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ABSTRACT
In this study, the geographically weighted regression (GWR) model
is adapted to benefit from a broad range of distance metrics,
where it is demonstrated that a well-chosen distance metric can
improve model performance. How to choose or define such a
distance metric is key, and in this respect, a ‘Minkowski approach’
is proposed that enables the selection of an optimum distance
metric for a given GWR model. This approach is evaluated within a
simulation experiment consisting of three scenarios. The results
are twofold: (1) a well-chosen distance metric can significantly
improve the predictive accuracy of a GWR model; and (2) the
approach allows a good approximation of the underlying ‘optimal
distance metric’, which is considered useful when the ‘true’ dis-
tance metric is unknown.
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1. Introduction

In many early developments of spatial regression modelling, models were applied at a
global level, where data relationships were assumed constant across the study
region (Fotheringham and Brunsdon 1999). However, the existence of relationship
non-stationarity, which commonly appears as uncontrolled spatial variability, challenges
such global forms. To account for such heterogenic spatial processes, a number of
localized regression techniques have been proposed, most notably the expansion
method (Casetti 1972), multilevel models (Jones 1991), geographically weighted regres-
sion (GWR) (Brunsdon et al. 1996), panel data models (Elhorst 2003) and space-varying
parameter models using Bayesian constructs (Assunção 2003, Gelfand et al. 2003). For
this study, we concentrate only on the GWR model, where it is adapted to benefit from a
broad range of distance metrics.

For GWR, spatially varying relationships are explored between the dependent and the
independent variables, in turn. The data are geographically weighted using some
distance-decay kernel weighting function, allowing nearer observations to have more
influence in estimating a local set of regression coefficients than observations farther
away. The resultant regression coefficients and associated (pseudo) t-values are then
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mapped to determine evidence of relationship non-stationarity (e.g. Harris et al. 2010b).
Such maps can also be complemented by associated tests for relationship non-statio-
narity (e.g. Brunsdon et al. 1998). In most applications of GWR, Euclidean distance (ED) is
used to determine the geographical weights, that is, a straight-line distance metric.

The first use of non-Euclidean distance (non-ED) metrics in GWR modelling can be
found in Lu et al. (2011, 2014a) using a house price data set for London, UK. Here, the
use of network distance (ND) and travel time (TT) metrics provided greater insight into
data relationships than that found with the usual ED metric. The dominance of the River
Thames, with its limited number of crossing points, was found to be crucial in assessing
the choice of distance metric. This initial work only allowed three distinct choices of
distance metric (ED, ND and TT), whereas for this study a ‘Minkowski distance approach’
is followed that enables an optimal metric selection from a continuous range of metrics
for a given GWR model.

The scope of possible distance metrics in many spatial analyses is often far larger than
the single ED option. Such metrics include, for example, a stream/river distance (e.g.
Legleiter and Kyriakidis 2008, Money et al. 2009) or some transportation ND (e.g. Kent
et al. 2006), where spatial continuity only makes sense along the stream/river/etc., or
road/rail/canal/etc., respectively. A spatial process may also vary with direction, and in
this respect, anisotropic processes can be represented using non-ED metrics (e.g.
Boisvert and Deutsch 2011). In particular, Páez (2004) found GWR models calibrated
with anisotropic kernels to outperform their isotropic (standard) counterparts. An opti-
mal distance metric for a given spatial process is not always clear; metrics can vary due
to the diversity of the sample data and the complexity of the geography. Conditions
may be such that the distance metric itself cannot be properly measured or calculated.
For example, TTs are commonly based on judged approximations. Thus, defining an
appropriate distance metric when calibrating a spatial model presents a certain
challenge.

In this respect, the Minkowski distance metric can be used, as by varying its exponent
parameter p, together with the coordinate rotation angle θ, a range of (commonly used)
non-ED metrics can be accounted for. For example, Shahabi et al. (2002) and Shahid
et al. (2009) use Minkowski distance to approximate road distances and TTs. Love et al.
(1988), cited by Miller and Wentz (2003), indicate that the value of p typically ranges
from 1 to 2 for representing the true travel distance at urban and regional scales. For a
spatial model that is adapted to use Minkowski distances, optimal values of p and θ are
commonly found that minimize some goodness-of-fit (GoF) criteria. For GWR, such a
dual optimization needs to be used in conjunction with optimally finding the kernel
bandwidth parameter b (which controls the spatial scale of relationship non-stationar-
ity), and as such, this presents one of many challenges that this study seeks to address.

We present our research over four sections. Firstly, we describe how the GWR model
is adapted to use Minkowski distances. Secondly, we assess our adapted GWR model
within a simulation experiment consisting of three scenarios. Thirdly, we investigate
ways to improve the computational efficiency of this adaptation. Finally, we summarize
the study. All modelling functions used in this article can be found in the GW model
(after version 1-2.5) R package (Lu et al. 2014b, Gollini et al. 2015), which is an integrated
framework for handling spatially varying model parameters, moments, statistics and
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data structures, via geographically weighted models. R is an open-source statistical
programming environment (R Development Core Team 2013).

2. Methodology

2.1. The Minkowski distance

The Minkowski distance, also known as the p-norm distance, is a general form of a
distance metric in Euclidean space. It is expressed as

d ¼
Xm
i¼1

ui � vij jp
 !1=p

(1)

where u1; u2; . . . ; umð Þ and v1; v2; . . . ; vmð Þ are two vectors in m-dimension Euclidean
space, and p is a positive real number. It is a generalization of all commonly used metrics
on a Euclidean space. When p is 1, 2 and infinity, the distance is known as the Manhattan
distance, the ED and the Chebyshev distance, respectively. A different value of p
represents a distinctive measure of distance in a Euclidean space. Take the 2-D
Euclidean space, for example, where distance iso-surfaces for different values of p can
be produced, as shown in Figure 1 for nine values of p. Surfaces in Figure 1 show that
adjacent values of p depict similar patterns. Larger metrics are found when values of p
are less than 2, whilst smaller metrics are found when values of p larger than 2.

From the geometric properties of the surfaces in Figure 1, the rotation of the
coordinate system will also lead to changes in the distance measurement, except the
circular shapes in Figure 1f when p = 2. Thus, the rotation angle θ also needs to be taken
into consideration for distance metric selection. In the 2-D Euclidean space, the expres-
sion of Minkowski distance can be defined as

dp;θ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u1 � u2ð Þ2 þ v1 � v2ð Þ2

q
sin θþ αð Þj jp þ cos θþ αð Þj jpð Þ1p (2)

where ui; við Þi¼1;2 are the 2-D Euclidean coordinates, and the angle α ¼ tan�1 u1�u2
v1�v2

� �
. It is

easy to prove that dp;θ is a function of θ with the primitive period π
2 radians or 90°.

2.2. GWR with Minkowski distances

To model spatially varying relationships, GWR allows the coefficients of a regression
model to vary continuously over space. Thus, unlike a basic (ordinary least squares (OLS))
regression model, the coefficients in a GWR model can be estimated at any location (e.g.
on a dense grid so that a coefficient surface can be visualized). GWR makes a pointwise
calibration concerning a ‘bump of influence’ around each (local calibration) regression
point, where nearer observations (or datapoints) have more influence in estimating the
local set of coefficients than observations farther away (Fotheringham et al. 1998). This
procedure is depicted in Figure 2, where in this study observations are geographically
weighted using a (discontinuous or truncated) Gaussian kernel function. Other types of
kernel functions include the exponential, (continuous) Gaussian, bi-square, tri-cube and
box-car (see Gollini et al. 2015). GWR measures the inherent relationships around each
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regression point by estimating sets of regression coefficients by a weighted least-
squares approach (of which the matrix expression is shown in Figure 2). The distance
between the datapoint j and the regression point i is dij that is traditionally an ED metric
with planar coordinates. Lu et al. (2011, 2014a) extend GWR to use two common non-ED
metrics (network and TT), where for this study, we extend further, with the use of
Minkowski distance metrics.

The kernel bandwidth b (also shown in Figure 2) is the key controlling parameter for
any weighting scheme specified and strongly influences all GWR outputs. It can be in a
fixed or adaptive distance form (see Gollini et al. 2015) and can be optimally found by
minimizing some GoF diagnostic, for example, via a cross-validation or an Akaike
information criterion (AIC) approach. AIC (Akaike 1973) is derived from the Kullback–
Liebler information distance (Kullback and Leibler 1951) between two statistical distribu-
tions (Brunsdon et al. 2000), and its minimization provides a trade-off between GoF and
degrees of freedom (i.e. the goal is model parsimony). In most GWR studies, a corrected
AIC (AICc) (Hurvich et al. 1998) is used for selecting b.

We also adopt an AICc approach to find an optimal Minkowski distance metric (defined
in terms of p and θ), together with an optimal bandwidth b, for a given GWR specification.

Figure 1. Distance iso-surface plots with nine different values of p.
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Based on the resultant variation in AICc, an optimal triplet p; θ; bð Þ is found that corre-
sponds to the smallest AICc. Finding p; θ; bð Þ can follow a numerical search routine or an
exhaustive search. Both can be computationally intensive, where using a numerical
routine requires the derivatives of the model with respect to p, θ and b. Our Minkowski
distance approach to calibrate a GWR model can be described in three stages:

(1) Using AICc, find optimal values of b for a range of Minkowski distance metrics
defined by p and θ (p can be any non-negative real number and θ can lie between
0 and π

2 in radians). Thus, a bandwidth-AICc function is effectively found for every
distinct distance metric that is specified.

(2) Tabulate the minimized AICc values from step 1 in terms of p and θ, where the
smallest AICc of the table corresponds to the optimal triplet p; θ; bð Þ. Observe that
this tabulation could also be constructed in terms of b rather than AICc.

(3) Interrogate the tabulated outputs for the best-fitting GWR model.

3. Simulation experiment

It is often appropriate to use simulated data when evaluating a new statistical method or
an adaptation of an existing method, as, for example, Wang et al. (2008), Harris et al.
(2010a) and Lu et al. (2012) demonstrate for GWR-related studies. In comparison with an
empirical study, a simulation study can be done in a controllable way by following a
certain number of rules; rules that enable a more objective model evaluation.
Furthermore, GWR fits with different distance metrics will commonly result in different
and unrelatable optimum bandwidths, and as such, it is inherently difficult to evaluate
them with any objectivity using only real data. Therefore, we evaluate our proposed
extension of GWR via a simulation experiment consisting of three scenarios. Our study
aim is to demonstrate that the Minkowski approach can provide an approximation of

Figure 2. Interpretation of a basic GWR model and its calibration.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 5

D
ow

nl
oa

de
d 

by
 [

W
uh

an
 U

ni
ve

rs
ity

] 
at

 1
9:

54
 2

8 
Se

pt
em

be
r 

20
15

 

https://www.researchgate.net/publication/261019662_Geographically_Weighted_Regression_using_a_non-euclidean_distance_metric_with_simulation_data?el=1_x_8&enrichId=rgreq-cb7c8ee9a0483098a8970659805facbc-XXX&enrichSource=Y292ZXJQYWdlOzI4MzE5Njk4MTtBUzoyODk3MTE2ODA3MDQ1MTJAMTQ0NjA4NDA1NTQ4OA==
https://www.researchgate.net/publication/23540041_Local_Linear_Estimation_of_Spatially_Varying_Coefficient_Models_An_Improvement_on_the_Geographically_Weighted_Regression_Technique?el=1_x_8&enrichId=rgreq-cb7c8ee9a0483098a8970659805facbc-XXX&enrichSource=Y292ZXJQYWdlOzI4MzE5Njk4MTtBUzoyODk3MTE2ODA3MDQ1MTJAMTQ0NjA4NDA1NTQ4OA==
https://www.researchgate.net/publication/225757830_The_Use_of_Geographically_Weighted_Regression_for_Spatial_Prediction_An_Evaluation_of_Models_Using_Simulated_Data_Sets?el=1_x_8&enrichId=rgreq-cb7c8ee9a0483098a8970659805facbc-XXX&enrichSource=Y292ZXJQYWdlOzI4MzE5Njk4MTtBUzoyODk3MTE2ODA3MDQ1MTJAMTQ0NjA4NDA1NTQ4OA==
https://www.researchgate.net/publication/225757830_The_Use_of_Geographically_Weighted_Regression_for_Spatial_Prediction_An_Evaluation_of_Models_Using_Simulated_Data_Sets?el=1_x_8&enrichId=rgreq-cb7c8ee9a0483098a8970659805facbc-XXX&enrichSource=Y292ZXJQYWdlOzI4MzE5Njk4MTtBUzoyODk3MTE2ODA3MDQ1MTJAMTQ0NjA4NDA1NTQ4OA==


the underlying ‘optimal distance metric’ for a given GWR model, and that this approach
is useful when the ‘true’ distance metric is unknown.

3.1. Simulation design

3.1.1. Scenario 1: simulation of relationship spatial heterogeneity on a regular grid
For this first scenario, we use the same deterministic simulation design as that used in Lu
et al. (2012). A data set of size 20 × 20 is first generated on a square grid. For each cell, a
predictor variable x is generated as a uniformly random numeric vector ranging from 1
to 100. Two non-stationary regression coefficients β0 and β1 are then generated on the
same grid using Equations (3) and (4), respectively. The dependent variable y is then
generated naturally from Equation (5). The resultant coefficients and data are visualized
in Figure 3.

β0ðui; viÞ ¼ 2 logðuiÞ � 3 logðviÞ (3)

β1ðui; viÞ ¼ logðui þ viÞ (4)

yi ¼ β0ðui; viÞ þ β1ðui; viÞxi (5)

Figure 3. Scenario 1: visualization of the simulated coefficients and the predictor and dependent
variables.
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3.1.2. Scenario 2: manipulation of scenario 1 to reflect anisotropy and
disjointedness
In scenario 1, the simulation is simply made on a 20 × 20 square grid with spatially
heterogenic coefficients. In this second scenario, anisotropic manipulations and a sense
of disjointedness are incorporated to the same simulation, where it would be expected
that GWR using a non-ED metric would be the ideal choice and perform relatively well.
Here, we divide the square grid of scenario 1 into four equal parts, that is, 10 × 10 square
subgrids. As shown in Figure 4a, these four parts are labelled in different colours and
symbols. For each part, we then rotated their coordinates in different angles and
rescaled them as follows:

● Part 1 (red crosses): coordinates rotated by π=6 (in radians) and multiplied by 2.
● Part 2 (green dots): coordinates rotated by π=3 (in radians) and multiplied by 3.
● Part 3 (yellow squares): coordinates rotated by π=4 (in radians) and multiplied by 4.
● Part 4 (blue panes): coordinates rotated by 3�π=4 (in radians) and multiplied by 5.

In comparison with scenario 1, all the coefficients and variables are still exactly the same,
but now the spatial layout of this simulated data has changed into the one shown in
Figure 4b.

3.1.3. Scenario 3: simulation of random relationships on a regular grid
Scenario 3 acts as a control or benchmark simulation, where we create an entirely
‘unknown’ pattern in the regression coefficients on a regular grid. Thus with a random
variable, xi, and random coefficients, β1, we generate the dependent variable, yi, as
follows:

yi ¼ β1ðui; viÞxi (6)

where the surfaces for the predictor variable and the regression coefficients β1 are
shown in Figure 5. No intercept is generated in this case.

Figure 4. Scenario 2: anisotropic and disjoint transformations applied to the scenario 1 simulation.
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3.2. GWR with Minkowski and Euclidean distances

With the simulated data, we calibrate GWR models using Minkowski distances (MD-
GWR), each with their own optimally found bandwidth and MD parameters. As it is
impractical to try every possible combination of p and θ, we limit ourselves to

(1) p = {0.25, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.25, 2.5, 2.75, 3, 3.25, 3.5, 3.75, 4, 4.25, 4.5,
4.75, 5, 5.25, 5.5, 5.75, 6, 6.25, 6.5, 6.75, 7, 7.25, 7.5, 7.75, 8, 1g

(2) θ from 0 to π
2 sampled in nine equal intervals of π

18 (in radians).

Results are given in terms of improvement in AICc with respect to using a particular MD-
GWR calibration over that found with a corresponding basic GWR calibration using the
usual ED metric (ED-GWR). From Figure 6, entries coloured green indicate where a sig-
nificant improvement is found using an MD metric (i.e. the AICc difference is less than −3);
entries coloured black are for AICc differences of between −3 and +3 which are taken to
indicate an insignificant difference in model fit; entries coloured red indicate where the ED
metric should be preferred (i.e. the AICc difference is greater than +3). The use of three units
as our AICc cut-off value is discussed in Fotheringham et al. (2002, pp. 69–70). The rows in
Figure 6 correspond to different rotated angles θ, while the columns correspond to
different values of p. These descriptions and rules are similarly applied to all related figures.

As shown in Figure 6, the choice of distance metric clearly influences GWR model fit;
different structures of relationship non-stationarity associate with distinct metrics. From
Figure 6a for scenario 1, MD-GWR can be preferred when (1) the rotated angle θ is 0,
1.22 and 1.4,1 and the value of p lies between 0.75 and 2; and (2) the rotated angle is
0.35, 0.52 and 0.7, and the value of p is greater than 2. From Figure 6b for scenario 2 (the
asymmetrically rotated and rescaled partitioned data from scenario 1), the preferred MD-
GWR cases are when (1) the rotated angle θ is 0, 0.17 and 1.4, and the value of p is larger
than 2; (2) the rotated angle θ is 0.7 and 0.87, and the value of p lies between 0.5 and 2.
These scenarios show similar responses to varying values of p, in that the ‘best perform-
ing’ distance (BPD) metrics for both are reached at same value of p (i.e. infinity, the
Chebyshev distance); and non-improvements occur at p = 0.25. In contrast, these
scenarios present diverse responses to the rotated angles θ. These similarities and

Figure 5. Scenario 3: visualization of the simulated predictor variable and the coefficients.
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differences directly relate to the constructions of the two simulations. From Figure 6c for
scenario 3 (unknown and random variation in the coefficients), MD-GWR can be pre-
ferred for cases when (1) the rotated angle θ is from 0.35 to 1.22, and the value of p is
less than 2; and (2) the rotated angle is 0, 0.17, 0.35, 1.22 and 1.4, and the value of p is
greater than 2. The BPD comes out to be 0.25 with the rotated angle θ as 0.52.

3.3. GWR with the BPD metrics

3.3.1. GoF comparisons
The GoF outputs for the ED-GWR calibrations and the GWR calibrations using the BPD
metrics (BPD-GWR), together with the global OLS regression results, are given in Table 1.

Figure 6. AICc differences between ED-GWR and MD-GWR for different sets of (p, θ).
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As would be expected, all GWR fits provide an improvement over the corresponding OLS
regression. For the GWR fits, the BPD-GWR calibrations all use non-ED metrics (i.e. all are
MD-GWR fits) and show significant improvements in terms of AICc and the residual sum
of squares (RSS) over their ED-GWR counterparts.

For scenario 1, the BPD-GWR model uses an MD at p = Inf and θ = 0.52 (i.e.
Chebyshev distance with coordinates rotated by 0.52 in radians). This calibration
shows a reduction in AICc of 18.71 from its ED-GWR counterpart, and the RSS is also
reduced by 4.8%. It is hypothesized that the main reason for an MD-GWR fit to
outperform its ED-GWR counterpart is due to the asymmetrical nature of the coeffi-
cient surface for β0 for this scenario (see Figure 3). For scenario 2, and as expected, a
much greater improvement is seen by using MD-GWR. This MD-GWR model uses the
same Chebyshev distance (p = Inf) but without rotation (θ = 0), as that found in
scenario 1. The MD-GWR calibration shows a reduction in AICc of 81.39 from its ED-
GWR counterpart and the RSS is also reduced by 13%. Thus, an MD-GWR model is
considered a superior GWR calibration for detecting anisotropic and disjoint data
relationships than that found with the ED-GWR model.

For scenario 3, the simulation design represents an ‘arbitrary’ set of laws in how data
relationships vary across space. For this scenario, the BPD-GWR model uses an MD with
p = 0.25 and θ = 0.52. This MD-GWR model outperforms the corresponding ED-GWR
model as the AICc value is reduced by 73.13 and RSS is reduced by 32.8%. This result
suggests that the Minkowski approach can be useful when there is absolutely no
knowledge, understanding or insight into the ‘true’ distance metric.

3.3.2. Comparisons of the estimated coefficients
As with any GWR study, it is important to interpret the localized regression coefficients,
where for this study we need to ascertain the accuracy of our estimated coefficients with
respect to the known (or real) ones that we have simulated. Here, Figure 7 displays the
(ordered) absolute differences between the real values of β1 and the estimates β̂1, for
the ED-GWR and BPD-GWR calibrations, at all 400 locations, across all three scenarios. In
Table 2, we summarize the same results from Figure 7 via (a) the RSS between β1 and β̂1
(call this, RSS-C) and (b) the number of locations where one GWR calibration provides a
coefficient estimate that is closer to the real coefficient than the other GWR calibration
(i.e. the number of winning locations, call this, NWL).

From Figure 7, both GWR calibrations appear to make highly accurate estimations of
β1 for scenarios 1 and 2, with the BPD-GWR model performing moderately better in both
scenarios (as confirmed in Table 2). For scenario 3, the BPD-GWR model makes impress-
ively better coefficient estimates than the ED-GWR model, where the RSS-C is reduced
by 15% and where the BPD-GWR model provides more accurate coefficient estimates at
over 60% of the simulation locations. This suggests that an MD-GWR model can provide

Table 1. GoF diagnostics for OLS regression, ED-GWR and BPD-GWR in the three scenarios.

Scenario

OLS ED-GWR BPD-GWR

RSS AICc Bandwidth RSS AICc (p, θ) Bandwidth RSS AICc

1 211261 3648.97 4.64 395.52 1519.62 (Inf, 0.52) 4.16 376.94 1500.94
2 14.56 1544.61 2227.52 (Inf, 0) 12.41 1343.97 2146.12
3 525 1247.98 2.68 79.23 1011.23 (0.25, 0.52) 22.33 53.26 938.10
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Figure 7. Comparisons of the real β1 and estimated β̂1 respectively from ED-GWR and BPD-GWR
calibrations: (a) scenario 1, (b) scenario 2 and (c) scenario 3.

Table 2. Quantitative descriptions for estimated β̂1 from ED-GWR and BPD-
GWR calibrations in the three scenarios.

Scenario

β̂1 (ED-GWR) β̂1 (BPD-GWR)

RSS-C NWL RSS-C NWL

1 0.40 195 0.38 205
2 0.84 192 0.74 208
3 201.91 159 169.91 241
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more accurate coefficient estimates when the ‘optimum’ distance metric is uncertain,
and thus provide a truer picture of relationship non-stationarity.

4. Reducing computational overheads

The simulation-based results show that an MD metric is useful in improving the GWR fit
in terms of its overall GoF and also in terms of its coefficient accuracy. However, our
approach uses brute force to search for the BPD metric for a given GWR fit. For the
chosen values of p and rotation angles θ, 321 GWR calibrations2 were necessary for each
simulation scenario, calibrations that each included an additional ‘nested’ optimization
to select an optimum bandwidth, b. All such calculations are computationally demand-
ing, especially when there exists a large number of sample observations and/or local
regression calibration locations. However, we can reduce such costs by taking more care
in choosing the intervals for p and θ. For example, from Figure 6, it is observed that

(1) The change in AICc can be very small between adjacent values of p. For example,
AICc changes little (<1) across p values of 7, 7.25, 7.5, 7.75 and 8 for scenario 3.

(2) As p increases away from 2 (i.e. ED), AICc is more sensitive to changes in the
rotation angle θ for all three scenarios.

4.1. Heuristics to reduce computational cost

With these observations in mind, we can reduce computational cost using this ‘forward
direction’ procedure:

(1) Given an interval for p: [pmin, pmax], a searching pace s, an AICc difference thresh-
old of t = 3 (as discussed in Section 3.2), and a fixed rotation angle θ0; calculate
the AICc values with the MDs respectively at (pmin, θ0) and (pmax, θ0), namely
AICcp_min and AICcp_max.

(2) Set the iteration number i = 0; include pmin in the vector Psel for holding the values
of p to be used in the Minkowski approach and set the AICc value with the latterly
selected p: AICclast_sel = AICcp_min.

(3) If the absolute difference between AICclast_sel and AICcp_max is less than t, termi-
nate; otherwise, include pmax in Psel, and start the iteration:
(i) Set i = i + 1, pi ¼ pmin þ i� s
(ii) Calculate AICc with MD at (pi, θ0), name it as AICcp_i.
(iii) If the absolute differences between AICclast_sel and AICcp_i, AICclast_sel and

AICcp_max are not less than t, include pi in Psel and set AICclast_sel = AICcp_i.
(4) If the absolute difference between AICclast_sel and AICcp_max is less than t or piþ1 is

larger than pmax, terminate; otherwise, continue the iteration.

Similarly, computational cost can be reduced using this ‘backward direction’ procedure:

(1) Repeat step 1 in the ‘forward direction’ procedure for the initial settings.

12 B. LU ET AL.
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(2) Set the iteration number i = 0; include pmax in the vector Psel for holding the
values of p to be used in the Minkowski approach and set the AICc value with the
latterly selected p: AICclast_sel = AICcp_max.

(3) If the absolute difference between AICclast_sel and AICcp_min is less than t, termi-
nate; otherwise, include pmin in Psel, and start the iteration:
(i) Set i = i + 1, pi ¼ pmin þ i� s.
(ii) Calculate AICc with MD at (pi, θ0), name it as AICcp_i.
(iii) If the absolute differences between AICclast_sel and AICcp_i, AICclast_sel and

AICcp_min are not less than t, include pi in Psel and set AICclast_sel = AICcp_i.
(4) If the absolute difference between AICclast_sel and AICcp_min is less than t or piþ1 is

less than pmin, terminate; otherwise, continue the iteration.

Generally, there is little computational difference between the described procedures, but
only the ‘forward direction’ can be used when pmax is infinity. Observe also that the
greater the value of pmin, the greater the value of pace s could be set. For the rotation
angles θ, further computational reductions are possible if we sample at varying densities
on the interval 0; π

2

� �
for a specific p, that is, given the results in Figure 6, sparse

sampling for the values of p close to 2; but intensive sampling for the values far from
2 is appropriate.

4.2. Revisiting the simulation experiment

We can now rerun this study’s simulation experiment using the described procedures.
Firstly, we ran the ‘forward direction’ procedure to choose the values of p for the three
scenarios. For each scenario, we made the selections on two successive intervals: [0.25,
2] and 2;1ð Þ. We also used different paces s for each interval: 0.25 for the former
interval and 0.5 for the latter one, but the same threshold t = 3 and a fixed rotation
angle θ0 = 0.

Figure 8 displays the search results for the three scenarios, where blue points
denote the values of p used for the MD-GWR calibrations, whereas red points denote
those dropped. Figure 8a and b are similar, as the data sets in scenarios 1 and 2 are
closely related, while Figure 8c for scenario 3 presents a very different process. The
results indicate that setting s is important; where in this case, we used s = 0.5 on the
interval 2;1ð Þ for all three scenarios. This value of s seems too small for scenarios 1
and 2, where 279 values of p larger than 2 are tried, but more than 90% are dropped.
In contrast, it performs well for scenario 3, where values of p are chosen efficiently.
With the selected values of p, we define a varying number of arithmetical sequences
on 0; π

2

� �
for sampling θ instead of 9 for all: 1 is defined for p = 2 (i.e. only the rotation

angle θ = 0 is used for ED); and increasing numbers are used when the value of p
increases from 2. The full set of values for p and θ for the MD-GWR calibrations is given
in Table 3.

For each scenario, the total number of model calibrations has significantly decreased
in comparison to the exhaustive version (i.e. 321) from before. Figure 9 displays the AICc
values from the MD-GWR calibrations for all three scenarios, where points are coloured
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red, black and green. The colouring scheme partitions are defined as the AICc value from
the ED-GWR calibration ±3 (i.e. analogous to that used in Section 3 and Figure 6). As
expected, the BPD metrics correspond to those found before (for which the correspond-
ing point is circled).

Figure 8. The results from the ‘forward direction’ procedure for (a) scenario 1, (b) scenario 2 and (c)
scenario 3.

Table 3. Information of improved Minkowski approach for the three scenarios.

Scenario p-Values
Number of arithmetical
sequences for sampling θ

Total number of
calibrations

1 {0.25, 0.5, 0.75, 1, 2, 2.5, 3, 3.5, 4, 5, 6, 7.5, 9.5, 13,
19.5, 35.5, Inf}

{9, 6, 4, 2, 1, 2, 2, 3, 3, 4, 4, 5, 5,
6, 7, 8, 9}

80

2 {0.25, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6.5, 7.5, 8.5, 10, 11.5,
13.5, 16, 19.5, 25, 33.5, 50, Inf}

{9, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6, 7,
7, 7, 8, 8, 8, 9, 9, 9}

122

3 {0.25, 0.5, 1, 1.25, 1.5, 1.75, 2, 2.5, 3, 3.5, Inf} {9, 8, 6, 4, 3, 2, 1, 2, 4, 6, 9} 54
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In summary, the results provide value in using the described set of heuristics for
improving computational efficiency for MD metric selection in GWR. However, there are
caveats, primarily (1) different choices of θ0 and s within both searching procedures may
cause diverse values of p, so how to preset these values needs further work; and (2)
varying numbers of arithmetical sequences were used for sampling θ within the MD-
GWR calibrations, and here a more coherent set of rules needs to be established (in
addition to the concerns raised on the disparity of the values of p moving away from 2).

Figure 9. AICc values from the MD-GWR calibrations using the information in Table 3.

INTERNATIONAL JOURNAL OF GEOGRAPHICAL INFORMATION SCIENCE 15

D
ow

nl
oa

de
d 

by
 [

W
uh

an
 U

ni
ve

rs
ity

] 
at

 1
9:

54
 2

8 
Se

pt
em

be
r 

20
15

 



5. Discussion and concluding remarks

In this study, we have demonstrated a Minkowski approach to approximate the under-
lying distance metric for calibrating a GWR model. Via a simulation experiment, we have
shown that this approach can improve the GoF of a GWR model. Such a GWR model can
also provide more accurate coefficient estimates, especially when the ideal distance
metric is uncertain, thus potentially providing a truer picture of relationship non-statio-
narity. These positive results may be particularly useful when there is insufficient
information for calculating a suitable distance, like TT or ND. The Minkowski approach
is not viewed as a negation of the standard GWR technique with EDs, but more a useful
option, especially in urban applications of GWR.

The Minkowski approach to GWR calibration can be computationally demanding, and
as such, care needs to be taken in choosing suitable candidate intervals for the
Minkowski distance parameters p and θ. Here, p can be chosen to approximate known
distance types. For example, Miller and Wentz (2003) show that TT in an urban setting
could be represented by p values ranging from 1 to 2. Furthermore, as each individual
GWR calibration is independent from each other, it would be straightforward to apply
parallel computing techniques (e.g. Harris et al. 2010c) to reduce computational costs.

However, there exists a key drawback to the Minkowski approach, where it is often
difficult to sketch out how a specific Minkowski distance function measures in our mind,
except for some common cases, such as the Manhattan (p = 1) or ED (p = 2). The rotation
of coordinate system (using θ) also adds to this perception difficulty. This drawback
tends to make the Minkowski approach more suitable for prediction purposes with GWR
(see Harris et al. 2010a) rather than exploratory/inferential purposes with GWR as the
latter is more concerned with understanding relationship non-stationarity.

Finally, it is important to note that our extension of GWR is still liable to the same issues
that basic GWR may suffer from, such as (1) model misspecification (e.g. Griffith 2008) and
(2) local collinearity (Páez et al. 2011), which is somewhat dependent on issue (1). Further
work could investigate these key issues in GWR when a non-ED metric is chosen.

Notes

1. The period of Equation (5) is π
2 , that is, very close to 1.57, so a rotation of 1.57 will be almost

no different from a 0 rotation.
2. Coordinate rotations are invalid for ED, so the model is only calibrated once, when p is 2.
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