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Abstract 

The European Centre for Disease Prevention and Control (ECDC) have estimated 

that on any given day 1 in 18 hospitalised patients have a healthcare-associated 

infection (HAI) and that a large percentage of these infections are caused by resistant 

strains of bacteria. With the global spread of antibiotic-resistance and the emergence 

of bacteria resistant to ‘last-resort antibiotics’, along with the lack of new classes of 

antibiotics being discovered, there is an urgent need for antibacterial research. 

Herein, three compound families were designed and synthesised in an effort to 

ascertain a compound with improved antibacterial activity. Each of the compounds 

synthesised were evaluated for their bacteriostatic activity against the Gram-negative 

bacteria Escherichia coli and Pseudomonas aeruginosa and the Gram positive 

bacterium Staphylococcus aureus. A selection of the compounds were also evaluated 

for their in vivo toxicity using the larvae of the greater wax moth, Galleria 

mellonella.  

Firstly, a structure-activity relationship (SAR) study of a thiourea-based, bifuctional 

organocatalyst, which was found to exhibit bacteriostatic activity (MIC90 of 4.69-

6.25 g/mL against E. coli) comparable to that of vancomycin hydrochloride, was 

used to assess the structural components responsible for its activity. A number of 

structural features important for the overall activity of this compound were 

identified. Additionally, the hit compound and a selection of the SAR study 

compounds were also found to be non-toxic to the larvae of Galleria mellonalla. 

Secondly, modifications were made to the C-3 position of the well-known 

antibacterial quinolone structure. Two functionalities were chosen to replace the 

quinolone C-3 carboxylic acid, (1) the well-known carboxylic acid bioisostere, the 

(1H)-tetrazole, and (2) a hydroxamic acid. Both the (1H)-tetrazole and hydroxamic 

acid derivatives were found to exhibit bacteriostatic activity similar to that of their 

carboxylic acid analogues.  

Finally, the synthesis of a family of dioganotin(IV) dicarboxylates, including 

acetates, picolinates and nicotinates, as well as diorgantin(IV) dichlorides and their 
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complexes with the ligands 1,10-phenanthroline (phen), 1,10-phenanthroline-5,6-

dione (dione) and dipyrido[3,2-a:2’,3’-c]phenazine (dppz) were also carried out. Of 

the compounds synthesised, the dibutyltin(IV) derivatives exhibited the broadest 

range of activity in comparison to the dimethyltin(IV) or diphenyltin(IV) derivatives. 

The addition of the picolinate or nicotinate group did not promote activity against 

any of the bacteria. Furthermore, only in the case of [Ph2SnCl2(dione)] was there 

improved activity compared to the organic ligand itself. 
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1.1 Introduction 

Almost one century ago, an outstanding, novel antibiotic was discovered in a 

London laboratory. Named after the mould from which it was derived,  penicillin 

was active against a host of microbes including Gram-positive bacteria and those 

responsible for syphilis.1 It demonstrated bacteriostatic, bactericidal, and 

bacteriolytic activity but most importantly it was non-toxic to animals.1 In 1945, its 

discoverer, Sir Alexander Fleming gave his Nobel lecture entitled ‘Penicillin’, but it 

came with a warning:1  

‘There is the danger that the ignorant man may easily underdose himself and by 

exposing his microbes to non-lethal quantities of the drug make them resistant.’ 

Two years after the introduction of penicillin the first penicillin-resistant 

Staphylococcus aureus (S. aureus) strain was reported.2 In the 1960s methicillin was 

introduced and was closely followed by the emergence of the infamous methicillin-

resistant S. aureus (MRSA).3 Today, bacterial resistance to antibiotics is a serious 

public health problem.  

The European Centre for Disease Prevention and Control (ECDC) have estimated 

that on any given day 1 in 18 hospitalised patients have a healthcare-associated 

infection (HAI).4 The four most frequently isolated microorganisms from HAIs are 

Escherichia coli (E. coli), S. aureus, Enterococcus spp. and Pseudomonas 

aeruginosa (P. aeruginosa).5 Overall, of the HAIs caused by S. aureus, 41% of these 

are caused by MRSA with 10% of Enterococci spp. infections caused by 

vancomycin-resistant Enterococci spp., 23% of E. coli HAIs caused by 

cephalosporin-resistant strains and 32% of P. aeruginosa HAIs caused by 

carbapenem-resistant strains.5 According to the ECDC, infections resulting from 

Gram-negative, multidrug-resistant (MDR) bacteria are on the rise and in Ireland 

alone the percentage of MDR E. coli has increased from 5.6% in 2006 to 13.5% in 

2012.6 In the United States (U.S.) at least 2,000,000 people become infected each 

year with bacteria that are resistant to one or more of the antibiotics used for 

treatment of the infection.7 Of the 2 million infections, approximately 23,000 people 

die as a direct result of infection by the resistant-bacteria.7 However, the increase in 
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existing antibiotic-resistant bacterial infections and emergence of new resistant 

strains are only half of the problem. 

Antibiotics are short-term use drugs, thus the return on investment is not as good as 

the return from long-term use drugs, such as antidiabetics. Therefore, pharmaceutical 

companies are not that interested in antibacterial research. Of the classes of 

antibiotics used today almost all of them belong to classes discovered before the 

1980s with the exception of the lipopeptides.8 Most of the advances that have been 

made since the 1980s have been by modifications/improvements made to existing 

antibiotic classes, for example, the fluoroquinolones are more active than nalidixic 

acid.8a  

With the global spread of antibiotic-resistance and the emergence of bacteria 

resistant to ‘last-resort antibiotics’, along with the lack of new classes of antibiotics 

being discovered, there is an urgent need for antibacterial research.7,9 

1.1.1 Drug discovery 

There are three main drug discovery methods; 1. whole-cell screening, 2. genomic-

based discovery and 3. structure-based drug discovery (SBDD).8b Whole-cell 

screening is the original method by which many of the currently used antibiotics 

were discovered.8b It is a non-target-based, high-throughput screening (HTS) method 

in which a number of compounds are screened in vitro for activity.10 The mode of 

action can be investigated after activity has been established.  

Structure-based discovery is a newer, in silico drug discovery method that includes 

virtual HTS (VHTS) and fragment-based drug discovery (FBDD).8b,11 This method 

involves the design of compounds based on the structure of the desired target.11 The 

target structures are determined using X-ray crystallography and uploaded on to a 

computer.11 Molecular modelling software is then used to design novel compounds 

that have good affinity for the target binding sites.11 Once designed, the compounds 

can be synthesised and tested in vitro with their targets.11 SBDD has a lot of 

potential, however, although it may produce compounds that have a good binding 

affinity for a given target, the compound may not exhibit antibacterial activity.12 This 

has already been observed in SBDD studies for antibacterial agents and may be due 
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to a compounds lack of ability to transverse the cell membrane thus preventing it 

from reaching its target.12  

Genomic-based discovery is a method that involves the sequencing of pathogen 

genomes and the identification of genes that are conserved amongst a given group of 

pathogens, which encode targets that lack mammalian cell homologues.8a A HTS of 

existing compound libraries is then ran to identify molecules that may bind to, and 

inhibit these targets.8a This method sounds very promising and was embraced by a 

number of pharmaceutical companies but unfortunately gave very disappointing 

results.8a,10 GlaxoSmithKline (GSK) spent a number of years (1995-2001) exploring 

the genomics-derived, target-based approach. Over 350 genes were evaluated, out of 

which 67 HTS were carried out using 260,000-530,000 compounds.10 Of the 67 

HTS, 16 hits were found and only 5 of these resulted in lead compounds. According 

to Payne et al.10, lead compounds from only one of the targets are still being 

pursued. However, none of the lead compounds from the genomics-based discovery 

approach have made it to the market.8a,10 As a result, GSK changed their strategy. 

GSK went back to known antibacterials and investigating ways to improve them for 

example, pleuromutilins, and at the same time shifted back towards an ‘old-

fashioned’ whole-cell screening approach through which they have found a novel 

class of compounds.10,13 

For our research into potential antibacterial compounds we decided to take a similar, 

whole-cell screening approach, as was used by GSK. Our research included an 

investigation into new antibacterial compounds through a structure-activity 

relationship (SAR) study of a well-known compound, an attempt to optimise an 

existing antibacterial compound and the synthesis and optimisation of both known 

and new metal-based compounds that may exhibit antibacterial activity. Herein, 

three families of compounds have been synthesised and evaluated against three 

bacterial species that are frequently isolated in HAIs and are known for developing 

resistance to antibiotics.  
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1.1.2 The bacteria 

For this study, two Gram-negative bacteria, Escherichia coli (E. coli) and 

Pseudomonas aeruginosa (P. aeruginosa), and one Gram-positive bacterium, 

Staphylococcus aureus (S. aureus), were chosen. The details for the bacterial strains 

are shown in Table 1.1, section 1.2.2. Compounds were tested for their bacteriostatic 

activity (ability to inhibit bacterial growth) using the susceptibility assay described in 

section 1.2.5. The details of the procedure are given in section 1.2.5. 

1.1.3 Bacteria cell structure 

 

 

Figure 1.1: Bacteria cell structures for (a) Gram-positive bacteria, and (b) Gram-

negative bacteria.14 
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Bacteria are prokaryotes and can be identified by their shape. The three most 

common shapes are spheres (cocci), rods (bacilli) and helices (spirilla and 

spirochetes).14 Bacterial cells are (1-5 m in diameter) made up of a cytoplasm 

centre, containing the nucleoid, surrounded by a cytoplasmic membrane (Figure 1.1). 

The cytoplasmic membrane is surrounded and supported by a cell wall.14 Bacteria 

can be assigned to two main groups based on differences in their cell walls, that is, 

Gram-positive and Gram-negative bacteria.  

As shown in Figure 1.1, the cell wall of a Gram-positive bacterium is larger than that 

of the Gram-negative bacterium and is made up of mainly peptidoglycan. The Gram-

negative cell wall is made up of an outer membrane containing lipopolysaccharide 

(LPS) and a peptidoglycan layer. Cell membranes are made up of 

glycerolphospholipid bilayers (Figure 1.2).14-15  

 

Figure 1.2: Representative structures of (a) a phospholipid (phosphatidylcholine) 

and (b) LPS.14,16 LPS consists of three domains; 1. lipid A, made up of a 

disaccharide diphosphate and fatty acid chains, 2. the core 

polysaccharide and 3. the O Antigen. 

 

The presence of unsaturated fatty acid residues prevent the tight packing of 

hydrocarbon chains resulting in lipid bilayers that are fluid in nature.15 LPS contain 



Chapter I: Introduction 

7 

 

saturated fatty acid residues, which allow for the tight packing of hydrocarbon chains 

and thus decreases the fluidity of the membrane (Figure 1.2).15 Furthermore, in 

comparison to the phospholipid that has only two fatty acid residues, LPS also has 

additional covalently linked fatty acid chains.17 The reduced fluidity of the Gram-

negative bacteria outer membrane prevents rapid penetration of lipophilic molecules 

which in turn makes Gram-negative bacteria difficult to treat in comparison to Gram-

positive bacteria.17-18  

1.1.4 Staphylococcus aureus  

Saphylococcus aureus (S. aureus) is a spherical Gram-positive bacterium (Figure 

1.3), distinguished from other staphylococcal species by its gold pigmentation.19 A 

commensal, found primarily in the anterior nares, S. aureus colonizes approximately 

20% of the human population.20 The cell wall of S. aureus is 50% peptidoglycan (by 

weight) and also contains teichoic (TAs) and lipoteichoic acids (LTAs).21 S. aureus 

has a variety of surface and secreted components that enable it to compromise 

immune responses and evade host defences. 

 

Figure 1.3: Scanning electron micrograph (SEM) of S. aureus (magnification 

20,000x), a spherical Gram-positive bacterium.22 

Infections of S. aureus occurs when a breach in the host’s physical defences, the skin 

or mucosal barriers, allows access to adjoining tissues or the bloodstream.19 The risk 

of infection is increased in patients after surgery, and by the presence of foreign 

materials, such as long-term indwelling catheters which have led to cases of 

nosocomial endocarditis.19-20 Initial attachment of S. aureus to surfaces is mediated 

by several cell-associated proteins, the microbial surface components recognising 



Chapter I: Introduction 

8 

 

adhesive matrix molecules (MSCRAMMs).20b,21 The fibrinogen-binding proteins 

(Fnbp), FnbpA and FnbpB, the collagen-binding protein (Cna) and the fibrinogen-

binding proteins clumping factor (Clf), ClfA and ClfB, are the most well-known 

MSCRAMMs.20b,21 Once attached, S. aureus has an army of toxins it can unleash on 

its host facilitating the progression of infection.  

The majority of S. aureus strains can secrete four haemolysins, -, -, - and -

haemolysin.23 These cytolytic toxins work by damaging the membranes of host 

cells.20a,23 Of the four toxins, -haemolysin has been studied the most and is known 

for its ability to lyse erythrocytes.23 It works by integrating into the target cell 

membrane where it forms cylindrical heptamers, resulting in a pore (1-2 nm) in the 

membrane. This pore allows for the rapid efflux and influx of ions and other small 

molecules leading to osmotic swelling of the cell causing the cell to rupture.23 -

Haemolysin and the Panton-Valentine (PV) leukocidin are bi-component 

leukotoxins. These toxins are made of two, non-associated secreted proteins, S and 

F, which can combine in six different forms, each of which can lyse leukocytes.23  

S. aureus can also produce eight staphylococcal enterotoxins (SEA, SEB, SEC, SED, 

SEE, SEG, SEH, SEI) and toxic shock syndrome toxin-1 (TSST-1).20a,23 The SE’s 

are known to be the causative agent of staphylococcal food poisoning (SFP), a 

condition that usually resolves itself after 24-48 hours.23 However, TSST-1 causes 

toxic shock syndrome (TSS), an acute and potentially fatal condition.20b 

Not only can S. aureus compromise its host but it also has a number of virulence 

factors that facilitate its evasion of the host’s immune response. S. aureus has an 

outer layer, known as a capsule, made up of polysaccharides. The capsule prevents 

binding of opsonins which in turn reduces the uptake of S. aureus cells by 

phagocytes.19-20 Protein A, a cell surface protein, can bind the opsonin IgG. 

However, it binds IgG in such a way that it is presented to the neutrophil in the 

incorrect orientation thus preventing the binding of the neutrophil and its ability to 

engulf the cell.20a If S. aureus is engulfed by a phagocyte it has the ability to survive 

within the phagosome.20a For example, modifications of TAs can reduce the affinity 

of cationic antimicrobial defensin peptides that are secreted into the phagosome.20  
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The expression of a variety of the S. aureus virulence factors are controlled by its 

quorum-sensing (QS) system.24 Quorum-sensing is a process by which bacterial cells 

communicate through the production and detection of signalling molecules known as 

autoinducers (AIs).25 Gram-positive bacteria have two QS systems, the accessory 

gene regulator (agr) QS system and the luxS QS system.24 The agr system has been 

shown to be essential in the virulence of S. aureus infection.24 It is believed that the 

agr system also influences the formation of biofilms by S. aureus.24  

Biofilms are sessile microbial communities of cells, enclosed in a self-produced 

exopolymer matrix (Figure 1.4).26 Bacterial biofilms can prevent or delay the entry 

of antimicrobial agents, deactivate antimicrobial agents and produce persister 

cells.26-27 Persister cells are cells that do not grow or die in the presence of 

antimicrobial agents thus enabling the survival of bacteria populations.27  

 

Figure 1.4: Biofilm stages of development; 1. Reversible adherence, 2. Irreversible 

adherence, 3. Maturation, 4. Microcolony development, 5. Dispersion of cells from 

the biofilm.28  

S. aureus has also been successful at developing resistance to antibiotics. Penicillin 

was first introduced in the 1940s, however, two years later the first penicillin-

resistant S. aureus strain was reported.2 Methicillin was introduced in 1960 and in 

the following year Methicillin-Resistant S. aureus (MRSA) strains were isolated.3 
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Methicillin-resistance of S. aureus stems from a genetic element known as the 

staphylococcal cassestte chromosome mec (SCCmec).29 In Methicillin-susceptible S. 

aureus (MSSA) strains, the cell walls contain penicillin-binding-proteins (PBPs). -

Lactam antibiotics bind to the PBPs resulting in the disruption of the synthesis of the 

peptidoglycan layer and preventing cell survival.2 SCCmec carries the mec gene 

complex which encodes PBP2a.29 PBP2a has a low affinity for -lactam 

antibiotics.30 The presence of PBP2a prevents -lactam antibiotics from binding to 

the cell wall and disrupting the synthesis of peptidoglycan thus allowing MRSA to 

survive.2  

Although we have seen a decrease in the rate of MRSA infection across Europe, S. 

aureus is still the second most frequently isolated microorganism in HAIs.5,31 

Furthermore, in 1996, a MRSA strain resistant to vancomycin was isolated in 

Japan.32 Vancomycin, often referred to as a drug of ‘last resort’, has been the drug of 

choice to treat MRSA infections.7 In addition to Japan, a number of vancomycin-

resistant S. aureus (VRSA) strains have since been reported around the world.7,32 S. 

aureus is an ever evolving pathogen with an ability to evade both host and external 

defences. A bacterium that is always one step ahead.  

1.1.5 Pseudomonas aeruginosa 

Pseudomonas aeruginosa (P. aeruginosa) is a Gram-negative bacillus, commonly 

found throughout the environment in water, vegetation and soil (Figure 1.5).33 When 

given the opportunity, P. aeruginosa can cause serious infections in humans. P. 

aeruginosa infections usually occur in patients that have an underlying disease or 

injury with three of the most common sites of P. aeruginosa infection being in burn 

wounds, the cornea and the lung.33b,34 Infections can range from acute infections 

such as endocarditis and septicemia to chronic lung infections in people with cystic 

fibrosis (CF).35 Approximately 80% of CF patients may be colonised with P. 

aeruginosa.33a 
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Figure 1.5: SEM and colourised version of SEM of P. aeruginosa, a rod-shaped 

Gram-negative bacterium.22 

Being a Gram-negative bacterium, P. aeruginosa has the advantage of an additional 

outer membrane assisting in its resistance to antibiotics. With the reduced fluidity of 

the Gram-negative outer membrane, however, the bacterium needs an alternative 

method by which it takes up nutrients and disposes of waste products. This is carried 

out by pores or channels known as porins.17 P. aeruginosa lacks the ‘classical’ high 

permeability porins that are found in most Gram-negative bacteria.15 The porin 

protein, OprF, the homolog of the E. coli porin protein, OmpA, only produces 

channels when it is folded into a rare conformation.18 Furthermore, in comparison to 

OmpA of E. coli, the diffusion of molecules through the P. aeruginosa OprF channel 

is two orders of magnitude slower.36 The presence of an outer membrane and 

inefficient porins makes P. aeruginosa intrinsically very resistant to antibiotics.  

In addition to the permeability barriers, P. aeruginosa also has an arsenal of 

membrane-bound and secreted virulence factors. P. aeruginosa possess straight, 

filamentous appendages on the cell surface known as pili, specifically type IV pili.37 

They are retractable structures responsible for adhesion to the host cell surface but 

also give the bacterium a unique form of movement known as twitching motility.37-38 

Type IV pili consist of a hollow, cylindrical structure made up of pilin proteins with 

the region responsible for adhesion presented at the top of the pilus.37 Studies have 

shown that P. aeruginosa pili are responsible for approximately 90% of the 

adherence to human lung cells and that they can discriminate between healthy and 

damaged canine tracheal cells.37  
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Another important adhesin associated with P. aeruginosa is alginate. Alginate is a 

linear co-polymer exopolysaccharide that forms a capsule-like structure around the 

P. aeruginosa bacterium.18 As mentioned earlier, P. aeruginosa are a particular 

problem for CF patients. One of the reasons for this being that it undergoes a 

phenotypic change from non-mucoid to mucoid (alginate-producing) P. aeruginosa 

in the lungs of chronically infected CF patients.39 The mucoid, capsule-like structure 

can act as a barrier against phagocytes and opsonisation, it may also be capable of 

acting as an immunomodulator and may be involved in the formation of biofilms, all 

of which contribute to the pathogenesis of P. aeruginosa.39  

Once adherence has been established there are a number of secreted proteins that 

play a part in the progression of P. aeruginosa infection. The most toxic substance 

secreted by P. aeruginosa is exotoxin A.35 Exotoxin A binds to a receptor known as 

CD91 on the host cell surface. Once bound, it is internalized into the cell where it is 

broken down into N-terminal and C-terminal fragments.35 The C-terminal fragment 

makes its way to the endoplasmic reticulum and on to the cytosol where it catalyzes 

the ADP ribosylation of the eukaryotic elongation factor-2 (eEF-2).35 The ADP 

ribosylation of eEF-2 results in the inhibition of protein synthesis and ultimately cell 

death.35,40 Other virulence factors secreted by P. aeruginosa include; elastases LasA 

and LasB, type III secretion system (T3SS) effector proteins ExoS, ExoT, and ExoU, 

and phenazines such as pyocyanin.33b,40 Pyocyanin gives the green-blue colour to pus 

associated with P. aeruginosa infections.33b,41 P. aeruginosa are also well-known for 

their ability to form biofilms. Chronic P. aeruginosa infections of the lungs of CF 

patients are associated with biofilm formation.40,42  

As with S. aureus, a number of the P. aeruginosa virulence factors are controlled by 

its QS system including; alginate, exotoxin A, elastase, pyocyanin and biofilm 

formation.43   P. aeruginosa has two QS systems, the lasI system that encodes for the 

AI known as PAI-1 and the rhlR/rhlI system the AI of which is PAI-2.43  

The European Centre for Disease Prevention and Control Point Prevalence 

Surveillence (ECDC-PPS) report 2011-2012 listed P. aeruginosa as the fourth most 

frequently isolated organism in HAIs.5 P. aeruginosa infections are difficult to 
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eradicate due to its intrinsic resistance, however, as observed with S. aureus, P. 

aeruginosa strains resistant to antibiotics have also been isolated. Resistance due to 

the loss of porins has been observed in P. aeruginosa isolates, for example, the loss 

of OprD resulted in resistance to imipenem.15  

P. aeruginosa is particularly known for its multidrug resistance. Multidrug resistance 

is a mechanism of resistance that involves drug efflux by membrane transporters.44 It 

has been demonstrated that the expression of efflux systems in P. aeruginosa is 

greatest when the bacteria is under stress, for example, growth in a nutrient poor 

medium.45 In the case of P. aeruginosa, active efflux pumps contribute significantly 

to its multidrug resistance.46 These pumps are composed of three subunits, the pump 

protein, an outer membrane channel and an accessory protein (Figure 1.6).18 The 

mexA-OprM efflux system is the most well known in P. aeruginosa and is 

responsible for the efflux of fluoroquinolones, -lactams, tetracyclines and 

erythromycin.36,47 The U.S. Department of Health and Human services Centers for 

Disease Control and Prevention (CDC) have classified P. aeruginosa infections as a 

serious threat with 13% of severe HAIs being caused by multidrug resistant (Mdr) P. 

aeruginosa.7 

 

Figure 1.6: Schematic of a Gram-negative bacterial efflux pump. Drugs can 

transverse the outer membrane through the LPS/lipid bilayer or through porin 

channels. From the cytoplasm they are brought into the periplasm where they are 

expelled from the cell by the efflux pump.48  
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1.1.6 Escherichia coli 

A Gram-negative, rod shaped bacterium, Escherichia coli (E. coli), is found in the 

gastrointestinal (GI) tract of healthy humans and other animals (Figure 1.7).49 

However, some E. coli strains are pathogenic. The two most common infections 

associated with E. coli are urinary tract infections (UTIs) and diarrhoeal infections.50 

UTIs are caused by E. coli that spread from the gut to the sterile urinary tract.50 The 

clinical syndromes of UTIs are dependent on the location of infection, that is, cystitis 

is a lower UTI and pyelonephritis is an upper UTI.50 Pyelonephritis can be associated 

with septicaemia.50 There are a number of E. coli pathotypes associated with 

diarrhoeal infections, two well-known pathotypes being enteropathogenic E. coli 

(EPEC) and enterohaemorhagic E. coli (EHEC).49,51 The main difference between 

these two pathotypes is that, EHEC produces Shiga toxins (Stx) whereas EPEC do 

not produce a detectable toxin.50 EHEC is also commonly referred to as VTEC 

(verotoxin E. coli) or STEC (Shiga toxin E. coli).51a   

    

Figure 1.7: SEM of a single Gram-negative E. coli bacterium (left) and a fluorescent 

antibody-stained photomicrograph (right) of E. coli found in a faecal smear.22 

EPEC is associated with diarrhoea in young children in developing countries with 

transmission linked to close human contact, for example, in nurseries.50,51b  EHEC is 

transmitted through food, water and animal contact (in particular ruminants) and as 

the name suggests causes bloody diarrhoea.49,51b Approximately 10% of EHEC cases 

go on to develop Haemolytic Uraemic Syndrome (HUS), a clinical syndrome that 

leads to renal failure.49 Children under the age of five and the elderly are most at 

risk.49,52 Over 90% of HUS cases are believed to be caused by EHEC.49  
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The pathogenesis of E. coli can be attributed to a number of virulence factors. As 

with other Gram-negative bacteria, E. coli has an outer membrane containing LPS 

and porins.18 A combination of LPS and small size porin channels gives E. coli 

greater protection against antibiotics in comparison to Gram-positive bacteria.17-18 E. 

coli can also form capsules made up of linear polymers of repeating carbohydrate 

subunits known as K antigens.50 Encapsulated E. coli are usually more virulent than 

unencapsulated E. coli. with the quantity of K antigen being proportional to the 

degree of virulence.53 The capsule is believed to protect the bacteria from 

phagocytosis.53 

E. coli also produces a number of toxins including haemolysins and cytotoxic 

necrotising factor 1 (CNF1).50 E. coli have three haemolysins, -, -, and -

haemolysin, all of which can lyse red blood cells.51b CNF1 has been shown to cause 

the necrosis of rabbit skin and also has the ability to induce the reorganisation of the 

host actin cytoskeleton.50,54 Pathogenic EHEC also produces two types of Shiga 

toxins, SLT-I and SLT-II.50,52 Ninety-seven per cent of EHEC strains produce SLT-

II with or without SLT-I.50 These Shiga toxins are internalised by host cells in which 

they inhibit protein synthesis resulting in cell death.52 The production of Shiga toxins 

is required for the development of renal complications with SLT-II shown to be 

responsible for HUS in mice.50 

A particularly important step in initiating infection is the initial adherence to the host 

cell surface. A characteristic feature of EHEC and EPEC infection is the formation 

of ‘attaching and effacing’ (A/E) lesions (Figure 1.8).55 The formation of A/E lesions 

can be divided into three stages, initial adherence, signal transduction through 

secreted proteins, and intimate attachment.56 
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Figure 1.8: A/E lesion formed by EPEC.57 

For initial adherence E. coli use filamentous cell surface appendages known as 

fimbriae. Specifically, EPEC uses type IV pili known as bundle forming pili (BFP).56 

Little is known of the EHEC adhesins.51b Once fimbriae adhere to the host cell 

surface, EPEC and EHEC have a T3SS that can translocate effector proteins into the 

host cell.55 The Tir protein is an effector protein that is translocated to the host cell 

where it can act as a receptor for intimin, a bacterial outer membrane protein.55-56 

Intimin binds to Tir to give an irreversible intimate cell attachment that results in 

downstream signalling events leading to the reorganisation of actin filaments of the 

host cell cytoskeleton.55 This reorganisation results in the formation of actin 

pedestals directly beneath the bacterial attachment sites (Figure 1.9).55 The exact role 

of pedestals in the pathogenesis of EHEC and EPEC is not fully understood but it 

has been suggested that actin assemblies may be involved in the expansion and 

proliferation of E. coli infection.58 Pedestals may also help resist bacterial 

detachment during diarrhoea.58   

 

Figure 1.9: EPEC adhesion pedestal formed on a eukaryotic cell.59 
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Unlike most Gram-negative bacteria, E. coli does not produce the AHL 

autoinducers.28 However, it does produce AI-2, an autoinducer which is believed to 

be involved in interspecies communication, as it is produced by both Gram-negative 

and Gram-positive bacteria.25,60 AI-2 is regulated by the luxS QS system.60 

Regulation of the T3SS of EHEC and EPEC by the QS system has been observed.61 

It has been suggested that the low infection dose of EHEC (as low as two or three E. 

coli) may be due to the ability of non-pathogenic E. coli to produce AI-2 in turn 

activating the T3SS of EHEC.49,61 Furthermore, studies have shown that the flagella 

(a cell surface appendage involved in cell locomotion14) and motility of E. coli are 

regulated by its QS system, as well as E. coli biofilm formation.28,60,62 The ability to 

form biofilms, as with other bacteria, may help in the resistance of E. coli to 

antibiotics.28,63 

According to the ECDC-PPS report 2011-2012 E. coli is the most frequently isolated 

organism in HAIs.5 As seen with P. aeruginosa, the multidrug resistance of E. coli 

has been associated with the over expression of efflux pumps.45 The AcrAB-TolC 

efflux system is the predominant efflux pump in E. coli and has the ability to efflux 

fluoroquinolones, -lactams, novobiocin, and rifampicin as well as some dyes and 

organic solvents.45,48  

E. coli can also produce -lactamases and in the last few years extended--lactamase 

(ESBL)-producing E. coli have emerged as an important cause of UTIs.64 ESBL-

producing E. coli that exhibit cross-resistance to gentamicin and ciprofloxacin have 

also been reported.64  The 2013 first quarter EARS-Net report has shown that from 

2004 to 2012 the number of extended spectrum -lactamase-producing (ESBL) E. 

coli infections has been continuously increasing (1.1% in 2004 to 9.5% to the end of 

quarter one in 2013).6b Furthermore, carbapenemems are considered the drug of last 

resort for the treatment of these multiresistant E. coli, however, carbapenem-resistant 

E. coli are also on the rise.65 The CDC have classified carbapenem-resistant 

Enterobacteriaceae (CRE) infections as an immediate public health threat.7 Of the 

estimated 9000 CRE infections in the U.S. per year, 1,400 of these are carbapenem-

resistant E. coli infections.7 
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1.1.7 The immune system 

In mammals, there are two systems involved in the protection from and response to 

infection by an invading pathogen. These systems are known as the innate and 

specific adaptive immune response.66 The innate immune response is the first line of 

defence and also plays a role in the initiation of the adaptive immune response, a 

system responsible for long-lasting protective immunity.66  

Insects and mammals have been shown to share many similarities in their innate 

immune systems.67 For example, the cuticle of insects provides a physical barrier 

preventing the entry of pathogens, a feature similar to the skin of mammals.66-67 

When a pathogen enters the human body, cells known as macrophages and 

neutrophils can bind to the microbe and engulf them by a process known as 

phagocytosis.66 The resulting, microbe-containing phagosome can fuse with 

lysosomes which release substances such as lysozyme that digest the microbe.66 In 

insects, within the haemolymph (analogous to the blood of mammals), haemocytes 

or blood cells are responsible for the phagocytosis of foreign bodies.67a Lysozyme 

has also been found in insect haemocytes along with a number of antimicrobial 

peptides similar to those found in mammals, such as defensins and transferrin.67a,b  

These similarities, along with many others, between the innate immune system of 

insects and mammals have led to the use of insects as in vivo models for 

investigating the virulence of many human pathogens including Gram-negative 

bacteria, Gram-positive bacteria and fungi.68  

1.1.8 Galleria mellonella and insects as in vivo models 

The greater wax moth, Galleria mellonella (G. mellonella), is of the order 

Lepidoptera and the family Pyralidade.67a G. mellonella live in beehives in which the 

larvae feed on the honeycomb and undergo metamorphosis to become a grey moth 

(Figure 1.10).67a,69 As shown in Figure 1.11 the G. mellonella larvae are a dull white 

colour and approximately 3 cm in length.  
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Figure 1.10: Adult wax moth Galleria mellonella (printed with permission).69 

 

Figure 1.11: G. mellonella larvae. 

G. mellonella larvae have been used as an in vivo model in a number of studies to 

investigate the virulence of human pathogens. For example, Peleg et al.68e have 

demonstrated that G. mellonella can be used to investigate both the virulence and the 

relationship between the pathogensis of S. aureus and drug resistance. Studies by 

Cotter et al.68c have shown that the wax moth larvae could be used to differentiate 

between non-pathogenic and pathogenic strains of C. albicans. Furthermore, 

Brennan et al.68d have demonstrated that there is a high degree of similiarity between 

the G. mellonella and the mouse innate immune response to infection by C. albicans. 

Similar studies investigating the virulence of the Gram-negative bacterium P. 

aeruginosa have shown that there is a positive correlation between the virulence of 
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P. aeruginosa in both G. mellonella and in mice and that insects are a suitable model 

for identifying and characterising virulence genes.68b  

An important phase in drug discovery is the assessment of the toxicity of new drug 

candidates. Before a new drug candidate can reach the clinic it needs to be tested to 

ensure it is safe and effective.11 Toxicity testing is usually carried out using animal 

models such as mice, rabbits, dogs and monkeys.11 However, the use of mammalian 

models is expensive, labour intensive, time consuming and requires full ethical 

consideration. Insects such as G. mellonella are lower in cost, do not require a large 

amount of space for storage and experimental work and can give results within 24 to 

48 hours. These advantages combined with the similarity to the mammalian innate 

immune system render insects a useful preliminary model for the in vivo testing of 

new drug candidates.  

Drosphilia melanogaster (fruit fly) has been used to evaluate the therapeutic effect 

of known antifungals, alone and in combination, against Aspergillus fumigatus.68g 

The silkworm, Bombyx mori, have also been used to evaluate the effect of current 

clinical antibiotics against bacterial and fungal infections.68a The results obtained 

were consistent with those reported in mice models.68a Furthermore, silkworms have 

also been employed in investigations of the toxicity and metabolism of known 

compounds.68f These studies gave results consistent with those observed in mammals 

demonstrating that insects are a good model for studying the in vivo therapeutic 

effect of antibiotics.68f  

G. mellonella have also been used to evaluate both the therapeutic effect of current 

and novel antimicrobial agents and the in vivo tolerance of novel antimicrobial 

agents.70 Desbois et al.70a have shown that the treatment of G. mellonella infected 

with S. aureus using vancomycin, daptomycin or penicillin improved survival of 

larvae in a dose dependant manner. However, treatment of MRSA infected G. 

mellonella with penicillin did not improve the survival of the wax moth larvae. The 

doses administered to the infected G. mellonella that were most effective, were 

similar to those recommended for use in humans.70a  An investigation into the 

toxicity of copper(II) and silver(I) complexes by McCann et al.71 have demonstrated 
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that the level of toxicity exhibited by the test compounds in G. mellonella was 

similar to that observed in Swiss mice.  

Although the use of mammals as in vivo models for testing new drug candidates is 

necessary, G. mellonella can be used as a good preliminary in vivo toxicity model. 

On average, only 500 compounds out of 10,000 compounds synthesised will reach 

animal testing with only 10 reaching phase one clinical trials.11 The use of insects 

allows for the early optimisation of compounds that exhibit therapeutic potential 

which in turn reduces the number of mammals used. Insect experiments may also be 

able to supply information relating to suitable dosages and drug metabolism.68f,70a  

1.1.9 In vivo toxicity using G. mellonella 

G. mellonella are very easy to work with. In general, experiments are carried out in 

triplicate using ten healthy G. mellonella per experiment, within three weeks of 

receiving the larvae. As shown in Figure 1.12, test compounds can be administered 

into the haemocoel (body cavity) via injection into the last left pro-leg. By applying 

gentle pressure to the sides of the leg, the base of the pro-leg opens and will re-seal 

once the syringe needle has been removed, without leaving a scar (Figure 1.12). This 

needs to be carried out with care as rough handling of the larvae can affect survival 

and lead to expression of stress proteins.72 To ensure proper handling of the larvae an 

injected control can be used whereby the larvae are injected with the appropriate 

syringe needle but no substance is administered.  

 

Figure 1.12: Compound administration to G. mellonella larvae, (a) apply pressure to 

the sides of the larva to open the base of the pro-leg and (b) inject into the haemoceol 

through the last left pro-leg (reproduced from Fungal Biol. Rev. 24 (2010) with 

permission). 
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A detailed account of the toxicity assay procedure is given in section 1.2.8. The 

toxicity of a given compound is determined by calculating the percentage of G. 

mellonella larvae that survive over a period of 72 hours. The larvae are monitored 

every 24 hours and death is assessed based on a lack of movement in response to 

stimulation together with discolouration of the cuticle (Figure 1.13). Melanisation 

(discolouration of the cuticle) and development of the larvae (Figure 1.14) can also 

be monitored to determine if the larvae are responding to the test compound and if it 

is effecting larval development. 

 

Figure 1.13: A dead G. mellonella larva. 

 

Figure 1.14: G. mellonella pupal stage of development. 
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1.2 Biological studies 

1.2.1 Materials and methods 

Nutrient Broth was obtained from Scharlau Microbiology. 

Nutrient Agar was obtained from Oxoid Ltd.  
 
OD600nm values were determined using a spectrophotometer (Biophotometer, 

Eppendorf).  

Optical density was read using a microplate reader (Bio-Tek. Synergy HT 

Spectrophotometer).  

A TOMY SX-500 E autoclave (121oC and 18 lb/sp.in) was used for the sterilization 

of all growth media and materials required for aseptic techniques. 

1.2.2 Bacterial strains 

The bacterial strains used in this study are shown in Table 1.1. 

Table 1.1: Bacterial strains used in this study 

Bacterial strain Origin Reference 

Staphylococcus aureus 

Urinary tract infection, 

St. James’ Hospital, 

Dublin 

Clinical Isolate 

Escherichia coli 

Gastro-intestinal tract 

infection, St. James’ 

Hospital, 

Dublin 

Clinical isolate 

Pseudomonas aeruginosa 

10145 

American Type Culture 

Collection (ATCC) 

Marassas, VA, USA 

ATCC 
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1.2.3 Media for culturing bacteria 

Nutrient Broth 

Nutrient Broth was prepared according to the manufacturer’s instructions by 

dissolving 13 g/L in distilled water and autoclaved prior to use. 

Nutrient Agar 

Nutrient agar was prepared according to the manufacturer’s instructions by 

dissolving 28 g/L in distilled water and autoclaved. The warm agar was poured into 

sterile 9 cm petri dishes and allowed to set. The nutrient agar petri dishes were stored 

at 4 oC. 

1.2.4 Bacterial culture conditions 

For long term storage, all parent bacterial stocks were stored at -70 oC in a sterile 

mixture of 50% (v/v) glycerol and 50% nutrient broth media (v/v). For short term 

storage, bacterial strains were grown on nutrient agar plates at 37 oC for 24 hours and 

stored at 4 oC. Working stocks of the bacteria were routinely sub-cultured onto fresh 

agar plates every 4-6 weeks.  

1.2.5 Susceptibiltiy assay 

The bacterial strains used in this study are shown in Table 1.1, section 1.2.2. 

All workspaces were washed down with 70% (v/v) ethanol prior to use. Bacterial 

strains were taken from nutrient agar plates and cultures were grown in nutrient 

broth overnight in an orbital shaker at 37 °C and 200 rpm in a fully aerated conical 

flask. The cells were diluted to give an OD600 = 0.1. 

Fresh solutions (200 g/mL) of the complexes were prepared with distilled water 

and less than 1% DMSO immediately prior to testing. Complexes with low solubility 

were tested as fine suspensions.  

Nutrient broth (100 μl) was added to each well of a 96-well flat-bottomed microtitre 

plate. An additional 100 l was added to columns 1 and 2 of the plate. Serial 

dilutions (1:1) of the test complex were made from columns 12-4 giving a test 
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concentration range of 100–0.39 μg/mL. For example, 100 L of the compound 

solution was added to column 12, and mixed thoroughly using the pipette, followed 

by the transfer of 100 L of the final solution in column 12 to column 11. This 

process is repeated down to column 4 from which the final 100 L is disposed of 

(see Figure 1.15).The appropriate bacteria cell suspension to be tested against (100 

L) was added to columns 12-3. Column 3 served as the negative control. 

 

 

Figure 1.15: Bacteria susceptibility assay 

The plate was incubated for 24 hours at 37 oC. The optical density was read at max 

540 nm and growth was then quantified as a percentage of control. All assays were 

run in triplicate. The results were analysed using Excel©.  

The MIC50 (Minimum Inhibitory Concentration), MIC80 and MIC90 were taken to 

signify the concentration of compound that would inhibit the growth of the 

microorganism in question by 50%, 80% and 90%, respectively. 
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1.2.6 In vivo toxicity  

In vivo toxicity was investigated using larvae of the Greater Wax Moth, Galleria 

mellonella (Figure 1.16). 

 

Figure 1.16: G. mellonella larvae. 

1.2.7 Galleria mellonella (G. mellonella) 

G. mellonella in the sixth developmental stage were obtained from The Mealworm 

Company (Sheffield, England) and stored in wood shavings in the dark at 15 oC.   

1.2.8 G. mellonella toxicity assay 

The experiments were carried out using ten healthy G. mellonella (between 0.20-

0.30 g in weight) placed in sterile, 9 cm petri dishes containing a sheet of Whatman 

filter paper and wood shavings.  

Test compound solutions were made fresh on the day of testing prior to 

administration. Each compound was dissolved in DMSO and added to sterile, 

distilled water to give stock solutions consisting of less than 1% (v/v) DMSO. The 

compounds were tested across the concentration range of 1-100 g/mL. Using a 300 

L Thermo Myjector syringe (29G), sterile test solutions (20 L) were administered 

to the larvae by injection. Injections were made into the last, left pro-leg, of the G. 

mellonella larvae, directly into the haemocoel.  
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After injection, the larvae were incubated at 30 oC for a total of seven days.  Larvae 

were monitored for survival and melanisation, at 24 hour intervals. Death was 

assessed based on the lack of movement in response to stimulation together with 

discolouration of the cuticle. Three controls were employed for the assay: 

(1) untreated larvae maintained under the same conditions as the treated larvae, 

(2) larvae pierced with an inoculation needle into the last, left pro-leg, but no 

solution injected, and 

(3) larvae treated with 20 L of sterile water/DMSO solution, in concentrations 

analogous to those of the test compounds. 

The results are presented as the mean percentage survival of G. mellonella larvae, as 

a function of the test compounds administered dosage. All experiments were run in 

triplicate. Analysis of the results was carried out using Graph Pad Prism©. 
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1.3 Instrumentation 

Nuclear magnetic resonance spectra (1H, 13C and 19F NMR) were recorded on a 

Bruker Avance 300 MHz NMR spectrometer with resolution of 0.18 Hz at a probe 

temperature of 25 oC, except where stated otherwise. Spectra were recorded in 

DMSO-d6, CDCl3 or CD3OD with Me4Si used as the internal standard. 

Infrared (IR) spectra were recorded as KBr disks or liquid films between NaCl plates 

using a Perkin Elmer System 2000 FT-IR spectrometer in the region of 4000-370 

cm-1.  

Melting points were determined using a Stewart Scientific SMP 1 melting point 

machine.  

Microanalysis was carried out using a Flash EA 1112 Series Elemental Analyser. 

The sample is burned in oxygen and a helium carrier gas at 900 oC in a combustion 

tube. 

Mass spectrometry (MS) data were obtained with a LC/TOF-MS (Agilent Corp, 

model 6210 Time-Of-Flight LC/MS). The LC was a model 1200 Series (Agilent 

Corp) and the column was an Agilent Eclipse XBD-C18. Where required, samples 

were also obtained via direct injection. 

Optical rotations were measured with a Bellinghem and Stanley ADP410 polarimeter 

in a 0.5 dm-1 polarimeter tube. 

Reagents were purchased from Sigma-Aldrich, Alfa Aesar, Acros Organics, 

Fluorochem and TCI Europe and used without further purification. 
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2.1 Introduction 

Asymmetric synthesis, by means of organocatalysis, is another active area of 

research within the Stephens group.73 Taking advantage of the organocatalysts 

available within the group, a number of these were screened for their antibacterial 

activity in the search for a lead compound. Antibacterial screening was carried out in 

the Institute of Technology Tallaght (ITT) against S. aureus and E. coli, the results 

of which have been previously reported by Gavin.74 The majority of the 

organocatalysts exhibited bacteriostatic activity against the Gram-positive S. aureus 

with only two of the compounds exhibiting activity against the Gram-negative E. 

coli. The two compounds found to be the most active of the series of screened 

organocatalysts are shown in Figure 2.1 with their minimum inhibitory 

concentrations (MIC) given in Table 2.1.  

 

Figure 2.1: Bifunctional thiourea catalysts that exhibited greatest activity in 

antimicrobial screening.74 
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Table 2.1: MIC90
a values for organocatalysts (a) and (b).74 

Organocatalyst 
S. aureusb E. colic   

MIC90 (μM) MIC90 (μM) 

Takemotos catalyst (a) 23.8 +/- 0.1 119.9 +/- 13.8 

Quinine derived catalyst (b) < 6.25 166.7 +/- 13.7 
a The minimum inhibitory concentration required to inhibit 90% of bacterial growth, 
b S. aureus NCIMB 12702, c E. coli NCIMB 9485. 

The organocatalysts shown in Figure 2.1 are bifunctional, hydrogen-bonding (H-

bonding) catalysts. Organocatalyst (a), known as Takemotos catalyst, was the first 

chiral thiourea H-bonding catalyst designed for a Michael reaction (Scheme 2.1).75  

 

Scheme 2.1: Michael reaction of diethyl malonate to trans--nitrostyrene using 

Takemotos catalyst.75b 

Investigations into the catalytic reaction mechanism have been carried out and it is 

believed to occur by deprotonation of a malonate acidic proton by the tertiary amine 

of the organocatalyst.76 H-bonding of the nitrostyrene via the catalyst thiourea 

moiety results in the formation of a ternary complex as depicted in Figure 2.2. The 

presence of the chiral scaffold restricts the approach of attack by the malonate 

nucleophile to the electrophilic nitrostyrene giving rise to the high enantioselectivity 

of the reaction.76 The thiourea-stabilised nitronate can then remove the proton from 

the protonated amino group of the catalyst resulting in formation of the product and 

regeneration of the catalyst.76  



Chapter II: A structure-activity relationship study of thiourea-based antibacterial agents 

32 

 

 

Figure 2.2: Bifunctional activation by thiourea catalyst.76 

The quinine derived organocatalyst (b) (Figure 2.1) was later designed by Connon77 

and Soós78 (independently) and has been used for a number of reactions such as the 

Mannich reaction.79 Investigations into the Michael addition of -diketones to -

nitrostyrene using organocatalyst (b) have also been carried out.73a It is believed that 

organocatalyst (b) works by a similar mechanism as that described above (Figure 

2.2).80 

As seen in Table 2.1, Takemotos catalyst exhibited slightly better activity against E. 

coli in comparision to organocatalyst (b). However, the anti-staphylococcal activity 

demonstrated by organocatalyst (b) was superior to that of Takemotos catalyst. For 

this reason, it was decided that the quinine derived organocatalyst (b) would act as 

our hit compound, and so, would be studied further in an attempt to understand its 

structure-activity relationship and to improve its activity and drug-like properties.  

With organocatalyst (b) as our hit compound we decided to carry out a structure-

activity relationship (SAR) study. Synthesising a series of compounds based on our 

hit compound would allow us to identify which functional groups are essential for 

activity. We could then build on this information by designing and optimising 

subsequent compounds with the intent of generating a final compound possessing 

optimum antibacterial activity. On comparing the structures of the two catalysts, (a) 

and (b), it can be seen that these compounds share a structural component, the 3,5-
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bis(trifluoromethyl))phenyl thiourea connected to a tertiary amine by a two-carbon 

chain (Figure 2.3).  

 

Figure 2.3: Organocatalyst (a) and (b) share a similar structural component. 

Thiourea-based compounds are well-known for their antithyroid activity and have 

been in use for over 70 years in the treatment of hyperthyroidism.81 Moreover, a vast 

array of biological activities including antitubercular, insectididal, rodenticidal, 

antiviral, antifungal and antibacterial activities have been associated with thiourea 

derivatives.82 A recent study on thiourea-based compounds incorporating a hippuric 

acid moiety, as shown in Figure 2.4, was carried out by Abbas et al.83 The majority 

of these compounds exhibited broad spectrum antimicrobial activity with a number 

of them demonstrating activity comparable to, and in some cases better than, 

ciprofloxacin.83  

N
H

HN

O

CO2H

N
H

S

X

X = alkyl, aromatic ring  

Figure 2.4: General structure of hippuric acid-based thiourea derivatives. 
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Based on the antibacterial activity exhibited by both Takemotos catalyst and 

organocatalyst (b) and the well-known biological activities associated with thioureas, 

it was thought that the 3,5-bis(trifluoromethyl))phenyl thiourea moiety could be the 

source of the compounds activity. Therefore, we constructed our SAR study based 

around this thiourea group. 

2.1.1 Aim 

The aim of this work was to uncover the structural components responsible for the 

antibacterial activity of the hit compound, organocatalyst (b), by means of a 

structure-activity relationship study. Identification of the functionalities and 

structural components important for its activity would allow us to design subsequent 

compounds that could then undergo further optimisation in the hopes of obtaining a 

novel compound with potent, broad spectrum antibacterial activity. 

The SAR study has been divided into two parts; (1) the identification of the 

functionalities important for the overall activity of the hit compound and (2) an 

investigation into the thiourea component and the substituents which are beneficial 

for antibacterial activity. 

The design, synthesis and biological evaluation of a series of organocatalyst (b) 

derivatives and 3,5-bis(trifluoromethyl))phenyl thiourea-based compounds was 

carried out and is described in the following sections. 
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2.2 Results and Discussion 

2.2.1 Compound Design, part one 

 

Figure 2.5: Hit compound components of possible importance; the quinine-derived 

amine moiety (blue), a methoxy group (purple) and two trifluoromethyl groups 

(green).  

Our initial investigations into the SAR study of our hit compound, organocatalyst 

(b), were based on three components of the hit compound structure (Figure 2.5). 

Firstly, we wanted to investigate the quinine-derived amine moiety of the hit 

compound (blue, Figure 2.5). Quinine (Figure 2.6) is most well-known for its 

antimalarial properties.84 The Peruvian Indians were the first to discover the 

medicinal properties of the natural source of quinine, the ‘fever tree’, known today 

as the cinchona tree.84 However, it wasn’t until the 1700’s that the first European 

was cured of malaria using quinine and it is still in use today.84  

 

Figure 2.6: Quinine. 
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Studies have shown that quinine is also bactericidal to a number of Gram-positive 

and Gram-negative bacteria.85 Wolf et al.86 have also demonstrated that quinine 

sulfate has the ability to inhibit the invasion efficacy of E. coli. Taking these studies 

into account it seemed reasonable to investigate if the quinine-derived amine 

component of the hit compound plays a role in its overall antibacterial activity. It 

was thought that compound 2 (Figure 2.7) would assist in answering this question.  

 

Figure 2.7: SAR study, part one, compound structures. 

To further investigate the functional groups that may be important for the overall 

antibacterial activity of the hit compound, we decided to synthesise compounds 3 

and 4 (Figure 2.7). Methoxy groups can be of importance with regard to their H-

bond accepting ability and thus may be involved in the binding of the hit compound 

to its target site.11 If this is the case here, then removal of this group (compound 3, 

Figure 2.7) should decrease the antibacterial activity of the hit compound.  

The two trifluoromethyl groups are present in both the hit compound and Takemotos 

catalyst suggesting that they may be important for activity. Furthermore, the addition 

of fluorine or –CF3 groups have been shown to increase the overall potency of 

various drugs.87 Therefore, to determine the importance of the –CF3 groups 

compound 4 (Figure 2.7) was synthesised and evaluated in our initial SAR study of 

our hit compound. 

An important factor to take into consideration when designing potential, drug-like 

molecules, is the ability of the compounds to be absorbed or their ability to 
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transverse cell membranes.11,88 As discussed by GSK, incorporating ‘drug-like’ 

properties into a compound is important for its progression into further 

development.10 A compound that may be very active may not be very effective in 

vivo if it does not bear properties such as good absorption.11 A useful set of rules 

have been devised by Lipinski88 as a guide for designing compounds with good oral 

absorption or permeation. The Lipinski ‘rule of 5’ states that good absorption is 

more likely when:11,88 

(1) there are < 5 H-bond donors (expressed as the sum of –OH or –NH), 

(2) the molecular weight (m.w.) is less than 500, 

(3) the calculated LogP (cLogP) is < 5, and 

(4) there are < 10 H-bond acceptors (expressed as the sum of O and N) 

In general, if two out of the five rules are violated poor absorption or permeability is 

possible. As shown in Table 2.2, we have applied the Lipinski ‘rule of 5’ to our 

compounds within our SAR study in order to gain insight into their potential ability 

to be absorbed. In the case described by GSK, although they had found a compound 

with good activity and were able to enhance its activity by further optimisation, they 

were unable to combine the compounds potency with necessary ‘drug-like’ 

properties.10 It was thought that establishing which structural features may contribute 

to good absorption early on in the study, may assist with the optimisation of 

subsequent compounds in the hopes of eventually obtaining a compound with good 

in vivo activity. 

                                                
 The partition coefficient, LogP, is a measure of the hydrophobic character of a drug.11 It is measured 

experimentally by examining the drugs relative distribution in an n-octanol/water mixture i.e. P = 

concentration of drug in n-octanol/concentration of drug in aqueous layer. A high P value indicates 

hydrophobic character whereas a low P value indicates hydrophilic character.  
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Table 2.2: Lipinski rules applied to SAR study compounds.  

Compound M.W.a # H-bond acceptors # H-bond donors cLogPb 

Organocatalyst (b) 594.19 3 2 7.33 +/- 0.63 

2 323.20 3 1 2.77 +/- 0.41 

3 564.18 2 2 7.24 +/- 0.62 

4 458.21 3 2 4.35 +/- 0.48 

a Molecular weight (amu), b calculated using ACD/Labs ChemSketch 12.0. 

As can be seen from Table 2.2, our hit compound violates two of the Lipinski rules, 

that is, it has a molecular weight greater than 500 and a cLogP greater than 5. 

Similarly the SAR study compound, compound 3, also violates both the molecular 

weight and cLogP limits. LogP is a measure of the lipophilicity of a molecule. This 

is a particularly important feature with regards to the physiochemical behaviour of a 

molecule.89 The higher the LogP value the more lipophilic a compound is likely to 

be. However, if a compound is ‘too lipophilic’ this may cause problems, for 

example, a compound may become promiscuous resulting in toxic side effects.89 

Gratifyingly, two of the SAR study compounds, 2 and 4, do obey the ‘rule of 5’ 

suggesting that they may exhibit good absorption. 
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2.2.2 Synthesis of part one SAR study compounds 
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3 4
 

Figure 2.8: SAR study, part one, compound structures. 

Quinine was obtained commercially and used without further purification in the 

synthesis of compound 2 (Figure 2.8). The one pot procedure used was that 

described by Oliva et al.90, wherein quinine undergoes a Mitsunobu reaction 

followed by azide reduction. As shown in Scheme 2.2, reaction of diisopropyl 

azodicarboxylate (DIAD) and triphenylphosphine generates an anion product which 

deprotonates the quinine –OH group. Diphenylphosphoryl azide (DPPA) can then be 

used to give the azide precursor to compound 2. 
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Scheme 2.2: Mitsunobu reaction. 

The use of additional triphenylphosphine (Scheme 2.3) allows the azide to undergo a 

Staudinger reduction to give the final amine product, compound 2.  

 

Scheme 2.3: The Staudinger reduction of the compound 2 azide precursor. 

Purification of compound 2 was carried out using silica gel column chromatography. 

The purification of compound 2 was difficult and required an EtOAc:MeOH:NH4OH 
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(50:50:1) mobile phase in order to facilitate elution of the primary amine. In the 1H 

NMR spectrum (Figure 2.9) of compound 2 a large shift, approximately 1 ppm, was 

observed for the C9 proton (-CH-NH2) indicating product formation. The Mitsunobu 

reaction involves nucleophilic attack via a SN2 reaction, thus inversion of 

configuration was expected. To ensure that this was the case the optical rotation of 

compound 2 was measured, the result of which matches the literature and confirms 

the formation of the (+) enantiomer.78 LC/TOF-MS returned a (M+H+) of 324.2080 

further confirming the formation of compound 2. 

 

Figure 2.9: 1H NMR spectra of compound 2 and quinine. 

The bacterial strains (Table 1.1, section 1.2.2) used within this study are different to 

those used in the original screening which identified the hit compound. Therefore, in 

order to be able to directly compare the biological activity of the SAR study 

compounds to the activity of organocatalyst (b), this compound was also synthesised. 

Organocatalyst (b) was synthesised as described by McCooey et al.77 by the 

nucleophilic addition of compound 2 to 3,5-bis(trifluoromethyl)phenyl 

isothiocyanate (Scheme 2.4). Purification was carried out using silica gel column 
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chromatography followed by a cold Et2O/n-hexane precipitation to give 

organocatalyst (b) in an acceptable yield of 50%. 

 

Scheme 2.4: Synthesis of hit compound, organocatalyst (b). 

The optical rotation of organocatalyst (b) was measured and found to match 

literature data.78 Organocatalyst (b) was further characterised using IR, 1H and 13C 

NMR spectroscopies. The characteristic (C=S) absorption band was observed at 

1278 cm-1 in the IR spectrum. Although the NMR spectra are quite complex, a large 

downfield shift (4.44 ppm to 5.85 ppm) in the resonance signal for the C9 proton (-

CH-NHC=S-), due to the electron-withdrawing effect of the 3,5-

bis(trifluoromethyl)phenyl thiourea moiety, was observed in the 1H NMR spectra.  

The presence of fluorine on a molecule can be particularly useful in the 

characterisation of a compounds structure. Fluorine has I = ½ and can thus be 

detected using 19F NMR spectroscopy. Moreover, the signals produced in 13C and 1H 

NMR spectra of a fluorinated molecule will be split due to the coupling interaction 

between the 13C and 1H atoms and neighbouring fluorine atom(s). The multiplicities 

of the individual signals resulting from H-F or C-F coupling will reflect the n + 1 

rule. In 13C NMR, the shifts for a –CF3 group are found in the range of 107-285 

ppm.91 For a one-bond C-F coupling the 1J value can be in the range of 162-280 Hz 

with the –CF3 group 1J usually in the range of 275-285 Hz.91 The two-bond C-F 

coupling for a –CF3 group (2J) is usually in the range of 25-35 Hz and a 3J coupling 

can also be observed, usually in the range of 2-3 Hz.91
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In the 13C NMR spectra of organocatalyst (b) a quartet with 1J = 270.0 Hz was 

observed. This 1J value falls within the C-F 1J coupling constant range of 162-280 

Hz and corresponds to the characteristic –CF3 group 1J coupling constant range. A 2J 

value of 33.8 Hz was also observed representing the C atom ipso to the –CF3 groups. 

Additionally, the C=S signal has shifted downfield from 141.0 ppm in the 3,5-

bis(trifluoromethyl)phenyl isothiocyanate spectrum to 180.6 ppm indicating the 

formation of organocatalyst (b).   

As shown in Scheme 2.5, the synthesis of compound 3 was carried out by the same 

method as described for organocatalyst (b) above. Cinchonidine was obtained 

commercially and used without further purification in the Mitsunobu reaction. 

Subsequent reduction of the azide resulted in compound 5 (Scheme 2.5). 

 

Scheme 2.5: Synthesis of compound 3 via compound 5. 

Similarly to compound 2, a large upfield shift from 5.65 ppm to 4.61 ppm in the C9 

proton (-CH-NH2) of compound 5 was observed indicating the conversion of the –

OH group to the primary amine. The optical rotation of compound 5 was found to be 

(+) 100 (c 0.2, DCM) confirming inversion of configuration, resulting from the 

Mitsunobu reaction. LC/TOF-MS further confirmed the production of compound 5 

returning a (M+H+) of 294.1974. As shown in Scheme 2.5, compound 5 was used in 

a nucleophilic addition reaction with 3,5-bis(trifluoromethyl)phenyl isothiocyanate 

to give compound 3. Compound 3 was purified by silica gel column chromatography 

followed by cold precipitation from Et2O with n-hexane.   
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In the 13C NMR spectrum of compound 3 a quartet at 122.8 ppm with 1J = 271.4 Hz 

was observed for the carbon of the –CF3 groups. Additionally, a 2J  = 34.5 Hz for the 

carbon ipso to the –CF3 group  was observed along with a downfield shift in the C=S 
13C signal (141.0 ppm to 180.5 ppm), indicating formation of compound 3. As 

observed in the 1H NMR of organocatalyst (b), the addition of the thiourea moiety 

resulted in a large downfield shift from 4.61 ppm to 5.97 ppm in the C9 proton (-

CH-NHC=S-). The IR absorption band at 1278 cm-1 of the (C=S) further confirmed 

the formation of compound 3.  

Compound 4 (Scheme 2.6) was also synthesised by the method used by McCooey et 

al.77, however, phenyl isothiocyanate was used in place of the 3,5-

bis(trifluoromethyl)phenyl isothiocyanate. Again, the compound was purified by 

silica gel column chromatography followed by precipitation from cold EtOAc with 

n-hexane. The white solid was obtained in a reasonable yield of 52%.  
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Scheme 2.6: Synthesis of compound 4. 

The loss of both –CF3 groups resulted in slightly simplified 13C NMR spectra with 

regards to the signal multiplicities, that is, only singlets were observed for the carbon 

signals of compound 4. As with organocatalyst (b) and compound 3 the C=S signal 

has undergone a large downfield shift to 180.5 ppm indicating successful addition of 

the thiourea moiety. Additionally, in the IR spectrum of compound 4 a strong 

absorption band at 1242 cm-1, characteristic of the (C=S) absorption, was observed. 

In the 1H NMR spectrum the C9 proton (-CH-NHC=S-) has shifted downfield to 

5.89 ppm further indicating the formation of compound 4. 
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2.2.3 In vitro antibacterial activity 

Organocatalyst (b) and each of the SAR study compounds described above (Figure 

2.8, section 2.2.2) were evaluated for their in vitro bacteriostatic activity against S. 

aureus, E. coli and P. aeruginosa. Bacteriostatic activity was evaluated using the 

susceptibility assay as described in section 1.2.5. The results are expressed as the 

MIC50 and MIC90, that is, the minimum inhibitory concentration that is required to 

inhibit 50% and 90% of bacterial growth. The results are summarised in Table 2.3 

and 2.4. Two well-known antibacterial agents were chosen as the positive controls, 

vancomycin hydrochloride and ciprofloxacin, which have also been included in each 

of the MIC tables below. Any compound that did not exhibit an MIC, of the given 

percentage of growth inhibition, against each of the bacteria has been excluded from 

the tables. 

In general, none of the compounds including the hit compound were active against 

P. aeruginosa. This lack of activity could be due to the intrinsic resistant 

mechanisms associated with P. aeruginosa. As mentioned previously in section 

1.1.5, the uptake of molecules by P. aeruginosa is very slow (in comparison to E. 

coli) due to its inefficient porins.36 Furthermore, P. aeruginosa is well-known for its 

ability to grow as a biofilm thus aiding its escape from the action of antibiotics.40,42 

P. aeruginosa can also form a capsule providing it with an additional physical barrier 

to prevent the entry of antibiotics.18,39 One or possibly all of these mechanisms may 

be facilitating its resistance to the action of organocatalyst (b) and the SAR study 

compounds 2-5. 
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Table 2.3: SAR study compounds antibacterial activity as MIC50 range. Values are the mean of three experiments.  

Compound E. coli P. aeruginosa S. aureus 

M g/mL M g/mL M g/mL 
Vancomycin hydrochloride 1.58-2.10 2.35-3.13 >67.31 >100.00 1.58-2.10 2.35-3.13 

Ciprofloxacin >301.99 >100.00 1.18-1.77 0.39-0.59 >301.99 >100.00 
Organocatalyst (b) 2.63-3.95 1.56-2.35 >168.30 >100.00 3.95-5.26 2.35-3.13 

3 5.54-8.32 3.13-4.69 >177.25 >100.00 8.32-11.08 4.69-6.25 

4 40.92-54.56 18.75-25.00 >218.24 >100.00 54.56-81.84 25.00-37.50 

 

Table 2.4: SAR study compounds antibacterial activity as MIC90 range. Values are the mean of three experiments. 

Compound E. coli P. aeruginosa S. aureus 

M g/mL M g/mL M g/mL 
Vancomycin hydrochloride 4.21-6.31 6.25-9.38 >67.31 >100.00 4.21-6.31 6.25-9.38 

Ciprofloxacin >301.99 >100.00 37.75-56.62 12.5-18.75 >301.99 >100.00 

Organocatalyst (b) 7.90-10.52 4.69-6.25 >168.30 >100.00 10.52-15.78 6.25-9.38 

3 8.32-11.08 4.69-6.25 >177.25 >100.00 16.62-22.16 9.38-12.50 

4 81.84-109.12 37.50-50.00 >218.24 >100.00 163.68-218.24 75.00-100.00 
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As can be seen in Table 2.3 our hit compound organocatalyst (b) exhibited good 

activity against E. coli, resulting in an MIC50 in the range of 1.56-2.35 g/mL and 

2.35-3.13 g/mL against S. aureus. Gratifyingly, organocatalyst (b) also inhibited E. 

coli and S. aureus growth by 90% at MIC’s comparable to that obtained for the 

reference antibacterial agent, vancomycin hydrochloride (Table 2.4). 

In the investigation into the structure-activity relationship of organocatalyst (b), 

compound 2 (Figure 2.8, section 2.2.2) was the first to be evaluated for its 

bacteriostatic activity. Here, we wanted to investigate if the quinine-derived amine 

component of the hit compound was important for activity. The results from the 

susceptibility assays of compound 2 revealed that it exhibited little or no activity 

against E. coli, P. aeruginosa and S. aureus. This is an interesting result as quinine 

has been shown by others to exhibit bactericidal activity against all three bacteria.85  

Compound 2 is structurally different to quinine in two ways, firstly, the replacement 

of the –OH group with the –NH2 group and secondly, in their C9-configurations 

(Figure 2.10). 

 

Figure 2.10: Structural differences and similarities between compound 2, quinine 

and its C9-epimer.  

Perhaps the –OH group of quinine is involved in binding to its target site through H-

bonding interactions. A H-bonding interaction involves the orbital containing a lone 

pair of electrons of one molecule (H-bond acceptor) interacting with the orbitals 

involved in the R-H bond of a second molecule, the H-bond donor. Thus there is an 

important directional influence associated with H-bonding interactions, that is, the 

optimum orientation is where the R-X bond of the H-bond donor points directly 
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towards the lone pair of the H-bond acceptor. If the –OH group of quinine is 

involved in H-bonding interactions with its target site then replacement with the –

NH2, having two H atoms, could alter the angle at which the H-bonding interaction 

occurs. This in turn may reduce the strength of the interaction and therefore result in 

a loss of the antibacterial activity. Alternatively, it has recently been reported that the 

cytostatic activity of quinine is dependent on its C9 configuration.92 Gorka et al.92 

evaluated the cytostatic activity of quinine and its C9-epimer against the malaria 

causing parasite, Plasmodium falciparum. The results show that the C-9 epimer of 

quinine (Figure 2.10) exhibited a large decrease in cytostatic activity in comparison 

to quinine, suggesting that the configuration may be important for activity. Taking 

this into consideration, it may be that compound 2 having the opposite C9-

configuration to quinine results in a loss in activity. This is not unusual as 

differences in activity have been associated with the different enantiomers of a 

compound, for example ethambutol (Figure 2.11). The (S,S)-enantiomer of 

ethambutol is used in the treatment of tuberculosis whereas the (R,R)-enantiomer is 

inactive.93 

 

Figure 2.11: (S,S)-Ethambutol. 

Another possible explanation for the lack of activity exhibited by 2 could be due to 

the presence of the three basic nitrogen groups, the quinuclidine N, the quinoline N 

and the primary amine. When compound 2 is in solution it may become triply 

charged which, in turn, may prevent it from crossing the lipid membrane of the 

bacteria. Consequently, compound 2 may not be able to inhibit bacterial growth.  

Thus far, with regards to compound 2 and the structure of the hit compound, the 

quinine-derived amine component does not appear to possess antibacterial activity 

and therefore may not be required for the activity exhibited by organocatalyst (b). 
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Moreover, the lack of activity exhibited by compound 2 suggests that the thiourea 

moiety may be important for the antibacterial activity exhibited by the hit compound. 

Next, the importance of the methoxy group with regards to the overall activity of 

organocatalyst (b) was investigated using compound 3 (Figure 2.8, section 2.2.2). As 

can be seen from Table 2.3, compound 3 exhibited activity against both E. coli and 

S. aureus. Although the MIC50 values obtained for compound 3 were slightly higher 

than those exhibited by the hit compound, the MIC90 values obtained for compound 

3 were very close to that of organocatalyst (b) (Table 2.4).  In general, the loss of the 

methoxy group resulted in a slight reduction in activity. However, it did not appear 

to have a detrimental effect on the overall activity of the compound indicating that it 

may not be crucial for activity.  

Finally, the effect of the loss of the two –CF3 groups was investigated using 

compound 4. Compound 4 was less active than the hit compound demonstrating a 

10- and 12-fold decrease in the MIC50 range against both S. aureus and E. coli, 

respectively (Table 2.3). The –CF3 groups are sterically bulky and highly electron-

withdrawing groups. Thus the loss of these groups may induce a change in the 

preferred molecular binding conformation of the hit compound, which in turn may 

reduce its binding affinity to its target site. Alternatively, the addition of fluorine is 

known to increase the lipophiliciy of molecules.87 As can be seen in Table 2.2 

(section 2.2.1) the cLogP of compound 4 is approximately 4.35, a value much lower 

than that of the hit compound (approximately 7.33). In general, the larger the LogP 

value the greater the lipophiliciy, therefore the loss of these groups may impair the 

hit compounds ability to cross the cell membranes and bind to its target site. 

Whatever the case may be, the –CF3 groups appear to be very important in the 

overall activity of organocatalyst (b). 

Of the active compounds here, greater activity was observed against E. coli in 

comparison to S. aureus. This is a little unusual as normally it is more difficult to 

inhibit Gram-negative bacteria in comparison to Gram-positive bacteria due to the 

presence of the additional bacterial outer membrane of the Gram-negative bacterial 

cell wall.18 This result suggests that these compounds may be able to cross the cell 
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membranes of both E. coli and S. aureus, however, the target within each of the 

bacteria may be different thus resulting in different levels of activity. Additionally, if 

the compound shares a similar target amongst the two bacteria, it may be that the 

transport of the compound to the target site is not carried out as efficiently in S. 

aureus as it may be in E. coli. 

The SAR study thus far has been summarised in Figure 2.12. Overall, each of the 

compounds tested were inactive against P. aeruginosa. The quinine-derived amine 

moiety alone does not exhibit bacteriostatic activity against E. coli or S. aureus 

suggesting that it may not be important in the activity of organocatalyst (b), however 

the thiourea moiety may be required for activity. Loss of the –OMe group does cause 

a slight reduction in the potency of the hit compound but does not appear to be 

essential for the overall activity. The –CF3 groups appear to be crucial for activity 

with the loss of these groups resulting in higher MIC values against E. coli and S. 

aureus in comparison to the hit compound. 

 

Figure 2.12: A summary of part one of the SAR study of organocatalyst (b). 
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2.2.4 Compound Design, part two 

Thus far, it was clear that in order to retain bacteriostatic activity the trifluoromethyl 

groups are necessary whereas the loss of the methoxy group does not appear to 

greatly affect the overall activity of the hit compound. The quinine-derived amine 

component alone is inactive suggesting that it may not be required for activity. 

However, this also suggests that the thiourea moiety may be required for activity. 

Additionally, in the original screening for a hit compound, organocatalyst (b) and 

Takemotos catalyst were found to be the compounds that exhibited greatest activity. 

As mentioned earlier, these catalysts share similarities in their structures with both 

compounds bearing a 3,5-bis(trifluoromethyl)phenyl thiourea moiety attached to a 

tertiary amine via a two-carbon chain (Figure 2.3, section 2.1.1). Taking these 

structural similarities into account and having established the structural relationships 

of the –OMe, –CF3 and quinine-derived amine component in part one of the SAR 

study, the SAR study was continued with the focus being placed on two alternative 

structural components of the hit compound as shown in Figure 2.13. 

 

Figure 2.13: Hit compound components for investigation into its structure-activity 

relationship. 

Firstly, we wanted to focus on the thiourea component (red, Figure 2.13). Thioureas 

are known for their vast array of biological properties including antibacterial 

activity.82 A variety of thiourea-based compounds that have been synthesised 
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recently have exhibited antibacterial activity, some of which have demonstrated 

activity comparable to that of known antibacterial agents.83,94   

From our initial studies we found that the presence of the –CF3 groups was important 

for activity. Therefore, in order to combine both the thiourea functionality and the –

CF3 groups it was decided that a series of 3,5-bis(trifluoromethyl)phenyl thiourea-

based derivatives would be synthesised in part two of the SAR study of 

organocatalyst (b) (Figure 2.14).  

 

Figure 2.14: General structure of SAR study compounds. 

Two simple thiourea compounds possessing the 3,5-bis(trifluoromethyl)phenyl 

thiourea group were designed, compound 6 and 7 (Figure 2.15). It was thought that 

these structurally simple molecules should help establish if the thiourea group is the 

source of activity. 

 

Figure 2.15: Structurally simple 1-(3,5-bis(trifluoromethyl)phenyl)-3-thiourea SAR 

study compounds. 

Once again, the Lipinski ‘rule of 5’ have been applied to each of the compounds in 

an effort to gain insight into their potential absorption ability (Table 2.5). As shown 

in Table 2.5 compounds 6 and 7 obey each of the Lipinksi rules unlike the hit 

compound. 



Chapter II: A structure-activity relationship study of thiourea-based antibacterial agents 

53 

 

Table 2.5: Lipinski rules applied to SAR study compounds.  

Compound M.W.a # H-bond acceptors # H-bond donors cLogPb 

Organocatalyst (b) 594.19 3 2 7.33 +/- 0.63 

6 302.03 0 2 3.87 +/- 0.49  

7 316.05 0 2 4.40 +/- 0.49 

8 359.09 1 2 4.03 +/- 0.54 

9 387.12 1 2 5.09 +/- 0.54 

10 370.09 0 2 5.93 +/- 0.50 

11 364.05 0 2 5.32 +/- 0.36 

12 437.14 1 2 5.63 +/- 0.59 

a Molecular weight (amu), b calculated using ACD/Labs ChemSketch 12.0. 

Organocatalyst (b) contains a quinuclidine ring linked via a two-carbon chain to the 

thiourea group.  In an effort to determine the importance of having a carbon chain 

linking a tertiary amine to the thiourea, compounds 8 and 9 were designed (Figure 

2.16). The presence of the tertiary amine provides compound 8 and 9 with an 

additional H-bond acceptor moiety in comparison to compounds 6 and 7. Hydrogen 

bonding interactions are one of the strongest interactions involved in drug-target 

binding thus this feature may be important for activity.11 Both of these compounds 

also obey the Lipinski rules (Table 2.5). 

 

Figure 2.16: SAR study compounds bearing a tertiary amine moiety. 

Next, taking the size of the quinuclidine ring into consideration, two compounds 

were designed in an effort to evaluate the importance of the presence of a sterically 
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bulky group. As shown in Figure 2.17 the two sterically bulky groups chosen were a 

cyclohexane ring and a phenyl ring, compound 10 and 11, respectively. Both groups 

are six-membered hydrophobic carbon cycles, however, the differences in planarity 

and aromaticity should result in different target site binding abilities. Therefore, 

different levels of activity may be demonstrated by each of the compounds. As 

shown in Table 2.5 both compounds lack H-bond acceptors, a feature that may be 

disadvantageous for activity considering the hit compound contains three. 

 

Figure 2.17: Structures of the SAR study compounds 10, 11 and 12. 

Finally, a 3,5-bis(trifluoromethyl)phenyl thiourea attached to a quinuclidine ring via 

a two-carbon chain was designed (compound 12, Figure 2.17). Investigating the 

activity of compound 12 should give insight into the structure-activity relationship of 

two components of the hit compound. Firstly, the importance of the sterically bulky 

tertiary amine containing quinuclidine ring and secondly the effect of the loss of the 

quinoline component. Compound 12 was also found to obey the Lipinski ‘rule of 5’ 

with regards to the molecular weight and number of H-bond donors and acceptors, 

however, its cLogP was found to be > 5 (Table 2.5). As it has only one violation of 

the Lipinski rules, compound 12 still presents as a compound with favourable 

absorption/permeability.   
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2.2.5 Synthesis of part two SAR study compounds 

All of the SAR study compounds described above in section 2.2.4 were synthesised 

using the method described by Andrés et al.95 with modifications. Each of the 

compounds molecular structure has been elucidated by LC/TOF-MS, 1H and 13C 

NMR and IR spectroscopies. The IR spectra of each of the compounds contained a 

strong absorption in the range of 1275-1281 cm-1 corresponding to the (C=S) of the 

thiourea moiety.  

1-(3,5-Bis(trifluoromethyl)phenyl)-3-methylthiourea (compound 6) was synthesised, 

as shown in Scheme 2.7, by the nucleophilic addition reaction of methylamine (2 

equivalents) and 3,5-bis(trifluoromethyl)phenyl isothiocyante (1 equivalent). 

Purification was carried out using silica gel column chromatography to give the 

product as a white solid in good yield, 87%.  

 

Scheme 2.7: Synthesis of SAR study compounds 6-9. 

The simplicity of the molecular structure of compound 6 gave rise to uncomplicated 
1H and 13C NMR spectra. A singlet at 3.06 ppm with an integral of three in the 1H 

NMR spectrum of compound 6 was observed for the three equivalent protons of the 

methyl group, this indicated formation of compound 6. In the 13C NMR spectrum, a 

characteristic quartet at 124.8 ppm with 1J = 270.8 Hz, was observed for the two –

CF3 groups. Additionally, a quartet at 132.8 ppm (2J = 33.0 Hz) was observed for the 

aromatic carbon directly attached to the –CF3 groups (-C-CF3) with the C=S carbon 

signal at 183.7 ppm.  



Chapter II: A structure-activity relationship study of thiourea-based antibacterial agents 

56 

 

The synthesis of compound 7 was carried out as shown in Scheme 2.7 using a 2:1 

ratio of amine:isothiocyanate. The reaction resulted in a good yield of 84%, after 

purification by silica gel column chromatography. A quartet at 3.60 ppm and triplet 

at 1.23 ppm, each with 3J = 7.3 Hz, corresponding to the protons of the ethyl group 

were observed in the 1H NMR spectrum, this indicated formation of compound 7. 

The quartets at 124.8 ppm and 132.7 ppm, in the 13C NMR spectrum, were found to 

have J values of 270.2 and 33.0 Hz, respectively. These coupling constants 

correspond to values associated with one-bond and two-bond C-F coupling constants 

and therefore correspond to the carbons of the –CF3 groups (1J = 270.2 Hz) and the 

carbons ipso to the –CF3 groups (2J = 33.0 Hz). 

Compound 8 (Scheme 2.7) was synthesised using a 1:1 ratio of 

amine:isothiocyanate. A white solid, in 75% yield, was generated after purification 

by silica gel column chromatography. LC/TOF-MS returned a (M+H+) of 360.0961 

indicating formation of the product. However, the 13C and 1H NMR spectra of 

compound 8, in CDCl3, were complex. Doubling and broadening of the 13C signals 

was observed in the 13C NMR spectrum whilst the proton signals of the 1H NMR 

spectrum were broad and poorly resolved (Figure 2.18). It was thought that perhaps 

the complex spectra were the result of some form of chemical exchange occurring in 

solution, for example, restricted bond rotation or tautomerism. 

 

Figure 2.18: 1H NMR spectrum of compound 8 in CDCl3. The residual solvent 1H 

signal was observed at 7.25 ppm. 
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In NMR, chemical exchange involves the movement of a nucleus from one 

environment to another. A commonly encountered example of chemical exchange is 

restricted bond rotation about the C-N bond of amides, for example, N,N-

dimethylformamide (DMF). As shown in Figure 2.19, DMF can be represented as 

two resonance forms. At room temperature, the partial double bond character of the 

C-N bond allows each of the methyl groups to experience different environments 

giving rise to a resonance signal for each of the methyl groups at different chemical 

shifts in the NMR spectra. However, by increasing the temperature of the NMR 

sample, the barrier to rotation (activation energy required for rotation about the 

single bond) can be overcome thus resulting in an increase in rotation about the C-N 

bond. This increase in rotation about the C-N bond allows the methyl groups to 

experience the same environment resulting in an NMR spectrum wherein both of the 

methyl groups are represented by one single resonance signal. 

 

Figure 2.19: Resonance forms of DMF. 

The organocatalytic property of the thiourea derivatives mentioned in section 2.1.1 is 

based on their ability to form H-bonds.76 A review of the literature found that 

thiourea derivatives, like Takemotos catalyst, have the ability to self-associate 

through intra- and intermolecular H-bonding interactions.96 In fact, this ability to 

self-aggregate can interfere with the catalytic ability of thiourea-based 

organocatalysts with high catalyst load and the use of protic solvents having been 

shown to result in lower enantioselectivities.96c,97 Studies by Tárkányi et al.96a,b using 

low temperature NMR spectroscopy demonstrated that at low temperature both a 

momomeric and dimeric species resulting from H-bond interactions of the thiourea 

catalysts can be observed. In both the cinchona-based thiourea organocatalyst and 

Takemotos catalyst an intramolecular H-bond interaction occurs between the tertiary 

amine and one of the thiourea NH’s giving rise to a monomeric species.96a,b 

Additionally, intermolecular H-bonding occurs between the thiourea NH’s of one 
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molecule of catalyst and the thiourea sulfur atom of a second catalyst molecule 

resulting in the formation of a dimer.96a Furthermore, it is believed that the 

monomeric and dimeric forms are in equilibrium (chemical exchange) and that these 

self-aggregrates are the cause of the broadening effect of 1H NMR signals at room 

temperature.96b  

Taking these studies into consideration, it was believed that the thiourea derivative, 

compound 8, may be undergoing self-association in CDCl3 and therefore resulting in 

a broadening effect of the signals in the NMR spectra. In order to investigate this, the 

NMR experiments were carried out using CD3OD in place of CDCl3. Methanol is a 

polar protic solvent with the ability to accept and donate H-bonds and should 

therefore interfere with the H-bonding interactions and disrupt the self-association of 

the thiourea derivatives. The disruption of H-bonding interactions should, in turn, 

result in sharper resonance signals in the NMR spectra. As observed with the 

cinchona-based organocatalysts96b, the 1H and 13C NMR spectra of compound 8 in 

CD3OD exhibited one set of sharp resonance signals indicating a loss in self-

association (Figure 2.20). 

 

Figure 2.20: 1H NMR spectrum of compound 8 in CD3OD. The residual solvent 1H 

signal was observed at 3.32 ppm and the 1H signal for H2O at 3.91 ppm.  

To further confirm the occurrence of self-association of compound 8 a number of 1H 

NMR experiments were ran at higher temperatures. If the monomeric and dimeric 
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thiourea species of the thiourea bifunctional catalysts can be observed in NMR 

spectra at low temperatures then by increasing the temperature the speed at which 

they are equilibrating should increase and give rise to sharper resonance signals in 

the NMR spectra. A series of experiments were carried out in CDCl3 at a range of 

temperatures from 25 oC to 54 oC (Figure 2.21). 

 

Proposed structure of the dimeric form of compound 8. 

 

Figure 2.21: A selection of the variable temperature (VT) 1H NMR spectra of 

compound 8 in CDCl3 and a proposed structure for the dimeric form of compound 8. 

Spectra recorded at (–) 25 oC, (–) 30 oC, (–) 40 oC and (–) 50 oC.  
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As can be seen in Figure 2.21, an increase in temperature resulted in sharper 

resonance signals. The 1H NMR signals showed no further improvement in lineshape 

above 50 oC thus the 13C NMR experiment (CDCl3) was also carried out at this 

temperature. The resulting 13C NMR spectrum exhibited only one set of sharper 

resonance signals unlike that observed at 25 oC.The results indicate that at room 

temperature compound 8 may exist as both a dimer and monomer as a result of H-

bonding interactions and that an increase in temperature can increase the rate at 

which these species are interconverting. Additionally, the use of a protic solvent 

(CD3OD) appears to interrupt the H-bonding interactions resulting in NMR spectra 

with a single set of sharp resonance signals. 

As with compound 6 and 7, in the 13C NMR spectrum of compound 8 (CD3OD) a 

quartet at 124.8 ppm with 1J = 270.8 Hz was assigned as the 13C signal of the –CF3 

groups. The 13C signal representing the carbon atoms adjacent to the –CF3 groups (-

C-CF3) was found at 132.7 ppm having a characteristic two-bond C-F coupling 

constant of 33.0 Hz. Due to the deshielding effect of the tertiary amine moiety the 
13C signals for the carbon atoms of the two-carbon chain (-CH2CH2) were found at 

58.6 and 43.0 ppm, downfield from those of the ethyl chain of compound 7. This 

was also the case for the protons of the two-carbon chain in the 1H NMR spectra 

(CD3OD), indicating formation of compound 8. The equivalent protons of the 

tertiary amine methyl groups were observed as a singlet at 2.33 ppm in the 1H NMR 

spectrum. 

The reaction of one equivalent of N,N-diethylethylenediamine and one equivalent of 

3,5-bis(trifluoromethyl)phenyl isothiocyanate at room temperature generated 

compound 9 (Scheme 2.7). As for the thiourea derivatives described thus far, 

compound 9 was purified by silica gel column chromatography, which resulted in a 

yellow oil in a 92% yield. LC/TOF-MS returned a (M+H+) of 388.1270 indicating 

formation of compound 9 and as seen with compound 8, the NMR spectra obtained 

in CDCl3 were complex with doubling of peaks and broad resonance signals being 

observed. Therefore, the NMR experiments were carried out in CDCl3 at 50 oC and 

also in CD3OD at room temperature (Figure 2.22). The resulting spectra exhibited 

only one set of sharp resonance signals indicating that in the aprotic solvent, at room 
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temperature, compound 9 may be equilibrating between a monomeric and dimeric 

form as a result of H-bonding interactions. 

 

Figure 2.22: 1H NMR spectra of compound 9 in (a) CDCl3 at 50 oC, (b) CDCl3 at 25 
oC and (c) CD3OD at 25 oC. Solvent residual 1H signals were also observed in each 

spectrum. 

In the 13C NMR spectrum the quartets at 124.7 and 132.7 ppm were found to have 

coupling constants characteristic of one-bond and two-bond C-F coupling (1J = 

270.8 and 2J = 33.0 Hz, respectively,) and were therefore assigned as the carbon 

signals of the –CF3 (124.7 ppm) and –C–CF3 (132.7 ppm) moieties. As observed for 

compound 8, the 13C signals representing the carbons of the two-carbon chain 

linking the tertiary amine to the thiourea, were found downfield from those of –

CH2CH3 group of compound 7 due to the electron-withdrawing effect of the tertiary 

amine N atom. The triplet and quartet found at 1.07 and 2.67 ppm in the 1H NMR 

spectrum (CD3OD), were assigned as the protons of the –CH2 and –CH3 of the –NEt2 

group each having 3J = 7.1 Hz.               
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The nucleophilic addition of cyclohexylamine to 3,5-bis(trifluoromethyl)phenyl 

isothiocyanate generated compound 10 (Scheme 2.8). Purification by silica gel 

column chromatography produced compound 10 as a white solid in a 95% yield. The 

presence of the cyclohexyl group gives rise to a slightly more complex 1H NMR 

spectrum in comparison to compounds 6 and 7, with multiplets representing the 

cyclohexyl protons found between 1 and 2 ppm. Two broad singlets at 8.42 and 6.13 

ppm, integrating for one proton each, were identified as the protons of the thiourea 

NH’s. In the 13C NMR spectrum, the quartets corresponding to the carbons of the –

CF3 groups and those directly attached to the –CF3 groups (-C-CF3) were observed at 

122.8 and 132.9 ppm, respectively. 

 

Scheme 2.8: Synthesis of SAR study compounds 10 and 11.  

The reaction of aniline with 3,5-bis(trifluormethyl)phenyl isothiocyanate produced 

compound 11 in good yield, 92%, after purification (Scheme 2.8). As with 

compound 10, the presence of the aromatic phenyl ring resulted in a more complex 
1H NMR spectrum in comparison to compounds 6 and 7, with the thiourea NH 

protons observed at 8.89 and 7.88 ppm as broad singlets. In the 13C NMR spectrum, 

the carbon signal of the –CF3 groups was found to have a J value of 270.0 Hz, which 

is characteristic of a one-bond C-F coupling constant. The carbon signal (a quartet) 

at 132.0 ppm was assigned as the carbon directly attached to the –CF3 groups as it 

has a coupling constant of 33.0 Hz, a value which falls within the range of the 2J C-F 

coupling constants.    

Finally, compound 12 was synthesised by the reaction of quincoridine-amine (QCD-

amine) with 3,5-bis(trifluoromethyl)phenyl isothiocyanate (Scheme 2.9). Compound 

12 was isolated as a white solid in 93% yield after purification by silica gel column 

chromatography. Similar to compounds 8 and 9, the NMR spectra of compound 12 
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in CDCl3 exhibited doubling and broadening of peaks. However, carrying out the 

NMR experiments in CDCl3 at 50 oC or in CD3OD at room temperature resulted in 

spectra containing one set of sharp resonance signals (Figure A1, Appendix A). 

These results suggest that compound 12 may also undergo self-association in aprotic 

solvents at room temperature. The presence of the quinuclidine ring results in 

complex 1H NMR spectra having a number of multiplets representing the protons of 

the quinuclidine bicycle between 1.40-3.20 ppm. In the 13C NMR spectrum the 13C 

signal for the carbon of the C=S was found at 182.8 ppm with the quartets for the 

carbons of the –CF3 groups at 124.8 ppm (1J = 270.0 Hz) and the -C-CF3 
13C signal 

at 132.8 ppm, indicating formation of compound 12.  
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Scheme 2.9: Synthesis of compound 12. 

2.2.6 In vitro antibacterial activity 

Each of the part two SAR study compounds (Figure 2.23) were evaluated for their 

bacteriostatic activity using the susceptibility assay as described in section 1.2.5. As 

with the part one SAR study compounds, these compounds were tested against E. 

coli, P. aeruginosa and S. aureus. Due to the structural similarities between 

organocatalyst (b) and Takemotos catalyst (Figure 2.3, section 2.1.1), and its 

previously reported antibacterial results74, Takemotos catalyst was also evaluated 

against each of the bacteria used within this study.  
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Figure 2.23: Part two SAR study compounds evaluated for their bacteriostatic 

activity. 

The results, which have been summarised in Tables 2.6, 2.7 and 2.8, are expressed as 

the MIC50, MIC80 and MIC90. Again, vancomycin hydrochloride and ciprofloxacin 

were used as the reference drugs and their results are included in Tables 2.6, 2.7 and 

2.8. Any compound that did not exhibit an MIC, of the given percentage of growth 

inhibition, against each of the bacteria has been excluded from the tables. 
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Table 2.6: SAR study compounds antibacterial activity as MIC50 range. Values are the mean of three experiments 

Compound E. coli P. aeruginosa S. aureus 

M g/mL M g/mL M g/mL 
Vancomycin hydrochloride 1.58-2.10 2.35-3.13 >67.31 >100.00 1.58-2.10 2.35-3.13 

Ciprofloxacin >301.99 >100.00 1.18-1.77 0.39-0.59 >301.99 >100.00 
Organocatalyst (b) 2.63-3.95 1.56-2.35 >168.30 >100.00 3.95-5.26 2.35-3.13 

Takemotos catalyst 60.51-90.77 25.00-37.50 >242.05 >100.00 60.51-90.77 25.00-37.50 

7 158.20-237.31 50.00-75.00 >316.41 >100.00 >316.41 >100.00 

9 96.87-129.16 37.50-50.00 >258.32 >100.00 96.87-129.16 37.5-50.00 

10 101.33-135.00 37.50-50.00 >270.20 >100.00 135.10-202.65 50.00-75.00 

11 51.50-68.67 18.75-25.00 >274.69 >100.00 >274.69 >100.00 

12 42.89-57.19 18.75-25.00 >228.76 >100.00 42.89-57.19 18.75-25.00 
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Table 2.7: SAR study compounds antibacterial activity as MIC80 range. Values are the mean of three experiments. 

Compound E. coli P. aeruginosa S. aureus 

M g/mL M g/mL M g/mL 
Vancomycin hydrochloride 2.10-3.16 3.13-4.69 >67.31 >100.00 3.16-4.21 4.69-6.25 

Ciprofloxacin >301.99 >100.00 1.18-1.77 0.39-0.59 >301.99 >100.00 
Organocatalyst (b) 5.26-7.90 3.13-4.69 >168.30 >100.00 7.90-10.52 4.69-6.25 

Takemotos catalyst 90.77-121.02 37.5-50.00 >242.05 >100.00 90.77-121.02 37.50-50.00 

9 129.16-193.74 50.00-75.00 >258.32 >100.00 129.16-193.74 50.00-75.00 

11 103.01-137.35 37.50-50.00 >274.69 >100.00 >274.69 >100.00 

12 85.79-114.38 37.50-50.00 >228.76 >100.00 85.78-114.38 37.50-50.00 
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Table 2.8: SAR study compounds antibacterial activity as MIC90 range. Values are the mean of three experiments. 

Compound E. coli P. aeruginosa S. aureus 

M g/mL M g/mL M g/mL 
Vancomycin hydrochloride 4.21-6.31 6.25-9.38 >67.31 >100.00 4.21-6.31 6.25-9.38 

Ciprofloxacin >301.99 >100.00 37.75-56.62 12.5-18.75 >301.99 >100.00 
Organocatalyst (b) 7.90-10.52 4.69-6.25 >168.30 >100.00 10.52-15.78 6.25-9.38 

Takemotos catalyst 121.02-181.54 50.00-75.00 >242.05 >100.00 90.77-121.02 37.50-50.00 

9 193.74-258.32 75.00-100.00 >258.32 >100.00 193.74-258.32 75.00-100.00 

11 206.02-274.69 75.00-100.00 >274.69 >100.00 >274.69 >100.00 

12 85.78-114.38 37.50-50.00 >228.76 >100.00 85.78-114.38 37.50-50.00 
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As with the SAR study compounds evaluated in part one, none of the SAR study 

compounds exhibited bacteriostatic activity against the Gram-negative bacterium P. 

aeruginosa. As suggested earlier, the lack of inhibition of growth may be due to the 

intrinsic resistance mechanisms associated with P. aeruginosa such as the ability to 

form a capsule, grow as a biofilm and its inefficient porins resulting in slow uptake 

of the molecules.18,36,39-40,42 

Of the SAR study compounds evaluated in part one (Table 2.3 and 2.4, section 

2.2.3), the compounds which exhibited activity did so against both E. coli and S. 

aureus. However, for each of the active compounds the level of activity against E. 

coli was greater than that demonstrated against S. aureus. Amongst the eight 

compounds from part two, only four of these compounds exhibited MIC50 values 

against both E. coli and S. aureus (Table 2.6). As with the active compounds in part 

one, each of the four compounds here demonstrated greater activity against E. coli in 

comparison to that exhibited against S. aureus (Table 2.6). 

The first compound, from the part two SAR study, to be evaluated was the 

structurally simple 1-(3,5-bis(trifluoromethyl)phenyl)-3-methylthiourea (compound 

6, Figure 2.23). Compound 6 exhibited little or no activity against each of the 

bacteria examined suggesting that the simple 3,5-bis(trifluoromethyl)phenyl thiourea 

moiety alone is not the source of activity.  

Next, compound 7 (Figure 2.23) was evaluated for its bacteriostatic activity. As 

shown in Table 2.6, compound 7 only demonstrated activity against E. coli resulting 

in a MIC50 of 50.00-75.00 g/mL. Although this is a slight improvement on 

compound 6, the MIC50 achieved by compound 7 is much greater than that observed 

for the hit compound (1.56-2.35 g/mL). Furthermore, compound 7 was unable to 

inhibit any more than 50% of bacterial growth again suggesting that the simple 

nature of the thiourea structure alone is not enough to exhibit antibacterial activity. 

Following on from compounds 6 and 7, the carbon chain was extended with a 

terminal tertiary amine which was bound to either two methyl (compound 8) or two 

ethyl groups (compound 9). Similar to compound 6, compound 8 demonstrated little 

or no bacteriostatic activity against all three bacteria. Compound 9 on the other hand 
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resulted in an MIC50 of 37.50-50.00 g/mL against both E. coli and S. aureus. 

Furthermore, compound 9 had the ability to inhibit up to 90% of bacterial growth, 

although a higher concentration was required to do so (Table 2.8). These results 

indicate that although the addition of the two-carbon chain bound to a simple tertiary 

amine does not improve bacteriostatic activity (compound 8), the addition of a 

slightly more hydrophobic and bulky tertiary amine is beneficial for activity. What’s 

more, in comparison to compound 7, which was inactive against S. aureus, the 

addition of the –NEt2 group resulted in a compound that can inhibit up to 80% of S. 

aureus growth at a concentration range of 50.00-75.00 g/mL (compound 9). 

According to the Lipinski ‘rule of 5’ (Table 2.5, section 2.2.4), replacement of the 

tertiary amine methyl groups with the ethyl groups results in an increase in 

lipophilicity. If the target site of the compound is inside the bacterial cell, this 

increase in lipophilicity may be helping to facilitate entry into the bacterial cells and 

therefore aid in its ability to reach the target site. 

Continuing with the investigation into the importance of the two-carbon chain 

linking a tertiary amine to the 3,5-bis(trifluoromethyl)thiourea moiety, compound 12 

was also synthesised (Figure 2.23). As shown in Table 2.6, compound 12 was more 

active than compound 7 and 9 against both E. coli and S. aureus. Furthermore, 

compound 12 can inhibit the growth of both E. coli and S. aureus by 50% at the 

same concentration with an increase in concentration resulting in an increase in 

bacteriostatic activity (Table 2.6 and 2.7).  

The cLogP of compound 12 was calculated to be approximately 5.63 (Table 2.5, 

section 2.2.4), which is a slight increase in cLogP compared to compound 9 (5.09 +/- 

0.54). Therefore, perhaps this increase in lipophilicity improves activity. 

Additionally, these results suggest that the more sterically bulky quinuclidine ring is 

favourable for activity.  

Alkyl groups and heterocycles can interact with binding regions of a target binding 

site through van der Waals interactions.11 These interactions are some of the weaker 

types of interactions involved in target site binding, consequently the distance 

between the binding region and binding group is important with regards to the 
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strength of the interaction.11 If the target binding site is large enough to allow the 

entry of a bicycle then the smaller diethylamine functionality will also, most likely, 

‘fit’ into the binding site. However, the smaller size of the diethylamine means that 

the distance between it and the binding regions of the binding site would be greater 

than the distance between the quinuclidine ring and the binding regions (Figure 

2.24). Therefore, the binding interactions between the diethylamine and the binding 

regions of the target site may be weaker resulting in a reduction in activity. A similar 

trend in activity was observed on going from compound 7 to compound 9 (Table 

2.6). 

 

Figure 2.24: Target site binding and the effect of binding group size. 

To further investigate the effect of steric bulk on the activity of the thiourea 

compounds, compounds 10 and 11 (Figure 2.23) were evaluated for their 

bacteriostatic activity. Compound 10 exhibited activity against both E. coli and S. 

aureus resulting in MIC50 ranges of 37.50-50.00 and 50.00-75.00 g/mL, 

respectively. Compound 11 on the other hand only exhibited activity against E. coli, 

however, the MIC50 obtained was less than that of compound 10 (Table 2.6). 

Additionally, an increase in compound 11 concentration resulted in an increase in 

percentage of growth inhibition whereas compound 10 did not inhibit greater than 

50% of bacterial growth (Table 2.6 and 2.7).  

With regards to structure, both groups are six-membered carbon rings with the 

difference being that compound 11 is planar and aromatic whereas compound 10 is 
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non-planar and sterically bulkier. According to the cLogP values, compound 11 is 

only slightly less lipophilic than compound 10. Therefore, perhaps the difference in 

activity against E. coli is due to the difference in their affinities to bind to the target 

site. If the two compounds share the same target then perhaps the planar aromatic 

cyclic ring is a better ‘fit’ for the target site. The presence of -bonds means that 

compound 11 has a region of high electron density and perhaps this can assist in 

better binding interactions and therefore greater activity.  

Takemotos catalyst was also evaluated for its bacteriostatic activity against the 

bacterial strains used within this study. The results show that Takemotos catalyst was 

more active than compound 10 against both E. coli and S. aureus, however, similar 

activity to Takemotos catalyst was exhibited by compound 11 against E. coli (Table 

2.6). An increase in concentration resulted in an increase in bacteriostatic activity 

with Takemotos catalyst exhibiting lower MIC90 values in comparison to compound 

11. These results indicate that a sterically bulky group attached at the 3-position of 

the thiourea moiety is beneficial for activity. Additionally, the presence of a cyclic 

group bearing a tertiary amine appears to be advantageous with Takemotos catalyst 

and compound 12 exhibiting greatest activity amongst the eight SAR study 

compounds tested (Table 2.6, 2.7 and 2.8).  

The lone pair of electrons present on the tertiary amine of Takemotos catalyst and 

compound 12 potentially allows the N atom to act as a H-bond acceptor. Hydrogen 

bond interactions are one of the stronger forms of target site binding interactions.11 

Therefore, the introduction of the H-bond acceptor may be increasing the binding 

affinity of the molecules for the target binding site leading to an increase in 

bacteriostatic activity. The difference in activity between Takemotos catalyst and 

compound 12, compound 12 being more active (Table 2.6), could be due to the 

structure of the tertiary amine and how the substituents affect access to the lone pair 

of electrons. As can be seen in Figure 2.25, in the quinuclidine ring the ‘alkyl 

groups’ are part of a rigid ring system that holds them clear of the N atom lone pair 

thus exposing the lone pair for H-bonding interactions. In contrast, the substituents 

attached to the tertiary amine N atom are not ‘held back’ and so may hinder access to 

the N atom lone pair which in turn could reduce any H-bond interaction that may be 
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occurring (Figure 2.25). The lack of, or reduction in, H-bond interactions could 

result in a lower binding affinity of Takemotos catalyst for the target binding site and 

therefore reduce the antibacterial activity. This could also be a reason why 

compound 9 is less active than compound 12. Additionally, the cLogP of Takemotos 

catalyst was found to be approximately 5.14, a value lower than that of compound 12 

and indicating that the reduced activity observed for Takemotos catalyst in 

comparison to compound 12 may also be due to a reduction in lipophilicity.   

 

Figure 2.25: Comparison of tertiary amine structures from Takemotos catalyst and 

compound 12. 

Overall, none of the part two SAR study compounds were active against P. 

aeruginsa. Of the active compounds, activity was greatest against E. coli with only 

four of the compounds also exhibiting activity against S. aureus. In comparison to 

the reference drugs MIC ranges, none of the active compounds demonstrated 

bacteriostatic activity at lower concentrations. 

The results of part two of the SAR study have been summarised in Figure 2.26. The 

structurally simple 1-(3,5-bis(trifluoromethyl)phenyl)-3-methylthiourea derivative 

exhibited little or no activity against all three bacteria. However, an increase in chain 

length alongside the addition of a tertiary amine (-NEt2, compound 9) did improve 

activity against both E. coli and S. aureus (Table 2.6). The introduction of sterically 

bulky groups appears to be beneficial for activity with compounds 10 and 11 

exhibiting antibacterial activity (Table 2.6). The quinuclidine derivative, compound 

12, exhibited greatest activity amongst the eight SAR study compounds. Although 

compound 12 exhibited greater activity than that demonstrated by Takemotos 

catalyst, compound 12 remained less active (6- to 8-fold decrease in activity) than 
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the hit compound, organocatalyst (b) (Table 2.8), therefore suggesting that the 

quinoline bicycle is important for activity. 

N

NH

NHS
N

F3C CF3

O

H

Loss of the quinoline
group greatly reduced

activity
Introduction of a

two-carbon chain linking a
–NEt2 group to the thiourea
was benef icial for activity

The simple
3,5-bis(trif luoromethyl)phenyl
thiourea derivatives alone did

not exhibit activity

The presence of a sterically
bulky group was favourable for

activity with the quinuclidine
ring derivative exhibiting

greatest activity

 

Figure 2.26: A summary of part two of the SAR study of organocatalyst (b). 

2.2.7 In vivo SAR study compound tolerance 

In an effort to further investigate the structure-activity relationship of organocatalyst 

(b) in vivo toxicity studies were carried out as described in section 1.2.8 using the 

larvae of the greater wax moth, Galleria melonella (G. melonella). Organocatalyst 

(b) and a selection of the SAR study compounds, shown in Figure 2.27, which 

exhibited antibacterial activity were chosen for evaluation of their toxicity. The 

results are presented in Table 2.9 as the survival of G. mellonella larvae (expressed 

as %) as a function of the compound dosages administered. 
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Figure 2.27: Organocatalyst (b) and the SAR study compounds evaluated for in vivo 

toxicity. 

As can be seen in Table 2.9, at a concentration of 1 g/mL a 100% survival rate was 

observed with each of the SAR study compounds tested after 72 hours. A 97% 

survival rate was observed for organocatalyst (b) at the same concentration as one G. 

mellonella larva died after 48 hours. However, increasing the administration dose to 

10, 50 and 100 g/mL did not appear to effect the G. mellonella with a 100% 

survival rate observed at each of these concentrations for every compound tested 

including organocatalyst (b) (Table 2.9). The in vivo toxicity of the hit compound 

organocatalyst (b) was also evaluated at the higher concentration of 1000 g/mL and 

was found to be non-toxic at this concentration.  



Chapter II: A structure-activity relationship study of thiourea-based antibacterial agents 

75 

 

Table 2.9: Survival of G. mellonella larvae (expressed as %) post injection at 24, 48 

and 72 h. 

Compound Dosage concentration  
(g/mL) 

G. mellonella survival 
24 48 72 

     
Organocatalyst (b) 1000 100 100 100 

 100 100 100 100 
 50 100 100 100 
 10 100 100 100 
 1 100 97 97 
     
3 100 100 100 100 
 50 100 100 100 
 10 100 100 100 
 1 100 100 100 
     
4 100 100 100 100 
 50 100 100 100 
 10 100 100 100 
 1 100 100 100 
     
9 100 100 100 100 
 50 100 100 100 
 10 100 100 100 
 1 100 100 100 
     

11 100 100 100 100 
 50 100 100 100 
 10 100 100 100 
 1 100 100 100 
     

12 100 100 100 100 
 50 100 100 100 
 10 100 100 100 
 1 100 100 100 

 

The G. mellonella larvae were also monitored for their development, that is, whether 

or not the larvae become pupae. It was found that after seven days, at each test 

compound concentration, the number of the G. mellonella larvae that had pupated 

was similar to that observed for the untreated G. mellonella (≥ 60%). These results 

indicate that not only were the compounds non-toxic to the larvae of the greater wax 

moth but they also did not appear to interfere with larval development.   
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Both thiourea itself and derivatives of thiourea have been shown to possess a vast 

array of biological activities including biocidal activity towards insects and cytotoxic 

activity towards mammalian cancer cell lines.82b,94b,98 Considering the toxicity of 

thioureas and the positive correlation that has been observed between compound 

toxicity in G. mellonella and mice, the results of the in vivo toxicity evaluation of 

organocatalyst (b) and its SAR study compounds presented here are encouraging. 

2.2.8 Conclusion 

Herein, an investigation into the structure-activity relationship of organocatalyst (b) 

(Figure 2.28) was carried out in an attempt to uncover the structural components 

responsible for its antibacterial activity. The study was divided into two parts. 

 

Figure 2.28: Hit compound, organocatalyst (b) 

Initial studies involved the design and synthesis of derivatives of organocatalyst (b) 

lacking functional groups which may be important for activity. A total of five 

derivatives, including organocatalyst (b), were synthesised. Each of the derivatives, 

were purified by silica gel column chromatography followed by additional 

purification by precipitation. The organocatalyst (b) derivatives were isolated as 

white solids in reasonable yields in the range of 50-56%. 

Part two of the study involved a more in depth investigation into the structure-

activity relationship of organocatalyst (b) with the focus placed on the thiourea 

moiety. A series of compounds bearing the 3,5-bis(trifluoromethyl)phenyl thiourea 
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moiety were designed and synthesised. The nucleophilic addition of the chosen 

amine to 3,5-bis(trifluoromethyl)phenyl isothiocyanate generated the SAR study 

compounds in good to excellent yields, 75-95%, after purification by silica gel 

column chromatography. 

All compound structures were elucidated by LC/TOF-MS, 1H and 13C NMR and IR 

spectroscopies. In some cases (compounds 8, 9 and 12) complex NMR spectra 

(CDCl3) consisting of peak doubling and broadened resonance signals were 

obtained. It was believed that these effects were due to the formation of self-

aggregates, a process known to occur with thiourea compounds, as a result of intra- 

and intermolecular H-bonding interactions.96a,b NMR experiments carried out in a 

protic solvent and at higher temperatures proved that this may indeed be the case for 

compounds 8, 9 and 12. 

Each of the compounds synthesised were evaluated for their bacteriostatic activity 

against two Gram-negative bacteria, E. coli and P. aeruginosa, and the Gram-

positive bacterium S. aureus. No compound exhibited activity against P. aeruginosa, 

a result that may be due to the intrinsic resistance mechanisms associated with this 

particular bacterium. In general, the SAR study compounds exhibited greatest 

activity against E. coli with a number of compounds also demonstrating activity 

against S. aureus. 

A summary of the structure-activity relationships associated with organocatalyst (b) 

has been given in Figure 2.29. In part one of the SAR study, it was found that the –

OMe group, although beneficial for activity, was not crucial for activity. However, 

the loss of –CF3 groups severely reduced activity, with a 10- and 12-fold decrease in 

the MIC50 range observed for compound 4 (Figure 2.23, section 2.2.6), in 

comparison to the hit compound. 

Part two revealed that the simple 3,5-bis(trifluoromethyl)phenyl thiourea derivative 

bearing a methyl group was inactive suggesting that the thiourea may not be the 

source of activity. The addition of a two-carbon chain with a terminal tertiary amine 

(-NEt2) to the aryl thiourea was advantageous for activity. Steric bulk appears to be 

favourable for activity with the phenyl and cyclohexyl thiourea derivatives 
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exhibiting bacteriostatic activity in MIC50 ranges of 37.50-50.00 and 18.75-25.00 

g/mL, respectively. However, a combination of both a tertiary amine and a 

sterically bulky group (compound 12 and Takemotos catalyst) proved to be most 

effective amongst the part two SAR study compounds. Both compound 12 and 

Takemotos catalyst exhibited activity against E. coli and S. aureus with an increase 

in concentration resulting in an increase in the percentage of growth inhibition.  

 

Figure 2.29: A summary of the SAR study of organocatalyst (b). 

Organocatalyst (b) inhibited up to 90% of bacterial growth at the concentration 

ranges of 4.69-6.25 g/mL (E. coli) and 6.25-9.38 g/mL (S. aureus). These results 

are comparable to the results obtained here for the well-known antibacterial agent, 

vancomycin hydrochloride (MIC90 in the range of 6.25-9.38 against both E. coli and 

S. aureus). Of the SAR study compounds synthesised within this study, compounds 

3 and 12 (Figure 2.30) exhibited greatest activity and although the MICs achieved by 

compound 3 were comparable to those of the hit compound neither compound 3 nor 

compound 12 exhibited activities greater than that achieved by organocatalyst (b). 
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Figure 2.30: SAR study compounds that exhibited greatest activity. 

In order for a compound to progress into the clinical setting, it must not only be 

effective but also safe to use. Organocatalyst (b) and a selection of the active SAR 

study compounds were chosen for in vivo toxicity studies using the larvae of the 

greater wax moth, G. mellonella. Each compound was found to be non-toxic to the 

G. mellonella at a range of concentrations (1-100 g/mL). The hit compound was 

also found to be non-toxic at the higher concentration of 1000 g/mL. Additionally, 

none of the compounds appeared to effect larval development as similar numbers of 

pupae were found for both treated and untreated larvae after one week. 

To conclude, organocatalyst (b) was found to exhibit bacteriostatic activity against 

both Gram-negative and Gram-positive bacteria at concentrations comparable to that 

of the currently prescribed antibacterial agent, vancomycin hydrochloride. 

Additionally, the hit compound was both non-toxic to and did not appear to affect 

the development of G. mellonella larvae, at concentrations up to 1000 g/mL. 

Although none of the compounds synthesised within this study exhibited greater 

activity than that of the hit compound, we have gained a valuable insight into which 

structural components may be beneficial for activity. Further studies into the 

structure-activity relationship of organocatalyst (b) could potentially lead to the 

generation of a broad spectrum, potent antibacterial agent.        
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2.2.9 Future work 

The hit compound, organocatalyst (b), exhibited bacteriostatic activity against both 

E. coli and S. aureus at concentrations comparable to that of vancomycin 

hydrochloride. As mentioned in section 1.1, antibiotic resistance is a global problem 

and in particular infections resulting from MDR Gram-negative bacteria are on the 

rise. Therefore, it would be of interest to evaluate the bacteriostatic activity of 

organocatalyst (b) against resistant bacterial strains such as vancomycin-resistant E. 

coli. Furthermore, an evaluation of the bactericidal activity of organocatalyst (b) 

could also be carried out.  

The study presented here disclosed some valuable information into the structure-

activity relationships associated with the hit compound. However, none of the 

compounds described above achieved activity equivalent to or better than the hit 

compound thus further SAR studies are required.  

As shown in section 2.2.6, the combination of the 3,5-bis(trifluoromethyl)phenyl 

thiourea with a sterically bulky group bearing a tertiary amine was beneficial for 

activity. Additionally, the loss of the quinoline moiety resulted in a significant 

decrease in activity. A review of the literature found that the antimalarial derivatives 

of quinine, chloroquine and hydroxychloroquine (Figure 2.31), have been shown to 

exhibit antibacterial, antifungal and antiviral activity.99 In fact, chloroquine is used in 

the treatment of Q fever, a disease resulting from infection by the uncommon, Gram-

negative bacterium, Coxiella burnetii. Considering the results of the SAR study thus 

far and the biological activity exhibited by the quinoline bearing antimalarial agents, 

chloroquine and hydroxychloroquine, an investigation into the bacteriostatic activity 

of 3,5-bis(trifluoromethyl)phenyl thiourea compounds bearing the quinoline moiety 

could be worthwhile. 
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Figure 2.31: Antimalarial derivatives of quinine (a) chloroquine and (b) 

hydroxychloroquine. 

The bacteriostatic mode of action of the hit compound, organocatalyst (b), is 

currently unknown. Identification of the bacterial target could be useful in the design 

of more potent SAR study compounds. In order to investigate if the hit compound is 

having an effect on the bacterial cell membrane an assessment of amino acid leakage 

from bacterial cells upon exposure to organocatalyst (b) could be carried out. 

Furthermore, an evaluation of the proteomic response exhibited by the bacteria as a 

result of organocatalyst (b) exposure could give insight into a possible mode of 

action. 
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2.3 Experimental 

General procedure for the synthesis of 9-amino-(9-deoxy)-epi-quinine (2) and 9-

amino-(9-deoxy)-epi-cinchonidine (5)100 

Quinine or cinchonidine (6.14 mmol) and triphenylphosphine (2.11 g, 8.04 mmol) 

were dissolved in dry THF (30 mL) and the solution was cooled to 0 oC. Diisopropyl 

azidodicarboxylate (1.52 mL, 7.72 mmol) was added to the solution. A solution of 

diphenylphosphorylazide (1.63 mL, 7.56 mmol) in dry THF (13 ml) was then added 

dropwise at 0 oC. After addition, the mixture was allowed to warm to room 

temperature and was stirred for 12 hours. The solution was then heated at 50 oC for 2 

hours. Triphenylphosphine (2.29 g, 8.73 mmol) was added and heating continued for 

a further 2 hours. The reaction mixture was allowed to cool to room temperature, 

water (0.70 mL) was added and the reaction mixture stirred for 3 hours. The solvent 

was removed under reduced pressure and the resulting residue was dissolved in 

DCM (30 mL) and 10% HCl (30 mL). The aqueous phase was washed with DCM (3 

x 30 mL). The aqueous phase was then alkalinized with an excess of ammonium 

hydroxide solution and the product extracted with DCM (3 x 30 mL). The DCM 

solutions were dried over Na2SO4, filtered, and the solvent was removed under 

reduced pressure. The product was purified by column chromatography on silica gel 

and eluted with EtOAc:MeOH:NH4OH (50:50:1). 

9-Amino-(9-deoxy)-epi-quinine (2) 

N

NH2

N

O

H

 

Yellow oil (yield 0.75 g, 38%); Rf: 0.37 (EtOAc:MeOH:NH4OH, 50:50:1); []D
22: 

+90 (c 0.2, DCM); 1H NMR (300 MHz, CDCl3) 8.57 (d, J = 4.1 Hz, 1H, ArH) 7.88 

(d, J = 8.6 Hz, 1H, ArH), 7.44-7.58 (m, 1H, ArH), 7.30 (d, J = 4.1 Hz, 1H, ArH), 

7.21 (dd, J = 8.6, 3.6 Hz, 1H, ArH), 5.58-5.69 (m, 1H, CH=CH2), 4.78-4.87 (m, 2H, 
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CH=CH2), 4.44 (d, J = 10.1 Hz, 1H, CH-NH2), 3.78 (s, 3H, OCH3), 3.00-3.14 (m, 

2H, H*), 2.89-2.98 (m, 1H, H*), 2.57-2.67 (m, 2H, H*), 2.32-2.46 (m, 3H, H* and 

NH2), 2.05-2.15 (m, 1H, H*), 1.35-1.45 (m, 3H, H*), 1.22-1.30 (m, 1H, H*), 0.57-

0.64 (m, 1H, H*), these data match reported literature values100; 13C NMR (75 MHz, 

CDCl3)  157.5 (ArC), 147.7 (ArC), 146.9 (ArC), 144.6 (ArC), 141.7 (CH=CH2), 

131.6 (ArC), 128.7 (ArC), 121.2 (ArC), 119.9 (ArC), 114.2 (CH=CH2), 101.9 (ArC), 

61.7 (C*), 56.2 (C*), 55.4 (OCH3), 52.8 (CH-NH2), 40.8 (C*), 39.7 (C*), 28.1 (C*), 

27.5 (C*), 25.9 (C*); IR (DCM film on NaCl plate) 3367 (NH2), 2940 (CH) cm-1; 

LC/TOF-MS calcd for C20H26N3O 324.2070, found 324.2080 (M+H+). 

* Quinuclidine ring. 

9-Amino-(9-deoxy)-epi-cinchonidine (5) 

N

NH2

N

H

 

Yellow oil (yield 1.19 g, 66%); Rf: 0.56 (EtOAc:MeOH:NH4OH, 50:50:1); []D
22: 

+100 (c 0.2, DCM); 1H NMR (300 MHz, CDCl3) 8.81 (d, J = 4.4 Hz, 1H, ArH), 

8.26 (br s, 1H, ArH), 8.05 (d, J = 8.3 Hz, 1H, ArH), 7.61 (app t, 1H, ArH), 7.49 (app 

t, 1H, ArH), 7.44 (d, J = 4.4 Hz, 1H, ArH), 5.64-5.76 (m, 1H, CH=CH2), 4.84-4.93 

(m, 2H, CH=CH2), 4.61 (d, J = 9.5 Hz, 1H, CH-NH2), 3.05-3.21 (m, 2H, H*), 2.93-

3.02 (m, 1H, H*), 2.67-2.76 (m, 2H, H*), 2.13-2.20 (m, 1H, H*), 2.08 (br s, 2H, 

NH2), 1.42-1.52 (m, 3H, H*), 1.28-1.35 (m, 1H, H*), 0.60-0.68 (m, 1H, H*), these 

data match reported literature values100; 13C NMR (75 MHz, CDCl3)  150.3 (ArC), 

148.7 (ArC), 148.5 (ArC), 141.8 (CH=CH2), 130.4 (ArC), 129.0 (ArC), 127.8 (ArC), 

126.4 (ArC), 123.3 (ArC), 119.6 (ArC), 114.3 (CH=CH2), 61.9 (C*), 56.2 (C*), 51.6 

(CH-NH2), 40.9 (C*), 39.8 (C*), 28.0 (C*), 27.5 (C*), 26.0 (C*); IR (DCM film on 

NaCl plate) 3368 (NH2), 2940 (CH) cm-1; LC/TOF-MS calcd for C19H24N3 

294.1965, found 294.1974 (M+H+). 
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* Quinuclidine ring. 

1-((S)-(6-methoxyquinolin-4-yl)((1S,2S,4S,5R)-5-vinylquinuclidin-2-yl)methyl)-

3-phenylthiourea (3) 

 

9-Amino-(9-deoxy)-epi-quinine (0.15 g, 0.46 mmol) was dissolved in dry DCM (5 

mL) under nitrogen and cooled to 0 oC. After 10 minutes at this temperature, phenyl 

isothiocyanate (86 L, 0.72 mmol) was added. The resulting solution was allowed to 

warm to room temperature and was stirred for 12 hours. The solvent was removed 

under reduced pressure and the resulting residue was purified by column 

chromatography on silica gel. The product was eluted with EtOAc:Et3N:MeOH 

(90:5:5), followed by purification by precipitation from cold EtOAc with n-hexane. 

White solid (yield 0.11 g, 52%); Rf: 0.24 (EtOAc:Et3N:MeOH, 90:5:5); []D: -220 (c 

0.2, DCM); 1H NMR (300 MHz, CDCl3)  8.88-9.10 (br s, 1H, ArH), 8.50 (d, J = 

4.5 Hz, 1H, ArH), 8.1 (br s, 1H, NH), 7.96 (d, J = 9.2 Hz, 1H, ArH), 7.72-7.80 (m, 

1H, ArH), 7.32-7.37 (m, 3H, ArH), 7.16-7.23 (m, 3H, ArH), 5.89 (d, J = 8.3 Hz, 1H, 

CHNHC=S), 5.57-5.69 (m, 1H, CH=CH2), 4.88-4.95 (m, 2H, CH=CH2), 3.92 (s, 3H, 

OCH3), 3.24-3.40 (m, 1H, H*), 3.05-3.15 (m, 2H, H*), 2.59-2.69 (m, 2H, H*), 2.18-

2.30 (m, 1H, H*), 1.57-1.70 (m, 3H, H*), 1.24-1.35 (m, 1H, H*), 0.89-0.96 (m, 1H, 

H*); 13C NMR (75 MHz, CDCl3)  180.5 (C=S), 157.8 (ArC), 147.5 (ArC), 144.7 

(ArC), 140.9 (CH=CH2), 137.5 (ArC), 131.6 (ArC), 129.5 (ArC), 128.2 (ArC), 126.6 

(ArC), 125.2 (ArC), 121.9 (ArC), 114.8 (CH=CH2), 102.4 (ArC), 60.8 (C*), 55.7 

(OCH3), 55.3 (C*), 41.4 (C*), 39.3 (C*), 27.7 (C*), 27.3 (C*), 25.8 (C*), these data 
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match reported literature values101; IR (KBr) 3418 (NH), 2937 (CH), 1242 (C=S) 

cm-1; LC/TOF-MS calcd for C27H31N4OS 459.2213, found 459.2207 (M+H+). 

* Quinuclidine ring. 

1-(3,5-bis(trifluoromethyl)phenyl)-3-((S)-(6-methoxyquinolin-4-yl)- 

((1S,2S,4S,5R)-5-vinylquinuclidin-2-yl)methyl)thiourea (organocatalyst (b))102 

 

9-Amino-(9-deoxy)-epi-quinine (0.18 g, 0.56 mmol) was dissolved in dry DCM and 

cooled to 0 oC. After 10 minutes at this temperature, 3,5-bis(trifluorophenyl)methyl 

isothiocyanate (168 L, 0.92 mmol) was added. The resulting solution was allowed 

to warm to room temperature and was stirred for 12 hours. The solvent was removed 

under reduced pressure and the resulting residue was purified by column 

chromatography on silica gel. The product was eluted with EtOAc:MeOH:Et3N 

(90:5:5), followed by purification by precipitation from cold Et2O with n-hexane. 

White solid (yield 0.17 g, 50%); Rf: 0.37 (EtOAc:MeOH:Et3N, 90:5:5); []D: -100 (c 

0.2, DCM); 1H NMR (300 MHz, CDCl3)  8.54 (app br s, 1H, ArH), 7.96 (d, J = 9.0 

Hz, 1H, ArH), 7.81 (s, 2H, ArH), 7.66 (s, 2H, ArH), 7.36 (dd, J = 9.0, 2.8 Hz, 1H, 

ArH), 7.13 (app br s, 1H, ArH), 5.85 (app br s, 1H, CHNHC=S), 5.63-5.74 (m, 1H, 

CH=CH2), 4.96-5.02 (m, 2H, CH=CH2), 3.95 (s, 3H, OCH3), 3.28-3.48 (m, 2H, H*), 

3.10-3.18 (m, 1H, H*), 2.67-2.86 (m, 2H, H*), 2.26-2.39 (m, 1H, H*), 1.58-1.77 (m, 

3H, H*), 1.35-1.44 (m, 1H, H*), 0.86-0.94 (m, 1H, H*); 13C NMR (75 MHz, CDCl3) 

 180.6 (C=S), 158.1 (ArC), 147.3 (ArC), 144.5 (ArC), 140.3 (CH=CH2), 132.5 (q, 
2J = 33.8 Hz, C-CF3), 131.4 (ArC), 128.1 (ArC), 123.6 (ArC), 122.9 (q, 1J = 270.0 
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Hz, CF3), 122.2 (ArC), 118.6 (ArC), 115.3 (CH=CH2), 102.1 (ArC), 60.7 (C*), 55.9 

(OCH3), 54.7 (C*), 41.6 (C*), 38.9 (C*), 27.3 (C*), 27.1 (C*), 25.7 (C*), these data 

match reported literature values73a; IR (KBr) 3241(NH), 2946 (CH), 1278 (C=S) cm-

1; LC/TOF-MS calcd for C29H29F6N4SO 595.1961, found 595.1936 (M+H+). 

* Quinuclidine ring. 

1-(3,5-Bis(trifluoromethyl)phenyl)-3-((S)-quinolin-4-yl((1S,2S,4S,5R)-5-

vinylquinuclidin-2-yl)methyl)thiourea (4) 

 

9-Amino-(9-deoxy)-epi-cinchonidine (0.20 g, 0.68 mmol) was dissolved in dry 

DCM and cooled to 0 oC. After 10 minutes at this temperature 3,5-

bis(trifluorophenyl)methyl isothiocyanate (204 L, 1.12 mmol) was added. The 

resulting solution was allowed to warm to room temperature and was stirred for 12 

hours. The solvent was removed under reduced pressure and the resulting residue 

was purified by column chromatography on silica gel. The product was eluted with 

EtOAc:Et3N:MeOH (90:5:5), followed by purification by precipitation from cold 

Et2O with n-hexane.. 

Light yellow solid (yield 0.22 g, 56%); m.p. 148-154 oC; Rf: 0.42 (EtOAc:MeOH 

95:5); []D: -80 (c 0.2, DCM); 1H NMR (300 MHz, CDCl3)  8.38-8.54 (m, 2H, 

ArH), 7.97 (d, J = 8.9 Hz, 1H, ArH), 7.83 (s, 2H, ArH), 7.54-7.64 (m, 3H, ArH), 

7.02-7.12 (m, 1H, ArH), 5.97 (br s, 1H, CHNHC=S), 5.55-5.66 (m, 1H, CH=CH2), 

4.87-4.94 (m, 2H, CH=CH2), 3.26-3.40 (m, 1H, H*), 3.08-3.22 (m, 1H, H*), 2.96-

3.04 (m, 1H, H*), 2.58-2.74 (m, 2H, H*), 2.18-2.30 (m, 1H, H*), 1.50-1.74 (m, 3H, 
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H*), 1.23-1.31 (m, 1H, H*), 0.82-0.96 (m, 1H, H*); 13C NMR (75 MHz, CDCl3)  

180.5 (C=S), 149.6 (ArC), 148.0 (ArC), 146.7 (ArC), 140.6 (CH=CH2), 140.0 (ArC), 

132.3 (q, 2J = 34.5 Hz, C-CF3), 129.6 (ArC), 129.4 (ArC), 127.0 (ArC), 126.8 (ArC), 

123.7 (ArC), 123.4 (ArC), 122.8 (q, 1J = 271.4 Hz, CF3), 118.4 (ArC), 114.7 

(CH=CH2), 60.9 (C*), 54.7 (C*), 41.2 (C*), 38.9 (C*), 27.3 (C*), 27.0 (C*), 25.5 

(C*); IR (KBr) 3237 (NH), 2947 (CH), 1278 (C=S) cm-1, these data match reported 

literature values103; LC/TOF-MS calcd for C28H27F6N4S 565.1855, found 565.1843 

(M+H+). 

* Quinuclidine ring. 

1-(3,5-Bis(trifluoromethyl)phenyl)-3-methylthiourea (6)104 

 

Methylamine (33% in EtOH, 188 l, 2.0 mmol) was added to dry DCM (2 mL) 

under nitrogen and cooled on an ice-bath for 10 minutes. 3,5-

Bis(trifluormethyl)phenyl isothiocyanate (183 L, 1.0 mmol) was slowly added to 

the solution. The reaction mixture was allowed to warm to room temperature and 

was stirred overnight. The solvent was removed under reduced pressure and the 

product was purified by column chromatography on silica gel and eluted with 

CHCl3:MeOH (90:10). 

White solid (0.26 g, 87%); m.p. 118-122 oC; Rf: 0.33 (CHCl3:MeOH 90:10); 1H 

NMR (300 MHz, CD3OD)  8.16 (s, 2H, H2), 7.62 (s, 1H, H4), 3.06 (s, 3H, CH3); 
13C NMR (75 MHz, CD3OD)  183.7 (C=S), 143.3 (C1), 132.8 (q, 2J = 33.0 Hz, C3), 

124.8 (q, 1J = 270.8 Hz, CF3), 123.6 (C2), 117.8 (C4), 31.8 (CH3); IR (KBr) 3226 

(NH), 1278 (C=S) cm-1; LC/TOF-MS calcd for C10H9F6N2S 303.0385, found 

303.0386 (M+H+). 
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1-(3,5-Bis(trifluoromethyl)phenyl)-3-ethylthiourea (7)  

 

Anhydrous triethylamine (279 L, 2.0 mmol) and ethylamine hydrochloride (82 mg, 

1.0 mmol) were dissolved in dry DCM (2 mL) under nitrogen. The reaction mixture 

was cooled on an ice-bath for 10 minutes followed by the slow addition of 3,5-

bis(trifluoromethyl)phenyl isothiocyanate (183 L, 1 mmol). After addition, the 

reaction mixture was allowed to warm to room temperature and was stirred 

overnight. The solvent was removed under reduced pressure and the product purified 

by column chromatography on silica gel and eluted with CHCl3:MeOH (90:10).    

White solid (0.27 g, 84%); m.p. 147-150 oC; Rf: 0.49 (CHCl3:MeOH 90:10); 1H 

NMR (300 MHz, CD3OD)  8.16 (s, 2H, H2), 7.62 (s, 1H, H4), 3.60 (q, J = 7.3 Hz, 

2H, CH2), 1.23 (t, J = 7.3 Hz, 3H, CH3); 13C NMR (75 MHz, CD3OD)  182.5 (C=S) 

143.2 (C1), 132.7 (q, 2J = 33.0 Hz, C3), 124.8 (q, 1J = 270.2 Hz, CF3), 123.8 (C2), 

117.8 (C4), 40.3 (CH2), 14.3 (CH3); IR (KBr) 3240 (NH), 1278 (C=S) cm-1; 

LC/TOF-MS calcd for C11H11F6N2S 317.0542, found 317.0545 (M+H+). 

General procedure for the synthesis of 1-(3,5-bis(trifluoromethyl)phenyl)-3-

thiourea derivatives 8-12 

The appropriate amine (1.0 mmol) was dissolved in dry DCM (2 mL) under 

nitrogen. The solution was cooled on an ice-bath for 10 minutes. 3,5-

Bis(trifluoromethyl)phenyl isothiocyante (183 L, 1.0 mmol) was added slowly to 

the solution. The reaction mixture was allowed to warm to room temperature and 

was stirred overnight. The solvent was removed under reduced pressure and the 

product purified by column chromatography on silica gel. 
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1-(3,5-Bis(trifluoromethyl)phenyl)-3-(2-(dimethylamino)ethyl)thiourea (8) 

 

The product was eluted with CHCl3:MeOH (90:10). White solid (0.27 g, 75%); m.p. 

151-153 oC (154 oC)105; Rf: 0.26 (CHCl3:MeOH 90:10); 1H NMR (300 MHz, 

CD3OD) 8.21 (s, 2H, H2), 7.62 (s, 1H, H4), 3.68-3.80 (app br s, 2H, 

CH2CH2N(CH3)2), 2.62 (t, J = 6.4 Hz, 2H, CH2CH2N(CH3)2), 2.33 (s, 6H, CH3); 13C 

NMR (75 MHz, CD3OD)  182.9 (C=S), 143.3 (C1), 132.7 (q, 2J = 33.0 Hz, C3), 

124.8 (q, 1J = 270.8 Hz, CF3), 123.7 (C2), 117.8 (C4), 58.6 (CH2CH2N(CH3)2), 45.5 

(CH3), 43.0 (CH2CH2N(CH3)2); IR (KBr) 3292 (NH), 1281 (C=S) cm-1; LC/TOF-

MS calcd for C13H16F6N3S 360.0964, found 360.0961 (M+H+); Anal. (%) calcd for 

C13H16F6N3S C, 43.45; H, 4.21; N, 11.69; found C, 43.44; H, 3.99; N, 11.60. 

NMR data for compound 8 was also obtained in CDCl3 at 25 oC and at 50 oC. 

1H NMR (300 MHz, CDCl3, 25 oC)  13.28 (br s, 1H, NHa), 7.96 (br s, 2H, H2), 

7.77 (br s, 1H, NHb), 7.58 (s, 1H, H4), 3.68 (app br s, 1H, CH2), 3.40 (app br s, 1H, 

CH2), 2.61 (app br s, 2H, CH2), 2.38 (app br s, 6H, CH3); 13C NMR (75 MHz, 

CDCl3)  183.0, 180.0, 142.1, 139.7, 131.8, 123.1, 122.7, 117.7, 61.3, 56.8, 45.0, 

43.4, 42.3.  

1H NMR (300 MHz, CDCl3, 50 oC)  7.93 (s, 2H, H2), 7.58 (s, 1H, H4), 3.52 (app br 

s, 2H, CH2CH2N(CH3)2), 2.59 (app br s, 2H, CH2CH2N(CH3)2), 2.32 (s, 6H, CH3); 
13C NMR (75 MHz, CDCl3, 50 oC)  181.9 (C=S), 141.1 (C1), 132.3 (q, 2J = 30.8 

Hz, C3), 123.1 (q, 1J = 271.1 Hz, CF3), 122.7 (C2), 117.9 (C4), 59.7 

(CH2CH2N(CH3)2), 44.9 (CH3), 43.0 (CH2CH2N(CH3)2). 
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1-(3,5-Bis(trifluoromethyl)phenyl)-3-(2-(diethylamino)ethyl)thiourea (9) 

 

The product was eluted with CHCl3:MeOH (90:10). Yellow oil (0.36 g, 92%); Rf: 

0.34 (CHCl3:MeOH, 90:10); 1H NMR (300 MHz, CD3OD)  8.19 (s, 2H, H2), 7.59 

(s, 1H, H4), 3.71 (app br s, 2H, CH2CH2N(CH3)2), 2.72-2.82 (m, 2H, 

CH2CH2N(CH3)2), 2.67 (q, J = 7.1 Hz, 4H, CH2-CH3), 1.07 (t, J = 7.1 Hz, 6H, CH3); 

13C NMR (75 MHz, CD3OD)  183.0 (C=S), 143.1 (C1), 132.7 (q, 2J = 33.0 Hz, C3), 

124.7 (q, 1J = 270.8 Hz, CF3), 123.6 (C2), 117.9 (C4), 51.8 (CH2CH2N(CH3)2), 48.2 

(CH2-CH3), 42.4 (CH2CH2N(CH3)2), 11.5 (CH3); IR (DCM film on NaCl plate) 3224 

(NH), 2977 (CH), 1280 (C=S) cm-1; LC/TOF-MS calcd for C15H20F6N3S 388.1277, 

found 388.1270 (M+H+). 

NMR data for compound 9 was also obtained in CDCl3 at 25 oC and at 50 oC. 

1H NMR (300 MHz, CDCl3, 25 oC)  8.05 (br s, 1H, NH), 7.91 (s, 2H, H2), 7.52 (s, 

1H, H4), 3.73 (app br s, 1H, CH2), 3.38 (app br s, 1H, CH2), 2.64 (m, 6H, CH2), 0.98 

(t, J = 7.3 Hz, 6H, CH3); 13C NMR (75 MHz, CDCl3)  182.8, 180.4, 141.7, 139.9, 

131.5, 123.3, 123.0, 117.6, 55.6, 50.6, 47.0, 44.1, 41.3, 10.4. 

1H NMR (300 MHz, CDCl3, 50 oC)  7.95 (s, 2H, H2), 7.53 (s, 1H, H4), 3.52 (app br 

s, 2H, CH2CH2N(CH3)2), 2.72 (app br s, 2H, CH2CH2N(CH3)2), 2.65 (q, J = 7.2 Hz, 

4H, CH2-CH3), 1.00 (t, J = 7.2 Hz, 6H, CH3); 13C NMR (75 MHz, CDCl3, 50 oC)  

182.3 (C=S), 141.1 (C1), 131.8 (q, 2J = 33.0 Hz, C3), 123.3 (C2), 123.0 (q, 1J = 

271.1 Hz, CF3), 117.6 (C4), 54.5 (CH2CH2N(CH3)2), 47.2 (CH2-CH3), 43.2 

(CH2CH2N(CH3)2), 10.6 (CH3). 
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1-(3,5-Bis(trifluoromethyl)phenyl)-3-cyclohexylthiourea (10)   

 

The product was eluted with CHCl3 (100%). White solid (0.35 g, 95%); m.p. 152-

156 oC; Rf: 0.31 (CHCl3 100%);  1H NMR (300 MHz, CDCl3)  8.42 (br s, 1H, 

NHa), 7.75 (s, 2H, H2), 7.68 (s, 1H, H4), 6.13 (br s, 1H, NHb), 4.19 (app br s, 1H, 

ipso CH*), 2.00-2.05 (m, 2H, CH*), 1.57-1.71 (m, 3H, CH*), 1.31-1.44 (m, 2H, 

CH*), 1.08-1.28 (m, 3H, CH*), these data match reported literature values106; 13C 

NMR (75 MHz, CDCl3)  179.1 (C=S), 139.0 (C1), 132.9 (q, 2J = 32.3 Hz, C3), 

123.8 (C2), 122.8 (q, 1J = 271.5 Hz, CF3), 119.2 (m, C4), 54.0 (ipso C*), 32.3 (C*), 

25.2 (C*), 24.5 (C*); IR (KBr) 3296 (NH), 1280 (C=S) cm-1; LC/TOF-MS calcd for 

C15H17F6N2S 371.1011, found 371.1014 (M+H+). 

* Cyclohexane ring. 

1-(3,5-Bis(trifluoromethyl)phenyl)-3-phenylthiourea (11) 

 

The product was eluted with CHCl3 (100%). White solid (0.33 g, 92%); m.p. 128-

130 oC; Rf: 0.44 (CHCl3 100%); 1H NMR (300 MHz, CDCl3)  8.89 (br s, 1H, 

NHb), 7.94 (s, 2H, H2), 7.88 (br s, 1H, NHa), 7.66 (s, 1H, H4), 7.44-7.49 (m, 2H, 

phenyl H), 7.30-7.38 (m, 3H, phenyl H); 13C NMR (75 MHz, CDCl3)  179.6 (C=S), 

139.5 (C1), 135.6 (phenyl C), 132.0 (q, 2J = 33.0 Hz, C3), 130.4 (phenyl CH), 128.2, 

(phenyl CH), 125.4 (phenyl CH), 124.7 (C2), 122.9 (q, 1J = 270.0 Hz, CF3), 119.3 

(m, C4), these data match reported literature values107; IR (KBr) 1275 (C=S) cm-1; 

LC/TOF-MS calcd for C15H11F6N2S 365.0542, found 365.0545 (M+H+). 



Chapter II: A structure-activity relationship study of thiourea-based antibacterial agents 

92 

 

1-(3,5-Bis(trifluoromethyl)phenyl)-3-(((1S,2S,4S,5R)-5-vinylquinuclidin-2-

yl)methyl)thiourea (12)  

 

The product was eluted with CHCl3:MeOH (90:10). White solid (0.41 g, 93%); m.p. 

53-57 oC (lit 54-59 oC)108; Rf: 0.47 (CHCl3:MeOH, 90:10); []D: +120 (c 0.2, DCM); 
1H NMR (300 MHz, CD3OD)  8.18 (s, 2H, H2), 7.60 (s, 1H, H4), 5.93 (ddd, J = 

17.7, 10.7, 7.1 Hz, 1H, CH=CH2), 5.04-5.11 (m, 2H, CH=CH2), 3.76 (app br s, 1H, 

CH2NHC=S), 3.55-3.63 (m, 1H, CH2NHC=S), 3.08-3.19 (m, 1H, H*), 2.85-2.95 (m, 

4H, H*), 2.31-2.39 (m, 1H, H*), 1.64-1.74 (m, 4H, H*), 1.37-1.45 (m, 1H, H*); 13C 

NMR (75 MHz, CD3OD)  182.8 (C=S), 143.3 (C1), 141.2 (CH=CH2), 132.8 (q, 2J 

= 31.5 Hz, C3), 124.8 (q, 1J = 270.0 Hz, CF3), 123.7 (C2), 117.8 (C4), 115.5 

(CH=CH2), 56.3 (CH*), 49.8 (CH2*), 47.8 (CH2*), 47.1 (CH2NHC=S), 40.9 (CH*), 

29.0 (CH*), 27.3 (CH2*), 26.3 (CH2*); IR (KBr) 3267 (NH), 2944 (CH), 1279 (C=S) 

cm-1; LC/TOF-MS calcd for C19H22F6N3S 438.1433, found 438.1435 (M+H+). 

NMR data for compound 12 was also obtained in CDCl3 at 25 oC and at 50 oC. 

1H NMR (300 MHz, CDCl3, 25 oC)  7.92 (s, 2H, H2), 7.47 (s, 1H, H4), 5.67-5.78 

(m, 1H, CH=CH2), 4.94-5.00 (m, 2H, CH=CH2), 3.44-3.64 (m, 1H, CH2NH2), 2.70-

3.20 (m, 5H, CH2NH2 and H*), 2.20-2.36 (m, 1H, H*), 1.73 (app br s, 1H, H*), 1.60 

(app br s, 3H, H*), 1.18-1.34 (m, 1H, H*); 13C NMR (75 MHz, CDCl3)  182.1, 

180.2, 142.1, 140.4, 138.3, 131.4, 122.8, 122.3, 117.1, 115.2, 58.5, 55.2, 47.9, 45.9, 

38.6, 27.1, 25.2, 24.4. 

1H NMR (300 MHz, CDCl3, 50 oC)  7.91 (s, 2H, H2), 7.57 (s, 1H, H4), 5.76-5.90 

(ddd, J = 17.2, 10.6, 6.7 Hz, 1H, CH=CH2), 5.01-5.11 (m, 2H, CH=CH2), 3.46-3.64 

(m, 1H, CH2NHC=S), 2.97-3.07 (m, 2H, CH2NHC=S and H*), 2.73-2.92 (m, 4H, 

H*), 2.30-2.38 (m, 1H, H*), 1.81 (app br s, 1H, H*), 1.59-1.71 (m, 3H, H*), 1.32-
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1.39 (m, 1H, H*); 13C NMR (75 MHz, CDCl3, 50 oC)  182.3 (C=S), 141.0 (C1), 

139.0 (CH=CH2), 131.6 (q, 2J = 33.0 Hz, C3), 123.1 (q, 1J = 270.8 Hz, CF3), 122.6, 

(C2), 117.7 (C4), 115.5 (CH=CH2), 58.5 (CH*), 48.3 (CH2*), 46.6 (CH2*), 46.3 

(CH2NHC=S), 39.2 (CH*), 27.6 (CH*), 25.9 (CH2*), 25.1 (CH2*). 

* Quinuclidine ring. 
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3.1 An Introduction to Quinolones 

During the synthesis of the antimalarial agent, chloroquine, chemists at Sterling-

Winthorp laboratories isolated compound 1 as a by-product (Figure 3.1). Due to the 

antibacterial properties exhibited by compound 1 a series of derivatives were 

synthesised in an attempt to find a novel antibacterial agent.109 In 1963, one of these 

derivatives, nalidixic acid, was introduced into the clinical settings for the treatment 

of UTIs (Table 3.1).109-110 Since the discovery of nalidixic acid numerous quinolone 

derivatives have been developed, many of which have made it to the clinical setting.  

 

Figure 3.1: By-product isolated during chloroquine production, compound 1.110 

Quinolones are classified into generations based on their spectrum of activity against 

bacteria (Table 3.1). The first-generation quinolones include the naphythyridone 

derivative, nalidixic acid, and the dioxolane bearing compounds, cinoxacin and 

oxolinic acid. These compounds were active against Enterobacteria with cinoxacin 

and oxolinic acid exhibiting increased activity in comparison to nalidixic acid.109 The 

introduction of a piperazine ring at C-7, as in pipemidic acid, gave rise to activity 

against P. aeruginosa.109 In the 1980’s, the combination of the C-7 piperazine and a 

fluorine atom at the C-6 position resulted in the fluoroquinolone, norfloxacin (Table 

3.1). In comparison to the first-generation quinolones, norfloxacin demonstrated 

improved anti-Gram-negative bacteria and some activity against Gram-positive 

bacteria.109 Replacement of the N-1 ethyl group with a cyclopropyl group produced 

one of the most well-known fluoroquinolones, ciprofloxacin (Table 3.1). 

Ciprofloxacin exhibited enhanced activity against both Gram-negative and Gram-

positive bacteria and was the first quinolone to be used in the treatment of infections 

other than UTIs.109     
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Table 3.1: Quinolone classification109,111 

Generation Quinolone Structure Activity Clinical application 

1st 

Nalidixic acid 
 

Anti-Gram-negative 
bacteria (Enterobacteria 

only) UTI 

Cinoxacin 
 

Oxolinic acid 
 

Pipemidic acid 
 

Introduction of anti-P. 
aeruginosa activity 

2nd 

Flumequine 
 

Anti-Gram-negative 
activity (less active than 
piperazinyl derivatives) 

UTI 

Norfloxacin 
 

Enhanced anti-Gram-
negative activity including  

P. aeruginosa and 
limited anti-Gram-positive 

activity 

UTI, sexually transmitted 
diseases, skin and soft 

tissue infections 
Ciprofloxacin 
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Table 3.1 continued 

3rd 

Levofloxacin 
 

Broad-spectrum activity 
with enhanced anti-Gram-
positive activity and anti-

pneomonoccal activity 

Respiratory tract infections 

Sparfloxacin 

 

4th 

Trovafloxacina 

 

Enhanced potency and 
expanded spectrum 
including anerobic 

bacteria 

As for 1st, 2nd, and 3rd 
generations 

Gemifloxacin 

 

In Development: 

Nemonoxacin (TG-
873870)112 

 

Enhanced anti-Gram-
positive activity including 
MDR S. pneumoniae and 

quinolone-resistant 
MRSA 

Skin infections and 
community-acquired 

pneumonia  
JNJ-Q2 (Avarofloxacin)113 

 
a Withdrawn due to adverse side effects. 
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In the third-generation quinolones the introduction of a C-8 moiety has led to 

improved activity against Gram-positive bacteria.109,111b The fourth-generation 

quinolones exhibit increased potency and a broader spectrum of activity, including 

anaerobic bacteria.109,111b Currently under development are two quinolone 

compounds JNJ-Q2 and nemonoxacin (Table 3.1). These compounds exhibit activity 

against MDR S. pneuminiae as well as quinolone-resistant MRSA.111b,112-113 

The quinolones are attractive antibacterial agents not only because of their broad 

spectrum activity but also because of their molecular target. Quinolone antibacterials 

work by interfering with bacterial DNA replication.109,114 DNA consists of two 

polynucleotide strands paired together through H-bonds which results in the 

formation of a double helix structure (Figure 3.2).14 During DNA replication, the two 

strands are unwound and pulled apart, forming a replication bubble, allowing each 

strand to act as a template for the synthesis of two new strands (Figure 3.2).14 DNA 

replication proceeds in both directions thus the replication bubble expands laterally, 

which can induce supercoiling ahead of the replication fork.14 

 

Figure 3.2: DNA replication. 
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In bacteria, an enzyme known as DNA gyrase (a type II topoisomerase) is 

responsible for relieving the strain caused by supercoiling during DNA 

replication.109,115 As shown in Figure 3.3, DNA gyrase is a tetramer consisting of 

two GyrA units and two GyrB units. When double stranded DNA (the G-segment) 

binds to the DNA gyrase a conformational change occurs resulting in the 

dimerization of the GyrA units, (2) Figure 3.3. The binding of ATP (indicated by *) 

initiates the dimerization of the ATPase which leads to the capture of a second 

segment of double stranded DNA, the T-segment (3). A conformational cascade 

occurs, leading to the cleavage of the G-segment and passage of the T-segment 

through the DNA gate (4). The G-segment is then resealed and the T-segment 

released (5), relieving the supercoiling. The GyrA units dimerise and ATP is 

hydrolysed regenerating the initial enzyme state.  

 

Figure 3.3: Topoisomerase II mechanism.114-115 

Quinolones can bind to the gyrase-DNA complexes resulting in a quinolone-

stabilised cleavage complex.109,111b,114 The stabilisation of the enzyme-DNA complex 

blocks replication fork movement and therefore inhibits DNA synthesis.111b,114 

However, this process is reversible meaning that other events must be involved in the 

bactericidal activity of quinolones.111b,114 Cell death is believed to occur as a result of 
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the release of DNA breaks.111b,114 The exact molecular mechanisms involved in the 

release of DNA breaks are not fully understood.111b,114 

Bacteria also have a second type II topoisomerase, known as topoisomerase IV. Like 

DNA gyrase, toposiomeras IV is a tetramer and is involved in the separation of 

linked DNA molecules.109 Topoisomerase IV is said to be the main target in Gram-

positive bacteria whereas DNA gyrase is believed to be the main target in Gram-

negative bacteria.109 A most favourable feature of the quinolone antibacterial agents 

is their selectivity for bacterial topoisomerase over mammalian topoisomerase. A 

number of quinolones, including ciprofloxacin, have demonstrated that much greater 

inhibitory concentrations are required to inhibit mammalian topoisomerase II 

reactions in comparison to those required to inhibit the bacterial enzyme reactions.116 

3.1.1 Aim 

The quinolones are broad spectrum antibacterial agents that have found use in a 

variety of infections including UTIs, sexually transmitted diseases, bone, skin and 

soft-tissue infections.117 Fluoroquinolones are also used in the treatment of 

tuberculosis and some quinolone derivatives have been shown to exhibit anticancer 

and anti-HIV activity.117 Modifications to the basic quinolone structure such as the 

introduction of the C-7 piperazine, a fluorine atom at C-6 and the N-1 cyclopropyl 

group have resulted in the generation of compounds with increased potency and an 

expanded spectrum of activity.109 However, as can be seen from Table 3.1 (section 

3.1) the C-3 carboxylic acid moiety, believed to be particularly important for the 

activity of the quinolones, has remained throughout the quinolone generations.  

In this study we wanted to synthesise a basic quinolone molecule with an alternative 

C-3 moiety, a bioisostere. A bioisostere is a group that can be used in place of 

another group while maintaining the desired biological activity.11 Bioisosteres are 

often used to investigate the structure-activity relationship of a drug or to replace 

substituents that are important for target interaction but responsible for toxic side 

effects.11 Replacement of a functional group with a bioisostere has also been shown 

to improve activity. For example, replacement of the amide moiety of the dopamine 
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antagonist, sultopride, with a pyrrole ring resulted in increased activity and 

selectivity (Figure 3.4). 

NHO

N
Et

EtO2S

OMe

EtO2S

OMe

NH

NEt

(a) (b)  

Figure 3.4: Replacement of the amide functionality of sultopride (a) by a non-

classical isostere pyrrole to give DU 122290 (b), resulted in increased activity and 

selectivity.11 

Tetrazoles are popular bioisosteres for carboxylic acids (Figure 3.5). Similar to a 

carboxylic acid, tetrazoles contain an acidic proton and are planar in structure.11 In 

comparison to the carboxylate anion, tetrazoles are also 10 times more lipophilic.11 

Furthermore, many modern day drugs contain the tetrazole moiety, for example, 

Cefazolin (Figure 3.6), a broad spectrum first generation cephalosporin antibiotic.118 

Therefore, in an effort to improve activity the 1H-tetrazole was chosen as the 

bioisostere for the quinolone C-3 carboxylic acid. 

 

Figure 3.5: Similarities in structure and acidity of the carboxylic acid, the (1H)-

tetrazole and the hydroxamic acid. 
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Figure 3.6: The tetrazole-containing antibiotic, Cefazolin. 

In addition to the C-3 tetrazole, a second functional group was chosen to replace the 

carboxylic acid moiety, a hydroxamic acid. Hydroxamic acids, as well as being 

acidic, also possess a similar structure to that of a carboxylic acid (Figure 3.5). 

Furthermore, a wide spectrum of biological properties have been associated with 

hydroxamic acids including, anticancer, antifungal and antibacterial activity.119    
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3.2 Results and Discussion 

The structure of each of the compounds synthesised in this section was elucidated 

using LC/TOF-MS, IR, 1H and 13C NMR spectoscopies. Starting materials were 

obtained commercially and used without further purification. 

The retrosynthetic analysis for the C-3 (1H)-tetrazole and its carboxylic acid 

analogue can be seen in Scheme 3.1.  

 

Scheme 3.1: Retrosynthetic analysis for the C-3 (1H)-tetrazole quinolone and its 

carboxylic acid analogue. 

Generation of the C-3 (1H)-tetrazole can be carried out via a 1,3-dipolar 

cycloaddition of an azide with the quinolone C-3 nitrile precursor, whilst hydrolysis 

of a C-3 carboxylate quinolone will give the carboxylic acid analogue. The C-3 

nitrile and carboxylate derivatives can be produced by the nucleophilic subsititution 
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reaction of piperazine and the fluorinated quinolone molecule. N-1 alkylation of the 

quinolone molecule, resulting from the electrophilic aromatic substitution of a 

phenylamino acrylate (or malonate in the case of the carboxylic acid derivative), can 

be carried out via the nucleophilic substitiution with ethyl iodide. The conjugate 

addition of aniline to a cyanoacetate, or a malonate in the case of the carboxylic acid 

derivative, generates the phenylamino acrylate (or malonate). 

3.2.1 Synthesis of the phenylamino acrylates 

The phenylamino acrylates 3.1 and 3.2 were synthesised using the procedure 

described by Stern et al.120 with modification (Scheme 3.2). Ethyl 

(ethoxymethylene)cyanoacetate and aniline (3-fluoroaniline in the case of 3.2) were 

allowed to reflux in EtOH for 45 minutes. On cooling, the product precipitated out of 

solution and the resulting solid was collected by filtration and washed with cold 

EtOH. 

 

Scheme 3.2: Synthesis of phenylamino acrylates 3.1 and 3.2. 

In the NMR spectra of 3.1 and 3.2 two sets of resonance signals were observed 

indicating the presence of two isomers, the (E)- and (Z)-isomers. Two broad doublets 

at approximately 11 ppm and 9 ppm for the NHs of each isomer were observed in the 
1H NMR spectra of each compound, 3.1 and 3.2, indicating successful addition of 

the aniline group. The loss of a set of ethoxy proton signals along with a shift in the 

vinyl proton signal in the 1H NMR spectra from 8.00 ppm to 8.37 and 7.87 ppm in 
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3.1 and 8.36 and 7.90 ppm in 3.2 further confirmed formation of the phenylamino 

acrylates.  

As mentioned in section 2.2.2, fluorine has I = ½ thus it can be detected using NMR 

spectroscopy. As shown in Figure 3.7, a fluorine substituent on an aromatic ring will 

give rise to characteristic C-F coupling constants for each of the carbon atoms in the 

ipso, ortho, meta and para positions. In a fluorinated aromatic ring the one-bond C-F 

coupling (ipso) is always large, approximately 245 Hz. Similarly to the C-F coupling 

in an aromatic ring characteristic three-bond, four-bond and five-bond H-F couplings 

can also be observed (Figure 3.7). 

 

Figure 3.7: Characteristic C-F and H-F coupling constants.91 

For 3.2, characteristic one-bond C-F coupling constants of 245.9 and 246.5 Hz for 

the carbon directly attached to the fluorine atom were observed, one for each isomer. 

For each isomer a 2J value of 21.8 Hz was also observed for the carbons ortho to the 

fluorine substituent and a 4J value of 3.0 Hz for the carbon in the para position. The 
3J values for the carbon atoms at the meta position in 3.2 were also in the 

characteristic three-bond C-F coupling constant range of 8-10 Hz. The presence of 

two isomers, along with H-H and H-F coupling in the 1H NMR spectrum of 3.2, 

gave rise to mulitplets for the protons of the fluorinated phenyl ring. Therefore, no 

H-F coupling constants could be calculated.      

A strong absorption band at 2211 and 2217 cm-1 for the (C≡N) was observed in the 

IR spectrum of 3.1 and 3.2, respectively. Both compounds were obtained as white 

solids, in good yield, and were used without further purification in the synthesis of 

3.5 and 3.6 (section 3.2.4). 
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3.2.2 Synthesis of the phenylamino malonates 

As shown in Scheme 3.3, the synthesis of the phenylamino malonates 3.3 and 3.4 

was carried out using the same method as that described for 3.1 and 3.2 above. 

Compounds 3.3 and 3.4 were obtained in good yields of 80% and 82%, respectively, 

and used without further purification.  

NH2

CO2EtEtO2C

OEt

CO2EtEtO2C

HN

X

X

EtOH

3.3: X= H
3.4: X = F

X= H or F

 

Scheme 3.3: Synthesis of phenylamino malonates 3.3 and 3.4. 

In the 1H NMR spectra of both 3.3 and 3.4 a broad doublet at approximately 11 ppm 

was observed for the NH proton indicating formation of the products. The NH 

protons of each compound were found to couple to the vinyl CH proton, having a 3J 

value of approximately 13 Hz, further confirming the formation of the phenylamino 

malonates. In the 13C NMR spectra of 3.3 and 3.4 two carbon signals for each of the 

ester carbonyl carbons were observed. The 13C signals for the carbons of the phenyl 

ring of 3.3 at 117.2, 124.9, 129.8 and 139.3 ppm were also observed.  

For 3.4, the presence of the fluorine substituent resulted in characteristic C-F 

coupling constants for each of the phenyl ring carbon atoms with the largest of these 

being 245.3 Hz for the one-bond coupling of the fluorine atom to the ipso carbon. A 

doublet at 103.9 and 110.0 ppm with 2J values in the range of 21-26 Hz were 

assigned as the ortho carbon atoms with the meta carbon atoms observed at 140.6 

and 130.8 ppm having a characteristic 3J value of approximately 10 Hz. The 13C 

resonance signal for the carbon para to the fluorine substituent was observed at 

112.4 ppm with the smallest C-F coupling constant of 2.3 Hz. As was observed for 

3.2, the presence of H-H and H-F coupling resulted in multiplets being observed for 
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the protons of the fluorinated phenyl ring in the 1H NMR spectrum, thus no H-F 

coupling constants could be calculated. 

3.2.3 Synthesis of the quinolones 

N
H

O

2

3

45

6

7

8 1
8a

4a

 

Figure 3.8: Quinolone structure with numbering system for 1H and 13C NMR 

shown. 

3.2.4 The 3-carbonitrile quinolone derivatives  

As shown in Scheme 3.4, the quinolone 3.5 was synthesised via the intramolecular 

electrophilic aromatic substitution reaction of 3.1. The reaction was carried out using 

a procedure described by Stern et al.120 Compound 3.1 was added slowly to hot 

diphenyl ether (240 oC). The solution was brought to reflux for four hours after 

which the reaction mixture was allowed to cool and petroleum ether was added. The 

resulting solid precipitate was collected by filtration and washed with petroleum 

ether to give the crude quinolone in 71% yield.      

 

Scheme 3.4: Electrophilic aromatic substitution of 3.1. 

In the IR spectrum the (C≡N) absorption was observed at 2224 cm-1 and the ketone 

(C=O) absorption at 1628 cm-1. In the 1H NMR spectrum only one set of resonance 

signals were observed with the loss of the ethyl ester proton signals indicating 

formation of the quinolone product. As with the 1H NMR spectrum, the 13C NMR 

spectrum was much simpler in comparison to the quinolone precursor with only one 
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13C signal observed for the ketone C=O at 174.4 ppm.  A large downfield shift 

(117.3 to 125.0 ppm) of the 13C signal, for the phenyl ring ortho carbon of 3.1, was 

observed confirming the C-C bond formation of C-4a to C-4 (Figure 3.8 and Scheme 

3.4). 

The synthesis of the fluorine derivative, 3.6, was carried using the same procedure as 

was described for 3.5 above. In the IR spectrum of 3.6 a strong absorption band at 

2228 cm-1 was observed for (C≡N). As with 3.5, loss of the –OCH2CH3 proton 

signals, in the 1H NMR spectrum, indicated formation of a quinolone. However, 

unlike 3.5, two sets of resonance signals were observed in both the 1H and 13C NMR 

spectra of 3.6.  

It was thought that each set of resonance signals may represent a different 

regioisomer (Scheme 3.5). From the 1H NMR spectrum, a ratio of 1.00:0.30 was 

found for 3.6a:3.6b, respectively. As depicted in Scheme 3.5, the production of the 

two regioisomers could result from nucleophilic attack at the carbonyl carbon from 

one of two possible carbon atoms of the phenyl ring. The atomic radius of a fluorine 

atom is greater than that of the hydrogen atom.121 Therefore, the presence of the 

fluorine atom at C-5 may be sterically less favourable, resulting in the generation of 

only a small proportion of the 5-fluoro quinolone, 3.6b.   

CN

NH

R1 EtO

O

R2

N
H

O

F N
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OF

CN CN

N
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CN
H

N
H

O

CN
H

F

3.6a

R1 = F, R2 = H
or

R1 = H, R2 = F

3.6b  

Scheme 3.5: Proposed reaction mechanism for the synthesis of regioisomers 3.6a 

and 3.6b. 
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In the 1H NMR spectrum, two 1H signals were observed at 8.75 and 8.68 ppm in the 

form of singlets, each having an integral of one. These were believed to be the 1H 

signals of H-2 of each of the products. Focusing on the product of greatest 

abundance, a signal with an integral of one was observed at 8.18 ppm in the 1H 

NMR spectrum. Considering its chemical shift, it is most likely the 1H signal of 

either H-5 or H-8. However, as it was a doublet of doublets, and if this set of 

resonance signals were of the 7-fluoro derivative 3.6a, then this 1H signal belonged 

to H-5. For this doublet of doublets at 8.18 ppm, the coupling constants were 8.8 and 

6.3 Hz. These J values are within the range of both the H-H ortho coupling as well 

as three- and four-bond H-F coupling. Using a C-H correlation NMR experiment, it 

was found that this 1H signal corresponded to a 13C signal with a C-F coupling 

constant of 11.3 Hz. A J value characteristic of a 3J C-F coupling and therefore 

confirms that the 1H signal at 8.18 ppm represents H-5. The observed J values of 8.8 

and 6.3 Hz correspond to the ortho H-H coupling between H-5 and H-6 and the four-

bond H-F coupling, respectively. 

Examination of the 1H NMR spectrum of the compound of least abundance reveals a 

doublet of doublets at 7.17 ppm. It was thought that this set of resonance signals 

belonged to the 5-fluoro derivative (3.6b), and as they are the most shielded 1H 

signal, they most likely belonged to either H-6 or H-8. The two J values calculated 

for the doublet of doublets were found to be 11.8 and 8.1 Hz. For a typical ortho H-

H coupling, the 3J value falls within the range of 6.0 to 9.0 Hz, a range consistent 

with the J value of 8.1 Hz but not with the second J value obtained for the 1H signal 

at 7.17 ppm. Although the coupling constant of 11.8 Hz is outside that of a typical 

aromatic 3J value it is very similar to that observed for the three-bond C-F coupling 

of 1-fluoronaphthalene (10.7 Hz).91 The C-H correlation NMR experiment showed 

that the 1H signal at 7.17 ppm corresponded to a 13C signal with a C-F coupling 

constant of 22.5 Hz (Table 3.2). This J value is consistent with the characteristic 2J 

C-F coupling, thus confirming that the 1H signal is that of H-6. 

The presence of the fluorine substituent proved very useful in the characterisation of 

these quinolone products. As shown in Table 3.2, C-F coupling constants 

characteristic of fluorine coupling to ipso, ortho, meta and para carbon atoms were 
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observed for each set of resonance signals. Further analysis of the mixture of 

products using COSY and HSQC equivalent NMR experiments together with the 

observed C-F coupling constants confirmed the connectivity of the carbon atoms as 

shown in Figure 3.9. 

Table 3.2: The C-F coupling constants observed for 3.6a and 3.6b. 

Quinolone 1J (Hz) 2J (Hz) 3J (Hz) 4J (Hz) 

Fluorobenzene91 245 20-26 8-10 4 

3.6a 248.9 23.3, 24.8 12.9, 11.3  1.5 

3.6b 259.9 22.5, 9.8 9.9, 4.5 4.5 
 

 

Figure 3.9: Structures of (a) 3.6a (b) 3.6b. 

3.2.5 The 3-carboxylate quinolone derivatives 

Quinolone 3.7 was synthesised as described by Lager et al.122 (Scheme 3.6). The 

procedure was carried out in the same way as was described for quinolones 3.5 and 

3.6 above, however, only a one hour reflux was required. A four hour reflux in 

diphenyl ether resulted in a complex mixture being returned. The resulting white 

solid quinolone was obtained in 72% yield and was used in the next step without 

further purification (section 3.2.8). 
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Scheme 3.6: Synthesis of 3.7 and 3.8. 

In the 1H NMR spectrum of 3.7, the loss of both the ethoxy group proton signals and 

the 1H signal of one phenyl CH proton indicated formation of the bicycle. A large 

downfield shift in the 13C signal for an ortho carbon atom of the phenyl ring in 3.3, 

from 124.9 to 127.2 ppm, signified formation of the C4a-C4 bond. The presence of 

only one carbonyl 13C signal, the ketone carbon, at 173.4 ppm further confirmed 

formation of 3.7. In the IR spectrum obtained for 3.7 a strong absorption band at 

1698 cm-1 for the (C=O) of the ketone was observed. 

As shown in Scheme 3.6, the synthesis of 3.8 was carried out using the same 

procedure as was described for 3.7. Again, loss of the 1H signals for the protons of 

the ethyl ester, together with a loss of a phenyl proton signal in the 1H NMR 

spectrum, indicated formation of the product. However, two sets of resonance signals 

were observed in the 1H NMR spectrum. It was presumed that the two sets of signals 

were the result of a mixture of the 5-fluoro and 7-fluoro derivatives (Figure 3.10), as 

was observed for 3.6 above. From the 1H NMR spectrum, the mixture of the isomers 

was found to be in a ratio of 1.00:0.08, 3.8a:3.8b.  

Focusing on the product of greater abundance, in the 1H NMR spectrum, a doublet of 

doublets was observed at 8.22 ppm. The coupling constants associated with this 1H 

signal were found to be 9.1 and 6.1 Hz. These values are consistent with ortho H-H 

and four-bond H-F coupling constants. Considering the chemical shift and observed 

J values, it was thought that this 1H signal was that of the C-5 proton of the 7-fluoro 

quinolone derivative. A C-H correlation NMR experiment found that the 1H signal 
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corresponded to a 13C signal with a characteristic C-F 3J value (10.5 Hz, Table 3.3), 

thus confirming that the 1H signal at 8.22 ppm was that of H-5.  

 

Figure 3.10: Proposed structures of the 7-fluoro- and 5-fluoro quinolone derivatives. 

As shown in Table 3.3, the calculated C-F coupling constants of 3.8a were found to 

be characteristic of a fluorine atom coupling to the ipso, ortho, meta and para carbon 

atoms of an aromatic ring. Together with the COSY and HSQC equivalent NMR 

experiments, these results were found to be consistent with the 7-flouro quinolone 

derivative, 3.8a, as shown in Figure 3.10. 

Table 3.3: The C-F coupling constants observed for 3.8a. No 4J value was observed 

for 3.8b.  

Quinolone 1J (Hz) 2J (Hz) 3J (Hz) 4J (Hz) 

Fluorobenzene91 245 20-26 8-10 4 

3.8a 248.3 24.8, 22.5 10.5, 12.8 - 
 

Due to the generation of only a small quantity of what was thought to be the 5-fluoro 

derivative, 3.8b Figure 3.10, the H-H and C-F coupling constants of 3.8b could not 

be calculated. However, the structure of this second isomer will be discussed in more 

detail in section 3.2.8. 

3.2.6 Alkylation of the quinolones 

3.2.7 N-1 alkylation of the 3-carbonitrile quinolones 

The alkylation of quinolone 3.5 was initially carried out using the method described 

by Frank and Mesaros123 with modification. A mixture of quinolone 3.5 (Scheme 
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3.7) and K2CO3 in triethylphosphate, were brought to reflux for one hour. The 

reaction mixture was cooled to room temperature followed by the addition of 

deionised water. The resulting precipitate was collected by filtration and purified by 

precipitation from DCM with n-hexane to give N-alkyl quinolone 3.9 (Scheme 3.7). 

Although the reaction was successful, only yields of 45% were obtained and 

repetition of the purification step was often required resulting in further loss of 

material. Thus an alternative method was explored. 

A review of the literature revealed a procedure whereby the quinolone can be 

alkylated using ethyl iodide with K2CO3 as base.124 Compound 3.5 was dissolved in 

DMF and stirred at room temperature for two hours with ethyl iodide and K2CO3 

followed by heating at 80 oC for three hours (Scheme 3.7). Upon cooling, the 

reaction mixture was reduced in concentration by removal of the solvent in vacuo 

followed by the addition of water. The resulting precipitate was collected by 

filtration and purified by precipitation from DCM with n-hexane. It was found that 

the two hour stirring step was not necessary and that 3.9 could be obtained in similar 

yields when the reaction was carried out at 80 oC for three hours with no prior 

stirring at room temperature (Scheme 3.7). Using this procedure, 3.9 was obtained in 

a yield of 72% after purification. 

 

1-H-quinolone R3 R5 R7 1-Ethyl-quinolone 

3.5 C≡N H H 3.9 

3.6a C≡N H F 3.10a 

3.6b C≡N F H 3.10b 

 

Scheme 3.7: Quinolone alkylation, (i) K2CO3, EtI, DMF at 80 oC for 3 h. 
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In the 1H NMR spectrum of 3.9 the appearance of a new triplet at 4.40 ppm and 

quartet at 1.49 ppm representing the protons of the N-ethyl group indicated N-1 

alkylation. The 3J value for both the triplet and quartet was calculated to be 7.1 Hz, a 

value characteristic of vicinal H-H coupling in a saturated system. The 

corresponding 13C signals were observed at 48.3 (CH2) and 14.2 ppm (CH3) in the 
13C NMR spectrum together with a shift in the C-2 and C-8a 13C signals, further 

confirming formation of 3.9. 

The N-1 alkylation of 3.6 to give 3.10 was carried out as shown in Scheme 3.7. As 

mentioned earlier, the cyclisation of 3.2 resulted in the generation of two 

regiosiomers (3.6a and 3.6b, section 3.2.4). Considering the small quantity of the 5-

fluoro isomer (3.6b) that was obtained the crude mixture of isomers was used in the 

alkylation reaction thus producing two N-ethyl quinolone products, 3.10a and 3.10b 

in a yield of 72% and 15%, respectively (Scheme 3.7). The alkylated 5-fluoro and 7-

fluoro quinolone derivatives were then separated by silica gel column 

chromatography. 

The presence of two new 13C signals at approximately 49.0 ppm and 14.0 ppm in the 
13C NMR spectrum of both 3.10a and 3.10b together with a shift in the C-2 13C 

signals indicated the addition of the ethyl group. In the 1H NMR spectra of 3.10a and 

3.10b two new signals, a triplet and quartet, were also observed. For each quinolone 

a 3J coupling constant of 7.1 Hz was observed for both the triplet and quartet 

confirming that these 1H signals represented the protons of the CH2 and CH3 

components of the new ethyl group.  

In addition to 1H and 13C NMR experiments, NOEdiff (Nuclear Overhauser Effect 

difference) experiments were used to assess the H-H spatial proximity within the 

quinolone structures in an effort to further confirm alkylation at the N-1 position as 

opposed to O-alkylation (Figure 3.11). 
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Figure 3.11: Possible O-alkyl and N-alkyl products. 

NOEdiff experiments allow us to determine which two protons (or groups of 

protons) in a molecule are in close proximity to one another by using through-space 

coupling. The NOE is the change in intensity of one resonance due to the relaxation 

of another neighbouring saturated signal.125 In a NOEdiff experiment a 1H signal can 

be selectively irradiated, resulting in a build-up of NOE at a neighbouring 1H 

resonance which can then be detected by the NMR spectrometer.125 Thus, it can be 

used to determine which protons (or group of protons) are spatially close to one 

another by selectively irradiating a 1H resonance and observing which other 1H 

resonances are detected.125 

The resulting spectra from the NOEdiff experiments of 3.10a are given in Figure 

3.12. The first hydrogen chosen to be irradiated was H-2. As can be seen in Figure 

3.12, spectrum (a), irradiation of H-2 resulted in an increase in intensity of the 1H 

resonance signals of the CH2 and CH3 groups presenting a positive NOE of 8% and 

2%, respectively. Irradiation of the 1H resonance signal of the CH2 group was also 

carried out (spectrum (b) Figure 3.12). Both signals for H-2 and H-8 showed 

increased intensities resulting in a positive NOE of 15% and 13%, respectively. 

These results confirm alkylation at N-1 of 3.10a. 

NOEdiff experiments were also carried out for 3.10b, the results of which were 

similar to that observed with 3.10a thus confirming N-alkylation (Appendix B, 

Figure B1). 
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Figure 3.12: NOEdiff spectra obtained for 3.10a. 
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3.2.8 Alkylation of the 3-carboxylate quinolones 

 

1-H-quinolone R3 R5 R7 Alkyl quinolone Alkylation 

3.7 CO2Et H H 3.11a N 

3.7 CO2Et H H 3.11b O 

3.8a CO2Et H F 3.12a O 

3.8a CO2Et H F 3.12b N 

3.8b CO2Et F H 3.12c N 

 

Scheme 3.8: Quinolone Alkylation, (i) K2CO3, EtI, DMF at 80 oC for 3 h. 

Quinolone 3.7 was alkylated to give 3.11 using the same method as was described 

for 3.9 and 3.10 above (Scheme 3.8). Analysis of the crude product by 1H NMR 

spectroscopy revealed two sets of resonance signals for what appeared to be two 

different alkylated quinolones. Using silica gel column chromatography the two 

quinolone products, 3.11a and 3.11b, were separated. 

In the 1H NMR spectrum of each product a new set of 1H signals characteristic of an 

ethyl group were observed indicating successful alkylation. To confirm alkylation at 

N-1, NOEdiff experiments were carried out on both products. The resulting spectra 

of the NOEdiff experiments of 3.11a are given in Figure 3.13 and 3.14. 
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Figure 3.13: NOEdiff spectra obtained for 3.11a. 
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Figure 3.14: NOEdiff spectra obtained for 3.11a. 

The first hydrogen chosen for irradiation was H-2. As can be seen in Figure 3.13, 

spectrum (a), irradiation of H-2 resulted in an increase in the 1H signal intensity of 

one of the CH2 groups (4.41 ppm). The 1H signal for the same CH2 group was 

irradiated in a subsequent NOEdiff experiment the result of which was an increase in 

the intensity of the 1H signals for H-2 and a second aromatic CH, H-8. Both signals 

for H-2 and H-8 presented a positive NOE of 15% and 13%, respectively (spectrum 

(b), Figure 3.13). As shown in Figure 3.13, these results indicate that the ethyl group 

is attached at N-1 in 3.11a. Finally, upon irradiation of the second CH2 group 

protons at 4.22 ppm, an increase in the 1H signal intensity was observed for the 

attached CH3 group only (spectrum (a), Figure 3.14). No other 1H signal increased in 

intensity, suggesting that this CH2 group belongs to the C-3 ester ethyl moiety. 
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The spectra obtained from the NOEdiff experiments of 3.11b are given in Figure 

3.15. The similarity in chemical shift of the CH2 signals made it difficult to irradiate 

only one of the signals. However, looking at the resulting spectrum it can be seen 

that the 1H signal for the attached CH3 group plus the 1H signal of an aromatic CH 

increased in intensity (Figure 3.15). Although the 1H signal of H-2 also appears to 

have increased in intensity, this increase is less than 1% and may be a result of the 

slight irradiation of the ester CH2 
1H signal. These results suggest that the ethyl 

group is not attached at N-1. 

 

 

Figure 3.15: NOE spectra of 3.11b. Both signals for CH3 and an aromatic CH 

showed increased intensities presenting a positive NOE of 6% and 2%, respectively. 

To ensure that this was the case, a second NOEdiff experiment was carried out 

wherein H-2 was irradiated. As seen in Figure 3.16, irradiation of H-2 did not 
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increase the intensity of any other 1H signal thus H-2 is not in close proximity to the 

new ethyl group. 

 

Figure 3.16: Irradiation of H-2 in 3.11b (CDCl3) did not increase the intensity of 

any other 1H signal. 

Further analysis of 3.11b by 13C NMR spectroscopy revealed two 13C signals at 

165.3 and 164.2 ppm. By comparison, in the 13C NMR spectrum of 3.11a, the 13C 

signal for the ester carbonyl carbon was observed at 164.6 ppm whilst the C-4 

carbonyl carbon signal was observed further downfield at 172.7 ppm. These results, 

together with the results from the NOEdiff experiments, suggest that alkylation also 

occurred at the C-4 oxygen atom thus generating 3.11b (Figure 3.17). 
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Figure 3.17: Structures of N-ethyl and O-ethyl quinolones, 3.11a and 3.11b. 

During alkylation, the deprotonation of the quinolone NH gives rise to a negative 

charge on the nitrogen atom (Scheme 3.9). As shown in Scheme 3.9, quinolone 3.7 is 

a highly conjugated system thus electrons can delocalise around the ring from the 

nitrogen atom to the C-4 carbonyl oxygen atom resulting in alkylation at the C-4 

oxygen. 

 

Scheme 3.9: Proposed mechanism for the synthesis of 3.11b. 

The synthesis of 3.12 was carried out using the same procedure described above in 

Scheme 3.8. As with 3.10, the starting material was a mixture of two isomers and it 

was assumed that two N-ethyl quinolones would be produced. As expected, analysis 

by TLC revealed two spots, however, an additional third spot was also observed. 
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Silica gel column chromatography was carried out and each of the products were 

isolated. 

The first product to elute was 3.12a. Analysis by 1H NMR spectroscopy revealed 

two sets of signals characteristic of an ethyl group, that is, one doublet and triplet for 

the CH2 and CH3 of the ester ethyl group and a second doublet and triplet for the 

protons of the new ethyl group. The C-F coupling constants were calculated from the 
13C NMR spectrum and are given in Table 3.4. As can be seen from Table 3.4 the C-

F coupling constants corresponded to the characteristic ranges for 1J, 2J, 3J, and 4J C-

F coupling. These values, together with the observed 13C and HSQC equivalent 

NMR spectra, suggested that the fluorine atom was at the C-7 position in 3.12a. 

Additionally, the ester C=O quaternary 13C signal was observed at 164.1 ppm, 

together with a second quaternary 13C signal at 165.1 ppm, indicating that 3.12a may 

be an O-ethyl derivative, similar to 3.11b above. 

Table 3.4: C-F coupling constants for 3.12a, 3.12b and 3.12c. 

Quinolone 1J (Hz) 2J (Hz) 3J (Hz) 4J (Hz) 

Fluorobenzene91 245 20-26 8-10 4 

3.12a 250.5 24.7, 20.0 10.8, 12.0 1.13 

3.12b 246.8 22.5, 27.0 11.3, 12.0 2.25 

3.12c 264.8 21.8, 6.9 11.0, 3.0 4.7 
 

To confirm O-alkylation, differential NOE experiments were carried out on 3.12a 

the results of which are shown in Figure 3.18. As can be seen in the NOEdiff 

spectrum, irradiation of H-2 did not result in a significant increase in intensity of any 

other 1H signal. A similar outcome was observed in the NOEdiff spectrum of 3.11b 

above (Figure 3.16), thus, 3.12a is also an O-alkyl derivative (Figure 3.18). 
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Figure 3.18: NOEdiff spectrum for irradiation of H-2 in 3.12a. 

The second product to be eluted was 3.12b, in a yield of 73%. In its 13C NMR 

spectrum, the appearance of two new peaks at approximately 14.0 and 48.0 ppm 

indicated addition of the ethyl group.  The 13C signal for the ester carbonyl carbon 

was observed at 164.4 ppm, with an additional quaternary 13C signal at 172.1 ppm, 

characteristic of C-4. The J values for the coupling of the fluorine substituent to the 

ipso, ortho, meta and para carbon atoms were obtained from the 13C NMR spectrum 

and are shown in Table 3.4. In addition to the C-F J values in Table 3.4, the 13C, 

HSQC equivalent and COSY NMR experiments, suggested that the fluorine 

substituent is at C-7 of the quinolone.  

The presence of an additional triplet at 4.38 ppm and quartet at 1.35 ppm in the 1H 

NMR spectrum 3.12b also indicated formation of the alkyl product. Assessment of 
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the spatial proximity of H-H using differential NOE experiments confirmed 

alkylation at N-1 (Appendix B, Figure B2). A melting point range of 126-130 oC was 

also obtained for 3.12b and found to correspond with the literature m.p. of 128-129 
oC.126 Together, these results suggest that 3.12b is ethyl 1-ethyl-7-fluoro-4-oxo-1,4-

dihydroquinoline-3-carboxylate (Scheme 3.8). 

As mentioned in section 3.2.5, cyclisation of 3.4 resulted in the generation of two 

products, 3.8a and 3.8b. However, the structure of only one of these products, the 

abundant 7-fluoro quinolone 3.8a, could be fully characterised. Having isolated both 

an N-ethyl and O-ethyl 7-fluoro quinolone derivative it was believed that the third 

and final alkylation reaction product, 3.12c (Scheme 3.8), was most likely the 

alkylated derivative of the second quinolone product obtained in the cyclisation of 

3.4.  

After separation by silica gel column chromatography, 3.12c was obtained with a 

yield of 3%. In the 1H NMR spectrum, the presence of two triplets and two quartets 

in the range of 4.20-4.40 ppm and 1.35-1.55 ppm, respectively, indicated that two 

ethyl groups were attached to the quinolone compound. One set of signals belonging 

to the C-3 ethyl ester protons and the second belonging to the protons of the new 

ethyl group. To determine if the new ethyl group was attached to either the nitrogen 

atom at position one or the C-4 oxygen atom, an assessment of the H-H spatial 

proximity was carried out using differential NOE experiments. 

The hydrogen chosen for irradiation was H-2 (spectrum (a), Figure 3.19). As a 

result, one CH2 signal showed increased signal intensity presenting a positive NOE 

of 8%, thus suggesting that alkylation had occurred at N-1. The 1H signal for the 

same CH2 group was irradiated and resulted in an increase in intensity of three 1H 

signals, CH3, H-2 and an aromatic CH (spectrum (b), Figure 3.19). These results 

confirm alkylation at N-1. 
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Figure 3.19: 1H and NOEdiff spectra of 3.12c. 
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In the 13C NMR spectrum the 13C signal for the ester carbonyl carbon was observed 

at 165.8 ppm with a second quaternary 13C signal at 173.3 ppm for C-4, further 

confirming that O-alkylation had not occurred. The C-F coupling constants were 

obtained from the 13C NMR spectrum and are given in Table 3.4. It can be seen that 

the calculated C-F J values correspond to the characteristic coupling constants for 

one-, two-, three- and four-bond C-F coupling. These values, in conjunction with C-

H correlation and COSY NMR experiments, suggest that the fluorine substituent is 

at C-5 on the quinolone molecule 3.12c (Figure 3.19). A C-F coupling constant of 

2.3 Hz was also observed for C-4, further indicating that the fluorine substituent is at 

the C-5 position. 

3.2.9 Hydrolysis of the quinolone carboxylates 

Hydrolysis of 3.11a was carried out using a procedure described by Sayyed et al.127 

The method involves ester hydrolysis under basic conditions as shown in Scheme 

3.10. 

OEt

O

OH

OEt

O OH

OH

O

EtO

N

O

N

O

N

O

3.133.11a
 

Scheme 3.10: Base-catalysed ester hydrolysis. 

Compound 3.11a was dissolved in a methonal:water solution of KOH and brought to 

reflux for three hours, after which, the methanol was removed under reduced 

pressure. Water was added to the remaining solution and acidified with HCl to give 

3.13 (Scheme 3.10) as a white solid with a yield of 95%. 

In the 1H NMR spectrum of 3.13, the loss of the 1H signals for the ethyl protons, 

together with the appearance of a broad singlet at 15.27 ppm for the –OH proton,  

indicated formation of the carboxylic acid. A downfield shift in the carbonyl 13C 

signal from 172.7 ppm to 177.6 ppm, due to the loss of the –CH2CH3, further 
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confirmed formation of the carboxylic acid. These NMR data were found to be in 

agreement with the reported literature values127, thus confirming the structure of 3.13 

(Scheme 3.10).  

The procedure described for the hydrolysis of 3.11a above was also used for the 

hydrolysis of the 7-fluoro derivative 3.12b. As with 3.11a, the loss of the ethyl group 
1H signals together with a downfield shift in the carbonyl 13C signal (172.1 ppm to 

176.9 ppm) indicated formation of the carboxylic acid. However, a new sharp singlet 

at 3.99 ppm was also observed in the 1H NMR spectrum. In addition to this new 

peak, the 13C NMR spectrum appeared to be less complex, in comparison to the ester 

precursor, as no peak splitting was observed. The lack of C-F coupling in the 13C 

NMR spectrum suggested that the fluorine substituent had been removed from C-7. 

A 19F NMR experiment was carried out and confirmed that this was indeed the case. 

 

Scheme 3.11: Loss of the C-7 fluorine substituent resulted in the formation of 3.15. 

Taking these results into account, it was believed that perhaps a nucleophilic 

methoxide ion, generated during the hydrolysis reaction, had attacked the 

electrophilic C-7 thus replacing the fluorine substituent and resulting in the 

formation of a 7-methoxy quinolone (Scheme 3.11). These NMR data presented here 

are consistent with the structure of 3.15 and were found to be in agreement with 

reported literature data128, thus confirming the structure of 3.15. 

Having lost the fluorine substituent during hydrolysis by the method described by 

Sayyed et al.127 an alternative method was employed for the hydrolysis of 3.12b 

(Scheme 3.12). 
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Scheme 3.12: Ester hydrolysis, (i) dioxane:H2O, LiOH, at 50 oC for 30 mins.129 

Quinolone 3.12b was dissolved in a 1:1 dioxane:H2O mixture followed by addition 

of  LiOH. The reaction was allowed to stir at 50 oC for 30 minutes after which the 

solvent was removed under reduced pressure followed by the addition of water. The 

solution was acidified and the resulting white precipitate collected by filtration. 

A 19F NMR experiment was carried out, the result of which confirmed the presence 

of the fluorine substituent. In the 1H NMR spectrum the loss of the triplet and quartet 

signals of the ester ethyl group indicated generation of the carboxylic acid. In the 13C 

NMR spectrum, the C-5, C-6, C-7 and C-8 13C signals exhibited characteristic C-F 

coupling constants, further confirming the presence of the fluorine substituent. A 

downfield shift in the 13C signal for the carbonyl carbon, from 172.1 ppm to 176.8 

ppm, also indicated formation of the carboxylic acid. The m.p. range of 126-130 oC 

obtained for 3.14 was found to be in agreement with the literature m.p. range of 128-

129 oC126, thus confirming the formation of the carboxylic acid derivative 3.14. 

3.2.10 Synthesis of the C-7 piperazine quinolones 

The C-7 piperazine quinolones were synthesised via a nucleophilic substitution 

reaction (Scheme 3.13). Quinolone 3.10a (or 3.14) and piperazine were dissolved in 

pyridine and allowed to reflux for 16 hours, after which the solvent was removed 

under reduced pressure.130 The resulting residue was purified from cold EtOH to 

give the solid product, 3.16, in a yield of 57% (86% for 3.17). 
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Scheme 3.13: Synthesis of 7-piperazine quinolone derivatives. 

In the 1H NMR spectrum of 3.16, the appearance of two additional peaks at 3.32 and 

2.85 ppm, each having an integral of four, signified formation of the C-7 piperazine 

quinolone. The two corresponding 13C signals were found at 47.7 and 45.2 ppm in 

the 13C NMR spectrum. Consistent with replacement of the fluorine substituent by a 

less electronegative nitrogen atom, a large upfield shift of the C-7 13C signal from 

164.9 to 154.4 ppm was also observed. Additionally, the 13C NMR spectrum was 

less complex in comparison to the C-7 precursor, having only singlets. No C-F 

coupling was observed in the 13C NMR spectrum, indicating replacement of the 

fluorine substituent with the new piperazine group. A 19F NMR experiment, having 

no 19F signal, further confirmed the loss of the fluorine substituent. 

Similar to 3.16 (Scheme 3.13), the appearance of two new peaks in the 1H NMR 

spectrum of 3.17, at 3.40 and 2.85 ppm for the piperazine CH2’s, were observed. In 

the 13C NMR spectrum, the corresponding 13C signals were observed at 47.7 and 

45.3 ppm. In addition to the piperazine 13C signals, no C-F coupling was observed, 

with all 13C signals appearing as singlets. A large upfield shift of approximately 10 

ppm, of the C-7 13C signal indicated replacement of the fluorine substituent with the 

piperazine group. Furthermore, no signal was observed in the 19F NMR spectrum, 

thus confirming loss of the C-7 fluorine atom. 

The synthesis of the N-methylpiperazine quinolones, 3.18 and 3.19, was carried out 

using the same method as described for 3.16 and 3.17 above (Scheme 3.13). Similar 

to the piperazine derivatives, the appearance of two new signals, at approximately 
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3.40 and 2.60 ppm, suggested formation of the C-7 piperazine derivatives, 3.18 and 

3.19 (Scheme 3.13). An additional singlet, at approximately 1.50 ppm, with an 

integral of three for the three equivalent protons of the piperazine N-Me was also 

observed in each of the quinolone’s 1H NMR spectra. In the 13C NMR spectra of 

both 3.18 and 3.19, all of the 13C signals appeared as singlets and no C-F coupling 

was observed indicating loss of the fluorine substituent. This was confirmed by 19F 

NMR experiments of each quinolone. The replacement of the C-7 fluorine 

substituent by the N-methylpiperazine group was further confirmed by an upfield 

shift of approximately 10 ppm for the C-7 13C signal. 

3.2.11 Synthesis of tributyltin azide (TBTA) 

The synthesis of TBTA was carried out using the procedure described by Gernon 

(Scheme 3.14).131 A solution of sodium azide in distilled water and tributyltin 

chloride in diethyl ether were shaken together for 10 minutes. The organic and 

aqueous phases were separated followed by a second diethyl ether extraction of the 

aqueous layer. TBTA was obtained as a yellow oil (74%) after removal of the diethyl 

ether solvent.  

 

Scheme 3.14: Synthesis of TBTA. 

In the 1H NMR spectrum of TBTA, a triplet at 0.93 ppm was observed for the 

protons of the three CH3 groups, with the 1H signals of the CH2 groups presenting as 

three multiplets in the region of 1.20-1.70 ppm. A 13C signal for the carbons of the 

three equivalent CH3 groups was observed at 13.6 ppm, with the 13C signals for the 

carbons of the CH2 groups being observed at 27.8, 26.9 and 15.4 ppm. A strong 

absorption at 2073 cm-1, characteristic of the azide stretching frequency, was 

observed in the IR spectrum, thus confirming formation of TBTA. 
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3.2.12 Synthesis of quinolone (1H)-tetrazoles 

The (1H)-tetrazoles were synthesised via a 1,3-dipolar cycloaddition reaction as 

shown in Scheme 3.15. In this study, the azide was employed as the 1,3-dipole 

whilst the dipolarophile was the quinolone C-3 nitrile. The [2+3] cycloaddition is 

known to occur, traditionally, by a concerted mechanism (Scheme 3.15).132 

However, it has also been suggested to occur via a two-step, anionic process wherein 

the nucleophilic azide attacks the nitrile first followed by ring closure.132b,133 

 

Scheme 3.15: Concerted mechanism of the 1,3-dipolar cycloaddition of a nitrile and 

azide.132a 

Tetrazoles can be synthesised via the neat reaction of a nitrile with TBTA.134 Thus, 

initial synthesis of the C-3 tetrazole quinolone 3.20 (Figure 3.21) was carried out by 

the neat reaction of 3.9 with TBTA under nitrogen gas. The reaction was monitored 

using IR spectroscopy, with the disappearance of the (C≡N) at ca. 2220 cm-1 and 

(N3) at ca. 2070 cm-1 indicating completion. Reactions were carried out at 60, 140 

and 175 oC for one hour. However, as can be seen in the IR spectra below, the 

absorption bands of (C≡N) and (N3) were still observed (Figure 3.20). The 

reaction was repeated with overnight heating at 175 oC and again both the nitrile and 

N3 absorption bands remained. Thus, the reaction was repeated at 200 oC overnight 

(15 hours). The resulting IR spectrum (Appendix B, Figure B3) indicated that the 

reaction had gone to completion. The tributyltin moiety was cleaved, using HCl, 

producing 3.20 in 75% yield. 
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Figure 3.20: IR spectra of the reaction of TBTA with 3.9 at (a) 60 oC, (b) 140 oC 

and (c) 175 oC degrees after one hour. All samples were prepared as KBr discs. 
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In the 1H NMR spectrum, a shift in the 1H signals was observed, with the largest 

shift, from 8.86 ppm to 9.11 ppm, being observed for H-2, indicating formation of 

the tetrazole. A large downfield shift in the 13C signal for C-3 (93.5 ppm to 104.5 

ppm) was also observed in the 13C NMR spectrum. Additionally, the 13C signal of 

the nitrile carbon exhibited a dramatic downfield shift of approximately 30 ppm. 

This result is consistent with the addition of three electronegative nitrogen atoms, 

thus confirming formation of the C-3 tetrazole. Both 1,5- and 2,5-tetrazoles can be 

formed, with the CN4 
13C signals usually found at ca. 155.0 and 162.0 ppm, 

respectively.132a,135 For 3.20, the chemical shift of the CN4 
13C signal was 150.1 ppm 

and is, therefore, consistent with the (1H)-tetrazole product (Figure 3.21). 

 

Figure 3.21: 1-Ethyl-3-(1H-tetrazol-5-yl)quinolin-4(1H)-one. 

Although the synthesis of 3.20 employing TBTA as the azide source was successful, 

cleavage of the tributyltin group proved difficult and often had to be repeated. 

Therefore, an alternative synthetic method was investigated. 

Tetrazoles have also been synthesised by the reaction of sodium azide with a nitrile 

in the presence of a Lewis acid.136 Coordination of the Lewis acid can cause a 

decrease in the energy difference between the HOMO and LUMO of the reactants, 

therefore, resulting in a faster reaction.136a The synthesis of 3.20 was attempted using 

sodium azide and AlCl3 with DMF as the reaction solvent (Scheme 3.16).136b 

However, after 24 hours only starting material was returned. Thus, an alternative 

method was sought. 



Chapter III: A study of quinolone antibacterial agents 

135 

 

N

O

N

N

NHN

N

O

CN

(i)

3.203.9  

Scheme 3.16: Synthesis of 3.20. (i) NaN3, AlCl3, DMF, 24 h.  

Another method of tetrazole synthesis employs ammonium azides as the 1,3-dipole. 

It has been suggested that the reaction occurs via the two-step anionic pathway, 

however, it has also been demonstrated that tetraalkylammonium salts are not 

competent dipoles whereas, ammonium azides bearing a proton, are.132b,133 

Computational studies by Himo et al.132b have demonstrated that the proton may be 

involved in activating the nitrile, as shown in Figure 3.22. 

 

Figure 3.22: Proposed stepwise reaction by activation of the nitrile by a proton.132b 

A. The tetrazole reaction proceeds via intermediate P when a proton is available. B. 

When NH4
+ is the proton source, it is believed that intermediate P can form via two 

possible pathways (1) a neutral NH3 mediates the transfer of a proton from the azide 

to the nitrile or by (2) which involves a NH4
+ and azide ion (N3

-). The ammonium-

mediated reaction was found to have a barrier lower than that in the concerted 

mechanism of the anionic [2+3] cycloaddition. 
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An attempt to synthesise 3.20 was also carried out using a modified procedure of that 

described in reference 137 (Scheme 3.17). As shown in Scheme 3.17, the reaction 

was carried out using various ratios of reactants with the best result obtained from 

the reaction of 3.9 with 11 equivalents of sodium azide and ammonium chloride 

(method C). After 27.5 hours, the solvent was removed and the remaining residue 

dissolved in water. Acidification of the solution resulted in precipitation of the 

product. Production of 3.20 by this method was confirmed by 1H and 13C NMR 

spectroscopies. 

 

Method 3.9 NaN3 NH4Cl LiCl 3.20 % yield 

A 1 2.2 2.2 0.7 12 

B 1 5.5 5.5 1.74 63 

C 1 11 11 3.48 83 

 

Scheme 3.17: Synthesis of 3.20 using ammonium azide.137 Table presents the 

equivalents of the reactants used and the resulting % yields. 

Further confirmation of the structure of 3.20 was obtained by X-ray crystallography. 

The yellow, needle-shaped crystals of 3.20 were obtained from a DMF/water 

solution. The crystal structure is shown in Figure 3.23, with crystal data and 

structure refinement for 3.20 given in Tables B4-B6 (Appendix B). 
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Figure 3.23: Crystal structure of 3.20. 

Molecules of 3.20 were linked into pairs by H-bonds between the C-4 C=O and 

tetrazole N-1 H atom and these pairs were -stacked. The individual stacks were 

linked via H-bonds to water (Figure 3.24). Similar types of -stacking interactions 

have been observed with nalidixic acid.138 It has been suggested that these 

interactions play a role in the binding of the quinolone molecule to its target. Shen et 

al.138 have proposed that once one quinolone molecule has bound to the DNA target, 

through H-bonds with the carbonyl oxygen atoms, a second molecule can then bind, 

not only through H-bonds but also through interactions with its neighbouring 

quinolone. Therefore, the drug is granted a strong binding affinity to the target by 

acquiring extra binding domains.   
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Figure 3.24: Crystal packing diagram of 3.20. 

Having successfully synthesised 3.20 the synthesis of 3.21 was attempted using the 

same procedure as was described for 3.20 above (Scheme 3.18). The reaction was 

again monitored by IR spectroscopy, with the disappearance of the (C≡N) at ca. 

2220 cm-1 and (N3) at ca. 2070 cm-1 used as an indicator for reaction completion. 

After 27.5 hours, a weak absorption band for (C≡N) was observed in the IR 

spectrum. A sample was taken from the reaction mixture and the acid work-up 

carried out. In the 1H NMR spectrum of the product resulting from the mini work-up, 

two sets of resonance signals were observed. One set of the 1H resonance signals 

appeared to be starting material, 3.16. A singlet, belonging to the second set of 1H 

resonance signals, was shifted downfield from the 1H singlet for H-2 of 3.16 to ca. 

9.00 ppm. A similar result was observed with the H-2 1H signal of 3.9 and 3.20, thus 

suggesting formation of a possible tetrazole product. However, after a full work-up 

of the reaction of 3.16 in the synthesis of 3.21, the resulting product produced a 

complex 1H NMR spectrum. The product mixture was analysed by TLC but the 

crude product remained baseline with a variety of mobile phases and hence could not 

be purified and fully characterised. 
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Scheme 3.18: Synthesis of the (1H)-tetrazole quinolone, 3.21. (i) NaN3, NH4Cl, LiCl 

in DMF at 110 oC for 27.5 h. 

In an effort to synthesise a 7-piperazine quinolone bearing a tetrazole at C-3 the N-

methylpiperazine quinolone 3.18 (Scheme 3.19) was synthesised as described earlier 

in section 3.2.10. It was hoped that the presence of the methyl group in place of the 

hydrogen atom on the C-7 piperazine (3.22, Scheme 3.19) would facilitate better 

separation by column chromatography. Therefore, the reaction was repeated as for 

3.21 above but with 3.18 instead (Scheme 3.19). 

 

Scheme 3.19: Synthesis of the (1H)-tetrazole quinolone, 3.22. (i) NaN3, NH4Cl, LiCl 

in DMF at 110 oC for 27.5 h. 

Again, the reaction was monitored by IR spectroscopy. However, after 27.5 hours 

two medium absorptions for the (C≡N) and (N3) were observed, therefore, the 

reaction was allowed to continue for a further 24 hours. Again, the IR spectrum 

contained both the (C≡N) and (N3) absorptions. The reaction was allowed to 

continue and was monitored every 24 hours. Only after 14 days did the reaction 

appear to have gone to completion, thus the acid work-up was carried out. Upon 

acidification, however, no precipitate formed. The water was removed under reduced 

pressure and the resulting crude product analysed by 1H NMR spectroscopy. In the 
1H NMR spectrum, a complex mixture was observed. From the TLC it appeared that 



Chapter III: A study of quinolone antibacterial agents 

140 

 

the starting nitrile, 3.18, may be present, however, the crude mixture could not be 

separated. 

The formation of tetrazoles is greatly influenced by the substituent on the nitrile. 

Electronegative substituents assist the formation of the partial positive charge on the 

nitrile carbon atom, which in turn, facilitates the approach of the azide ion.132b,133,139 

Therefore, it was thought that, as the quinolone molecule has a highly conjugated 

system, perhaps the presence of the electronegative C-7 fluorine substituent, in place 

of the piperazine groups, would be more favourable for reaction. Replacement of the 

C-7 fluorine substituent with a piperazine group could then be carried out in a 

subsequent reaction by the method described earlier in section 3.2.10.  

In a final attempt to synthesise a 7-piperazine quinolone derivative bearing a C-3 

tetrazole group the reaction was carried out using the C-7 fluoro quinolone,  3.10a, 

in place of the C-7 piperazine derivative, 3.18 (Scheme 3.20). The reaction was 

monitored using IR spectroscopy and, as was observed with 3.21 and 3.22, long 

reaction times were required before completion of the reaction appeared to have 

occurred. The acid work-up was carried out as for 3.20, 3.21 and 3.22, but again a 

complex mixture was observed in the 1H NMR spectrum. A 19F NMR experiment 

was also carried out. Similar to that observed with the hydrolysis of 3.12b with KOH 

under reflux conditions (section 3.2.9), no 19F signal was observed, suggesting that 

the fluorine substituent had been removed during the reaction. 

 

Scheme 3.20: Synthesis of the (1H)-tetrazole quinolone, 3.23. (i) NaN3, NH4Cl, LiCl 

in DMF at 110 oC for 27.5 h. 

Quinolone 3.20 was synthesised in good yield, however, when the same method was 

applied to 3.16, 3.18 and 3.10a a complex mixture resulted. As mentioned above, the 
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type of substituent attached to the nitrile is important in the synthesis of tetrazoles, 

with electronegative substituents assisting in the activation of the nitrile.132b,133,139 

Considering that the piperazine and fluorine substituents are seven bonds away from 

the nitrile and, in particular, that the fluorine substituent is a good electron-

withdrawing group, it seems unlikely that these substituents are having a negative 

effect on the activation of the nitrile. Perhaps the problem lies with C-7 itself. The 

presence of the fluorine substituent at C-7 results in the carbon atom becoming 

electrophilic. Indeed, it is this property which allows for the formation of the C-7 

piperazine quinolone derivatives (section 3.2.10). Therefore, perhaps the 

electrophilic nature of C-7 in the 7-fluoro quinolone interferes with the formation of 

the tetrazole due to competing SNAr with N3
- acting as the nucleophile. The loss of 

the fluorine substituent, during the reaction of 3.10a in an attempt to synthesise 3.23 

(Scheme 3.20), supports this theory. 

3.2.13 Esterification of levofloxacin 

The C-3 ethyl ester of levofloxacin, 3.24, was synthesised using acid catalysed 

esterification (Scheme 3.21). The ethyl ester product was obtained as a white solid in 

a yield of 87%. 

 

Scheme 3.21: Esterification of levofloxacin. H2SO4 was employed as the acid for 

this reaction. 

In the 13C NMR spectrum, two new peaks were observed at 60.8 and 14.5 ppm for 

the new CH2 and CH3 groups, respectively. Consistent with the replacement of the 

carboxylic acid –OH by an –OEt group, an upfield shift from 176.9 ppm to 172.8 

ppm in the 13C signal of the C-3 carbonyl carbon was observed. In the 1H NMR 

spectrum a new triplet, at 1.39 ppm, having an integral of three, was observed for the 
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three equivalent protons of the ethyl CH3 group. The expected quartet 1H signal for 

the protons of the ethyl CH2 group was found at the same chemical shift (m at 4.27-

4.40 ppm) as the 1H signals for the morpholine ring CH and CH2 (C-12 and C-11) 

protons. This was confirmed by COSY and C-H correlation NMR experiments. 

Formation of the ethyl ester of levofloxacin was further confirmed by LC/TOF-MS, 

which returned a (M+H+) of 390.1843 for C20H25FN3O4. 

3.2.14 Synthesis of the quinolone C-3 hydroxamic acid 

In an effort to synthesise a quinolone derivative with enhanced activity, the well-

known quinolone, levofloxacin, was chosen as the quinolone derivative for 

modification with the hydroxamic acid.  The synthesis of a C-3 hydroxamic acid 

derivative of levofloxacin, 3.25, was first attempted using the coupling reagents 

HOBt and TBTU, in the presence of Et3N, with DMF as the reaction solvent 

(Scheme 3.22). 

 

Scheme 3.22: Synthesis of levofloxacin C-3 hydroxamic acid 3.25. Reaction carried 

out under nitrogen, (i) HOBt, TBTU, Et3N, DMF, 10 min (ii) NH2OH.HCl, Et3N, 

DMF, 24 h, rt. 

Coupling reagents are most commonly used in the synthesis of peptides.140 TBTU is 

a (1H)-benzotriazole-based coupling reagent that is believed to exist as both the 

uronium and aminium salt in solution (Figure 3.25).140-141 These uronium/aminium 

salts work by activating the carboxylic acid moiety which in turn facilitates the 

nucleophilic attack of an amine, resulting in formation of an amide bond.141 
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Figure 3.25: TBTU (a) uronium salt and (b) aminium salt.140-141 

As shown in Scheme 3.23, the deprotonated carboxylic acid nucleophile attacks the 

electrophilic centre of TBTU. The resulting intermediate reacts with HOBt, 

generating the activated ester. Attack at the carbonyl carbon of the activated ester, by 

the amine, results in the formation of the amide bond. When carrying out the 

reaction, the carboxylic acid is usually stirred with base and the activating agent 

(TBTU) for approximately 10 minutes, to ensure formation of the activated ester, 

prior to the addition of the amine.     
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Scheme 3.23: HOBt/TBTU coupling mechanism.141 
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After 24 hours the solvent was removed under reduced pressure and the resulting 

residue analysed by 1H NMR spectroscopy. In the 1H NMR spectrum, only the 

starting material appeared to be present with no shifts in the 1H signals being 

observed. Thus, an alternative coupling method was attempted. 

COMU, shown in Figure 3.26, is a relatively new coupling reagent.142 The presence 

of the oxyma leaving group in place of a benzotriazole along with the replacement of 

a dimethylamino group by a morpholino moiety enhances stability, solubility and 

reactivity of the reagent.142-143 As mentioned earlier, the benzotriazole-type coupling 

reagents, such as TBTU, are believed to co-exist as the uronium and aminium salts. 

However, COMU exists solely as the more reactive uronium structure.142,144 

Additionally, the by-products formed by COMU are water soluble, allowing their 

removal by simple extraction.143,145 

 

Figure 3.26: COMU coupling reagent with the oxyma moiety shown in red. 

The synthesis of 3.25 was attempted using COMU coupling as described in Scheme 

3.24. After 24 hours, the solvent was removed under reduced pressure and the 

resulting residue was analysed by 1H NMR spectroscopy. As with the previous 

HOBt/TBTU coupling reaction, in the 1H NMR spectrum, no shifts were observed 

for the levofloxacin 1H signals, suggesting that only starting material was returned. 



Chapter III: A study of quinolone antibacterial agents 

145 

 

 

Scheme 3.24: Synthesis of 3.25 under COMU coupling conditions.143 The reaction 

was carried out under nitrogen, (i) DIEA, 0 oC, 10 min, (ii) NH2OH.HCl, DIEA, 10 

min, (iii) COMU, 0 oC, 1 h followed by 24 h, rt. 

After the unsuccessful attempts to synthesise 3.25, using two different coupling 

reagents, a trial coupling reaction was carried out in an effort to determine if a simple 

amine could be coupled to the C-3 carboxylic acid of levofloxacin. As shown in 

Scheme 3.25, a reaction of levofloxacin with n-butylamine using standard coupling 

conditions of HOBt/TBTU in the presence of Et3N was carried out. 

 

Scheme 3.25: Synthesis of 3.26. (i) HOBt, TBTU, nBuNH2, DMF, 24 h, rt. 

In the 1H NMR spectrum, the appearance of a triplet at 0.92 ppm for the protons of 

the n-butylamine –CH3 group was observed, together with mulitplets at ca. 1.58 and 

1.40 ppm for the protons of the n-butyl –CH2 groups, indicating formation of 3.26. A 

triplet at 9.95 ppm was also observed for the NH proton confirming generation of the 

amide bond. A small shift in the 1H signal of H-5 was also observed. An upfield shift 

of the 13C signal of the C-3 carbonyl carbon, from 177.0 ppm to 175.5 ppm, was 

observed in the 13C NMR spectrum, further confirming formation of the amide 

derivative. 
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These results prove that a simple amine can be coupled to the carboxylic acid of 

levofloxacin. However, 3.26 was obtained in a low yield of 42% suggesting that this 

reaction, although successful, is not very efficient in the synthesis of a simple 

levofloxacin carboxamide. Therefore, an alternative synthetic approach was sought. 

Reddy et al.146 have demonstrated the synthesis of a variety of aliphatic and aromatic 

hydroxamic acid derivatives, in yields of 80-95%, using ethylchloroformate and 

NH2OH.HCl (Scheme 3.26). The reaction of the carboxylic acid with 

ethylchloroformate in the presence of base should produce the ester derivative 

bearing a better leaving group in comparison to the carboxylic acid –OH (Scheme 

3.26). This, in turn, should facilitate attack by the hydroxylamine, resulting in 

formation of the hydroxamic acid derivative.   

 

 

Scheme 3.26: Synthesis of 3.25. 

Hydroxylamine hydrochloride was dissolved in MeOH and added to a stirred 

solution of KOH in MeOH at 0 oC. After stirring for 15 minutes the solution was 

filtered. Levofloxacin was dissolved in DCM followed by the addition of EtCO2Cl 

and NMM (as base) at 0 oC. The solution was stirred for 10 minutes followed by 

filtration. The resulting filtrate was added to the freshly prepared hydroxylamine 

followed by stirring at room temperature for 30 minutes after which the solvent was 

removed under reduced pressure. The resulting 1H NMR spectrum of the crude 
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product appeared to be a mixture of reactants, with no shifts observed in the 1H 

signals of levofloxacin. 

In a final attempt to synthesise the C-3 hydroxamic acid derivative of levofloxacin, a 

reaction of the C-3 ethyl ester of levofloxacin with hydroxylamine hydrochloride 

was carried out (Scheme 3.27).147 Levofloxacin ethyl ester, 3.24, was synthesised as 

described earlier in section 3.2.13. A methanol solution of 3.24 was added slowly to 

a solution of hydroxylamine and allowed to stir at room temperature for 24 hours. 

After 24 hours, the reaction mixture was acidified (pH 6) using concentrated HCl. 

The solvent was concentrated under reduced pressure and the resulting precipitate 

collected by filtration. 

 

Scheme 3.27: Synthesis of 3.25. 

In the 1H NMR spectrum of the resulting white solid, the disappearance of the 1H 

signals for the ethyl group protons indicated formation of the hydroxamic acid. A 

downfield shift of the 13C signals for C-2 (145.1 ppm to 146.4 ppm) and the C-3 

carbonyl carbon (172.8 ppm to 176.4 ppm) was observed in the 13C NMR spectrum. 

The strong absorption bands of the carboxylic acid and ketone (C=O) at 1719 cm-1 

and 1617 cm-1, respectively, had shifted to 1722 cm-1 and 1623 cm-1, further 

indicating formation of 3.25 (Scheme 3.27). LC/TOF-MS also confirmed formation 
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of the C-3 hydroxamic acid derivative of levofloxacin returning a (M+H+) of 

390.1843. 

3.2.15 In vitro antibacterial activity 

Each of the compounds, the quinolones and their precursors (Appendix B, Table B1-

B3), described in section 3.2, were evaluated for their antibacterial activity against E. 

coli, P. aeruginosa and S. aureus using the susceptibility assay described in section 

1.2.5.  

In general, the quinolone precursors, the phenylamino malonates and acrylates, were 

inactive against all three bacteria. The 1-H-quinolones also exhibited little or no 

activity against all three bacteria. Alkylation at the N-1 position of the quinolones 

did not improve activity, in comparison to the 1-H-quinolones, with the N-ethyl 

quinolone derivatives also exhibiting little or no activity against each of the three 

bacteria tested. 

Neither the C-3 carboxylic acid derivative 3.13 nor the C-3 tetrazole derivative 3.20 

exhibited an MIC50 against any of the bacteria, with the greatest bacteriostatic 

activity (although minimum) achieved only at the highest concentration of 100 

g/mL (Table 3.5). However, on comparing 3.13 to 3.20, similar activity was 

observed for both compounds against E. coli, P. aeruginosa and S. aureus (Table 

3.5). This result suggests that although the replacement of the carboxylic acid with 

the tetrazole bioisostere did not improve activity, it also does not appear to have 

decreased the activity of the quinolone. This result contradicts the earlier studies by 

Gilis et al.148, wherein the presence of a tetrazole at C-3 of nalidixic acid diminished 

the antibacterial activity exhibited by nalidixic acid. 
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Table 3.5: Percentage growths of 3.13 versus 3.20 as a function of concentration of 

each compound. 

Quinolone Concentration 
(g/mL) 

E. coli P. aeruginosa S. aureus 
% Growth % Growth % Growth 

3.13 
25 88 100 100 
50 82 92 96 
100 77 74 81 

3.20 
25 91 95 98 
50 90 94 96 
100 88 79 91 

 

As shown in Graph 3.1, 3.2 and 3.3, the addition of the piperazine moiety at C-7 

greatly improved the bacteriostatic activity of the quinolones, not only against P. 

aeruginosa, but also against E. coli and S. aureus. In particular, 3.17 exhibited 

greatest activity against P. aeruginosa (Graph 3.2), producing an MIC50 in the range 

of 12.50-18.75 g/mL. A similar trend in activity was also observed with the 

addition of the piperazine to 3.10 to give 3.16. The addition of the N-

methylpiperazine at C-7 of 3.14 also improved the antibacterial activity against both 

P. aerugionsa and S. aureus but resulted in a decrease in activity against E. coli 

(Graph 3.1, 3.2, and 3.3). For the nitrile derivative, 3.18, the presence of the C-7 N-

methylpiperazine moiety resulted in similar activity to that of 3.16. Although the 

addition of the piperazine (and N-methylpiperazine) was advantageous for activity 

against all three bacteria, the nitrile derivatives, 3.16 and 3.18, were less active in 

comparison to the carboxylic acid derivatives, 3.17 and 3.19. 
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Graph 3.1: Activity profile for the C-7 quinolone derivatives versus E. coli. 

 

Graph 3.2: Activity profile for the C-7 quinolone derivatives versus P. aerugionsa. 
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    Graph 3.3: Activity profile for the C-7 quinolone derivatives versus S. aureus. 

The bacteriostatic activity of levofloxacin versus the C-3 hydroxamic acid derivative 

of 3.25, are summarised in Table 3.6. The results are expressed as the MIC50, the 

minimum inhibitory concentration that is required to inhibit 50% of bacterial growth. 

As can be seen in Table 3.6, 3.25 exhibited similar activity against both the Gram-

negative bacteria, E. coli and P. aeurginosa, as well as the Gram-positive bacterium, 

S. aureus. In comparison to levofloxacin, 3.25 demonstrated similar activity against 

E. coli, S. aureus and P. aeruginosa (Table 3.6). Furthermore, the bacteriostatic 

activity of 3.25 increased with increasing concentration, resulting in an MIC90 in the 

range of 1.17-1.56 g/mL against P. aeruginosa, which is an MIC90 value similar to 

that exhibited by levofloxacin. 

Table 3.6: Antibacterial activity as MIC50 range, values are mean of three 

experiments. 

Compound 
E. coli P. aeruginosa S. aureus 

M g/ml M g/ml M g/ml 
Levofloxacin 0.54-1.08 0.2-0.39 1.62-2.16 0.59-0.78 3.24-4.33 1.17-1.56 

3.25 1.56-2.08 0.59-0.78 1.04-1.56 0.39-0.59 1.56-2.08 0.59-0.78 
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3.2.16 Conclusion 

In this study, the synthesis of a (1H)-tetrazole and hydroxamic acid quinolone 

derivatives was undertaken. For comparison, the carboxylic acid analogues were also 

synthesised. The structure of each synthesised compound was elucidated by means 

of LC/TOF-MS, 1H and 13C NMR and IR spectroscopies. 

The synthesis of the quinolone compounds involved formation of the phenylamino 

acrylates or malonates, which were then cyclised, followed by alkylation at N-1. It 

was found that cyclisation of the phenylamino acrylates and malonates bearing a 

fluorine substituent resulted in the generation of two regioisomers, the 5-fluoro and 

7-fluoro quinolones. Additionally, with the carboxylate derivatives, both N-ethyl and 

O-ethyl derivatives were generated during alkylation, the structures of which were 

confirmed by NOEdiff NMR experiments. The carboxylate derivatives were 

hydrolysed and the 7-fluoro quinolones were then used in the synthesis of the 7-

piperazine derivatives. 1-Ethyl-3-(1H-tetrazol-5-yl)quinolin-4(1H)-one (3.20) was 

successfully synthesised with a yield of 83%. However, the synthesis of a 7-

piperazine derivative bearing a tetrazole moiety proved difficult and could not be 

generated using the same method. 

The X-ray crystal structure was obtained for 3.20, and revealed that the quinolone 

molecules were linked into pairs by H-bonds between the C-4 C=O and tetrazole N-1 

H atom and that these pairs were -stacked.  

The synthesis of the C-3 hydroxamic acid derivative was carried out by the reaction 

of levofloxacin with hydroxylamine hydrochloride. Initial attempts employing 

different coupling reagents or ethylchloroformate were unsuccessful. However, the 

levofloxacin C-3 hydroxamic acid derivative was successfully synthesised in the 

simple reaction of hydroxylamine with the ethyl ester of levofloxacin. 

Each of the quinolone compounds and their precursors were evaluated for their 

bacteriostatic activity against two Gram-negative bacteria (E. coli and P. aeruginosa) 

and a Gram-positive bacterium, S. aureus. The phenylamino acrylates and malonates 

were found to be inactive against each of the bacteria tested. In general, the 

quinolones exhibited similar activity, although poor, against each of the bacteria. In 
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comparison to the carboxylate analogue, the C-3 tetrazole derivative exhibited 

similar activity against all three bacteria. Addition of a piperazine or N-

methylpiperazine at C-7, resulted in improved activity against all three bacteria, 

exhibiting MIC50 values in the range of 25-100 g/mL.  

The hydroxamic acid derivative of levofloxacin, 3.25, however, was the quinolone 

that exhibited greatest activity against each of the bacteria. Compound 3.25 

demonstrated an increase in activity with increasing concentration against each of 

the bacteria with greatest activity observed against P. aeruginosa (MIC90 1.17-1.56 

g/mL). Although the presence of the hydroxamic acid did not improve on the 

bacteriostatic activity of levofloxacin, the results obtained were similar (Table 3.6, 

section 3.2.15). 

3.2.17 Future work 

Tetrazoles have been shown to from complexes with a variety of metal ions.149 

Additionally, the coordination of metal ions to quinolone compounds have resulted 

in enhanced activities.150 As mentioned earlier the bacteriostatic activity exhibited by 

both the C-3 tetrazole and its carboxylic acid analogue, although poor, was very 

similar. Taking this into account, an investigation into the complexation of metal 

ions with the quinolone tetrazole derivative may generate a quinolone with enhanced 

activity. 

An initial study into the complexation of the (1H)-tetrazole, 3.20, with copper(II) 

chloride in MeOH was carried out. The IR spectrum of the resulting green precipitate 

suggested that coordination had occurred. Thus, further investigations into metal 

complexes of a (1H)-tetrazole quinolone derivative could be carried out. 

Additionally, considering hydroxamic acids are well known for their role as 

siderophores119b, an investigation into the metal complexation of the hydroxamic 

acid quinolone could also be carried out. The bacteriostatic activity results obtained 

for 3.25 were very similar to those exhibited by the parent compound, levofloxacin. 

The complexation of metal ions to 3.25 may enhance its antibacterial activity. 
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3.3 Experimental 

General procedure for the synthesis of 3.1 and 3.2 

Ethyl (ethoxymethylene)cyanoacetate (50 mmol) and the appropriate aniline (50 

mmol) were dissolved in EtOH (25 mL) and heated to reflux for 45 minutes. The 

reaction mixture was allowed to cool to room temperature. On cooling, the product 

precipitated out of solution and the resulting solid was collected by filtration and 

washed with ice-cold EtOH. In each case, the crude product was used for the next 

step without further purification. 

Ethyl 2-cyano-3-(phenylamino)acrylate (3.1) 

 

White solid (10.42 g, 96%), 1.00:0.63 mixture of isomers; m.p. 90-94 oC (lit 108 
oC)151; 1H NMR (300 MHz, CDCl3) 10.73 (d, J = 13.4 Hz, 1H, NH), 8.59 (d, J = 

14.8, 1H, NH), 8.37 (d, J = 14.8 Hz, C=CH), 7.87 (d, J = 13.4 Hz, 1H, C=CH), 7.33-

7.39 (m, 4H, E & Z isomers, phenyl CH), 7.14-7.20 (m, 4H, E & Z isomers, phenyl 

CH), 7.07 (d, J = 7.3 Hz, 2H, E & Z isomers, phenyl CH), 4.22-4.30 (m, 4H, E & Z 

isomers, CH2), .29-1.35 (m, 6H, E & Z isomers, CH3), these data match reported 

literature values152; 13C NMR (75 MHz, CDCl3) 167.5 (C=O), 164.6 (C=O), 151.9 

(C=CH), 151.8 (C=CH), 138.6 (phenyl C), 138.3 (phenyl C), 130.0 (phenyl CH), 

129.9 (phenyl CH), 125.7 (phenyl CH), 125.5 (phenyl CH), 117.9 (CN), 117.3 

(phenyl CH), 117.2 (phenyl CH), 115.7 (CN), 77.2 (C-CN), 75.4 (C-CN), 61.2 

(CH2), 14.4 (CH3), 14.3 (CH3); IR (KBr) 3441 (NH), 2211 (CN) cm-1; LC/TOF-MS 
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calcd for C12H13N2O2 217.0972, found 217.0975 (M+H+); Anal. (%) calcd for 

C12H12N2O2 C, 66.64; H, 5.60; N, 12.96; found C, 66.49; H, 5.68; N, 12.92.  

Ethyl 2-cyano-3-((2-fluoro)phenylamino)acrylate (3.2) 

 

White solid (9.17 g, 78%), 1.08:1.00 mixture of isomers; m.p. 87-90 oC; 1H NMR 

(300 MHz, CDCl3)  10.76 (d, J = 13.2 Hz, 1H, NH), 8.91 (d, J = 14.5 Hz, 1H, NH), 

8.36 (d, J = 14.5 Hz, 1H, C=CH), 7.90 (d, J = 13.2 Hz, 1H, C=CH), 7.28-7.39 (m, 

2H, E & Z isomers, phenyl CH), 6.81-7.01 (m, 6H, E & Z isomers, phenyl CH), 4.30 

(app q, J = 7.1 Hz, 4H, E & Z isomers, CH2), 1.32-1.38 (m, J = 7.1 Hz, 6H, E & Z 

isomers, CH3); 13C NMR (75 MHz, CDCl3)  167.2 (C=O), 164.3 (C=O), 163.5 (d, 
1J = 246.5 Hz, CF) 163.4 (d, 1J = 245.9 Hz, CF), 151.7 (C=CH), 151.7 (C=CH), 

140.5 (d, 3J = 10.1 Hz, phenyl C), 139.8 (d, 3J = 10.0 Hz, phenyl C), 131.4 (d, 3J = 

9.4 Hz, phenyl CH), 131.1 (d, 3J = 9.4 Hz, phenyl CH), 117.4 (CN), 115.5 (CN), 

112.8 (d, 4J = 3.0 Hz, phenyl CH), 112.7 (d, 4J = 3.0 Hz, phenyl CH), 112.3 (d, 2J = 

21.8 Hz, phenyl CH), 112.0 (d, 2J = 21.8 Hz, phenyl CH), 104.7 (app t, J = 26.3 Hz, 

2 x phenyl CH), 77.4 (C-CN), 76.3 (C-CN), 61.3 (CH2), 61.2 (CH2), 14.2 (CH3), 

14.1 (CH3); 19F NMR (282 MHz, CDCl3)  -109.7, -109.8 (E & Z isomers, phenyl-

F); IR (KBr) 3440 (NH), 2982, 2217 (CN) cm-1; LC/TOF-MS calcd for 

C12H12FN2O2 235.0877, found 235.0887 (M+H+).  
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General procedure for the synthesis of 3.3 and 3.4 

Diethyl (ethoxymethylene)malonate (25 mmol) and the appropriate aniline (25 

mmol) were dissolved in EtOH (12.5 mL) and heated to reflux for 1 hour. The 

reaction mixture was allowed to cool to room temperature. The solvent was removed 

under reduced pressure and the resulting oil was cooled on ice to give the solid 

product. The product was collected by filtration and washed with ice-cold EtOH.  In 

each case, the crude product was used for the next step without further purification. 

Diethyl 2-((phenylamino)methylene)malonate (3.3) 

O

O

O

O

NH

 

White solid (5.25 g, 80%); m.p. 34-38 oC; 1H NMR (300 MHz, CDCl3)  11.01 (d, J 

= 13.7 Hz, 1H, NH), 8.54 (d, J = 13.7 Hz, 1H, C=CH), 7.35-7.40 (m, 2H, phenyl 

CH), 7.12-7.17 (m, 3H, phenyl CH), 4.31 (q, J = 7.1 Hz, 2H, CH2), 4.25 (q, J = 7.1 

Hz, 2H, CH2), 1.38 (t, J = 7.1 Hz, 3H, CH3), 1.33 (t, J = 7.1 Hz, 3H, CH3); 13C NMR 

(75 MHz, CDCl3)  169.1 (C=O), 165.7 (C=O), 151.9 (C=CH), 139.3 (phenyl C), 

129.8 (phenyl CH), 124.9 (phenyl CH), 117.2 (phenyl CH), 93.5 (C(CO2Et)2), 60.4 

(CH2), 60.1 (CH2), 14.4 (CH3), 14.3 (CH3), these data match reported literature 

values153; IR (KBr) 3445 (NH), 2988 (CH), 1692 (C=O) cm-1; LC/TOF-MS calcd for 

C14H18NO4 264.1230, found 264.1234 (M+H+). 
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Diethyl 2-(((3-fluorophenyl)amino)methylene)malonate (3.4) 

 

White solid (5.79 g, 82%); m.p. 33-37 oC; 1H NMR (300 MHz, CDCl3)  11.02 (d, J 

= 13.5 Hz, 1H, NH), 8.48 (d, J = 13.5 Hz, 1H, C=CH), 7.31-7.38 (m, 1H, phenyl 

CH), 6.83-6.94 (m, 3H, phenyl CH), 4.33-4.23 (m, J = 7.1 Hz, 4H, CH2), 1.40 (t, J = 

7.1 Hz, 3H, CH3), 1.35 (t, J = 7.1 Hz, 3H, CH3), these data match reported literature 

values154; 13C NMR (75 MHz, CDCl3)  168.4 (C=O), 165.0 (C=O), 163.2 (d, 1J = 

245.3 Hz, CF), 150.8 (C=CH), 140.6 (d, 3J = 10.5 Hz, phenyl C), 130.8 (d, 3J = 9.8 

Hz, phenyl CH), 112.4 (d, 4J = 2.3 Hz, phenyl CH), 110.0 (d, 2J = 21.0 Hz, phenyl 

CH), 103.9 (d, 2J = 25.5 Hz, phenyl CH), 94.2 (C(CO2Et)2), 60.1 (CH2), 59.8 (CH2), 

14.0 (CH3), 13.8 (CH3); 19F NMR (282 MHz, CDCl3)  -110.5 (phenyl-F); IR (KBr) 

2985 (NH), 1689 (C=O) cm-1; LC/TOF-MS calcd for C14H17FNO4 282.1136, found 

282.1145 (M+H+). 

General procedure for the synthesis of 3.5 and 3.6 

Diphenyl ether (26 mL) was heated to 240 oC. The appropriate malonate (13.8 

mmol) was added slowly to the hot diphenyl ether and the resulting solution was 

allowed to reflux for 4 hours. The reaction mixture was allowed to cool and 

petroleum ether 60-80 (130 mL) was added. The resulting precipitate was collected 

by filtration and washed with excess petroleum ether 60-80. In each case, the product 

was used in the next step without further purification. 
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4-Oxo-1,4-dihydroquinoline-3-carbonitrile (3.5) 

 

Yellow solid (1.66 g, 71%); m.p. dec; 1H NMR (300 MHz, DMSO-d6) 12.83 (br s, 

1H, NH), 8.73 (d, J = 3.9 Hz, 1H, H2), 8.13 (dd, J = 8.1, 1.2 Hz, 1H, H5), 7.77 (app 

t, J = 8.3, 7.1, 1.2 Hz, 1H, H7), 7.63 (d, J = 8.3 Hz, 1H, H8), 7.46 (app t, J = 8.1, 7.1, 

1.0 Hz, 1H, H6); 13C NMR (75 MHz, DMSO-d6)  174.4 (C=O), 146.6 (C2), 139.0 

(C8a), 133.2 (C7), 125.5 (C6), 125.0 (C4a), 124.9 (C5), 119.2 (C8), 116.8 (CN), 

93.5 (C3), these data match reported literature values155; IR (KBr) 3481 (NH), 2916, 

2224 (CN), 1628 (C=O) cm-1; LC/TOF-MS calcd for C10H6N2ONa 193.0372, found 

193.0378 (M+Na+). 

7-Fluoro-4-oxo-1,4-dihydroquinoline-3-carbonitrile (3.6a) and 5-fluoro-4-oxo-

1,4-dihydroquinoline-3-carbonitrile (3.6b) 

 

Yellow solid (1.61 g, 62%); 1.00:0.30 mixture of isomers; m.p. >300 oC; 1H NMR 

(300 MHz, DMSO-d6)  8.75 (s, 1H, H2), 8.68 (s, 1H, H2*), 8.18 (dd, J = 8.8, 6.3 

Hz, 1H, H5), 7.69-7.76 (m, 1H, H7*), 7.30-7.43 (m, 3H, H6, H8, and H8*), 7.17 (dd, 

J = 11.8, 8.1 Hz, 1H, H6*), these data match reported literature values156,157; 13C 

NMR (75 MHz, DMSO-d6)  173.6 (C=O), 172.8 (d, 3J = 2.3 Hz, C=O*), 164.3 (d, 
1J = 248.9, CF), 160.0 (d, 1J = 259.9 Hz, CF*), 147.5 (C2), 146.5 (C2*), 141.3 (d, 3J 

= 4.5 Hz, C8a*), 140.8 (d, 3J = 12.9 Hz, C8a), 133.9 (d, 3J = 9.9 Hz, C7*), 128.4 (d, 
3J = 11.3 Hz, C5), 122.1 (d, 4J = 1.5 Hz, C4a), 116.5 (CN), 116.4 (CN*), 115.2 (d, 4J 

= 4.5 Hz, C8*), 114.9 (d, 2J = 9.8 Hz, C4a*), 114.1 (d, 2J = 23.3 Hz, C6), 111.6 (d, 
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2J = 22.5 Hz, C6*), 104.8 (d, 2J = 24.8 Hz, C8), 95.3 (C-CN*), 93.9 (C-CN); 19F 

NMR (282 MHz, DMSO-d6)  -105.0 (C7-F), 112.2 (C7-F); IR (KBr) 2228 (CN), 

1631 (C=O) cm-1; LC/TOF-MS calcd for C10H5FN2OK 227.0017, found 227.0025 

(M+H+). 

* 5-Fluoro-4-oxo-1,4-dihydroquinoline-3-carbonitrile (3.6b) 

General procedure for the synthesis of 3.7 and 3.8 

Diphenyl ether (4 mL) was heated to 240 oC. The appropriate acrylate (3.5 mmol) 

was added slowly to the hot diphenyl ether and the resulting solution was allowed to 

reflux for 1 hour. The reaction mixture was allowed to cool and petroleum ether 60-

80 (20 mL) was added. The resulting precipitate was collected by filtration and 

washed with excess petroleum ether 60-80. In each case, the product was used in the 

next step without further purification. 

Ethyl 4-oxo-1,4-dihydroquinoline-3-carboxylate (3.7) 

 

White solid (0.55 g, 72%); m.p. 252-256 oC; 1H NMR (300 MHz, DMSO-d6)  

12.31 (br s, 1H, NH), 8.54 (s, 1H, H2), 8.16 (d, J = 8.1 Hz, 1H, H5), 7.70 (app t, 1H, 

H7), 7.61 (d, J = 7.8 Hz, 1H, H8), 7.41 (app t, 1H, H6), 4.22 (q, J = 7.1 Hz, 2H, 

CH2), 1.28 (t, J = 7.1 Hz, 3H, CH3); 13C NMR (75 MHz, DMSO-d6)  173.4 (C=O) 

164.8 (C=O), 144.8 (C2), 138.9 (C8a), 132.4 (C7), 127.2 (C4a), 125.6 (C5), 124.6 

(C6), 118.8 (C8), 109.8 (C3), 59.5 (CH2), 14.3 (CH3), these data match reported 

literature values155; IR (KBr) 3438 (NH), 2978 (CH), 1698 (C=O) cm-1; LC/TOF-MS 

calcd for C12H11NO3Na 240.0631, found 240.0635 (M+Na+). 
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Ethyl 7-fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylate (3.8a) and ethyl 5-

fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylate (3.8b) 

 

White solid (0.45 g, 55%); 1.00:0.08 mixture of isomers; m.p. dec. 

The product showed improved solubility in DMSO-d6 at 60 oC and hence the data 

were recorded at 60 oC. 

1H NMR (300 MHz, DMSO-d6, 60 oC)  8.52 (s, 1H, H2), 8.40 (s, 1H, *H2), 8.22 

(dd, J = 9.1, 6.1 Hz, 1H, H5), 7.61-7.68 (m, 1H, *CH), 7.37 (dd, J = 9.3, 2.7 Hz, 1H, 

H8), 7.40-7.42 (m, 1H, *CH), 7.21-7.27 (m, 1H, H6), 7.03-7.10 (m, 1H, *CH), 4.24 

(q, J = 7.1 Hz, 2H, CH2), 1.30 (t, J = 7.1 Hz, 3H, CH3), these data match reported 

literature values126, 154; 13C NMR (75 MHz, DMSO-d6, 60 oC)  172.7 (C=O), 164.6 

(C=O), 164.1 (d, 1J = 248.3, CF), 145.2 (C2), 140.6 (d, 3J = 12.8 Hz, C8a), 129.0 (d, 
3J = 10.5 Hz, C5), 124.3 (C4a), 113.1 (d, 2J = 22.5 Hz, C6), 110.6 (C3), 104.2 (d, 2J 

= 24.8, C8), 59.6 (CH2), 14.2 (CH3), the peaks representing the second *isomer 

could not be observed in the 13C NMR spectrum; 19F NMR (282 MHz, DMSO-d6, 60 
oC)  -107.6, -112.9 (C7-F); IR (KBr) 3435 (NH), 3114, 2981 (CH), 1695 (C=O) 

cm-1; LC/TOF-MS calcd for C12H11FNO3 236.0717, found 236.0725 (M + H+). 

* 5-Fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylate (3.8b) 
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The synthesis of 1-ethyl-4-oxo-1,4-dihydroquinoline-3-carbonitrile (3.9)   

 

Method A: 

Quinolone 3.5 (0.50 g, 2.94 mmol) and K2CO3 (0.41 g, 2.96 mmol) were heated to 

reflux in triethyl phosphate (2.65 mL) for 1 hour. The reaction mixture was allowed 

to cool to room temperature and was added to deionised water (14.7 mL). The 

resulting precipitate was collected by filtration and purified by precipitation from hot 

DCM with n-hexane. 

Method B: 

The quinolone 3.5 (0.50 g, 2.94 mmol) was dissolved in anhydrous DMF (14.5 mL) 

under nitrogen. Iodoethane (355 L, 4.41 mmol) and K2CO3 (1.22 g, 8.82 mmol) 

were added to the solution and the reaction mixture was heated to 80 oC for 3 hours. 

The solvent was removed under reduced pressure. Distilled water was added to the 

remaining residue and the solid product was collected by filtration. The product was 

purified by precipitation from hot DCM with n-hexane. 

Brown solid (method A: 0.26 g, 45%, method B: 0.42 g, 72%); m.p. 227-230 oC 

(226 o C)123; 1H NMR (300 MHz, DMSO-d6)  8.86 (s, 1H, H2), 8.22 (d, J = 7.6 Hz, 

1H, H5), 7.82-7.89 (m, 2H, H7 & H8), 7.51-7.58 (m, 1H, H6), 4.40 (q, J = 7.1 Hz, 

2H, CH2), 1.39 (t, J = 7.1 Hz, 3H, CH3); 13C NMR (75 MHz, DMSO-d6)  173.8 

(C=O), 150.4 (C2), 138.6 (C8a), 133.6 (C7), 126.1 (C4a), 125.8 (C5), 125.6 (C6), 

117.6 (C8), 116.5 (CN), 93.5 (C3), 48.3 (CH2), 14.2 (CH3); IR (KBr) 2219 (CN), 

1615 (C=O) cm-1; LC/TOF-MS calcd for C12H11N2O 199.0866, found 199.0868 

(M+H+). 
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General procedure for the synthesis of 3.10-3.12 

The appropriate quinolone (2.94 mmol) was dissolved in anhydrous DMF (14.5 mL) 

under nitrogen. Iodoethane (355 L, 4.41 mmol) and K2CO3 (1.22 g, 8.82 mmol) 

were added to the solution and the reaction mixture was heated to 80 oC for 3 hours. 

The solvent was removed under reduced pressure and the remaining residue was 

dissolved in CHCl3 and filtered. The filtrate was reduced under vacuum and the 

product was purified by column chromatography on silica gel. The product was 

eluted with EtOAc:EtOH (90:10). 

1-Ethyl-7-fluoro-4-oxo-1,4-dihydroquinoline-3-carbonitrile (3.10a) 

 

White solid (0.46 g, 72%); m.p. 230-234 oC; Rf: 0.75 (EtOAc:EtOH 90:10); 1H NMR 

(300 MHz, DMSO-d6)  8.88 (s, 1H, H2) 8.26 (dd, J = 8.7, 6.7 Hz, 1H, H5), 7.81 (d, 

J = 11.4 Hz, 1H, H8), 7.38-7.44 (m, 1H, H6), 4.34 (q, J = 7.1 Hz, 2H, CH2), 1.37 (t, 

J = 7.1 Hz, 3H, CH3), 1H NMR assignments are supported by NOEdiff experiments; 
13C NMR (75 MHz, DMSO-d6)  173.0 (C=O), 164.9 (d, 1J = 248.8 Hz, CF), 151.2 

(C2), 140.5 (d, 3J = 12.5 Hz, C8a), 129.2 (d, 3J = 10.9 Hz, C5), 123.0 (d, 4J = 1.7 Hz, 

C4a), 116.1 (CN), 114.1 (d, 2J = 23.3 Hz, C6), 104.2 (d, 2J = 27.0 Hz, C8), 94.1 (C-

CN), 48.5 (CH2), 14.1 (CH3); 19F NMR (282 MHz, DMSO-d6)  -103.7 (C7-F); IR 

(KBr) 2226 (CN), 1642 (C=O) cm-1; LC/TOF-MS calcd for C12H10FN2O 217.0772, 

found 217.0772 (M + H+). 
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1-Ethyl-5-fluoro-4-oxo-1,4-dihydroquinoline-3-carbonitrile (3.10b) 

N

O

2

3

4
4a

8a

5
6

8

N

7

F

 

White solid (0.10 g, 15%); m.p. 210-212 oC; Rf: 0.50 (EtOAc:EtOH 90:10);  1H 

NMR (300 MHz, DMSO-d6)  8.83 (s, 1H, H2), 7.79-7.86 (m, 1H, H7), 7.67 (d, J = 

8.6 Hz, 1H, H8), 7.27 (dd, J = 11.6, 8.2 Hz, 1H, H6), 4.34 (q, J = 7.1 Hz, 2H, CH2), 

1.37 (t, J = 7.1 Hz, 3H, CH3), 1H NMR assignments are supported by NOEdiff 

experiments; 13C NMR (75 MHz, DMSO-d6)  172.4 (d, 3J = 1.8 Hz, C=O) 160.7 (d, 
1J = 260.8 Hz, CF), 150.4 (C2), 140.7 (d, 4J = 3.2 Hz, C8a), 134.3 (d, 3J = 11.0 Hz, 

C7), 116.1 (CN), 115.9 (d, 2J = 8.0 Hz, C4a), 113.6 (d, 3J = 4.5 Hz, C8), 112.2 (d, 2J 

= 20.7 Hz, C6), 95.5 (C3), 49.1 (CH2), 14.0 (CH3); 19F NMR (282 MHz, DMSO-d6) 

 -111.2 (C5-F); IR (KBr) 2223 (CN), 1633 (C=O) cm-1; LC/TOF-MS calcd for 

C12H10FN2O 217.0772, found 217.0782 (M + H+). 

Ethyl 1-ethyl-4-oxo-1,4-dihydroquinoline-3-carboxylate (3.11a) 

 

White solid (0.55 g, 76%); m.p. 61-64 oC; Rf: 0.49 (EtOAc:EtOH 90:10); 1H NMR 

(300 MHz, DMSO-d6)  8.70 (s, 1H, H2), 8.24 (d, J = 8.0 Hz, 1H, H5), 7.73-7.81 

(m, 2H, H7 and H8), 7.43-7.49 (m, 1H, H6), 4.41 (q, J = 7.0 Hz, 2H, CH2), 4.22 (q, J 

= 7.1 Hz, 2H, CH2), 1.36 (t, J = 7.0 Hz, 3H, CH3), 1.28 (t, J = 7.1 Hz, 3H, CH3), 1H 

NMR assignments are supported by NOEdiff experiments; 13C NMR (75 MHz, 

DMSO-d6)  172.7 (C=O), 164.6 (C=O), 148.9 (C2), 138.5 (C8a), 132.6 (C7), 128.3 

(C4a), 126.4 (C5), 124.7 (C6), 117.1 (C8), 109.9 (C3), 59.6 (CH2), 47.8 (CH2), 14.3 



Chapter III: A study of quinolone antibacterial agents 

164 

 

(2 x CH3), these data match reported literature values155; IR (KBr) 2971 (CH), 1719 

(C=O) cm-1; LC/TOF-MS calcd for C14H16NO3 246.1125, found 246.1136 (M + H+). 

Ethyl 4-ethoxy-1,4-dihydroquinoline-3-carboxylate (3.11b) 

 

Clear oil (0.40 g, 5%); Rf: 0.85 (EtOAc:EtOH 90:10); 1H NMR (300 MHz, CDCl3)  

9.18 (s, 1H, H2), 8.26 (app d, J = 8.3 Hz, 1H, H5), 8.07 (d, J = 8.5 Hz, 1H, H8), 

7.74-7.79 (m, J = 8.5, 6.9, 1.5 Hz, 1H, H7), 7.54-7.59 (m, J = 8.3, 6.9, 1.3 Hz, 1H, 

H6), 4.45 (q, J = 7.1 Hz, 2H, CH2), 4.32 (q, J = 6.8 Hz, 2H, CH2), 1.52 (t, J = 6.8 

Hz, 3H, CH3), 1.44 (t, J = 7.1 Hz, 3H, CH3), 1H NMR assignments are supported by 

NOEdiff experiments; 13C NMR (75 MHz, CDCl3)  165.3 (C=O), 164.2 (C-O), 

152.1 (C2), 151.0 (C8a), 131.6 (C7), 129.3 (C8), 126.8 (C6), 123.9 (C4a), 123.4 

(C5), 114.2 (C3), 72.3 (CH2), 61.5(CH2), 15.8 (CH3), 14.3 (CH3); IR (neat film on 

NaCl plate) 2982 (CH), 1722 (C=O) cm-1; LC/TOF-MS calcd for C14H16NO3 

246.1125, found 246.1127 (M + H+). 

Ethyl 4-ethoxy-7-fluoroquinoline-3-carboxylate (3.12a) 

 

White solid (0.08 g, 10%); m.p. 31-33 oC; Rf: 0.88 (EtOAc:EtOH 90:10); 1H NMR 

(300 MHz, CDCl3)  9.16 (s, 1H, H2), 8.28 (dd, J = 9.2, 6.1 Hz, 1H, H5), 7.68 (dd, J 

= 9.9, 2.4 Hz, 1H, H8), 7.29-7.36 (m, 1H, H6), 4.45 (q, J = 7.1 Hz, 2H, CH2), 4.32 

(q, J = 7.0 Hz, 2H, CH2), 1.51 (t, J = 7.0 Hz, 3H, CH3), 1.43 (t, J = 7.1 Hz, 3H, 
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CH3), 1H NMR data is supported by NOEdiff experiments; 13C NMR (75 MHz, 

CDCl3)  165.1 (C=O), 164.5 (d, 1J = 250.5 Hz, CF), 164.1 (C-O), 153.5 (C2), 152.3 

(d, 3J = 12.0 Hz, C8a), 126.0 (d, 3J = 10.8 Hz, C5), 120.8 (d, 4J = 1.13 Hz, C4a), 

117.1 (d, 2J = 24.7 Hz, C6), 113.6 (d, J = 2.5 Hz, C3), 113.2 (d, 2J = 20.0 Hz, C8), 

72.4 (CH2), 61.5 (CH2), 15.7 (CH3), 14.3 (CH3); 19F NMR (282 MHz, CDCl3)  -

106.5 (C7-F); IR (KBr) 2982 (CH), 1727 (C=O) cm-1; LC/TOF-MS calcd for 

C14H15FNO3 264.103, found 264.1038 (M + H+). 

Ethyl 1-ethyl-7-fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylate (3.12b) 

 

White solid (0.56 g, 73%); m.p. 126-130 oC (lit 128-129 oC)126; Rf: 0.55 

(EtOAc:EtOH 90:10); 1H NMR (300 MHz, DMSO-d6) 8.69 (s, 1H, H2), 8.29 (dd, 

J = 8.9, 6.7 Hz, 1H, H5), 7.72 (d, J = 11.3, 2.2 Hz, 1H, H8), 7.34 (app t, J = 2.2 Hz, 

1H, H6), 4.38 (q, J = 7.1 Hz, 2H, CH2), 4.23 (q, J = 7.1 Hz, 2H, CH2), 1.35 (t, J = 

7.1 Hz, 3H, CH3), 1.28 (t, J = 7.1 Hz, 3H, CH3), 1H NMR assignments are supported 

by NOEdiff experiments; 13C NMR (75 MHz, DMSO-d6)  172.1 (C=O), 164.6 (d, 
1J = 246.8 Hz, CF), 164.4 (C=O), 149.5 (C2), 140.3 (d, 3J = 12.0 Hz, C8a), 129.6 (d, 
3J = 11.3 Hz, C5), 125.2 (d, 4J = 2.25 Hz, C4a), 113.2 (d, 2J = 22.5 Hz, C6), 110.5 

(C3), 103.5 (d, 2J = 27.0 Hz, C8), 59.8 (CH2), 48.0 (CH2), 14.3 (CH3), 14.2 (CH3); 
19F NMR (282 MHz, DMSO-d6)  -105.6 (C7-F); IR (KBr) 2982 (CH), 1679 (C=O) 

cm-1; LC/TOF-MS calcd for C14H15FNO3 264.1030, found 264.1043 (M + H+). 
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Ethyl 1-ethyl-5-fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylate (3.12c) 

 

White solid (0.03 g, 3%); m.p. 108-112 oC (lit 115-118 oC)126; Rf: 0.38 

(EtOAc:EtOH 90:10); 1H NMR (300 MHz, CDCl3)  8.39 (s, 1H, H2), 7.54-7.62 (m, 

J = 13.7, 8.4 Hz, 1H, H7), 7.20 (d, J = 8.4 Hz, 1H, H8), 7.03 (dd, J = 11.2, 8.4 Hz, 

1H, H6), 4.37 (q, J = 7.1 Hz, 2H, CH2), 4.21 (q, J = 7.2 Hz, 2H, CH2), 1.52 (t, J = 

7.2 Hz, 3H, CH3), 1.39 (t, J = 7.1 Hz, 3H, CH3), 1H NMR assignments are supported 

by NOEdiff experiments; 13C NMR (75 MHz, CDCl3)  173.3 (d, 3J = 2.3 Hz, C=O), 

165.8 (C=O), 163.0 (d, 1J = 264.8 Hz, CF), 148.2 (C2), 140.8 (d, 3J = 3.0 Hz, C8a), 

132.9 (d, 3J = 11.0 Hz, C7), 119.1 (d, 2J = 6.9 Hz, C4a), 112.8 (C3), 112.1 (d, 2J = 

21.8 Hz, C6), 111.2 (d, 4J = 4.7 Hz, C8), 61.0 (CH2), 49.5 (CH2), 14.4 (CH3), 14.2 

(CH3); 19F NMR (282 MHz, CDCl3)  -109.4 (C5-F); IR (KBr) 2972 (CH), 1720 

(C=O) cm-1; LC/TOF-MS calcd for C14H15FNO3 264.1030, found 264.1032 (M + 

H+). 

The synthesis 1-ethyl-4-oxo-1,4-dihydroquinoline-3-carboxylic acid (3.13) 

 

Compound 3.11a (0.25 g, 1.01 mmol) was added to 3.0 mL of a 1:1 

water:methanolic KOH (20%) solution and brought to reflux for 3 hours. The MeOH 

was removed under reduced pressure. Distilled water (5 mL) was added to the 

remaining residue and the solution was acidified to pH 6 with conc. HCl. The 

resulting precipitate was collected by filtration and washed with distilled water.  
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White solid (0.21 g, 95%); m.p. 246-248 oC; 1H NMR (300 MHz, DMSO-d6)  

15.27 (s, 1H, OH), 9.08 (s, 1H, H2), 8.40 (d, J = 8.1 Hz, 1H, H5), 8.07 (d, J = 8.6 

Hz, 1H, H8), 7.96-8.01 (m, 2H, H7), 7.65-7.71 (app t, 1H, H6), 4.62 (q, J = 7.1 Hz, 

2H, CH2), 1.43 (t, J = 7.1 Hz, 3H, CH3); 13C NMR (75 MHz, DMSO-d6)  177.6 

(C=O), 166.0 (C=O), 149.1 (C2), 139.0 (C8a), 134.3 (C7), 126.2 (C6), 125.9 (C5), 

125.5 (C4a), 118.0 (C8), 107.6 (C3), 48.9 (CH2), 14.5 (CH3), these data match 

reported literature values155; IR (KBr) 1712 (C=O) cm-1; LC/TOF-MS calcd for 

C12H12NO3 218.0812, found 218.0811 (M + H+). 

The synthesis of 1-ethyl-7-fluoro-4-oxo-1,4-dihydroquinoline-3-carboxylic acid 

(3.14) 

 

Compound 3.12b (0.26 g, 1.00 mmol) was dissolved in a 1:1 water:dioxane (8.60 

mL) solution. Lithium hydroxide (0.08 g, 3.34 mmol) was added to the solution and 

the reaction mixture was stirred at 50 oC for 30 minutes. The solvent was removed 

under reduced pressure and distilled water (5 mL) was added to the resulting residue. 

The solution was acidified to pH 6 with 6M HCl. The resulting precipitate was 

collected by filtration and washed with distilled water. 

White solid (0.20 g, 83%); m.p. >300 oC (lit 302-304 oC)158. 

The product showed improved solubility in DMSO-d6 at 60 oC and hence the data 

were recorded at 60 oC. 

1H NMR (300 MHz, DMSO-d6, 60 oC)  14.92 (br s, 1H, OH), 9.01 (s, 1H, H2), 

8.46 (dd, J = 9.0, 6.5 Hz, 1H, H5), 7.91 (dd, J = 11.2, 2.2 Hz, 1H, H8), 7.52 (app t, J 

= 2.2 Hz, 1H, H6), 4.56 (q, J = 7.1 Hz, 2H, CH2), 1.43 (t, J = 7.1 Hz, 3H, CH3); 13C 

NMR (75 MHz, DMSO-d6, 60 oC)  176.8 (C=O), 165.3 (C=O), 165.1 (d, 1J = 250.5 
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Hz, CF), 149.4 (C2), 140.7 (d, 3J = 12.2 Hz, C8a), 129.0 (d, 3J = 11.0 Hz, C5), 122.4 

(d, 4J = 1.4 Hz, C4a), 114.6 (d, 2J = 23.6 Hz, C6), 108.0 (C3), 104.0 (d, 2J = 27.1 Hz, 

C8), 48.8 (CH2), 14.0 (CH3); 19F NMR (282 MHz, DMSO-d6, 60 oC)  -102.6 (C7-

F); IR (KBr) 1722 (C=O) cm-1; LC/TOF-MS calcd for C12H11FNO3 236.0717, found 

236.0728 (M + H+). 

The synthesis of 1-ethyl-7-methoxy-4-oxo-1,4-dihydroquinoline-3-carboxylic 

acid (3.15) 

 

Compound 3.12b (0.26 g, 1.01 mmol) was added to 3.0 mL of a 1:1 

water:methanolic KOH (20% w/v) solution and brought to reflux for 3 hours. The 

MeOH was removed under reduced pressure. Distilled water (5 mL) was added to 

the remaining residue and the solution was acidified to pH 6 with conc. HCl. The 

resulting precipitate was collected by filtration and washed with distilled water.  

White solid (0.22 g, 88%); m.p. 258-262 oC; 1H NMR (300 MHz, DMSO-d6)  8.98 

(s, 1H, H2), 8.29 (d, J = 8.9 Hz, 1H, H5), 7.25-7.30 (m, 2H, H6 and H8), 4.59 (q, J = 

7.1 Hz, 2H, CH2), 3.99 (s, 3H, OCH3), 1.42 (t, J = 7.1 Hz, 3H, CH3), these data 

match reported literature values128; 13C NMR (75 MHz, DMSO-d6)  176.9 (C=O), 

166.1 (C=O), 163.9 (C7), 149.0 (C2), 141.1 (C8a), 127.8 (C5), 119.3 (C4a), 115.7 

(C6), 107.3 (C3), 99.9 (C8), 56.2 (OCH3), 48.8 (CH2), 14.3 (CH3); IR (KBr) 2975 

(CH), 1713 (C=O) cm-1; LC/TOF-MS calcd for C13H13NO4Na 270.0737, found 

270.0744 (M + H+). 

General procedure for the synthesis of 7-piperazine and 7-N-methylpiperazine 

quinolones 3.16-3.19 

Anhydrous piperazine or N-methylpiperazine (4.55 mmol) and the appropriate 

quinolone (0.50 mmol) were brought to reflux at 125 oC in anhydrous pyridine (1 
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mL) under nitrogen. After 16 hours the solvent was removed under reduced pressure 

and the resulting solid was recrystallised from cold EtOH. The product was collected 

by filtration.    

1-Ethyl-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carbonitrile (3.16) 

 

White solid (0.08 g, 57%); m.p. 226-230 oC; 1H NMR (300 MHz, DMSO-d6)  8.67 

(s, 1H, H2), 7.99 (d, J = 9.6 Hz, 1H, H5), 7.16 (dd, J = 9.6, 2.2 Hz, 1H, H6), 6.82 (d, 

J = 2.2 Hz, 1H, H8), 4.32 (q, J = 7.7 Hz, 2H, CH2), 3.32 (app br s, 4H, H9), 2.83-

2.87 (m, 4H, H10), 1.36 (t, J = 7.7 Hz, 3H, CH3); 13C NMR (75 MHz, DMSO-d6)  

172.7 (C=O), 154.4 (C7), 150.0 (C2), 140.4 (C8a), 127.0 (C5), 117.3 (C4a), 116.8 

(CN), 113.5 (C6), 98.3 (C8), 92.9 (C3), 47.8 (CH2), 47.7 (C9), 45.2 (C10), 14.0 

(CH3); IR (KBr) 2215 (CN), 1620 (C=O) cm-1; LC/TOF-MS calcd for C16H19N4O 

283.1553, found 283.1561 (M + H+). 

1-Ethyl-4-oxo-7-(piperazin-1-yl)-1,4-dihydroquinoline-3-carboxylic acid (3.17) 

N
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White solid (0.13 g, 86%); m.p. 236-240 oC (lit 272-275 oC)159; 1H NMR (300 MHz, 

DMSO-d6)  8.86 (s, 1H, H2), 8.12 (d, J = 9.3 Hz, 1H, H5), 7.31 (d, J = 9.3 Hz, 1H, 

H6), 6.92 (s, 1H, H8), 4.52 (q, J = 7.0 Hz, 2H, CH2), 3.38-3.42 (m, 4H, H9), 2.85 

(app br s, 4H, H10), 1.39 (t, J = 7.0 Hz, 3H, CH3); 13C NMR (75 MHz, DMSO-d6)  

176.3 (C=O), 166.6 (C=O), 154.8 (C7), 148.4 (C2), 141.1 (C8a), 127.0 (C5), 116.1 
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(C4a), 114.5 (C6), 106.7 (C3), 97.9 (C8), 48.5 (CH2), 47.7 (C9), 45.3 (C10), 14.2 

(CH3); IR (KBr) 1620 (C=O) cm-1; LC/TOF-MS calcd for C16H20N3O3 302.1499, 

found 302.1510 (M + H+). 

1-Ethyl-7-(4-methylpiperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carbonitrile 

(3.18) 

 

White solid (0.07 g, 47%); m.p. 222-225 oC; 1H NMR (300 MHz, CDCl3)  8.23 (d, 

J = 9.1 Hz, 1H, H5), 7.91 (s, 1H, H2), 7.01 (d, J = 9.1 Hz, 1H, H6), 6.57 (s, 1H, H8), 

4.16 (q, J = 6.8 Hz, 2H, CH2), 3.39 (app br s, 4H, H9), 2.57 (app br s, 4H, H10), 2.35 

(s, 3H, N-CH3), 1.52 (t, J = 6.8 Hz, 3H, CH3); 13C NMR (75 MHz, CDCl3)  173.7 

(C=O), 154.5 (C7), 147.6 (C2), 140.6 (C8a), 128.5 (C5), 118.6 (C4a), 116.1 (CN), 

114.1 (C6), 98.0 (C8), 95.5 (C3), 54.6 (C10), 48.9 (CH2), 47.4 (C9), 46.1 (N-CH3), 

14.3 (CH3); IR (KBr) 2218 (CN), 1623 (C=O) cm-1; LC/TOF-MS calcd for 

C17H21N4O 297.1710, found 297.1721 (M + H+). 

1-Ethyl-7-(4-methylpiperazin-1-yl)-4-oxo-1,4-dihydroquinoline-3-carboxylic 

acid (3.19) 

 

White solid (0.14 g, 87%); m.p. 207-210 oC (lit 220.5-222.5 oC)159; 1H NMR (300 

MHz, CDCl3)  15.38 (br s, 1H, OH), 8.56 (s, 1H, H2), 8.24 (d, J = 9.2 Hz, 1H, H5), 

7.09 (dd, J = 9.2, 2.0 Hz, 1H, H6), 6.63 (d, J = 2.0 Hz, 1H, H8), 4.25 (q, J = 7.2 Hz, 
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2H, CH2), 3.44 (t, J = 5.1 Hz, 4H, H9), 2.58 (t, J = 5.1 Hz, 4H, H10), 2.35 (s, 3H, N-

CH3), 1.54 (t, J = 7.2 Hz, 3H, CH3); 13C NMR (75 MHz, CDCl3)  177.4 (C=O), 

167.7 (C=O), 154.8 (C7), 147.3 (C2), 141.3 (C8a), 128.3 (C5), 117.9 (C4a), 114.7 

(C6), 108.3 (C3), 97.6 (C8), 54.6 (C10), 49.3 (CH2), 47.4 (C9), 46.1 (N-CH3), 14.4 

(CH3); IR (KBr) 1702 (C=O) cm-1; LC/TOF-MS calcd for C17H22N3O3 316.1656, 

found 316.1670 (M + H+). 

The synthesis of 1-ethyl-3-(1H-tetrazol-5-yl)quinolin-4(1H)-one (3.20) 

 

Method A: 

Quinolone 3.9 (0.13 g, 0.65 mmol) and tributyltin azide (0.21 g, 0.65 mmol) were 

heated at 200 oC under nitrogen for 15 hours. The reaction mixture was allowed to 

cool to room temperature. MeOH (7.9 mL) and conc. HCl (80 L) were added to the 

reaction mixture and it was brought to reflux for 2 hours. The solvent was removed 

under reduced pressure and n-hexane (20 mL) was added. The product was collected 

by filtration and washed with n-hexane (100 mL).  

Method B: 

Quinolone 3.9 (0.50 g, 2.50 mmol) was dissolved in anhydrous DMF (25 mL) under 

nitrogen. Sodium azide (1.79 g, 27.53 mmol), ammonium chloride (1.47 g, 27.50 

mmol), and lithium chloride (0.38 g, 8.96 mmol) were added to the solution and the 

reaction mixture was heated to reflux at 110 oC for 27.5 hours. The reaction mixture 

was filtered and the filtrate was reduced in volume under vacuum. Distilled water 

was added to the resulting residue and the solution acidified with conc. HCl. The 

resulting precipitate was collected by filtration and washed with distilled water.  
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Light yellow solid (method A: 0.12 g, 75%, method B: 0.50 g, 83%); m.p. 284-288 
oC; 1H NMR (300 MHz, DMSO-d6)  9.11 (s, 1H, H2), 8.40 (dd, J = 7.9, 1.5 Hz, 1H, 

H5), 7.94 (d, J = 8.4 Hz, 1H, H8), 7.87 (app t, J = 8.4, 6.8, 1.5 Hz, 1H, H7), 7.57 

(app t, J = 7.9, 6.8, 1.0 Hz, 1H, H6), 4.55 (q, J = 7.1 Hz, 2H, CH2), 1.43 (t, J = 7.1 

Hz, 3H, CH3); 13C NMR (75 MHz, DMSO-d6)  172.8 (C=O), 150.1 (CN4), 144.9 

(C2), 138.6 (C8a), 133.0 (C7), 126.5 (C4a), 126.0 (C5), 125.0 (C6), 117.4 (C8), 

104.5 (C3), 48.1 (CH2), 14.41 (CH3); IR (KBr) 1628 (C=O) cm-1; LC/TOF-MS calcd 

for C12H12N5O 242.1036, found 242.1047 (M+H+). 

The synthesis of levofloxacin ethyl ester (3.24) 

 

Levofloxacin (0.36 g, 1 mmol) was heated to reflux overnight in EtOH (30 mL) with 

conc. H2SO4 (3 mL). The reaction mixture was allowed to cool and the solvent 

volume reduced by half under vacuum. Distilled water (15 mL) was added and the 

solution neutralised with aqueous saturated K2CO3 and then washed with DCM (2 x 

50 mL). The combined DCM extracts were washed with 2.5 M potassium hydroxide 

(2 x 25 mL). The organic phase was dried over Na2SO4, filtered, and the solvent 

removed under reduced pressure.  

White solid (0.34 g, 87%); m.p. 223-225 oC; 1H NMR (300 MHz, CDCl3)  8.25 (s, 

1H, H2), 7.61 (d, J = 13.4 Hz, 1H, H5), 4.27-4.40 (m, 5H, H11, H12 and CH2CH3), 

3.26-3.39 (m, 4H, H9), 2.51-2.54 (m, 4H, H10), 2.34 (s, 3H, N-CH3), 1.53 (d, J = 6.7 

Hz, 3H, CH3), 1.39 (t, J = 7.4 Hz, 3H, CH2CH3); 13C NMR (75 MHz, CDCl3)  

172.8 (C=O), 165.6 (C=O), 155.7 (d, 1J = 245.5 Hz, CF), 145.1 (C2), 139.6 (d, 3J = 

6.7 Hz, C8), 131.7 (d, 2J = 14.4 Hz, C7), 123.7 (C8a), 123.4 (d, 3J = 8.4 Hz, C4a), 

109.7 (C3), 105.5 (d, 2J = 23.9 Hz, C5), 68.1 (C11), 60.8 (CH2CH3), 55.7 (C10), 

54.7 (C12), 50.6 (d, 4J = 3.8 Hz, C9), 46.5 (N-CH3), 18.3 (CH3), 14.5 (CH2CH3); IR 
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(KBr) 1719 (C=O), 1617 (C=O) cm-1; LC/TOF-MS calcd for C20H25FN3O4 

390.1824, found 390.1843 (M + H+). 

The synthesis of levofloxacin C-3 hydroxamic acid (3.25) 

 

Sodium hydroxide (0.05 g, 1.12 mmol) and hydroxylamine hydrochloride (0.04 g, 

0.56 mmol) were dissolved in distilled water (3 mL) and stirred at 25 oC for 30 

minutes. Compound 3.24 (0.20 g, 0.51 mmol) was dissolved in MeOH (2 mL) and 

slowly added to the hydroxylamine solution over 10 minutes. The reaction mixture 

was allowed to stir at 25 oC for 24 hours. After 24 hours, conc. HCl was slowly 

added to the reaction mixture until pH 6 was reached. The solution was reduced 

under vacuum until a precipitate began to form and this was collected by filtration. 

The resulting solid was washed with a minimum of cold MeOH and allowed to dry. 

White solid (0.02 g, 11%); 1H NMR (300 MHz, DMSO-d6)  15.16 (br s, 1H, OH), 

9.00 (s, 1H, H2), 7.60 (d, J = 12.2 Hz, 1H, H5), 4.89-5.02 (m, 1H, H12), 4.57-4.67 

(m, 1H, H11), 4.35-4.46 (m, 1H, H11), 3.55 (app br s, 4H, H9), 3.18 (app br s, 4H, 

H10), 2.73 (s, 3H, N-CH3), 1.45 (d, J = 6.7 Hz, CH3); 13C NMR (75 MHz, DMSO-

d6)  176.4 (C=O), 166.0 (C=O), 155.3 (d, 1J = 245.3 Hz, CF), 146.4 (C2), 140.5 (d, 
3J = 6.8 Hz, C8), 130.7 (d, 2J = 14.3 Hz, C7), 124.7 (C8a), 120.4 (d, 3J = 9.2 Hz, 

C4a), 106.8 (C3), 103.2 (d, 2J = 23.7 Hz, C5), 68.2 (C11), 54.8 (C12), 53.3 (C10), 

47.4 (C9), 42.8 (N-CH3), 18.0 (CH3); IR (KBr) 1712 (C=O), 1623 (C=O) cm-1; 

LC/TOF-MS calcd for C18H22FN4O4 377.1620, found 377.1633 (M + H+). 
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The synthesis of levofloxacin C-3 n-butylamine (3.26) 

 

Levofloxacin (0.10 g, 0.28 mmol) was added to a solution of TBTU (0.10 g, 0.31 

mmol) and HOBt (0.04 g, 0.031 mmol) in anhydrous DMF (3.0 mL), under nitrogen, 

and stirred at room temperature for 10 minutes. Triethylamine (0.06 mL, 0.43 mmol) 

was added to the solution and allowed to stir for a further 10 minutes. In a separate 

flask, n-butylamine (0.03 mL, mmol) and triethylamine (0.06 mL, 0.43 mmol) were 

stirred at room temperature in anhydrous DMF (2 mL) for 10 minutes. The n-

butylamine solution was added to the levofloxacin solution and allowed to stir at 

room temperature for 24 hours, after which the solvent was removed under reduced 

pressure. The resulting residue was dissolved in DCM and washed with 1M HCl 

followed by sat. aq. NaHCO3.The organic layer was dried over Na2SO4, and filtered, 

followed by removal of the solvent under reduced pressure.    

Yellow oil (0.05 g, 42%); 1H NMR (300 MHz, CDCl3)  9.95 (t, J = 6.6 Hz, 1H, 

NH), 8.62 (s, 1H, H2), 7.68 (d, J = 12.2 Hz, 1H, H5), 4.28-4.43 (m, 1H, H12), 4.24 

(app d, 2H, H11), 3.20-3.48 (m, 6H, H9 and N-CH2), 2.50-2.54 (m, 4H, H10), 2.34 

(s, 3H, N-CH3), 1.53-1.64 (m, 5H, CH3 and n-butyl CH2) 1.35-1.48 (m, 2H, n-butyl 

CH2), 0.92 (t, J = 7.2 Hz, n-butyl CH3); 13C NMR (75 MHz, CDCl3)  175.5 (C=O), 

165.0 (C=O), 155.8 (d, 1J = 245.6 Hz, CF), 143.9 (C2), 139.6 (d, 3J = 6.8 Hz, C8), 

131.7 (d, 2J = 14.4 Hz, C7), 124.4 (C8a), 122.6 (d, 3J = 8.7 Hz, C4a), 111.4 (C3), 

105.2 (d, 2J = 23.9 Hz, C5), 68.3 (C11), 55.7 (C10), 54.9 (C12), 50.4 (d, 4J = 4.5 Hz, 

C9), 46.3 (N-CH3), 39.1 (N-CH2), 31.78 (n-butyl CH2), 20.4 (n-butyl CH2), 18.4 

(CH3), 13.9 (n-butyl CH3); IR (KBr) 3445 (NH), 1633 (C=O) cm-1; LC/TOF-MS 

calcd for C22H30FN4O3 417.2296, found 417.2305 (M + H+). 
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The synthesis of tributyltin azide (TBTA)131 

 

A solution of sodium azide (3.99 g, 61.4 mmol) in distilled water (31.9 mL) and 

tributyltin chloride (10 g, 30.7 mmol) in diethyl ether (80.9 mL) were shaken 

together for 10 minutes. The organic phase was separated and the aqueous phase 

washed with diethyl ether (50 mL). The organic washings were combined, dried over 

magnesium sulphate, and the solvent removed under reduced pressure. 

Clear yellow oil (5.53 g, 74%); 1H NMR (300 MHz, CDCl3)  1.42-1.67 (m, 6H, 

CH2), 1.32-1.40 (m, 6H, CH2), 1.24-1.32 (m, 6H, CH2), 0.93 (t, 9H, J = 7.3 Hz, 

CH3); 13C NMR (75 MHz, CDCl3)  27.8 (CH2), 26.9 (CH2), 15.4 (CH2), 13.6 

(CH3)IR (neat film on NaCl plate) 2073 (N3) cm-1. 
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4.1 An Introduction to Tin 

4.1.1 Tin metal 

Tin metal has been mined and used by man since ca. 3000 B.C.160 The chemical 

symbol for tin, Sn, originates from its latin name: stannum.160 The Earth’s crust 

contains an approximate distribution of 2 ppm of tin; considerably less than zinc (94 

ppm), copper (63 ppm) or lead (12 ppm).161 Cassiterite (tin oxide, SnO2) is the 

principal tin-containing ore, and is excavated by hard rock and alluvial mining.161,162 

China and Indonesia have been the major producers of tin over the last few 

years.160,163 Between the 1950s and 2011, China produced 2.7 million tonnes and 

Indonesia 2.6 million tonnes of tin metal.160 Tin metal is obtained through a smelting 

and refining process by reducing SnO2 in the presence of carbon monoxide 

(Equation 4.1) in a blast, electric or reverberatory furnace.161 The recycling of tin 

metal by re-refining is on the rise; over 65,000 tonnes were produced by re-refining 

in 2010.160  

Equation 4.1: SnO2 + 2CO   Sn + 2CO2 

Tin metal has found use in a number of applications (Figure 4.1). Its major use is in 

soldering. The Pb/Sn alloy was 40:60, Pb:Sn, but due to the toxicity of lead, today’s 

solders are almost purely tin (95% tin in 2012).160 Tinplate constitutes almost 20% of 

tin usage.164 The process coats a thin layer of tin (0.4 – 25 m) over sheet steel, 

providing a corrosion-resistant cover that is ideal for packaging and product 

containers, for example, drink cans.164 

Solder 
52%

Tinplate 
17%

Chemical 
15%

Other 
16%

 

Figure 4.1: Tin applications.165 
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The biggest use of tin chemicals is in PVC (polyvinyl chloride) stabilisers.160 During 

the fabrication of PVC, HCl is eliminated and this continuous elimination of HCl 

results in the formation of a brittle polyolefin by-product (Scheme 4.1).  

 

Scheme 4.1: The elimination of HCl from PVC.166  

Organotins stabilise the PVC in two ways (Scheme 4.2):  

(a) the organotin compounds react with the eliminated HCl to give organotin 

chlorides, which in turn do not catalyse any further elimination of HCl, and 

(b) the organotin stabilisers introduce other groups, which are not easily 

eliminated, in place of the chlorides, thus preventing the formation of a 

polyolefin structure. 

There are two main types of tin-based PVC stabilisers: sulfur containing stabilisers 

(containing sulfides and mercaptides) and sulfur-free stabilisers (containing 

carboxylates).161 Tin has also found use in a variety of other areas including alloys, 

catalysis, gas sensors, flame retardants, biocides, antimicrobials, dental formulations, 

construction and the manufacture of high-quality glass by the Pilkington 

process.160,161,162 
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Scheme 4.2: (a) The reaction of a sulphur-based organotin stabiliser with HCl and 

(b) the substitution of an organotin stabiliser with PVC.166 

4.1.2 Tin: the element and its chemistry 

Tin is a group 14 (IV) p-block metal with the electronic configuration: [Kr] 4d10 5s2  

5p2. Of all of the elements, tin has the largest number of isotopes; 10 stable isotopes 

(Table 4.1), giving it a characteristic isotopic pattern as shown in Figure 4.2. The 
117Sn and 119Sn isotopes have spin ½ and can therefore be used in NMR 

spectroscopy. 

Table 4.1: The isotopes of tin. 

Isotope Mass Spin Abundance 
(%) 

112 111.90494 0 0.95 
114 113.90296 0 0.65 
115 114.90353 1/2 0.34 
116 115.90211 0 14.24 
117 116.90306 1/2 7.57 
118 117.90339 0 24.01 
119 118.90213 1/2 8.58 
120 119.90213 0 32.97 
122 121.90341 0 4.17 
124 123.90524 0 5.98 
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Figure 4.2: Tin isotope pattern.167 

There are two allotropes of tin; -tin (white tin) has a body centred tetragonal form 

and -tin (grey tin) which has a diamond cubic structure.168 Above 10 oC tin exists 

as -tin, but below 10 oC, its volume increases by ca. 27% and it changes into -tin, 

this is known as tin pest or tin plaque (Figure 4.3).161,168 

 

Figure 4.3: The allotropes of tin.168  
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Tin mainly forms compounds that have either the Sn(II) or Sn(IV) oxidation state, 

and examples of the types of structures that can form are shown in Figure 4.4. In the 

Sn(II) state compounds, it is mainly the 5p orbitals that are involved in bonding and 

as a result, the 5s2 electrons exist as a lone pair on the Sn atom.164 This lone pair is 

often stereochemically active e.g. [:SnCl3]- has a pyrimidal structure (Figure 4.5).169 

This non-bonding pair of electrons allows the Sn(II) compounds to act as donors 

with Lewis acids.164 The simplest structure formed by Sn(II) compounds are of the 

type :SnX2 (stannylenes, Figure 4.4 (a)).164 These compounds are most stable when 

X is a bulky group or an electron-withdrawing group, otherwise these compounds 

are readily oxidised to the Sn(IV) oxidation state to give compounds such as the 

stannanes (d) with a tetrahedral type structure (Figure 4.4).161  

 

Sn(II) compound structures 

Sn

X
X X

X

Sn

X

X
X

X
X Sn

X

X
X

X X

X

(d) (e) (f )  

Sn(IV) compound structures 

Figure 4.4: Tin compound structures.161 

 

Figure 4.5: [:SnCl3]-  
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In addition to having the ability to act as donors, Sn(II) compounds can act as 

acceptors; likewise for Sn(IV) compounds.164,169 The Sn(IV) compounds use the 5s2 

5p2 valence electrons for bonding.164 The vacant 5d orbitals of the Sn(II) and Sn(IV) 

compounds permit the bonding of ligands, giving structures of the type b, c, e, and f 

(Figure 4.4.) These structures are often distorted and, depending on the type of 

ligand or X group, the coordination number of the Sn(II) and Sn(IV) compounds can 

be increased through intramolecular or intermolecular coordination to the Sn 

atom.161 For example, SnF2 (Figure 4.6), exists as a cyclic tetramer in the solid state 

but in the vapour phase it exists as a monomer.161  

 

Figure 4.6: Structures of SnF2 in (a) monomer, vapour phase and (b) cyclic tetramer, 

solid state. 

4.1.3 The synthesis of organotin compounds 

In 1849, Frankland synthesised the first organotin compound, Et2SnI2.161
 Löwig later 

demonstrated that ethyl iodide could react with a tin/sodium alloy to give the 

polymer diethyltin which in turn could react with air to give Et2SnO, and with 

halogens to give Et2SnX2 (X = halogen).170 Since then, numerous organotin 

compounds have been synthesised. An overview of the synthesis of the principal 

classes of organotin compounds is shown in Scheme 4.3.  

The most commonly used reaction is of SnCl4 with a Grignard reagent to produce 

R4Sn, (R can be an alkyl, allyl, aryl alkenyl or alkynyl).161,170 Unless the R group is 

bulky it is difficult to stop this reaction at an organotin halide stage.161 The R4Sn can 

then be used in a Kocheshkov redistribution reaction to yield the organotin halide 
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RnSnCl4-n (n = 1, 2 or 3).171 Substitution of the chlorine with a nucleophile, X-, 

occurs readily to give RnSnX4-n.170 If the nucleophile is a metal hydride, RnSnH4-n is 

produced, which can undergo hydrostannation with an alkene or alkyne to give the 

corresponding stannane or vinyl stannane.132a The organotin hydrides can react with 

metallic bases such as BuLi, LDA, NaH and Grignard reagents to give the 

stannylmetallic compounds, R3SnM (M = Li, Na, MgX).161 These compounds can 

react with electrophiles such as organic halides.164 In the presence of base or a 

palladium catalyst, the organotin hydrides can give the distannanes, R2SnSnR2, and 

the oligostananes, (R2Sn)n.170 The organotin hydroxides are produced by hydrolysis 

of RnSnX4-n which can undergo spontaneous dehydration to give the organotin 

oxides.161 The stannylenes (:SnX2) can be produced via alkylation or arylation of 

SnCl2, but as stated earlier, these are only stable when X is very bulky or electron-

withdrawing.161 Reaction of SnCl2 with cyclopentadienyl lithium can be used to 

prepare stannocene (CpSn:) and reduction of SnCl2 can produce the distannynes 

(RSnSnR).161 

 

Scheme 4.3: Overview of some of the methods of preparation of organotin(IV) 

compounds. (Note: the reactions that occur with R3SnCl can also occur with R2SnCl2 

and RSnCl3.)161,170  
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4.1.4 Biological activity of organotin compounds 

The toxicity of organotin compounds was reported back in 1886.172 However, studies 

into the toxicities of organotins only started to be carried out in the 1950s.172,173 In 

1955, Stoner et al.173 carried out a number of studies of mono-, di-, tri- and 

tetraorganotins and their effects on rats, rabbits, guinea-pigs and fowls. Their results 

showed that, of all of the compounds tested, the triethyltin-containing compounds 

were the most toxic, with animals exhibiting muscular weakness followed by 

muscular tremors, convulsions, and, eventually death. In the rabbit studies, a dose of 

10 mg/kg resulted in death within three hours of intravenous administration. Since 

then, numerous organotin toxicity studies have been carried out and as a result a 

general trend has emerged. The toxicity of organotins is governed mainly by the type 

and number of organic groups attached to the tin atom.172 Organotins containing 

alkyl groups are generally more toxic than aryltin compounds.161,172 Triorganotin 

compounds are considered to be the most toxic followed by the di-substituted and 

mono-substituted organotins, with the ethyl derivative of each exhibiting greatest 

toxicity.172,174,175 The toxicity of tetraorganotins is believed to be due to their 

decomposition to the more toxic triorganotin derivative.175 As the length of the 

carbon chain increases, a decrease in activity is seen with R3SnX compounds; tri-n-

octyl derivatives are essentially non-toxic to mammals.161,176 The nature of the 

triorganotin substitutent is also important in determining the species to which the 

organotin compound is most toxic against (Table 4.2.).161,172,171 The role of the X 

group, in R3SnX, has been reported as playing a minor role in the toxicity, unless the 

X group itself exhibits biological activity and/or increases the solubility of the 

compound.161,172 A decrease in activity has been associated with the ability of the X 

group to chelate to the tin atom.172  
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Table 4.2: The organic substituents of the triorganotins and the species to which 

they are toxic.161,172,171  

Triorganotin R group Species 
Methyl Insects and mammals 
Ethyl Mammals 

n-Propyl Gram negative bacteria 
n-Butyl Gram positive bacteria, fungi, fish and molluscs 
Phenyl Fungi, fish and molluscs 

Cy Mites 
 

Due to their various biocidal activities, the organotin compounds have found use in a 

number of biological applications.161,174,175,177  For example, a number of tributyl- 

and triphenyltin compounds have been used in antifouling paints including Bu3SnO, 

Bu3SnF, Bu3SnCl, Ph3SnX (X = F, Cl, OAc, OH).176  One of the first to be used was 

Bu3SnO.176 Not only can it inhibit growth of fouling species such as algae at 

concentrations as low as 0.005 ppm, but it is also effective against fungi and Gram-

positive bacteria.176 The use of organotins in antifouling paints had many 

advantages: 

(1)  they are very active against a range of fouling species (Table 4.3); 

(2)  they did not cause corrosion of aluminium hulls; 

(3)  they are colourless, allowing a wide range of coloured paints to be made; 

and 

(4)  most importantly, they could be easily degraded by UV light and 

microogranisms into less toxic organotins and ultimately harmless tin 

residues (Scheme 4.4).176,178 

However, in the 1980s it was suspected that tributyltin compounds were having 

adverse effects on marine species other than fouling species.176 It has since been 

shown that organotins can act as endocrine disruptors resulting in imposex (imposed 

sexual organ) of marine species such as gastropods.178 Studies into the half-lives of 

organotins found that organotins could be stable in sediments for up to 9 years and, 
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more worrying, is the bioaccumulation of organotins in marine species.176 For 

example. the bioaccumulation levels of tributyltin in dogwhelks was found to be 

1000 times greater than that found in surrounding water.178  As a result, a number of 

countries started to ban the use of organotin antifouling paints and, in 1999, a global 

ban was introduced by the International Maritime Organisation (IMO).176 As of 

January 1, 2008, the use of organotin antifouling paints on vessels is prohibited.176  

Table 4.3: The growth inhibition concentrations (ppm) of tributyltin antifouling 

agents against a range of fouling species.176 

Organotin Barnacles Enteramorpha Chlamydomas Lobsters 

Bu3SnO 0.01 0.02 0.005 0.02 
Bu3SnF 0.1 0.01 0.001 0.005 

 

 

Scheme 4.4: General scheme for the environmental degradation of tributyl and 

triphenyltin compounds.176 
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Despite the unfortunate outcome of the use of organotin antifouling paints, there has 

been a great deal of research into the use of organotins in other areas in which its 

biocidal activity can be exploited.175,177,179  

The anti-tumour properties of tin complexes were first observed in 1929.177 

However, it wasn’t until the 1980’s that organotin anticancer compounds were 

synthesised and these were based on cisplatin or its analogues.180 Gielen et al.180 

synthesised the di-n-butyl analogue of carboplatin and screened it against mammary 

and colon cancer cell lines. The organotin analogue exhibited almost 10 times 

greater activity compared to that of cisplatin against these cell lines.180 Numerous di- 

and triorganotin derivatives have been synthesised and tested against various cancer 

cell lines.181 Over 2000 organotin compounds have been screened by the NCI 

(National Cancer Institute), rendering tin as the metal with the greatest number of 

compounds to be screened.182 Some compounds have exhibited lower toxicity and 

better activity than cisplatin.183  

It has been suggested that there are a couple of factors that may play a role in the 

antiproliferative activity of organotin compounds: 

(1) the availability of coordination sites at the Sn atom, and  

(2) the existence of stable Sn-ligand bonds and their slow hydrolytic 

decompostition.184  

Crowe et al.185 also demonstrated that R2SnCl2.L (L = N containing bidentate ligand) 

complexes with Sn-N bond lengths < 2.39 Å are inactive whereas complexes with 

Sn-N bond lengths > 2.39 Å are active and suggested that predissociation of the 

ligand is important in activity. The mode of action of organotin anticancer agents is 

not fully understood, however, DNA interaction and apoptosis have been 

observed.186,187  The ID50 (the dose required to inhibit 50% of the cell line) values of 

a selection of organotin compounds and the various cell lines they are active against 

in comparison to cisplatin are given in Table 4.4.  
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Table 4.4: ID50 values of some organotin compounds against a variety of human cell 

lines. Flu = flufenamic acid and HL-7 = Gly-Leu. 

Cell Cancer Cisplatin Organotin compound Organotin 

A549 Lung 3.3a [Bu2(flu)SnOSn(flu)Bu2]b 0.24181f 
A498 Renal 2.253 Ph3Sn(HL-7) 0.03181e 

IGROV Ovarian 0.169 Ph3Sn(HL-7) 0.006181e 
M19 Melanoma 0.558 Ph3Sn(HL-7) 0.016181e 

MCF7 Mammary 0.699 [(Bu2Sn(O2CCF3)2)2O]2 0.057181h 

WiDr Colon 0.697 Ph3Sn(HL-7) 0.008181e 

HeLa Cervix 1.443 2-PhC2N3CO2SnPh3 0.005181c 
a ID50 value obtained from Matysiak et al.188 b The complex also exhibited better 
activity than carboplatin (108.0 g/mL) against A549. 

An important area in organotin research is in antimicrobial activity.161,175 Organotins 

are well known for their fungicidal properties.161,171 Triphenyltin acetate (Brestan®) 

and triphenyltin hydroxide (Du-ter®) were in use (discontinued in 1993 and 2002 

respectively) as fungicides for leaf spot on sugar beet and celery, rice blast, coffee 

leaf rust and potato blight.171,189 Numerous organotin compounds have been 

synthesised for antimicrobial purposes with a variety of ligands including 

carboxylates,190 amino acids and peptides,191 Schiff bases175,192, hydrazones,193 

triazoles,194 sulfur containing ligands,195 and biologically active ligands.196 The 

literature shows that many of the organotins have a tendency to be more active 

against Gram-positive bacteria compared to Gram-negative bacteria.191d,193a,194a,197 

The general known trends of toxicity are usually followed: for example, tri- are 

better than diorganotins,190b,190c and alkyl are more active than aryl organotins.191c It 

has also been noted that the organotin complexes are more active than their ligands 

alone.190d,191b It has been suggested that this may be due to chelation theory.198 Due 

to the partial sharing of positive charge by the metal with the ligand donor groups 

and the possible -electron delocalisation created over the chelate ring, a reduction 

in the polarity of the metal ion occurs upon chelation.198,199 This in turn increases the 

lipophilicity of the metal-chelate assisting its passage through cell membranes.198,199  

But the opposite affect has also been observed i.e. chelation results in a decrease in 

activity.193b,195  This may be due to the metal-chelate being unable to bind to an 
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active site.172 An interesting  study by Eng et al.200 of the inhibition of Ceratocystis 

ulmi by triaryltin chlorides indicated that it is the R3Sn+ cation that is responsible for 

toxicity.  Again, the mode of action of the organotin compounds is not fully 

understood.161,175 One possibility is the inhibition of oxidative phosphorylation 

which in turn prevents ATP (adenosine triphosphate) synthesis.190a,190b ATP is the 

energy source for cellular work.14 

Organotin compounds are also well known for their use as insecticides and 

larvicides.161,192,201 According to the US EPA (United States Environmental 

Protection Ageny), Torque® (bis(trineophyltin)oxide) is still in use as an 

acaricide.189 Many di- and triorganotins have been shown to be active against 

mosquitos (Aedes aegypti and Anopheles stephensi) with the toxicity dependant on 

both the organotin compound and the species of mosquito.179,201a Organotins are 

biodegradable and so far there are no known reports of An. Stephaesi and Ae. Aegypti 

resistance to triorganotins, making them very attractive compounds.201b Research 

into organotins as anti-inflammatory, anti-hypertensive and antiviral agents has also 

been carried out.174,181e,202 

4.2 1,10-Phenanthroline and its derivatives 

 

Figure 4.7: (a) 1,10-Phenanthroline (phen), (b) 1,10-phenanthroline-5,6-dione 

(dione) and (c) dipyrido[3,2-a:2’,3’-c]phenazine (dppz). 
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4.2.1 1,10-Phenanthroline (phen) 

First synthesised by Blau in 1898, 1,10-phenanthroline (phen), is a rigid, 

hydrophobic, electron-poor, heteroaromatic molecule consisting of two pyridine 

rings fused together by a central benzene ring (Figure 4.7).203,204 A number of 

methods have been investigated for the synthesis of phen and its derivatives, one of 

the earliest methods being the Skraup reaction (Scheme 4.5).203,204,205  

 

Scheme 4.5: The Skraup Reaction. 

In the phen molecule, the shortest bonds (1.36 Å) are the C-N bonds, while the 

longest are the C-C bonds (1.49 Å) linking the pyridyl groups together.206 Phen is a 

weak -donor but a good -acceptor and can form complexes with a variety of metal 

ions.203,207 Coordination occurs through the two N atoms in a cis fashion, resulting in 

the formation of a five-membered chelate ring that is coplanar with the rest of the 

phen molecule.207 It has long been known that phen and substituted derivatives of 

phen can disturb a variety of biological systems in both the metal-free state and as 

ligands coordinated to transition metals.208 The bioactivity of metal-free phen is 

believed to be due to its ability to sequester metal ions within the medium or 

biological system and that the resulting complexes are the active species or that the 

‘seized’ metal ions are ions that are necessary for normal cell function and so are no 

longer able to carry out their role.209,210  

Phen derivatives and their metal complexes have been used as intercalating or 

groove binding agents for DNA and RNA and some metal complexes of phen can 

efficiently cleave the DNA backbone, for example, [Cu(phen)2]2+.203 Investigations 

into Cu, Ag, and Mn complexes of phen as anticancer and antimicrobial agents have 

been carried out.71,211,212 Moreover, the addition of phen to a metal complex has been 
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shown to enhance the anticancer and antimicrobial activity with some complexes 

demonstrating values comparable to or better than that of standard drugs.213,214,212   

4.2.2 1,10-Phenanthroline-5,6-dione (dione) 

1,10-Phenanthroline-5,6-dione (dione) has been known for many years and can be 

synthesised by the oxidation of phen (Scheme 4.6).215  

 

Scheme 4.6: The synthesis of 1,10-phenanthroline-5,6-dione. 

Dione is a non-planar, bidentate ligand, with an o-quinoid functionality (Figure 

4.7).206 It has a similar structure to that of phen, the C-N bonds in dione are the 

shortest bonds (1.34 Å, excluding the C=O bonds, 1.21 Å in length) and the longest 

bonds are the OC-CO bonds (1.53 Å).206  As with phen, dione has the ability to 

coordinate to metal ions through its diiminic functionality, but it can also bind to 

metal ions through the quinonoid functionality or through both.206,216 Coordination 

through the N atoms results in a complex that can be used as a ‘quinone equivalent’ 

in reactions with compounds containing metals in low oxidation states, and 

coordination through O results in a complex that can act as a ‘phenanthroline 

equivalent’ in reactions with Lewis bases.216  

Dione exhibits both anticancer and antimicrobial activity and improved activity in 

comparison to phen.71,217 Dione and Co(II) complexes of dione have been shown to 

bind to DNA and cleave plasmid DNA.218 Due to this biological activity, many metal 

complexes of dione have been investigated for their anticancer and antimicrobial 

activity.219,220,221,222 The addition of dione to a metal ion has been shown to enhance 

biological activity.219,71   
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4.2.3 Dipyrido[3,2-a:2’,3’-c]phenazine (dppz) 

From dione, dipyrido[3,2-a:2’,3’-c]phenazine (dppz) can be synthesised (Scheme 

4.7).215  

NNNN

O O NN

H2N NH2

 

Scheme 4.7: The Synthesis of dipyrido[3,2-a:2’,3’-c]phenazine (dppz). 

Dppz is a planar, bidentate ligand with an extended aromatic system which facilitates 

its binding to DNA by intercalation (Figure 4.7).217 This attractive property has 

resulted in the synthesis of various metal complexes of dppz.223 One of the most well 

known complexes is the molecular ‘light switch’ Ru(2,2’-bipyridine)2(dppz)2+.224 

This complex displays metal-to-ligand-charge-transfer photoluminescence in 

hydrophobic solvents but in aqueous solution the photoluminescence is quenched by 

protonation of the phenazine N.224 However, in the presence of DNA, intense 

photoluminescence is observed and the photoluminescence intensity and emission 

maximum will differ depending on the DNA substrate allowing the complex to 

behave as a DNA probe.224  

Not only can dppz metal complexes bind to DNA but they have also demonstrated 

DNA cleavage.218,225 It has been found that dppz itself can cleave DNA and is also 

cytotoxic.217 Dppz and its metal complexes have been investigated for anticancer, 

antibacterial, antifungal, antiprotozoal and antiviral activity.217,225,226,227 The Co(III) 

complex synthesised by Reddy et al.225 displayed better antifungal and antibacterial 

activity than that of the well-known standards, fluconazole and streptomycin. 
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4.2.4 Aim 

The aim of this study was to synthesise a series of diorganotin(IV) compounds 

([R2SnX2L]) and evaluate their antibacterial activity against Gram-negative and 

Gram-positive bacteria. Three R groups were chosen for synthesis; Me, a structurally 

small and simple organic group, n-Bu a medium length alkyl chain, and a larger, 

aromatic phenyl group. These three R groups were chosen in the hopes that their 

differences in both structure and electronic features would give rise to differences in 

their biological activity. As mentioned earlier with the triorganotin compounds, the 

nature of the R group is important in determining the species to which it is most 

toxic against, for example, the tributyl tin compounds are known to be active against 

Gram-positive bacteria.161,171 

Since a variety of tin carboxylates have been investigated in a number of biological 

systems and have exhibited some promising antimicrobial results, three carboxylate 

groups were chosen as the X group of the [R2SnX2(L)] compounds in this study.190a,b, 

190f Firstly, the CH3CO2
- group was chosen due to its small and simple structure. 

Secondly, taking into account the fact that the X group in R3SnX compounds has 

been reported as playing a minor role in the toxicity unless the X group itself 

exhibits biological activity, two biologically active carboxylates were chosen.161,172 

These are nicotinic acid and its isomer, picolinic acid.  

Nicotinic acid, better known as niacin or vitamin B3, is an essential vitamin in 

humans and is produced from L-tryptophan.14,228 As well as being a precursor to the 

coenzyme NAD (nicotinamide adenine dinucleotide), nicotinic acid is known for its 

antidyslipidemic effects and its ability to inhibit vascular inflammation and 

atherosclerosis progression.228-229 Picolinic acid is also a naturally occurring 

metabolite of L-tryptophan.230 It is known for its ability to facilitate the absorption of 

dietary zinc in rats and has been shown to act as a costimulator of macrophage 

tumoricidal activity in vitro.231 

Finally, 1,10-phenanthroline (phen) and two of its derivatives, 1,10-phenanthroline-

5,6-dione (dione) and dipyrido[3,2-a:2’,3’-c]phenazine (dppz), were chosen as the 

ligands, L, of the [R2SnX2L] compounds. The phen, dione and dppz ligands are 
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attractive ligands to work with not only because of their differences in electronic and 

steric features, and their varying degrees of biological activity, but also the ease at 

which the dione and dppz can be synthesised from phen.208,210,217,232 

It was envisioned that a diorganotin(IV) compound combined with a carboxylate 

moiety and either a phen, dione or dppz ligand could potentially produce a metal-

based antibacterial compound with exceptional activity. 
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4.3 Results and Discussion 

4.3.1 Synthesis of the ligands  

 

Figure 4.8: (a) 1,10-Phenanthroline (phen), (b) 1,10-phenanthroline-5,6-dione 

(dione) and (c) dipyrido[3,2-a:2’,3’-c]phenazine (dppz). Numbering system for 1H 

and 13C NMR also shown. 

1,10-Phenanthroline (phen) was obtained commercially and used without any further 

purification. 1,10-Phenanthroline-5,6-dione (dione) was synthesised from phen as 

previously described by Paw and Eisenberg232a resulting in a fine, yellow solid, upon 

purification. The dione was then reacted further with o-phenylenediamine in EtOH to 

produce dppz in good yield, 75%.232b A proposed mechanism for the synthesis of 

dppz is given in Scheme 4.8. Nucleophilic attack of the primary amine of o-

phenylenediamine at the electrophilic carbonyl carbon of the dione, followed by the 

loss of water, results in formation of the new imine bond to give the dppz ligand. 
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Scheme 4.8: Proposed mechanism for the synthesis of dppz. (For clarity, the full 

structure of the dione ligand has been excluded throughout the reaction scheme.) 

The simplicity of the 1H NMR spectra of each of the phen ligands is due to the plane 

of symmetry in the molecules (Figure 4.9). In the 1H NMR spectrum of dione it can 

be seen that the H-5 of phen, found at 7.99 ppm, has disappeared. A new carbonyl 

carbon signal appears in the 13C NMR spectrum of dione (at 177.7 ppm), the 

formation of which is confirmed further by the presence of the characteristic (C=O) 

absorption band at 1686 cm-1 in the IR spectrum. Formation of the dppz ligand is 

confirmed by the disappearance of the dione 13C NMR C=O signal, along with the 

appearance of two new signals (8.36 and 8.04 ppm, the protons of the new aromatic 

ring in the dppz molecule) in the 1H NMR spectrum. The protons of each of the 

ligands, phen, dione and dppz, expected to be affected most by complexation to tin 

were the H-2 protons. These signals appear as a doublet of doublets at 9.10, 8.98 and 
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9.49 ppm in the 1H NMR spectra of the free ligands phen, dione and dppz, 

respectively.  

 

Figure 4.9: 1H NMR spectra of (a) phen, (b) dione and (c) dppz in DMSO-d6. 

4.3.2 Synthesis of the diorganotin(IV) monoacetate compounds 

The organotin(IV) monoacetate compounds (R2Sn(O2CMe)Cl, R = Me, n-Bu, or Ph) 

were synthesised from the corresponding diorganotin(IV) dichlorides. The 

diorganotin(IV) dichlorides were obtained commercially and used without any 

further purification. For the dimethyl- and dibutylchlorotin(IV) acetate compounds, 

Et3N was added slowly to a solution of the appropriate dichloride and acetic acid in 

toluene followed by a three hour reflux (Scheme 4.9). The resulting Et3N.HCl salt 

by-product was removed by filtration through celite to give [Me2Sn(O2CMe)Cl] and 

[n-Bu2Sn(O2CMe)Cl] with yields of 73% and 88%, respectively. 
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Scheme 4.9: Synthesis of diorganotin(IV) monoacetate compounds 

[R2Sn(O2CMe)Cl] (i) AcOH, Et3N, , 3h, toluene for R = Me and n-Bu, and AcOH, 

K2CO3, , overnight, benzene for R = Ph. 

The same method was used in an attempt to synthesise the diphenyltin derivative but 

was unsuccessful. From the 1H NMR spectrum it appeared that a mixture of starting 

materials was being returned. This may be due to the limited solubility in toluene of 

diphenyltin(IV) dichloride. Diphenyltin(IV) dichloride has greater solubility in 

benzene thus, the reaction was repeated as in Scheme 4.9 using benzene as the 

reaction solvent. Again, it appeared that a mixture of starting materials was being 

returned, so the reaction was repeated but allowed to reflux over longer periods of 

time, that is, 5, 9, 12 and 24 hours. However, no difference in the 1H NMR spectra 

was observed with increasing reaction time. After changing both the solvent and 

increasing the reaction times proved unsuccessful, a change in base was attempted. 

The reaction was allowed to reflux in benzene overnight, with K2CO3 instead of 

triethylamine, which successfully gave the white solid product, [Ph2Sn(O2CMe)Cl]. 

The molecular structure of each of the three compounds was elucidated by elemental 

analysis, 1H and 13C NMR and IR spectroscopies. Elemental analysis confirmed the 

presence of a single Cl in each molecule. The 1H NMR of the [Me2Sn(O2CMe)Cl] 

and [n-Bu2Sn(O2CMe)Cl] showed a distinct singlet for the acetate signals at 1.93 and 

1.95 ppm, respectively, corresponding to the three protons of the acetate group in 

each case. 

A variety of di- and trimethyltin(IV) compounds have been studied in an effort to 

investigate if there is a correlation between the magnitude of the Sn-carbon (1J) or  

Sn-hydrogen (2J) coupling constants and the Me-Sn-Me angle ().233 It was found 

that in both the solid and solution state, the molecular structure of methyltin(IV) 
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compounds could be estimated from 1J and 2J as they are dependent on the Me-Sn-

Me angle (Equation 4.2 and 4.3).233 The following conclusions have been drawn:233 

 for di- and tetramethyltin(IV) compounds with a coordination number of four 

1J ≤ 430 Hz, pentacoordinated tri- and dimethyltin(IV) compounds have 1J 

in the range 470-610 Hz and for hexacoordinated dimethyltin(IV) compounds 

1J ≥ 630, 

 2J is less than 59 Hz for trimethyltin(IV) compounds with a coordination 

number of four and tetracoordinated dimethyltin(IV) compounds bearing 

electronegative substituents can have a higher 2J, for example, Me2SnCl2 

has 2J = 69 Hz, 

 pentacoordinated dimethyltin(IV) compounds have 2J in the range of 64-79 

Hz (corresponding to  = 115o and 130o) and 

 hexacoordinated dimethyltin(IV) compounds have Me-Sn-Me between 

109.1 and 180o. 

It was noted that caution should be taken when using the equations if 2J is < 80 Hz 

(or 1J < 650 Hz) and the dimethyltin(IV) compound is likely to be hexacoordinated, 

as cis-dimethyltin(IV) compounds can have  values that are much smaller than that 

predicted by Equation 4.3.233a   

Equation 4.2: 1J = 11.4 - 875 

Equation 4.3:  = 0.01612J2 – 1.322J + 133.4 

For [Me2Sn(O2CMe)Cl], 2J(119/117Sn) = 92.7/82.2 Hz were found. Using Equation 

4.3. Me-Sn-Me was calculated to be 149.4o suggesting a hexacoordinate structure 

in solution. 
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For [Ph2Sn(O2CMe)Cl], the 1H NMR spectrum was poorly resolved due to lack of 

solubility which resulted in indistinct integrations. However, the 13C NMR spectrum 

confirms the presence of the carbonyl carbon at 178.5 ppm which is shifted 

downfield in comparison to the acetic acid carbonyl carbon (175.9 ppm). A HSQC 

equivalent experiment verified that the 1H NMR singlet at 2.15 ppm corresponds to 

the three equivalent protons of the acetate. 1J and 2J (119/117Sn) could not be found for 

either [n-Bu2Sn(O2CMe)Cl] or [Ph2Sn(O2CMe)Cl] due to their complex NMR 

spectra.   

A range of different coordination modes exist for the carboxylate ion, RCO2
- (Figure 

4.10). Deacon and Phillips234 have studied the coordination modes of a variety of 

acetato and trifluoroacetato metal complexes and have proposed that the 

coordination mode of the carboxylate ion can be defined by measuring ; the 

difference between the asymmetric and symmetric carboxylate stretching frequencies 

(asCOO- - symCOO-). The  values proposed by Deacon and Phillips are tentative 

values, as some exceptions have been observed.234 The general conclusions obtained 

by Deacon and Phillips for the diagnosis of the nature of the coordination mode of 

the carboxylate group have been widely used (over 2000 citings235) and are as 

follows:179,190g,234 

(i) for unidentate coordination,  is larger than that observed for ionic acetates 

( > 200 cm-1 for acetates and  > 260 cm-1 for trifluoroacetates), 

(ii) if  values are less than 200 cm-1, then the carboxylate group coordinates in 

a bidentate manner,  

(iii)  for acetates only, a  value considerably less than that observed for ionic 

acetates (<105 cm-1) is indicative of chelating or of both chelating and 

bridging and 

(iv)  for all of the complexes studied, those that have a  value in the range of 

150-200 cm-1  have chelating and/or bridging acetate groups. 
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Figure 4.10: Possible coordination modes of a carboxylate ion, RCO2
-; (a) 

unidentate, (b) chelating, (c) bidentate bridging, (d) monatomic bridging and (e) 

chelation and bridging.234 

In the IR spectra of each of the monoacetate derivatives a strong absorption band in 

the range 1550-1640 cm-1 corresponding to (C=O) of the carboxyl group can be 

seen. The asCOO- and symCOO- stretching frequencies for each of the monoacetate 

compounds are given in Table 4.5. For [Me2Sn(O2CMe)Cl], [n-Bu2Sn(O2CMe)Cl] 

and [Ph2Sn(O2CMe)Cl],  = 144, 143 and 122 cm-1 respectively. All three 

compounds have a  less than 200 cm-1 suggesting a bidentate coordination mode 

for the carboxylate group.  

Table 4.5: IR stretching frequencies (cm-1). 

Compound νasCOO-  νsymCOO-  

Na(O2CMe)234 1578 1414 164 

[Me2Sn(O2CMe)Cl] 1564 1420 144 

[n-Bu2Sn(O2CMe)Cl] 1637, 1571 1376, 1428 261, 143 

[Ph2Sn(O2CMe)Cl] 1551 1429 122 
 

The crystal structure for [Me2Sn(O2CMe)Cl] has been reported, and consists of 

Me2SnCl units linked together by bridging acetates with the two methyl group 
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carbons and the chlorine atom forming a trigonal arrangement about the Sn atom.236 

The compound is described as having a distorted trigonal bipyramidal structure with 

distortions being attributed to a second, weak Sn-O intramolecular interaction which 

increases the overall Sn coordination number to six (Figure 4.11).236 The above 

results are in agreement with the reported crystal structure. 

 

Figure 4.11: Molecular structure of [Me2Sn(O2CMe)Cl] (see Allen et al.236).   

Interestingly, the dibutyltin(IV) derivative appears to have a second set of asCOO- 

and symCOO- stretching frequencies (1637 and 1376 cm-1), where  = 261 cm-1. 

This value is greater than  of sodium acetate which would imply that the 

carboxylate may also be coordinating in a second, unidentate manner. In general, a 

asCOO- absorption in the range ca. 1560-1540 cm-1 is found for bridging 

organotin(IV) carboxylate compounds whereas for the unidentate structures a  

asCOO- absorption in the range ca. 1660-1640 has been observed.237 In the IR 

spectrum of [n-Bu2Sn(O2CMe)Cl], the asCOO-  absorption at 1637 cm-1 is weaker in 

comparison to the 1571 cm-1 absorption band. The two sets of asCOO- and 

symCOO- stretching frequencies observed for [n-Bu2Sn(O2CMe)Cl] could be due to 

both a dimeric and a monomeric form being present in the solid state (Figure 4.12). 

Elemental analysis for [n-Bu2Sn(O2CMe)Cl] suggests the presence of one acetate 

molecule, one Cl atom and two n-butyl groups per tin atom, a composition that 

supports both the dimeric and monomeric forms in the solid state. On review of the 
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literature, there appears to be no reported crystal structure for [n-Bu2Sn(O2CMe)Cl] 

thus the exact mode of coordination is unclear.  

 

Figure 4.12: Proposed structures for [n-Bu2Sn(O2CMe)Cl], (a) dimer and (b) 

monomer. 

However, Honnick and Zuckerman237 have carried out studies on [n-

Bu2Sn(O2CMe)Cl] in an effort to determine its structure. They found that in the solid 

state IR spectrum a asCOO- absorption in the range 1560-1551 cm-1 was observed 

and in the solution state IR spectrum an additional asCOO- absorption at a frequency 

ca. 100-125 cm-1 higher than the solid state asCOO- absorption was observed.237 The 

appearance of an additional band suggests that there is a change in structure on going 

from the solid to the solution state. The authors suggested a dimeric structure for [n-

Bu2Sn(O2CMe)Cl] in which a four-membered SnO2 or SnOX ring exists giving a 

free carboxyl group (Figure 4.13). Organotin compounds consisting of these 

structures are known and exhibit asCOO- absorption bands at ca. 1700 cm-1.237  
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Figure 4.13: Possible dimeric equilibrium structures proposed by Honnick and 

Zuckerman for di-n-butyltin chloride acetate (R = n-Bu and X = Cl).237 

4.3.3 Synthesis of the diorganotin(IV) diacetate compounds; diorganotin(IV) 

dipicolinate 

Sn
ON

N
O

O

O R

R
b

c

d

a

e

 
  Figure 4.14: Diorganotin(IV) dipicolinate where R = Me, n-Bu or Ph. Labelling 

system for 1H and 13C NMR also shown. 

 

The synthesis of the [Me2Sn(picolinate)2] was first carried out by a method similar to 

that of the diorganochlorotin(IV) acetate compounds above (section 4.3.2); two 

equivalents of picolinic acid were stirred with two equivalents of Et3N in toluene 

followed by the addition of Me2SnCl2 and a three hour reflux. The reaction mixture 

was allowed to cool and the resulting precipitate was collected by filtration. From the 
1H NMR spectrum, the reaction appeared to be successful, however, both the filter 

and filtrate contained the product along with the Et3N.HCl by-product. In an effort to 

purify the product, the crude mixture was dissolved in DCM and washed with 
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distilled water. However, some Et3N.HCl was still present in the 1H NMR spectrum. 

The crude mixture was dissolved in DCM and n-hexane was added slowly in an 

attempt to purify the product by precipitation. Unfortunately, this only removed 

some of the Et3N.HCl. Thus, on review of the literature, a different approach to the 

synthesis was taken which would exclude the production of Et3N.HCl as a by-

product.  

 

Scheme 4.10: Synthesis of [R2Sn(picolinate)2]; (i) picolinic acid, , 2h, toluene 

(method B). 

[Me2Sn(picolinate)2] was synthesised by the procedure described by Szorcsik et 

al.238 with some modification (Scheme 4.10). After a two hour reflux, the reaction 

mixture was allowed to cool and the product was collected by filtration and washed 

with cold MeOH. This procedure was used for the synthesis of the [n-

Bu2Sn(picolinate)2] and [Ph2Sn(picolinate)2] compounds also. The compounds 

[Me2Sn(picolinate)2], [n-Bu2Sn(picolinate)2] and [Ph2Sn(picolinate)2] were obtained 

in good yields of 83, 80 and 77%, respectively. 

In the 1H NMR spectra of the diorganotin(IV) dipicolinate compounds a 1:1 

acid:organic group ratio can be seen. Only small shifts in the proton signals of the 

picolinate groups were observed, with the largest shift observed for H-d, indicating 

coordination to the tin atom (Figure 4.14). However, in the 13C NMR spectra a large 

upfield shift in C-a can be seen, indicating coordination of the pyridine ring N atom 

to the Sn centre. Although 2J(119/117Sn,1H) coupling constants of 76.5 and 73.5 Hz 

were obtained for [Me2Sn(picolinate)2] Equation 4.3 cannot be used to determine  

for this compound. Studies by Lockhart et al.
239 have found that Me2Sn(chelate)2 

compounds (chelate = tropolonate, kojate or picolinate) do not obey these equations. 

It is unclear why these compounds, containing five-membered chelate rings, do not 

obey the equations.239  
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Due to the complex butyl region of the [n-Bu2Sn(picolinate)2] 1H NMR spectrum, no 
2J(119/117Sn,1H) coupling constants could be obtained, but the 2J and 3J(119Sn, 13C)  

coupling constants (33.8 Hz and 124.5 Hz) were found. These values are in 

accordance with other dibutyltin(IV) compounds with 3J  larger than 2J but without 

the 1J(119Sn, 13C) value the coordination number about the tin atom cannot be 

predicted.240 Unfortunately, no 119/117Sn coupling constants for the diphenyltin(IV) 

dipicolinate compound could be calculated from the 1H or 13C NMR spectra. 

For the free picolinic acid, the OH of the carboxylate moiety occurs at ca. 2500 cm-

1 and disappears in the IR spectra of the dipicolinate compounds, indicating 

deprotonation of the COOH and coordination with the Sn(IV) molecule. In both the 

[Me2Sn(picolinate)2]  and [n-Bu2Sn(picolinate)2] IR spectra, the presence of two 

asCOO- and symCOO- stretching frequencies suggest coordination by two different 

modes (Table 4.6). The  values of 326 and 323 cm-1 are greater than that of the 

picolinate sodium salt which according to Deacon and Phillips, indicate a unidentate 

mode of coordination.234 The second set of asCOO- and symCOO- stretching 

frequencies give  values in the range ca. 150-200 cm-1, suggesting a bridging 

bidentate coordination mode. 

Table 4.6: IR stretching frequencies (cm-1) for the diorganotin(IV) diacetate 

compounds. 

Compound νaCOO-  νsCOO-  

Na-picolinate238 1607 1411 196 

[Me2Sn(picolinate)2] 1675, 1561 1349, 1386 326, 175 

[n-Bu2Sn(picolinate)2] 1670, 1564 1347, 1384 323, 180 

[Ph2Sn(picolinate)2] 1678 1332 346 

Na-nicotinate241 1615 1375 240 

[Me2Sn(nicotinate)2] 1605 1399 206 

[n-Bu2Sn(nicotinate)2] 1609 1409 201 

[Ph2Sn(nicotinate)2] 1608 1411 197 
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The crystal structures of [Me2Sn(picolinate)2], [n-Bu2Sn(picolinate)2], and 

[Ph2Sn(picolinate)2] have been previously reported.239,242 In each of the compounds, 

the two picolinic acid molecules coordinate to the Sn centre through the pyridine 

ring N atom and one O atom of the carboxylate moiety resulting in a five-membered 

chelate ring.239,242 In [Me2Sn(picolinate)2] and [n-Bu2Sn(picolinate)2] each Sn atom 

is also bridged by a second O atom of one of the picolinic acids giving rise to a 

polymeric structure wherein the compounds are seven-coordinate with a distorted, 

pentagonal bipyramidal geometry (Figure 4.15).239 [Ph2Sn(picolinate)2] is slightly 

different in structure, as it is monomeric in nature with a distorted octahedral 

geometry.242 The lack of molecular aggregation in [Ph2Sn(picolinate)2] is believed to 

be due to the steric bulk of the phenyl groups.242  The results presented above are in 

accordance with the reported crystal structures of the diorganotin(IV) dipicolinate 

compounds. 

 

Figure 4.15: X-ray crystal structures of diorganotin(IV) dipicolinate compounds, (a) 

[Me2Sn(picolinate)2] and (b) [n-Bu2Sn(picolinate)2].239,242 
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4.3.4 Synthesis of the diorganotin(IV) diacetate compounds; diorganotin(IV) 

dinicotinate 

 

 Figure 4.16: Diorganotin(IV) dinicotinate where R = Me, n-Bu or Ph. Labelling 

system for 1H and 13C NMR also shown. 

 

The [Me2Sn(nicotinate)2], [n-Bu2Sn(nicotinate)2] and [Ph2Sn(nicotinate)2] 

derivatives were synthesised by the same method as described for the dipicolinate 

compounds earlier (Scheme 4.10). CHN analysis indicated formation of a 2:1 

acid:metal complex and as with the dipicolinate compounds, only small shifts in the 
1H NMR signals were observed for the protons of the nicotinate groups. 
2J(119/117Sn,1H) coupling constants for [Me2Sn(nicotinate)2] were not observed, 

however, 3J(119Sn, 13C) = 51.8 ppm for C-e (Figure 4.16) was found, indicating 

coordination of the carboxylate group to the Sn atom. In the 13C NMR spectra, a 

large downfield shift has occurred with the carbonyl carbon signal for each of the 

dinicotinate derivatives. This is quite different to that observed for the dipicolinate 

compounds, in fact, unlike the dipicolinate compounds, the carbon signal for the C-H 

atoms adjacent to the pyridine ring N in the dinicotinate compounds do not seem to 

have been effected by binding to the Sn(IV) molecule. This would imply that the 

nicotinic acid N atom is not involved in coordination and that the carboxylate moiety 

is binding to the Sn(IV) molecule by a different mode of coordination to that 

observed for the dipicolinate compounds.  

On comparing the nicotinic acid IR spectrum to the IR spectra of the dinicotinate 

compounds, the OH band (ca. 2400 cm-1) has disappeared, indicating deprotonation 

of, and binding through, the carboxylate group. Furthermore, the shift in the C=O 

band in the IR spectra of the three diorganotin dinicotinate compounds from 1713 

cm-1 in nicotinic acid to 1605, 1609 and 1608 cm-1 was also proof of the formation of 

the [Me2Sn(nicotinate)2], [n-Bu2Sn(nicotinate)2] and [Ph2Sn(nicotinate)2] products. 
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Unlike the dimethyl- and di-n-butyltin(IV) dipicolinate compounds however, only 

one set of the asCOO- and symCOO- stretching frequencies are present giving  

values of 206 and 201 cm-1
 for [Me2Sn(nicotinate)2] and [n-Bu2Sn(nicotinate)2], 

respectively (Table 4.6). These  values fall within the range of 150-200 cm-1
 

suggesting a bidentate bridging coordination mode. The diphenyltin(IV) dinicotinate 

compound, like [Ph2Sn(picolinate)2], exhibited only one asCOO- and symCOO- 

stretching frequency with a  = 197 cm-1, suggesting a bridging coordination mode 

for the carboxylate moiety. These results suggest that, unlike the dimethyl- and 

dibutyltin(IV) dipicolinates, the dinicotinate compounds do not appear to coordinate 

through the pyridine N atom. However, coordination does appear to be occurring 

through the carboxylate group most likely in a bridging behaviour. 

On review of the literature there are no reported crystal structures for any of the three 

diorganotin(IV) dinicotinate compounds. However, Mössbauer and 119Sn NMR 

studies have been carried out on [Me2Sn(nicotinate)2], [n-Bu2Sn(nicotinate)2] and 

[Ph2Sn(nicotinate)2] and the results point towards a distorted trans octahedral 

geometry, whereby the nicotinate groups are coordinated through the two O atoms of 

the carboxylate group either by a bridging or chelating mode (Figure 4.17). 

 

Figure 4.17: Proposed structures of diorgano(IV) dinicotinate compounds (R = Me, 

n-Bu or Ph).241,243 
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4.3.5 Complexation Reactions 

4.3.5.1 Synthesis of [R2SnCl2L] complexes (R = Me, n-Bu or Ph and L = phen, 

dione or dppz) 

Complexation reactions with the 1,10-phenanthroline ligands were first carried out 

with the diorganotin(IV) dichlorides, [R2SnCl2] (R = Me, n-Bu and Ph). The 

reactions involved mixing equimolar quantities of the dichlorides with the chosen 

ligand in EtOH at reflux temperature for three hours. After cooling the solution, the 

solid products precipitated out and were collected by filtration. Yields of 92, 98 and 

93% were obtained for [Me2SnCl2(phen)], [n-Bu2SnCl2(phen)] and 

[Ph2SnCl2(phen)], respectively. Elemental analysis indicated that a 1:1 complex was 

formed between each of the the organotin(IV) compounds and the phen ligands.  

In the IR spectra of [Me2SnCl2(phen)], [n-Bu2SnCl2(phen)] and [Ph2SnCl2(phen)] the 

C=N absorption of the phen ligand has shifted in frequency, from 1644 cm-1 to ca. 

1622 cm-1, indicating coordination of the phen to the organotin(IV) dichlorides. A 

large downfield shift in each of the proton signals of the phen ligand can also be seen 

in the 1H NMR spectra of each of the organotin(IV) phen complexes, further 

confirming coordination. 1H NMR data for the diorganotin(IV) dichloride complexes 

is given in Table 4.7. 
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Table 4.7: Selected 1H NMR data for 1,10-phenanthroline ligands and their 

[R2SnCl2] compounds (R  Me, n-Bu or Ph) obtained in DMSO-d6.  

Compound H-2a H-3a H-4a H-5a H-6a 

phen 9.10 7.77 8.49 7.99 - 

dione 8.98 7.68 8.39 - - 

dppz 9.49 7.92 9.20 8.36 8.04 

[Me2SnCl2(phen)] 9.32 8.00 8.74 8.16 - 

[Me2SnCl2(dione)] 9.00 7.69 8.41 - - 

[Me2SnCl2(dppz)] 9.42 7.91 9.20 8.29 8.01 

[n-Bu2SnCl2(phen)] 9.44 8.16 8.90 8.27 - 

[n-Bu2SnCl2(dione)] - - - - - 

[n-Bu2SnCl2(dppz)]b 9.93 8.14 9.83 8.41 8.03 

[Ph2SnCl2(phen)]* 9.50 8.05 8.74 8.12 - 

[Ph2SnCl2(phen)]# 9.06 8.17 8.54 8.43 - 

[Ph2SnCl2(dione)] 9.00 7.68 8.40 - - 

[Ph2SnCl2(dppz)] 9.44 7.95 9.26 8.28 8.00 

dppzb 9.64 7.80 9.26 8.35 7.92 
a Numbering system shown in Figure 4.8,b obtained in CDCl3, 

* trans-isomer, # cis-

isomer. 

An unexpected 1H NMR spectrum was obtained for [Ph2SnCl2(phen)], containing 

what appeared to be two sets of signals. A closer inspection of the 1H NMR spectra 

using a COSY experiment indicated that there were two different [Ph2SnCl2(phen)] 

complexes present (Appendix C, Figure C1), one being more abundant than the 

other. These two complexes may be the cis- and trans-isomers of [Ph2SnCl2(phen)]. 

In order to investigate this possibility the 1H NMR experiment was repeated but at a 

higher temperature (70 oC) (Appendix C, Figure C2). The resulting 1H NMR 

spectrum had only one set of signals present, supporting the above suggestion. 

The X-ray crystal structures for [Me2SnCl2(phen)], [n-Bu2SnCl2(phen)] and 

[Ph2SnCl2(phen)] have been reported (Figure 4.18). In each derivative, the organo 
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groups sit in the axial positions with the phen ligand and two chlorine atoms 

occupying the equatorial positions, resulting in an octahedral geometry about the 

Sn(IV) centre.244 For [Ph2SnCl2(phen)], having the phenyl groups trans to one 

another must be the most stable arrangement which is understandable considering 

the bulky nature of the phenyl groups. However, in the 1H NMR spectrum there 

appears to be two complexes present. Tin complexes are known to alter their 

structure on changing from one phase to another, thus, it may be that in solution the 

complex can exist as two isomers, the most abundant being the more favourable 

trans-isomer.161  

 

Figure 4.18: X-ray crystal structures of (a) [Me2SnCl2(phen)], (b) [n-

Bu2SnCl2(phen)] and (c) [Ph2SnCl2(phen)].244  

For the dione and dppz organotin(IV) complexes, shifts in the 1H NMR signals of the 

ligands were also observed, although these are much smaller in nature in comparison 

to the organotin(IV) phen complexes (Table 4.7). This is unusual as both ligands are 

1,10-phenanthroline derivatives and so chelation is expected to occur through the 

two nitrogen atoms which should result in shifts in the 1H NMR signals similar in 

size to those of the phen complexes. These small shifts suggest that there is little 



Chapter IV: A study of organotin(IV) antibacterial agents 

213 

 

interaction between the ligand and the Sn(IV) centre. If the size of the ligand was an 

issue then it would be expected that the dppz ligand would cause problems and not 

the dione ligand. However, the size of the ligand cannot really be an issue, as the 

binding site is remote from the rest of the molecule and is consistent amongst the 

series.   

A second explanation for the lack of interaction, with regards to the dione ligand, 

may be because of its dual binding ability. As mentioned earlier, dione has two 

potential binding sites through the diiminic and o-quinonoid functionalities. If 

binding is occurring through the o-quinonoid functionality then little effect on the 

proton NMR signals of dione would be expected. If it is binding through both 

functionalities then it may be forming a polymer. This may also be the reason why 

the NMR data for the [n-Bu2SnCl2(dione)] derivative was very complex.  

In the IR spectrum of the free dione ligand, the stretching frequency of the C=O 

band occurs at 1686 cm-1 (Table 4.8). On examining the IR spectra of the 

organotin(IV) dione complexes a shift of ca. 10-30 cm-1 in the (C=O) absorption to 

a higher frequency (in the range 1690-1720 cm-1) can be seen, indicating interaction 

of the ligand with the organotin(IV) dichloride. If binding was occurring through the 

o-quinonoid functionality of dione, much larger shifts (ca. 200-300 cm-1) would be 

expected.216 Considering that the C=O moieties are far from the coordination site of 

the ligand these small shifts suggest the formation of N,N’-coordinated complexes 

with the tin atom.206,216,245  

Table 4.8: IR absorption bands for the free dione ligand and the [R2SnCl2(dione)] 

complexes (R = Me, n-Bu and Ph). 

Compound (C=O) (C=N)/(C=C) (C-N-C) 

dione 1686 1574, 1566 738 

[Me2SnCl2(dione)] 1700 1573 732 

[n-Bu2SnCl2(dione)] 1718 1584 720 

[Ph2SnCl2(dione)] 1694 1574 727 

 



Chapter IV: A study of organotin(IV) antibacterial agents 

214 

 

The crystal structure of [Ph2SnCl2(dione)]·2MeCO has been reported, and is similar 

to the structure reported for [Ph2SnCl2(phen)] with the phenyl groups in a trans 

arrangement and the dione ligand coordinated through its diiminic 

functionality.244c,246 The Sn-N bond lengths, 2.394 and 2.405 Å, are only slightly 

longer than those of [Ph2SnCl2(phen)] (2.341 and 2.378 Å).244c,246 With regards to 

the dione complexes synthesised here, perhaps the dione ligand does bind through 

the N atoms as suggested by the IR data but only associates weakly in solution 

giving rise to only small shifts in the 1H NMR signals. Similarly, with the dppz 

complexes, the IR spectra of each of the complexes indicate binding through the N 

atoms of the ligand (Table 4.9). Absorption bands for (C=N) and (C=C) in the 

1640-1400 cm-1 range were observed for the free dppz ligand. These bands have 

shifted to a lower frequency in the IR spectra of the complexes, thus, indicating 

coordination of the N atoms to the metal centre. However, in the 1H NMR spectra of 

the dppz complexes, the small shifts in the proton signals of the dppz ligand suggest 

weak binding has occurred in solution. The elemental analysis for the dione and dppz 

complexes suggest formation of 1:1 complexes with the organotin(IV) dichlorides. 

Table 4.9: IR absorption bands for the free dppz ligand and the [R2SnCl2(dppz)] 

complexes (R = Me, n-Bu and Ph). 

Compound (C=N)/(C=C) (C-N-C) Other absorption bands 

dppz 1634, 1586 740 1490, 1415, 1362, 1338, 1074 

[Me2SnCl2(dppz)] 1632, 1572 734 1493, 1420, 1359, 1075 

[n-Bu2SnCl2(dppz)] 1631, 1574 736 1493, 1419, 1361, 1076 

[Ph2SnCl2(dppz)] 1627, 1574 735 1494, 1420, 1428, 1361, 1078 

4.3.5.2 Synthesis of [R2Sn(O2CMe)Cl(L)] complexes (R = Me, n-Bu or Ph and L 

= phen, dione or dppz) 

An attempt to synthesise [R2Sn(O2CMe)Cl(phen)] was first carried out using the 

most soluble of the three organochlorotin(IV) acetates, [n-Bu2Sn(O2CMe)Cl], under 

the same reaction conditions as described earlier for the synthesis of [R2SnCl2(phen)] 

(section 4.3.5.1). Unexpectedly, the reaction was unsuccessful, returning only a 

mixture of starting materials. Hence the reaction was repeated with longer reaction 
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times. The reaction was allowed to reflux for a total of 24 hours and monitored by 1H 

NMR spectroscopy, but no shift in the proton signals of the phen ligand was 

observed. It was thought that perhaps a different solvent was required, therefore, 

MeCN was chosen in an effort to increase the Lewis acidity of the Sn(IV) centre and 

thus help drive the reaction forward. 

The first reaction was carried out at room temperature with stirring overnight, but 

was unsuccessful. Heating of the reaction mixture (40-50 oC) was attempted with 

monitoring over 24 hours but was also unsuccessful. Finally, a 24 hour reflux in 

MeCN was attempted but this also failed to give the [n-Bu2Sn(O2CMe)Cl(phen)] 

complex. With the steric bulk of the n-butyl groups in mind, the reaction was 

attempted with [Me2Sn(O2CMe)Cl] instead. The reaction was carried out in EtOH at 

reflux temperature for three hours but no product was observed in the 1H NMR 

spectrum. The reaction was also attempted in MeCN but again the reaction failed to 

produce the [Me2Sn(O2CMe)Cl(phen)] complex.  

After the unsuccessful attempts to synthesise [Me2Sn(O2CMe)Cl(phen)] and [n-

Bu2Sn(O2CMe)Cl(phen)] it was unlikely that the dione and dppz complexes would 

form. An attempt was made to synthesise both the dione and dppz complexes of the 

dimethyltin and dibutyltin monoacetate derivatives. As expected, these experiments 

were unsuccessful. Due to the failed attempts of these reactions no attempts were 

made to synthesise the [Ph2Sn(O2CMe)Cl(L)] derivatives (L = phen, dione or dppz). 

As mentioned earlier, the [Me2Sn(O2CMe)Cl] is polymeric in nature and can achieve 

a six-coordinate geometry through bridging of the carboxylate group. If the 

organotin(IV) monoacetate compounds have achieved the six-coordinate geometry in 

solution then in order for the phen ligands to bind to the Sn(IV) centre the bridging 

must initially be disrupted. Binding of a phen-based ligand would result in the 

formation of a seven-coordinate tin species as proposed in Figure 4.19. However, the 

phen ligands are relatively large, planar (or near planar) and rigid in nature and so 

may be unable to ‘fit’ into the geometry constraint required by the proposed seven 

coordination.   
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Figure 4.19: Proposed seven-coordinate organotin(IV) structure (R = Me, n-Bu, or 

Ph and NN = phen, dione or dppz). 

4.3.5.3 Synthesis of [R2Sn(picolinate)2L] complexes (R = Me, n-Bu or Ph and L 

= phen, dione or dppz) 

In an effort to synthesise [Me2Sn(picolinate)2(phen)] a 1:1 mixture of phen and 

[Me2Sn(picolinate)2] were heated to reflux in EtOH for one, three, five and eight 

hours. In all cases, the resulting precipitate that formed on cooling was 

[Me2Sn(picolinate)2] only, with the filtrate containing phen and a small proportion of 

[Me2Sn(picolinate)2]. With the lack of complexation in EtOH the reaction was 

attempted in MeCN. Again, on cooling [Me2Sn(picolinate)2] precipitated out of 

solution and the filtrate contained mostly phen. However, there was a shift in the 1H 

NMR signals of the phen ligand suggesting the possible formation of a complex. In 

an effort to remove the excess phen the crude solid was washed with cold ethanol 

returning [Me2Sn(picolinate)2] as the solid product. A second wash of the crude solid 

obtained from the filtrate was then carried out with hot toluene, the resulting filter 

was [Me2Sn(picolinate)2] and the filtrate contained phen. No 

[Me2Sn(picolinate)2(phen)] was found.  

The complexation reactions were also attempted with [n-Bu2Sn(picolinate)2] and 

[Ph2Sn(picolinate)2] in EtOH and MeCN but the same result was obtained. An 

attempt to synthesise the dione and dppz complexes of [Me2Sn(picolinate)2] was also 

carried out in EtOH but with no success. 

It is not entirely surprising that these complexation reactions did not work. As 

mentioned earlier, the structures of the three organotin(IV) dipicolinates used in this 

study are known. Each of the compounds contain two bulky picolinate groups, each 

of which forms a five-membered chelate ring resulting from the coordination of the 
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pyridine ring N atom and a carboxylate O atom. Although coordination numbers of 

eight and even ten have been reported for tin complexes, the phen ligands are planar 

(or near planar), rigid molecules which will probably not ‘fit’ into the existing seven- 

and six-coordinate geometries of the organotin(IV) dipicolinates.161,247 If a phen 

ligand is to bind to the tin atom then either the Sn-N or the Sn-O bond of the five-

membered chelate rings must first be broken in order to make way for the phen 

ligand, as shown in Figure 4.18. It is believed that these complexes did not form 

because of these steric restrictions. 

Sn
NO

O N

R'

O

R'

O

R

R

 

Figure 4.18: Expected structure of 1:1 complex of organotin(IV) dipicolinate and 

1,10-phenathroline derivatives, where R = Me, n-Bu or Ph; NN = 1,10-

phenathroline derivative; R’CO2 = picolinate group. 

4.3.5.4 Synthesis of [R2Sn(nicotinate)2L] complexes (R = Me, n-Bu or Ph and L 

= phen, dione or dppz) 

The [R2Sn(nicotinate)2(phen)] and dppz complexes were synthesised using the same 

procedure as that of the [R2SnCl2(phen)] complexes (section 4.3.5.1). In the 1H 

NMR spectra of both [Me2Sn(nicotinate)2(phen)] and [n-Bu2Sn(nicotinate)2(phen)] a 

large downfield shift was observed for the proton signals of the phen ligand (Table 

4.10). As expected, H-2 has the largest shift indicating coordination through the two 

N atoms of the phen ligand. 
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Table 4.10: Selected 1H NMR data for 1,10-phenanthroline ligands and their 

[R2Sn(nicotinate)2] complexes obtained in DMSO-d6 (R  Me, Bu or Ph). 

Compound H-2a H-3a H-4a H-5a H-6a 

phen 9.10 7.77 8.49 7.99 - 

[Me2Sn(nicotinate)2(phen)] 9.46 8.00 8.73b 8.15 - 

[n-Bu2Sn(nicotinate)2(phen)] 9.48 8.04 8.77 8.17 - 

[Ph2Sn(nicotinate)2(phen)] 9.09 7.78 8.49 7.96c - 

dppz 9.49 7.92 9.20 8.36 8.04 

[Me2Sn(nicotinate)2(dppz)] 9.55 7.98 9.27 8.39 8.07 

[n-Bu2Sn(nicotinate)2(dppz)] 9.40 7.98 9.31 8.23 7.98 
a Numbering system shown in Figure 4.8, b shares peak with nicotinate proton, c 

shares peak with phenyl proton. 

Only the [Me2Sn(nicotinate)2] and [n-Bu2Sn(nicotinate)2] compounds could be 

complexed with the dppz ligand. In comparison to the [R2Sn(nicotinate)2(phen)] 

analogues, much smaller shifts in the 1H NMR signals of the dppz ligand were 

observed. A similar trend was observed earlier for the [R2SnCl2L] complexes 

(section 4.3.5.1). It may be that in solution the dppz ligand only associates weakly 

with the tin atom resulting in smaller shifts in the 1H NMR spectra. 

Amongst the [R2Sn(nicotinate)2(phen)] complexes synthesised here, the smallest 

shifts in the 1H NMR signals of the phen ligand were observed for  

[Ph2Sn(nicotinate)2(phen)]. The [Ph2Sn(nicotinate)2] compound consists of two 

phenyl groups and two nicotinate groups bound to the tin atom. These bulky groups 

may be making it sterically difficult for the relatively large and planar phen ligand to 

interact strongly with the Sn centre resulting in only small shifts in the 1H NMR 

signals. The complexation reaction of [Ph2Sn(nicotinate)2] and dppz was 

unsuccessful. The dppz ligand is a larger molecule with an extended aromatic 

structure in comparison to phen making it even more difficult to ‘fit in’ and bind to 

the tin centre.  
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Elemental analysis for each of the complexes synthesised indicated formation of a 

1:1 phen:metal or dppz:metal complex. In the IR spectra of the phen and dppz free 

ligands the absorption bands for (C=N) and (C=C) are found in the 1640-1400 cm-

1 range (Table 4.11), so too are the as(COO-) and sym(COO-) stretching frequencies 

of the [R2Sn(nicotinate)2] compounds, resulting in complicated IR spectra. However, 

in the IR spectra of the [R2Sn(nicotinate)2] phen and dppz complexes the absorption 

bands in the 1640-1400 cm-1 range have broadened and shifted frequency, 

confirming coordintation of the ligands to the tin centres (Table 4.11). 

Table 4.11: A selection of the IR absorption bands in the 1700-1400 cm-1 range.  

Compound IR absorption bands (cm-1) 

phen 1643, 1617, 1586, 1561, 1504, 1495, 1422 

[Me2Sn(nicotinate)2(phen)] 

 

1645, 1625, 1590, 1428, 1332, 

[n-Bu2Sn(nicotinate)2(phen)] 

 

1648, 1625, 1599,1588, 1552, 1426 

[Ph2Sn(nicotinate)2(phen)] 

 

1709, 1655, 1596, 1419 

dppz 1634, 1586, 1490, 1415 

[Me2Sn(nicotinate)2(dppz)] 

 

1605, 1592, 1554, 1486, 1415 

[n-Bu2Sn(nicotinate)2(dppz)] 

 

1606, 1593, 1553, 1407 

 

The synthesis of the [R2Sn(nicotinate)2(dione)] complexes was attempted using the 

same procedure as described for the phen and dppz derivatives, but were 

unsuccessful. Extended reaction times (24 hours) and a change in solvent (MeCN) 

were also attempted but the reaction still failed to produce a 

[R2Sn(nicotinate)2(dione)] complex. If the size of the dione ligand was the issue then 
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a similar outcome to that of the dppz complexes would be expected where the 

[Me2Sn(nicotinate)2(dione)] and [n-Bu2Sn(nicotinate)2(dione)] would form but 

perhaps the [Ph2Sn(nicotinate)2(dione)] complex would not. However, none of the 

[R2Sn(nicotinate)2(dione)] complexes could be synthesised. As suggested earlier 

with the [R2SnCl2(dione)] complexes, maybe the dual binding ability of the dione 

ligand is causing problems. However, being the stronger site of Lewis basicity, 

coordination is expected to occur through the diiminic functionality of dione as is 

seen with the phen and dppz ligands.206 In comparison to phen, the dione ligand is 

slightly non-planar.206 Perhaps this slight deviation in planarity prohibits the dione 

ligand from accessing the tin centre of the R2Sn(nicotinate)2 compounds thus 

preventing formation of the [R2Sn(nicotinate)2(dione)] complexes. 

All attempts to obtain 119Sn NMR spectra of the complexes obtained during this 

study always resulted in broad signals being observed, no matter what solvent was 

chosen or the number of scans used. This is despite the fact that clean 1H and 13C 

spectra were readily obtained for the same samples.  

4.3.6 Biological studies 

4.3.6.1 Antibacterial activity 

The antibacterial activity of the organotin(IV) complexes synthesised in this study, 

along with their starting materials, was investigated using the susceptibility assay 

described in section 1.2.5. Three bacteria were chosen for the study, two Gram-

negative bacteria, Escherichia coli (E. coli) and Pseudomonas aeruginosa (P. 

aeruginosa), and one Gram-positive bacterium Staphylococcus aureus (S. aureus). 

The MIC50 and MIC80 values were taken to signify the concentration of compound 

that would inhibit the growth of the microorganism by 50% and 80%, respectively. 

The results are summarised in Tables 4.12 and 4.13. Any compound which did not 

exhibit an MIC80 and/or MIC50 for any of the three chosen bacteria has been 

excluded from the tables. Vancomycin hydrochloride and ciprofloxacin were chosen 

as the positive controls.  

Of all of the organotin(IV) starting materials tested, the n-Bu2SnCl2 was the most 

active, exhibiting activity against all three bacteria. In general, the organotin(IV) 
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oxides were less active than the dichlorides. However, n-Bu2SnO could not be tested 

due to its lack of solubility in the water/DMSO mixture. Acetic acid, picolinic acid 

and nicotinic acid were inactive against each of the bacteria tested. Amongst the 

phen ligands investigated, the only ligand to exhibit activity against all three bacteria 

was the dione. This ligand has been previously shown to be very active against 

several microbes, including the yeast, Candida albicans.71,217 Furthermore, McCann 

and co-workers have shown that when a silver(I) ion is complexed with dione, an 

increase in activity is observed.220 
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Table 4.12: Antibacterial activity as MIC50 range, values are the mean of three experiments. 

Compound 
E. coli P. aeruginosa S. aureus 

M g/mL M g/mL M g/mL 

Vancomycin hydrocloride 1.58-2.10 2.35-3.13 >67.31 >100.00 1.58-2.10 2.35-3.13 

Ciprofloxacin 2.36-3.53 0.78-1.17 0.20-0.39 0.59-1.18 28.31-37.75 9.38-12.5 

phen > 554.91 >100.00 416.18-554.91 75.00-100.00 277.45-416.18 50.00-75.00 

dione 14.88-22.34 3.13-4.69 14.88-22.34 3.13-4.69 29.76-44.63 6.25-9.38 

[Me2SnCl2] 341.08-454.78 75.00-100.00 341.08-454.78 75.00-100.00 > 454.78 >100.00 

[n-Bu2SnCl2] 15.44-20.56 4.69.-6.25 164.48-246.73 50.00-75.00 20.56-30.84 6.25-9.38 

[Ph2SnCl2] 54.52-72.69 18.75-25.00 > 290.77 >100.00 > 290.77 >100.00 

[Me2SnO] 451.96-602.61 75.00-100.00 451.96-602.61 75.00-100.00 > 602.61 >100.00 

[n-Bu2Sn(O2CMe)Cl] 28.58-38.11 9.38-12.50 > 304.85 >100.00 38.11-57.16 12.50-18.75 

[Ph2SnCl(O2CMe)] 25.48-33.97 9.38-12.50 > 271.77 >100.00 16.99-25.48 6.25-9.38 

[Me2SnCl2(phen)] > 250.03 >100.00 125.01-187.52 50.00-75.00 > 250.03 >100.00 

[n-Bu2SnCl2(phen)] 25.82-38.74 12.50-18.75 103.30-154.94 50.00-75.00 25.82-38.74 12.50-18.75 
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Table 4.12 continued. 

Compound 
E. coli P. aeruginosa S. aureus 

M g/mL M g/mL M g/mL 

[Me2SnCl2(dione)] 43.61-58.15 18.75-25.00 21.81-29.07 9.38-12.50 29.08-43.61 12.50-18.75 

[n-Bu2SnCl2(dione)] 18.24-24.32 9.38-12.50 145.91-194.54 75.00-100.00 48.64-72.95 25.00-37.50 

[Ph2SnCl2(dione)] 22.57-33.85 12.50-18.75 22.57-33.85 12.50-18.75 5.64-8.47 3.13-4.69 

[n-Bu2SnCl2(dppz)] 16.00-21.33 9.38-12.50 170.63+ 100.00+ 21.33-31.99 12.50-18.75 

[Ph2SnCl2(dppz)] > 159.74  79.87-119.81  59.90-79.87 

[n-Bu2Sn(picolinate)2] 39.22-52.29  > 209.17  26.15-39.22 

[Ph2Sn(picolinate)2] > 193.04  > 193.04  96.52-144.78 

[n-Bu2Sn(nicotinate)2] 39.22-52.29  > 209.17  26.15-39.22 

[Ph2Sn(nicotinate)2] 72.39-96.52  > 193.04  > 193.04 

[n-Bu2Sn(nicotinate)2(phen)] 56.98-75.97  > 151.94  75.97-113.95 

[n-Bu2Sn(nicotinate)2(dppz)] 32.89-49.33  > 131.55  98.66-131.55 
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Table 4.13: Antibacterial activity as MIC80 range, values are the mean of three experiments. 

Compound 
E. coli P. aeruginosa S. aureus 

M g/mL M g/mL M g/mL 
Vancomycin hydrochloride 2.10-3.16 3.13-4.69 >67.31 >100.00 3.16-4.21 4.69-6.25 

Ciprofloxacin >301.99 >100.00 1.18-1.77 0.39-0.59 >301.99 >100.00 
dione 29.76-44.63 6.25-9.38 22.34-29.76 4.69-6.25 44.63-59.51 9.38-12.50 

[Me2SnCl2] >454.78 >100.00 341.08-454.78 75.00-100.00 >454.78 >100.00 

[n-Bu2SnCl2] 41.12-61.68 12.50-18.75 >328.99 >100.00 41.12-61.68 12.50-18.75 
[Ph2SnCl2] 218.08-290.77 75.00-100.00 >290.77 >100.00 >290.77 >100.00 

[n-Bu2SnCl(O2CMe)] 114.32-152.43 37.50-50.00 >304.86 >100.00 114.32-152.43 37.50-50.00 

[Ph2SnCl(O2CMe)] 135.88-203.83 50.00-75.00 >271.77 >100.00 67.94-101.91 25.00-37.50 
[n-Bu2SnCl2(phen)] 77.47-103.30 37.50-50.00 154.94-206.59 75.00-100.00 38.74-51.65 18.75-25.00 
[Me2SnCl2(dione)] >232.60 >100.00 43.61-58.15 18.75-25.00 43.61-58.15 18.75-25.00 

[n-Bu2SnCl2(dione)] 36.48-48.64 18.75-25.00 >194.54 >100.00 145.91-194.54 75.00-100.00 
[Ph2SnCl2(dione)] >180.52 >100.00 33.85-45.13 18.75-25.00 16.92-22.56 9.38-12.50 
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Table 4.13 continued. 

Compound 
E. coli P. aeruginosa S. aureus 

M g/mL M g/mL M g/mL 
[n-Bu2SnCl2(dppz)] 63.99-85.31 37.50-50.00 >170.63 >100.00 31.99-42.66 18.75-25.00 

[n-Bu2Sn(picolinate)2] 156.87-209.17 75.00-100.00 >209.17 >100.00 52.29-78.44 25.00-37.50 
[n-Bu2Sn(nicotinate)2] 104.58-156.87 50.00-75.00 >209.17 >100.00 78.44-104.58 37.50-50.00 

[n-Bu2Sn(nicotinate)2(phen)] 113.95-151.94 75.00-100.00 >151.94 >100.00 113.95-151.94 75.00-100.00 

[n-Bu2Sn(nicotinate)2(dppz)] 98.66-131.55 75.00-100.00 >131.55 >100.00 >131.55 >100.00 
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From Table 4.12, it can be seen that on changing from the organotin(IV) dichloride 

to the organochlorotin(IV) acetate, the dimethyl and dibutyl derivatives became less 

active. With regards to the dibutyltin derivatives, introduction of the dinicotinate and 

dipicolinate moieties resulted in a further loss in activity against E. coli but a slight 

increase in activity against S. aureus, in comparison to [n-Bu2Sn(O2CMe)Cl]. 

The opposite, however, is seen in the case of the diphenyl derivatives, with the 

[Ph2Sn(O2CMe)Cl] being more active than its dichloride precursor against both E. 

coli and S. aureus. However, [Ph2Sn(picolinate)2] and [Ph2Sn(nicotinate)2] are, as in 

the case of the dibutyltin(IV) derivatives, less active than [Ph2Sn(O2CMe)Cl]. 

[Me2Sn(O2CMe)Cl], [Me2Sn(nicotinate)2] and [Me2Sn(picolinate)2] did not exhibit 

activity against S. aureus or E. coli and, unfortunately, none of the carboxylate 

derivatives demonstrated any activity against P. aeruginosa.  

Graphs 4.1-4.6 show the activity profiles for the phen, dione and dppz complexes 

that were active against E. coli and S. aureus. Of all of the compounds complexed 

with a phen, dione or dppz ligand, the dione complexes were the most active. 

Moreover, upon complexation of dione with the dimethyl- and diphenlytin(IV) 

dichlorides, an increase in activity was observed in comparison to the parent 

organotin(IV). For example, treatment of S. aureus with [Ph2SnCl2(dione)] resulted 

in a MIC50 of 3.13-4.69 g/mL, whereas, its precursor Ph2SnCl2 was inactive against 

S. aureus. This result may be attributed to chelation theory. As mentioned earlier, a 

reduction in the polarity of the metal can occur upon chelation, resulting in an 

increase in lipophillicity.198-199 This increased lipophilicity can assist the passage of 

the metal complex through cell membranes, in turn, allowing it to interact with the 

cells internal components and therefore inhibit growth.  

The opposite effect is seen with n-Bu2SnCl2, that is, a decrease in activity against E. 

coli and S. aureus is observed upon complexation with phen, dione or dppz. If we 

consider [n-Bu2SnCl2(phen)] and its activity against S. aureus, n-Bu2SnCl2 is more 

active, reaching a MIC50 in the range of 6.25-9.38 g/mL while the phen ligand 

alone is less active than [n-Bu2SnCl2(phen)]. Similar results have been reported 
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previously, and are believed to be due to complexation preventing the binding of the 

metal to the active site.193b  

 

Graph 4.1: Activity profile of [R2SnCl2(phen)] family versus S. aureus, where R = 

Me, n-Bu or Ph. 

 

Graph 4.2: Activity profile of [R2SnCl2(phen)] family versus E. coli, where R = Me, 

n-Bu or Ph. 
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Graph 4.3: Activity profile of [R2SnCl2(dione)] family versus S. aureus, where R = 

Me, n-Bu or Ph. 

 

Graph 4.4: Activity profile of [R2SnCl2(dione)] family versus E. coli, where R = 

Me, n-Bu or Ph. 
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Graph 4.5: Activity profile of [R2SnCl2(dppz)] family versus S. aureus, where R = 

Me, n-Bu or Ph. 

 

Graph 4.6: Activity profile of [R2SnCl2(dppz)] family versus E. coli, where R = Me, 

n-Bu or Ph. 
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In general, the majority of complexes synthesised exhibited little or no activity 

against P. aeruginosa. However, of the active complexes, [Me2SnCl2(dione)] and 

[Ph2SnCl2(dione)] exhibited good activity against P. aeruginosa giving an MIC50 

range of 9.38-12.50 and 12.50-18.75 g/mL, respectively. In both cases, the values 

were less than that of the parent organotin(IV) dichloride but greater than the dione 

ligand alone.  

Of the active complexes listed in Table 4.12, [Ph2SnCl2(dione)] was the most active 

against S. aureus, [n-Bu2SnCl2(dione)] was the most active against E. coli and 

[Me2SnCl2(dione)] was the most active against P. aeruginosa. Considering these 

three complexes differ only by their organic group, it could be suggested that there is 

a degree of selectivity with regards to the bacterium and the type of organic group 

attached to the tin centre.  

A total of twenty two compounds were synthesised and tested in this study, fifteen of 

these exhibited an MIC50, with activity being mainly against E. coli and S. aureus. 

According to the literature, organotin compounds have a tendency to be more active 

against Gram-positive bacteria compared to Gram-negative bacteria.191d,193a,194a,197 

However, within this study, many of the active compounds exhibited similar activity 

against both E. coli and S. aureus and in some cases better activity was observed 

against E. coli in comparison to S. aureus, for example, [n-Bu2SnCl2(dione)]. Gram-

positive and Gram-negative bacteria differ mainly in their cell wall structures, with 

the Gram-negative bacteria having an extra outer membrane in comparison to the 

Gram-positive bacteria.14 Organotin(IV) compounds exhibiting similar activity 

against both E. coli and S. aureus could suggest that the extra outer membrane of the 

Gram-negative E. coli is not an obstacle for these compounds and that perhaps they 

are inhibiting growth by interacting with the internal components of the bacteria. 

Overall, the dibutyltin(IV) derivatives were most active in comparison to the 

dimethyltin(IV) or diphenyltin(IV) derivatives. Introduction of a carboxylate moiety, 

in general, did not promote activity. Complexation with a phen, dione or dppz ligand 

gave mixed results, with the dione complexes exhibiting greatest activity. The 
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organotin(IV) compounds synthesised in this study demonstrated greatest activity 

against E. coli and S. aureus and were almost inactive against P. aeruginosa. 

P. aeruginosa is well-known for its ability to grow as a biofilm, by doing so it 

creates a physical barrier to antibiotics.42 Furthermore, P. aeruginosa produces a 

thick capsule which retards the entry of antibiotics.39 It is possible that it is having 

the same action here, preventing entry of the organotin complexes.  

Although some of the compounds tested here exhibited good activity, no compound 

exhibited activity greater than that of the standard, vancomycin hydrochloride. Of all 

of the organotin(IV) compounds synthesised and tested in this study, 

[Ph2SnCl2(dione)] gave the best MIC50 result of 3.13-4.69 g/mL against S. aureus, 

and thus, was chosen for further testing against Galleria melonella. 

4.3.7 In vivo compound tolerance 

The in vivo toxicity of [Ph2SnCl2(dione)] was tested as described in section 1.2.8, 

using the larvae of the greater wax moth, Galleria melonella (G. melonella). The 

results are presented as the survival of G. mellonella larvae (expressed as %) as a 

function of the [Ph2SnCl2(dione)] dosages administered (Table 4.14). The toxicity of 

dione in G. melonella has been tested previously by McCann et al.71, the results of 

which have been included in Table 4.14 for comparison. 

Table 4.14: Survival of G. mellonella larvae (expressed as %) post injection at 24, 

48 and 72 h. 

Compound 
Dosage concentration  

(g/mL) 
G. mellonella survival 

24 48 72 
     

dione 100 - - 10071 
     

[Ph2SnCl2(dione)] 100 100 100 100 
 50 100 100 97 
 10 100 100 100 
 1 100 100 100 

 

From Table 4.14 it can be seen that, at the highest concentration of 

[Ph2SnCl2(dione)] administered, there was a 100% survival rate. This result is in 
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agreement with that of the dione ligand alone which is also non-toxic at a 

concentration of 100 g/mL, at 72 hours. The same result was also observed at the 

lower concentrations, with the exception of the 50 g/mL dosage at 72 hours, where 

one G. mellonella died. The G. mellonella were also monitored for pupation. It was 

found that after seven days, 90% of the G. mellonella larvae had pupated. This result 

suggests that not only was [Ph2SnCl2(dione)] non-toxic at the highest concentration 

administered, but it also appears to have no effect on the development of the larvae, 

at this concentration. These results for [Ph2SnCl2(dione)] suggest that it may have 

potential as a non-toxic, antibacterial compound.  

4.3.8 Conclusion 

Herein, the synthesis of diorganotin(IV) dichloride complexes of the ligands, phen, 

dione and dppz was undertaken. Diorganochlorotin(IV) acetates and diorganotin(IV) 

dicarboxylates, including complexes of the biologically active groups picolinic acid 

and nicotinic acid, were also synthesised. Complexation reactions of these 

diorganotin(IV) carboxylates with the phen ligands only occurred for the 

[R2Sn(nicotinate)2] compounds. This is probably due to the difficulty in breaking the 

intra- and/or intermolecular interactions involved in the diorganotin(IV) carboxylate 

derivatives. In general, good yields were obtained for the majority of compounds, 

with the greatest yields obtained for the diorganotin(IV) dichloride complexes of the 

phen, dione and dppz ligands. The use of three different organic groups, combined 

with organic groups capable of unidentate and/or bidentate coordination modes, 

allowed for the generation of a variety of structures amongst the diorganotin(IV) 

compounds. All of the organotin(IV) compounds synthesised were characterised by 

CHN analysis, 1H and 13C NMR and IR spectroscopies.  

Overall, the organotin(IV) compounds tested here demonstrated greatest activity 

against E. coli and S. aureus and were almost inactive against P. aeruginosa. In 

general, the addition of either a nicotinic acid or picolinic acid did not promote the 

inhibition of bacterial growth. Amongst the phen, dione and dppz ligands tested, the 

dione was the most active, producing MIC80 values in the range of 6.25-9.38 g/mL 

for E. coli, 4.69-6.25 g/mL for P. aeruginosa and 9.38-12.50 g/mL for S. aureus. 
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Of the phen, dione and dppz complexes synthesised, the [R2SnCl2(dione)] complexes 

demonstrated greatest activity. Within the [R2SnCl2(dione)] series, the dimethyl was 

the most active against P. aeruginosa, the di-n-butyl was most active against E. coli, 

and the diphenyl was most active against S. aureus, indicating a possible degree of 

selectivity with regards to the R group.  

Although many of the organotin(IV) compounds exhibited activity, no compound 

exhibited activity greater than that of the standard antibacterial agent, vancomycin 

hydrochloride, against E. coli or S. aureus. However, [Ph2SnCl2(dione)] gave a S. 

aureus MIC50 value in the range of 3.13-4.69 g/mL, a value close to that exhibited 

by vancomycin hydrochloride (2.35-3.13 g/mL). 

[Ph2SnCl2(dione)] was the most active organotin(IV) compound tested here and was 

therefore brought forward for an in vivo toxicity study. The results indicated that, at 

concentrations in the range of 1-100 g/mL, [Ph2SnCl2(dione)] is non-toxic to G. 

mellonella. 

4.3.9 Future Work 

Having given the best result in inhibiting bacterial growth, specifically the growth of 

S. aureus, an investigation into the bactericidal activity of [Ph2SnCl2(dione)] would 

be of interest. Although the number of Methicillin-Resistant S. aureus (MRSA) 

infections in Ireland has seen a decrease from 2004 to 2013, Ireland was ranked 10th 

highest amongst twenty-eight European countries in 2011.31 Furthermore, with 

regards to the MRSA proportions (%) of S. aureus infections, many European 

countries, such as Portugal and Italy, have been reported as having some of the 

highest (between 25 and 50% in 2012).31 Therefore, an assessment of the activity of 

[Ph2SnCl2(dione)] against MRSA would also be worthwhile. In the in vivo toxicity 

assay, [Ph2SnCl2(dione)] was found to be non-toxic against G. mellonella at 

concentrations in the range of 1-100 g/mL, a result similar to that of the previously 

reported dione ligand alone.71 However, at higher concentrations, that is, 1000 

g/mL, dione has demonstrated a 90% mortality rate in the G. mellonella toxicity 

assay.71 Therefore, it would be of interest to examine the toxicity of 

[Ph2SnCl2(dione)] at higher concentrations. 
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In this study, it was the [R2SnCl2(dione)] complexes that exhibited activity against 

all three bacteria. As mentioned earlier, an interesting trend was observed amongst 

the [R2SnCl2(dione) complexes with regards to the R group and the bacterium to 

which it was most active against, suggesting a possible degree of selectivity. It 

would be interesting to examine if this selectivity would be retained after alteration 

of the X group, that is, the dichloride. Additionally, it could be worth varying the R 

group in an effort to obtain an R group that would result in activity against all three 

bacteria. 

The molecular target of these organotin(IV) complexes is currently unknown. 

Considering that dione alone has the ability to bind DNA it would be interesting to 

investigate the biological mode of action of these complexes. An investigation into 

the DNA binding capabilities of the complexes, along with an assessment of the 

proteomic response of the bacterium to the complexes, could give insight into a 

possible mode of action. 
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4.4 Experimental  

The synthesis of 1,10-phen-5,6-dione (dione)232a 

 

An ice-cold solution of sulphuric acid (40 mL) and nitric acid (20 mL) was added to 

1,10-phenanthroline (4.0 g, 22.2 mmol) and potassium bromide (4.0 g, 33.6 mmol) 

on ice. The reaction mixture was heated to reflux for 3 hours and then poured into 

500 mL of ice-cold water. The yellow solution was neutralised with 5M NaOH and 

the product extracted with CHCl3 (3 x 200 mL) and dried over Na2SO4. The CHCl3 

was removed under reduced pressure and the product was purified by hot EtOH 

recrystallisation.  

Yellow solid (4.08 g, 88%); m.p. 258-262 oC (lit 270 oC)222; 1H NMR (300 MHz, 

DMSO-d6) 8.98 (dd, J = 4.7, 1.7 Hz, 2H, H2), 8.39 (dd, J = 7.8, 1.7 Hz, 2H, H4), 

7.68 (dd, J = 7.8, 4.7 Hz, 2H, H3); 13C NMR (75 MHz, DMSO-d6) 177.7 (C=O) 

154.3 (C2), 152.3 (C=N), 135.6 (C4), 129.1 (C4’), 125.2 (C3); IR (KBr) 1686 

(C=O), 1574 (C=N), 1567 (C=C), 1415 (C-H), 738 (C-N-C) cm-1; LC/TOF-MS 

calcd for C12H6N2O2 210.0434, found 211.0502 (M+H+). 

The 1H NMR data for dione was also obtained in CDCl3. 

1H NMR (300 MHz, CDCl3)  9.10 (dd, J = 4.7, 1.8 Hz, 2H, H2), 8.49 (dd, J = 7.8, 

1.8 Hz, 2H, H4), 7.57 (dd, J = 7.8, 4.7 Hz, 2H, H3), these data match reported 

literature values248. 
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The synthesis of dipyrido[3,2-a:2’,3’-c]phenazine (dppz)232b  

 

1,10-Phen-5,6-dione (0.5 g, 2.4 mmol) and o-phenylenediamine (0.3 g, 2.8 mmol) 

were heated in EtOH (198 mL) at 50 oC for 2 hours followed by an overnight reflux. 

The reaction mixture was allowed to cool to room temperature and the EtOH 

removed under reduced pressure. The resulting solid was allowed to sit for 8 hours at 

room temperature after which MeOH:water (10:90) was added and the product 

collected via filtration. The product was purified by hot MeOH recrystallisation. 

Yellow solid (0.5 g, 75% recrystallised); m.p. 246-250 oC (lit 246-247 oC)249; 1H 

NMR (300 MHz, DMSO-d6)  9.49 (dd, J = 8.1, 1.8 Hz, 2H, H2), 9.20 (dd, J = 4.4, 

1.8 Hz, 2H, H4), 8.36 (dd,  J = 6.5, 3.4 Hz, 2H, H5), 8.04 (dd,  J = 6.5, 3.4 Hz, 2H, 

H6),  7.92 (dd, J = 8.1, 4.4 Hz, 2H, H3), these data match reported literature 

values250; 13C NMR (75 MHz, DMSO-d6)  152.3 (C4), 147.8 (C=N), 141.7 (C=N), 

140.7 (C5’), 133.0 (C2), 131.2 (C6), 129.1 (C5), 126.9 (C4’), 124.5 (C3); IR (KBr) 

1634 (C=N), 1585 (C=C) 1490, 1415, 1362, 1338 (C-H), 1075 (C-N), 741 (C-N-C) 

cm-1; LC/TOF-MS calcd for C18H10N4 282.0905, found 283.0982 (M+H+). 

The 1H NMR data for dione was also obtained in CDCl3. 

1H NMR (300 MHz, CDCl3) 9.64 (dd, J = 8.1, 1.7 Hz, 2H, H2), 9.26 (dd, J = 4.5, 

1.7 Hz, 2H, H4), 8.35 (dd, J = 6.5, 3.4 Hz, 2H, H5), 7.92 (dd, J = 6.5, 3.4 Hz, 2H, 

H6), 7.80 (dd, J = 8.1, 4.5 Hz, 2H, H3). 

1H NMR (300 MHz, DMSO-d6, 80 oC)  9.41 (dd, J = 8.1, 1.7 Hz, 2H, H2), 9.13 (d, 

J = 4.3, 2H, H4), 8.27 (dd, J = 6.5, 3.4 Hz, 2H, H5), 7.98 (dd, J = 6.5, 3.4 2H, H6), 

7.85 (dd, J = 8.1, 4.3 Hz, 2H, H3); 13C NMR (75 MHz, DMSO-d6)  152.1 (C4), 



Chapter IV: A study of organotin(IV) antibacterial agents 

237 

 

147.7 (C=N), 141.6 (C=N), 140.5 (C5’), 132.9 (C2), 131.0 (C6), 128.9 (C5), 126.7 

(C4’), 124.3 (C3). 

1H NMR (300 MHz, DMSO-d6, 95 oC)  9.45 (dd, J = 8.1, 1.7 Hz, 2H, H2), 9.15 

(app br s, 2H, H4), 8.30 (dd, J = 6.5, 3.5 Hz, 2H, H5), 7.99 (dd, J = 6.5, 3.5 Hz, 2H, 

H6), 7.87 (dd, J = 8.1, 4.4 Hz, 2H, H3); 13C NMR (75 MHz, DMSO-d6)  161.6 

(C4), 151.9 (C=N), 141.6 (C=N), 140.4 (C5’), 132.8 (C2), 130.9 (C6), 128.8 (C5), 

126.7 (C4’), 124.1 (C3). 

General procedure for the synthesis of [R2Sn(O2CMe)Cl], R = Me, n-Bu 

 
The appropriate diorganotin(IV) dichloride (4.5 mmol) and acetic acid (9.1 mmol) 

were dissolved in toluene (25 mL). Triethylamine (10 mmol) was added slowly and 

the reaction mixture heated to reflux for 3 hours under nitrogen. On cooling, a white 

solid precipitated, which was removed by filtration through celite. The resulting 

filtrate was collected and the solvent was removed under reduced pressure. 

 

[Me2Sn(O2CMe)Cl]  

White solid (0.80 g, 73%); m.p. >300 oC; 1H NMR (300 MHz, CDCl3) 1.93 (s, 3H, 

O2CCH3), 0.78 (s, 3H, CH3, 2J(119/117Sn, 1H) = 92.7/82.2 Hz), 0.75 (s, 3H, CH3, 
2J(119/117Sn, 1H) = 139.8/126.6 Hz); 13C NMR (75 MHz, CDCl3)  177.7 (C=O), 22.9 

(O2CCH3), 8.8 (CH3), 6.0 (CH3); IR (KBr) 3439, 3004, 2915, 1564 (νaCOO-), 1420 

(νsCOO-), 1336 (C-H), 1022 (C-O) cm–1; Anal. (%) calcd for C4H9ClO2Sn C, 19.75; 

H, 3.73; found C, 20.19; H, 3.55. 

 

[n-Bu2Sn(O2CMe)Cl] 

White waxy solid (1.30 g, 88%); m.p. 36-39 oC; 1H NMR (300 MHz, CDCl3) 1.95 

(s, 3H, OCOCH3), 1.58-1.68 (m, 4H, CH2), 1.31-1.42 (m, 8H, CH2), 0.87-0.93 (m, 

6H, CH3); 13C NMR (75 MHz, CDCl3) 177.2 (C=O), 27.5 (CH2), 27.2 (CH2), 26.9 
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(CH2), 26.7 (CH2), 22.9 (O2CCH3), 13.5 (CH3); IR (KBr) 3429, 2958, 2928, 2872 

(CH), 1637, 1571 (νaCOO-), 1428, 1376 (νsCOO-), 1312, 1012, 737 cm–1; Anal. (%) 

calcd for C10H21ClO2Sn·1/4(C6H5CH3) C, 40.27; H, 6.81; found C, 39.28; H, 6.84. 

The synthesis of [Ph2Sn(O2CMe)Cl] 

 

Diphenyltin(IV) dichloride (4.5 mmol) and acetic acid (10 mmol) were dissolved in 

benzene (25 mL). Potassium carbonate (10 mmol) was added and the reaction 

mixture was allowed to reflux overnight under nitrogen. The reaction mixture was 

allowed to cool and was filtered through celite. The filtrate was collected and the 

solvent removed under reduced pressure. 

Cream solid (1.29 g, 79%); m.p. >300 oC;  

The NMR spectra obtained for [Ph2Sn(O2CMe)Cl] were poorly resolved due to the 

lack of solubility of the compound.  

1H NMR (300 MHz, CDCl3):  7.63-7.74 (m, phenyl CH), 7.35-7.50 (m, phenyl 

CH), 2.15 (s, O2CCH3); 13C NMR (75 MHz, CDCl3):  178.5 (C=O), 136.8 (phenyl 

CH), 129.9 (phenyl CH), 128.8 (phenyl CH), 20.7 (O2CCH3), (the phenyl quaternary 

carbon is believed to be under one of the above peaks); IR (KBr) 3044, 1551 

(νaCOO-), 1480, 1429 (νsCOO-), 1076, 728, 696, 443 cm-1; Anal. (%) calcd for 

C14H13ClO2Sn C, 45,77; H, 3.57; found C, 45.08; H, 3.24. 
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General procedure for the synthesis of [R2Sn(nicotinate)2] and 

[R2Sn(picolinate)2], R = Me, n-Bu or Ph 

        
    Diorganotin(IV) dipicolinate             Diorganotin(IV) dinicotinate 

 
Method A: 

The appropriate acid (2.4 mmol) and triethylamine (2.4 mmol) were stirred in 

toluene for 10 minutes. The appropriate diorganotin(IV) dichloride (1.2 mmol) was 

then added and the solution was allowed to reflux for 3 hours. The reaction mixture 

was allowed to cool and the solvent was removed under reduced pressure to give a 

white solid.  

 
Method B:  

The appropriate diorganotin(IV) oxide (1.2 mmol) and the desired acid (2.4 mmol) 

were brought to reflux in toluene for 2 hours. The reaction mixture was allowed to 

cool and the solvent was removed under reduced pressure. The resulting white solid 

was washed with cold MeOH and collected via filtration. 

 
[Me2Sn(picolinate)2] 

White solid (method A: 0.41 g, 86% crude, method B: 0.39 g, 83%); m.p. 259-262 
oC, (lit 258-261 oC)243; 1H NMR (300 MHz, CDCl3)  8.73 (d, J = 5.0 Hz, 2H, Ha), 

8.39 (d, J = 8.0 Hz, 2H, Hd), 8.02 (app t, J = 7.8 Hz, 2H, Hc), 7.56-7.61 (m, 2H, 

Hb), 0.59 (s, 6H, CH3, 2J(119/117Sn, 1H) = 76.5/73.5 Hz); 13C NMR (75 MHz, CDCl3) 

 164.7 (C=O), 146.3 (Ce), 144.6 (Ca), 140.9 (Cc), 128.0 (Cb), 125.8 (Cd), 8.5 

(CH3); IR (KBr) 3421, 3097, 2920, 1675 (νaCOO-), 1625 (C=C), 1601 (N=C), 1561 

(νaCOO-), 1386 (νsCOO-), 1349 (νsCOO-), 1013, 850, 693, 635 (C=N), 547 (Sn-C) 

cm-1; Anal. (%) calcd for C14H14N2O4Sn C, 42.79; H, 3.59; N, 7.13; found C, 42.17; 

H, 3.66; N, 6.99. 



Chapter IV: A study of organotin(IV) antibacterial agents 

240 

 

[n-Bu2Sn(picolinate)2] 

White solid (method B: 0.46 g, 80%); m.p. 186-190 oC; 1H NMR (300 MHz, CDCl3) 

 8.73 (d, J = 5.1 Hz, 2H, Ha), 8.40 (d, J = 8.1 Hz, 2H, Hd), 8.02 (app t, J = 8.1 Hz, 

2H, Hc), 7.55-7.60 (m, 2H, Hb), 1.14-1.29 (m, 12H, CH2), 0.73 (t, J = 7.0 Hz, 6H, 

CH3); 13C NMR (75 MHz, CDCl3)  165.4 (C=O), 147.1 (Ce), 145.4 (Ca), 140.6 

(Cc), 127.6 (Cb), 125.6 (Cd), 28.0 (CH2), 27.3 (CH2, 2J(119Sn, 13C) = 33.8 Hz), 26.2 

(CH2, 3J(119/117Sn, 13C) = 124.5/122.3 Hz), 13.3 (CH3); IR (KBr) 3421, 3091, 2958, 

2921, 2861 (CH), 1670 (aCOO-), 1627 (C=C), 1608 (N=C), 1564 (aCOO-), 1384 

(sCOO-), 1347 (sCOO-), 1012, 703, 635 (C=N), 542 (Sn-C) cm-1, these data match 

reported literature values251; Anal. (%) calcd for C20H26N2O4Sn C, 50.34; H, 5.49; N, 

5.87; found C, 51.51; H, 5.68; N, 5.82. 

 

[Ph2Sn(picolinate)2] 

White solid (method B: 0.48 g, 77%); m.p. 273-276 oC (lit 274-277 oC)243; 1H NMR 

(300 MHz, CDCl3) 8.64 (d, J = 5.0 Hz, 2H, Ha), 8.40 (d, J = 7.7 Hz, 2H, Hd), 7.91 

(app t, J = 7.7 Hz, 2H, Hc), 7.42-7.49 (m, 6H, Hb & phenyl CH), 7.13-7.18 (m, 6H, 

phenyl CH); 13C NMR (75 MHz, CDCl3)  164.6 (C=O), 146.3 (Ce), 145.8 (phenyl 

quaternary C), 144.2 (Ca), 141.4 (Cc), 134.5 (phenyl CH), 129.2 (phenyl CH), 128.6 

(phenyl CH), 128.4 (Cb), 125.9 (Cd); IR (KBr) 3433, 3068, 1678 (νaCOO-), 1600 

(N=C), 1467, 1332 (νsCOO-), 1160, 851, 696, 643 (C=N), 534 (Sn-C) cm-1; Anal. 

(%) calcd for C24H18N2O4Sn C, 55.74; H, 3.51; N, 5.42; found C, 55.41; H, 3.45; N, 

5.31. 

 

[Me2Sn(nicotinate)2] 

White solid (method B: 0.36 g, 76%); m.p. dec; 1H NMR (300 MHz, DMSO-d6)  

9.05 (s, 2H, Ha), 8.71 (d, J = 4.7 Hz, 2H, Hb), 8.24 (dt, J = 7.8, 1.9 Hz, 2H, Hd), 

7.78 (dd, J = 7.8, 4.7 Hz, 2H, Hc), 0.94 (s, 6H, CH3); 13C NMR (75 MHz, DMSO-d6) 

 170.2 (C=O), 152.4 (Cb), 150.3 (Ca), 136.9 (Cd), 128.4 (Ce, 3J(119Sn, 13C) = 51.8 

Hz), 123.5 (Cc), 11.4 (CH3); IR (KBr) 3422, 3063, 1605 (νaCOO-), 1593 (N=C), 

1554 (C=C), 1441, 1417, 1399 (νsCOO-), 1195, 867, 712, 435 (Sn-O) cm-1; Anal. 
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(%) calcd for C14H14O2N2O4Sn requires C, 42.29; H, 3.59; N, 7.13; found C, 42.38; 

H, 3.21; N, 7.32. 

 
[n-Bu2Sn(nicotinate)2] 

White solid (method B: 0.41 g, 72%); m.p. 152-158 oC; 1H NMR (300 MHz, 

DMSO-d6)  9.07 (s, 2H, Ha), 8.75 (d, J = 4.2 Hz, Hb), 8.26 (d, J = 7.8 Hz, 2H, Hd), 

7.52 (dd, J = 7.8, 4.2 Hz, 2H, Hc), 1.53-1.63 (m, 8H, CH2), 1.24-1.36 (m, 4H, CH2), 

0.81 (t, J = 7.3 Hz, 6H, CH3);  13C NMR (75 MHz, DMSO-d6) 170.9 (C=O), 152.6 

(Cb), 150.3 (Ca), 136.9 (Cd), 127.9 (Ce), 123.6 (Cc), 29.8 (CH2), 26.8 (CH2, 
2J(119Sn, 13C) = 40.5 Hz), 25.6 (CH2), 13.5 (CH3); IR (KBr)  3426, 2955, 2925, 2867 

(CH), 1609 (aCOO-), 1551, 1592 (N=C), 1434, 1409 (sCOO-),  1196, 863, 756, 

518 (Sn-C), 431 (Sn-O) cm–1, these data match reported literature values251,241; Anal. 

(%) calcd for C20H26N2O4Sn·H2O C, 48.51; H, 5.70; N, 5.66; found C, 49.11; H, 

5.52; N, 5.50. 

 

[Ph2Sn(nicotinate)2] 

White solid (method A: 0.56 g, 90% crude, method B: 0.45 g, 73%); m.p. >300 oC; 
1H NMR (300 MHz, DMSO-d6):  9.11 (s, 2H, Ha), 8.77 (d, J = 4.8 Hz, 2H, Hb), 

8.31 (d, J = 8.4 Hz, 2H, Hd), 7.80 (d, J  = 8.5 Hz, 4H, phenyl CH), 7.52 (dd, J = 8.4, 

4.8 Hz, 2H, Hc), 7.23-7.37 (m, 6H, phenyl CH), these data match reported literature 

values252; 13C NMR (75 MHz, DMSO-d6)  *169.3 (C=O), 153.1 (Cb), 150.4 (Ca), 

*148.6 (phenyl quaternary C), 137.1 (Cd), 134.0 (phenyl CH), 128.7 (phenyl CH), 

128.1 (phenyl CH), 127.0 (Ce), 123.7 (Cc); IR (KBr) 3422, 3076, 1608 (νaCOO-), 

1592 (N=C), 1541 (C=C), 1440 ,1412 (νsCOO-), 1195, 871, 695, 446 (Sn-O) cm–1; 

Anal. (%) calcd for C24H18N2O4Sn C, 55.74; H, 3.51; N, 5.42; found C, 55.91; H, 

3.49; N, 5.28. *The compound is not very soluble and as a result these signals are 

very weak. 
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General procedure for the synthesis of 1,10-phenanthroline derivatives of 

[R2SnCl2] R = Me, n-Bu or Ph 

The appropriate diorganotin(IV) compound (4.5 mmol) and the appropriate 1,10-

phenanthroline derivative (4.5 mmol) were dissolved in EtOH (25 mL) and heated to 

reflux for 3 hours. On cooling a solid precipitated which was collected by filtration, 

was washed with EtOH and allowed to dry to yield the desired product. 

       

[Me2SnCl2(phen)]  

White solid (1.68 g, 92%); m.p. dec (lit 264 oC)244a; 1H NMR (300 MHz, DMSO-d6) 

 9.32 (dd, J = 4.6, 1.7 Hz, 2H, H2), 8.74 (dd, J = 8.1, 1.7 Hz, 2H, H4), 8.16 (s, 2H, 

H5), 8.00 (dd,  J = 8.1, 4.6 Hz, 2H, H3), 0.97 (s, 6H, CH3, 2J(119/117Sn, 1H) = 

114.5/109.5 Hz); 13C NMR (75 MHz, DMSO-d6)  148.9 (C2), 142.4 (C=N), 138.2 

(C4), 129.1 (C4’), 127.1 (C5), 124.4 (C3), 24.0 (CH3); IR (KBr) 3435, 2920 (CH), 

1622 (C=N), 1572, 1519, 1429, 853, 727 (C-N-C) cm-1; Anal. (%) calcd for 

C14H14N2Cl2Sn C, 42.05; H, 3.53; N, 7.01; found C, 42.90; H, 3.75; N, 7.37.  

[Me2SnCl2(phen)] showed improved solubility in DMSO-d6 at 70 oC and hence the 

data were recorded at 70 oC. 

1H NMR (300 MHz, DMSO-d6, 70 oC) 9.38 (dd, J = 4.6, 1.6 Hz, 2H, H2), 8.75 

(dd, J = 8.1, 1.6 Hz, 2H, H4), 8.15 (s, 2H, H5), 8.02 (dd, J = 8.1, 4.6, Hz, 2H, H3), 

0.99 (s, 6H, CH3, 2J(119/117Sn, 1H) = 113.1/108.0Hz); 13C NMR (75 MHz, DMSO-d6) 

 148.1 (C2), 141.3 (C=N), 138.1 (C4), 128.8 (C4’), 126.7 (C5), 124.1 (C3), 23.3 

(CH3). 
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[n-Bu2SnCl2(phen)] 

White solid (2.12 g, 98%); m.p. 192-195 oC (lit 198-199 oC)253; 1H NMR (300 MHz, 

DMSO-d6)  9.44 (dd, J = 4.7, 1.4 Hz, 2H, H2), 8.90 (dd, J = 8.2, 1.4 Hz, 2H, H4), 

8.27 (s, 2H, H5), 8.16 (dd, J = 8.2, 4.7 Hz, 2H, H3), 1.37-1.40 (m, 4H, CH2), 1.19-

1.31 (m, 4H, CH2), 0.93-1.05 (m, 4H, CH2), 0.58 (t, J = 7.3 Hz, 6H, CH3); 13C NMR 

(75 MHz, DMSO-d6) 148.7 (C2), 140.7 (C=N), 139.6 (C4), 129.3 (C4’), 127.4 

(C5), 125.2 (C3), 40.9 (CH2), 27.5 (CH2, 2J(119Sn, 13C) = 46.5 Hz), 25.2 (CH2, 
3J(119/117Sn, 13C) = 172.5/171.8 Hz), 13.3 (CH3, 4J(119Sn, 13C) = 12.0 Hz); IR (KBr) 

3434, 2956, 2919, 2852 (CH), 1622 (C=N), 1590 (C=C), 1519, 1428, 854, 729 (C-N-

C) cm-1; Anal. (%) calcd for C20H26Cl2N2Sn C, 49.63; H, 5.41; N, 5.79; found C, 

49.40; H, 5.83; N, 5.85.  

[Ph2SnCl2(phen)] 

White solid (2.19 g, 93%); m.p. dec (lit 235 oC with dec)254; 1H NMR (300 MHz, 

DMSO-d6)  *9.50 (app s, 2H, H2), #9.06 (d, J = 8.3 Hz, 2H, H2), *8.74 (app s, 2H, 

H4), #8.54 (d, J = 4.7 Hz, 2H, H4), #8.43 (br s, 2H, H5), #8.25 (d, J = 8.3 Hz, 2H, 

phenyl CH), #8.16-8.18 (m, 2H, H3), *8.12 (br s, 2H, H5), *8.05 (app br s, 2H, H3), 

#7.92 (d, J = 7.1 Hz, 2H, phenyl CH), *7.72 (d, J = 7.1 Hz, 4H, phenyl CH), #7.42-

7.55 (m, 6H, phenyl CH), *7.08-7.24 (m, 6H, phenyl CH); IR (KBr) 3433, 3049, 

1622 (C=N), 1572 (C=C), 1519, 1429, 1103, 854, 727 (C-N-C) cm-1; Anal. (%) 

calcd for C24H18Cl2N2Sn·H2O C, 53.18; H, 3.72; N,5.17; found C, 53.44; H, 3.75; N, 

5.22. 

*Trans-isomer and #Cis-isomer (Trans/Cis ratio = 1.0:0.2) 

[Ph2SnCl2(phen)] data were recorded at 70 oC in order to investigate the presence of 

isomers. 

1H NMR (300 MHz, DMSO-d6, 70 oC)  9.50 (app br s, 2H, H2), 8.73 (app br s, 2H, 

H4), 8.00-8.14 (m, 4H, H3 & H5), 7.75 (app br s, 4H, phenyl CH), 7.17 (app br s, 

6H, phenyl CH); 13C NMR (75 MHz, DMSO-d6, 70 oC)  154.8 (phenyl quaternary 

C), 148.5 (C2), 141.3 (C=N), 138.3 (C4), 133.5 (phenyl CH), 128.9 (C4’), 127.4 

(phenyl CH), 127.0 (phenyl CH), 126.9 (C5), 124.2 (C3). 
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[Me2SnCl2(dione)] 

Yellow solid (1.88 g, 97%); m.p. dec; 1H NMR (300 MHz, DMSO-d6)  9.00 (dd, J 

= 4.7, 1.8 Hz, 2H, H2), 8.41 (dd, J = 7.8, 1.8 Hz, 2H, H4), 7.69 (dd, J = 7.8, 4.7 Hz, 

2H, H3), 1.03 (s, 6H, CH3, 2J(119/117Sn, 1H) = 113.7/108.9 Hz); 13C NMR (75 MHz, 

DMSO-d6)  177.6 (C=O), 154.2 (C2), 152.0 (C=N), 135.8 (C4), 129.1 (C4’), 125.3 

(C3), 22.9 (CH3, 1J(119/117Sn, 13C) = 1014.0/968.3 Hz); IR (KBr) 3442, 3071, 1701 

(C=O), 1573 (C=N), 1474, 1429, 1302, 732 (C-N-C) cm-1; Anal. (%) calcd for 

C14H12Cl2N2O2Sn·EtOH C, 40.38; H, 3.81; N, 5.89; found C, 41.24; H, 3.01; N, 

6.79. 

[n-Bu2SnCl2(dione)] (See section 4.3.5.1) 

Yellow solid (2.31 g, 99%); m.p. dec; IR (KBr) 3421, 3076, 2955, 2920, 2862 (CH), 

1620 (C=O), 1584 (C=N), 1436, 1376, 1069, 1042, 720 cm-1; Anal. (%) calcd for 

C20H24Cl2N2O2Sn·H2O C, 45.15; H, 4.93; N, 5.27; found C, 45.07; H, 4.69; N, 5.46. 

[Ph2SnCl2(dione)] 

Yellow solid (2.42 g, 97%); m.p. dec; 1H NMR (300 MHz, DMSO-d6)  9.00 (dd, J 

= 4.7, 1.6 Hz, 2H, H2), 8.40 (dd, J = 7.8, 1.6 Hz, 2H, H4), 7.90 (d, J = 7.0 Hz, 4H, 

phenyl CH), 7.68 (dd, J = 7.8, 4.7 Hz, 2H, H3), 7.25-7.37 (m, 6H, phenyl CH); 13C 

NMR (75 MHz, DMSO-d6) 177.3 (C=O), 155.1 (phenyl quaternary C), 153.9 (C2), 

151.6 (C=N), 136.0 (C4), 134.5 (phenyl CH, 2J(119Sn, 13C) = 69.8 Hz), 129.3 (C4’), 

127.8 (phenyl CH), 127.3 (phenyl CH), 125.3 (C3), these data match reported 

literature values246; IR (KBr) 3444, 3058, 1694 (C=O), 1576 (C=N), 1477, 1430, 727 

(C-N-C), 700 cm-1; Anal. (%) calcd for C24H16Cl2N2O2Sn C, 52.03; H, 2.91; N, 5.06; 

found C, 52.29; H, 3.34; N, 5.19.  
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[Me2SnCl2(dppz)] 

Yellow solid (2.13 g, 94%); m.p. 269-272 oC; 1H NMR (300 MHz, DMSO-d6) 9.42 

(dd, J = 8.1, 1.6 Hz, 2H, H2), 9.20 (dd, J = 4.4, 1.6 Hz, 2H, H4), 8.29 (dd, J = 6.5, 

3.4 Hz, 2H, H5), 8.01 (dd, J = 6.5, 3.4 Hz, 2H, H6), 7.91 (dd, J = 8.1, 4.4 Hz, 2H, 

H3), 1.03 (s, 6H, CH3); IR (KBr) 3434, 3066, 1632 (C=N), 1572 (C=C), 1494, 1420, 

1359, 1075, 772, 734 (C-N-C) cm-1; Anal. (%) calcd for C20H16Cl2N4Sn C, 47.85; H, 

3.21; N, 11.16; found C, 47.27; H, 3.04; N, 10.74. 

[Me2SnCl2(dppz)] showed improved solubility in DMSO-d6 at 80 oC and hence the 

data were recorded at 80 oC. 

1H NMR (300 MHz, DMSO-d6, 80 oC)  9.46 (d, J = 8.0 Hz, 2H, H2), 9.21 (app br s, 

2H, H4), 8.30 (dd, J = 6.5, 3.5 Hz, 2H, H5), 7.99 (dd, J = 6.5, 3.5 Hz, 2H, H6), 7.91 

(dd, J = 8.0, 4.4 Hz, 2H, H3), 1.08 (s, 6H, CH3, 2J(119/117Sn, 1H) = 108.3/103.8 Hz); 
13C NMR (75 MHz, DMSO-d6)  152.3 (C4), 147.8 (C=N), 142.3 (C=N), 141.0 

(C5’), 133.8 (C2), 131.6 (C6), 129.6 (C5), 127.6 (C4’), 125.0 (C3), 21.4 (CH3). 

[n-Bu2SnCl2(dppz)] 

Pink solid (2.54 g, 96%); m.p. 197-202 oC; 1H NMR (300 MHz, CDCl3)  9.93 (dd, J 

= 8.2, 1.5 Hz, 2H, H2), 9.83 (dd, J = 4.9, 1.5 Hz, 2H, H4), 8.41 (dd, J = 6.6, 3.4 Hz, 

2H, H5), 8.14 (dd, J = 8.2, 4.9 Hz, 2H, H3), 8.03 (dd, J = 6.6, 3.4 Hz, 2H, H6), 1.62-

1.68 (m, 4H, CH2), 1.36-1.51 (m, 4H, CH2), 1.03-1.10 (m, 4H, CH2), 0.62 (t, J = 6.9 

Hz, 6H, CH3); 13C NMR (75 MHz, CDCl3)  150.5 (C4), 142.9 (C=N), 142.7 (C=N), 

139.3 (C5’), 136.9 (C2), 132.1 (C6), 129.7 (C5), 129.3 (C4’), 126.3 (C3), 41.9 
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(CH2), 28.2 (CH2), 25.9 (CH2), 13.4 (CH3); IR (KBr) 3431, 2954, 2916, 2858 (CH), 

1630 (C=N), 1493, 1076 (C-N), 736 (C-N-C) cm-1; Anal. (%) calcd for 

C26H28Cl2N4Sn C, 53.28; H, 4.81; N, 9.56; found C, 52.89; H, 5.22; N, 9.47. 

[Ph2SnCl2(dppz)] 

Light yellow solid (2.76 g, 98%); m.p. 272-282 oC; 1H NMR (300 MHz, DMSO-d6) 

 9.44 (dd, J = 8.1, 1.7 Hz, 2H, H2), 9.26 (app br s, 2H, H4), 8.28 (dd, J = 6.5, 3.4 

Hz, 2H, H5), 8.00 (dd, J = 6.5, 3.4 Hz, 2H, H6), 7.95 (dd, J = 8.1, 4.6 Hz, 2H, H3), 

7.23-7.89 (d, J = 6.7 Hz, 4H, phenyl CH), 7.37 (m, 6H, phenyl CH); 13C NMR (75 

MHz, DMSO-d6)  *155.1 (phenyl quaternary C), 151.9 (C4), *146.9 (C=N), 141.6 

(C=N), 140.4 (C5’), 134.5 (phenyl CH), 133.5 (C2), 131.3 (C6), 129.1 (C5), 127.7 

(phenyl CH), 127.3 (phenyl CH), 127.1 (C4’), 124.8 (C3); IR (KBr) 3443, 3067, 

1627 (C=N), 1574 (C=C), 1494, 1420, 1361, 1078, 735, (C-N-C) cm-1; Anal. (%) 

calcd for C30H20Cl2N4Sn C, 57.55; H, 3.22; N, 8.95; found C, 57.09; H, 3.23; N, 

9.22. *The compound is not very soluble and as a result these signals are very weak. 

General procedure for the synthesis of 1,10-phenanthroline derivatives of 

[R2Sn(nicotinate)2] R = Me, Bu or Ph 

The appropriate diorganotin(IV) compound (4.5 mmol) and the appropriate 1,10-

phenanthroline derivative (4.5 mmol) were dissolved in EtOH (25 mL) and heated to 

reflux for 3 hours. In the case of the [R2Sn(nicotinate)2] compounds where R = Me 

and Bu, the reaction mixture was allowed to cool and solvent was removed under 

reduced pressure to give the desired product. With [Ph2Sn(nicotinate)2(phen)], after 

cooling, the reaction mixture was filtered to removed unreacted starting materials 

and the filtrate reduced under pressure. The remaining solid was then washed with 

cold EtOH to remove any remaining 1,10-phenanthroline & the filtrate reduced 

under pressure to give the product. 
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[Me2Sn(nicotinate)2(phen)] 

Pink solid (1.99 g, 77%); m.p. 212-220 oC; 1H NMR (300 MHz, DMSO-d6)  9.46 

(d, J = 4.7 Hz, 2H, H2), 9.15 (br s, 2H, Ha), 8.71-8.76 (m, 4H, H4 & Hb), 8.30 (d, J 

= 7.7 Hz, 2H, Hd), 8.15 (s, 2H, H5), 8.00 (dd, J = 8.5, 4.7 Hz, 2H, H3), 7.50 (dd, J = 

7.7, 4.4 Hz, 2H, Hc), 0.92 (s, 6H, CH3); 13C NMR (75 MHz, DMSO-d6)          

170.3 (C=O), 152.1 (Cb), 150.5 (Ca), 149.5 (C2), 142.0 (C=N), 138.4 (C4), 136.9 

(Cd), 129.1 (Ce), 129.0 (C4’), 127.0 (C5), 124.5 (C3), 123.4 (Cc), 14.5 (CH3); IR 

(KBr) 3431, 3055, 1645, 1590, 1428, 1332, 1027, 846, 756 cm–1; Anal. (%) calcd for 

C26H22N4O4Sn C, 54.48: H, 3.87: N, 9.77; found C, 54.62; H, 3.85; N, 9.66. 

 

[n-Bu2Sn(nicotinate)2(phen)] 

Pink solid (2.75 g, 93%); m.p. 121-127 oC; 1H NMR (300 MHz, DMSO-d6)  9.48 

(d, J = 4.3 Hz, 2H, H2), 9.17 (br s, 2H, Ha), 8.77 (d, J = 7.5 Hz, 2H, H4), 8.71 (d, J 

= 4.8 Hz, 2H, Hb), 8.32 (d, J = 7.7 Hz, 2H, Hd), 8.17 (s, 2H, H5), 8.02-8.06 (m, 2H, 

H3), 7.48 (dd, J = 7.7, 4.8 Hz, 2H, Hc), 1.50-1.56 (m, 4H, CH2), 1.29 (br s, 4H, 

CH2), 0.98-1.05 (m, 4H, CH2), 0.52 (t, J = 8.7 Hz, 6H, CH3); 13C NMR (75 MHz, 

DMSO-d6):  170.3 (C=O), 152.0 (Cb), 150.5 (Ca), 149.8 (C2), 142.3 (C=N), 138.5 

(C4), 136.9 (Cd), 129.3 (C4’), 129.0 (Ce), 127.1 (C5), 124.6 (C3), 123.4 (Cc), 31.9 

(CH2), 26.9 (CH2), 25.4 (CH2), 13.3 (CH2); IR (KBr) 3429, 3047, 2948, 2925, 2865, 

1648, 1599, 1588, 1552, 1426, 1332, 1143, 848, 424 cm–1; Anal. (%) calcd for 

C32H36N4O4Sn·2H2O C, 55.43; H, 5.52; N, 8.08; found C, 55.08; H, 5.04; N, 7.85. 

 

[Ph2Sn(nicotinate)2(phen)]  

Peach solid (0.35 g, 10%); m.p. dec; 1H NMR (300 MHz, DMSO-d6)  9.09 (app br 

s, 2H, H2), 9.03 (br s, 2H, Ha), 8.71 (app br s, 2H, Hb), 8.49 (app br s, 2H, H4), 8.24 

(app br s, 2H, Hd), 7.96 (app br s, 3H, H5 & phenyl CH), 7.82 (d, J = 6.1 Hz, 2H, 

phenyl CH), 7.78 (app br s, 2H, H3), 7.48-7.52 (m, 2H, Hc), 7.37-7.45 (m, 6H, 

phenyl CH), 7.12 (app br s, 1H, phenyl CH); 13C NMR (75 MHz DMSO-d6)  167.2 

(C=O) 153.1 (Cb), 150.5 (Ca), 150.2 (C2), 145.5 (phenyl quaternary C), 143.4 

(C=N), 137.5 (Cd), 136.8 (C4), 136.5 (phenyl CH), 129.3 (phenyl CH), 128.8 (C4’), 
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128.7 (phenyl CH), 128.3, (Ce), 127.1 (C5), 124.2 (Cc), 123.9 (C3); IR (KBr) 3432, 

3070, 1709, 1655, 1596, 1419, 1324, 1302, 1033, 748 cm–1; Anal. (%) calcd for 

C36H26N4O4Sn·H2O C, 60.44; H, 3.95; N, 7.83; found C, 60.44; H, 3.74; N, 8.17. 
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[Me2Sn(nicotinate)2(dppz)] 

Yellow solid (2.97 g, 98%); m.p. dec; 1H NMR (300 MHz, DMSO-d6)  9.55 (d, J = 

7.9 Hz, 2H, H2), 9.27 (d, J = 4.7 Hz, 2H, H4), 9.07 (d, J = 1.5 Hz, 2H, Ha), 8.74 (dd, 

J = 4.9, 1.9 Hz, 2H, Hb), 8.39 (dd, J = 6.6, 3.5 Hz, 2H, H5), 8.26 (app dt, J = 7.8, 1.9 

Hz, 2H, Hd), 8.07 (dd, J = 6.6, 3.5 Hz, 2H, H6), 7.98 (dd, J = 7.9, 4.7 Hz, 2H, H3), 

7.50 (dd, J = 7.8, 4.9 Hz, 2H, Hc), 0.95 (s, 6H, CH3); IR (KBr) 3427, 1605, 1592, 

1554, 1486, 1415, 1400, 1362, 1336, 1073, 741 cm–1
; Anal. (%) calcd for 

C32H24N6O4Sn C, 56.92; H, 3.58; N, 12.45;  found C, 56.49; H, 3.57; N, 12.53. 

 

[Me2Sn(nicotinate)2(dppz)] showed improved solubility in DMSO-d6 at 80 oC and 

hence the data were recorded at 80 oC. 

1H NMR (300 MHz, DMSO-d6, 80 oC)  9.47 (d, J = 7.9 Hz, 2H, H2), 9.22 (app br s, 

2H, H4), 9.07 (br s, 2H, Ha), 8.70 (dd, J = 4.8, 1.5 Hz, 2H, Hb), 8.29 (dd, J = 6.5, 

3.4 Hz, 2H, H5), 8.25 (d, J = 7.8 Hz, 2H, Hd), 7.99 (dd, J = 6.5, 3.4 Hz, 2H, H6), 

7.90 (dd, J = 7.9, 4.3 Hz, 2H, H3), 7.46 (dd, J = 7.8, 4.8 Hz, 2H, Hc), 1.02 (s, 6H, 

CH3, 2J(119/117Sn, 1H) = 101.7/97.5 Hz); 13C NMR (75 MHz, DMSO-d6)  168.6 

(C=O), 151.8 (Cb), 151.5 (C4), 149.9 (Ca), 147.0 (C=N), 141.3 (C=N), 140.1 (C5’), 

136.2 (Cd), 132.7 (C2), 130.6 (C6), 128.6 (C5), 128.2 (Ce), 126.5 (C4’), 123.9 (C3), 

122.8 (Cc), 11.8 (CH3). 
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[n-Bu2Sn(nicotinate)2(dppz)]  

Yellow solid (3.07 g, 90%); m.p. dec; 1H NMR (300 MHz, DMSO-d6) 9.40 (d, J = 

7.8 Hz, 2H, H2), 9.31 (app br s, 2H, H4), 9.11 (br s, 2H, Ha), 8.73 (d, J = 5.0 Hz, 

2H, Hb), 8.28 (d, J = 7.8 Hz, 2H Hd), 8.23 (dd, J = 6.5, 3.4 Hz, 2H, H5), 7.92-8.02 

(m, 4H, H6 & H3), 7.51 (dd, J = 7.8, 5.0 Hz, 2H, Hc), 1.44-1.62 (m, 8H, CH2), 1.17-

1.24 (m, 4H, CH2), 0.72 (t, J = 7.2 Hz, 6H, CH3); IR (KBr) 3425, 2955, 2924, 2868 , 

1606, 1593, 1553, 1407, 1361, 1337, 1074, 740 cm–1; Anal. (%) calcd for 

C38H36N6O4Sn C, 60.10; H, 4.78; N, 11.07; found C, 60.91; H, 4.90; N, 10.40. 

 

[n-Bu2Sn(nicotinate)2(dppz)] showed improved solubility in DMSO-d6 at 95 oC and 

hence the data were recorded at 95 oC. 

1H NMR (300 MHz, DMSO-d6, 95 oC)  9.38 (dd, J = 7.9, 1.7 Hz, 2H, H2), 9.14 (d, 

J = 3.9 Hz, 2H, H4), 9.03 (br s, 2H, Ha), 8.68 (dd, J = 4.9, 1.7 Hz, 2H, Hb), 8.19-

8.24 (m, 4H, Hd & H5), 7.94 (dd, J = 6.6, 3.4 Hz, 2H, H6), 7.84 (dd, J = 7.9, 3.9 Hz, 

2H, H3), 7.46 (dd, J = 8.0, 4.9 Hz, 2H, Hc), 1.61-1.71 (m, 4H, CH2), 1.42-1.56 (m, 

4H, CH2), 1.23-1.36 (m, 4H, CH2), 0.80 (t, J = 7.3 Hz, 6H, CH3); 13C NMR (75 

MHz, DMSO-d6)  168.4 (C=O), 152.2 (Cb), 151.9 (C4), 150.0 (Ca), 147.3 (C=N), 

141.6 (C=N), 140.3 (C5’), 136.5 (Cd), 132.9 (C2), 130.8 (C6), 128.8 (C5), 128.3 

(Ce), 126.7 (C4’), 124.2 (C3), 123.2 (Cc), 26.4 (CH2), 25.6 (CH2), 12.9 (CH3). 
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Appendix 

Appendix A 

 

Figure A1: 1H NMR spectra for compound 12 in (a) CDCl3 at 50 oC, (b) CDCl3 at 

25 oC and (c) CD3OD at 25 oC. Solvent residual 1H signals were also observed in 

each spectrum. 
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Appendix B 

Table B1: Phenylamino acrylates and malonates tested for bacteriostatic activity. 

 

Quinolone R R’ 
3.1a H CN 
3.2a F CN 
3.3 H CO2Et 
3.4 F CO2Et 

        a Tested as mixture of E/Z isomers 

Table B2: Quinolone compounds tested for bacteriostatic activity. 

 

Quinolone R1 R3 R5 R7 
3.5 H CN H H 

a3.6a H CN H F 

a3.6b H CN F H 

3.7 H CO2Et H H 

b3.8a H CO2Et H F 

b3.8b H CO2Et F H 

3.9 Et CN H H 
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Table B2 continued 

Quinolone R1 R3 R5 R7 
3.10a Et CN H F 

3.10b Et CN F H 

3.11a Et CO2Et H H 

3.12b Et CO2Et H F 

3.12c Et CO2Et F H 

3.13 Et CO2H H H 

3.14 Et CO2H H F 

3.15 Et CO2H H OMe 

3.16 Et CN H Piperazine 

3.17 Et CO2H H Piperazine 

3.18 Et CN H N-
Methylpiperazin

e 3.19 Et CO2H H N-
Methylpiperazin

e 3.20 Et CN4 H H 
a Tested as mixture of 3.6a and 3.6b, b tested as mixture of 3.8a and 3.8b.  

Table B3: O-Alkyl quinolone compounds tested for bacteriostatic activity. 

 

Quinolone R1 R3 R5 R7 
3.11b - CO2Et H H 

3.12a - CO2Et H F 
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Figure B1: 1H and NOE spectra of 3.10b. 
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Figure B2: 1H and NOEdiff spectra for 3.12b. 
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Figure B3: IR spectrum of 3.20. 

Table B4: Crystal structure and refinement of 1-ethyl-3-(1H-tetrazol-5-yl)quinolin-

4(1H)-one, 3.20. 

Empirical formula C12 H13 N5 O2 
Formula weight 259.27 
Temperature 150(2) K 
Wavelength 0.71073 Å 
Crystal system Monoclinic 
Space group P2(1)/n 
Unit cell dimensions a = 14.993(3) Å = 90° 
 b = 4.3819(10) Å = 92.197(4)° 
 c = 17.908(4) Å  = 90° 
Volume 1175.7(5) Å3 
Z 4 
Density (calculated) 1.465 Mg/m3 
Absorption coefficient 0.105 mm-1 
F(000) 544 
Crystal size 0.37 x 0.07 x 0.04 mm3 
Crystal description yellow needle 
Theta range for data collection 1.74 to 26.43° 
Index ranges -18<=h<=18, -5<=k<=5, -22<=l<=22 
Reflections collected 9737 
Independent reflections 2428 [R(int) = 0.0644] 
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Table B4 continued 

Completeness to theta = 26.43° 100.0% 
Absorption correction Semi-empirical from equivalents 
Max. and min. transmission 0.9958 and 0.9621 
Refinement method Full-matrix least-squares on F2 
Data / restraints / parameters 2428 / 3 / 181 

Goodness-of-fit on F2 1.009 
Final R indices [I>2sigma(I)] R1 = 0.0478, wR2 = 0.1017 
R indices (all data) R1 = 0.0911, wR2 = 0.1196 
Largest diff. peak and hole 0.166 and -0.206 e.Å-3 
 

Table B5: Atomic coordinates (x 104) and equivalent isotropic displacement 

parameters (Å2x 103) for 3.20. U(eq) is defined as one third of the trace of the 

orthogonalized Uij tensor. 

 X Y Z U(eq) 

N(1) 7234(1) 7632(4) 10324(1) 24(1) 
C(1) 7919(1) 6967(5) 10799(1) 24(1) 
C(2) 8594(1) 4988(5) 10644(1) 22(1) 
C(3) 9288(1) 4391(5) 11218(1) 24(1) 
N(2) 9335(1) 5638(5) 11893(1) 29(1) 
N(3) 10080(1) 4435(5) 12245(1) 33(1) 
N(4) 10476(1) 2555(5) 11808(1) 31(1) 
N(5) 9981(1) 2511(4) 11160(1) 25(1) 
C(4) 8604(1) 3514(5) 9926(1) 23(1) 
O(1) 9213(1) 1709(4) 9758(1) 32(1) 
C(5) 7857(1) 4239(5) 9412(1) 22(1) 
(C6) 7794(2) 2902(5) 8699(1) 27(1) 
C(7) 7079(1) 3493(5) 8216(1) 29(1) 
C(8) 6411(2) 5468(5) 8430(1) 29(1) 
C(9) 6450(1) 6839(5) 9122(1) 27(1) 
C(10) 7175(1) 6249(5) 9623(1) 22(1) 
C(11) 6523(1) 9644(5) 10593(1) 29(1) 
C(12) 5753(2) 7877(6) 10899(1) 37(1) 

O(1W) 7968(1) 8009(4) 12778(1) 38(1) 
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Table B6: Bond lengths [Å] and angles [°] for 3.20. 

N(1)-C(1) 1.339(3) N(4)-N(5) 1.353(2) 
N(1)-C(10) 1.395(3) C(4)-O(1) 1.253(2) 
N(1)-C(11) 1.478(3) C(4)-C(5) 1.458(3) 
C(1)-C(2) 1.370(3) C(5)-C(6) 1.405(3) 
C(2)-C(4) 1.438(3) C(5)-C(10) 1.411(3) 
C(2)-C(3) 1.457(3) C(6)-C(7) 1.377(3) 
C(3)-N(2) 1.327(3) C(7)-C(8) 1.388(3) 
C(3)-N(5) 1.333(3) C(8)-C(9) 1.375(3) 
N(2)-N(3) 1.367(2) C(9)-C(10) 1.406(3) 
N(3)-N(4) 1.296(3) C(11)-C(12) 1.510(3) 
    
C(1)-N(1)-C(10) 119.86(18) O(1)-C(4)-C(2) 122.04(19) 
C(1)-N(1)-C(11) 117.90(18) O(1)-C(4)-C(5) 122.38(19) 
C(10)-N(1)-C(11) 122.06(17) C(2)-C(4)-C(5) 115.57(19) 
N(1)-C(1)-C(2) 124.3(2) C(6)-C(5)-C(10) 118.60(19) 
C(1)-C(2)-C(4) 119.91(19) C(6)-C(5)-C(4) 120.40(19) 
C(1)-C(2)-C(3) 118.93(19) C(10)-C(5)-C(4) 120.99(19) 
C(4)-C(2)-C(3) 121.16(19) C(7)-C(6)-C(5) 121.1(2) 
N(2)-C(3)-N(5) 108.06(18) C(6)-C(7)-C(8) 119.7(2) 
N(2)-C(3)-C(2) 125.5(2) C(9)-C(8)-C(7) 121.0(2) 
N(5)-C(3)-C(2) 126.44(19) C(8)-C(9)-C(10) 119.9(2) 
C(3)-N(2)-N(3) 105.99(18) N(1)-C(10)-C(9) 121.04(19) 
N(4)-N(3)-N(2) 110.62(17) N(1)-C(10)-C(5) 119.33(19) 
N(3)-N(4)-N(5) 106.13(17) C(9)-C(10)-C(5) 119.6(2) 
C(3)-N(5)-N(4) 109.19(18) N(1)-C(11)-C(12) 112.55(19) 
 



Appendix 

279 

 

Appendix C 

                               

 [Ph2SnCl2(phen)]*                 [Ph2SnCl2(phen)]# 

 

 

Figure C1: COSY NMR spectrum of [Ph2SnCl2(phen)]. *[Ph2SnCl2(phen)] in red 

(trans-isomer) and #[Ph2SnCl2(phen)] in blue (cis-isomer). 
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Figure C2: 1H NMR of [Ph2SnCl2(phen)] at 25 oC (DMSO-d6). 

 

Figure C3: 1H NMR of [Ph2SnCl2(phen)] at 70 oC (DMSO-d6). 


