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This article contains a mathematical analysis of strategies for determining topological
consistency of vector map simplifications. Such techniques exploit assumptions that
can be made regarding the similarity of corresponding objects in successive simpli-
fications. We propose that all topological relationships may be classified as planar or
non-planar. A formal analysis of techniques for determining topological consistency
of a simplification in terms of such relationships is presented. For each technique
we analyse any corresponding constraints that are imposed. This provides a unified
understanding of the benefits and limitations of individual techniques and the relation-
ships that exist between techniques. Subsequently, a new strategy for determining the
topological consistency of a simplification is proposed. This technique integrates the
benefits all methods studied to provide a solution which is subject to less constraints.
The effectiveness of this approach is demonstrated through fusion with an existing sim-
plification technique resulting in simplifications that have equal topology and similar
shaped features to the original map.
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1. Introduction

Geospatial data contain information about the geographic locations of features and their
boundaries on the surface of the earth. When represented in map form an important
attribute of such data is that its content and geometric detail may be adapted using a process
known as generalization (Jones and Ware 2005). This is a context-dependent process where
the scale of generalization required can vary greatly. Traditionally, generalization was per-
formed manually by cartographers but the growth of Geographical Information Systems
(GIS) and an increase in the volume of spatial data have introduced a need for automation.
The Internet is fast becoming the most popular medium for obtaining and analysing up-
to-date map data. Such tools are commonly referred to as Web GIS and examples include
Google Maps and OpenStreetMap (OSM). This growth is being driven partly by a cor-
responding growth in location-based services that often involve the downloading of map
data usually to mobile devices. The data stored on GIS web servers generally represent the
finest level of detail available. For Web GIS and location-based service applications, it is
often desirable to reduce the detail of this representation using generalization. There are
two main reasons for this. First, the spatial extent and detail of maps is ever increasing
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and the bandwidth required to transmit them can be significant. Any client that attempts
to obtain such data over a network will have finite bandwidth and this may prevent the
map being transmitted in its original form (Yang and Weibel 2009). Second, many mobile
devices used to display map data have limited screen resolution, processing power and stor-
age capabilities. They are more applicable to maps that have been previously generalized
and contain a less amount of detail (Li 2009).

(Jones 1997) identified eight categories of generalization algorithms. These are elim-
ination, simplification, typification, exaggeration, enhancement, collapse, amalgamation
and displacement. Simplification methods, which are the focus of this work, attempt to
generalize polygon and line features by reducing the number of points or vertices used to
represent them. The intention of any generalisation process is to produce the best result
possible subject to a set of objectives (Jones and Ware 2005). Weibel (1996) identified
four classes of objectives that such a process may aim to satisfy. These are shape (Gestalt),
semantic, metric and topological objectives. To satisfy shape objectives, successive lev-
els of generalization should represent an intuitive shape evolution of features (Latecki
and Lakmper 1999). Semantic objectives integrate information about a feature’s semantics
when deriving generalization. For example, a line feature may be generalized differently if
it represents a road as opposed to a river. Metric objectives aim to achieve the best possible
result in terms of some error criterion. For example, this could be the result that minimizes
the overall deviation from the original map. Finally, topological objectives are primarily
concerned with the need to ensure that the simplified representations of features retain
original relationships of containment and connectivity (Jones and Ware 2005). Two maps
with equal topology are said to be topologically equivalent (Kuijpers et al. 1995, Cicerone
et al. 2002).

Determining whether two maps are topologically equivalent has been the focus of
much research in the fields of GIS and computational topology (Egenhofer and Franzosa
1994, Clementini and Di Felice 1998, Li and Liu 2010). In these domains all techniques
attempt to determine the following: Given two topological spaces X and Y and two pairs
of objects 4,, By and 4,, B, in X and Y respectively, determine whether the topological
relation between A, and B, is equivalent to the topological relation between 4, and B,
(Egenhofer and Franzosa 1994). In this context, no assumptions apart from identity can
be made regarding the relationships between objects in X and Y. This is illustrated in
Figure 1a where no assumptions regarding the relationships between A, and 4, or between
B, and B, can be made. In the context of determined topological equivalence between suc-
cessive map simplifications such assumptions can be made. This is illustrated in Figure 1b
where Y is the simplification of X obtained by removing the vertex v; of 4. Because 4, is
the simplification of 4y, it is a sub-chain of 4,. Also because B, is not a simplified version
of B, both objects are equal. Exploiting the existence of such relationships between objects
in X and Y has led to the development of a distinct field of research. This exploitation
results in techniques that are easier to implement and have significantly less computational
complexity.

We propose that all topological relationships may be classified as planar or non-planar
relationships. Consider the simple map in Figure 2a that contains a polygon, line and point
feature. No lines or edges in this map cross without forming a vertex; therefore, we say
that the topological relationships between all features are planar. Next consider the simple
map in Figure 2b that contains a single polygon and line feature. Because the line crosses
the polygon without forming a vertex, we say the topological relationship between these
features is non-planar.
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Figure 1. Two pairs of topological spaces are shown in (a) and (b). In (a) no assumptions can be
made regarding the relationships between corresponding objects in X and Y. In (b) B, and B, are
equal although 4, is a sub-chain of 4.

an

Figure 2. Planar and non-planar topology are shown in (a) and (b), respectively.

In this article an in-depth analysis of methods for determining the topological consis-
tency of a map simplification is presented. We propose that any method for determining
the topological consistency can be summarized in terms of the following constraints:

(1) Constraints on the types of topology for which the technique can determine con-
sistency without returning a false positive; that is, classifying a simplification as
topologically correct when in fact it is not.

(2) Constraints on the types of topology for which the technique can determine con-
sistency without returning a false negative; that is, classifying a simplification as
topologically incorrect when it is in fact correct.

(3) Constraints on the types of simplification to which the technique can be applied.

An in-depth analysis of methods for determining the planar topological consistency
of a simplification in terms of these constraints is presented. In particular, we focus on
three techniques representing the current state of the art. Despite being equally important
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as planar relationships, techniques for determining the non-planar topological consistency
of a simplification have received much less research attention. From extensive literature
searches the authors have identified only two existing techniques for determining such
topological consistency and both are analysed in detail. Using the knowledge gained
through this analysis, a new topological consistent simplification strategy is proposed. This
technique integrates the benefits all methods studied to provide a simplification which is
subject to less relative constraints. The effectiveness of this technique is demonstrated in
the context of a simplification technique that satisfies shape objectives.

The layout of this article is as follows: Sections 2 and 3 analyse the existing techniques
for determining planar and non-planar topological consistencies of a simplification, respec-
tively. Section 4 describes the algorithm used to perform the integration of a simplification
method that satisfies shape objectives with the proposed methodology for determining
the topological consistency. Finally, in Sections 5 and 6 we present the results and draw
conclusions, respectively.

2. Planar topological consistency

In this section we analyse three seminal methods for determining the planar topological
consistency in terms of which relationships they can determine consistency and the con-
straints they impose. These are the works of De Berg et al. (1998), Saalfeld (1999) and
da Silva and Wu (2006). Through this analysis we develop an improved strategy for deter-
mining the planar topological consistency. At this point it is necessary to introduce some
background concepts. The Jordan Curve Theorem states that any simple closed curve or
polygon C divides the points of the plane not on C into two distinct domains of inside
and outside of which C is the common boundary. Let 7 (p, C) be a function that returns
an integer number representing the number of times a ray from p in any fixed direction
intersects the chain C. The modules of this function can be taken to give the ‘parity’ of the
point in question relative to the contour in question. The point-in-polygon criterion allows
us to determine whether a point is inside or outside a simple polygon C as follows: The
point p is outside C if I (p, C) is an even number: that is, 7 (p, C) %2 = 0. The point p is
inside C if I (p, C) is an odd number: that is, / (p, C) %2 = 1 (O’Rourke 1998). Another
important concept is that of a monotone chain. A chain C is monotone with respect to a
line L if every line orthogonal to L intersects C in at most one point (O’Rourke 1998). A
chain that is monotone with respect to the x-axis is x-monotone. The degree of a chain ver-
tex is the number of edges incident to it. A vertex of degree 1 is a leaf; a vertex of degree
2 is an interior vertex; and a vertex of degree greater than of equal to 3 is a junction (De
Berg et al. 1998). Generally the number of leaves and junctions is small compared to the
number of interior vertices in a given map. All simplification techniques presented in this
article are only applicable to interior vertices. All leaf and junction vertices are preserved
in the corresponding simplifications. This strategy has been previously used by Estkowski
and Mitchell (2001) and De Berg et al. (1998). A technique that exploits vertex degree to
determine a suitable simplification was presented by Yang (2005).

2.1. The De Berg strategy

De Berg et al. (1998) proposed a simplification technique based on finding the short-
est consistent path in a graph where line or polygon vertices represent graph nodes
whereas the line segments joining these vertices represent graph edges. Let C be an
x-monotone chain with vertices vi,...,v, and C’ a corresponding simplification. Let
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Figure 3. The chains C and C’ are represented by solid and dashed lines, respectively. The point p
lies inside a bounded face formed by C and C'.

P be a set of points py,. . ., p,,. Figure 3 shows two such chains and a single point p.
If (I (p, C) + 1 (p, C')) %2 = 1, we say p lies inside a bounded face formed by C and C'.
In the context of Figure 3, any point that lies in a grey region will be determined as lying
in a bounded face. If (I (p, C) + 1 (p,C')) %2 = 0, we say p lies outside a bounded face
formed by C and C’. The concept of applying the function / to an open contour will be
introduced in Theorem 2.1. This theorem is the original theorem of De Berg ef al. (1998)
but we supply a new proof. The motivation for this new proof will be presented in Section
2.2.

Theorem 2.1:  C’ is a consistent simplification of C with respect to P if and only if no
point of P lies in a bounded face formed by C and C'.

Proof: Proving the if and only if logical connection of this theorem requires two steps.
First, we must prove that if a simplification is consistent it is classified as so and no false
negatives are possible. Second, we must prove that if a simplification is inconsistent it is
classified as so and no false positives are possible. Let p be a point in the set P. There
exists a chain B that completes both C and C’ to simple polygons denoted BC and BC’,
respectively, such that the p lies inside BC. This is illustrated by the point p; in Figure 4.
If the point p lies inside BC', this represents a consistent simplification. On the contrary,
if the point p lies outside BC’, this represents an inconsistent simplification. This specifies
the two cases that may occur. Using two lemmas we now prove the following: First, for the
inconsistent case the point p lies in a bounded face formed by C and C’. Second, for the
consistent case the point p does not lie in such a bounded face. (]

Lemma 2.1:  [fa point p lies inside BC and outside BC', it lies in a bounded face formed
by Cand C'.

Proof: By the point-in-polygon criterion, p lies inside BC so I (p, BC) %2 = 1. On the
contrary, p lies outside BC' so I (p, BC') %2 = 0. Therefore, (I (p, BC) + I (p, BC')) %2 =
1. The two chains B in the polygons BC and BC’ overlap. Therefore, the ray from
p will intersect both or neither of these chains resulting in an increment of zero or
two crossings, respectively; in turn not changing the corresponding parity. Therefore,

Figure 4. The chains C, C’" and B are represented by the solid, dashed and dotted lines, respectively.
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(I (,BC)+1(p,BC))%2 = (I (p,C)+1(p,C’")) %2; that is, we need only count the
number of intersections with C and C’ and all others may be ignored. This implies
(I (@, C)+1(p,C’)) %2 =1 and consequently that p lies in a bounded face formed by
Cand C'. O

Lemma 2.2:  [fa point feature p lies inside BC and inside BC', it does not lie in a bounded
face formed by C and C'.

Proof: By the point-in-polygon criterion, p lies inside BC giving I(p,BC)%
2 = 1. On the contrary, p lies inside BC' giving I(p,BC)% 2 = 1.
Therefore, (I (p,BC) +1(p,BC'))%2 =0. From the same reason as in
Lemma 2.1, (I(p,BC)+1(p,BC"))%2=(I(p,C)+1(p,C'))%2. This implies
(I ®,C) +1 (p, C’)) %2 = 0 and consequently that p does not lic in a bounded face
formed by C and C". O

Lemmas 2.1 and 2.2 are true for all points p proving Theorem 2.1. The if and only
if logical connection of Theorem 2.1 ensures that it exhibits no constraint in terms of
returning false-positive or false-negative classifications. Therefore, this method is optimal
in terms of these two forms of constraints. 0

De Berg et al. (1998) proposed that Theorem 2.1 may be used to determine whether
a simplification is consistent with respect to maintaining the non-self-intersection of poly-
gons. We paraphrase directly to allow understanding in the current context. ‘There is a
simple remedy, add all vertices as extra points to the set P. Now we can show that any
line segment in C' that is consistent with C with respect to the extra points cannot destroy
the condition that output chain be simple” What De Berg et al. (1998) states here is that
maintaining the consistency of polygon line segments not intersecting each other can be
achieved by representing the line segments in question by their corresponding endpoints
and maintaining the consistency of these using Theorem 2.1. However, De Berg et al.
(1998) did not provide any proof of this fact. Line segments and points are two completely
different types of vector data structure. To this end, we now prove the De Berg ef al. (1998)
proposal true if and only if the chain C is monotone. Let E be a line segment that does not
intersect a monotone chain C.

Theorem 2.2: (' is a consistent simplification of C with respect to E if and only if
neither endpoint of E lies in a bounded face formed by C and C'.

Proof: There exists a chain B that completes both C and C’ to simple polygons, denoted
BC and BC', respectively, such that BC contains /; and /; and E does not intersect BC.
Such a chain will always exist because, by definition, E does not intersect C. Consider the
x-monotone chain C and its corresponding simplification C” in Figure 5. C’ is a sub-chain
of C and it will therefore also be x-monotone. A bounded face will exist between each
segment in C’ and its corresponding chain in C. Due to both chains being x-monotone,
each of these regions will be bounded by a single segment of C’. This is illustrated in
Figure 5. The remainder of this proof is divided into two possible cases that may occur.

Case 1: Consider the case where the line segment E intersects C'. This is the case when
Flj corresponds to /;1, in Figure 5, which intersects C’ a single time along the segment
v3vs. This single intersection causes the endpoint /; to lie in a bounded region between C
and C'. In order for /; not to lie in this region, /,/, must intersect a segment on boundary
of the region a second time. This region is bounded by a single line segment of C’ that /;1,
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Figure 5. Three bounded regions between C and C” exist where each is bounded by a single segment
of C'. Three possible line segments are also shown.

has previously intersected and cannot intersect a second time. The remainder of the region
boundary consists of segments from C. By definition, /;/; does not intersect C. Therefore,
if 1,1, intersects v3vs of C’ one endpoint, in this case /;, must lie in the bounded face formed
by C and C’. By Theorem 2.1, this endpoint will be classified as inconsistent. This proof is
well defined for any line segment E that intersects any line segment of C’.

Case2: Consider the case where the line segment /;/; does not intersect C'. Both endpoint
of E will lie inside or outside BC'. If E corresponds to /374 in Figure 5, both endpoints
lie outside BC’. This corresponds to an inconsistent simplification because both endpoints
are inside BC. In this case both endpoints will lie in a bounded face formed by C and C’
and be classified as inconsistent by Theorem 2.1. If E corresponds to /sl in Figure 5 both
endpoints lie inside BC’. This corresponds to a consistent simplification. In this case no
endpoint will lie in a bounded face formed by C and C’ and this simplification will be
classified as consistent by Theorem 2.1. O

Similar to Theorem 2.1, Theorem 2.2 exhibits no constraint in terms of returning false-
positive or false-negative classifications. This method is therefore optimal in terms of these
two forms of constraints. Theorems 2.1 and 2.4 prove that the strategy proposed by De Berg
et al. (1998) is optimal when determining the planar topological consistency for monotone
chains. De Berg ef al. (1998) showed that this strategy may be generalized to arbitrary
chains by applying it to sub-chains which do not cycle or contain backward tangents.
Intuitively, no backward tangent means that if v; is the first vertex of a chain, there should
not be an edge V;v;;1 that is closer to v; than the preceding edge v,_1v; (De Berg et al.
1998). The major drawback of this approach for determining the topological consistency
is that it may only be applied to a subset of possible simplifications.

2.2. The Saalfeld strategy

In this section we analyse a second method for determining the planar topological con-
sistency. Saalfeld (1999) proposed to apply the strategy of De Berg et al. (1998) for
determining the consistency of monotone chains to arbitrary chains. In Section 2.1, using
a new proof, we showed this approach to be well defined for monotone chains. In Saalfeld
(1999), this was never proven for arbitrary chains. In this section we will prove that when
determining the consistency of point features, this approach actually is well defined for
arbitrary chains. Section 2.3 will discuss the work of Saalfeld (1999) in the context of
determining the consistency of non-intersecting lines and non-self-intersecting polygons.
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Let C be a simple arbitrary chain, as opposed to a monotone chain as in Theorem 2.1,
with vertices vy, . . ., v, and C’ its corresponding simple simplification. Let P be a set of
points p1,. . ., Pm.

Theorem 2.3: (' is a consistent simplification of C with respect to P if and only if no
point of P lies in a bounded face formed by C and C'.

Proof: In Theorem 2.1 we proved the current theorem to be true if C is an x-monotone
chain. This proof was not based on the assumption that C is in fact x-monotone and
therefore is well defined for arbitrary chains also.

In the context of the simplification C” of the arbitrary chain C in Figure 6, any point
feature that lies within the grey regions will be classified topological inconsistent by
Theorem 2.3. For example, the points p; and p, in this figure will be determined incon-
sistent. Theorem 2.3 has no constraint in terms of returning false-positive or false-negative
classifications. This method is optimal in terms of these two forms of constraints. It also
possesses no constraint in terms of the simplifications to which it may be applied. It
therefore represents an optimal technique, in terms of all three types of constraints, for
determining the topological consistency of point features.

Theorem 2.3 shows the original strategy proposed by De Berg et al. (1998) for deter-
mining the consistency of point features to be well defined for monotone as well as
arbitrary chains. Saalfeld (1999) proposed that the consistency of arbitrary chains not
self-intersecting could be achieved through representing line segments by their correspond-
ing endpoints and maintaining the consistency of these endpoints using Theorem 2.3.
Theorem 2.2 proved this approach to be well defined in the case of monotone chains.
Crucially Saalfeld (1999) did not prove this theorem for arbitrary chains. The following
section addresses this issue.

2.3. The da Silva strategy

da Silva and Wu (2006) demonstrated the strategy proposed by De Berg et al. (1998) for
determining the topological consistency of non-intersecting chains to be ill-defined for
arbitrary chains. da Silva and Wu (2006) subsequently proposed a method that is well
defined for arbitrary chains. In this section we illustrate the reasons why the original strat-
egy proposed of De Berg et al. (1998) is ill-defined for arbitrary chains and analyse the
inconsistencies it may introduce. We prove that the method of da Silva and Wu (2006)
introduces unnecessary constraints if used to determine the consistency of point features.
We proved in Section 2.1 that for monotone chains the consistency of non-intersecting
lines may be determined by evaluating the consistency of corresponding line endpoints.
The following example demonstrates this strategy to be ill-defined for arbitrary chains.

Figure 6. The bounded regions between C and C’ are represented by grey.
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(b)

Figure 7. Two possible topologically inconsistent simplifications.

Consider the non-monotone chain C and its corresponding simplification C’ in Figure 7a.
The bounded regions between these two chains are coloured grey. Next consider the line
segment /;/, that intersects C’ but not C. This represents an inconsistent simplification of
C relative to this line segment despite the fact that neither /) nor /, lies in a bounded face
formed by C and C’. The simplification is consistent with respect to these endpoints. The
reason for this is that when proving this strategy for determining the consistency to be well
defined for monotone chains in Theorem 2.2 we exploited the fact that the chains were
monotone as follows.

In Figure 7a if /1 intersects C' it enters a bounded region. If the chains were monotone,
111, could only intersect the boundary of this region once. In doing so a single segment
endpoint of /;/, would lie in this bounded region and be determined inconsistent. This
property does not hold for non-monotone chains. For example, a bounded region Figure 7a
is bounded by two segment in C” allowing /;/, to intersect the boundary of this region twice.
This can also result in self-intersecting polygons being incorrectly determined consistent.
Consider Figure 7b where the simple chain C is simplified to a self-intersecting chain C’.
A ray from every vertex in a westerly direction, as demonstrated for a single vertex in this
figure, results in an even number of intersections with BC and BC'. In this case every vertex
will be classified as being consistent and the simplification classified consistent.

The solution to this problem lies in requiring that each bounded region is bounded by
only a single line segment in C’ through another means other than the monotone property.
da Silva and Wu (2006) proposed to achieve this by determining whether the endpoints
of 1,1, are topologically consistent with respect to each individual line segment in C’ and
its corresponding chain in C, in isolation. If it is determined that /;/, does not intersect
each individual line segment of C” using this procedure, it can be inferred that /,/, does not
intersect C'. Lemma 2.3 and Theorem 2.4 offer an improved version of the proof originally
proposed by da Silva and Wu (2006), which is presented in the context of all previous
analysis in this article. Let C be a simple arbitrary chain and C’ its corresponding simple
simplification, which is a single line segment. Let E be a line segment with endpoints /;
and /; that does not intersect C.

Lemma 2.3: ' is a consistent simplification of C with respect to E if and only if neither
endpoint of H lies in a bounded face formed by C and C'.
Proof: There exists a chain B that completes both C and C’ to simple polygons, denoted
by BC and BC', respectively, such that BC contains /; and /; and E does not intersect
BC. Such a chain will always exist because, by definition, H does not intersect C. The
remainder of this proof is divided into two possible cases.
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(a) (b)

Figure 8. Two possible line segments are shown in (a). A chain containing a series of line segments
is shown in (b).

Case 1: Consider the case where the line segment E intersects the line segment C’. This
is the case if m corresponds to /;/; in Figure 8a. Line segments that do not overlap can only
intersect a single time. By the point-in-polygon criterion, a line that intersects a polygon
a single time will have one endpoint inside and the other endpoint outside the polygon,
in question. Therefore, one endpoint of E will lie outside BC'. This point will lie in a
bounded face formed by C and C’ and will be classified inconsistent by Theorem 2.3.

Case 2: Consider the case where the line segment E does not intersect C'. In this case
both endpoints of /;/; will lie inside or outside BC'. If both endpoints lie outside BC', which
is illustrated by /34 in Figure 8a, this simplification is inconsistent because both endpoints
lie inside BC. In this case both endpoints will lie in a bounded face formed by C and C’
and will be classified inconsistent by Theorem 2.3. If both endpoints lie inside BC’, no
endpoint will lie in a bounded face formed by C and C’; this simplification is consistent
and will be classified as such by Theorem 2.3. 0

Lemma 2.3 exhibits no constraint in terms of returning false-positive or false-negative
classifications. This method is therefore optimal in terms of these two forms of constraints.
Generalization of Lemma 2.3 to simplifications that are not a single line segment but a
chain of segments is achieved as follows: Let C be a simple chain and C’ its correspond-
ing simple simplification. Let E be a line segment with endpoints /; and /; that does not
intersect C.

Theorem 2.4: The chain C' is a consistent simplification of C with respect to E if and
only if each line segment in C' is determined consistent with respect to E by Lemma 2.3.

Proof: If each individual line segment in C’ is determined consistent with respect to E
by Lemma 2.3 then /;/; does not intersect C'. If /;/; intersects one or more line segments in
C’, this will be determined by the corresponding evaluation of Lemma 2.3. O

In the context of Figure 7a, Theorem 2.4 would involve applying Lemma 2.3 individ-
ually to the sub-chains v{v3, v3v5 and Vsvg in C and C'. In this case the simplification C’
would be correctly determined as inconsistent with respect to /;1,. Theorem 2.4 can be
generalized to maintain the consistency of a chain, as opposed to a single line segment, not
intersecting a simplification which may also be a chain. For example, in Figure 8b the con-
sistency of the simplified chain C” with respect to the chain containing the line segments
111, and L1; must be determined. Theorem 2.4 can also be generalized to determine the
consistency of a non-self-intersecting chain. The following two theorems prove these facts.
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Theorem 2.5: The chain C' is a consistent simplification of C with respect to the chain
Cy not intersecting C if and only if each line segment in Cs is consistent by Theorem 2.4.

Proof: If every line segment in Cs is consistent by Theorem 2.4 the chain Cs will be
determined consistent. If a single line segment in Cy is inconsistent by Theorem 2.4, the
chain Cy will be determined inconsistent. O

Theorem 2.6:  The chain C' is a consistent simplification of C with respect to C not self-
intersecting if and only if each line segment in C' is determined consistent with respect to
every other line segment in C' by Theorem 2.4.

Proof: Applying Theorem 2.4 individually to each line segment in C’ and its correspond-
ing sub-chain in C ensures that if an intersection occurs a corresponding endpoint will lie
in a bounded face of C and C'. O

The strategy of da Silva and Wu (2006) can be used to determine the consistency of
point features as well as line features but doing so introduces unnecessary constraints. This
strategy will not introduce any false positives but can introduce false-negative consistency
evaluations. Consider the chain C, its corresponding simplification C” and the point feature
p in Figure 9. By Theorem 2.3 C’ is a consistent simplification of C with respect to p; that
is, p does not lie in a bounded face formed by C and C’. This evaluation is correct. Using
the strategy of da Silva and Wu (2006) would incorrectly classify this simplification with
respect to p as inconsistent; this is a false negative. Consequently, to impose the minimal
constraints, the strategy of da Silva and Wu (2006) should not be used when determining
the consistency of point features.

Table 1 presents a summary of the results of all analyses performed in this section. For
each technique we indicate whether it determines a given simplification is topologically
inconsistent with respect to the three types of planar topological relationships. An asterisk
indicates that the technique in question can determine the topological consistency without
constraint and is optimal. An x; symbol indicates that the technique in question can deter-
mine the topological consistency but is subject to some form of constraint and therefore is
not optimal. The final column defines what each constraint x; represents. From this table
the following conclusions can be drawn. The consistency of point features should be deter-
mined by the strategy of Saalfeld (1999), whereas the consistency of line features should
be determined by the strategy of da Silva and Wu (2006). This strategy imposes the least
possible constraints.

Figure 9. (' is a consistent simplification of C with respect to the point p.
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Table 1. The forms of planar topology for which each technique can determine consis-
tency and any corresponding constraints.

Point Line Non-self-intersection Constraints
De Berg X1 X1 x1-monotone chains
Saalfeld *
da Silva X2 * * x,-Point features

2.4. Computational complexity

In this section we determine the computational complexity to determine whether a given
simplification is topologically consistent with respect to each type of planar topological
relationship. In all cases the original chain C and its simplification contain n and m vertices,
respectively, where m < n.

Theorem 2.7: Determining whether C' is a consistent simplification of C with respect to
the point p using the strategy of Saalfeld (1999) can be computed in O(n) time complexity.

Proof: Computing the parity of p with respect to C and C’ requires O(n) and O(m) time
complexity. The overall time complexity is therefore O(n + m). Because m < n this reduces
to O(n) time complexity.

Theorem 2.8: Determining whether C' is a consistent simplification of C with respect
to the planar topological relationship with the chain L that contains | vertices using the
strategy of da Silva and Wu (2006) can be computed in O(nl) time complexity.

Proof: Determining whether the simplification C” is a consistent simplification of C with
respect to a single line segment in L requires O(#) time complexity. This must be repeated
for each line segment in L giving a total time complexity of O(nl). O

2.5. Implementation note

In many simplification algorithms individual vertices are iteratively removed from the map
in question resulting in a progressively simplified result (Latecki and Lakmper 1999). This
fact allows planar topological equivalent between successive simplifications to be easily
computed. Removing a single vertex from a contour C results in a single bounded face
containing three vertices between it and the corresponding simplification; this is illustrated
in Figure 10. To determine the topological equivalence with respect to point features using
the strategy of Saalfeld (1999), we simply determine whether any point feature lies inside
this triangle. To determine the topological equivalence with respect to lines features using
the strategy of da Silva and Wu (2006) we simply determine whether any line vertex lies
inside this triangle. Similarly, to determine the topological equivalence with respect to
a contour not self-intersecting, we determine whether any line vertex of the contour in
question lies inside the triangle.

3. Non-planar topology

Determining the non-planar topological consistency between two maps has been signifi-
cantly studied in the domain of GIS (Egenhofer and Franzosa 1994, Clementini and Di
Felice 1998). Despite this fact approaches for determining the non-planar topological con-
sistency between successive map simplifications have received less focus. Although there
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Figure 10. Removing the vertex v; from C, represented by the solid line, results in a single bounded
face containing the vertices v;_1, v; and v;; ;.

is potential to simply apply existing techniques in the context of map simplification, the
authors are unaware of a single case where this strategy has been used. We believe this can
be attributed to a number of factors. Existing works on determining the non-planar topolog-
ical consistency can in some cases be very theoretical and lack concrete implementations
details (Egenhofer and Franzosa 1994). In cases where such details are provided many
techniques are very complex and re-implementation can present a significant challenge
(Kuijpers et al. 1995, Clementini and Di Felice 1998). Also the computational complex-
ity of such techniques can be high. Determining how to exploit the known relationships
between objects in successive simplifications to reduce the complexity of determining the
non-planar topological consistency is an open research question. In Section 2.3 we demon-
strated that the planar topological consistency of non-intersecting lines can be determined
by representing each line segment by its corresponding endpoints and determining their
consistency. Unfortunately this strategy cannot be used to determine the non-planar topo-
logical consistency of intersecting lines. In Section 3.1 we demonstrate why this is the
case. In Section 3.2 we analyse the techniques that have been previously used to maintain
non-planar topological consistency between map simplifications.

3.1. Representing intersections explicitly

In Lemma 2.3 we exploited the fact that when simplifying a chain C by a sub-chain C’,
it is always possible to form a set of bounded regions formed by C and C’ such that the
boundary of each region contains only a single line segment of C’. This is because C’
is a sub-chain of C where each line segment in C’ simplifies one or more line segments
of C. If a line intersection is introduced with C’, a segment endpoint would lie in the
corresponding bounded region. This endpoint would then be determined inconsistent. To
apply this concept to detect the removal of a line intersection with C in the simplification
C’, we would need to be able to form a set of bounded regions between C and C’ such that
the boundary of each region contains only a single line segment of C as opposed to C’;
this is illustrated in Figure 11a. Then if a line intersection between a line segment and C
was not represented in the corresponding simplification C’, a segment endpoint would lie
in the corresponding bounded region and in turn be determined inconsistent. Because C is
not a sub-chain of C’, this is not possible. Instead each region bounded by C and C’ will
be bounded by least two line segments of C. This is illustrated in Figure 11b where the
chain C containing two line segments is simplified by the chain C’ containing a single line
segment. C’ is an inconsistent simplification of C with respect to the intersection with /,/,.
This is despite the fact that no endpoint of 1,15 lies in a bounded face.

This demonstrates that the consistency of line intersections cannot be maintained by
representing the intersecting lines by their corresponding endpoints and maintaining the
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Figure 11.  An endpoint of /;/, lies in a bounded face of C and C’ in (a) but not in (b).

consistency of these. Instead the line segments must be represented explicitly and their
corresponding intersections maintained explicitly.

3.2. Determining non-planar consistency

In this section we review two approaches to maintaining non-planar topological consistency
between simplifications. In essence both approaches transform the problem of determin-
ing the non-planar consistency to one of determining the planar consistency by imposing
constraints on the simplification process.

The first approach, to best of our knowledge, was originally proposed by Agrawala and
Stolte (2001). Using this strategy non-planar relationships are converted to planar rela-
tionships using a process known as planar enforcement (Wise 2002). All segments that
intersect another segment are replaced by two corresponding segments, which share a com-
mon endpoint equal to the intersection point. These intersection points are then marked as
unremovable by the simplification process and therefore all intersection points are main-
tained. To prevent the introduction of new intersection points, the strategy of da Silva
and Wu (2006) (Section 2.3) can be used. Because all intersection points are maintained
and no new intersection points are introduced, this strategy maintains non-planar topologi-
cal consistency. A second strategy for maintaining non-planar topological consistency was
proposed by Kulik et al. (2005) and Weihua (2008). In this strategy line intersections are
maintained by marking all line segments that contain intersections as unremovable by the
simplification process.

Both the above strategies for determining the non-planar topological consistency have
a time complexity equal to that of determining all segment intersections in the map. This
can be determined in O(nlogn + Ilogn) where n is the number of vertices and / the number
of intersections (Berg et al. 2008). It is important to note that both strategies be severely
constrained with respect to the possible simplifications for which consistency can be deter-
mined. For example, consider the simplification in Figure 12. Despite the fact that this
simplification is topologically consistent, it would be determined inconsistent by both
strategies for the following reasons: The strategy of Kulik ez al. (2005) and Weihua (2008)

Figure 12. (' is a consistent simplification of C relative to [, .
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would determine the simplification inconsistent because the line segments in C that /;1,
intersects are not present in C’; that is, the line segments v7v; and v4vs. The strategy of
Agrawala and Stolte (2001) would determine the simplification inconsistent because the
intersection points between C and [/, are not maintained. The development of techniques
for determining the non-planar topological consistency of a simplification without such
constraints is an open research question.

4. Map simplification

In Section 2 we demonstrated how the planar topological consistency of a map simpli-
fication can be determined without constraint. In Section 3 we demonstrated how the
non-planar topological consistency of a map simplification can be determined while being
subject to constraints. In this section we describe how these strategies can be used by an
existing simplification method to generate simplifications that satisfy topological and shape
objectives (see Section 1).

Many generalization techniques exist that attempt to satisfy a single objective. For
example, Douglas and Peucker (1973) and Saalfeld (1999) proposed techniques that
attempt to satisfy metric and topological objectives, respectively. Despite their importance
few generalization techniques exist that attempt to satisfy multiply objectives. Galanda
(2003) presented a number of metrics for determining the consistency of a generalization
with respect to each type of objective. The author noted that future work should focus on
the integration of these metrics such that a generalization which satisfies multiple objec-
tives may be realized. Kulik ef al. (2005) also noted that none of the current generalization
algorithms satisfy multiple objectives. He proposed a simplification technique that attempts
to satisfy shape, semantic and topological objectives. In Sections 2 and 3, a methodology
that can determine the planar and non-planar topological consistency of a given simplifica-
tion was presented. We propose to fuse this with an existing simplification technique that
satisfies shape objectives. Latecki and Lakmper (1999) proposed a polygon simplification
technique based on contour evolution. The basic concept of this technique is to replace two
consecutive line segments with a single line segment formed by joining their endpoints in
each evolution step to obtain a shape hierarchy. To produce an intuitive shape evolution, a
suitable order of substitution must be used. Latecki et al. proposed to perform substitution
in an order where line segments that contribute the least to the overall shape are substituted
first and the process terminates when a convex contour is formed.

The proposed simplification process operates as follows: To ensure all non-planar
topological relationships are maintained during the simplification process, one of the two
pre-processing steps reviewed in Section 3.2 must be applied to the map. That is, either
planar enforcement is applied or intersecting line segments are marked unremovable. Next
the least significant line or polygon vertex such that its removal will result in a topologi-
cally consistent simplification is removed. This step is repeated until no more vertices can
be removed from any feature. A vertex cannot be removed from a feature if the feature is
convex or the removal results in a topologically inconsistent simplification. The use of con-
vexity to halt simplification was originally proposed by Latecki and Lakmper (1999) who
showed that such a simplification represents a high-level shape description of the contour
in question.

5. Results

In this section we demonstrate the effectiveness of the proposed simplification methodol-
ogy at satisfying both shape and topological objectives. All implementation was performed
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in the C4+ programming language. The point, line and polygon data structures from the
Computational Geometry Algorithms Library (CGAL) (Giezeman and Wesselink 2008)
were used to represent all map features. This section is divided into a series of parts
where each evaluates the individual elements of the overall simplification algorithm. In
Section 5.1 we evaluate the original simplification algorithm of Latecki and Lakmper
(1999) without any topological constraints. In Section 5.2 we evaluate this simplification
algorithm with the addition of planar topological constraints. In Section 5.3 we evaluate
this simplification algorithm with the addition of both planar and non-planar topological
constraints.

5.1. Shape

All data used in our analysis were taken from OSM which, since its beginnings in 2004, has
grown to become an important source of geospatial data. An OSM data set containing a set
of polygon and line features is plotted in Figure 13a. The polygons represent a forest park,
a car park and a shopping centre. The line features represent roads. This map exhibits the
following forms of planar topological relationships: the containment or non-containment of
one polygon inside another, the non-self-intersection of polygons and the non-intersection
of polygons and lines. A number of non-planar topological relationships in the form of
lines intersecting polygons are also evident in the original map. For example, consider
the relationships between the red line that crosses the blue polygon and the grey line that
crosses the blue polygon. The map in Figure 13a is progressively simplified in Figure 13b—f
using the strategy of Latecki and Lakmper (1999). No check for topological consistency is
performed during the simplification process. The only constraint imposed is that vertices of
degree not equal to 2 cannot be removed. The original map in Figure 13a contains a total
of 641 polygon and line vertices. The simplifications in Figure 13b—f contain 341, 241,
141, 91 and 62 vertices, respectively. Figure 13f represents a 90% reduction in data size
relative to Figure 13a. Our implementation achieved this result in a time of 4 running on an
Intel 2.8 GHz dual core processor. It is evident from this series of simplifications that this
process generates a suitable shape evolution of polygon and line shapes and satisfies shape
objectives. On the contrary, this process fails to satisfy topological objectives. In Figure 13f
it can be seen that a number of intersections between polygons have been introduced by
the simplification process; this represents a planar topological inconsistency. Also the non-
planar topological relationships mentioned earlier between the blue polygon and the red
and grey lines are inconsistent in the final simplification.

5.2.  Planar consistent simplification

The map in Figure 14a is progressively simplified in Figure 14b—f using the strategy of
Latecki and Lakmper (1999). At each simplification step the strategies of Saalfeld (1999)
and da Silva and Wu (2006) are used to ensure whether each simplification is consistent
with respect to planar topological relationships. This reduces to checking whether any cor-
responding line vertices fall within a single bounded region (see Section 2.5). The original
map in Figure 14a contains 641 polygon and line vertices total. The simplifications in
Figure 14b—f contain 341, 241, 141, 91 and 62 vertices, respectively. Figure 14f repre-
sents a 90% reduction in data size relative to Figure 14a. Our implementation achieved this
result in a time of 4 s running on an Intel 2.8 GHz dual core processor. It is evident from
this series of simplifications that this process generates a suitable shape evolution of poly-
gon and line shapes and satisfies shape objectives. It is also evident that each simplification
is consistent with respect to planar topological relationships. No polygons or lines that did
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Figure 13. The set of features in (a) are simplified by an increasing amount in (b)—(f). All
simplifications satisfy shape objectives.
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(a) (b)

(c) (d)

(e) ®)
Figure 14. The set of features in (a) are simplified by an increasing amount in (b)—(f). All
simplifications satisfy shape and planar topological objectives.
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not intersect in the original map intersect in any of the simplified results. On the contrary,
the simplification process does not produces simplifications that are consistent with respect
to non-planar topological relationship. For example, the topological relationships between
the blue polygon and the red and grey roads are inconsistent in Figure 14f.

5.3. Non-planar consistent simplification

The map in Figure 15a is progressively simplified in Figure 15b—f using the strategy of
Latecki and Lakmper (1999). At each simplification step the strategies of Saalfeld (1999)
and da Silva and Wu (2006) are used to ensure whether each simplification is consis-
tent with respect to planar topological relationships. The strategy of Kulik et al. (2005)
and Weihua (2008) is used to maintain all non-planar topological relationships where
line segments containing an intersection are marked unremovable. The simplifications in
Figure 15b—f contain 321, 271, 221, 171 and 141 vertices, respectively. Figure 15f repre-
sents a 78% reduction in data size relative to Figure 14a. Our implementation achieved
this result in a time of under 5s running on an Intel 2.8 GHz dual core processor. This
reduction in data size is less than that achieved in the previous sections. This is because
maintaining non-planar topology inherently requires a greater number of vertices. It is also
partly because the current strategy for maintaining non-planar topological consistency is
subject to the constraints discussed in Section 3.2, which further reduces the number of
suitable simplifications. Given the rapidly growing size of spatial data sets, it is important
to evaluate the performance of the proposed technique on a large data set. Such a data set
extracted from OSM, which contains a total of 13,755 polygon and lines vertices, is dis-
played in Figure 16a. This was simplified to the map in Figure 16b, which contains 4755
vertices, and is both planar and non-planar topologically consistent. Our C++ implementa-
tion achieved this result in a time of 261 s running on an Intel 2.8 GHz dual core processor.

6. Conclusions

This article has presented a formal mathematical analysis of strategies for determining the
topological consistency of a given vector map simplification. This analysis was divided into
two parts. First, we considered techniques for determining the planar topological consis-
tency and in particular the three seminal methods of De Berg et al. (1998), Saalfeld (1999)
and da Silva and Wu (2006). A unified analysis of these methods was presented in terms
of the forms of topology each individual technique can determine the consistency and any
corresponding constraints imposed. It was proven that in terms of determining the con-
sistency of point features, the method of Saalfeld (1999) imposes zero constraints and is
optimal. It was also proven that in terms of determining the consistency of non-intersecting
lines, the method of da Silva and Wu (2006) imposes zero constraints and is optimal. Next
we considered techniques for determining the non-planar topological consistency. It was
shown that the existing methods of Kulik e al. (2005), and Weihua (2008) and Agrawala
and Stolte (2001) impose significant constraints on the simplifications to which they may be
applied. Overcoming this issue represents a challenge for future research. A new simplifi-
cation algorithm that satisfies shape and topological objectives was subsequently proposed.
A number of data sets from OSM were simplified using this methodology. In all cases a
large reduction in the number of vertices used to represent features was achieved although
still maintaining shape and topological consistency.
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(®)

Figure 15. The set of features in (a) are simplified by an incresing amount in (b)—(f). All
simplifications satisfy shape, planar and non-pnanar topological objectives.



International Journal of Geographical Information Science 1679

Figure 16. The large-scale map in (a) is simplified in (b).
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