

B. Murgante et al. (Eds.): ICCSA 2014, Part V, LNCS 8583, pp. 678–690, 2014.
© Springer International Publishing Switzerland 2014

Evaluation of Data Management Systems
for Geospatial Big Data

Pouria Amirian1, Anahid Basiri2, and Adam Winstanley1

1 Department of Computer Science, National University of Ireland Maynooth, Ireland
2 Nottingham Geospatial Institute, The University of Nottingham, UK

amirian@cs.nuim.ie, anahid.basiri@nottingham.ac.uk
adam.winstanley@nuim.ie

Abstract. Big Data encompasses collection, management, processing and anal-
ysis of the huge amount of data that varies in types and changes with high fre-
quency. Often data component of Big Data has a positional component as an
important part of it in various forms, such as postal address, Internet Protocol
(IP) address and geographical location. If the positional components in Big Da-
ta extensively used in storage, retrieval, analysis, processing, visualization and
knowledge discovery (geospatial Big Data) the Big Data systems need certain
type of techniques and algorithms for management, analytics and sharing.

This paper describes the concept of geospatial Big Data management with
focus on using typical and modern database management systems. Then the
typical and modern types of databases for management of geospatial Big Data
are evaluated based on model for storage, query languages, handling connected
data, distribution models and schema evolution. As the results of the evalua-
tions and benchmarks of this paper illustrate there is no single solution for
efficient management of geospatial Big Data and in order to utilize unique cha-
racteristics of geospatial Big Data (such as topological, directional and distance
relationship) a polyglot geospatial data persistence system is needed.

Keywords: geospatial Big Data, graph database, XML document database, col-
umn-family database, spatial database, geospatial Big Data Management,
polyglot geospatial data persistence.

1 High Level Introduction to Geospatial Big Data

Often data component in Big Data has a geospatial component as an important part of
it in various forms, such as postal address, Internet Protocol (IP) address and geo-
graphical location (geospatial Big Data). As it mentioned in many research papers,
management and analysis of geospatial data is complex and requires specific storage,
processing, analysis and publication mechanisms [1, 2, 3, 4, 5 and 6]. In fact man-
agement and analysis of geospatial data have been always revealed the limitations of
information systems and computational frameworks. In a nutshell, unique characte-
ristics of geospatial data such as high volume, various type of relationships between
geospatial objects (e.g. distance, directional and topological relationships), need for
long transactions, computationally intensive algorithms of processing and inclusion of

 Evaluation of Data Management Systems for Geospatial Big Data 679

time component, makes the management and analysis of geospatial Big Data even
more complicated. Some researchers agreed that geospatial data may represent the
biggest Big Data challenge of all [7]. If the positional components in Big Data exten-
sively used in storage, retrieval, analysis, processing, visualization and knowledge
discovery (geospatial Big Data) the Big Data systems need certain type of technolo-
gies, techniques and algorithms for management, analytics and sharing. [8]. Using
geospatial Big Data provides unprecedented opportunities for providing improved,
more adaptive, more intelligent and cost-effective services in government, private and
science and research sectors [9]. In summary management of geospatial data has sev-
eral challenges in the storage, processing, analysis, visualization and publication
areas. This paper focuses on management of geospatial Big Data for standard online
sharing and publication.

2 Standard Publication of Geospatial Big Data Using Web
Services

Publication of geospatial Big Data in standard manner provides opportunities for ex-
ecuting distributed and collaborative data preparation, data mining and knowledge
discovery tasks. Also the ever-increasing access to geospatial data on the Web results
in enhanced system efficiency through cost and time reduction in data collection, data
preparation and information retrieval. Moreover, such access helps decision-makers to
manage their assets better, enables faster responses for time-sensitive decisions, and
improves the communication process across diverse agencies. In this regard, geospa-
tial data should be shared and accessed using standard services which are openly pub-
lished over the Web [10]. In this context, there are generally two approaches for
publishing geospatial data in standard manner. The first approach is to use the specifi-
cations published and managed by Open Geospatial Consortium (OGC). The men-
tioned specifications (geospatial services) consist of defined set of request/responses
to access geospatial resources [11, 12]. The second approach is to use web services
technologies and use the standard messaging and standard interface definition me-
chanisms. The mentioned standard messaging and standard interface mechanisms are
inherent to web services technologies and there is no need to predefine set of re-
quest/response in order to exposing geospatial resource over the web [10].

These two approaches are just standard approaches for exposing geospatial re-
sources over the web. There are also other approaches [13] that utilize proprietary and
platform-dependant solutions for exposing geospatial resources. This paper focuses
on standard approaches. The first approach is standard and well supported in Geospa-
tial Information (GI) community. The second approach belongs to the broader and
more dynamic Information Technology (IT) community. As it mentioned before the
second approach utilizes web services technologies that consist of several technolo-
gies such as XML, XSD, WSDL, SOAP as core technologies. These technologies can
be used over the web (HTTP) or any other protocol. At the other hand the first ap-
proach (using geospatial services) limited to the web [10]. This is a serious issue in
publishing geospatial resources to the users. Although some OGC specification can be
defined using core web service technologies, but using core web service technologies
for some OGC services is not possible (in standard manner) [14]. As an example Web

680 P. Amirian, A. Basiri, and A. Winstanley

Map Service (WMS) specification is the most implemented geospatial service. It
creates image of geospatial data (map in OGC terminology) as response to GetMap
request over the HTTP. So the WMS service provides sharing of geospatial data at
image-level. Since supported data types of web services defined by XSD and there is
no native support for binary data in XSD, creating wrapper web service for WMS
results in non-standard web service [10, 12, 13, 14 , 15]. The main geospatial service
for sharing geospatial data at object level is Web Feature Service (WFS). WFS pro-
vides access to geospatial data using GML format which contains both geometrical as
well as attribute properties of each geospatial data items [17]. Since GML is a XML
grammar, there is no serious difference in using both kinds of services for publication
and sharing of geospatial Big Data over the web at the object-level.

Often the huge volume of geospatial data is the reason for the complexity of publi-
cation of geospatial Big Data issue. In addition to huge volume of geospatial data,
sometimes the velocity and variety components in geospatial Big Data are major rea-
sons for the issue. For example in disaster management and when real-time or near-
real time decision making is critical, it is necessary to access various voluminous
geospatial data from different sources (satellite data, surveillance systems and social
network data) with high frequency of change. In these situations the velocity of
change of data and variety of data sources are as important as the volume of data.

Traditionally Relational Database Management Systems (RDBMS or SQL data-
bases) with spatial extensions (Spatial Databases on top of relational or object-
relational systems) were used as backend system for geospatial services [18].
Nowadays these systems still can be used in many geospatial data-related tasks but
the mentioned systems are not efficient enough to handle geospatial Big Data, espe-
cially when the volume, velocity and variety of datasets are far beyond the capacity of
a single server and the datasets need to be handled in distributed manner. As it illu-
strated in Figure 1, in a typical system (using the SQL database) there are four layers
in the system for publication of geospatial data. In this case geospatial services (such
as WFS) just provide access to geospatial data through a service layer for various
kinds of clients. All the request and response processing is done in business logic
layer. If geospatial datasets were stored in SQL or spatial databases in data layer, the
business logic layer must contains a mapping layer. In the case of WFS and if the
client requests to get data in GML format (application data model), the business logic
layer must retrieve data from databases and then create a GML document.

Fig. 1. A typical system for publication of geospatial data with relational or spatial databases

 Evaluation of Data Management Systems for Geospatial Big Data 681

The mapping layer has negative effects on scalability, availability and performance
of the system. In this case NoSQL databases can provide the required quality of ser-
vices for standard publication of geospatial Big Data. In a nutshell, since the storage
data model and application data model can be the same in NoSQL databases, the
mapping layer is not necessary in the system. In addition, NoSQL databases are de-
signed with the idea of distribution of data and processes in cluster of machines which
is a major advantage in comparison with relational and object-relational databases
[19, 20]. Following sections first explain the major types of NoSQL databases and
then provide an evaluation of using a relational (SQL database), a spatial and a
NoSQL for handling geospatial Big Data with focus on standard publication.

3 SQL and NoSQL Databases

Relational DBMSs (SQL databases) use tables, columns, keys and Structured Query
Language (SQL) to perform all sorts of tasks with data. One of the important facets of
SQL databases is the normalization process which ensure about storage of data items
in separate tables and only once in whole database. The SQL databases usually are the
best solutions when the schema of data is fixed and strong consistency is most needed
feature. In other words, SQL databases are ideal solutions to managing structured data
such that all users can access to the same set of data in same state at all times (strong
consistency). The SQL databases can be effectively used in many common geospa-
tial-related workflows. Since they support transaction and locking features, they pro-
vide efficient backend for enterprise GIS systems. Also geospatial data have a fixed
schema and in most cases they are not used in isolation. As a result join of two or a
few more datasets and connecting data through spatial operations is needed in most
GIS workflows. For this reason managing fixed schema geospatial data with limited
connectivity and using them in GIS workflows can usually be done effectively
through SQL databases.

The SQL databases handle connected data using relationship and they retrieve
connected data using joins. So connections between related data tables are stored
using primary and foreign keys and join between connected tables are needed when
retrieving data. So the related data are stored in SQL databases separately and they
can be related using joins. However joins are one of the most computationally expen-
sive processes for SQL databases. In most cases, joins are the bottleneck of SQL da-
tabases. In order to avoid many joins (which is needed in handling highly connected
data in SQL databases) denormalization process can be used to store data items sever-
al times in single large tables. But there are several issues associated with denormali-
zation process especially with providing consistency in large datasets. In addition to
issues related to handling highly connected data, some other problems arise when
SQL databases need to handle high volume of data and when scalability is needed by
adding more servers and technologies to bind them together. When distribution is
needed in SQL databases and with more loads on a SQL database, vertical partition-
ing and denormalization process are needed which results in complexity in providing
strong consistency. In summary, to achieve high scalability in SQL databases the

682 P. Amirian, A. Basiri, and A. Winstanley

normalized relational model of data storage has to be compromised and deviated from
relational model.

The NoSQL (Not only SQL) DBMSs are a broad class of DBMSs identified by
non-adherence to the SQL (relational) model. There are different types of NoSQL
databases, each with distinct set of characteristics but they all can deal with large
amounts of (semi-structured and unstructured) data and are able to support a large set
of read and write operations and they are designed with scalability and distribution of
data in mind. Since they are designed with distribution in mind, there are other alter-
natives for providing consistency (most notably eventual consistency model). For this
reason NoSQL and relational models are not in contrast with each other rather they
complement each other. The most widely accepted taxonomy of NoSQL databases
are: key-value, document, column-family and graph [19].

The key-value database is the simplest type of NoSQL databases. As the name im-
plies, this type of database stores schema-less data using keys. The key is usually a
string and the stored values can be any valid type such as a primitive programming
data type (string, integer etc) or a BLOB (Binary Large Object) without any prede-
fined schema. It provides a simple API to access stored data. In most cases, this type
of NoSQL database solution provides very little functionality beyond key-value sto-
rage. There is no support for relationships [20]. Queries are just limited to accessing
values using keys but since there is one request to access the value, the queries are
executed very quickly. Transactions are limited to a single key. The database contains
no semantic model. Key-value databases can be utilized to store geospatial data but
the complexity of geospatial data hinders spatial searches especially for polyline and
polygon objects. For this reason, it needs to be spatially indexed for fast data retrieval
which, in most cases, gives lower performance than a SQL or spatial database. In
summary, key-value data stores are ideal for inserting, deleting and searching huge
amount of simple data items using their unique identifiers (keys).

A document database in its simplest form is a key-value database in which the da-
tabase understands its values [21]. In other words, values inside the database are
based on predefined formats such as XML, JSON or BSON. This feature of document
databases provides many advantages over key-value databases. Queries in this type of
NoSQL databases are quite flexible. Similar to key-value databases, there is no need
to adhere to a predefined schema to insert data. There is only limited support for rela-
tionships and joins as each document is stand alone. The document databases can be
used for managing geospatial data more effectively than key-value databases. Since
geospatial data inside the document database can be retrieved using flexible queries,
they can be used for storing and managing geospatial data in multiple use cases. In
fact many document databases support geospatial data natively or through extensions.
Some of them can store geospatial data using GeoJSON format. Some queries such as
proximity queries can be efficiently implemented using these document databases
[22]. As mentioned before, relationships and joins are not supported the way they are
supported in relational databases. The document-oriented nature of this NoSQL data-
base has some major effects on the way that data can be retrieved. For example if the
application needs data items from the same collection (documents with same schema)
it would be very fast. However whenever the data items are part of different types of

 Evaluation of Data Management Systems for Geospatial Big Data 683

documents there is no efficient approach to reduce the number of index-lookups. Spe-
cial kinds of document database can partially handle relationships efficiently. XML
document databases store documents as XML documents. This kind of document
databases can be configured to enforce adherence to set of predefined XML schemas.
In addition to all the advantages of document databases, XML document databases
are able to utilize many XML technologies to provide further functionality. For ex-
ample, they can use XQuery and XPath to perform various queries and create flexible
result sets, they can make use of XPointer to reference other documents thus model-
ing a relationship and they can use XSD and RelaxNG to enforce schema validation
[22]. Geography Markup Language (GML), as a standard mechanism for storing,
modeling and exchanging geospatial data [17], is an XML-based grammar and so
XML document databases are an ideal choice for managing geospatial data in GML
format. Since the storage data model and application data model is XML document in
XML document databases, they can be efficiently utilized when the standard publica-
tion of geospatial Big Data is needed.

The column-family databases store data in set of columns and distribute data based
on columns. The column is the smallest unit of data and it is a triplet that contains a
key, value and timestamp [19]. Column-family databases store all values beside the
name of the columns and stores null values simply by ignoring the column. Usually,
related columns compose a column-family. All the data in a single column family will
be stored on the same physical set of files [20]. This feature provides higher perfor-
mance for search, data retrieval and replication operations. A super column is a col-
umn that contains other columns but it cannot contain other super columns [21]. Most
column-family databases use a distributed file-system to store data to disk and so
provide a horizontally scalable system. In fact column-family databases are designed
to run on a large number of machines. Queries in this type of NoSQL databases are
limited to keys and in most cases they don’t provide a way to query by column or
value. By limiting queries to just keys, column-family databases ensure that procedure
to find the machine containing actual data is quite fast. There is no join capability and,
as in other types of NoSQL databases, there is limited support for transactions. Col-
umn-family databases are ideal for storing huge amounts of data when high availabili-
ty is needed. Similar to document databases, there are many column-family databases
which support the management and simple analysis of geospatial data. Any GIS re-
lated application which needs heavy data insertion and fast data retrieval with simple
queries can efficiently make use of column-family databases. In summary this type of
databases doesn’t support relationships and in order to handle highly connected data,
there is a need for mapping layer to create network structure (which is not efficient).

As the name implies graph databases are based on graph theory and employ nodes,
properties and edges as their building blocks. The nodes and edges can have proper-
ties. In the graph databases various nodes might have different properties. The graph
databases are well suited for data which can be modeled as networks such as road
networks, social networks, biological networks and semantic webs. Their main feature
is the fact that each node contains a direct pointer to its adjacent node, so no index
lookups are necessary for traversing connected data. As a result they can manage
huge amount of highly connected data since there is no need for expensive join

684 P. Amirian, A. Basiri, and A. Winstanley

operations. Some of graph databases support transactions in the way that relational
databases support them. In other words the graph database allows the update of a
section of the graph in an isolated environment, hiding changes from other processes
until the transaction is committed. Geospatial data can be modeled as graphs. Since
graph databases support topology natively, topological relationship (especially con-
nectivity) between geospatial data can be easily managed by this type of NoSQL da-
tabases [8]. In most GIS workflows, topological relationships play a major role. In
addition since each edge in graph database can have different set of properties, they
provide flexibility in traversal of network based on various properties. For example it
is possible to combine time, distance, number of points of interest and user prefe-
rences in finding best path and the mentioned path would be unique for each user. In
summary the storage model of graph databases is a graph and there is a need for map-
ping layer whenever other data structure is needed in application layer.

4 Implementation and Benchmarks

In order to find the best database model for standard publication of Big Data three
systems were implemented based on the architecture illustrated in figure 1. Three
different models of databases are used in the mentioned systems: relational (SQL),
spatial and XML document. Since the evaluation is for database models rather than
specific product, for consistency of the benchmark in this research Microsoft SQL
Server 2012 (MS SQL Server) is used in three different models. The MS SQL Server
is a relational DBMS (SQL database) with built-in support for spatial data using geo-
graphy and geometry data types. In addition to spatial data types it has several ad-
vanced features that make MS SQL Server a capable spatial database (such as support
for various spatial reference systems, diverse spatial indexing, implementation of
OGC simple features specification and spatial topology handling based on 9 intersec-
tion model. Also the MS SQL Server has a native XML support through XML data
type, XML indexing, support for XQuery and XPath and query optimization for XML
queries. In other words, MS SQL Server is a spatial and XML document database on
top of relational engine.

For the evaluation purpose, four geospatial datasets containing polygon features
are created. The mentioned datasets contain hundred thousand (100k), one million
(1m), ten million (10m) and a hundred million (100 m) polygon features. Each poly-
gon feature has at least three points (three vertices) and at most 2000 vertices. In addi-
tion each polygon has at least one part and at most five parts (multi-part polygon).
The EPSG 4326 was used as the spatial reference system to store coordinates of
vertices.

Microsoft C# programming language was used for implementing business and ser-
vice layer as well as client layer. The client application was a simple application for
calling the WFS service to retrieve geospatial data based on several predefined que-
ries. The mentioned application also utilized several profilers to record the metrics for
the performance and scalability benchmarks.

 Evaluation of Data Management Systems for Geospatial Big Data 685

4.1 Storage

Storage of polygon features (and multi-part polygon features) requires at least four
tables in relational model. Figure 2, illustrates the conceptual model for the mentioned
four tables using a ER diagram.

Fig. 2. Conceptual model of SQL Database for storing polygon features (in ERD)

A polygon in spatial database is defined using at least one closed ring. So there is
one table for a polygon dataset. For XML document database, there is one GML doc-
ument fragment per polygon (even multipart polygon), so there is one collection of
documents for each polygon dataset.

4.2 Query Language and Retrieval

For relational and spatial databases the SQL language is utilized as the query lan-
guage. As it mentioned before there are at least four tables for polygon features. As a
result in order to retrieve data of a polygon three joins are needed. Since spatial data-
base of this research implements the OGC Simple Features specification, all the spa-
tial operators and methods are available as extension to standard SQL. There is no
need for joins in spatial database since the polygon features are stored in a single ta-
ble. The XML document database uses a XML-specific query language (XQuery) in
order to retrieve geospatial data. In order to retrieve polygon features, there is no need
for joins since the polygon features are stored as documents in a single collection.

4.3 Handling Attribute Relationships

Attribute relationships are non-spatial relationships (for example ownership relation-
ship between an owner and a land). In relational and spatial databases this kind of
relationship can be defined using primary and foreign keys. In order to retrieve related
data in the mentioned databases, joins are needed. In XML document databases the
attribute relationship can be defined by XPointer and for traversing between different
document fragments XLink can be used. A link to one or more related documents can
be found in the origin document fragment in XML document databases.

Polygon has Boundary

Vertex

has

1 n

n

x

y

 order
 Entity

 Relationship

Attribute

m

686 P. Amirian, A. Basiri, and A. Winstanley

4.4 Topological Relationships

There is no support for evaluating topological relationships between geospatial data in
SQL and XML document databases in MS SQL Server. Implementing methods for
evaluating topological relationships or methods for simple analysis of geospatial data
is similar in both XML document database and relational database. In order to imple-
ment the mentioned methods some in-memory data structures must be created. Since
the data about single polygon are stored in just one collection, implementing such
methods would be more efficient in XML document database than the relational data-
base. In contrast, the built-in spatial extension of MS SQL Server implements all the
methods for evaluating topological relationships and simple analysis outlined in OGC
simple features.

4.5 Distribution

As data volume increase, it becomes more difficult and expensive to scale up (or ver-
tical scalability; use a more expensive and bigger server to run the database on). A
more efficient approach is scale out (or horizontal scalability; use of a cluster of serv-
ers to run a database). In general NoSQL databases are designed and implemented
with focus on horizontal scalability and high volume of data. Depending on the distri-
bution model, database can handle larger quantities of data and process a greater read
and write traffic or more availability in the face of network slowdowns or breakages
[19]. Usually there are two approaches for data distribution; replication and sharding.
With replication copies of same data are stored on multiple nodes. So each bit of data
can be found in multiple places [23]. In contrast, sharding puts different data on dif-
ferent nodes so each server acts as the single source for subset of data [20].

In the case of geospatial Big Data in most cases a combination of sharding and rep-
lication provides the highest availability, scalability and performance. Sharding in
NoSQL database are easier since the natural unit of distribution is often the same as
the unit of storage. In XML document database, distribution can be done based on the
XML fragments. In other words, different XML fragments (storage unit) can be dis-
tributed on different nodes. In contrast sharding in SQL databases are not as
straightforward as for the NoSQL database. The natural unit of distribution for geos-
patial Big Data is a geospatial feature. But data of a geospatial feature in SQL data-
bases is spread over multiple tables which makes the distribution complex. For spatial
database, the sharding is much easier than the SQL database but still is complicated in
comparison with NoSQL database. It is possible to use replication for three models.
But as it mentioned before, using different tables for single geospatial feature makes
replication hard and complex for SQL database.

4.6 Schema Definition and Evolution

Schema definition for SQL and Spatial database is done using SQL language com-
mands for creating tables, columns and indexes. For XML document databases the

 Evaluation of Data Management Systems for Geospatial Big Data 687

XSD can be used for defining the schema of XML document. Both SQL and XSD
support various data types. The schema change or evolution during the life cycle of
application development is common and complex practice for databases. It is true that
all NoSQL databases are schemaless (or schema-free) but in order to use the data
inside NoSQL databases there is an implicit schema in the applications that use
NoSQL databases. Table 1 summarizes the comparison between SQL, Spatial and
NoSQL databases for handling geospatial Big Data.

Table 1. Various characteristics of three different approaches for geospatial Big Data storage

Item SQL database Spatial database XML document

NoSQL

database
Logical Storage
unit

Row Geospatial feature GML fragment

Logical Storage of
a geospatial data-
set

Multiple tables Single table Single collection

Query Language
and Retrieval

SQL language Extended SQL language with

OGC Simple Features Speci-

fication

XQuery

Attribute Rela-
tionships

Primary and For-

eign key and Joins

Primary and Foreign key and

Joins

XLink and XPointer

Topological Rela-
tionships

No Native Support

/Requires mapping

layer

Extended SQL with OGC

Simple Features

Specification

No Native Support

/Requires mapping

layer
Distribution Hard Replication

Hard Sharding

Easier than SQL

database

Easier than SQL database

Easy Replication

Easy Sharding

Schema Definition
and Evolution

SQL language SQL language XSD language

4.7 Performance and Scalability Evaluations

In order to perform performance and scalability benchmarks, the mentioned three
databases were filled with polygon datasets which include vast amount of features
from 100,000 to 100,000,000 multi-part polygons. For performance tests, the
response time was used as the metric. Figure 3 and 4, illustrate the results of the
performance tests for single feature retrieval and feature retrieval using range queries
respectively.

688 P. Amirian, A. Basir

Fig. 3. Performance test

Fig. 4. Performance test for ret
(lowest is the best)

Fig. 5. Re

ri, and A. Winstanley

for retrieval of single geospatial feature (lowest is the best)

trieval of group of geospatial features using various range que

esult of the scalability test (highest is the best)

eries

 Evaluation of Data Management Systems for Geospatial Big Data 689

In order to perform scalability benchmark, operation per second was utilized as
metric. Figure 5 illustrates the result of the scalability test.

The results of tests proved that XML document database (NoSQL) provides better
performance and scalability for standard publication of geospatial Big Data for some
specific queries.

5 Conclusion

Geospatial data have specific characteristics that often reveal the limitation of compu-
ting systems. The storage and analysis of geospatial Big Data (high volume of high
frequency of change geospatial data from various data sources) is challenging and
complex and needs horizontal scalability and various models for consistency, data
access and distribution. As the evaluations and benchmarks of this paper illustrate, the
NoSQL databases provide several qualities needed for efficient analysis and man-
agement of geospatial Big Data. But this doesn’t mean relational (SQL) or spatial
databases don’t have any place in geospatial Big Data landscape. The authors of this
paper believe that polyglot geospatial data persistence approach is efficient model for
geospatial Big Data handling. In other words using various database models for dif-
ferent tasks in a single system (polyglot data persistence).

References

1. Taniar, D., Rahayu, W.: A taxonomy for nearest neighbour queries in spatial databases.
Journal of Computer and System Sciences 79(7), 1017–1039 (2013)

2. Amirian, P., Basiri, A., Alesheikh, A.: Interoperable exchange and share of urban services
data through geospatial services and XML database. In: Complex, Intelligent and Software
Intensive Systems, CISIS (2010)

3. Mahboubi, H., Bimonte, S., Deffuant, G., Chanet, J., Pinet, F.: Semi-Automatic Design of
Spatial Data Cubes from Simulation Model Results. IJDWM 9(1), 70–95 (2013)

4. Basiri, A., Amirian, P., Winstanley, A.: The USE of Quick Response (QR) Code in Land-
mark-Based Pedestrian Navigation. International Journal of Navigation and Observation
(2014)

5. Yildizli, C., Pedersen, T., Saygin, Y., Savas, E., Levi, A.: Distributed Privacy Preserving
Clustering via Homomorphic Secret Sharing and Its Application to (Vertically) Partitioned
Spatio-Temporal Data. IJDWM 7(1), 46–66 (2011)

6. Safar, M., Ebrahimi, D., Taniar, D.: Voronoi-based reverse nearest neighbor query
processing on spatial networks. Multimedia Systems 15(5), 295–308 (2009)

7. Minelli, M., Chambers, M., Dhiraj, A.: Big Data, Big Analytics: Emerging Business Intel-
ligence and Analytic Trends for Today’s Businesses. Wiley (2013)

8. Amirian, P., Basiri, A., Winstanley, A.: Efficient Online Sharing of Geospatial Big Data
Using NoSQL XML Databases. In Proceedings of IEEE Fourth International Conference
on Computing for Geospatial Research and Application (COM. Geo) (2013)

9. Amirian, P., Basiri, A., Winstanley, A.: Implementing Geospatial Web Services Using
Service Oriented Architecture and NoSQL Solutions. In: The Third International Confe-
rence on Digital Information and Communication Technology and its Applications (2013)

690 P. Amirian, A. Basiri, and A. Winstanley

10. Amirian, P., Basiri, A., Alesheikh, A.: Standards-based, interoperable services for access-
ing urban services data for the city of Tehran. Computers, Environment and Urban Sys-
tems (2010)

11. Foerster, T., Schäffer, B.: A client for distributed geo-processing on the web. In: Ware,
J.M., Taylor, G.E. (eds.) W2GIS 2007. LNCS, vol. 4857, pp. 252–263. Springer, Heidel-
berg (2007)

12. Sample, J., Shaw, K., Tu, S., Abdelguerfi, M.: Geospatial services and applications for the
Internet. Springer (2008)

13. Stollberg, B., Zipf, A.: OGC Web Processing Service Interface for Web Service Orchestra-
tion Aggregating Geo-processing Services in a Bomb Threat Scenario. In: Ware, J.M.,
Taylor, G.E. (eds.) W2GIS 2007. LNCS, vol. 4857, pp. 239–251. Springer, Heidelberg
(2007)

14. Schäffer, B., Baranski, B., Foerster, T., Brauner, J.: A Service-Oriented Framework for
Real-time and Distributed Geoprocessing. In: Geospatial Free and Open Source Software
in the 21st Century. Lecture Notes in Geoinformation and Cartography. Springer (2010)

15. Foerster, T., Schaeffer, B., Brauner, J., Baranski, B.: Geospatial Web Services for Distri-
buted Processing - Applications and Scenarios. In: Geospatial Web Services: Advances in
Information Interoperability, pp. 245–286. Information Science Reference (2011)

16. Vretanos, A.: OpenGIS Web Feature Service 2.0 Interface Standard, OGC 09-025r1 and
ISO/DIS 19142 (2010)

17. Lake, R.: The application of geography markup language (GML) to the geological
sciences. Computers & Geosciences 31(9), 1081–1094 (2005)

18. Oosterom, P.: Research and development in geo-information generalisation and multiple
representation. Computers, Environment and Urban Systems (2010)

19. Fowler, M., Sadalage, P.: NoSQL Distilled. Addison Wesely (2013)
20. Celko, J.: Complete Guide to NoSQL, What Every SQL Professional Needs to Know

about Non-Relational Databases. Morgan Kaufman (2014)
21. Chang, F., Dean, J., Ghemawat, S., Hsieh, W., Gruber, R.: Bigtable: A distributed storage

system for structured data. In: Seventh Symposium on Operating System Design and Im-
plementation (2006)

22. Amirian, P., Alesheikh, A.: Publishing Geospatial Data through geospatial web service and
xml database system. American Journal of Applied Science 5(10) (2008)

23. Hecht, R., Jablonski, S.: NoSQL Evaluation A Use Case Oriented Survey. In: International
Conference on Cloud and Service Computing, pp. 336–341 (2011)

24. McCreary, D., Kelly, A.: Making Sense of NoSQL. Manning (2013)

	Evaluation of Data Management Systems for Geospatial Big Data
	1 High Level Introduction to Geospatial Big Data
	2 Standard Publication of Geospatial Big Data Using Web Services
	3 SQL and NoSQL Databases
	4 Implementation and Benchmarks
	4.1 Storage
	4.2 Query Language and Retrieval
	4.3 Handling Attribute Relationships
	4.4 Topological Relationships
	4.5 Distribution
	4.6 Schema Definition and Evolution
	4.7 Performance and Scalability Evaluations

	5 Conclusion
	References

