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Abstract

This letter describes and applies generic methods for generating local measures from the correspondence
table. These were developed by integrating the functionality of two existing R packages: gwxtab and
diffeR. They demonstrate how spatially explicit accuracy and error measures can be generated from
local geographically weighted correspondence matrices, for example to compare classified and reference
data (predicted and observed) for error analyses, and classes at times t1 and t2 for change analyses. The
approaches in this letter extend earlier work that considered the measures derived from correspondence
matrices in the context of generalized linear models and probability. Here the methods compute local,
geographically weighted correspondence matrices, from which local statistics are directly calculated. In
this case a selection of the overall and categorical difference measures proposed by Pontius and Milones
(2011) and Pontius and Santacruz (2014), as well as spatially distributed estimates of kappa coefficients,
User and Producer accuracies. The discussion reflects on the use of the correspondence matrix in
remote sensing research, the philosophical underpinnings of local rather than global approaches for
modelling landscape processes and the potential for policy and scientific benefits that local approaches
support.
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1. Introduction

One of the under-explored research areas in remote sensing of land cover and land use is the investigation
of local statistical models. Most remote sensing methods (classification, validation, change detection,
etc) apply global approaches and models under the assumption that relationships between the variables
or data under consideration remain constant over geographical space (Comber et al. 2012). Global
models describe processes or patterns which are assumed to be location independent or stationary.
Any spatial ‘variation’ in the results is driven by variation in data or variable values. However, this
assumption of process spatial stationarity and invariance is contradicted by the many observations of
spatial auto-correlation in remote sensing of landscape processes, especially classification error (from
Campbell 1981 to Comber et al. 2016a), and more widely in geographic analyses under Tobler’s 1st
law of geography (Tobler 1970). Spatial auto-correlation occurs when changes in properties of nearby
features in geographic space are found to be correlated, contradicting the underlying assumption
of independence in statistical analysis and inference. The result is process spatial non-stationarity
when the statistical pattern or relationship observed in one region differs from that in another. An
example of this global rather than local philosophy in remote sensing is the persistence of the use of
the correspondence matrix. In error reporting this summarises the spatial coincidence of a classified
dataset with a reference dataset, sometimes referred to as predicted and observed data, and in change
analyses it summarises the class to class transitions between data collected at different times.

Recent research has started to address this fundamental statistical blind spot in remote sensing, and
spatially sensitive approaches have been proposed for remote sensing classification (Comber et al.
2016b), data fusion (Lisev et al. 2016) and in applications where remote sensing data provides one of the
input variables, for example mapping above ground biomass (Propastin 2012), population segregation
(Yu and Wu 2004), net primary production (Wang et al. 2005) and in epidemiology (Khormi and
Kumar 2011).

In remote sensing error analysis Foody (2005) calculated geographically distributed correspondence
matrices and interpolated between them to generate surfaces of error. Extensions by Comber et
al. (2012) and Comber (2013) developed geographically weighted (GW) measures accuracy from a
GW logistic regression which were further extended to examine the spatio-temporal characteristics of
classification accuracy by Tsutsumida and Comber (2015). All of these approaches provide spatially
distributed measures of error that can be easily quantified using a simple logistic regression of the
data in the correspondence matrix, as described in Comber (2013). However, many other measures
may be calculated from the correspondence matrix including Kappa estimates (Congalton 1991) and
the quantity and allocation disagreements suggested by Pontius and Millones (2011). Indeed, within
statistics there is a long literature describing statistical measures that can be derived from the family of
contingency tables (e.g. Hartigan and Kleiner 1981; Friendly 1994), of which the correspondence matrix
is member. These are not straightforward to describe or formalise in a logistic regression, geographically
weighted or not.

This letter describes a generic method for calculating spatially distributed correspondence matrices that
support a much wider set of geographically weighted analyses of error, accuracy and correspondence. It
uses the gwxtab R package (Brunsdon et al. 2016) as a framework for calculating local correspondence
matrices. Then it uses these to calculate local difference metrics as described in Pontius and Milones
(2011) and Pontius and Santacruz (2014) and implemented in the diffeR R package (Pontius and
Santacruz 2015). For good measure we calculate local estimates of kappa coefficients and User and
Producer accuracies. This letter highlights how thinking locally rather than globally can result in more
spatially nuanced reportings of accuracy and other comparative measures such as change. It illustrates
how generic tools such as gwxtab can be used to calculate local versions of any correspondence table
derived metric, which can in turn be mapped, to generate novel, spatially distributed measures of
accuracy.
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2. Data and Methods

2.1 Data

The dataset used in this analysis was collated by International Institute for Applied Systems Analysis
(IIASA) in Austria and is included in the gwxtab package. It describes land cover at 2,439 locations in
the British Isles (minus the islands!) from 4 sources collapsed to 10 classes as described in Comber et
al. (2013): volunteered land cover data collected by the Geo-Wiki initiative (Fritz et al. 2012), the
GLC-2000 database (Fritz et al. 2003), the MODIS land cover product (Loveland et al. 2000) and
GlobCover (Bicheron et al. 2008). The analyses in this letter compare the Geo-Wiki and MODIS data
which are used here to illustrate the methods being proposed. Table 1 shows the correspondence matrix
of the MODIS (rows) against the Geo-Wiki data (columns). The values in the table describe for each
class, the counts of the data points in the first dataset that were assigned to each class in the second
dataset. The off diagonal elements in the matrix summarise disagreements in the land cover classes
allocated to pixels in each dataset.

Table 1. Matrix showing the correspondence between Geo-Wiki (columns) and MODIS (rows) land
cover data’ (or similar). The values are counts of the data points in each class in the Geo-Wiki data

assigned to each class in the MODIS dataset.

1 2 3 4 5 6 7 8 9 10
1. Forest 31 3 37 33 10 1 55 0 1 1
2. Shrub 0 0 0 1 0 0 31 0 0 0
3. Grass 11 4 26 62 15 1 19 0 5 1
4. Crop 13 1 117 355 10 1 78 0 2 3
5. Mosaic 53 1 293 135 1 0 89 0 2 1
6. Wetland 0 0 0 0 0 0 0 0 0 0
7. Urban 21 1 104 49 0 0 749 0 5 4
8. Snow 0 0 0 0 0 0 0 0 0 0
9. Barren 0 0 0 0 0 0 0 0 0 0
10. Water 0 0 1 1 0 0 1 0 0 0

2.2 Geographically weighted correspondence matrices

A correspondence matrix summarises the spatial intersection of 2 datasets and in a remote sensing error
analysis, it compares the classified data with higher quality reference data at sample locations. In full a
correspondence analysis, for example examining change over time, it summarises the spatial intersection
of all data points or pixels. However, it provides no information about the spatial distribution of change
or error, and the global measures derived the from correspondence matrix may mask local variations
(McGwire and Fisher 2001).

The basic idea of geographically weighted approach is that local measures are computed from subsets
of the full datasets at predefined locations. GW approaches seeks to quantify the spatial variation in
relationships and in a GW analysis of local correspondence matrices, this describes the spatial variation
in the correspondence between 2 datasets and generates spatially distributed measures of error, for
example. At each location, a subset of the data falling under a kernel are weighted by their distance to
that location and then used to construct the correspondence matrix. This local correspondence matrix
can be used to calculate the statistic of interest.
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The kernel size or bandwidth, can be fixed (e.g. 20 km) or it can be adaptive to subset the nearest n
data points (e.g. 15%) and different kernel functions (shapes) can be used for the distance weighting.
Generally larger bandwidths result in a greater degree of spatial smoothing. Gollini et al. (2015)
describe some of these and methods for determining bandwidth optimally. In this case, an adaptive
bandwidth of 15% was specified and a bisquare kernel were applied. For a given bandwidth h, this is
defined by:

f(d) =


(

1 −
(

d
h

)2)2
if d < h;

0 otherwise.
(1)

where d is the distance of the data point to the kernel centre.

Local, geographically weighted correspondence matrices were constructed comparing volunteered land
cover data collected by the Geo-Wiki initiative (Frizt et al. 2012) with coincident MODIS global land
cover at 4304 locations on a hexagonal grid covering the study area. The study area, grid and data
points are shown in Figure 1, with 2 example locations labeled. Tables 2 and 3 show the geographically
weighted correspondence matrices at these locations. As in Table 1, the values in the table describe the
counts of pixels recorded in each class, in each dataset, but now just at that location. The table values
are the sums of the distance weighted pixel counts.

Table 2. The local Geographically Weighted correspondence matrix at Location 1. The values are the
counts of the geographically weighted data points in each class in the Geo-Wiki data assigned to each

class in the MODIS dataset.

1 2 3 4 5 6 7 8 9 10
1. Forest 1.58 0 3.30 0.00 0.01 0 0.00 0 0 0
2. Shrub 0.05 0 2.81 0.74 0.00 0 0.76 0 0 0
3. Grass 0.60 0 5.01 0.16 0.01 0 0.00 0 0 0
4. Crop 3.94 0 32.24 7.44 0.58 0 0.23 0 0 0
5. Mosaic 2.25 0 5.51 1.55 0.03 0 0.00 0 0 0
6. Wetland 0.00 0 0.41 0.24 0.00 0 0.00 0 0 0
7. Urban 0.91 0 4.46 0.79 0.09 0 18.66 0 0 0
8. Snow 0.00 0 0.00 0.00 0.00 0 0.00 0 0 0
9. Barren 0.94 0 2.95 0.00 0.00 0 0.00 0 0 0
10. Water 0.00 0 0.00 0.24 0.00 0 0.00 0 0 0

Table 3. The local Geographically Weighted correspondence matrix at Location 2. The values are the
counts of the geographically weighted data points in each class in the Geo-Wiki data assigned to each

class in the MODIS dataset.

1 2 3 4 5 6 7 8 9 10
1. Forest 1.12 0 0.00 0.11 1.12 0 0.52 0 0 0
2. Shrub 0.18 0 0.00 0.00 0.07 0 0.00 0 0 0
3. Grass 0.83 0 0.11 2.08 2.10 0 0.62 0 0 0
4. Crop 1.15 0 0.11 11.27 3.73 0 0.94 0 0 0
5. Mosaic 0.88 0 0.04 1.57 0.24 0 0.00 0 0 0
6. Wetland 0.00 0 0.00 0.00 0.00 0 0.00 0 0 0
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1 2 3 4 5 6 7 8 9 10
7. Urban 0.95 0 0.28 0.62 1.71 0 3.90 0 0 0
8. Snow 0.00 0 0.00 0.00 0.00 0 0.00 0 0 0
9. Barren 0.00 0 0.00 0.47 0.31 0 0.00 0 0 0
10. Water 0.00 0 0.00 0.00 0.15 0 0.00 0 0 0

Accuracy measures: Quantity and Allocation Disagreements

Pontius and Millones (2011) and Pontius and Santacruz (2014) describe a number of methods for
calculating difference metrics and composite measures of accuracy from the correspondence matrix
These are based around map-to-map cross-tabulations or correspondence matrices and can be used to
compare mapped land cover data for error or change. For example, quantity disagreement is defined as
the amount of difference between the Observed reference data and the Predicted classified data relative
to the proportions of the classes in the Observed and Predicted data. It is computed from the sum of
the row totals (the Predicted data) minus the sum of the column totals (the Observed data) divided by
2. Similarly, the allocation disagreement is defined as the amount of difference between the Observed
data and the Predicted data that are due mis-matches in the spatial allocation of classes, relative to
the class proportions. It is computed from the total number of pixels minus the diagonal agreement,
minus the quantity disagrement. In all cases the measures can be computed from correspondence tables
of counts of coincident pixels or proportions. Some of the measures from the diffeR package that were
applied in this analysis are summarised in Table 4.
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Figure 1: The study area, analysis grid in red, the data points shaded in blue with a tranparency term
to show their density, and 2 example locations.
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Table 4: A summary of the difference and disagreement measures in the diffeR package
Measure Function Return

value
Descriptions

Overall allocation dif-
ference

overallAllocD Single
value

The amount of difference between observed and
predicted data due to the *less than maximum
match* in the spatial allocation of the cate-
gories, given the proportions of the categories
in both datasets.

Overall difference overallDiff Single
value

The overall difference between tabulated ob-
served and predicted data calculated from the
sum of the quantity and allocation components
of difference.

Overall exchange differ-
ence

overallExchangeD Single
value

Exchange is the number of transitions from cat-
egory i to category j in some observations and
from category j to category i in an identical
number of other observations.

Overall quantity differ-
ence

overallQtyD Single
value

This is the amount of difference between the
observed variable and a predicted variable that
is due to the less than maximum match in the
proportions of the categories.

Overall shift difference overallShiftD Single
value

Shift describes to the difference remaining after
subtracting Quantity difference and Exchange
from the Overall difference.

Category exchange dif-
ference

exchangeDj Value for
each class

The exchange value as above at the class level.

Category overall differ-
ence

overallDiffCatj Value for
each class

The overall difference as above at the class
level.

Category quantity dif-
ference

quantityDj Value for
each class

The quantity difference as above at the class
level.

Category shift differ-
ence

shiftDj Value for
each class

The shift difference as above at the class level.

Estimated Kappa Coefficient

Although now widely discredited, many remote sensing analyses still use the estimated kappa coefficient,
κ̂. It is defined as follows:

κ̂ =
N

r∑
i=1

xii −
r∑

i=1
(xi+ × x+i)

N2 −
r∑

i=1
(xi+ × x+i)

(2)

where N is the total number of observations in the matrix, r is the number of rows, xii is observations in
row i and column i, xi+ and x+i are the marginal totals of row i and column i, respectively. Essentially
what this does is:

1. Multiply the sum of the diagonals by the table sum.
2. Then subtract from this the sum of the product of the row totals multiplied by the column totals.
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3. Next, divide this by the sum of all the values in the table squared, minus the sum of the row and
column marginal totals products.

The top part of the equation gives a measure of chance agreement and the bottom part a measure of
the expected disagreements.

Code

The Rmarkdown script used to produce this manuscript, including the text, all the R code, the data
used in the analysis and code snippets uses to produce the mapped figures, can be found at https:
//github.com/lexcomber/RSLcode

Results

A fixed bandwidth of 15% of the data points under a bisquare kernel was specified. At each location on
the Grid in Figure 1 a geographically weighted correspondence matrix was constructed, comparing the
MODIS and Geo-Wiki data. From these, the metrics described in Table 1 kappa coefficient estimates
were computed. Maps of the spatial distribution of different accuracy measures are shown in Figure
2, 3 and 4. Figure 2 maps overall comparative measures and Figure 3 maps class specific measures
from Pontius and Milones (2011) and Pontius and Santacruz (2014) as well spatially distributed, local
estimated kappa coefficients. The definitions of the different measures can be found in the papers cited
above or in the diffeR package. Room precludes the full description here but the critical point of
developing these measures under a geographically framework, is that they are allowed to vary spatially.
By way of example, Figure 4 maps User and Producer accuracies for the class or ‘urban’. It shows
how and where the accuracies calculated from local cross-tabulations, vary from the global estimates
from Table 1: User Accuracy has a global value of 0.803 and locally varies from 0.521 (1st quartile) to
0.723 (2nd quartile); Producer Accuracy has a global value of 0.733 and varies locally from 0.752 (1st
quartile) to 0.939 (2nd quartile). An important point to note is that these variations do not reflect
the distributions or densities of data points per se. Rather they reflect local measures calculated from
local correspondence matrices at the locations mapped in Figure 1, under a window that draws in and
weights data based on 15% bandwidth.
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Discussion

The correspondence matrix is the de facto method in remote sensing for reporting comparisons between
classified data, habitats, land cover and land use, for accuracy and error reporting and for sumamrise
the results of change detection analyses. The local, spatially distributed, geographically weighted
cross-tabulations described in this letter provide a framework for examining how and where measures
derived from the correspondence matrix vary. They are an advance on the logistical regression methods
suggested in Comber et al. (2012) and Comber (2013) because they support the generation of any
local measure that the user wishes to specify. In this case the analyses integrated functions from two R
packages: the gwxtab package to create local geographically weighted correspondence matrices and the
overall and categorical difference measures in the diffeR package. The availability of open, free and
transparent code provides a dynamic and rich research environment within which method extensions
can be developed.

Whilst this paper advocates the application of local statistical models and spatially dependent methods,
precisely because they reflect our understanding of nearly all processes and relationships we have
encountered in natural and human sciences, (Tobler’s 1st Law of Geography - Tobler 1970), we recognise
that for many policy makers global statistics simplify complex data and provide an overall summary of
the data and are therefore widely used. Local measures may not be intuitively understood. However,
maps provide an incredibly powerful and accessible representation. So whilst policy makers may not
immediately understand the various error measures in the DiffeR package, they will understand the
mapped spatial distribution of a measure. It is therefore incumbent on the Remote Sensing community
to more strongly engage with more advanced reporting techniques, such as local statistical models in
their funded science. There is a previous example of this: land cover uncertainty reporting. In the
1980s and 1990s, policy makers struggled to understand that maps might contain errors and variations
in representation. Now they do not: 10% reported error rates are readily understood. Providing open
code and transparent methods (e.g through sites like https://github.com/ is one way that the academic
community could better support the up-skilling of policy makers (and maybe stimulate more interesting
research being funded in Remote Sensing).

There are some important considerations related to the application of GW models, including bandwidth
specification and kernel shape as described in Gollini et al. (2015). Here a bandwidth of 15% of the
data points was selected but exploration using a range of bandwidths is recommended as bandwidth
affects the degree of smoothing and thus the sensitivity of the analyses to the data distribution. As yet
the gwxtab package does not include a function for bandwidth optimisation (as do other GW packages
in R such as GWmodel and spgwr). This is an area that the developers of gwxtab are working on and
will provide greater confidence in the results of the spatially distributed models, without requiring a
formal sampling strategy.

The GW framework for correspondence tables presented here supports greater understanding of the
spatial process and statistical relationships under investigation. This is important as the number and
diversity of remote sensing derived products and applications increases and reflects the original aims of
geographically weighted regression (Brunsdon et al. 1996). For example, it could be used to dynamically
visualize accuracy, to characterise error, to provide local distributions of Chi-squared statistics, to
explore the implications of different to locally focus additional ground-truth sampling, to assess the
value of the imagery itself locally (e.g. LANDSAT versus MODIS), to explore the utility of different
class definitions (e.g. Cropland vs. Managed grassland, which can be particularly difficult to classify)
and to identify locales with missing and misaligned data.

Finally, spatially explicit approaches such as the GW correspondence matrices allow some of the
dominant assumptions of spatial non-stationary of processes within remote sensing methods to be
examined and tested. They accommodate the spatial auto-correlation found remote sensing data and
analyses of many landscape processes.
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Overall allocation difference

0.25
0.50
0.75

Overall exchange difference

Overall quantity difference Estimated kappa coefficient

Figure 2: The spatial distribution of the difference measures, scaled to [0, 1], comparing the Geo-Wiki
crowdsourced data with MODIS data. 10



Exchange difference for 'forest'

0.25
0.50
0.75

Category Overall difference for 'urban'

Category quantity difference for 'grass' Category shift difference

Figure 3: The spatial distribution of the class level, or categorical difference measures, scaled to [0, 1],
comparing the Geo-Wiki crowdsourced data with MODIS data.11



User Accuracy for 'urban'

0.25
0.50
0.75

Producer Accuracy for 'urban

Figure 4: The spatial distribution of User and Producer accuracy values for the class of ‘urban’, scaled
to [0, 1], using the Geo-Wiki data to validate MODIS data.

12



Acknowledgements

The authors would like to thank Linda See, Steffen Fritz at IIASA Austria for access to the data and
Myroslava Lesiv and Olha Danylo for their efforts in preparing it. We would also like to acknowledge the
Spatial Accuracy 2016 conference organisers, Jean-Stéphane Bailly and Didier Josselin, for allowing us
to develop this work in preparation for a pre-conference workshop. The code, data and RMarkdown script
used to construct this analysis and this paper are freely available at https://github.com/lexcomber/
RSLcode - have a play!

References

Bicheron, P., Defourny, P., Brockmann, C., Schouten, L., Vancutsem, C., Huc, M., Bontemps, S.,
Leroy, M., Achard, F., Herold, M., Ranera, F., Arino, O. 2008. Glob-Cover: Products Description and
Validation Report, 18, Toulouse, France. URL: http://due.esrin.esa.int/files/GLOBCOVER_Products_
Description_Validation_Report_I2.1.pdf

Brunsdon, C.F., Charlton, M. and Harris, P. 2016. Geographically Weighted Cross-Tabulation, https:
//github.com/chrisbrunsdon/gwxtab, available 2 July 2016.

Campbell, J. 1981. “Spatial correlation effects upon accuracy of supervised classification of land cover”.
Photogrammetric Engineering of Remote Sensing 47: 355–364.

Comber, A., Mooney, P., Purves, R.S., Rocchini, D. and Walz, A. 2016a. “Crowdsourcing: It Matters
Who the Crowd Are. The Impacts of between Group Variations in Recording Land Cover”. PlosONE
11(7): e0158329

Comber, A., Harris, P. and Tsutsumida, N. 2016a. “Improving land cover classification using input
variables derived from a geographically weighted principal components analysis”. ISPRS Journal of
Photogrammetry and Remote Sensing 119: 347–360. doi:10.1016/j.isprsjprs.2016.06.014.

Comber,A., See, L., Fritz, S., Van der Velde, M., Perger, C., Foody,G.M. 2013. “Using control data
to determine the reliability of volunteered geographic information about land cover”. International
Journal of Applied Earth Observation and Geoinformation 23: 37–48.

Comber A.J. 2013. “Geographically weighted methods for estimating local surfaces of overall, user and
producer accuracies”. Remote Sensing Letters, 4(4): 373-380.

Comber, A., Fisher, P.F., Brunsdon, C. and Khmag, A. 2012. “Spatial analysis of remote sensing image
classification accuracy”. Remote Sensing of Environment 127: 237–246.

Foody, G.M., 2005. “Local characterization of thematic classification accuracy through spatially
constrained confusion matrices”. International Journal of Remote Sensing 26, 1217–1228.

Friendly, M. 1994. “Mosaic displays for multi-way contingency tables”. Journal of the American
Statistical Association 89(425): 190-200.

Fritz, S., Bartholomé, E., Belward, A., Hartley, A., Stibig, H.J., Eva, H., Mayaux, P., Bartalev, S.,
Latifovic, R., Kolmert, S. and Roy, P.S. 2003. Harmonisation, mosaicing and production of the Global
Land Cover 2000 database (Beta Version). Publication of the European Commission EUR, 20849.

Gollini, I., Lu, B., Charlton, M., Brunsdon, C., & Harris, P. 2015. “GWmodel: an R package for
exploring spatial heterogeneity using geographically weighted models”. Journal of Statistical Software
63 (17), 1–50.

Hartigan, J. A., and Kleiner, B. 1981. “Mosaics for contingency tables”. In Computer science and
statistics: Proceedings of the 13th symposium on the interface (pp. 268-273). Springer US.

13

https://github.com/lexcomber/RSLcode
https://github.com/lexcomber/RSLcode
http://due.esrin.esa.int/files/GLOBCOVER_Products_Description_Validation_Report_I2.1.pdf
http://due.esrin.esa.int/files/GLOBCOVER_Products_Description_Validation_Report_I2.1.pdf
https://github.com/chrisbrunsdon/gwxtab
https://github.com/chrisbrunsdon/gwxtab
doi:10.1016/j.isprsjprs.2016.06.014


Khormi, H. M. and Kumar, L. 2011. “Modeling dengue fever risk based on socioeconomic parameters,
nationality and age groups: GIS and remote sensing based case study”. Science of the Total Environment
409(22): 4713-4719.

Lesiv, M., Moltchanova, E., Schepaschenko, D., See, L., Shvidenko, A., Comber, A. and Fritz, S. 2016.
“Comparison of data fusion methods using crowdsourced data in creating a hybrid forest cover map”.
Remote Sensing 8: 261 doi:10.3390/rs8030261

Loveland, T.R., Reed, B.C., Brown, J.F., Ohlen, D.O., Zhu, Z., Yang, L., Merchant, J.W., 2000.
“Development of a global land cover characteristics database and IGBP DISCover from 1 km AVHRR
data”. International Journal of Remote Sensing, 21 (6–7): 1303–1330.

McGwire, K. C., and Fisher, P. (2001). “Spatially variable thematic accuracy: Beyond the confusion
matrix”. In C. T. Hunsaker, M. F. Goodchild, M. A. Friedl, & T. J. Case (Eds.), Spatial uncertainty
in ecology: Implications for remote sensing and GIS applications (pp. 308–329). New York: Springer–
Verlag.

Fritz, S., McCallum, I., Schill, C., Perger, C., See, L., Schepaschenko, D., van der Velde, M., Kraxner,
F. and Obersteiner, M. 2012. “Geo-Wiki: An online platform for land cover validation and the
improvement of global land cover”. Environmental Modelling and Software 31: 110-123.

Pontius Jr, R.G. and Millones, M., 2011. Death to Kappa: birth of quantity disagreement and allocation
disagreement for accuracy assessment. International Journal of Remote Sensing, 32(15), pp.4407-4429.

Pontius Jr, R.G. and Santacruz, A. 2014. “Quantity, exchange and shift components of difference in a
square contingency table”. International Journal of Remote Sensing 35 (21): 7543-7554.

Pontius Jr, R.G. and Santacruz, A. 2015. Package ‘diffeR’: Metrics of Difference for Comparing Pairs
of Maps. https://cran.r-project.org/web/packages/diffeR/diffeR.pdf [available 18 July 2016]

Propastin, P. 2012. “Modifying geographically weighted regression for estimating aboveground biomass
in tropical rainforests by multispectral remote sensing data”. International Journal of Applied Earth
Observation and Geoinformation 18: 82-90.

Tobler, W.R. 1970. “A computer movie simulating urban growth in the Detroit region. Economic
Geography*, 46(sup1): 234-240.

Tsutsumida, N. and Comber, A.J. 2015. “Measures of spatio-temporal accuracy for time series land
cover data”. International Journal of Applied Earth Observation and Geoinformation 41: 46-55.

Wang, Q., Ni, J., and Tenhunen, J. 2005. “Application of a geographically weighted regression analysis
to estimate net primary production of Chinese forest ecosystems”. Global Ecology and Biogeography
14(4): 379-393.

Yu, D. and Wu, C. 2004. “Understanding population segregation from Landsat ETM+ imagery: a
geographically weighted regression approach”. GIScience and Remote Sensing 41(3): 187-206.

14

View publication statsView publication stats

doi:10.3390/rs8030261
https://cran.r-project.org/web/packages/diffeR/diffeR.pdf
https://www.researchgate.net/publication/309920835

	Abstract
	Key Words:
	1. Introduction
	2. Data and Methods
	2.1 Data
	2.2 Geographically weighted correspondence matrices
	Accuracy measures: Quantity and Allocation Disagreements
	Estimated Kappa Coefficient
	Code

	Results
	Discussion
	Acknowledgements
	References

