physical contact 

with the control surface and provide a haptic representation. 

b. Expanded-range controllers that may require a limited form of 

physical contact or do not require any physical contact but have a 

limited ‘range’ – that is to say, the performer is free to make certain 

movements that do not have musical consequences. 

c. Immersive controllers have few or no restrictions on performer 

movements. Consequentially, the performer is within the sensing field 

of the controller at all times. A further three subdivisions are 

suggested according, not to the actual physical form of the controller 

or sensors, but to the visualisation of the surface and the 

accompanying mapping strategies used: 

i. Internal controllers: The control surface visualisation is the 

physical shape of the human body itself. 

ii. External controllers: The control surface is visualised as 

separate from the performer’s body. It may even be impossible 

to visualise it as a physical shape. 

iii. Symbolic controllers: The control surface is not visible; it 

requires some sort of formalised gesture set (sign language, 

conducting) to be operated. 

A catalogue of interesting examples for each of the above categories can be found in 

[120], pp.21-101. 

3.2.4 Controllerism – ITCH system 

An interesting alternative approach is to look at technique and practice, as opposed 

to physical characteristics or acoustic similarities, when classifying devices. An 
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example of this kind of system is proposed by a contributor to Controllerism.com (an 

online community of electronic musicians that use generic controllers in their live 

performances) in an article entitled ‘Types of Controllerism’ [28]. The ITCH system 

is an abbreviation of the four categories it comprises (Instrument, Transfiguration, 

Conjuration and Hybrid) and groups interfaces and/or musicians into one of these 

categories based entirely upon their personal approach to audio creation during 

performance. This of course means that two physically-identical interfaces, when 

used by two musicians with contrasting styles of performance, will be placed in two 

totally-different categories. With regard to versatile control surfaces, which can be 

employed in a theoretically-limitless variety of ways, this seems to make a lot of 

sense for the practicing musician. The categories are defined as follows: 

1. Instrument: Musicians in this group use an external audio source (e.g. an 

electric guitar, a didgeridoo, a hardware synth, an MPC, beatboxing, etc.) in 

conjunction with audio created by the software. This category can be 

combined with any of the following approaches. 

2. Transfiguration: The focus of the interaction is changing elements into 

something else. For example, using pre-recorded loops and patterns that are 

altered using effects and combined together in various ways to create a track 

or live set. 

3. Conjuration: Creating something out of nothing. The focus here is using 

virtual instruments or a collection of samples to create a track or live set 

through overdubbing, live looping or playing everything manually from start 

to finish. 
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4. Hybrid:  Performance setups in this category rely heavily upon techniques 

from both the Transfiguration and Conjuration groups. While ‘C’ performers 

might use some occasional loops and backing, and ‘T’ performers might 

occasionally play one-shot samples/rhythms/melodies manually, ‘H’ 

performers use both to the extent that the omission of either would result in 

an incomplete or impossible setup. 

This approach is proposed with a very definite audience and type of performer in 

mind but it has an extremely useful core concept: if we do insist upon classifying 

interfaces for this purpose, perhaps we should focus upon the individual 

configuration, intent and style of a given performer. This certainly seems like a line 

of thought that begs further investigation. 

3.2.5 Human-machine interaction approach 

 

Figure 3.4: A visualisation of interaction and musical context based on Jens 

Rasmussen’s model of human information processing [232] 
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This model focuses upon the context of a performance and views the computer as “a 

semiotic, connotative machine that hypothesizes design criteria” [107]. It is based 

upon Jens Rasmussen’s model of human information processing and defines three 

distinct types of performance behaviour: skill-, rule- and knowledge-based. The latter 

is renamed model-based interaction behaviour in accordance with a suggestion of 

Rasmussen himself and also to avoid the conflicting connotations that might arise 

with the concept of musical knowledge. The categories of behaviour are shown in 

Figure 3.4 and are described as follows: 

1. Skill-based: Typified by physical gestures made in response to a continuous 

signal, this behaviour is closest to the typical understanding of instrumental 

performance (in the traditional, acoustic sense). It has been observed that 

very few activities are restricted entirely to the skill-based category – a 

musician usually depends on the experience of previous attempts in 

conjunction with the real-time signal input that characterises this section.  

2. Rule-based: This category sees the performer’s focus shift away from 

controlling a signal towards controlling higher-level processes, such as 

selecting and sequencing previously-arranged material. As in the skill 

domain, interactions and interfaces within this category can be further 

differentiated according to the rate at which the performer can effect change. 

3. Model-based: A musician operating at this level can only exert a low level of 

control over the outcome at a low rate. Interactions in this domain are goal-

oriented and goal-controlled – the performer is typically involved with the 

rational formulation of a plan to reach a particular goal. 
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The lower portion of the accompanying diagram also shows how these three types of 

behaviours can be coupled with Rasmussen’s categories of human information 

processing in accordance with the performance context and environmental 

conditions therein: signals, signs, and symbols are representative of the kind of 

information that is being processed in a given domain (i.e. skill-based=signals, rule-

based=signs, model-based=symbols). 

 Despite coming from two very different perspectives, we can see a clear 

correlation between this model and the ITCH system:  

 Conjuration-type performances/interfaces operate primarily on the level of 

signals and thus can be placed comfortably within the skill-based domain. 

 Tranfiguration-type setups place more of an emphasis upon the manipulation 

of signs and occupy the rule-based domain. 

 As the human-machine interaction model is represented as a continuum, 

rather than discrete categories, Hybrid-types can be accommodated by an 

appropriate location between the skill-based and rule-based domains 

according to their primary reliance upon either signs or signals. 

The model-based domain has no close counterpart in the ITCH model but this is 

understandable given the live-performance focus of the Controllerism.com 

community. 

3.2.6 Timeline-oriented versus procedural performance 

This framework is concerned more with the design and use of software interfaces 

onscreen in laptop-based performances, rather than hardware devices, but it 

contributes further to the discussion on approaches to practice that has been 

established by 3.2.4 and 3.2.5. 
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This model, proposed by Zadel and Scavone in [223], differentiates music 

performance software based upon the way that it handles sequencing tasks and 

control data. Two categories emerge: 

 Timeline-oriented performance control: This solution focuses upon linear 

pieces of audio and control data that are positioned in time, processed and 

overlaid to create full pieces of music. Analogous to offline sequencing 

except that certain aspects of the piece are left to be triggered and/or 

manipulated in real-time during a performance. Both Ableton Live and 

Reason are cited as examples of this kind of system. 

 Procedural performance control: These interfaces focus-upon allowing the 

user to define and modify processes in real-time to shape the musical output 

during a performance. For visual dataflow languages, such as Pure Data and 

Max/MSP [147], this typically involves the manipulation of a patch 

comprising signal generators and modifiers that has been prepared prior to 

the performance. In the case of more text-centric languages, such as Csound 

[33], SuperCollider [116] and ChucK [204], the practice of live coding is 

more common. The authors point out that, in this latter case, the creation of 

the procedure itself is the performance, or at least part of it. 

3.2.7 Taxonomy of sequencer user-interfaces 

A music sequencer is, in some respects, analogous to a written score in traditional 

music composition. It comprises a piece of hardware or software that stores data 

related to a piece of music (e.g. note values, melodies, timing) and sends this data to 

a sound generation module. This model aims to provide an analytical framework for 

the categorisation of sequencer-based user-interfaces or indeed any interface that 



72 

 

features a sequencing component for the linear arrangement of musical material in 

time [42]. There are five axes defined within this system: 

1. Medium: This can be more textual or graphical. The extent to which the 

interface relies upon either visual or text-based abstractions – the immediacy 

and learnability of the former is in marked contrast to the flexibility and 

customisation-potential of the latter. 

2. Abstraction level: This can be more predetermined or custom. Abstractions 

reduce cognitive load during performance by highlighting relationships 

between similar objects and hiding/reusing details. Common predetermined 

abstractions include MIDI and audio ‘clips’. Custom abstractions require 

more of an initial investment on behalf of the user, to understand and create 

their own hierarchies of objects and their associated behaviours, but they can 

offer more flexibility and control in a well-designed system. 

3. Linearisation stage: This can be more delayed or eager. The linear ordering 

of musical material can occur at different stages throughout the 

composition/preparation process of a performance. At its most extreme, or 

delayed, the ordering is not determined until the actual moment of 

performance itself. More eager systems demand a predetermined ordering of 

material which can, in turn, lead to more simple interfaces and allow the 

musician to concentrate on other aspects of their performance. 

4. Event-ordering: This can be more data or control-flow based. Control-flow 

systems allow the user to specify the final order of sequencing in terms of 

events. This may include programming techniques such as conditional tests, 

loops and suchlike. The data-flow paradigm, on the other hand, is found in 

systems where the user must determine the final sequence of data flowing 



73 

 

through a computational system. This is commonly-used for effects-control 

and automation in digital audio workstation software, for example. 

5. Applicability: This can be more special or general-purpose. Special-purpose 

sequencers are defined as demonstrating a preference towards a particular 

style or styles of musical sequencing. This can allow certain aesthetic 

considerations to be taken into account when designing the interface and 

therefore increase the simplicity and efficiency of the interface. General-

purpose applicability refers to systems which are equally-useful when 

performing a variety of sequencing styles. 

Combining these characteristics in all of their various permutations gives a total of 

28 distinct types of sequencer. The authors also apply the taxonomy to a number of 

common performance applications in order to demonstrate its use. 

3.2.8 Thoughts on classification 

The selection of taxonomies outlined in this section represent a broad spectrum of 

approaches – from the simple and universal down to the most complex and specific. 

It is most striking to observe how difficult it can be to develop a single all-

encompassing model for digital musical instrument classification in the same vein of 

the H-S system – the sheer expanse of creative ground covered by even the most 

basic of computer music tools makes it hard to conceive of such a system. Perhaps 

this is the wrong goal to be aiming towards. While no one system that we have 

outlined above can claim to include all the factors as broad as sensor-type, interface-

type, performance-style, musical-context, etc., each one manages to shed a little 

more light on a different aspect of arguably the most rapidly-evolving approach to 

musical expression in history. As musicians, designers and scholars we should 

welcome any opportunity to view our discipline in a new way – every new taxonomy 
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that might be proposed should be considered as offering a unique new perspective on 

the field, rather than a prescriptive labelling system.  

3.3 The instrumental paradigm 

Issues of terminology often arise when discussing digital musical instruments. A 

musical instrument consists of an excitation source which the performer causes to 

oscillate using their own physical energy. The sound may be modified by the 

performer using the available control mechanisms of the instrument before, during or 

after it reaches a resonating system that conveys the resulting vibrations to the air. 

On the other hand, the only part of a digital musical instrument that the performer 

comes into contact with – the controller – merely sends data to a sound generating 

system. It does not allow the performer to directly excite or modify the sound from a 

physical standpoint in the same way that an acoustic instrument does – so where 

does the instrument live in the digital musical instrument? 

 The acoustic piano provides an interesting discussion point – the strings 

(excitation source) are excited by the hammer mechanism and subsequently send 

vibrations throughout the frame of the piano (resonating system). The performer, 

however, does not have any direct physical contact with this system – it is all 

enclosed within the body of the instrument. By applying our basic mapping model to 

the acoustic piano, it could be said that the user (pianist) interacts with the gestural 

controller (piano keys) which sends instructions to the sound generator (hammer and 

strings) and hence produces music. Of course the piano still relies upon the laws of 

physics to excite, modify and sustain sound, but from the performer’s perspective 

these aspects are obscured by the elaborate and sophisticated interface that we call 

the piano keyboard. It is interesting to consider, physically speaking, that the only 

control afforded to the performer is the ability to determine the speed and depth with 
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which the key is struck and subsequently released [128] . The organ takes another 

step towards the digital, conceptually-speaking, as the energy used to excite the 

vibrations in its pipes comes from a mechanical or electric bellows, not from the 

performer at all, and the modern organ keyboard is effectively a set of binary 

switches. 

 This might seem like an exercise in polemics – as far as the pianist is 

concerned, this distinction between his/her musical gestures and the actual means of 

sound production is understandably arbitrary. However, the purpose of this 

comparison is not to critique the piano but rather to situate it as a kind of stepping-

stone between acoustic/mechanical instruments and electronic/digital systems. The 

same feeling is shared by the digital musician: “during the process of production or 

performance, [the music and the means of its generation] are inseparable” [88]. A 

well-designed digital musical instrument is identical to a well-designed acoustic 

instrument in the sense that they are both “vessels for expression of human thought”. 

The physical object that we refer to as the instrument is really just “an energy 

conversion device” that is employed in a musical context [78]. 

Perhaps it is better to think of the instrument as a concept, rather than a 

physical object? For example, an oil drum is clearly not designed with musical 

expression in mind – it is not an instrument, but can become one when it is added to 

a percussion ensemble. When does this change occur? Is it when it is played upon 

like an instrument, or placed alongside the other ‘intentional’ instruments, or even 

when the musician first considers the possibility of playing it? The perceptual 

structure of tasks is key to understanding this transformation in that it determines 

how we chose to use a particular input device [73]. We can use the concept of 

affordances here to describe the perceived properties of an object that determine how 
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we approach interacting with it. Research by the Ubiquitous Music Group [190] has 

pointed-out that the musical affordances of a system “are not properties of the 

environment or properties of the actors. They are relational properties that arise 

while activities are been carried out” [85]. 

In this line of thought, the instrument becomes an abstract concept: the 

point of intersection between tools, concepts and activities [85]. This perspective 

liberates the digital musician from steering their interaction metaphors towards the 

restrictive ideal of Western classical virtuosity – an ideal that has led to the 

predominant view that tightly-coupled interactive systems, analogous to acoustic 

instruments, provide the best support for creative musical expression. The 

Ubiquitous Music group has also suggested that this instrumental paradigm [86] 

might not be the best approach. Systems where agent and object are tightly-coupled 

can prevent the natural emergence of affordances and the implicit interdependence of 

modules in tightly-coupled systems also serves to reduce code reusability – making 

testing, maintaining and modifying the individual components difficult and time-

consuming. Loose-coupling has been proposed as a more-suitable solution – by 

sharing the performance demands between agent and object, we allow users to 

“explore the epistemic space of relationships among material objects and creative 

outcomes…[i.e.] loose coupling fosters natural affordance formation”. 

Armed with this new perspective on what exactly we are doing when creating 

a digital musical instrument, we can make further enquiries into the most effective 

design strategies than can be adopted. 

3.4 Mapping  

In a digital musical instrument, mapping describes the manner in which data 

gathered by the input device(s) is related to the musical parameters of a system. The 
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importance of selecting or devising an appropriate mapping scheme cannot be 

understated – effective and elegant systems can lead to “a more holistic performance 

exploration of the parameter space” [69]. 

This is not to say that a performance system should necessarily be overly 

simplistic or immediately accessible. In the study of human-computer interaction 

(hereafter referred to as HCI), it has been suggested that the distinct practices of (a) 

designing for efficiency, and (b) focusing upon aesthetic considerations and the user 

experience cannot successfully proceed in isolation [39]. In a musical context, an 

expressive interface design must accommodate the capacity to practise, learn, make 

mistakes, and develop skill:  

Mapping is at least as important to musicians as the physical interface, and 

even more so over the long term. Using a different mapping strategy results 

in a new control paradigm to explore [25]. 

Literature devoted specifically to the definition of effective mapping schemes is 

scarce – the theoretically limitless combinations of devices and musical goals that a 

musician might seek to accommodate render the discussion of general mapping 

principles quite difficult. However, there has been growing interest in the 

development of more detailed conceptual frameworks for mapping – examples 

include strategies specific to sound synthesis [203], digital audio effects [194], 

Max/MSP [15], PD [174] and algorithmic composition [40]. 

Musical mapping schemes are generally classified according to the number of 

parameters over which the user can exert control at once - the most straightforward 

of these being one-to-one mapping, where a single control device influences a single 

parameter. This kind of precision is exactly what is needed in, for example, a mixing 

console. However it has been suggested that human operators naturally expect more 
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complex schemes and ultimately find these interactions more rewarding and intuitive 

than simple one-to-one mappings [69].  More complex setups can be said to employ 

convergent and divergent mapping. Convergent mapping employs a number of 

devices to control a single parameter (many-to-one) whereas devices which use 

divergent mapping operate several parameters at once (one-to-many). Most acoustic 

musical instruments can be thought of as combining elements of both of these 

schemes. 

Outside of a musical context, mapping schemes for human-technology 

interaction are more efficiency-focused and hence easier to discuss. In The Design of 

Future Things, Donald A. Norman encourages designers to utilize what he refers to 

as natural mappings wherever possible (citing the oft-inconsistent positioning of 

hobs and their controls on a cooker as an example). In this context, it is preferable 

that controls should be laid out “in a manner spatially analogous to the layout of the 

devices they control” and that the principle can be extended to “numerous other 

domains” including sound [132]. With this consideration in mind, it is surprising 

how many supposedly-intuitive musical performance systems opt for the most 

convenient or visually-appealing layout for their controls, rather than considering the 

perception of the user.  

In the same volume, Norman provides a summary of the essential design 

considerations discussed throughout his work. His rules of interaction state that 

interactive technology should:  

1. Provide rich, complex, and natural signals  

2. Be predictable  

3. Provide a good conceptual model 

4. Make the output understandable  
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5. Provide continual awareness, without annoyance  

6. Exploit natural mappings to make interaction understandable and 

effective  

It should be stressed that these considerations are clearly intended for 

functional applications which can be effectively used almost instantly - a description 

which cannot reasonably accommodate the level of skilled practice and gradual 

progress that we associate with learning a musical instrument. However, they do 

provide a model of simplicity and efficiency which can be useful to bear in mind 

while working on more complex multimedia environments. 

Another interesting set of general design principles, in this case specific to 

digital musical instrument design, have been defined by Perry Cook in [29] (the 

explanations following each principle have been added by the author of this thesis) : 

Human/Artistic Principles: 

1. Programmability is a curse 

This refers to the danger of versatile and customisable systems – namely, 

their ability to facilitate endless experimentation, modification, paper 

writing and time wasting without ever producing any artistic or musical 

product. 

2. Smart instruments are often not smart 

Instruments that are capable of learning and modifying their behaviour in 

response to user input are hazardous in that they react differently to 

conventional physical interactions and potentially lead to frustration and 

confusion. Instruments that constantly change prevent the user from 

developing and refining their own interactions accurately. 

3. Copying an instrument is dumb, leveraging expert technique is smart 
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Attempting to emulate an existing instrument, while an interesting 

technical exercise, seldom leads to exciting or practical designs. However, 

devising new ways to utilise the fine motor skills of expert musicians can 

be a fertile starting-point for musical innovation. 

4. Some players have spare bandwidth, some do not 

Taking a combination of individual musical ability and the physical 

demands of certain instruments into account, some cases are better suited 

to the addition of extra control devices and sensors than others. 

5. Make a piece, not an instrument or controller 

Setting out to design a ‘super instrument’, with endless expressive 

potential, generally yields plenty of interesting research questions but not 

so much interesting music. 

6. Instant music, subtlety later 

This observation refers to the (almost) universal ability of acoustic 

instruments to react and produce sound instantly in response to even the 

most basic of beginner interactions. Electronic instruments that follow this 

pattern, as opposed to front-loading their more complex features, are often 

more likely to encourage and stimulate the user. 

Technological Principles: 

7. MIDI = Miracle, Industry Designed, (In)adequate 

A simple cautionary point – while MIDI is often a quick and easy solution 

to get new systems communicating, it was designed with very particular 

commercial concerns in mind and far from a perfect protocol. 

8. Batteries, Die (a command, not an observation) 
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Another simple warning against the use of unpredictable power sources 

unless they are absolutely necessary. 

9. Wires are not that bad (compared to wireless) 

Designers are often eager to dispense with wires for ergonomic and 

aesthetic reasons. However, the added complexity, expense and potential 

inaccuracy of wireless systems can sometimes lead to problems. In 

situations where performers are mostly stationary or seated, wires are still a 

reasonable option.  

Some Other Principles: 

10. New algorithms suggest new controllers 

The development of new synthesis or signal processing techniques can 

often prompt investigation into new methods of control. 

11. New controllers suggest new algorithms 

In a similar fashion, novel controller designs can often be the catalyst for 

the development of unusual or radical musical processes. 

12. Existing instruments suggest new controllers 

A reference to the wide variety of ergonomic, musical and technical 

insights that can be derived from studying established musical instruments. 

13. Everyday objects suggest amusing controllers  

We possess a remarkably broad vocabulary of techniques for interaction 

with objects in our daily lives. Electronic instruments that utilise or 

repurpose our non-musical interactions can be entertaining and stimulating. 

This kind of reflective practice with regard to mapping is indicative of a community 

seeking to deepen the collective understanding of a neglected area, and it is maturing 

rapidly. The importance of developing an objective approach, one that avoids 
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didacticism and device-specific discussion, is outlined clearly by Hunt, Wanderley 

and Paradis: 

Since there will not always be ready models for inspiration when designing 

mapping strategies for new digital musical instruments, the task then 

becomes one of proposing guidelines for mapping and also, if possible, 

devising models that can facilitate the implementation of mapping strategies 

other than simple one-to-one relationships. [70] 

3.5 The design cycle 

Cooper and Reimann give a succinct summary of the process of interaction design in 

[31]: 

1. Researching the domain 

2. Understanding the users and their requirements 

3. Defining the framework of a solution 

4. Filling in the design details 

5. Testing the validity of the solution with users 

Note the emphasis on users and solutions, as opposed to technology and features – 

this approach to interaction design encourages a behaviour-oriented design approach 

that is strongly influenced by cognitive principles and user perception. In other 

words, goal-directed design. The process of identifying, empathizing with and 

facilitating user goals is the most important part of this approach and is referred-to as 

the “bedrock upon which interaction design is practiced.” 

This philosophy, and the comprehensive documentation that accompanies it, 

places a high priority on achieving elegant communication between the user and the 

system. According to the arguments presented in this chapter so far, the designer of 
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digital musical instruments should make every effort to develop their understanding 

of this process which is at the heart of every successful interactive experience. 

Having established this priority, we can explore approaches to design that 

have been developed specifically with musical expression in mind. Miranda and 

Wanderley propose a 5-step design process for the creation of digital musical 

instruments: 

1. Decide on the gestures that will be used to control the system 

2. Define gesture capture strategies that will best translate these movements into 

electrical signals. This is typically done using a variety of sensors to measure 

hand, arm, lip, or other body movement, velocity of movement, pressure, or 

any other variables of interest. 

3. Define sound synthesis algorithms that will create the sounds to be played; 

or, define the music software to be used for control of prerecorded musical 

processes. 

4. Map the sensor outputs to the synthesis and music-control inputs. This 

mapping can be arbitrary, so any unusual combinations would be as feasible 

to instantiate as any coupling of gesture to sound known in acoustic 

instruments. 

5. Decide on the feedback modalities available (apart from the sound generated 

by the system): visual, tactile and/or kinaesthetic. [120] 

Depending on the circumstances, the available technology or musical goal at the 

heart of a particular project might very well provide the answer to several of these 

questions before the design process even begins. Therefore it is highly unlikely that 

these steps will proceed in a strict order, both for this reason and the fact that 
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adjustments will often need to be made before the desired functionality is attained 

[120]. 

The effective design process, therefore, should be conceived of as a cyclical 

rather than a linear process. In order to facilitate a smooth and efficient transition 

between designing and refining, some process of evaluation is necessary. 

3.6 Evaluation 

There has been relatively little research dedicated solely towards the evaluation of 

digital musical instruments (see Figure 1 in [13]). Traditional methods of evaluating 

user interfaces from the field of HCI focus upon efficiency and clarity. Fitt’s law is a 

prime example of this emphasis – measuring the difficulty of movement-related 

tasks and the human rate of information-processing as these tasks are realised [102]. 

However, the evaluation of digital musical instruments must take into account 

concepts as diverse and far-reaching as efficiency, potential for extension, difficulty, 

learning curve, and so on [76] – prompting the suggestion of categories such as 

“reproducibility, reliability and expressive potential” [51]. Furthermore, there are a 

variety of perspectives, each demanding different techniques, from which we can 

evaluate digital performance tools [140]. 

To illustrate the difference between evaluating traditional interactive 

systems and digital musical instruments, consider the presence of the spectator or 

audience implicit in the musical context of the latter. It has been perspicaciously 

observed that we cannot simply transplant our understanding of spectatorship from 

the domain of acoustic musicianship to that of digitally-mediated performance [57]. 

Accordingly the creation of meaningful and perceivable connections between human 

action and sound has been identified as a key point for making a performance 

convincing for the audience [140]. The ability to evaluate the extent to which an 
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audience can understand these connections would prove a valuable asset to digital 

musical instrument designers. 

According to Davis [38], a performance ecosystem comprises four parts: the 

instrument – an artefact that is manipulated to produce music; the performer – an 

agent who directly interacts with the instrument; the listener (referred-to here as ‘the 

audience’) – who watches the interaction and has an indirect relationship with the 

instrument; and the environment – the place where the performance takes place.  

In traditional HCI design, there is no equivalent to the audience as defined 

above. Its models focus almost exclusively upon the direct user of the system. In 

digital musical instrument research, this has led to a predominance of performer-

centred design (assisted by the instrumental paradigm, as previously discussed in 

3.3) and an insufficient treatment of the audience. A synthesis of techniques is 

proposed in [13] to address this deficit – this is indicative of a new interest in 

evaluation methodologies tailored-specifically to the needs of the digital performer. 

Further discussion on the issue of evaluation can be found in [120], pp95 

and in [16]. 

3.7 Conclusion 

This chapter has given a comprehensive overview of the concepts at the heart of 

digital musical instrument design. The basic model is explained and expanded-upon 

with regard to the concept of control dislocation and its effect upon the user 

experience. Several different approaches to classifying digital musical instruments 

are summarised to illustrate the broad selection of taxonomic approaches that may be 

taken to aid design, practice and pedagogy.  

Having established a clear picture of the role played by the digital musical 

instrument and the different ways that researchers have tried to classify it, the 
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chapter progresses onto a more conceptual treatment of the subject, albeit one that 

has considerable practical application. The idea of the instrument itself is challenged 

in order to highlight the shortcomings of sticking too closely to established 

conventions of performer-instrument relationships when using computers.  

With the emphasis now firmly upon the emergent perceptions of the 

performer, we discuss the importance of mapping and justify its position of 

determining the essence of the interactive experience. Finally, the chapter outlines 

several pertinent strategies for approaching the design process itself and introduces 

the promising new developments taking place concerning the evaluation of digital 

musical instruments. 
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Chapter 4. Interaction design for the digital musician 

 

“The interface defines a sort of landscape, creating valleys into which users tend to 

gather, like rainwater falling on a watershed. Other areas are separated by 

forbidding mountain ranges, and are much less travelled. A good interface designer 

optimizes the operations that will be most often used.” 

-David Rockeby, The Construction of Experience: Interface as Content [157] 

 

This chapter discusses an alternative approach to digital musical instrument design. 

By treating an input device as a selection of independent data-generating sensors, we 

can define a system of modular interaction components. These, in turn, can be 

combined in various ways in order to create effective interactive systems for musical 

performance.  

The chapter begins with a summary of the reasons behind this approach and 

the intended goals of developing it (4.1). Sections 4.2 and 4.3 establish a vocabulary 

for discussing design models and different categories of input sensor, respectively. 

Section 4.4 proposes a modular approach to interaction design and summarises the 

core concepts in a series of tables. Section 4.5 lays the foundation for this approach 

by outlining a selection of simple one-to-one interaction strategies for dealing with 

live sensor input.  

 While separating these elements is useful for illustrative purposes, in 

reality they are seldom used in isolation. Therefore, this rest of this chapter discusses 

strategies for combining inputs and distinguishing various layers of functionality 

from one another in a digital musical instrument. It also introduces more abstract 
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concepts which can be used to augment the functionality of a system's actual 

physical controls. 

Section 4.6 discusses multiple controllers which operate independently of one 

another – both in order to perform different musical tasks or in order to control 

multiple instances of similar tasks (polyphony). Next we classify different ways in 

which controllers can inform the behaviour of other controllers in a system – symbol, 

executive and modifier keys (Buxton’s key-action-model), interdependent controls 

that only operate in combination (selection + excitation model, such as the guitar, 

Theremin etc.) and controllers that occasionally interact when a given condition is 

met (4.7). This is followed by a discussion on various ways to combine controllers 

that ideally may lead to synergistic roles and complementary modalities (4.8). 

This section is followed by a description of ‘virtual’ controllers – abstract 

variables that can be used to alter the behaviour of a system (4.9). These are further 

divided into two categories – statistical variables (including those influenced by 

time, averages, etc.) and variables related to modal behaviour. The section on modes 

identifies several different types of modes and suggests strategies for accessing them 

fluidly within the context of a live performance (toggling modes, quasi-modal 

systems, advancing systems, etc.). It also discusses the importance of clearly 

delimiting different functionalities and the construction of unambiguous state 

transitions (Buxton’s 3-state model of graphical input is used as an example). 

The chapter concludes with a case study that discusses an interface designed 

for a series of performances with the Trondheim Electroacoustic Music Performance 

group (4.10). Particular attention is given to those aspects of the instrument that 

embody the ideas described so far – goals are identified and refined, the design 

process is discussed in detail and personal reflections upon the success of the project 
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are outlined. This section provides a conclusion of sorts to the first half of the thesis 

– subsequent chapters focus upon the development of a complex software controller 

for a specific type of technology (multi-touch) that is also intended to facilitate the 

design approach embodied by the opening chapters.  

4.1 The importance of a conceptual foundation  

The field of live electronic music has always been markedly innovative - for many 

practitioners, the design of a personalised interactive system is considered a 

significant component of their artistic statement which is just as important as the live 

performance itself. Andrew Hugill describes this important relationship: 

The types of interface to be used…how those map onto the sounds that will 

be produced…these are all performative decisions, equivalent in significance 

and musical qualities to the traditional ‘tone’ that an instrumentalist might 

produce from their instrument. In other words, the technological set-up is not 

just a way of making an ‘instrument’ upon which to perform, it is integral to 

the nature of the sound that is produced, to the distinctive sound that makes 

the digital musician into the performer, to the musicianship itself. [67] 

This tendency towards idiosyncratic technique, combined with the considerable 

variations in digital musicians' available resources, has made generalising about 

design processes difficult unless specific hardware or software is involved. While 

studies on the use of specific devices can be useful in assessing the suitability of a 

particular controller to a particular musical task, it is unreasonable to expect a 

general model of human performance to emerge from such studies [21]. 

This system has been developed with a strong awareness of these factors. 

The goal is not to devise a linear, instructive or didactic system for digital musical 
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instrument design - instead it is proposed that a conceptual toolkit, independent of 

any particular musical style, hardware requirements, or programming languages, will 

prove a useful addition to the pre-existing theory on interaction design for the digital 

musician. The toolkit will ideally provide: 

 A simple, incremental and easily-taught system of musical interaction 

design which is not hardware or software-dependant 

 A selection of independent input paradigms which can be combined into 

more complex input metaphors 

 Guidelines to help construct complex and flexible interfaces using simple 

hardware 

 A way to assess the suitability of a piece of hardware for a given musical 

task 

 A starting point in the design process which encourages incremental and 

methodical design 

 A means of looking beyond the common usage trends and design clichés 

of a given piece of hardware 

A concise and efficient vocabulary for interaction design, written especially with the 

digital musician in mind, has the potential to both expedite and enhance the 

development process. With a clear idea of the logical tools at his disposal, the digital 

luthier is well-equipped to articulate his musical ideas by breaking-down a complex 

interaction into its constituent processes. This, in turn, facilitates the tight matching 

of the device’s control structure with the perceptual structure of the task as perceived 

by the user – arguably the best way to improve the responsiveness of an interface 

[107]. 
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Note that the strategies being discussed in this thesis are primarily in terms of 

imperative programming – other programming paradigms may not make use of these 

tools in the same way. A familiarity with basic programming tools or building blocks 

is essential for constructing even the most basic of interactive behaviours. A 

selection of pedagogical references for beginning programmers can be found in [50, 

142, 166, 209].  

At its most basic operational level, the digital musical instrument consists of 

an array of interdependent interactive processes. While the overall design might 

behave in a very complex and nuanced fashion, the individual processes can often be 

quite simple in programming terms. The following section serves as a bridge 

between the language of the digital musician and the language of computer logic. 

While the approach being proposed might sound overly straightforward, dry or 

methodical in the context of musical projects, one must remember that "these are 

precisely the kinds of physical computing projects that need this kind of planning the 

most” [142]. 

4.2 Models  

Models, in the design context, are simplifications of real-world scenarios. They can 

be especially useful for the digital musician - permitting an exploration of the 

validity of an instrument design concept prior to embarking upon the often costly, 

and time-consuming, process of implementation. In [103], models are described as 

existing on a continuum - with predictive and descriptive models occupying the 

extrema.  
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4.2.1 Predictive models 

Predictive models represent a hypothetical analysis of how users will perform using 

a proposed interactive system [103]. These predictions are generated a priori and 

therefore circumvent the time and effort that might be required to both implement a 

system and perform observational testing with real users. Predictive models are 

commonplace in HCI where the measurement of efficiency and motor skills are 

concerned.  

4.2.2 Descriptive models 

Descriptive models are not designed to generate empirical or quantitative analyses of 

user performance in the same way as predictive models. Instead, they aim to equip 

the designer with a new conceptual framework or perspective on the user experience 

of a proposed interactive system [103]. This framework can take the form of a 

graphical representation, verbal description, or re-structuring of the system using 

categories, comparisons or metaphors.  

Generating descriptive models for existing digital musical instruments can 

be a powerful tool for highlighting important issues that might otherwise be obscured 

by the creative and/or technical aspects at play. The role of a descriptive model in 

this case is to present a useful way of thinking or categorising the behaviour of an 

interactive system. Their simplicity, ease of use and potential for problem-solving 

makes them a valuable asset to the digital musician. The modular system of 

interaction design that follows is an example of applying this type of planning with 

regard to musical use. Some non-musical examples that illustrate the role of 

descriptive modelling in a concise manner are the Key-Action Model/KAM [103] 

and Buxton's 3 State Model [21]. 
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4.3 Describing sensors 

The following section establishes some terminology needed to discuss digital 

musical instrument design. 

4.3.1 Degrees of freedom vs. dimensions 

Two terms that are often used interchangeably are dimensions (D) and degrees of 

freedom (DOF), referring to the number of parameters in a system that are free to 

change independently of one another. Here we use degrees of freedom to describe 

the number of data streams that the user can manipulate independently using a given 

device. 

 A mouse is often described as a 2-D input device, with respect to the X and Y 

planes of the graphical environment that it typically navigates. This might also be 

hastily-described as having 2-DOF. However, as pointed out in [103], a true 2-D 

device actually has 3-DOF - translation across the X-axis, Y-axis and rotational 

motion around the Z-axis. It is true to say that a standard mouse does not permit 

movement in this way, unlike a 2-ball mouse or a device such as the Reactable [77] 

which allows rotational movement of its control cubes. 

For the purposes of digital musical instrument design, it is advisable that the 

term 'dimensions' is avoided, due to the spatial/graphical connotations illustrated by 

the previous example. Instead, when referring to the number of data streams that a 

user can manipulate independently via a given device, it is preferable that the term 

degrees of freedom or DOF is used. A standard mouse device in this context 

possesses 4-DOF - that is to say, independent freedom of movement on the X and Y-

axes combined with the left and right mouse buttons. If a scroll-wheel is present, the 
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device can be said to have 5-DOF, if the scroll-wheel happens to be clickable, 6-

DOF, etc.  

There are complications with this model. Firstly, ergonomic and 

physiological concerns must be accounted for (see, for example, the introduction to 

kinesiology in Chapter 2 of [159]). While a simultaneous rotating and clicking of the 

scroll-wheel is certainly technologically possible, there is no doubt that one must 

influence the other in terms of the comfort and accuracy with which such a 

combination can be performed by the user. Any statement of a device’s DOF, 

therefore, should be accompanied with a caveat as to which channels of control 

might reasonably interfere with one another in practice. It should also be noted that 

sensor combinations that are difficult to operate simultaneously can be advantageous 

- by using data from these sensors to control aspects of the musical output that 

should not function together, user error and accidental triggering of certain functions 

can be reduced significantly. 

A further complication is introduced by our means of interpreting the input 

data. It is perfectly possible, for example, to take a simple X/Y-axis reading from a 

mouse and derive a further speed value using simple mathematics. This speed value 

can be further broken-down into horizontal and vertical speed, and so on. These 

kinds of augmentations to a device are very useful indeed and are covered in detail 

below. However, it cannot strictly be said that they are integral to the sensor itself. 

Furthermore, depending on how the various channels of control are utilised, these 

values may not be entirely independent from others - making it difficult to apply our 

definition as outlined at the start of this section. 

It must be concluded that, while the term degrees of freedom is indeed a 

useful tool when designing interaction strategies, it is not a fixed value when 
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anything other than a simple one-to-one mapping is concerned. One must be careful 

to distinguish between the DOF property of a device in a strictly hardware-related 

sense (out-of-the-box) and the DOF property that is arrived-at when mapping 

strategies and musical output have been established. A variety of such strategies for 

obtaining useful performance information are outlined below (section 4.5). It is 

important, however, to remember that an interface is not-necessarily improved by the 

addition of more DOF – rather it is how closely the control structure of the interface 

matches the perceptual structure of the user approaching the task [73]. 

4.3.2 Resolution 

A further property that will be utilised in discussing design strategies for digital 

musical instruments is resolution. It is used here to indicate the smallest change that 

can be detected in the input of a given sensor and, as such, can be used as an 

indicator of the potential accuracy of the sensor. For example, a 2-button mouse 

being used to navigate a graphical environment has 4 sensors - two of which have a 

high-resolution (the X and Y axes) and two of which have a low-resolution (the 

buttons, which can be said to have a binary resolution, on/off or simply 0-1). 

Examples of typical musical devices would be a 4x4 button matrix (16 DOF / 

0-1 RES) and simple MIDI mixer with 4 faders and 4 dials (8 DOF / 0-127 RES). 

These properties become useful when selecting what interaction strategies to use as 

well as deciding upon appropriate mappings to musical parameters. The exact 

resolution of a sensor is somewhat trivial for the purposes of this discussion - what is 

important is the ability to distinguish between those sensors which simply behave as 

switches and those which allow for a greater degree of expression.  
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4.4 A modular approach 

In the following sections we will look at micro-strategies for interpreting the data 

generated by individual controller devices. While designing highly-minimalistic 

interfaces is a useful exercise for digital musicians of all levels of experience, in 

practice we will generally be dealing with hardware that comprises a wide variety of 

input devices in various combinations. The major advantage of a modular design 

approach is the ability to quickly experiment with different ways of using the devices 

available in a given piece of hardware. This in turn facilities rapid prototyping, 

compared to more tightly-coupled systems, which allows for more time testing and 

refining the design with the performer’s experience in mind. This reflective space is 

a vital commodity in digital musical instrument design; our ability to add new 

features “is constrained by the musician’s physical and psychological capacities of 

accomplishing multiple and simultaneous tasks” [96]. Rapid prototyping affords the 

designer more opportunities to assess the performer’s capacity for expression using 

the current interface. 

The following sections discuss the modular building blocks of musical 

interface design. Perry Cook’s caveat that digital musical instrument design 

“proceeds as more art than science” [29] is particularly pertinent in this chapter – 

these strategies and rules are useful when followed but even better, in some cases, 

when they are broken correctly. 
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Figure 4.1: Summary of strategies for single devices and combined controllers
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Figure 4.2: Summary of abstract control strategies 

4.5 Interaction strategies 

This section defines a series of original strategies for interpreting the input of various 

sensors. These relatively simple strategies are grouped according to the criteria 

established above and form the foundations of a novel and concise framework of 

interaction design for the digital musician. The concepts and logic behind the 

strategies are generic, enabling them to be applied to a variety of different sensor 

types.  

Several of the strategies may seem redundant, obvious or a waste of potential 

data from a given sensor (the Contact strategy from section 4.5.2, for example). In 

these cases, it is important to consider that the strength of this approach can often lie 

in the ability to combine the strategies with one another to generate complex results. 
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The explicit definition and demonstration of even simple strategies makes for a 

comprehensive inventory of design components with which to construct elegant 

interfaces. 

4.5.1 One DOF sensors with low resolution (on/off) 

Examples include QWERTY keyboard keys, non-pressure sensitive buttons and 

pads, piano-style keyboards without touch sensitivity, mouse buttons, many 

videogame buttons, switches, etc. Note that sensors with a higher-resolution can be 

used in conjunction with these strategies by employing a threshold, or similar 

technique (see 4.5.2.9). The first three strategies that follow can be thought of as 

basic one-to-one mappings. 

4.5.1.1 Touch 

The sensor causes something to happen while it is depressed, but ceases to have an 

effect once contact is broken. Typical uses include sample-playback, toggling 

temporary effects, non-progressive sustain pedal on keyboard, non-velocity sensitive 

synth playing, etc. 

4.5.1.2 Trigger 

Description: The sensor causes something to happen when it is pressed, typically an 

event that resolves of its own accord, breaking contact makes no difference. Typical 

uses include playing drum-like or percussive samples. 

4.5.1.3 Toggle 

Pressing the sensor once causes a change in how the system works, pressing it a 

second time returns the system to its initial state. Typical uses include switching 

on/off effects. 
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4.5.1.4 Repeat 

Holding down the sensor causes an event to repeatedly occur at a certain interval 

until contact is broken. 'Stuttering' effects of sample playback are often achieved in 

this way. 

4.5.1.5 Counter 

Pressing the sensor generates a different result each time, incrementally cycling 

through a preset array of results. 

4.5.1.6 Time since last action 

Pressing the sensor generates a different result, depending on the time that has 

elapsed since its last action. 

4.5.1.7 Hold time 

The amount of time the sensor is activated is recorded and subsequently used to 

trigger different behaviour. 

4.5.1.8 Excitation 

While the sensor is activated, a value increases at a preset rate. While idle, the value 

decreases at a preset rate. 

4.5.1.9 Average/median time 

May apply to any of the time-based strategies. An array of recent values from the 

sensor is maintained, with either the average or median value of the array being used 

to influence behaviour. 



101 

 

4.5.2 One DOF sensors with high resolution 

Examples include dials/potentiometers, faders, touch sensitive piano keys, pads or 

buttons, ribbon controllers, modulation wheels, etc. While these sensors all fall under 

this category, it is important to take the physical means of operation into account as 

there are some notable differences. 

For some of these sensors, hereafter referred to as fixed-state sensors, the 

value being output remains the same after the user has manipulated it - for example, 

dials/potentiometers, faders, certain modulation wheels (that don't spring back into 

place). These sensors also serve to provide feedback on their current state, which can 

be noted at a glance or, in some cases, kinaesthetically without actually disturbing 

the sensor. 

In other cases, the extra resolution is due to a velocity or pressure component, 

which may only be delivered upon impact (pressure/velocity sensitive keyboard keys 

and pads/buttons). These could be said to be analogous to the 'ballistic' playing style 

of acoustic percussion or piano in the sense that, once the initial impact has taken 

place, the velocity component has been determined and cannot be changed. The 

exceptions are cases wherein it is possible to continually-measure the pressure being 

applied to a sensor, for example, certain ribbon controllers, pads, spring-loaded 

modulation wheels, etc. Another important characteristic of these sensors to bear in 

mind is the fact that the output will always start and end at zero, unless some kind of 

alternative or auxiliary control is implemented. 

A final idiosyncrasy to consider is the ability of some of these sensors to 

allow discontinuous output, or teleporting of values. This is best explained by 

comparing a fader and a ribbon sensor, both being used to control the volume of a 

track. In order to bring the volume from the minimum possible level up to the 
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maximum using the fader it is necessarily to progress (however rapidly) through the 

full range of values in between. The ribbon, conversely, allows the user to make 

jumps in the signal by simply breaking contact with the sensor and depressing their 

finger elsewhere. Whether or not this kind of behaviour is a help or a hindrance, or 

even acknowledged, depends on the application, but it is certainly important to be 

aware of. 

4.5.2.1 Contact 

A behaviour is triggered when the user makes contact with the sensor (not possible 

with fixed-state sensors, for which the next strategy is a close alternative) 

4.5.2.2 Movement 

A behaviour is triggered when the user changes the value of the sensor 

4.5.2.3 One-to-one 

The value of the sensor is tied to the value of a musical parameter 

4.5.2.4 Velocity 

The rate of change in the sensor is tied to a musical parameter 

4.5.2.5 Direction 

The direction of movement (incrementing/decrementing) is used to influence a 

parameter 

4.5.2.6 Average/median 

An array of recent values from the sensor is maintained, with either the average or 

median value of the array being used to influence behaviour. The size of the 

sampling window must be adjusted, according to the speed of changes in the value, 
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in order to provide the most accurate reading. The average/median velocity or 

direction can also be calculated. 

4.5.2.7 Hold 

A behaviour is triggered when the sensor remains at a specified value for a 

predetermined period of time 

4.5.2.8 Idle 

A behaviour is triggered when the sensor remains untouched for a predetermined 

period of time 

4.5.2.9 Threshold 

A value, or number of values, is designated as a crossing-point. When the sensor 

passes a point, a behaviour is triggered. Alternatively, thresholds may be used to 

assign different functions to several areas over the total range of the sensor. One or 

more of these areas may be 'dead', where nothing happens or a previous effect is 

negated. Analogous to splitting up a visual control surface into 'zones'. Many of the 

strategies outlined above can be applied once areas are split up in this fashion. 

4.6 Independent controllers 

In this context, the term ‘independent controllers’ refers to the use of more than one 

input device simultaneously in an interface but without the data interacting in any 

significant way. The devices remain separate both physically, in terms of the 

hardware itself, and computationally. 

 The most common approach in this category can be referred to as 

polyphony – where a selection of similar input devices allow the user to control 

multiple instances of similar events. Dissecting the ubiquitous digital keyboard 
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provides us with a clear example of this model: each key provides access to a single 

musical note and allows the performer to independently actuate, sustain and 

terminate individual instances of notes across the range of the keyboard. Difficult 

combinations, temporally and spatially-speaking, can be accommodated through 

practice and appropriate fingering technique.  

 We can extend this understanding of the digital keyboard without any 

modification to the performance sampler or drum machine. Any piece of hardware 

that is designed primarily with live triggering of samples in mind will feature an 

array of buttons or pads that each provide the user with access to a particular sound. 

In both cases, external modifiers are available: additional velocity sensors for each 

key/button/pad are a standard feature in middle to high-range equipment, the piano 

keyboard is typically augmented by pedals and the sampler will generally provide a 

means of switching between ‘banks’ of different preprogrammed sounds. These 

features will be discussed in 4.7 and 4.8. 

 The concept of integrality and separability as two classes of perceptual 

structure are useful in this context. Primary input devices found on a piece of 

hardware are seldom 1DOF, as in the example of velocity above. When separate 

attributes of a single device are used to control more than one parameter, we can 

characterise the device as multidimensional. When a number of attributes combine 

perceptually, they become integral; attributes that remain distinct are separable [73]. 

In the example of the velocity-sensitive piano keyboard, the act of individual note-

selection and volume/timbre-selection can be classified as an integral action as the 

movement “is in Euclidian space and cuts across all dimensions of control” [73]. 

 It is important to consider this perceptual structure of individual input 

devices when approaching the design of an interactive system. Some devices with 
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more than 1DOF are better characterised as integral as opposed to separable. These 

are better-suited to controlling aspects of the musical output that are perceptually 

similar or closely related in terms of their effect on the sound. One device which is 

typically used to control two variables independently with a single gesture is the XY 

pad. Some observations upon typical mapping schemes are provided in 5.1.2. 

4.7 Interdependent controllers 

Devices that are used together, without influencing one another, are covered by the 

previous definition of independent controllers. Interdependent controllers are 

different in that they can be said to inform one another’s decisions upon how to 

classify a given input action by the user. There are varying degrees to which one 

controller can influence the behaviour of another but the defining characteristic here 

is the necessity for the devices in question to be operated together in order to achieve 

their full functionality within the system. 

 The prevalence of software user-interface design conventions within the 

field of music technology tends to discourage complex interdependent and multi-

functional interfaces (see Chapter 5 for a specific commentary upon this). However, 

it has been proposed that these are precisely the kinds of interfaces that generate 

interesting and rewarding interactive experiences [69, 39]. When combining 

controllers we are aiming, ideally, to define synergistic roles and discern 

complementary modalities [60]. Some of our most powerful tools when working-

towards this ideal are descriptive models. 

 The key-action model (KAM) proposed by MacKenzie in [103] is a 

descriptive model that illustrates an everyday example of interdependent controllers. 

KAM sorts the keys on a standard QWERTY keyboard into three distinct categories: 

symbol keys (deliver graphic symbols such as alphanumeric characters, punctuation 
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marks etc. to the system), executive keys (perform meta or system-level tasks such 

as the function keys, ENTER or ESC) and modifier keys (SHIFT, ALT, CTRL, etc.). 

Modifier keys establish a condition that alters the effect of a subsequent key press 

but do not immediately or directly invoke behaviours or deliver symbols in the same 

way as the other two categories. This can be categorised as the most separate method 

of using interdependent controllers – the modifier keys change the functionality of 

the symbol keys entirely (e.g. holding SHIFT capitalises simultaneously character 

entry) but the symbol keys can be operated without using the modifier keys. The 

modifying controllers augment the functionality of the basic controllers, but they are 

not required for simple tasks. 

 We can identify a further variation on this idea without leaving the 

QWERTY keyboard – keys such as CAPS LOCK and INSERT can be described as a 

hybrid between the modifier and executive key categories. Both affect the behaviour 

of subsequent key-presses while also toggling an application-level change of 

functionality. This can also be categorised as modal behaviour (covered in detail in 

4.9.2). 

 Further along the continuum of interdependency we encounter controllers 

that only function correctly when used simultaneously. Acoustic instruments that can 

be classified in this way are typically designed for bimanual operation where each 

hand performs a different task (separate selection and articulation of notes). Most 

chordophones are designed with this kind of interaction in mind. The same could be 

said of many wind instruments, where note selection (keys/holes) and articulation 

(mouthpiece) are two interaction modalities that are, in normal circumstances, 

entirely dependant on one another. In both cases there are certain musical results that 

omit one of the channels (e.g. fretboard-tapping and open notes on guitar, key-noises 
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and open notes in wind instruments) but these are the results of physical, rather than 

musical, design conventions. It is interesting to note that the Theremin closely 

adheres-to this paradigm of dual-channel control – with each hand allocated separate 

control of the instruments pitch and volume – while remaining a difficult instrument 

that requires great physical discipline to master [26]. 

 Somewhere between these two extremes we encounter occasionally-

interdependent controllers – control devices or techniques that become co-dependant 

when a certain condition is met. Examples of this kind of behaviour can be found in 

Akustich [5] (when the user’s hands cross over to trigger a distortion effect) and 

Subcycle Labs [178] (where touch points moving above/below one another switch 

the kind of effect being applied). When applied intelligently, with clear delimiting 

considerations and feedback to indicate the newly-activated interdependence of the 

controllers, this can be an elegant technique to nest a variety of behaviours within a 

system without introducing new hardware or confusing layers of functionality. 

4.8 Strategies for combining controllers 

Having clearly distinguished between independence and interdependence between 

devices in digital musical instruments, we can identify a number of distinct 

approaches towards combining their functionality. Device/hardware-specificity and 

ergonomic considerations weigh heavily on these decisions and vary massively from 

case to case – therefore the following categories assume that the designer is 

proposing a combination that is physically possibly, both from the perspective of the 

technology being used and the reasonable ability of the intended performer. 

 These definitions are not to suggest a strict categorisation of approaches 

towards combining controllers – a difficult and redundant task, given the infinite 

variety of devices and applications. However they do allow us to look a little more 
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closely at the relationships that exist between different parts of a digital musical 

instrument’s input components and assess their role in creating a satisfying and 

robust channel of communication between man and machine. 

4.8.1 No interdependence 

Both controllers affect different, unrelated parameters of the instrument. 

Included for completion – no interdependence is implied in this case. 

4.8.2 Different essential parameters 

Both controllers affect different, but related, essential parameters of the instrument. 

As seen in the Theremin example – the parameters of pitch and volume are related to 

the same sonic event and are perceptually integral. Both parameters are also 

necessary for the basic operation of the instrument. 

4.8.3 Different non-essential parameters 

Both controllers affect different, but related, non-essential parameters of the 

instrument. 

In this case, the parameters might be pitch and some kind of timbre-shaping property 

– both parameters are perceptually-integral but one or more can be deemed 

optional/non-essential in terms of the system’s priorities. 

4.8.4 Many-to-one controllers 

Both controllers affect the same parameter in the instrument.  

Data that describes the relationship between the behaviour of both controllers can be 

used – for example, the cumulative velocity of a pair of trackballs or the distance 

between two touch points. Further levels of abstraction can also be introduced to 
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invoke different types of behaviour – for example, which of the two controllers was 

activated first, which is moving faster, positioned higher/lower etc. 

4.8.5 Interactive controllers 

One controller alters the functionality of another.  

This is closest to the acoustic model, typical of chordophones, that is described in 

section 4.7. The piano sustain pedal can also be placed in this category. The 

behaviour of one device acts as a modifier – for example, a fader selects a position 

within a stored audio loop and a button triggers playback from that position. 

Depending on the context of use, and the level of influence being exerted upon the 

system as a whole, it may be helpful to categorise this strategy as modal or 

quasimodal behaviour (see section 4.9.2). 

4.9 Abstract controllers 

Alongside the control opportunities that are afforded by any physical hardware, we 

also have access to a variety of abstract controllers. These are programming 

techniques that are distinct from those summarised in 4.5 in that they are not 

designed explicitly to interpret or modify data that is generated by the user 

interacting with the hardware, although they may often be employed in that way. 

These virtual controllers provide the designer with additional tools to contextualise 

and delimit the behaviour of a digital musical instrument without requiring 

additional hardware or sensors. It must be pointed out, however, that the use of any 

abstract controllers should be clearly signposted to the user – either via some kind of 

feedback mechanism or through prior explanation – in order to avoid confusion. 
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4.9.1 Statistical variables 

Statistical variables are global values that exist separately to individual sensor 

readings, although they may be derived from or influenced by them, and usually 

have a temporal component. They can be used to imbue a digital musical instrument 

with a sense of movement and activity by fluctuating parameters in response to, or 

independent from, user input. Some examples include: 

1. Global time 

Values related to the time since the system or performance began can be 

useful in cases where the duration of the performance, and certain 

changes associated with its progress, are known. A timer can be used to 

ascertain when a new section of the performance should begin and used 

to automate some of the processes required (see also 4.9.3) 

2. Local/event time 

Smaller timers that are started in response to individual events or actions 

can be extremely useful for delimiting certain behaviours. The most 

commonly-used example is a tap-and-hold style gesture on a touch screen 

which is often used to invoke alternative behaviour. Figure 3 in [60] 

shows a wide variety of touch gestures that are differentiated from regular 

interactions using a simple time-based hold cue. This kind of cue (holding 

a posture/button/etc. for a predetermined period) is very difficult to 

perform by accident and represents a powerful way to move between 

states. However, it should be avoided in the case of rhythmic or time-

critical events that might be rendered inaccurate or flimsy as a result of 

the implied delay. Aside from providing a convenient means to construct 

delimiting functions, the values from local timers can also be useful when 
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used directly for synthesis and signal processing. For example, a sound 

that is initiated by a button press can be made to increase in volume using 

the value of a timer, with the button release signifying a note release at 

the final volume that is reached. This kind of non-obvious interpretation 

of user input can be used to give a sense of dynamics to even the most 

basic of hardware inputs. 

3. Average 

Aside from its use as a tool for smoothing noisy input data, averaging can 

be used to generate interesting values for synthesiser control. A fader 

which uses an average value, rather than its current value, to control the 

pitch of an oscillator, for example, will ‘drift’ smoothly from the 

previously-held value to its destination. This can be used to implement a 

portamento-style effect and also, at slower speeds, to free up the 

performer to concentrate on other tasks – the delayed reaction that this 

technique produces can be used like an instant form of automation 

programming, where the performer selects a value that the controller will 

move gradually towards and proceeds to concentrate on other aspects of 

the performance. 

4. Excitation/agitation 

This is a metaphorical implementation of unsettling a physical system. A 

threshold is set for a particular sensor input – for example, the velocity of 

a mouse being moved – along with a simple conditional loop. When the 

value being output from the device exceeds the threshold, an additional 

‘excitation/agitation’ value is incremented. Conversely, when the sensor 

input drops below the threshold the value decreases. This value is used 
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elsewhere to control volume, distortion ratios, effects sends, etc. 

Experimenting with different threshold positions and the rate of 

addition/subtraction to/from the excitation variable can lend a sense of 

life to properties of a synthesis or signal processing algorithm that might 

otherwise be static or linear-sounding. A simple example is described in 

5.3 of [117]. 

4.9.2 Modal behaviour  

We have already encountered the concept of modes when discussing the keyboard 

action model in 4.6 – the modifier keys (SHIFT, CAPS LOCK, INSERT, etc.) all 

alter the interaction scheme and allow the same interface, the QWERTY keyboard 

buttons, to be used for entirely-different purposes. The concept of a modal interface 

is described as follows in The Humane Interface: 

A human-machine interface is modal with respect to a given gesture 

when (1) the current state of the interface is not the user’s locus of 

attention and (2) the interface will execute one among several different 

responses to the gesture depending on the system’s current state [149]. 

Thus we can describe a digital musical instrument as modal if it comprises multiple 

states or modes that each exhibit a distinct set of behaviours and rules for the 

interpretation of user input.  

 There are mixed opinions as to the inclusion of modes in physical 

computer interfaces due to their capacity to cause confusion and ‘mode errors’ (i.e. 

any kind of unpredictable or unwanted response to user input as a result of a system 

being in a different mode than the user assumes). Many designers advocate the 

avoidance of modal systems altogether [149] and cite a preference for mapping each 

control “to a unique and consistent response” [142]. However, modes are very useful 
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for the digital musical instrument designer: a well-designed modal interface allows 

the performer to employ the same physical gestures and devices for multiple 

purposes both quickly and unambiguously. Modes can be used to reduce the number 

of gestures that a user needs to learn and also dispense with the need for extra 

devices or sensors. 

 The primary concern in such a system is the avoidance of mode errors – 

there are several pertinent strategies that can be employed: 

1. Provide immediate, clear and unambiguous feedback 

Signifying that an alternative mode has been triggered is the most direct 

and simple way to avoid mode errors. The system can alert the user 

immediately once a new mode is engaged, provide some kind of 

consistent ambient indication while it is engaged, or some combination of 

both. Visual indicators (e.g. lights, screens, colour-changes, etc.) are 

usually convenient, provided that they do not disrupt the performance, as 

they can be ignored once the user becomes proficient. Sonic cues may 

also prove useful in certain cases where the change of mode has a drastic 

effect on the sound anyway (e.g. entering a mode that applies a granular 

distortion effect on the sound) but can be disruptive or fatiguing in many 

scenarios. If it is available, haptic feedback can provide subtle 

reinforcement cues in response to user input without alerting the 

audience. 

2. Allow the user to rapidly cancel accidental mode changes 

Providing some kind of dedicated ‘escape’ button can assist the user in 

rapidly correcting a false switching of modes and returning the system to 

its previous, or default, state. One example in a popular application is the 
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use of the ESC key to exit note editing mode in the Sibelius family of 

digital notation software [167]. Both this technique and the one that 

follows differ slightly from the rest of the strategies in this section in that 

they aim to retrospectively amend errors related to modal behaviour. 

Aside from the practical benefits of rapid error-correction, this kind of 

feature can help users learn to navigate through complex performance 

systems by reducing the damage, and hence frustration, caused by 

mistakes. 

3. Allow the user to rapidly undo possible mode errors 

In cases where mode errors can potentially have a devastating result on 

the performance (e.g. deleting an entire sequence of notes or altering a 

live-looping setup) it can be necessary to provide an emergency button 

analogous to the undo function featured in most desktop applications. 

This should be immediately accessible and difficult to trigger by accident. 

For more advanced applications, the ability to save and recall various 

states can be a practical extension of this idea (4.9.4). 

4. Use quasimodes whenever possible 

Quasimodes, also known as “spring-loaded modes” [149], invoke 

changes of behaviour in a system in exactly the same sense as a mode but 

they require a conscious and sustained input cue from the user in order to 

remain active. Once more, we can refer to the key-action model and the 

concept of modifier keys (4.6) for an everyday example: the altered 

functionality modes of the SHIFT, CTRL and ALT keys are seldom 

activated by mistake because they require a constant physical effort on 

behalf of the user and cease to have an effect once the key is released. 
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The sustain pedal on a piano provides us with another good example – 

despite completely altering the behaviour of the instrument, it is seldom 

triggered in error due to the decisive physical effort required. The 

kinaesthetic aspect of maintaining a quasimode serves as a form of 

natural feedback, which further reduces the capacity for errors, but also 

necessitates a comfortable and ergonomic design in order to avoid strain 

or injury. 

5. Ensure that mode changes are clearly delimited 

The user actions that result in a transition between states or modes should 

be clearly defined and distinct (both from one another and any other kinds 

of action that use the same input channel or device). While quasimodes, 

as described above, provide a relatively safe way to accomplish this, they 

are impractical for invoking modes that are sustained for long periods of 

time due to cognitive load on the user, the compromised physical 

faculties of the user and the potential for fatigue. Careful attention should 

be given to this issue with regard to the choice of hardware, number of 

different modes and the frequency/speed with which they need to be 

changed. A robust example of a comparison between several input 

devices and their states can be found in Buxton [21]. 

6. Associate individual modes with unique gestures 

Reserving specific gestures (e.g. unique button combinations) for 

toggling modal behaviours is a worthwhile option to consider for digital 

musical instruments that require a variety of operating states. This 

presents a more abstract or symbolic approach that requires the user to 

commit a set of executive gestures and the modes associated with them to 
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memory. While this approach implies an investment of time and an 

adjustment period on the users’ behalf, there are considerable benefits in 

terms of user familiarity and the potential for layering many different 

levels of functionality without confusing. The ability to rapidly and 

unambiguously switch between a variety of layered performance modes 

in, for example, hardware samplers and drum machines has enabled 

dedicated users to develop an extraordinary level of precision and 

efficiency while generating and editing patterns and samples in real-time. 

The primary difficulty with interfaces designed in this style is that many 

of the features are obscured from the user due to the level of abstraction 

that is involved. Care must be taken, therefore, to ensure that the user has 

quick and easy access to the most salient features of the system when it 

comes to live performance. A contemporary commercial example is 

Yamaha’s Tenori-On [183] which features ten hardware buttons on either 

side of the main interface that provide access to a variety of functions – 

changing tempo, altering note lengths and octaves, transposing, etc. 

Holding the R1 button and selecting a horizontal row from the main grid 

interface changes between one of sixteen different ‘layers’ – each of 

which are pre-assigned to use one of the Tenori-On’s six distinct 

‘performance modes’, which range from a step sequencer (Score Mode) 

to more generative behaviours (Random Mode, Bounce Mode). While 

initially quite complex and overwhelming, each layer (and hence 

behaviour) can be associated with a simple two-button combination that 

allows habitual users to navigate between them with speed and accuracy. 
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4.9.3 Automation 

The concept of using time as a variable was introduced in 4.9.1 – the extent to which 

the use of system time as a cue can be classified as automation depends largely on 

the level of complexity that is involved. Without necessarily adopting this approach, 

and hence moving towards the design of a predetermined interactive score, several 

more subtle forms of automation can be used to reduce cognitive load and therefore 

permit the user to focus upon more critical aspects of the performance: 

1. Use an incrementing integer to change behaviour 

This is an extremely simple yet powerful technique. One or more global 

variables store an integer that the user can increment/decrement at will. 

These variables are used elsewhere in the code to alter aspects of the 

system – examples could be to transpose a section, alter the scale that is 

being used, change the sample bank assigned to a certain device, move on 

to the next part of a looped sequence, etc. The most powerful aspect of 

this approach is the ability to invoke a large number of changes in 

response to a simple user action. It can also be used to simultaneously 

change operating mode, as discussed above, and musical material in a 

system where the general progression of events is known in advance of a 

live performance. 

2. Count the occurrences of a particular event 

This strategy is a variation of the previous concept that uses the same 

technique of incrementing abstract counters. The difference is that these 

counters are tied to a particular event, such as a note/sample trigger, 

rather than being manipulated by the user directly. Aspects of a system 

can, therefore, be set to evolve in direct response to the performer’s 
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actions without requiring specific attention, manipulation or devices to 

control. These evolutions can take the form of anything from subtle 

drifting of sample-playback positions and reverb parameters, to more 

drastic effects such as changing the note value or volume of a particular 

key every time it is struck. 

3. Use predetermined material (micro) 

The use of pre-prepared samples, sequences, loops and patterns in live 

performance is taken for granted in most forms of electronic music. 

However it is worth declaring this strategy explicitly in order to highlight 

that the ‘predetermined material’ in question need not be audio or note 

event data. All sample-based performance systems use predetermined 

amplitude envelopes on a micro-scale to ensure smooth playback of 

samples, but the ability to define and trigger more macro-level parameter 

control envelopes is featured less frequently. Commonly-used musical 

techniques such as fade-ins/outs, crossfades, sustaining of notes, 

scrubbing through samples, and suchlike can also be automated and set to 

begin in response to a specific input device or gesture. Once more, it must 

be stated that this kind of functionality is not intended to make 

performing easier or less-human, but rather to free the faculties of the 

user in order to concentrate more fully on other aspects of the music. 

4. Allow the user to trigger predetermined events (macro) 

This technique does not refer to the use of smaller, composite parts such 

as those described in the previous strategy. The approach in question 

refers to the preparation of key transitions, musical gestures and 

transformations that are likely to form part of the overall performance at 
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some stage – a loose analogy can be made with motivic jazz 

improvisation [87]. Unlike the use of a timer or linear score, the user is 

provided with the means to trigger certain automated processes at will 

throughout the performance. This method allows complex hooks and 

progressions to be preserved and produced at will during the performance 

without restricting the user to a preset timing, duration or score. 

Obviously the boundary between this strategy and the previous is loosely-

defined and depends largely on the structure of the music and the role of 

the performer. 

4.9.4 Saving and recalling settings 

The ability to save and recall preset sounds, arrangements and parameter settings is 

typically reserved for the preparatory stages of developing a live performance – 

patches and presets are often loaded up during a show, but seldom edited and saved 

again. Interfaces for memory access on both hardware and software instruments 

generally reflect this trend, with detailed multi-level menus and file system 

navigation being the norm.  

 The only scenarios where performers typically generate, store and recall 

material onstage tend to be where live looping/sampling or sequencing is taking 

place. In such cases it is common for dedicated hardware/software to provide a set of 

quick-access banks, patches or presets that can be altered, saved and recalled rapidly 

during performance. With respect to dynamic control of a system, there is ample 

reason to explore the ability to save/recall the current state of an instrument, its 

parameters, and other abstract variables such as those discussed in this section. 

Analogous to a ‘screengrab’, ‘snapshot’, ‘bookmark’ or ‘quick-save’ in gaming and 

other media, digital musical instruments that allow the user to dynamically store and 
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retrieve information during a performance can facilitate a sense of freedom and 

complexity with regard to developing musical material live. 

4.10 Case study: LoopBlender 

 
Figure 4.3: T-EMP ensemble performance at Rockheim, Trondheim 

 

This section describes the creation of a digital musical instrument using the strategies 

defined in the preceding chapters. LoopBlender was used in a series of improvised 

performances with the Trondheim Electroacoustic Music Performance ensemble (T-

EMP) in August 2012. 

4.10.1 Background 

The T-EMP ensemble (shown in Figure 4.3) explores some of the peculiarities of 

digital musicianship through live performance and group improvisation [152]. The 

author was invited to play as a guest musician for a small tour in August 2012 with 

two days of rehearsal and two consecutive concerts – each consisting of a 50-minute 

performance comprising three sets. The intention was to bring two separate sources 

of sound – acoustic and electronic – in order to accommodate a broad range of 
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improvisatory material. The acoustic source was an unmodified shakuhachi flute, but 

it was decided that an entirely new interface should be designed for the manipulation 

of electronic material. 

 For both of the concerts in question, the ensemble consisted of: Øyvind 

Brandtsegg (Hadron partikkel synthesizer), Trond Engum (guitar & electronics), 

Bernt Isak Wærstad (guitar & electronics), Tone Åse (voice & electronics), Ingrid 

Lode (voice & electronics), Carl Haakon Waadeland (drums), Bryan Quigley 

(acoustic bass) and Patrick McGlynn (shakuhachi & electronics). The large size of 

the ensemble, improvised concert format, predominance of electronic instruments 

and unfamiliarity of the author with the group’s performance style meant that the 

development of a robust, versatile and adaptable digital musical instrument was key 

to a successful integration with the group. 

4.10.2 Design brief 

Preparation for the sessions was guided entirely by three points of interest that had 

been conveyed by the T-EMP ensemble: 

1. Emphasis upon a non-visual performance style 

Visual communication between members of the ensemble was not 

encouraged. While visual cues (both predetermined and spontaneous) 

are frequently used to communicate in improvised settings [136], the 

intention was to build a group rapport solely based-upon audio stimulus. 

2. No monitors for individual performers 

In a live concert setting, particularly where amplified and electronic 

instruments are used, it is common practice to provide a monitoring 

system to allow the performers to clearly hear their own contribution 

alongside the rest of the parts. In order to maintain a sense of focus upon 
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the overall textures and gestures taking place within the group, there 

were to be no individual monitors or mixes for the musicians. The only 

form of feedback would be a stereo mix delivered to the stage which 

would be identical to the front-of-house mix heard by the audience. 

Musicians were thus expected to be self-regulating with regard to their 

overall dynamic placement in the mix. 

3. Performers need to be able to respond quickly 

This was the most striking of the guidelines provided – the ability to 

rapidly exchange more percussive or rhythmic gestures with the rest of 

the group was made a priority when designing the performance 

interface. 

4.10.3 Hardware selection 

The ideal controller for this scenario would be lightweight, compact, and feature an 

equal mix of continuous and discrete control devices. Physical interfaces and 

traditional mechanical input devices such as potentiometers and buttons were given 

preference over digital systems due to the necessity to accommodate rapid and 

dynamic responses to fellow musicians. The Korg NanoKontrol2 was identified as 

the optimum available controller – a slimline USB mixing desk [94]. 

4.10.4 Interface components 

The interface was designed to perform sample-based synthesis using a set of 

preloaded loops. The user can individually control the volume of both a dry and 

reverb-effected signal from four separate sample banks – each of which contains six 

loops that can be muted/played independently. The loop start point and loop length 

of each bank can also be altered dynamically by the user.  
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 In addition to this main sound-generating architecture, a selection of 

articulatory tools are implemented as toggle-able master effects – including a 

killswitch, selection of filters (LP, HP, BP), bit depth/resolution reducer and 

overdrive effect. Finally, the unexpected nature of both the individual performances 

and the dynamic of the ensemble itself made the integration of a vast and varied 

sample library a necessary addition – a separate and independent ‘layer’ of banks 

was added, with an alternate selection of samples loaded into each slot, in order to 

increase the sound material available to the performer. 

4.10.4.1 Bimanual interface for selection and articulation 

 

Figure 4.4: Bimanual division of Korg NanoKontrol2 

Partly inspired by the layout of the control surface itself, and partly due to the 

intrinsic seperability of the tasks taking place (sample selection/manipulation and 

master effects triggering), a bimanual model of interaction was adopted. This 

involved an abstract division of the physical control surface into two halves: 

selection and articulation. Selection tasks (sample triggering, looping and scrubbing) 

are performed using the faders, potentiometers and buttons of the right side of the 

interface, and articulation tasks (master effects and killswitch) are performed on the 

left side.  
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This model of allocating distinct yet complementary tasks to the left and right 

hands was inspired by the research of Bill Buxton into framing and articulatory [98] 

roles in two-handed input and also Guiard’s kinematic chain model [213]. With 

regard to Guiard’s model, this instrument design represents a hybrid between the 

orthogonal and serial categories of bimanual interaction – both hands perform 

different tasks (orthogonal approach) but the output of the right-hand sample banks 

also provides the input for the left-hand effects processors (serial approach). 

4.10.4.2 Modal sample toggles with LED flags 

 

Figure 4.5: Control section for sample group A 

A wide variety of sounds from the author’s personal collection were auditioned, 

edited and categorised in preparation for the performances – including found sounds, 

field recordings, synthesized material and excerpts from compositional work-in-

progress. To facilitate rapid memorising of sample locations and enable fluid access 

onstage, four abstract categories were defined based upon the sonic qualities of the 

samples: 

 Group A: Low-frequency / low-energy sounds 

(e.g. rumbling, dense, slow-moving textures) 

 Group B: Low-frequency / high-energy sounds 
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(e.g. active, dark, rhythmic, alive textures) 

 Group C: High-frequency / low-energy sounds 

(e.g. subtle, high-pitched, gradual, airy textures) 

 Group D: High-frequency / high-energy sounds 

(e.g. busy, dynamic, shrill, cutting textures) 

Each separate category or bank is allocated a section with two faders, two 

potentiometers and six buttons. In addition, toggling the alternate bank mode gives 

access to a second layer of samples, all of which are organised using the same 

system. Each group therefore contains 12 samples giving a total of 48 unique 

samples to draw-upon. Each button on the NanoKontrol2 features an LED light that 

is used here as a flag to indicate that a given sample is active. The samples range 

from short (<5 second) clips to longer (c. 2 minutes) montages that can be scrubbed-

through and looped in different ways to generate new rhythms and textures live 

during performance.  

4.10.4.3 Touch versus toggle behaviour 

 

Figure 4.6: Sample buttons for group A 

At any given time, each bank features 6 samples that are assigned to individual 

buttons. The buttons behave as switches and use the toggle behaviour described in 
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4.5.1.3. Once activated, each button lights-up and loops a sample continually until 

pressed again. An initial prototype design used the touch strategy (4.5.1.1) but this 

was deemed impractical due to the difficult and uncomfortable hand positions that 

certain combinations of sample required. Access to more sudden, rhythmic and 

percussive gestures was delegated to the articulation section (4.10.4.6 below). 

4.10.4.4 Integrality and multiple outputs of banks 

 Figure 4.7: Master volume and reverb send for group A 

The pair of faders in each group are dedicated towards controlling a dry and reverb-

effected mix of the currently looping samples within that group. In both cases, a 

simple one-to-one mapping scheme is used. There are no individual volume controls 

for the samples themselves – each group is used as a sound collage generator. This 

approach was chosen in order to emphasise the integrality (see 4.7) of each bank in 

terms of the timbral similarity of the material (4.10.4.2). The result is a system which 

emphasises the cumulative product of each bank and thus mirrors the concept of the 

self-regulating performer defined in the brief (point 2 in 4.10.2). 
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4.10.4.5 Combined looping controllers 

 Figure 4.8: Loop start and length controls for group A 

There are 2 variables related to looping behaviour that are unique to each group – 

loop start point and loop length. These variables are controlled by pairs of 

potentiometers that are linked using the second strategy described in section 4.8: 

Both controllers affect different, but related, essential parameters of the instrument. 

Each value is controlled via one of the potentiometers and is dynamically-scaled in 

order to prevent read-errors (i.e. loop start time and length are both expressed as a 

percentage of each individual loops size). Integrating the controls for multiple loops 

within the same group in this way prevents micro-management of sample playback 

and encourages the performer to explore the sample library in search of interesting 

emergent patterns. 
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4.10.4.6 Touch strategy for articulation 

 Figure 4.9: Articulation controls 

As discussed in 4.10.4.1 above, the articulation section was designed explicitly to 

assign the left-hand to a more percussive and rhythmic role. The right-hand selection 

section tends to provide an analytical and measured way to blend the various 

samples together, so the left-hand section needed to inject a sense of immediacy and 

spontaneity into the instrument.  

 The killswitch (labelled [A] in Figure 4.9) was included as a direct result of 

the toggle behaviour used for the sample buttons (4.10.4.3). The need for two 

consecutive button presses in order to quickly start and stop a sample led to a poor 

response time when rapid bursts of silence and sound were needed. Also, the extra 

effort required on behalf of the performer was fatiguing and inelegant. Therefore a 

dedicated percussive button was introduced – the killswitch, when depressed, mutes 

all outgoing audio from the instrument. When released, playback immediately 

continues (the button uses a touch strategy, as described in 4.5.1.1). This muted state 

can be described as a quasimode, as it requires the user to physically maintain 

contact with the button, and is impossible to invoke by accident. During 

performance, the killswitch is typically operated using the thumb while the right-

hand alters the configuration of the material being looped. 



129 

 

 The layer switch (labelled [B] in Figure 4.9) uses a simple toggle strategy to 

invoke the only constant mode change within the instrument design – switching 

between the two banks of samples. Any sample-slots that are currently playing are 

replaced with their counterparts. While this prevents material from the first and 

second layers being used simultaneously, it is preferable to having loops running in 

the background that are not represented by a lit button on the device itself. Every 

loop being played is represented by a lit button. 

 Finally, the effects section (labelled [C] in Figure 4.9) comprises 5 larger 

buttons in a row, each of which activates a different effect on the master output 

channel. From left to right these effects are: low-pass filter, high-pass filter, band-

pass filter (fixed to a mid-range), bit depth/resolution resampler and overdrive. Like 

the killswitch, these effects are all quasimodes that use the touch strategy – the effect 

remains active while the button is depressed. The effects are not mutually-exclusive 

and can be triggered in various combinations for interesting and distinctive results 

(e.g. LP filter + resampling effect generally generates brittle, low textures). An 

important role of the effects is to allow the performer to instantly modify sampled 

material to fit loosely within a spectral or timbral space that is being established by 

the other performers during an improvisation. The spatial configuration of these 

buttons lends itself well to this role – the fingers of the left-hand can rest 

comfortably upon the buttons and operate them fluidly, after some practice, without 

the need for the performer to glance at the interface. 

4.10.5 Discussion 

Analysis of this case study can be undertaken with regard to two separate issues: (a) 

the effectiveness of applying the interaction design strategies developed throughout 

this thesis, and (b) the success of the LoopBlender interface itself in practice. 
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 Every sensor on the NanoKontrol2 was reappropriated in some way to suit 

the requirements of the performance. Once the intended functionality of the interface 

was outlined, the interaction strategies allowed for rapid prototyping using the 

available potentiometers, faders and buttons. For example, individual samples were 

initially activated using the touch strategy (4.5.1.1) to facilitate rapid, percussive 

play, but this was quickly deemed impractical due to both the physical layout of the 

buttons and the tendency for the user’s hands to obscure other vital controls (faders 

and potentiometers) while maintaining contact. A quick survey of the available 

strategies revealed toggle (4.5.1.3) to be a viable alternative. The touch behaviour 

was subsequently assigned to the left-hand, or articulation, section in order to 

provide a comparable amount of percussive or rhythmic control.  

 An awareness of modes and strategies for combining controllers (4.9.2 and 

4.8, respectively) led to the simultaneous and independent activation of the various 

master effects. Although the effects were perceptually very different, their similar 

method of activation and close physical location coupled them together into a single 

control modality that encouraged a particular style of play – the juxtaposition of  

various combinations of effects became associated with particular fingering patterns. 

 While the strategies proved useful and easy to apply, the instrument design 

itself has a number of shortcomings when it comes to performance. Navigating the 

sample library is heavily-reliant upon the user’s memory. This had the dual 

disadvantage of lowering reaction time and discouraging intrepid explorations 

through the samples due to the significant risk of triggering unwanted sounds. Also, 

the effects section was allocated half the physical space of the sample section and 

none of the continuous controllers (faders and potentiometers), yet it swiftly became 

apparent that its features were far more practical in an improvisatory context. A 
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direct reversal of priorities, providing more emphasis on the articulatory controls and 

effects, would possibly lead to a more versatile instrument. 

However, there were also many interesting benefits to the design. Most 

performance-oriented samplers do not provide the user with a quick, non-destructive 

means to navigate-through and modify loop points – LoopBlender facilitates rapid 

and precise modification of samples during playback without permitting the user to 

enter a distracted or analytical state. The experience of performing with this 

instrument in an improvisatory context, once the sample locations themselves have 

been memorised sufficiently, is similar to playing with a collection of found objects 

and physical sound sources. LoopBlender afforded the author the ability to partake in 

a series of long-form improvised performances, using exclusively pre-recorded 

material, without becoming repetitious or requiring a visual display.  

 It is interesting to revisit the design brief subsequent to implementing and 

performing with LoopBlender and note how the apparent-limitations of the goals in 

fact led to some liberating performance concepts: 

1. Emphasis upon a non-visual performance style 

The lack of visual communication between the improvising musicians 

meant that the instrument itself could feature a visually-complex 

interface without compromising the performer. 

2. No monitors for individual performers 

The ability of the performer to identify and modify their material 

unambiguously during performance was vital. Therefore, the clear 

organisation of samples and the ability to rapidly respond to changing 

dynamics (using both the killswitch and the faders) became vital 

features. 



132 

 

3. Performers need to be able to respond quickly 

The sudden changes and reactions that the musical style demanded led 

to a system where play modes could be quickly switched in an intuitive 

and error-free way. Once memorised, the simple toggle controls in the 

articulation section become an unambiguous and versatile expressive 

tool. 

4.10.6 Future work 

There is scope for both development and improvement with this concept in the 

future. Performance oriented samplers generally place a high priority, in terms of the 

layout of the control surface, upon turning on and off individual samples – features 

dedicated towards the editing of samples are usually restricted to a set of hierarchical 

menus. The close physical relationship between continuous controllers 

(potentiometers and faders) and discrete controllers (buttons) upon the 

NanoKontrol2 makes the hardware well-suited to a performance approach that places 

equal importance upon triggering and scrubbing through looped material. However, 

the controllers in question are amongst the most common found on music hardware – 

distributing these roles across a number of dedicated fader, potentiometer and button 

control surfaces might lead to a more evenly-distributed instrument design in terms 

of its functionality. 

 Therefore, expanding the hardware setup is a planned development for the 

future. The controller itself is lightweight, compact and ideal for mounting onto 

additional pieces of equipment. An additional button array or touchscreen device 

would expand LoopBlender’s capacity for supporting complex sample triggering 

behaviour or real-time manipulation of effects, respectively. Integration with the 
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Oscar system, as described in Chapter 6, would also greatly enhance the number of 

control modalities open to the performer. 

In response to these observations, a number of guideline questions can be 

generated in order to help musicians approach a similar interface design project in 

the future: 

1. Does the performer need to simultaneously operate a large number 

of samples? 

If so, an interface that accommodates a large number of 1D controllers 

(i.e. buttons) should be used, ideally without allocating multiple samples 

to the same controllers. Consider an alternative, ergonomic layout that 

might allow smooth playing (see 2.2 for some suggestions). 

2. Does the performer need to pay close attention to visual stimulus? 

If so, the interface should avoid using screens or other forms of input 

that rely heavily upon visual communication. Visual feedback should be 

simple, unambiguous and available at a glance (e.g. LEDs, fader 

positions, etc.). 

3. To what extent can the performer edit the loop contents live? 

If the performer just needs to trigger the loops at a set volume, a simple 

button will suffice. Additional mixer-style controls allow for some 

variation (e.g. of volume, panning, etc.) but more precise real-time 

editing, such as loop boundaries and playback speed, demand a further 

set of responsive, dedicated controllers. 

4. Is it important to be able to manipulate effects parameters? 

For more dynamic live sample processing, consider adding an additional 

control surface dedicated towards effects and parameter control. 
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Frequently used effects, such as the killswitch in loopblender, should be 

assigned to a comfortable and accurate input device. 

4.11 Conclusion 

This chapter has proposed a modular approach for the construction of interactive 

strategies in digital musical instrument design. Having established the key benefits of 

a modular system and highlighted the goals this approach aims towards, a selection 

of essential programming concepts are discussed in relation to musical application 

development. A concise comparison of predictive models and descriptive models 

reaffirms the direction of this approach. The next section takes a critical look at some 

easily-misused terminology – degrees of freedom, dimensions and resolution – and 

clarifies the distinction between them for the purposes of discussing hardware 

devices when used for musical interaction.  

Following this groundwork, a list of interactive strategies is proposed for 

both high and low-resolution controllers with one degree of freedom. These 

strategies, while quite simple, represent a new way of seeing a piece of hardware: as 

a selection of flexible devices that are open to interpretation individually and as a 

group. This perspective highlights the expressive potential of even the most basic 

devices and actively discourages the kind of simple one-to-one mapping techniques 

that were criticised in Chapter 3.These strategies form the fundamental building-

blocks of a new conceptual toolkit which is expanded-upon in the following sections. 

 Having outlined the benefits of a modular approach to digital musical 

instrument design, we looked at the distinction between controllers operating 

independently and interdependently, from the performer’s perspective, and thus 

identified a number of different strategies for combining controllers.  
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 Another important category of tools – abstract controllers – was then 

introduced to complete our model. A summary of interaction techniques that employ 

statistics, modal behaviour, automation and the saving/recalling of settings were 

discussed in terms of their ability to augment the hardware components of digital 

musical instruments. The complete model is illustrated, in brief, by the tables 

provided in Figures 4.1 and 4.2.  Finally, we took a detailed look at the design of 

LoopBlender – a sample-based performance instrument designed for use in an 

improvisatory context. The utility of the terminology we have established throughout 

this chapter is demonstrated via this case study, which employs many of the 

interaction strategies that have already been discussed. 
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Chapter 5. Recontextualising the multi-touch surface 

 

“Through eons of human evolution, we have developed sophisticated skills for 

sensing and manipulating our physical environment. However, most of them are not 

used when interacting with the digital world where interaction is largely confined to 

graphical user interfaces.” 

-Hiroshi Ishii, The tangible user interface and its evolution [72] 

 

This chapter discusses design issues for digital musical instruments which utilize 

multi-touch technology. The focus is firmly upon experimental and/or innovative 

instrument designs which engage with the users’ sense of tacit knowledge [132] and 

facilitate spontaneity and improvisation. There are four main sections: 

 Surface-based Interfaces (5.1) describes in detail the data generated by two 

popular types of controller – the XY pad and button array – and how it 

influences their use in digital musical instrument design. The multi-touch 

interface is then discussed in the same context and a summary of notable uses 

is provided.  

 Designing Multi-touch Interfaces (5.2) discusses the often-restrictive use of 

graphic user interfaces (GUIs) in multi-touch systems and suggests an 

alternative approach with an emphasis on gestural, as opposed to visual, 

interaction. 

 SurfacePlayer (5.3) describes the development of a multi-touch interface 

paradigm designed with non-graphical performance techniques in mind. This 

tool moves beyond the simple use of coordinate data to the development of 
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multi-touch interaction algorithms using a standard tangible interface 

protocol. This work became the foundation of a new interface design, 

featured in Chapter 6. 

 The conclusion (5.4) summarises the main points made within the chapter 

and describes the link between these findings and the proof-of-concept 

described in the next chapter. 

 

5.1 Surface-based interfaces 

This section consists of a review of various surface-based interfaces when used as 

musical controllers. The surfaces in question are simple XY pads, button arrays (also 

known as ‘grids’) and multi-touch surfaces. The grouping of these devices under the 

heading ‘surface-based interfaces’ is not to suggest some kind of abstract category, 

but rather to emphasize their shared physical characteristics – all are basically flat 

sensor devices which respond to human finger-touches, albeit in different ways. 

5.1.1 Historical roots 

There is a rich history of analog synthesizers designed to respond to touch – the 

Ondes Martenot (see 2.3.1), Trautonium (2.3.3), and Theremin Cello (2.3.4) all used 

precise finger movements as their primary means of control and laid the foundation 

for more contemporary devices such as the ribbon controller – a popular addition to 

performance setups since Robert Moog’s modular synthesizers (2.1.8) [26]. Pen-

based interfaces such as UPIC (conceived by Xenakis and implemented by Centre 

d'Etudes de Mathématique et Automatique Musicales (CEMAMu) in Paris) also 

inspired computer musicians to begin working with tablets. The “quantitative merits” 

of the tablet as a musical controller have been well-established, practically as well as 
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theoretically, by research carried out at the Centre for New Music and Audio 

Technologies at University of California, Berkeley (CNMAT) [224, 225]. 

5.1.2 XY pads 

The XY pad is a control surface which offers 2 degrees of freedom via its horizontal 

and vertical axes (note that the strategies outlined in Chapter 4 can augment this 

number – in this case, we are just considering the basic physical properties of the 

interface). Resolutions vary, but are typically high enough to accommodate 

continuous parameter control. The XY pad can be seen as combining the 

functionality of two faders into a single interface, as it offers simultaneous and 

independent control of two streams of data (although this comparison highlights 

some interesting differences, as discussed below). 

The Korg Kaoss Pad (1999) [91] range brought mainstream attention to the 

use of XY pads for a variety of musical tasks with a selection of high-profile users 

from genres as diverse as experimental rock (Radiohead’s Johnny Greenwood 

[221]), dance (Jon Hopkins [214]), ambient electronic (Brian Eno [215]), beatboxing 

(Beardyman [216]), and alternative rock (Muse’s Matt Bellamy [220]). The KP [93] 

range use the surface to control various live signal processing patches while the spin-

off Kaossilator (2007) series are designed for pattern recording/playback using a 

selection of onboard synthesis patches. The manual for the Kaoscillator Pro (2010) 

[92] gives a comprehensive list of the mapping schemes employed and is indicative 

of the typical function of these devices within a performance setup.  

The continuous nature of the output means that this kind of device lends itself 

well to glissandi and sweeping effects. Typical mapping schemes establish a one-to-

one connection between each axes and a pair of parameters – cutoff/resonance of a 

filter, for example, or pitch/ loudness of a synthesizer. Some interesting observations 
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upon the combinations of parameters are discussed in [168]. It has been suggested 

that any two parameters mapped in this way (i.e. controlled by a single point of 

contact from the user) have a high degree of integration [73] and should ideally 

influence closely-related elements of the sound. Of the examples given above, the 

cutoff/resonance combination is preferable as it deals exclusively with the behaviour 

of the filter and allows users to associate a particular space on the surface with a 

certain type of sound or effect. Pitch/loudness are not so closely-coupled, as they 

deal with perceptually-separate aspects of the sound, and it has been observed that 

users may find this kind of mapping less intuitive [168]. 

As mentioned above, it is worth noting a number of differences not made 

explicit in the pair of faders analogy. While the potential for simultaneous and 

independent manipulation of a pair of data streams is theoretically identical in both 

cases, there are three major differences between an XY pad and two faders:   

1. The ability to jump from one value to another while skipping the intermittent 

values (‘teleportation’) – it is possible for a user of an XY pad to break 

contact with the surface and reconnect at a higher/lower position. 

2. Lack of feedback – an XY pad does not provide any feedback (unless it is 

combined with a visual display) – a fader provides both tactile and visual 

feedback indicative of its current state. 

3. One-touch input - an XY pad can be manipulated with a single fingertip, 

whereas certain manipulations with the faders are difficult without the use of 

multiple fingers or hands.  

XY pads are typically allocated an ancillary role in a performance system – playing a 

similar role to pitch-bend/modulation wheels or controlling effects – while primary 

tasks such as note selection or event triggering are left to devices such as keyboards 
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or samplers. While they are often used to control the continuous parameters of 

various effects, it should be noted that XY pads do have a certain resolution. This 

may not be audible and depends mostly on the hardware and communications 

protocol being used.  

5.1.3 Grid-based interfaces 

A style of interface that has seen comparatively more musical experimentation is the 

grid-based layout popularized by devices such as the Tenori-On [182], Monome 

[124] and Novation Launchpad [2]. While generally represented by an array of 

separate buttons, the device is essentially a discretized version of the XY pad – 

replacing a high-resolution 2 degrees-of-freedom controller with a matrix of low-

resolution (binary) 1-degree-of-freedom controllers. The grid-interface can therefore 

be described as an array of switches. 

Given the relative lack of precision that this description seems to imply, one 

could be forgiven for assuming that the usage scenarios are comparatively less-

musical and flexible compared to those of the continuous XY pad. However, the 

opposite is true – grid-based interfaces have been employed in a vast array of 

musical tasks including sample-triggering [219], multi-effects processing [217], FM 

synthesis [125], step sequencer-control [177], visualization [196] and animation 

[197]. 

There are a number of reasons why this is the case. Firstly, the physical 

nature of an array of buttons provides a kind of tactile feedback which an XY pad 

cannot replicate. The importance of a tactile relationship between performer and 

instrument is well-acknowledged [139]. With an array of buttons, it is possible to 

discern the location of your fingers without relying upon visual feedback or actually 

triggering a reaction from the device. Secondly, many button-array controllers 
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(including those listed above) light up individual buttons in order to indicate their 

individual status or to form a collective abstract shape. This capacity for 

unambiguous, immediate visual feedback is significant, as it allows the user to 

maintain a relationship with any number of abstract variables or multiple layers of 

functionality once the corresponding symbolism has been established and committed 

to memory. Accordingly, this added channel of communication with the user 

encourages more complex multimodal systems. Finally, it should be mentioned that 

the visual appeal of the lights themselves can be a motivation for employing these 

devices in a live context, even as works of art in themselves [198]. 

Together these factors give an impression of the increased potential of the 

button array as part of a robust live performance system. What appear to be trivial 

additions (buttons and lights) are actually partly-responsible for the variety of 

creative digital musical instrument designs that employ button arrays. 

5.1.4 Multi-touch surfaces 

This section discusses approaches to musical performance using multi-touch 

surfaces within three categories – covering hardware, academic and mobile 

application development, respectively. 

5.1.4.1 Commercial hardware 

Commercial hardware for multi-touch music performance began with the 

JazzMutant Lemur [74] - a high-resolution touchscreen with a flexible and powerful 

interface editor. The Lemur arguably set the standard for multi-touch music control – 

the direct influence of its approach, from the futuristic visual style to its use of Open 

Sound Control (or OSC, see 2.9.3 or [141]), can be seen across a broad range of 

projects today.  



142 

 

While the Lemur was a generalized controller, recent trends in multi-touch 

music interfaces tend to be designed with more specific tasks in mind such as mixing 

(Line 6 Stagescape [100], KS-1974 [169], Mackie DL1608 [104]), synthesizer 

performance (Haaken Continuum [58], Soundplane [105] and Misa Kitara Era 

[121]) and portable composition (KDJ-One [82]). One notable exception is QuNeo 

from Keith McMillen Instruments [83] - a multi-touch pad controller that first 

appeared on the crowd funding site Kickstarter [84]. 

5.1.4.2 Academic research 

Academic research into multi-touch music performance is widespread and diverse. 

Projects such as the Reactable [77], Linnstrument [156] and David Wessel’s SLABS 

[207] provide interesting and progressive examples of contemporary work. One 

particularly useful online presence is maintained by the Natural User Interface Group 

– both their forum [134] and free book Multi-Touch Technologies are invaluable 

sources of up-to-date information and advice [181]. 

5.1.4.3 Mobile applications 

Mobile applications are understandably a popular way to package and 

distribute multi-touch music software. There is a vast selection of musical ‘toys’ 

available on both the iOS App Store and the Google Play store which demonstrate an 

extremely-limited range of possibilities and are accordingly of little interest to 

musicians. There have been a number of attempts at ‘serious’ instruments – most of 

which are designed to resemble an existing piece of hardware (Yamaha TNR-i [182], 

Korg iElectribe [90]), though exceptions do exist (TC-11 [180], Mugician [155]). 

Some of the more flexible musical tools available on mobile devices are 

dedicated ‘controller’ applications. These perform tasks only at the input stage of the 
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digital musical instrument architecture and produce no sound. Instead, the users’ 

interactions with onscreen widgets prompt the device to send data wirelessly to a 

computer via protocols such as MIDI (2.9.1), OSC (2.9.3) and TUIO (2.6.9) [79]. 

The host computer can then use this data to control synthesis or signal processing. 

While a number of applications are specifically designed to complement 

existing hardware or software (DL1608 Master Fader [104], V-Control Pro [193], 

Omni TR [138]) the majority of controller applications allow the user to customize 

the layout of the screen in some respect – for example, to accommodate alternative 

keyboard layouts (Musix [114], ExpressionPad [48]). Most applications consist of a 

widget-based GUI - in this case the screen forms a canvas which can be populated by 

a selection of pre-designed faders, buttons, dials and touchpads (Control [27], mrmr 

[126], TouchOSC [186], Lemur [99]). This approach to musical performance using 

multi-touch technology is by far the most popular due to its relative ease-of-use and 

familiar visual associations. 

5.2 Designing multi-touch interfaces 

5.2.1 Rethinking the GUI 

As outlined above, the most popular way to design multi-touch user-interfaces is via 

a toolkit of widgets that provide typical GUI-like elements such as windows and 

menus. For musical interfaces, these toolkits usually contain a selection of hardware-

inspired widgets such as faders, dials, drum pads, etc. While multi-touch interfaces 

often resemble typical GUIs, there are vastly different design issues that need to be 

considered. These issues are well-established and have been under investigation for 

many years (see [159] for a comprehensive introduction and the work of Bill Buxton 
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[23] for more detailed analysis). We must be cautious not to blindly apply design 

strategies that are ill-suited to the medium of multi-touch itself.  

The explanation can be illustrated with a comparison to music controllers in 

general. A well-established criticism of MIDI interfaces has been their over-reliance 

upon the piano-keyboard metaphor, which by its nature cannot accommodate many 

of the features unique to synthetic sound (freedom from discrete pitch-structures, 

continuous control over timbre, etc.). There are many practical reasons, however, 

why the keyboard interface dominates – the most prevalent being that it allows 

pianists to leverage their existing musical skills and explore new sounds by 

interacting with a wide range of hardware/software [120]. It is for this reason also 

that basing a new controller or synthesizer around the keyboard interface represents 

less of a financial risk to manufacturers, causing some speculation as to the 

developmental distortions that can arise when commercial interests influence the 

evolution of musical interfaces [120]. 

For the same reason, it makes perfect sense for designers of new digital 

musical instruments to adhere to familiar GUI/WIMP (Windows, Icons, Menus, 

Pointers) paradigms. These design clichés allow us to exploit several decades-worth 

of embedded cultural and technological knowledge in our interfaces and there are 

abundant resources which enable us to do so. However, in much the same way as the 

piano keyboard was not designed to accommodate continuous pitch changes or 

gradual manipulation of timbre, the GUI was not designed with multi-touch input or 

live music performance in mind. 

The GUI paradigm has been optimized for use with a keyboard and mouse 

combination – it is therefore misguided to adopt this style of interaction on multi-

touch surfaces without any modification [69]. There are arguably some benefits to 
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using a multi-touch GUI in performance – the inability of a mouse to manipulate 

more than one onscreen object simultaneously is a limitation that the multi-touch 

surface does indeed surmount. However, there is a vast array of negative 

repercussions – for example, over-reliance upon visual feedback, tendency for users’ 

hands to obscure the screen (and hence, the only source of feedback) and the 

rigorous precision demanded by most multi-touch GUIs make them a less-than-ideal 

solution for live musical performance.  

Widget-based GUIs by their very nature encourage one-to-one mapping and 

tight-coupling at the procedural stage of digital musical instrument design – both 

restrictive approaches that lead to systems bound by ‘the instrumental paradigm’ [69, 

86]. This kind of design approach imposes a cognitive load on the user which can 

impair their level of engagement with the performance, especially when other 

musicians are involved. It has been acknowledged that the emergence of social 

affordances during music-making can be seriously compromised by tightly-coupled 

digital musical instruments [85]. 

This is not to suggest that robust and innovative GUI-based digital musical 

instruments cannot be designed for multi-touch surfaces. Rather it is being proposed 

that we should investigate, with equal vigour, the possibility of creating new 

interaction paradigms that best exploit the unique properties of the multi-touch 

surface as a performance interface.  

5.2.2 Beyond the GUI 

Interactions with multi-touch surfaces generate extremely rich data. A cursory glance 

at the capabilities of any multi-touch device which uses, for example, the TUIO 

protocol allows us to infer the following: 
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 The location of individual fingers at any given point in time 

 Whether or not the surface is being touched 

 The total number of fingers in contact with the surface 

 The distance and angle between any of these points 

 The location, area, perimeter and shape of a space defined by these points 

 Whether or not a point is static or moving 

 The speed at which a point is moving 

 The direction in which a point is moving 

 The length of time a point has been present on the surface 

 The previous movements and average position of a given point…etc. 

This list serves to illustrate the problem with widget-based music software on a 

multi-touch platform. Such environments solely employ the first point above, the 

location of individual fingers at any given point in time, to interact with various 

onscreen widgets such as buttons, faders, etc.  The other types of data outlined 

above, while they might appear abstract or trivial, can in fact be combined in a wide 

variety of ways to create rich metaphors and gestural cues. It is plain to see how, in 

terms of designing software for a role as potentially nuanced as musical 

performance, the dominant GUI-based approach fails to utilize the available data in 

an intelligent manner. 

There are many resources which can help digital musical instrument 

designers to access this data – Reactivision [151], TUIO [187], CCV [133] and the 

NUI Group all provide a variety of tools for accessing raw touch data and generating 

higher-level information such as speed of travel, point history, etc. A number of 

interesting projects have sought to utilize this data for musical performance and 

fittingly treat the multi-touch surface as a complex and sensitive tool rather than just 
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a novelty controller. Kevin Schlei’s MDrumSynth and MStretchSynth both rely 

heavily upon relationship-based analysis for multiple parameter control [161] and his 

iPad app TC-11 presents a customisable synthesiser engine that is especially 

designed to respond to multi-point performance [180]. Balz Rittmeyer’s Akustisch 

recognizes and responds to a selection of expressive gestures using an elegant 

interpreter [5]. Christian Bannister’s Subcycle Labs cleverly analyses the number of 

touches present on the surface to toggle various DSP effects [178]. However, the 

vast majority of applications fail to make use of this data in any meaningful way.  

One possible reason is the volatility of geometrically-derived data. Some of 

the examples mentioned use algorithms that calculate, for example, the angle to the 

previous point or the distance to the first touch. There is a danger in mapping this 

kind of data to any kind of prominent synthesis parameter as it is highly-dependent 

upon the order of touch initialization upon the surface – two perceptually-identical 

gestures can quite easily result in the establishment of totally different point-

relationships.  

Another reason is the difficulty of implementing high-level ‘gestural’ 

response systems. Anyone intending to design a gesture-based multi-touch digital 

musical instrument must have, at the very least, a competent grasp of the hardware 

and protocol being used, coordinate geometry and intermediate programming 

concepts such as event handling, control flow and multi-threading. This overhead is 

a significant deterrent to any musician, composer or performer who wants to explore 

multi-touch interaction. There are many solutions which offer high-level gesture 

support, but none specifically-designed for musicians. 

 Figure 5.1 is a purely illustrative graph which places some popular 

approaches to multi-touch music control on a two-dimensional continuum. The 
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different systems are situated according to the programming expertise required 

(vertical axis) and how closed-off they are (horizontal). Naturally, these systems all 

function very well in certain contexts – the purpose of this diagram is to suggest how 

these approaches relate to one another and also to establish a point at which there 

may be a deficit of resources. 

 

Figure 5.1: Comparison of development options for multi-touch musical apps 

We can hypothesise that the area in the lower left of the diagram is an ideal 

space to aim for when developing tools for digital musical instrument design. An 

approach that could be placed within this area would allow more freedom to 

experiment, with less specialist requirements and prescriptive boundaries influencing 

the design process. 

The ability to engage in reflective practice is indispensable to the digital 

musician [67] – therefore, a fluid transition from evaluation to implementation (and 

indeed all stages of the digital musical instrument design cycle) is vital [13, 140]. 

Tools which allow rapid and transparent development ensure that the designer can 

concentrate upon the critical aspects of mapping and user experience.  
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5.3 SurfacePlayer 

This section describes SurfacePlayer – a project which was developed in order to 

explore the space identified above. It is designed with non-graphical interaction 

techniques in mind – treating the multi-touch surface as a sensitive data-gathering 

device rather than a canvas for widget-based interactions. This was the first step 

towards developing research tools which will enable future studies into multi-touch 

interface design for music performance and subsequently inspired the creation of a 

standalone app, Oscar, which is described in-depth in Chapter 6. 

5.3.1 Aims and objectives 

One of the main reasons for the relative scarcity of experimental interfaces, such as 

those mentioned above, is the amount of work required to analyse the data generated 

by the multi-touch surface. The requisite knowledge of basic networking, control 

flow, geometry and human-computer interaction serves to form a significant barrier 

for even the most experienced users. While there are plenty of libraries and 

applications available to obtain raw touch data, there is a lack of support for high-

level data which may prove to be more perceptually-relevant in a live performance 

context. 

The objective of SurfacePlayer was to develop a modular set of tools to 

facilitate the construction of expressive touch-based performance interfaces. A set of 

high-level interpretive tools, devised specifically with musical interaction in mind, 

could allow designers to concentrate their attention on more musically-critical 

aspects of the interface, such as mapping, and encourage more experimentation with 

multi-touch music performance.  
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5.3.2 Dependencies 

The algorithms for SurfacePlayer were developed within Processing – an open-

source creative coding platform launched by Casey Reas and Benjamin Fry in 2001 

[146]. The language is based upon Java but features a simplified syntax and 

emphasis upon graphics to help non-programmers learn to code. Processing is 

especially popular amongst graphic designers, musicians and visual artists. 

 The Tangible User Interface Objects protocol, or TUIO, was initially 

developed as part of the Reactable project at Universitat Pompeu Fabra [77]. The 

TuioObject class handles data for tangible interface objects (such as the coloured 

blocks of the Reactable) and the TuioCursor class is used to represent user 

touches directly upon the surface itself. The SurfacePlayer algorithms were designed 

to derive high-level gestural cues from TuioCursor data sent from an external 

interface (in this case, a tablet device). 

5.3.3 Implementation 

The project comprises a selection of algorithms which generate high-level 

information in response to multi-touch data. This information can be quickly 

accessed via concise function calls, thus allowing the user to circumvent a 

considerable amount of programming. 

Prior to this work, designers using Processing were restricted to the use of 

raw data which describes the coordinates, speed and path history of a point, for 

example. Hard-coding even simple gestures using this raw data can be a time-

consuming and tedious process. The SurfacePlayer algorithms assist in this process 

via a selection of functions that represent common multi-touch gestures – such as 

taps, flicks, etc. These are set to receive TUIO data and check for certain conditions. 
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When these conditions are met, a gesture is recognized and relevant data related to 

that gesture can be used within the performance patch. 

For example, in order to infer the direction of movement for a given touch, 

it has previously been necessary to undertake a cumbersome analysis of the path 

history and the average angle between points (or, alternatively, devise an algorithm 

which infers the direction based upon the relative speeds of X and Y-axis 

movement). Similarly, an action as ubiquitous as a ‘multiple-tap’ (where taps made 

using more than one finger are differentiated) requires an analysis of touch 

coordinates, birth/death time and the use of multithreading in order to be of any 

practical use. The complexity of these processes is likely to discourage the 

widespread use of the often useful information which they can generate. 

In response to this issue, the SurfacePlayer functions allow access to this 

kind of information using succinct and easily-readable commands such as 

movementDirection() and multiTap(). This made it possible to experiment 

with different combinations and sequences of cues which were previously difficult 

and time-consuming to implement. 

The functions are all defined separately in the code, allowing for the 

possibility of user-defined algorithms, and are compatible with existing TUIO 

implementations for Processing. 

5.3.4 Example of use 

This section describes how SurfacePlayer was integrated into the architecture of a 

prototype multi-touch music performance system. 

A typical use of SurfacePlayer may be broken into three distinct 

components – the input layer, interpretation layer, and output layer. These layers are 

illustrated in Figure 5.2 and described in the following sections. 
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Figure 5.2: SurfacePlayer in use 

5.3.4.1 Input layer 

This layer consists of any device, or number of devices, capable of generating TUIO 

data in response to user gestures. In the example above, an iPad running the open-

source application TuioPad [188] sends multi-touch data to a computer via a wireless 

network. TuioDroid[189], available on Android devices, is also open-source and free 

to download. 

 The TUIO protocol was chosen due to its flexibility and active user 

community. It also renders the system hardware-independent – allowing the 

algorithms implemented within SurfacePlayer to be used with any device capable of 

outputting TUIO-formatted cursor data. 
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5.3.4.2 Interpretation layer 

The composite elements of this layer are implemented within the Processing 

development environment. The Processing TUIO Client API [80] listens for 

incoming TUIO events and generates data related to touch positions, such as time 

tags and coordinate paths. This data is subsequently interpreted by the SurfacePlayer 

functions which are called from within the user-created performance patch. 

5.3.4.3 Output layer 

According to the needs of the user, the gestures described by SurfacePlayer’s 

functions can be used to send OSC or MIDI data to other applications. Generating 

simple visual feedback in response to these gestures is easy to implement using 

Processing itself; projected or displayed on a convenient screen during performance, 

this feedback can eliminate the need for a performer to look down at the surface 

itself constantly while playing. 

5.3.5 Results 

The SurfacePlayer algorithms provided easy access to some of the most commonly-

used multi-touch cues – such as tap and double-tap recognition, multiple-taps 

supporting up to ten fingers, and directional swipes of varying speeds. They could 

also be used to determine the surface area, diameter, centroid and perimeter of 

shapes formed by surface touches. These cues were combined in complementary 

ways, using the strategies described in previous chapters, to investigate the 

feasibility of creating novel and expressive musical interfaces based mostly around 

multi-touch gestures.  

 While the architecture described above was useful as a prototyping platform, 

it became apparent that the highly specific components and investment of time 
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required to design a new interface using the software might be a significant deterrent 

for potential users. A more tightly integrated system, with specific musical 

functionality, would represent a more efficient and elegant way to utilise the 

algorithms for musical performance. This new system, Oscar, represents the final 

embodiment of the research described so far in this thesis and is discussed in detail 

in Chapter 6.  

5.4 Conclusion 

This chapter has discussed in detail many of the design issues particular to digital 

musical instruments that employ multi-touch surfaces. Through a comparison with 

two other touch devices that are used in a similar context – the XY pad and button 

array – we have looked at how the implicit physical characteristics of a device exert 

a strong influence upon their optimum role within a live performance context. A 

more detailed look at specific musical applications of multi-touch technology in 

recent years allows us to paint a picture of accepted design conventions. 

These conventions are challenged on the grounds that they are not ideally-

suited to the means of interaction provided by multi-touch technology and tend to 

overlook some of the more unique properties of this kind of device – in particular, 

the rich gestural cues that can be inferred from point data. Several unusual music 

interfaces are cited as examples that demonstrate successful alternative approaches. 

An explanation for the markedly-conservative design conventions is offered 

by identifying a gap in the selection of development tools that are open to musicians 

using multi-touch. SurfacePlayer, a set of algorithms implemented in the Processing 

development environment, is introduced as a first step into exploring this promising 

space. The work described in Chapter 6 carries on directly from these findings and 
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attempts to establish a stronger grasp upon the concepts of non-visual-centred 

interfaces that have been established over the course of this chapter. 
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Chapter 6. Designing a new multi-touch instrument 

 

“Often overlooked is the need to work on an instrument that responds sufficiently to 

the nuances of touch.” 

-Boris Berman, Notes from the pianist’s bench [14] 

 

This chapter describes the development of a new multi-touch interface called Oscar 

that is designed especially to facilitate the creation of multi-layered performance 

tools using the model established in Chapter 4.  Oscar is a generic controller and 

stand-alone synthesizer for tablet devices that uses a novel non-visual interaction 

model inspired by the research described in this thesis. We discuss the motivation for 

designing Oscar, establish an explicit list of design goals, and describe in detail the 

various interface features at the heart of the software. This chapter concludes with a 

description of DroneTilt – an example of an alternative performance instrument 

designed with Oscar – and a description of how the interaction strategies described 

in Chapter 4 can be implemented using Oscar’s gestural interface. 
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6.1 Introduction to Oscar 

 

Figure 6.1: Oscar running on a 2
nd

 generation iPad – the graphical feedback 

represents user touches, groups of touches and their centre-points, discreet zones 

and the direction of movement 

Oscar is a music synthesizer and OSC controller that runs on iPad and Android. It 

utilises a unique interface paradigm that relies exclusively upon multi-touch gestures 

- there are no widgets or GUI controls employed during play. Oscar is powered by 

the audio programming language Csound [33] which can be used to generate and 

process sound in response to user input. Dropbox [41] is also integrated into the app 

to enable users to easily import their own Csound code and audio files. All of the 

data generated in response to user input can be sent to external hardware/software 

via OSC messages over a wireless connection - allowing remote control of other 

music software, synthesizers, graphics, etc. 

 Oscar was designed to test the viability of the descriptive model that we have 

already established (Chapter 4) and serves to demonstrate how this approach can 

maximise the musical potential of the output from a given piece of hardware. Note 

that the same ideas could be applied to any type of interface and not just multi-touch 
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devices. Also, while Oscar might have the potential to facilitate more ergonomic, 

minimalistic interaction styles (due to the simplicity of its gestures and the rich data 

they produce) it is, in essence, a development environment. It is intended that 

Oscar’s flexible interface will provide ample room for experimentation with new 

approaches to music control using tablets.   

6.2 Design objective 

The overall goal of Oscar is to provide electronic musicians - composers and 

performers - with an elegant, portable and highly-customisable tool for live 

performance using multi-touch surfaces. Existing solutions were either too complex 

(programming a gesturally-controlled music app from scratch) or too simplistic 

(commercial music apps with a particular performance or musical style in mind) to 

accommodate the digital musician who wants to experiment with the multi touch 

surface as a unique interface in its own right. Achieving this balance between 

complexity and accessibility is essential for a new musical interface – under the right 

circumstances, the user will gradually adapt the controller to suit their own musical 

needs and therefore prolong its lifespan [25]. 

Through experimentation with various techniques of multi-touch music 

control, and a comprehensive study of existing research, a number of explicit design 

goals were identified and implemented. It was decided that, in order to offer a 

genuinely useful platform for musical interface development, the app must provide a 

number of key features. To summarise, Oscar must: 

 Incorporate an entirely gesturally-controlled performance mode that does 

not rely upon platform-specific widgets or GUI elements 

 Ensure that performance mode cannot be interrupted by the accidental 

opening of menus, options, etc. 
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 Provide graphical feedback relating to the processing of user input and 

allow users to change the visual layout for aesthetic and/or feedback 

purposes 

 Allow users to easily import their own Csound programs and audio 

material for rapid prototyping [13, 54] 

 Allow users to quickly switch programs ('hot-swapping') during 

performance without needing to negotiate through the menu 

 Be accompanied by a clearly-commented and easily-customisable 

template 

 Allow users to employ the iPad's built-in sensors in their program designs 

(i.e. easy access to accelerometer and gyroscope data) 

 Send gesture data via a wireless connection for control of external audio 

and visual software 

The following sections describe, in order, how each of these features were 

implemented. 

6.3 Gestural interface 

This section contains an explicit step-by-step explanation of how Oscar processes 

user input. The interface was designed and modified over a lengthy period to 

accommodate the largest number of unambiguous, data-rich and complementary 

gestures possible. 

 The system organises individual persistent touches (i.e. fingers) into groups 

called ‘clusters’ which represent the users’ hands. The process by which this is 

achieved is laid-out below in section 6.3.1. This concept leverages the users’ own 

intuitive knowledge about the movement of their hands and gathers data about the 

kind of gesture being performed. This data is made accessible to the user via 
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variables defined within the Csound template (see 6.8) or output over a wireless 

network (6.10). 

Unlike many other multi-touch gestural systems there are no separate events 

that represent, for example, pan/drag or pinch/zoom gestures. The information 

required to invoke musical behaviour in response to these gestures is indeed present 

(see the definitions of kdirection, kvelocity and kisZooming in 6.3.1. 

below) but the way that it is utilised is very much left up to the designer of the 

Csound code. There are several reasons for this – chiefly, the goal of Oscar to 

circumvent interface paradigms such as these that were created solely to interact with 

graphical systems and also the desire to accommodate users who wish to experiment 

with new approaches to multi-touch musical control.  

Positional information, where applicable, is given by a point in two-

dimensional space. The x and y values are translated from the native coordinate 

system of the iPad’s own sensors to a range between 0.0 and 1.0. All positional data 

is recorded in pairs – i.e. the current position and the last position. This is an 

alternative to keeping a complete point history, most of which will never be used, 

which still allows the accurate detection of all the gestures that Oscar 

accommodates. The origin of the native coordinate system of Oscar is located at the 

top-left corner of the iPad itself in a landscape orientation. This is fixed and 

unaffected by device movement (analogous to the ‘screen-lock’ option present in 

many apps) in order to accommodate the fullest possible use of the other motion 

sensors in the iPad (see section 6.9). 

The Oscar interface responds to four different gestures: clusters, touches, 

taps and flicks. These are perhaps best described as four varieties of event, each with 
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a selection of unique properties or attributes (although some properties, such as x and 

y location, are common to all four). Each gesture is described in detail below. 

6.3.1 Clusters 

 

Figure 6.2: Two separate clusters, represented by large green circles that 

encompass the user’s individual finger touches (shown as smaller grey circles) 

The cluster abstraction is a key component of the Oscar interface. A cluster is a 

group of individual touches, where a touch is a persistently-tracked point with a 

unique ID that represents a finger making contact with the surface. The purpose of 

the cluster is to act as an abstraction of the user’s physical hands. This allows a 

variety of high-level data relating to the group of touches to be calculated and 

subsequently interpreted by the synthesis engine. Each cluster is a continuous entity - 

its properties are updated constantly throughout its life-cycle – that is represented by 

its own instrument in the Csound environment. Therefore, events like cluster 

creation and destruction can be used to trigger various behaviours without the need 

for any separate ‘cluster-is-created/destroyed’-style events. 

A maximum of two clusters can exist at any given time. Each cluster can 

accept up to five separate touches, which are added according to their distance to the 
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cluster centroid. There is a very brief intentional delay between touches arriving on 

the surface and cluster creation/modification – this is to facilitate the independent 

articulation of discrete gestures, such as taps and flicks, without invoking musical 

behaviour associated with clusters (see 6.3.3. and 6.3.4.). A cluster is destroyed if all 

of its touches leave the surface. New clusters are created when a touch is added to 

the surface and one of the following conditions is met: 

 There is no other cluster present 

 In the case of there being one other cluster present, the touch is too far away 

to join it  

 The nearest cluster contains five touches and cannot accept any more 

Each cluster has the following properties (note the use of Csound variable name 

formats, where an i signifies an initialisation-time variable that does not change 

during play and a k signifies a control-rate variable that is updated dynamically) – 

iclusterID, ix, iy, izone, izonex,izoney, inumTouches,kx, ky, 

kzone, kzoneX, kzoneY, knumTouches, ksize, kdir, kvel, 

kisHeld, kisZooming. Each property is described in detail as follows: 

 iclusterID (int) – the unique identifier of the cluster. 

 ix, iy (int) – the centroid of the cluster at the time of its creation. This is 

calculated by averaging the position of each touch contained in the cluster. 

The centroid is therefore given by:  

 

Where n is the number of touches in the cluster. Note that n cannot equal zero 

as a cluster must contain at least one touch.  
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 izone, izoneX and izoneY (int) – integers that represent a discretised 

location upon the surface where the cluster centroid was located at the time 

of its creation. The default settings divide the surface into 12 distinct zones in 

a 3x4 matrix (assuming portrait orientation). The izoneX and izoneY values 

provide convenient access to the column and row values respectively. 

 inumTouches (int) – the number of touches contained within the cluster at 

the time of creation. 

 kx, ky (int) – the current centroid of the cluster. See notes for ix, iy 

above. 

 kzone, kzoneX and kzoneY (int) – the current discrete location of the 

cluster centroid. See notes for izone, izoneX and izoneY above. 

 knumTouches (int) – the number of touches currently contained within the 

cluster. 

 ksize (float) – a numerical value that represents the radius of a circle 

whose centre point is the cluster centroid and which contains the position of 

each touch in the cluster. If the number of touches, n, equals one then size = 

0.1. Otherwise size is given by the distance from the centroid to the touch 

position which is located farthest away from it. This value is multiplied by a 

scaling factor in order to scale the largest comfortable hand span to equal 1.0. 

This scaled value cannot exceed 1.0. 

 kdir (int) – the current direction the cluster is travelling in. The direction is 

represented discretely by one of several integer values representing the 

cardinal (N, S, E, W) and intercardinal/ordinal (NE, SE, SW, NW) directions. 

While the cluster is in motion, this value ranges from 1-8 in a clockwise 

fashion where 1=N, 2=NE, 3=E, etc. When the cluster is static kdir=0. 
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 kvel (float) – a numerical value denoting the speed at which the centroid of 

the cluster is moving. This can be used, in combination with kdir, to delimit 

behaviour that might be expressed via a panning/dragging movement. The 

speed is expressed in positional units per second. This value is normalised, 

for convenience of mapping to musical parameters, and cannot exceed 1.0.  

 kisHeld (boolean) – a true/false value which specifies if the cluster has 

remained stationary since its creation. This is determined by checking how 

far the centroid has moved since its initial creation values. There is a margin 

of error to accommodate natural slight movements (<0.05 positional units) 

and a time delay (2 seconds) between the cluster creation time and the setting 

of this variable state.  When the kisHeld check is successful, the value is set 

permanently (i.e. until the cluster is destroyed) and the graphical feedback 

that represents the cluster changes colour to reflect the fact. The user is then 

free to move the cluster without cancelling the kisHeld state and any audio 

processes that might be associated with it. 

 kisZooming (boolean) – a true/false value that indicates whether or not the 

size of a cluster is increasing or decreasing. There is a small margin of error 

to accommodate natural fluctuations on behalf of the user or sensors. This 

property exists as an alternative to explicit ‘pinch/zoom’ gestures common to 

multi-touch systems – users can, if needs be, make use of this value to delimit 

certain behaviours without cancelling or overriding other gestures associated 

with the cluster. 
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6.3.2 Touches 

 

Figure 6.3: Individual finger touches represented by grey circles 

Touches represent individual fingertips in contact with the multi-touch surface. 

Unlike many other gesture-recognition systems, touches in Oscar are not 

‘swallowed-up’ or consumed when they join a cluster or become part of a gesture. 

This gives the user a great deal of freedom when designing a Csound program – if 

the interface in question requires individual touch data, but no clusters, the user 

simply ignores the cluster data in the code (and vice versa). As stated in the cluster 

definition above, this gives a great deal of flexibility and contributes to the non-

prescriptive flavour of Oscar. 

 Another important benefit of giving the user access to touches that are 

independent of taps, flicks and clusters is the immediacy they provide. As described 

in the following section (6.3.3.), tap recognition involves a certain latency that may 

be unsuitable for rhythmic or time-critical event-triggering. It is recommended that 

the touch gesture is used for any events that require precision timing. 
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 Touches are also represented by individual and unique instrument-instances 

within Csound with the following properties - itouchID, ix, iy, izone, 

izonex,izoney,kx, ky, kzone, kzoneX, kzoneY: 

 itouchID (int) – the unique identifier of the touch. 

 ix, iy (int) – the location of the touch at the time of its creation. 

 izone, izoneX and izoneY (int) – the discrete location of the touch at the 

time of its creation. See equivalent description in 6.3.1. 

 kx, ky (int) – the current location of the touch. 

 kzone, kzoneX and kzoneY (int) – the current discrete location of the 

touch centroid. See equivalent description in 6.3.1. 

6.3.3 Taps 

 

Figure 6.4: A tap event being recognised 

The ubiquitous tap gesture common to most touch-screen devices. Taps in Oscar are 

discrete, one-off events that launch a brief (0.05 seconds) instance of a dedicated 

Csound instrument. This gesture is perfectly-suited to the triggering of 

samples/notes/events, changing modes, toggling various effects, etc. 
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There are two important points to note regarding the way Oscar processes tap 

events. Firstly, there is a small intentional delay between a touch arriving upon the 

surface and cluster-related behaviour (i.e. the touch being added to an existing 

cluster or forming a new cluster of its own). This allows the user to perform swift tap 

events without triggering any behaviour related to clusters – the graphical feedback 

clearly shows the brief delay between touch addition and cluster activity. Secondly, 

there is a further latency between tap performance and recognition that is necessary 

to allow the Oscar to recognise multi-finger taps. While the ability to accurately 

differentiate between taps of up to 5 fingers opens up many options for the designer, 

the inevitable latency may prove troublesome when it comes to time-critical event-

triggering (e.g. MPC-style sample-triggering, playing notes like a piano, etc.). For 

this reason it is strongly-suggested that rhythmic activity is triggered using touch 

events (as described in 6.3.2.) and that taps are reserved for making more global 

decisions or triggering quantised samples, for example. 

Tap events have the following properties - ix iy izone izoneX izoneY 

inumTouches: 

 ix, iy (int) – the location where the tap was performed. This is obtained by 

calculating the average position of the taps constituent touches using the 

cluster centroid formula as described in 6.3.1. 

 izone, izoneX and izoneY (int) – the discrete location of the tap. See 

equivalent description in 6.3.1. 

 inumTouches (int) – the number of fingers used to perform the tap. 
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6.3.4 Flicks 

 

Figure 6.5: A flick event being recognised 

The flick gesture is similar to tap in that it is a discrete, once-off event with a short 

duration (0.05). The only difference from an articulatory standpoint is that the user’s 

touches deviate significantly from the initial point of contact prior to leaving the 

surface – hence the additional direction property. All considerations related to timing 

and latency using the tap gesture are equally-applicable here.  

Flick events have the following properties - ix iy izone izoneX 

izoneY inumTouches, idir: 

 ix, iy (int) – the location where the flick was performed.  

 izone, izoneX and izoneY (int) – the discrete location of the flick.  

 inumTouches (int) – the number of fingers used to perform the flick. 

 idir (int) – the direction of the flick. See the description of kdir in 6.3.1 
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6.4 Hidden menus 

    

Figure 6.6: Accessing the hidden menu 

Oscar was designed specifically to facilitate experimentation and non-standard 

performance techniques - therefore, it was vital to ensure that a performance could 

not be disrupted by a user accidentally switching out of performance mode and into 

the menu system. Other full-screen apps place menus on the edge of the screen 

(Mugician [154]), provide a small icon that requires a double-tap (TC-11 [180]), or 

use a shaking gesture (TUIOpad [188]) to access options while still retaining most of 

the screen real-estate for actual gesture performance. The first two options were 

considered inappropriate, given the emphasis on non-visual interaction at the heart of 

the gesture engine itself, and the shake-to-exit approach would make it impossible 

for musicians to fully-utilise the gyroscope data in their performance programs. 

After considerable experimentation with a number of gestures, a hybrid 

approach was chosen to allow access to the menu without compromising the main 

performance area or risking accidental activation. Rather than reserve a specific 

gesture, and therefore prohibit its use for actual performance, a combination of 

location, movement and time data is used. The user must place a single touch in the 

extreme top-left hand corner of the screen (location) and keep it reasonably still 
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(movement) for a count of two seconds (time). The touch point also appears red to 

signify that the user is about to open the menu. 

In practice, this has been a successful solution - the menu is easy to open 

once the user has learned how to do so and almost impossible to trigger by accident. 

The highly-specific nature of the gesture itself makes it unlikely to compromise any 

design that a programmer might have. 

6.5 Customisable graphical feedback 

 

Figure 6.7: Graphics selection menu 

Early iterations of the Oscar concept [118] did not feature any graphics - with all of 

the options hidden in the iPad's Preferences menu. This proved unsatisfactory for 

many reasons but mostly made it difficult for a user to comprehend how the system 

perceived his/her actions onscreen.  

The initial priority during design was to visualise as many aspects of the 

gesture processing activity as possible - for debugging and fine-tuning the engine. It 

quickly became apparent that too much information might also be a problem - for 

example, seeing the individual touches represented graphically in a performance 
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patch that only uses clusters might obscure the process and confuse performer and 

audience alike.  

Therefore a customisable graphics feature was added in order to allow users 

to select from a range of colour schemes and data visualisations. This feature also 

supports the idea that Oscar is not limited to a particular genre of music or style of 

performance - combinations can range from the subtle, to the informative, and to the 

futuristic and garish, as the performance context demands. 

6.6 Import user programs and audio 

 

Figure 6.8: Dropbox menu 

Oscar’s behaviour is determined by customisable code written in the Csound Unified 

File Format (often abbreviated to, and hereafter referred to, as a CSD file [35]). 

These files can be easily created and modified using the template designed especially 

for Oscar (see 6.8 below). 

Programming even a simple CSD for Oscar typically involves an iterative 

trial-and-error approach, as different gesture types are combined with different audio 

outputs and bugs/typos are hunted down. It was vital to ensure that the process of 
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downloading and testing a new version of a CSD is as simple, easy and fast as 

possible.  

By syncing up the app with their Dropbox account, users can store their CSD 

files in a Dropbox folder, open and edit them using another app or computer, and 

simply press 'update' in Oscar's menu when they want to download and test their 

code. Audio files are stored and retrieved in the same way which allows users to play 

and process pre-arranged material in their Oscar patches. 

6.7 Hot-swapping of programs 

 

Figure 6.9: Selecting a hot-swappable program 

The ability to switch patches or presets fluidly during performance is a key feature of 

many hardware synthesisers. Different patches are typically accessed via entering an 

ID number via a numeric keypad, but some manufacturers provide a jogwheel or 

customisable banks to ensure quick and error-free switching mid-performance. It 

was important to facilitate this kind of play to encourage the creation of small, 

modular programs for Oscar or even re-using of the same program with different 

content (e.g. two versions of the same sampler program that load different banks of 
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samples into memory). It was also vital to ensure that this behaviour could not be 

triggered by mistake or confused with the other gestures that Oscar provides. 

A similar approach to the hidden menu system described in 6.4 above was 

implemented - the user must place a single touch in one of the remaining corners of 

the screen (top-right, bottom-left and bottom-right) and hold it in place for a count of 

two seconds. These three gestures instruct Oscar to change immediately to one of 

three pre-selected CSD files labelled A, B and C. These labels can be assigned via 

the file browser in the main menu system. While there is a slight compromise on 

time, due to the mandatory two second delay, it was deemed more important to 

ensure that accidental-triggering was made impossible than to allow split-second 

switching of patches during play. The intended use of this feature is to change the 

functionality of Oscar in-between sections of a piece, separate songs or sets - there 

are ample gestures described in 6.3 that can potentially be used to alter program 

functionality during play if necessary (e.g. tapping in a particular zone to select a 

particular musical scale). 

6.8 Csound template 

A comprehensive and clearly-commented Csound CSD template has been developed 

and maintained throughout the design process. The template features default audio 

settings for iPad, user-defined-opcodes for Cluster and Touch events, blank 

instruments that are called in response to Cluster, Touch and 

accelerometer/gyroscope updates and Tap/Flick events, global reverb and master 

channels. Each section is explained clearly via comments and variables related to 

Oscar are pre-cast and ready for use in instrument definitions.  
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6.8.1 CsOptions and global variables 

Default audio settings for Oscar are provided in CsOptions. In order to allow the 

user to access their own audio within the program, Oscar needs to know the 

directory where files imported from Dropbox are stored. As the iOS file structure is 

not made explicit to the user and is difficult to read, the chnexport opcode is 

used to receive a directory path from the Csound API. This is stored as a string 

named gSresourcePath which can be prepended to any references to filenames 

within the code (e.g. for reading an audio file into a table). Finally, global variables 

to keep track of accelerometer values (gkaccX, gkaccY, gkaccZ) are initialised 

alongside left/right audio-rate channels for reverb and master output 

(gareverbL/R and gamasterL/R respectively). 

<CsoundSynthesizer> 

/* 

Oscar program template  

1st of April 2014 

*/ 

<CsOptions> 

-odac -dm0 -+rtmidi=null -+rtaudio=null -+msg_color=0 -

M0 

</CsOptions> 

 

<CsInstruments> 

 

sr   = 44100  

ksmps  = 32  

nchnls  = 2  

0dbfs  = 1 

 

/* GLOBAL SETUP */ 

 

; Resource path 

gSresourcePath chnexport "resourcePath", 1 

 

; Accelerometer variables 
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gkaccX  init 0 

gkaccY  init 0 

gkaccZ  init 0 

 

; Global reverb channel 

gareverbL init 0 

gareverbR init 0 

 

; Master output channel 

gamasterL init 0 

gamasterR init 0 

Figure 6.10: csOptions and global variables 

6.8.2 UDOs for touch and cluster events 

Two user-defined opcodes (or UDOs) are used as a bridge between the data arriving 

from the Oscar interface itself and the local variables in Csound. The main purpose 

of these opcodes is to streamline the process of mapping the gestures to audio output 

by distancing this process from the instrument definitions as much as possible. The 

user does not ever need to alter the contents of this section and it is intended that this 

code will be hidden from the end user in the final release version of Oscar (within a 

text document that is accessed in the header via an #include command). 

 The sprintf opcode is used to generate strings referencing the appropriate 

variables being passed from Oscar intro the API. These strings are subsequently 

used to assign the values to local Csound variables using chnget. 

; UDO for Touch events 

opcode Touch, iiiiiikkkkk, iiiiii p4, p5, p6, p7, p8, p9 

xin 

 

itouchID = p4 

 

; Dynamically-generated channel names  

S_x   sprintf "touch.%d.x", itouchID  

S_y   sprintf "touch.%d.y", itouchID  

S_zone  sprintf "touch.%d.zone", itouchID  

S_zoneX  sprintf "touch.%d.zoneX", itouchID  
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S_zoneY  sprintf "touch.%d.zoneY", itouchID 

 

; K-rate variables for touch  

kx   chnget S_x  

ky   chnget S_y  

kzone  chnget S_zone 

kzoneX chnget S_zoneX  

kzoneY  chnget S_zoneY  

xout p4, p5, p6, p7, p8, p9, kx, ky, kzone, kzoneX, 

kzoneY 

endop 

Figure 6.11: Touch event UDO 

; UDO for Cluster events  

opcode Cluster, iiiiiiikkkkkkkkkkk, iiiiiii p4, p5, p6, 

p7, p8, p9, p10 xin 

 

iclusterID = p4 

 

; Dynamically-generated channel names  

S_x      sprintf "cluster.%d.x", iclusterID  

S_y      sprintf "cluster.%d.y", iclusterID  

S_zone    sprintf "cluster.%d.zone", iclusterID  

S_zoneX     sprintf "cluster.%d.zoneX", iclusterID  

S_zoneY     sprintf "cluster.%d.zoneY", iclusterID 

S_numTouches sprintf "cluster.%d.numTouches", iclusterID 

S_size     sprintf "cluster.%d.size", iclusterID  

S_direction  sprintf "cluster.%d.direction", iclusterID  

S_velocity   sprintf "cluster.%d.velocity", iclusterID  

S_isHeld     sprintf "cluster.%d.isHeld", iclusterID  

S_isZooming  sprintf "cluster.%d.isZooming", iclusterID 

; K-rate variables for cluster  

Kx   chnget S_x  

ky    chnget S_y  

kzone   chnget S_zone  

kzoneX   chnget S_zoneX  

kzoneY   chnget S_zoneY  

knumTouches  chnget S_numTouches  

ksize   chnget S_size  

kdir   chnget S_direction  

kvel   chnget S_velocity  

kisHeld   chnget S_isHeld  

kisZooming  chnget S_isZooming  
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xout p4, p5, p6, p7, p8, p9, p10, kx, ky, kzone, kzoneX, 

kzoneY, knumTouches, ksize, kdir, kvel, kisHeld, 

kisZooming 

endop 

Figure 6.12: Cluster event UDO 

6.8.4 Instrument definitions for touch and cluster events 

Instruments 1 and 2 are reserved for receiving data from touch and cluster events 

(this is an important factor to remember when using external MIDI with Oscar, 

given the default mapping of MIDI channels to instruments in Csound). This is 

necessary to facilitate dynamic instrument number allocation - each new touch 

and/or cluster that is detected creates a new instance of its corresponding instrument 

with an incremental decimal point naming system. 

 These instrument definitions are kept relatively free from clutter through the 

use of the UDOs – a single line of code pulls-in all of the gesture event data and 

assigns it to a selection of local variables (as described in 6.3). All the user needs to 

do is add synthesis and/or processing code that makes use of these variables. 

instr 1 

/* ---TOUCH--- 

 

Score format: i1.N 0 -1 N x y zone zoneX zoneY  

Each individual touch generates a new instance of this 

instrument, which is killed upon touch removal. */ 

 

; Touch properties 

itouchID, ix, iy, izone, izonex,izoney,kx, ky, kzone, 

kzoneX, kzoneY Touch p4, p5, p6, p7, p8, p9  

 

;-----Add synths here-----; 

 

; Master output  

; gamasterL = gamasterL +  

; gamasterR = gamasterR +  

; Reverb send  

; gareverbL = gareverbL +  
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; gareverbR = gareverbR + 

endin 

Figure 6.13: Instrument 1 – touch event 

instr 2 

/* ---CLUSTER--- 

 

Score format:i2.N 0 -1 N x y zone zoneX zoneY numTouches  

Touches arriving within a certain distance of one 

another are grouped into a cluster. Each cluster has a 

set of shared parameters (number of touches, size, etc.) 

There can only be a maximum of 2 clusters present, 

intended to be used for left and right-hand. Clusters 

die when all of their touches are removed. */ 

 

; Cluster properties 

iclusterID, ix, iy, izone, izonex,izoney, 

inumTouches,kx, ky, kzone, kzoneX, kzoneY, knumTouches, 

ksize, kdir, kvel, kisHeld, kisZooming Cluster p4, p5, 

p6, p7, p8, p9, p10 

 

;-----Add synths here-----; 

 

; Master output  

; gamasterL = gamasterL +  

; gamasterR = gamasterR +  

; Reverb send  

; gareverbL = gareverbL +  

; gareverbR = gareverbR + 

endin 

Figure 6.14: Instrument 2 – cluster event 

6.8.5 Instrument definitions for tap and flick events 

Tap and flick events are both sent to Oscar in the form of score statements - this 

negates the need to create UDOs (there is no messy patching to do) and also allows 

the use of non-numeric instrument names. 

instr tap 

/* ---TAP--- 

Score format: i "tap" 0 0.05 x y zone zoneX zoneY 

numTouches 
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When a group of touches hits and leaves the surface 

quickly, without moving far, a tap event is triggered. 

*/ 

 

; Tap properties  

ix = p4  

iy = p5  

izone = p6  

izoneX = p7  

izoneY = p8  

inumTouches = p9 

 

;-----Add synths here-----; 

 

; Master output  

; gamasterL = gamasterL +  

; gamasterR = gamasterR +  

; Reverb send  

; gareverbL = gareverbL +  

; gareverbR = gareverbR + 

endin 

 

instr flick 

/* ---FLICK--- 

Score format: i "flick" 0 0.05 x y zone zoneX zoneY 

numTouches dir  

Identical to a Tap event, except the touches have moved 

prior to leaving the surface. Gives direction value. */ 

 

; Flick properties  

ix = p4  

iy = p5  

izone = p6  

izoneX= p7  

izoneY = p8  

inumTouches = p9  

idir= p10 

 

;-----Add synths here-----; 

 

; Master output  

; gamasterL = gamasterL +  

; gamasterR = gamasterR +  

; Reverb send  
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; gareverbL = gareverbL +  

; gareverbR = gareverbR + 

endin 

Figure 6.15: Tap and flick instrument definitions 

6.8.6 Reverb, master and accelerometer instruments 

A simple reverb channel is included to demonstrate how to use auxiliaries and a 

master channel is also provided to ease workflow during patch design. The latter is 

equipped with a clip opcode to prevent new users from damaging their speakers 

and/or hearing while getting to grips with the Csound language. A final helper 

instrument reads the accelerometer values and feeds their values into the global 

variables described in 6.8.1. 

instr reverb 

/* ---REVERB--- 

Score format: i "reverb" 0 3600  

A basic global reverb instrument. */ 

 

aL, aR  reverbsc gamasterL*0.05, gamasterR*0.05, 0.9, 

10000 

outs aL, aR 

clear gareverbL, gareverbR 

endin 

 

instr master 

/* ---MASTER--- 

Score format: i "master" 0 3600  

Master output bus */ 

 

aoutL clip gamasterL  

aoutR clip gamasterR 

 outs aoutL, aoutR 

 clear gamasterL, gamasterR 

endin 

 

instr accel 

; Accelerometer update instrument 

gkaccX chnget "accelX" 

gkaccY chnget "accelY" 



181 

 

gkaccZ chnget "accelZ" 

; printks "X = %f, Y = %f, Z = %f\\n", 0.25, gkaccX, 

gkaccY,gkaccZ  

endin 

Figure 6.16: Reverb, master and accelerometer instrument definitions 

6.8.7 CsScore 

The score section is typical of live Csound programs and simply contains commands 

to run Csound and the three helper instruments from section 6.8.7 indefinitely.  

<CsScore> 

 

; Run Csound indefinitely  

f 0 6600 

 

; Run reverb instrument  

i "reverb" 0 6600 

 

; Run master instrument  

i "master" 0 6600 

 

; Run accelerometer instrument  

i "accel" 0 6600 

 

e 

</CsScore> 

Figure 6.17: CsScore 

A copy of the template in its entirety is provided as Appendix A. 

6.9 iPad sensors 

While the original intention of Oscar was to provide a purely multi-touch driven 

interface, it made little sense to omit the other iPad sensors from the selection of 

potential controls available to the user. We have focused upon the accelerometer and 

gyroscope sensors - which can detect acceleration and rotation, respectively, along 

the x, y and z-axes. Simply reading the gyroscope and accelerometer data within 



182 

 

Oscar opens up a number of exciting possibilities by offloading aspects of “what 

would otherwise be purely touch-based visual interactions onto the motion channel” 

[60] and allows the integration of ancillary gestures into performance setups [24]. As 

seen in the examples below, this data can be used to facilitate background interaction 

that complements the foreground interaction offered by the multi-touch gestures 

themselves [59]. Some of the possibilities are described as follows. 

6.9.1 Hard-linking motion data to global variables 

Simply using the variables associated with the device orientation (pitch/yaw/roll) 

within the Csound file can give interesting and dynamic results. Examples include 

scaling the volume of various channels according to the orientation, changing effects 

sends, modulation of synthesised sounds, etc. This technique is used as the main 

form of interaction for the ambient drone performance instrument described below in 

6.12. It can also be used to enhance the articulatory options available to a performer 

for a sound event that is being triggered by a multi-touch gesture. Depending on the 

respective influence that the touch and motion data exert over the parameters of a 

musical event, this kind of approach might be more suited to the next category. Even 

if they are not actually part of the same gesture, with regard to how the program 

itself processes user input, from a phenomenological perspective they appear to be 

linked during performance and can hence be considered a cross-modal gesture – 

combining aspects of both motion and touch [62]. 

6.9.2 Combined touch and motion gestures 

There are many different ways that sensor data can be used to augment the user’s 

touch input, and vice versa. Gestures that are comprised of both touch and motion 

data exhibit a number of interesting properties that make them a valuable addition to 
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the vocabulary of the mobile application designer [46]. These can be further divided 

into Touch-Enhanced Motion Techniques and Motion-Enhanced Touch Techniques. 

Touch-Enhanced Motion Techniques can be used to infer the context of use 

or add detail to the expression of a touch gesture using the incidental vibrations 

induced by finger contact [46]. In the case of Oscar, for example, a held touch could 

generate a tone using a VCO (voltage controlled oscillator) and subsequent device 

motion could be used to control the depth of an LFO (low frequency oscillator). The 

essential factor to consider in this kind of interaction is how to differentiate 

intentional motion gestures from incidental device-handling. Hinckley and Song 

advocate the use of a “comfortable and imprecise target to delimit motion…[e.g.] let 

the user gently rest a finger anywhere on the screen while moving the device. Such 

motions demand less attention, do not impose a particular hand-grip, and may be 

more comfortable to articulate” [46]. 

Motion-Enhanced Touch Techniques use the accelerometer/gyroscope data to 

infer characteristics of a touch event that cannot be detected solely by the touch 

screen. This can be used as a proxy for pressure sensitivity - the gap between the 

successive accelerometer peaks generated by a tap can be measured and used to 

differentiate between different intensities or strengths of touch impact. This can be 

used to assign varying functionality to hard and soft taps, due to the "clear 

signatures" of the impacts themselves, but more complex emulation of acoustic-style 

pressure sensitivity with this method has proven unreliable due to the sheer range of 

variability that the signal can exhibit [46].  

6.9.3 Changing behaviour based on device orientation 

The process of changing behaviour based upon device orientation is a familiar 

paradigm in mobile/tablet applications that is used to facilitate context-sensitive 
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interaction [22]. The most commonly-used application of this technique is to rotate 

the view of a web-browser, document reader or photo viewer according to the 

orientation of the device - this allows the user to seamlessly switch between 

landscape and portrait-style views without the need for additional onscreen controls.  

In a musical context, depending on the intended use, this kind of threshold 

based mode switching can be used to add several different layers of control to a 

program. Assuming that the intended use scenario facilitates the changing of device 

orientation, this means of mode-switching has many advantages - it is unambiguous, 

requires physical effort to change and maintain, is usually impossible to trigger by 

accident and the physical state of the hardware itself provides naturally-occurring 

feedback on the state of the program – a contextual cue that is sensed in the 

background without disrupting other performance gestures [61]. A mode of 

operation that is selected in this way is intrinsically delimited by the physical tension 

required to hold the device in a specific way [61] 

It should be noted that, in order to implement this type of behaviour 

effectively, it is important to take into account the default or 'resting' position of the 

device. This can be hard-coded into the Csound program in cases where the 

orientation changes can be clearly defined and differentiated. Another option is to 

provide a calibration function within the code which reads the current sensor data 

and sets this as the point (0, 0, 0). In this case the device can be held in a variety of 

ways and the displacement can still be calculated and subsequently used to invoke 

behavioural changes. This can be useful, for example, for performance setups that 

are designed to be played while suspended from the musician like a guitar. This can 

be used to detect and facilitate both left and right-handed guitar playing styles. 
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In any case it is advisable to provide a means to re-calculate the resting 

position dynamically during performance. This allows the performer to drift 

considerably from their initial physical posture, a reasonable phenomenon, without 

jeopardising the accuracy of the system’s response to their playing. A button upon an 

external input device or an obscure multi-touch gesture can be reserved for this 

'orientation-reset' function for performance setups that are likely to involve 

performer movement. 

6.9.4 Purely motion-based gesture recognition 

It is also possible to infer certain gestures solely based upon a statistical 

analysis of the accelerometer/gyroscope readings. There are currently no plans to 

implement features within Oscar to assist in this process - the usefulness of any 

motion-based gesture depends entirely on how the device is intended to be held and 

touched in a given performance setup. The strength of Oscar lies in its flexibility and 

any explicit indicators of how it is supposed to be held or operated run contrary to 

the design goals. 

There have been, however, numerous musical projects in recent years that 

make extensive use of this kind of gesture. Literature describing digital musical 

instruments that use the Nintendo Wii Remote as a primary input device can give a 

clear sense of how to analyse 3D motion data from a held device [211, 52, 162] and 

software such as Wiigee [208] and GlovePIE [55] can assist users in defining and 

recognising such exclusively motion-based gestures. Certain non-obvious gestures 

that can be detected using this data have also been identified - for example, detecting 

taps upon different corners of the device body without using multi-touch information 

[62]. 
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These categories provide some indication of the vast potential opened-up by 

simply reading the accelerometer and gyroscope sensors into Oscar. The key to 

creating successful interaction paradigms in this way is congruency - designers who 

seek to explore the "untapped possibilities" of contextual sensing must carefully 

consider the aesthetic and ergonomic experience of the intended performer [59]. 

Generating a logical and separated list of recognised multi-modal gestures and their 

associated behaviour (see Figure 3 of [60]) can be a useful way to identify potential 

problems or heavily-weighted gestures. 

6.10 Wireless control 

Oscar can be used as a wireless controller for external audio, graphics, or gaming 

software. All of the gestural data that is generated internally and used by the Csound 

engine can be made available to other devices on the same wireless network as the 

iPad itself. This data can be sent alone, in order to use Oscar’s gestures as a remote 

control, or also in combination with the on-board synthesis engine for the control of 

additional, external graphics or sound alongside those generated within the app.  

Gesture data is sent wirelessly via Open Sound Control (OSC) messages. The 

messaging format is defined as follows: 

/oscar/touchadded -

 float x, float y, int zone, int zoneX, int zoneY 

 

/oscar/tap -

 float x, float y, int zone, int zoneX, int zoneY, int n

umTouches 

 

/oscar/flick -

 float x, float y, int zone, int zoneX, int zoneY, int n

umTouches, int dir 

 

… 
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/oscar/zoom -

 int clusterId, float x, float y, int zone, int zoneX, i

nt zoneY, int numTouches, float size, int type, float ve

locity 

 

/oscar/pan -

 int clusterId, float x, float y, int zone, int zoneX, i

nt zoneY, int numTouches, int dir, float velocity 

 

/oscar/held -

 int clusterId, float x, float y, int zone, int zoneX, i

nt zoneY, int numTouches 

Figure 6.18: OSC message format 

6.11 Typical workflow 

The ideal work scenario for designing Oscar programs involves a computer and an 

iPad running Oscar – both of which should be online. The user opens the Oscar 

template in a code editor on the computer (e.g. CsoundQT [148]) and adds some 

content. The modified template is then saved/uploaded to a Dropbox folder using the 

same account that is synced with Oscar. Once the file is uploaded successfully, the 

user accesses the Dropbox menu in Oscar and searches for new content by clicking 

‘refresh’. Oscar will then download and overwrite any existing programs, where 

applicable, with the newly-edited files. The user tests the file running on Oscar, 

notes any changes that need to be made, and returns to QuteCsound to refine the 

design. 

 Needless to say it is possible to use any iPad word-processing app that can 

access Dropbox to edit Oscar templates – all that is necessary is an internet 

connection in order to sync up content. A future design goal of Oscar is to integrate 

a code editor and debugger into the app itself – this would serve the dual purpose of 

completely integrating the design process and also dispensing with the need for an 

internet connection when developing new programs. Another future development 
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that will increase the flexibility of Oscar programs is the addition of individual in-

app settings for each template that allow the user to change parameters like zone size 

and configuration, tap/flick recognition speed, tempo/BPM and musical scale. 

6.12 Case study: DroneTilt 

DroneTilt is a performance instrument that uses Oscar, with no peripheral 

equipment, to generate and modify a sample-based dronescape using a combination 

of cluster objects and the accelerometer data.  It is an example of what Miranda and 

Wanderley describe as an ‘alternate gestural controller’ and demonstrates Oscar’s 

ability to facilitate diverse multimodal interface design (see [120] and 4.11.2). A 

video example of DroneTilt being played is included on the CD that accompanies 

this thesis. 

6.12.1 Concept 

The central goal of this instrument design was to allow the performer to make subtle 

and nuanced changes to the texture of a drone-based soundscape in a physical, non-

analytical sense. In other words, the typical approach of slowly-modifying a large 

selection of parameters via faders or the equivalent was to be avoided in favour of a 

more complex, one-to-many mapping scheme that would allow the coupling of 

gestures to particular ‘flavours’ or ‘colours’ of sonic texture. One of the core 

strengths of Oscar as a controller is its wide array of continuous controls and the 

gradually-shifting evolution of drone music was identified as an interesting means to 

explore the potential of these controls. 

 While drones are found in many different musical genres and ethnic 

traditions around the world, the aesthetic in this case belongs to a more modern 

school of composition that traces its roots back to the compositions of Terry Riley 
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and La Monte Young. The key aspect of a drone-based composition is the sustained 

tone that usually persists, albeit in different forms, throughout the development of 

the piece: 

…sustained intonation that establishes a harmonic center for its 

accompanying elements…the drone might utilize a single note 

repeated indefinitely or, at the opposite extreme, all of the scale’s 

notes spread across numerous octaves. Other key aspects include 

extended duration, modular repetition, and a focus on 

overtones…the trance-inducing drone with its extended tones 

and layered pitches does change but glacially…[184] 

Drone-based music is strongly centred upon the listening experience and artists 

working in the genre often aim to induce a kind of altered-state of consciousness in 

their audience: the listener often discovers “what seemed to be a single drone sound 

shifts and changes as the listener scans and focuses on different parts of it, opening 

up into a universe of overtones, microtones and combination tones” [17]. The 

primary goal in mind when designing this particular instrument was to ensure that 

the performers could access the same holistic listening space as the audience and feel 

like they were navigating through the soundscape rather than just shaping it through 

the manipulation of abstract parameters. A secondary goal was to utilise the built-in 

accelerometers of the iPad as the main channel of expression in order to investigate 

their usefulness as the main performance sensor, rather than the ancillary role they 

are typically allocated in mobile performance apps. 

The performer cradles the iPad in one hand and uses the other to touch the 

surface itself. This divides up the roles between both hands – the touching hand 

performs selection gestures (altering individual loop parameters and triggering 
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effects) while the cradling hand is responsible for articulation gestures (using the tilt 

sensors to control the complexity of the overall drone texture).  

6.12.2 Loop parameters 

The main texture is comprised of three samples that loop continuously throughout 

performance: a high-pitched tonal texture, a low-pitched tonal texture, and an 

abstract percussive sample. The loops used are provided in the appendix. Each loop 

has three parameters – start time, length/end time and volume – that can be changed 

by touching the surface.  

 The screen is divided lengthwise into three sections, each representing one of 

the loops and responding to one and two-finger clusters. A single touch along any of 

the loop sections sets the volume of the loop and a two-finger cluster sets both the 

start position (the lengthwise location of the cluster) and the length (size of cluster) 

of the portion of the sample being repeated.  

6.12.3 Low pass resonant filter 

A low pass filter can be applied to the whole texture by performing a held two-finger 

cluster gesture. The x and y locations of the cluster control the cutoff and Q 

properties, respectively, and the size of the cluster alters the pre-gain of a slight 

distortion that is incorporated into the effect. 

6.12.4 Accelerometer 

The primary means of altering the texture of a DroneTilt performance is by changing 

the orientation of the device from its default, face-up position. Each axes has a 

different effect on the overall timbre of the drone and uses a different physical 

movement, assuming the suggested way of holding the device.  
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Figure 6.19: Visualisation of accelerometer axes 

The x-axis value is changed using wrist-rotation – tilting controls the volume of two 

copies of the drone signal, hard-panned left and right, that have been pitch-shifted 

slightly up and down. Negative x-values (tilting towards the performer’s body) have 

different detuning ratios than positive x-values (tilting away) to provide a clearly-

delineated choice of timbre using a similar gesture. There is also a small threshold 

above the resting position (±0.25) that must be exceeded – this serves to allow for 

slight deviations and a comfortable holding position for the hand supporting the 

device. 

 Y-axis tilting is performed by relaxing and tensing the bicep and elbow joint. 

This gesture works in a similar way to the wrist-tilt and allows the user to fade 

between the original drone texture and a copy that is being fed through a multi-tap 

delay line and pitch shifted using a phase vocoder. Positive and negative y-axis tilts 

produce the exact same behaviour, unlike the x-axis, due to the ergonomic difficulty 

of suspending the iPad and raising it to face the body. 

 Z-axis movement is a special gesture that is difficult to perform and reserved 

for the closing of a performance. The z-value ranges from -1 (device is face-up) to 0 

(device is on its side) to 1 (device is face-down). Once a threshold is exceeded 
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(>0.25) a fourth sample is faded-in to replace the main soundscape, which is faded-

out at the same rate. This extra sample, a noisy granular rumbling, overwhelms the 

entire piece and acts as a final punctuation to the performance.  

6.12.5 Code excerpts  

instr 10 

kSpeed init 1; playback speed 

iSkip init 0; inskip into file (in seconds) 

iLoop init 1; looping switch (0=off 1=on) 

ifn = p4 

ichns = ftchnls(ifn)  

isamps = ftlen(ifn) 

ilength = (isamps/sr)/ichns 

if (ifn == 1) then  

kamp = gkloop1vol  

kloopstart = gkloop1start  

klooplength = gkloop1length  

elseif (ifn == 2) then  

kamp = gkloop2vol  

kloopstart = gkloop2start  

klooplength = gkloop2length  

else  

kamp = gkloop3vol  

kloopstart = gkloop3start  

klooplength = gkloop3length  

endif 

kpitch = 1  

kloopend = (klooplength*8)+0.05  

kcrossfade = 0.05 

asig flooper2 kamp, kpitch, kloopstart, kloopend, 

kcrossfade, ifn 

 

if (abs(gkaccX)>=0.25) then  
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kshift1 = (abs(gkaccX)-0.25)*(1/(1-0.25))  

printk 0.25, gkaccX 

if(gkaccX>0.1) then  

asigShift1 flooper2 kamp*(kshift1*0.5), 0.74, kloopstart, 

kloopend, kcrossfade, ifn, 0, 2  

asigShift2 flooper2 kamp*(kshift1*0.5), 1.22, kloopstart, 

kloopend, kcrossfade, ifn, 0, 2  

else  

asigShift2 flooper2 kamp*(kshift1*0.5), 0.33, kloopstart, 

kloopend, kcrossfade, ifn, 0, 2  

asigShift1 flooper2 kamp*(kshift1*0.5), 1.62, kloopstart, 

kloopend, kcrossfade, ifn, 0, 2  

endif 

gamasterL = gamasterL + asigShift1  

gamasterR = gamasterR + asigShift2  

endif 

 

multitap asig, 0.1, 0.4, 0.5, 0.3, 0.7, 0.2, 0.9, 

fsig1 pvsanal adelayL, 1024, 256, 2048, 1  

fsig2 pvscale fsig1, 4*((gkwob*0.5)+1), 0, 1.5  

abackL pvsynth fsig2  

adelayR multitap abackL, 0.2, 0.4, 0.6, 0.3, 1, 0.2, 

1.3, 0.1 

gamasterL = gamasterL + asig + abackL*(gkaccY*0.4) 

gamasterR = gamasterR + asig + adelayR*(gkaccY*0.4) 

endin 

Figure 6.20: Looping instrument with X/Y auxiliaries. Each flooper2 instance holds 

a pitch-shifted variant on the loop, while the pvsanal/pvscale/pvsynth chain uses a 

phase vocoder to perform pitch shifts. 

kflag release  

if(kflag==1) then  

gkeffect=0  

endif 
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if(kisHeld==1)then 

if(knumTouches==2)then  

gkeffect=2  

gkpregain = ksize*5  

gkcf = kx*9000  

gkq = ky*15  

gkwob=1  

endif 

else 

if(knumTouches==1) then 

if(izoney==0) then  

gkloop1vol = kx  

elseif(izoney==1)  

then gkloop2vol = kx  

elseif(izoney==2)  

then gkloop3vol = kx  

endif 

elseif(knumTouches==2) then 

if(izoney==0) then  

gkloop1start = kx  

if(ksize!=0) then  

gkloop1length = ksize  

endif  

elseif(izoney==1) then  

gkloop2start = kx  

if(ksize!=0) then  

gkloop2length = ksize  

endif  

elseif(izoney==2) then  

gkloop3start = kx  

if(ksize!=0) then  

gkloop3length = ksize  

endif  
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endif 

endif 

endif 

endin 

Figure 6.21: Except from cluster instrument controlling loop parameters and filter. 

The variable kisHeld activates a bandpass filter controlled by a cluster of two 

fingers. Otherwise, single touches scale the volume of each loop while two-finger 

clusters control the loop start point and length. 

6.12.6 Discussion 

DroneTilt was used to perform a live improvisation as part of a small concert entitled 

‘Interfaces & Psychoacoustics’ [71] that was organised and co-hosted by fellow PhD 

candidate Brian Connolly. The performer found the design both expressive and easy-

to-operate and the performance proceeded without any problems. 

 The most surprising aspect of playing with DroneTilt was the expressive 

power of the accelerometer data. In most interactive music applications this 

information is normally employed in a very simple way – either to detect discrete 

‘shaking’ type movements or to change menu orientation. Allocating a primary 

performance role to the motion sensors is impossible in most cases due to the 

predominance of the graphical interface and/or the need for the user employ both of 

their hands during performance – leaving no way to move the device itself. The lack 

of visual emphasis required to operate this particular design allowed for a great deal 

of freedom to change the position of the device while carefully monitoring the 

resulting change in drone texture. 

 Brief timbral fluctuations caused by sudden movements also provided an 

interesting, if unpredictable, contribution to the performance – a quick jerking of the 

device in space results in a momentary teleportation of values and a jarring glimpse 
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into the timbre present at another orientation. It was observed that jerking the device 

in different directions produced markedly different results – especially in relation to 

up/down movements which provided a way to foreshadow the arrival of the final 

sample. 

 The posture used throughout the performance, with one-hand suspending the 

device like a clipboard, was comfortable and not as limiting as expected. It also 

prompted an investigation into ways to suspend the iPad during performance so as to 

enable the use of the accelerometer data without disabling one or more of the 

performer’s hands, which will be explored in future performances. 

6.13 Linking Oscar to the descriptive model 

Oscar is a configurable platform with a gestural interface that is particularly well-

suited to designing performance tools using the descriptive model established in 

Chapter 4. Many of Oscar’s core components can be used to construct instances of 

the interaction strategies outlined in sections 4.4 – 4.9, as demonstrated in the 

following examples: 

 The Touch strategy is easily used – every touch and/or cluster creates a 

unique instance of itself (as a Csound instrument) which can be populated 

with sound generating code. Repeat and contact behaviours are easily 

performed in the same way. 

 Trigger behaviour can be easily invoked by sending a statement to the 

Csound score using the event opcode. 

 Toggles can be implemented as above, with the addition of a boolean flag 

variable, or in response to Oscar’s tap or flick gestures. 
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 Counter can be implemented with the use of a global variable holding an 

integer. 

 Time since last action, hold time, idle and excitation strategies can all be 

performed by creating a counting behaviour either within touch/cluster 

instruments or by defining a separate, dedicated counter instrument that 

updates a global variable. Other instruments can access this number to affect 

their parameters and the average/median time strategy can also be derived 

from it. 

 One-to-one mapping is easily to perform by plugging the properties of 

Oscar’s gestures into sound generating parameters. Movement can be 

detected by keeping a record of the last known value and performing 

comparisons with the current value or (as velocity values are provided 

directly in the case of clusters and touches) simply setting a threshold of 

speed above which action is taken. 

 Thresholds are also built-in to Oscar’s interface in the form of the zones. 

Conditional zone checks (as shown in Figure 6.21) can be used quickly and 

effectively to reserve sections of Oscar’s surface for the control of specific 

tasks.  

 Modal behaviours are strongly supported by the variety of independent 

variables available to the user. The number of clusters, number of touches 

within a cluster, starting location, current zone, ‘is held’ property and the 

device orientation are all well-suited to delimiting various modes of operation 

depending on the needs of the user. 

 Automation strategies of varying complexity are easily created and accessed 

via Csound’s vast library of opcodes for storing information in tables. Pre-
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arranged scores or event lists can be copied directly into the Oscar template 

and read without any additional configuration. 

 Strategies for combining controllers are well-supported between the various 

gestures within Oscar itself and also the ability to use external MIDI devices 

via USB. MIDI signals from a connected device can be read directly into an 

Oscar template and combined with the built-in gesture data to control 

performance. 

6.14 Assessment of Oscar 

While formal assessment of Oscar’s suitability as a multi-touch music performance 

system is beyond the scope of this thesis, anecdotal evidence suggests that it has the 

potential to be a useful development platform: 

 Beta-testing of the app has gathered very positive feedback from subjects 

with a self-described knowledge of computer music tools ranging from 

‘expert’ to ‘none’. 

 An undocumented performance program was demonstrated successfully by 

Dr. Victor Lazzarini at the 2013 UbiMus workshop. Participants were easily 

able to figure out how the gestures corresponded to the sonic results. 

 An Oscar workshop was given to students of the MA in Computer Music at 

NUI Maynooth – over the course of two hours, students with some Csound 

training and no prior experience of Oscar were able to create fully-functional 

programs to control synthesized sounds and mix together pre-recorded 

samples. Several students remarked that the session helped their 

understanding of signal flow within Csound and suggested that having access 
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to a tool like Oscar would be very helpful when learning synthesis and music 

programming languages. 

Oscar is still being developed and refined. In the near future, a team of sound 

designers and programmers will be contracted to develop interesting sound programs 

for Oscar and explore its abilities for various genres of music. Further academic 

research is also planned with the Ubiquitous Music Group – performing experiments 

on usability and expression with Oscar as the test platform. 

6.15 Conclusion 

An overview of Oscar has been given in this chapter, followed by a detailed 

description of the design goals and the steps taken in order to achieve them. This is 

complemented by a breakdown of the template that Oscar uses to communicate with 

the Csound API and an example of a performance tool developed using the system.  

The concepts embodied in Oscar represent an alternative way of designing a 

digital musical instrument, inspired by the interaction strategies established in earlier 

chapters. Oscar demonstrates the viability of dissecting a gestural controller into its 

composite parts and reassembling them using the descriptive model outlined in this 

thesis. This model is not limited to touch screen devices – the versatility and modular 

nature of this approach makes it easy to apply to any kind of human-computer 

interface device. The strategies integral to Oscar could, with little modification, be 

ported to devices that detect hand and finger movement in a different way, such as 

the contactless tracking offered by the Leap [97]. The cluster abstraction could be 

repurposed in this case, to accommodate the Leap’s system of tracking finger/hand 

relationships, possibly causing a number of subtle changes in how the model works. 

As a standalone tool, Oscar represents a novel and versatile means to develop 

interactive audio software on a tablet device. It occupies a unique middle-ground 
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between controller and synthesizer, and also allows users to develop their own 

standalone programs without the need for a Mac, a developer account, or knowledge 

of any programming language beyond Csound. Oscar has become an invaluable part 

of the author’s own creative process – it is hoped that its commercial release will 

inspire a wide variety of musicians and artists to express their musical ideas in a new 

way. 
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Chapter 7. Conclusion 

 

“The goal we seek is nothing less than the free expression of our imaginations. No 

one else should decide for us the best way to get there. All hardware and software 

intended for musical use should be designed with that in mind.” 

-Simon Emmerson, The Language of Electroacoustic Music [45] 

 

This thesis set out to enhance the existing vocabulary of the digital musician by 

establishing new conceptual tools for musical interaction design. An account of 

influential developments in the field of live electronic music performance, followed 

by a comprehensive survey of existing theory and practice, served to contextualise 

the work and introduce the core concepts of digital musical instrument design. The 

thesis then presented a system of modular interaction strategies and defined a variety 

of complementary techniques for augmenting their functionality. This section of the 

work concluded with a case study that used the strategies to approach a typical 

performance technique: live sample playback and manipulation. 

 Having established a theoretical framework, the thesis focused in upon a 

particular kind of device – the multi-touch surface – in order to investigate its 

musical potential from a new perspective. A survey of multi-touch musical 

applications, followed by some preliminary experiments with alternative interaction 

techniques, led to the development of Oscar – a novel system for musical 

performance using multi-touch. The discussion following this section consisted of a 

detailed description of the design philosophy, gestural interface, feature 
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implementation and user template of Oscar and concluded with a final case study 

that demonstrates the system in action. 

In terms of original contributions to the field of study, three main aspects of 

this thesis should be considered: (i) a critical assessment of recent trends in digital 

musical instrument design, (ii) a descriptive model for digital musical instrument 

design using modular interaction strategies, and (iii) a novel, customisable, 

integrated platform for the development of multi-touch music performance systems. 

 The critical assessment of digital musical instrument design has its basis in a 

number of design aphorisms inspired by the design trends of the last century 

(discussed in section 2.11). While it is difficult to predict the direction that future 

developments will take, an understanding of the dynamic developmental history of 

controllers for electronic music is vital in order to appreciate, and contribute to, the 

current state of the art. Chapter 5 builds upon this understanding to present a critical 

comparison of the design techniques common to popular contemporary hardware 

controllers (i.e. button grids, XY pads and multi-touch screens). 

The descriptive model was developed in Chapter 4, which summarised basic 

programming techniques, and discussed various data-handling strategies, predictive 

and descriptive models, describing sensors in terms of degrees of freedom (DOF), 

dimensions and resolution, and a series of fundamental interaction strategies for 

1DOF sensors with high and low resolutions.  

We then discussed the application of the modular approach and provided 

strategies for using controllers independently and interdependently, with a summary 

of techniques to combine the data from several different input sensors. Chapter 4 

also proposed a complementary toolkit of abstract controllers that employ statistics, 

multi-modal behaviour, automation and saving/recalling of settings to augment the 
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functionality of the physical sensors present in the system. These findings are 

supported by a thorough literature review that documents the evolution of controllers 

for the performance of live electronic music (Chapter 2) and provides a 

comprehensive summary of conceptual tools that have been developed to assist in 

the design and classification of digital musical instruments (Chapter 3). The practical 

application of the descriptive model was illustrated via a detailed account of the 

design of a live performance sampler interface – LoopBlender. 

 The development of a novel multi-touch performance platform was informed 

by a detailed study of surface-based interfaces, encompassing contemporary musical 

applications of XY pads, grid-based interfaces and multi-touch surfaces (Chapter 5). 

This survey examined popular approaches to musical interface design using multi-

touch devices and proposed an alternative control strategy that aims to leverage the 

intrinsic strengths of multi-touch technology for expressive and nuanced musical 

control. This strategy was investigated by devising and refining a series of gesture 

recognition algorithms – described herein as SurfacePlayer. 

 Both the descriptive model and these algorithms were used to create a 

standalone platform for the design of expressive multi-touch performance systems – 

Oscar. In Chapter 6, we discussed the goals that motivated the creation of Oscar and 

described their realisation in terms of the application’s features and how they were 

implemented. In particular, we examined closely the core components of the gestural 

interface (clusters, touches, taps and flicks), the template for designing new 

performance programs, and the various strategies that can be employed to combine 

the motion data generated by the iPad’s built-in sensors with multi-touch gestures 

performed by the user. The chapter concluded with a second design case study – 

DroneTilt – which combines the interaction strategies from our descriptive model 
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with some of Oscar’s unique features to create an expressive live performance 

instrument. 

 The work presented in this thesis has been motivated by a dedication to the 

development of practical and universally-applicable tools that encourage more 

expressive, radical and intuitive digital musical instrument designs. The descriptive 

model is both practical and generic – the interaction strategies and concepts at its 

core can be used with any kind of sensor or interface that generates digital data. It is 

also not a closed system – there is ample room for designers to discover and 

contribute new strategies within the prescribed framework. 

 Oscar is a unique addition to the selection of multi-touch software designed 

for serious musicians. It is a fully-customisable, integrated platform that anyone can 

develop programs for, with a basic knowledge of the Csound language. The software 

occupies a unique space with regard to the level of flexibility it provides and the 

accessibility of writing new code for it – the end user can design new programs for 

Oscar, and modify existing programs, using nothing but a basic text editor and 

Dropbox account. Aside from this specific implementation, the gestural interface at 

the core of Oscar can be easily adapted to other devices that use manual, open-

handed control, such as the Leap Motion [97]. 

The electronic music community’s growing interest in ergonomic, intuitive 

and flexible control devices is evidence of an evolution in our collective approach to 

technology in performance. Our emphasis is moving away from the powerful 

equipment at our disposal towards the development of powerful musical interactions 

using that equipment. It is my hope that this thesis will make a significant 

contribution to our understanding of interactive systems, multi-touch controllers, and 

the unique art that is the design of digital musical instruments. 
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Appendix A: Oscar program template 

 

<CsoundSynthesizer> 

/* 

Oscar program template  

1st of April 2014 

*/ 

<CsOptions> 

-odac -dm0 -+rtmidi=null -+rtaudio=null -+msg_color=0 -

M0 

</CsOptions> 

 

<CsInstruments> 

 

sr   = 44100  

ksmps  = 32  

nchnls  = 2  

0dbfs  = 1 

 

/* GLOBAL SETUP */ 

 

; Resource path 

gSresourcePath chnexport "resourcePath", 1 

 

; Accelerometer variables 

gkaccX  init 0 

gkaccY  init 0 

gkaccZ  init 0 

 

; Global reverb channel 

gareverbL init 0 

gareverbR init 0 

 

; Master output channel 

gamasterL init 0 

gamasterR init 0 

 

; UDO for Touch events 

opcode Touch, iiiiiikkkkk, iiiiii p4, p5, p6, p7, p8, p9 

xin 
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itouchID = p4 

 

; Dynamically-generated channel names  

S_x   sprintf "touch.%d.x", itouchID  

S_y   sprintf "touch.%d.y", itouchID  

S_zone  sprintf "touch.%d.zone", itouchID  

S_zoneX  sprintf "touch.%d.zoneX", itouchID  

S_zoneY  sprintf "touch.%d.zoneY", itouchID 

 

; K-rate variables for touch  

kx   chnget S_x  

ky   chnget S_y  

kzone  chnget S_zone 

kzoneX chnget S_zoneX  

kzoneY  chnget S_zoneY  

xout p4, p5, p6, p7, p8, p9, kx, ky, kzone, kzoneX, 

kzoneY 

endop 

 

; UDO for Cluster events  

opcode Cluster, iiiiiiikkkkkkkkkkk, iiiiiii p4, p5, p6, 

p7, p8, p9, p10 xin 

 

iclusterID = p4 

 

; Dynamically-generated channel names  

S_x      sprintf "cluster.%d.x", iclusterID  

S_y      sprintf "cluster.%d.y", iclusterID  

S_zone    sprintf "cluster.%d.zone", iclusterID  

S_zoneX     sprintf "cluster.%d.zoneX", iclusterID  

S_zoneY     sprintf "cluster.%d.zoneY", iclusterID 

S_numTouches sprintf "cluster.%d.numTouches", iclusterID 

S_size     sprintf "cluster.%d.size", iclusterID  

S_direction  sprintf "cluster.%d.direction", iclusterID  

S_velocity   sprintf "cluster.%d.velocity", iclusterID  

S_isHeld     sprintf "cluster.%d.isHeld", iclusterID  

S_isZooming  sprintf "cluster.%d.isZooming", iclusterID 

; K-rate variables for cluster  

Kx   chnget S_x  

ky    chnget S_y  

kzone   chnget S_zone  

kzoneX   chnget S_zoneX  

kzoneY   chnget S_zoneY  

knumTouches  chnget S_numTouches  
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ksize   chnget S_size  

kdir   chnget S_direction  

kvel   chnget S_velocity  

kisHeld   chnget S_isHeld  

kisZooming  chnget S_isZooming  

xout p4, p5, p6, p7, p8, p9, p10, kx, ky, kzone, kzoneX, 

kzoneY, knumTouches, ksize, kdir, kvel, kisHeld, 

kisZooming 

endop 

 

instr 1 

/* ---TOUCH--- 

 

Score format: i1.N 0 -1 N x y zone zoneX zoneY  

Each individual touch generates a new instance of this 

instrument, which is killed upon touch removal. */ 

 

; Touch properties 

itouchID, ix, iy, izone, izonex,izoney,kx, ky, kzone, 

kzoneX, kzoneY Touch p4, p5, p6, p7, p8, p9  

 

;-----Add synths here-----; 

 

; Master output  

; gamasterL = gamasterL +  

; gamasterR = gamasterR +  

; Reverb send  

; gareverbL = gareverbL +  

; gareverbR = gareverbR + 

endin 

 

instr 2 

/* ---CLUSTER--- 

 

Score format:i2.N 0 -1 N x y zone zoneX zoneY numTouches  

Touches arriving within a certain distance of one 

another are grouped into a cluster. Each cluster has a 

set of shared parameters (number of touches, size, etc.) 

There can only be a maximum of 2 clusters present, 

intended to be used for left and right-hand. Clusters 

die when all of their touches are removed. */ 

 

; Cluster properties 
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iclusterID, ix, iy, izone, izonex,izoney, 

inumTouches,kx, ky, kzone, kzoneX, kzoneY, knumTouches, 

ksize, kdir, kvel, kisHeld, kisZooming Cluster p4, p5, 

p6, p7, p8, p9, p10 

 

;-----Add synths here-----; 

 

; Master output  

; gamasterL = gamasterL +  

; gamasterR = gamasterR +  

; Reverb send  

; gareverbL = gareverbL +  

; gareverbR = gareverbR + 

endin 

 

instr tap 

/* ---TAP--- 

Score format: i "tap" 0 0.05 x y zone zoneX zoneY 

numTouches 

When a group of touches hits and leaves the surface 

quickly, without moving far, a tap event is triggered. 

*/ 

 

; Tap properties  

ix = p4  

iy = p5  

izone = p6  

izoneX = p7  

izoneY = p8  

inumTouches = p9 

 

;-----Add synths here-----; 

 

; Master output  

; gamasterL = gamasterL +  

; gamasterR = gamasterR +  

; Reverb send  

; gareverbL = gareverbL +  

; gareverbR = gareverbR + 

endin 

 

instr flick 

/* ---FLICK--- 
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Score format: i "flick" 0 0.05 x y zone zoneX zoneY 

numTouches dir  

Identical to a Tap event, except the touches have moved 

prior to leaving the surface. Gives direction value. */ 

 

; Flick properties  

ix = p4  

iy = p5  

izone = p6  

izoneX= p7  

izoneY = p8  

inumTouches = p9  

idir= p10 

 

;-----Add synths here-----; 

 

; Master output  

; gamasterL = gamasterL +  

endin 

 

instr reverb 

/* ---REVERB--- 

Score format: i "reverb" 0 3600  

A basic global reverb instrument. */ 

 

aL, aR  reverbsc gamasterL*0.05, gamasterR*0.05, 0.9, 

10000 

outs aL, aR 

clear gareverbL, gareverbR 

endin 

 

instr master 

/* ---MASTER--- 

Score format: i "master" 0 3600  

Master output bus */ 

 

aoutL clip gamasterL  

aoutR clip gamasterR 

 outs aoutL, aoutR 

 clear gamasterL, gamasterR 

endin 

 

instr accel 

; Accelerometer update instrument 
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gkaccX chnget "accelX" 

gkaccY chnget "accelY" 

gkaccZ chnget "accelZ" 

; printks "X = %f, Y = %f, Z = %f\\n", 0.25, gkaccX, 

gkaccY,gkaccZ  

endin 

 

<CsScore> 

 

; Run Csound indefinitely  

f 0 6600 

 

; Run reverb instrument  

i "reverb" 0 6600 

 

; Run master instrument  

i "master" 0 6600 

 

; Run accelerometer instrument  

i "accel" 0 6600 

 

e 

</CsScore> 

</CsoundSynthesizer> 
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Appendix B: CD contents 

 

 T-EMP 29-08-12.mp4 

Video recording of T-EMP ensemble performance (Rockheim, 29
th

 August 

2012) featuring the loopblender performance interface discussed in Chapter 4 

 DroneTilt demo.mp4 

Video recording of the author demonstrating the DroneTilt instrument design 

from Chapter 6 with Oscar running on a 2
nd

 generation iPad 

 OSCAR project folder 

XCode project for Oscar application
*
 

 McGlynn, P. Interaction Design for Digital Musical Instruments.pdf 

Digital copy of thesis 

 

  

                                                 
*
 Copyright © 2013-2014 Patrick McGlynn & Simon Kenny (Surface Tension Limited). All Rights 

reserved. No part of this code may be reproduced or modified without the express consent of Patrick 

McGlynn & Simon Kenny. 
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Appendix C: Papers and publications 

 

26/04/2013 Carte blanche: Designing for live performance with a novel 

interface 

Music Department Postgraduate Conference, NUI Maynooth. 

02/08/2012 Spatial Tagging: A Preliminary Study 

(with Victor Lazzarini, Damián Keller, Marcelo Soares 

Pimenta & Marcelo Queiroz)  

2
nd

 Irish Sound, Science & Technology Convocation,  

Cork School of Music, Cork. 

07/07/2012 Multi-touch gestures for Musical Performance – live 

demo, singing bowls 

Sonic Arts Forum, School of Music, University of Leeds, 

UK 

22/05/2012 Recontextualizing the Multi-touch Surface 

(with Victor Lazzarini, Gordon Delap & Xiaoyu Chen, NUIM) 

12th International Conference on New Interfaces for Musical 

Expression, University of Michigan, Ann Arbor, USA. 

22/05/2012 Considering Audience’s View Towards an Evaluation 

Methodology for Digital Musical Instruments 

(with Jerônimo Barbosa, Filipe Calegario, Veronica Teichrieb 

& Geber Ramalho) 

12
th

 International Conference on New Interfaces for Musical 

Expression, University of Michigan, Ann Arbor, USA. 
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04/05/2012 OSCar: A non-visual multi-touch controller 

3
rd

 Ubiquitous Music Workshop, Sao Paulo, ES. Brazil. 

27/04/2012 Live demonstration/performance of work 

International Festival for Innovation in Music Production & 

Composition, Leeds College of Music, UK.  

20/01/2012 Non-Visual Interfaces for Musical Performance using Multi-

touch 

(with Edward Costello, NUIM) 

Society for Musicology in Ireland Postgraduate Conference, 

DIT Conservatory of Music & Drama, Dublin. 

25/11/2011 Expression through Design: Unifying the Creative Tools of the 

Electronic Performer 

‘Echoes and reflections’ Inaugural Interdisciplinary Seminar, 

An Foras Feasa, NUI Maynooth. 

02/9/2011 Developing a Method for Multi-touch 

2
nd

 Ubuiquitous Music Workshop, Vitória, ES. Brazil. 

01/09/2011 Analysing Multi-touch Data for Expressive Musical Control 

13
th

 Brazilian Symposium on Computer Music, Vitória, ES. 

Brazil. 

09/07/2011 Improving the Efficiency of Open Sound Control with 

Compressed Address Strings 

(with Jari Kleimola, Aalto University, Finland) 

8
th

 Sound & Music Computing Conference, Padova, Italy. 

25/06/2011 Evaluating the Expressive Potential of New Gestural 

Interfaces through Experimental Musical Application 
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Development 

9
th

 Annual Society for Musicology in Ireland Conference, 

RIAM, Dublin. 

07/05/2011 Towards More Effective Mapping Strategies for Digital 

Musical Instruments 

9
th

 Annual Linux Audio Conference, NUI Maynooth. 

13/04/2011 Sound Augmented Vision 

Irish National Finals ‘Imagine Cup’, Microsoft, Dublin. 

27/01/2011 Motion & Metaphor 

Society for Musicology in Ireland Postgraduate Conference, 

Queen’s University, Belfast. 

14/01/2011 Intelligent Mapping in Digital Musical Instrument Design 

Irish Workshop on Music and Audio Signal Processing, 

Trinity College, Dublin. 

12/07/2010 Sound Sculptures: Exploring Music through Motion 

3 Minute Gong Competition, NUI Maynooth. 

05/03/2010 Acoustic Intimacy and Electronic Possibility: Exploring the 

Expressive Potential of Gesture in Performer-Instrument 

Interfaces 

Music Department Postgraduate Conference, NUI Maynooth. 


