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Abstract

Semiconductor manufacturers are forced by market demand to continually
deliver lower cost and faster devices. This results in complex industrial pro-
cesses that, with continuous evolution, aim to improve quality and reduce
costs. Plasma etching processes have been identified as a critical part of the
production of semiconductor devices. It is therefore important to have good
control over plasma etching but this is a challenging task due to the complex
physics involved.

Optical Emission Spectroscopy (OES) measurements can be collected
non-intrusively during wafer processing and are being used more and more
in semiconductor manufacturing as they provide real time plasma chemical
information. However, the use of OES measurements is challenging due to
its complexity, high dimension and the presence of many redundant vari-
ables. The development of advanced analysis algorithms for virtual metrol-
ogy, anomaly detection and variables selection is fundamental in order to
effectively use OES measurements in a production process.

This thesis focuses on computational intelligence techniques for OES data
analysis in semiconductor manufacturing presenting both theoretical results
and industrial application studies. To begin with, a spectrum alignment
algorithm is developed to align OES measurements from different sensors.
Then supervised variables selection algorithms are developed. These are de-
fined as improved versions of the LASSO estimator with the view to selecting
a more stable set of variables and better prediction performance in virtual
metrology applications. After this, the focus of the thesis moves to the un-
supervised variables selection problem. The Forward Selection Component
Analysis (FSCA) algorithm is improved with the introduction of computa-
tionally efficient implementations and different refinement procedures. Non-
linear extensions of FSCA are also proposed. Finally, the fundamental topic
of anomaly detection is investigated and an unsupervised variables selection
algorithm tailored to anomaly detection is developed. In addition, it is shown



how OES data can be effectively used for semi-supervised anomaly detection
in a semiconductor manufacturing process.

The developed algorithms open up opportunities for the effective use of
OES data for advanced process control. All the developed methodologies
require minimal user intervention and provide easy to interpret models. This
makes them practical for engineers to use during production for process mon-
itoring and for in-line detection and diagnosis of process issues, thereby re-
sulting in an overall improvement in production performance.
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Chapter 1

Introduction

1.1 The Age of Data

In 1944 Fremont Rider estimated that American university libraries were
doubling in size every sixteen years |1]. Rider said: “Yale Library in 2040
will have approximately 200,000,000 volumes, which will occupy over 6,000
miles of shelves”. The following years were characterised by rapid techno-
logical advancements and stored information slowly moved from books and
paper to digital devices. In 1996, R.J.T. Morris and B.J. Truskowski showed
how cheaply data could be digitally stored [2]. In the following years (1997-
2000), technology advanced even faster during the Dot-Com Bubble. This
lead to the spread of the internet, the diffusion of cheaper hard drives and
the availability of more processing power making data storage and process-
ing even easier. In 2010 the Economist published an article titled "The Data
Deluge" showing how the amount of data collected was exponentially increas-
ing. According to the article, mankind created 150 exabytes (10'7 bytes) of
data in 2005 and 1200 in 2010 and some estimates say that, in 2010, 90%
of the world data was generated during the last year. Figure shows the
expected amount of data generated in the world by year.

“Big Data” is the term commonly used to refer to the large and complex
datasets available. Big Data is commonly characterised by three character-
istics reffered as the three Vs of Big Data [3|: Volume, Variety and Velocity.
Volume refers to the large amount of data; Variety to the different formats
of the data and the different sources of information; Velocity refers to the
speed with which data is generated and collected.

The Big Data phenomena was originally related to web applications where an



1.2 Semiconductor Manufacturing 2

Data in zettabytes (ZB)
50
45
40
35
30
25

20

2008 2009 2010 201 2012 2013 2014 2015 2016 2017 2018 2019 2020

Figure 1.1: The expected amount of data generated in the world according
to Oracle. (1 zettabyte = 10%! bytes).

incredible amount of data is continually generated. In recent years, thanks
to the availability of cheaper sensors and measurement tools, the use of Big
Data expanded to several sectors such as: health care, manufacturing, retail
and security. This thesis focuses on applications in the semiconductor manu-
facturing industry, a field that is starting to rely heavily on data to improve
production.

1.2 Semiconductor Manufacturing

Semiconductor manufacturing is one of the largest industries in the world,
employing almost 250,000 people in the USA alone [4]. It posted sales glob-
ally totalling 335.2 billion dollars in 2015 |5| and sales are expected to con-
tinue to grow in the future as shown in Figure [[.2] Some big companies
in the area, and their revenue in 2012, are reported in Table [[.I] Market
demand and fierce competition has driven restless innovation in the sector.
As a consequence, research and development (R&D) has always been at the
forefront of semiconductor manufacturing.

Since the invention of integrated circuits in 1960, the number of transistors
on an integrated circuit has doubled roughly every 2 years as predicted by
Moore’s law @ To maintain the pace of development set by Moore’s law,
production processes in semiconductor manufacturing are becoming more
and more complex, consisting of several hundred processing steps. Better
device performance and greater production throughput are achieved by re-
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Figure 1.2: The global semiconductor market from 2015 through 2025. Figure
and data from SEMI (http://www.semi.org)

‘ Company Name 2012 Revenue in Million of Dollars ‘

Intel 47,543
Samsung Electronics 30,474
Qualcomm 12,976

Table 1.1: Top three semiconductor manufacturing companies and their rev-
enue in 2012.
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ducing circuit critical dimensions, improving processor architecture, increas-
ing wafer size and by improving product consistency and uniformity:.

Every two years, the International Technology Roadmap for Semiconductors
(ITRS) indicates research areas where more innovation is required and pro-
vides guidelines for the use of research funds. The 2007 ITRS roadmap |[7]
defines the wafer design parameters over an 8-year period. In order to meet
the industry historical 30% cost-per-function reduction, and 50% cycle time
improvement in manufacturing per decade, the wafer diameter is required
to increase from 300 to 450mm while the critical dimensions are required to
decrease from 80 to 22nm.

In order to mantain market share and remain competitive, it is essential to
keep production costs low. In the past cost reductions were achieved via yield
improvement. As yield improvements are more and more difficult to achieve,
further improvement can be obtained by maximizing throughput of products
with reduced setup and maintenance costs [8]. This has led to the adoption
of statistical process control (SPC) techniques to monitor process faults and
anomalies, with its use in fabs expanding rapidly between the 1980’s and
the 1990’s. However, as production processes have became more complex,
traditional SPC is no longer adequate leading to an increasing number of
false alarms and undetected anomalies. In a modern manufacturing plant, a
chip costs, on average, $40 and a wafer contains roughly 450 chips. The cost
of producing a faulty wafer is therefore of the order of $22,500.

In order to improve on SPC, the use of advanced process control (APC)
spread. APC refers to a broad range of techniques and technologies employed
to maximise the use of available information about materials and processes.
APC analyses diagnostic data and desired targets, selects model and control
strategies, estimates the feasibility of the desired targets and generates the
necessary alarms for process faults. APC is usually deployed optionally and,
in addition to basic SPC, and developed over a period of time with the aim
of solving specific problems [§].

1.2.1 Wafer Processing

Semiconductor device fabrication is a complex process. The main steps in-
volved are represented in Figure[1.3] Among these, plasma etching has been
recognized as one of the operations which has a decisive influence on product
quality and has been the focus of many studies [9).
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Figure 1.3: Wafer processing steps. Figure from Lam Research (http://
www.lamresearch. com/products/products-overview).

1.2.2 Plasma Etching

In the late 1960s, plasma etching, a form of plasma processing used for in-
tegrated circuit (IC) manufacturing, emerged as an alternative to acid bath
chemical etching (wet etching, [9]). In contrast to chemical etching, plasma
etching can be directed. An highly directional etching process is desirable
to guarantee product quality and avoid problems such as short circuits [10].
Figure shows the differences between plasma etching and chemical etch-
ing; the former leads to a more precise and controlled etching and is able to
shape the wafer surface as required.

Due to its physical structure plasma emits light and this light has been proven
to be a reliable indicator of plasma chemistry. This can be collected non-
intrusively during etching through the use of an Optical Emission Spectrom-
eter [11]. The resulting Optical Emission Spectroscopy (OES) data allows
real-time plasma monitoring and is a starting point for the application of
APC to a plasma etching process [12]|. Despite this, the application of APC
to plasma etching processes remains challenging, due to the highly complex
plasma physics and etching chemistry involved and the sensitivity of plasma
to subtle process variations. In addition, OES data is generally character-
ized by high dimension (typically >2000 variables) and highly redundant
variables, making its use and analysis challenging.

The OES data is generally represented as a matrix X € R™*P where each
column is a time series containing the intensity at a particular wavelength
over time. In the rest of the thesis, with an abuse of notation, the term
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"wavelength" is often used to indicate the intensity at a given wavelength
or one of the columns of X. This will not lead to confusion as the meaning
of wavelength will be clear from the context. A more detailed description of
the OES data will be presented in Chapter [2]

Isotropic Vs. Anisotropic

* Isotropic: vertical and horizontal

* Anisotropy: much higher vertical rate than
horizontal

[sotropic Anisotropic

Figure 1.4: Difference between plasma (Anisotropy) and chemical (Isotropy)
etching. Figure from Minh Anh Thi Nguyen.

1.3 High Dimensional Data and the Curse of
Dimensionality

High dimensional datasets are difficult to deal with on several counts. If the
number of variables is larger than the number of measurements, each variable
can be obtained as a linear combination of the others making uncovering the
true relationship between the different variables difficult. This is a common
scenario in semiconductor manufacturing as the number of measurements
often corresponds to the number of processed wafers and that is generally
much smaller than the number of measured variables. Furthermore, high di-
mensional datasets are impacted by the so called "Curse of Dimensionality"
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according to which distance measurements between samples become unreli-
able. In addition, high dimensional datasets are difficult to interpret, which
in turn makes extracting useful process insight challenging. From a com-
putational perspective, the curse of dimensionality can mean an exponential
growth in computational complexity with dimension, leading to computation
time problems. Addressing computational bottlenecks and developing com-
putationally efficient algorithms is therefore critical when working with high
dimensional data.

For any practical application, the dimensionality of the OES data needs to
be reduced. Traditionally engineering knowledge of the underlining process
chemistry can be used to extract the most relevant wavelengths from the
OES data [13]. This process is problematic as it is time consuming, biased
by the engineer’s personal experience, and is limited to a particular process.
Given changes in the process recipes or etching products, the effectiveness of
the selected wavelengths can be reduced. As a consequence, more automated
and unbiased techniques are required.

1.3.1 Dimensionality Reduction and Variable Selection

Highly dimensional datasets are not only present in semiconductor manu-
facturing, but are common in many fields such as image processing [14] and
genetics [15]. As a consequence, a lot of interdisciplinary research is involved
in the area and several dimensionality reduction algorithms have been devel-
oped.

Dimensionality reduction algorithms are, in general, based on feature ex-
traction. This is a well known machine learning problem that was originally
investigated in the field of pattern recognition and image processing. Feature
extraction summarises the data with basic components that seek to extract
all the information that is required for a given task. Feature extraction tech-
niques are now widely applied in several fields in different forms. Due to this
variety, it is impossible to provide an accurate definition of feature extrac-
tion. As Selfridge and Neisser |16] pointed out, feature extraction algorithms
have to be designed individually to effectively tackle an unknown issue.

Feature extraction is, in general, performed trough the use of data driven
black-box algorithms. The extraction methodologies are then widely appli-
cable but the obtained features loose their physical meaning. This problem
can be avoided with the use of variable selection algorithms. Variable se-
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lection is equivalent to feature extraction, but the extracted features are
constrained to be a subset of the original variables. This allows interpretable
APC procedures to be developed and enables engineers to rapidly understand
the root causes of faults or process variations.

Variable selection algorithms can be divided into three categories: supervised
variable selection, semi-supervised and unsupervised variable selection [17].
In supervised variables selection the choice of the variables is guided by a
target variable and the goodness of the selection is evaluated based on the
obtained prediction performance. In the semi-supervised and unsupervised
variable selection, instead, variables are selected in order to summarise the
majority of the data looking for the right balance between number of selected
variables and information loss, that, according to the application, can be
measured with different metrics. The difference between an unsupervised and
a semi-supervised analysis is that, in the first case, no information about the
data is available while in the second case the data is known to contain only
samples of a given category as. for example, only normal behaving wafers.

1.4 Aims and Scope of the Thesis

This thesis aims to develop techniques that enable OES measurements to
be used effectively in a semiconductor manufacturing production process. A
full industrial case study is discussed from the collection of the OES data
to its application for virtual metrology and anomaly detection. Particular
focus is on the development of supervised and unsupervised variable selection
techniques, a fundamental step for any practical application of the OES data.
In the unsupervised context, the aim of these algorithms is the definition of
a set of variables that are able to summarise the full original data X. In a
supervised context the aim is to identify the smallest set of variables from X
that allows an external signal y to be reconstructed.

1.5 Contributions

This thesis claims the following original contributions:

1. A spectral alignment procedure which aligns OES measurements from
multiple sensors through a retrospective calibration process that cor-
rects for inter-spectrometer variation in the mapping from wavelengths
to spectrometer channels based on the Particle Swarm Optimization
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algorithm [18]. The calibration process involves estimation of a cor-
rection function using Particle Swarm Optimization. PSO is needed
because the cost function associated with the problem is non convex
and multi-modal.

2. An investigation of the performance of the lasso algorithm with differ-
ent types of cross-validation and the development of improved versions
of lasso denoted as: High Frequency, High Mean, Monte Carlo High
Frequency and Monte Carlo High Mean. The proposed methods stabi-
lize the set of variables selected by lasso and have equivalent or lower
prediction error to competing approaches.

3. A detailed presentation of the Forward Selection Component Analysis
(FSCA) algorithm and the development an analysis of computationally
efficient algorithm implementations [19].

4. A number of new variants of the FSCA algorithm that incorporate a
refinement step to improve performance are proposed.

5. The development of nonlinear extensions of the Forward Selection Com-
ponent Analysis and Forward Selection Variables algorithms. The
newly proposed methods have roughly the same computational com-
plexity as their linear counterparts but result in much better perfor-
mance [20].

6. An unsupervised variables selection algorithm based on deep neural
networks is proposed. This is competitive with and sometimes bet-
ter than the linear-in-the-parameter nonlinear extension of Forward
Selection Component Analysis (FSCA), but at the expense of higher
computational complexity.

7. The effect of dimensionality reduction on anomaly detection is inves-
tigated. Forward Selection Independent Variables is proposed as a
new unsupervised variables selection algorithm specifically designed for
anomaly detection [21].

Other contributions in the thesis includes:

1. A review of the methodologies used to define a solution of the lasso
estimator.

2. A review of unsupervised variables selection algorithms and a definition
of data decomposition and reconstruction in an unsupervised variables
selection context.



1.5 Contributions 10

3. Extreme Learning Machines (ELM) neural networks are for the first
time applied to a virtual metrology problem. Methodologies to auto-
matically select the number of hidden nodes and weights initialization
of ELMs are proposed [22].

4. A review of unsupervised anomaly detection algorithms for anomaly
detection with OES data.

5. The Unsupervised Random Forest algorithm is for the first time applied
for anomaly detection with OES resulting in good performance even for
high dimensional datasets [23].

6. The Isolation Forest algorithm is for the first time applied to the OES
data for anomaly detection and diagnosis using a newly proposed di-
agnosis procedure.

7. The Similarity Ratio algorithm for anomaly detection with OES time
series is generalized and extended to multivariate anomaly detection.

8. A first application of Forward Selection Independent Variable Selection
and One Class Support Vector Machine algorithms to OES time series
data based anomaly detection [21].

1.5.1 List of Publications

e Puggini Luca, John Doyle and Sean McLoone. "Towards multi-sensor
spectral alignment through post measurement calibration correction."
Irish Signals and Systems Conference 2014 and 2014 China-Ireland
International Conference on Information and Communications Tech-

nologies (ISSC 2014/CIICT 2014). 25th IET. IET, 2013.

e Puggini Luca, John Doyle and Sean McLoone. "Fault Detection us-
ing Random Forest Similarity Distance." IFAC-PapersOnLine 48.21
(2015): 583-588.

e Puggini Luca and Sedn McLoone. "Extreme learning machines for
virtual metrology and etch rate prediction." Signals and Systems Con-

ference (ISSC), 2015 26th Irish. IEEE, 2015.

e Puggini Luca and Sedn McLoone. "Feature Selection for Anomaly De-
tection Using Optical Emission Spectroscopy." 4th [FAC International
Conference on Intelligent Control and Automation Sciences (ICONS
2016).
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e Puggini Luca and Sean McLoone. "Nonlinear Forward Selection Com-
ponent Analysis for Optical Emission Spectroscopy Wavelength Selec-
tion." Signals and Systems Conference (ISSC), 2016 27th Irish. IEEE,
2015.

e Puggini Luca and Sean McLoone. "Forward Selection Component
Analysis: Algorithms and Applications." under review at IEEE trans-
actions on pattern analysis and machine intelligence.

1.6 Thesis Structure

The reminder of the thesis is organised as follows:

Chapter [2|begins with an introduction to plasma, plasma etching and Optical
Emission Spectroscopy (OES) plasma measurements. In the chapter a formal
mathematical framework to describe OES time series is introduced, the PSI
and J2M datasets are introduced as industrial case studies and the multi-
chambers matching problem is discussed. Finally, a novel spectral alignment
procedure that corrects for wavelength misalignment between spectrometers
is developed.

Chapter [3] focuses on supervised variables selection and the lasso estimator.
The stability of the lasso is investigated and algorithms to detect a stable set
of variables are proposed. Evaluations are performed and results presented
for a series of benchmark datasets.

Chapter 4| presents novel research on linear unsupervised variables selection.
It starts with a review of the most popular unsupervised variables selection
algorithms and then provides a detailed description of the Forward Selection
Component Analysis algorithm. This is extended though the development
of an alternative implementation and the introduction of different refine-
ment steps. The extended methodology is compared with the basic ones and
similar algorithms taken from the literature using a series of simulated and
real-world case studies.

Chapter |5| extends the linear unsupervised variables selection algorithms de-
scribed in the previous chapter through the introduction of multivariate non-
linear models. The chapter starts with a description of neural networks and
the Extreme Learning Machines algorithm. It is shown how the method can
be improved and used with minimal user intervention. Extreme Learning
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Machines Neural Networks are then used with other linear-in-the-parameters
nonlinear multivariate algorithms for nonlinear unsupervised variables selec-
tion. The use of a multilayer neural network for unsupervised variables selec-
tion is also investigated. Comparison is performed between the new nonlinear
algorithms and linear principal component analysis based unsupervised vari-
able selection and linear dimensionality reduction.

Chapter [6] focuses on anomaly detection with application to OES data. The
chapter starts with a survey of unsupervised anomaly detection algorithms
that work well with highly dimensional datasets. In the second part of the
chapter the effect of dimensionality reduction on anomaly detection is in-
vestigated. Here, an unsupervised variables selection algorithm specifically
designed for anomaly detection is proposed. In the last part of the chapter,
the proposed techniques are investigated for anomaly detection using an OES
time series dataset as a case study.

Chapter [7] provides a concluding summary of the work done and of the pro-
posed methodologies as well as possibilities for future research.

1.7 Notation

The mathematical notation and conventions used in the thesis are introduced
here. This notation holds in most circumstances with a few exceptions where
changes are appropriately introduced.

e Matrices are indicated with a bold capital letter as: X, Y,Z, W, A, ....
In general X denotes an input dataset and Z the matrix obtained with
a subset of the columns of X.

e In general, when referring to a dataset X, n is the number of samples
and p is the number of variables. Each column of X corresponds to a
variable and each row to a sample. It follows that X € R"*P. k is often
used to indicate the number of features extracted from X and if Z is
the matrix composed of those features it follows that Z € R™**.

e Column vectors containing the n measurements for a given variable

are indicated with a bold lower case letter as: x,y,z,--- € R". The
elements of each vector are indicated with the same letter with an index
determining the position in the vector e.g. x = (1, xo,...,x,).

e A row vector containing the measurements of different variables for a
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given observation is represented as a bold lower case letter with an
arrow on the top: X,¥,Z,--- € RP

e Matrices can then be obtained by horizontally stacking column vectors
or by vertically stacking row vectors, that is:

X1 T1,1 x1,2 e Tip

}22 T21 T2.2 e T2p nxp
X=(Xp,.005%p) = | 77 = eR

Xn Tn1l Tp2 - Tn,p

e Given a probability distribution D (for example N(0,1)), p random
variables following the distribution are indicated as zi,...,z, ~ D.
There is often an implicit transformation between the random variable
x; and the vector containing the sampled values x;. For simplicity, in
some cases, we will write x ~ D with x € R" indicating the vector
contains n observations sampled from the D distribution.



Chapter 2

Optical Emission Spectroscopy:
Collection and Representation

2.1 Introduction

The focus of this thesis is on the development of computational intelligence
techniques for Optical Emission Spectroscopy (OES) data analysis. Dealing
with OES data is, in general, challenging due to its size and complexity.
Before performing any analysis on the data or using it for any industrial ap-
plication it is important to have a good understanding of its characteristics
and how it is collected. With this in mind, the aim of this chapter is to pro-
vide a detailed description of OES data, focusing in particular on problems
related to data collection and data representation. In this sense, a mathe-
matical formalism to describe OES time series data is reported and a data
format that facilitates the analysis of differences between wafers in a time
interval during the production is proposed. In an industrial environment,
OES data is commonly collected with different sensors. Nonlinearities in the
response of OES sensors and errors in their calibration lead to discrepancies
in observed wavelength detector responses, with the result that wavelengths
are misaligned when comparing data from different spectrometers. As the
quality of the available measurements strongly influences the performance of
any analytical method the multi-sensor matching problem is investigated and
a procedure based on Particle Swarm Optimization (PSO, [24]) developed to
retrospectively align OES data from multiple sensors.

The chapter is divided into three main sections. Section [2.2] contains a basic
introduction to plasma, a description of the plasma etching chamber and of
the optical emission spectrometer from which the OES measurements are col-
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lected. In section a mathematical description of the OES data is provided
and some of the industrial case study datasets that will be used throughout
the thesis are introduced. The A and W data formats are also introduced.
They are particularly important for Chapter [6] where anomaly detection with
OES data is investigated. Finally, section [2.5|describes the multi-sensor spec-
tral alignment problem and the proposed retrospective alignment algorithm.

2.2 Plasma Etching and Optical Emission Spec-
troscopy

In this section the scientific principles of optical emissions from plasma and
measurement techniques are introduced. In particular, a description of some
basic plasma, plasma etching and optical emission spectrometer concepts are
provided.

2.2.1 Plasma

Plasma is a form of matter in which many of the electrons wander around
freely among the nuclei of the atoms. Normally the electrons stay with
the same atomic nucleus but in a plasma, a significant number of electrons
have such high energy levels that no nucleus can hold them. In a plasma
the generation of the electrons and ions results from a series of collisions,
which are referred to as electron impact ionization, excitation, relaxation
and recombination [25].

Definition 2.2.1 (Ionization with electron). When an incoming ion or elec-
tron with enough energy collides with an atom, the outermost electron of this
atom can absorb energy to break the electric potential barrier that originally
bound it to the atom. This results in a free moving electron and an equally
charged ion. Defining A as the atom, the ionization of A can be expressed
as:

e +A—2 + A" (2.1)

Definition 2.2.2 (Excitation). Excitation refers to the process of a plasma
atom being activated to a higher energy level when colliding with a free
moving electron, but where the absorbed energy is not enough, to break the
electric potential barrier to form a free moving electron. The process can be
summarised as:

e+ A A te (2.2)
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where A* represents the excited atom.

In other words excitation results in the alteration of the state of an atom,
ordinarily, from the condition of lowest energy (ground state) to one of higher
energy (excited state). Excited atoms return to their original state by releas-
ing energy through a phenomena called relaxation.

Definition 2.2.3 (Relaxation). Relaxation refers to the process of the elec-
tron in an electronically excited atom transiting from a higher energy level
to a lower energy level with excess energy released in the form of a photon.

A* — A+ E (photon) (2.3)

A photon is a discrete packet of energy associated with electromagnetic ra-
diation (light). The wavelength of the emitted light corresponds to exactly
the energy difference between the two energy levels with

_hc

E
A

(2.4)
where A denotes the wavelength of the photon, ¢ denotes the speed of light
and h is Planck’s constant. Thus, an atom emits light at only certain discrete
wavelengths. Each atomic and molecular species has its own unique spectral
signature, hence by analysing the optical emission from a plasma its compo-
sition can be determined. This phenomenon leads to the characteristic light
emission of a plasma.

Definition 2.2.4 (Recombination). Recombination refers to the process of
an electron being combined with an ion to form a neutral atom. However, a
third body is required to take part in the process to allow the recombination
to satisfy the conservation of energy and momentum requirements [25]. The
recombination process can be expressed as:

e +AT+ A A+ A (2.5)

2.2.2 Plasma Etching

In semiconductor manufacturing, plasma is, in general, generated though the
application of microwave energy to a gas. Radio Frequency (RF) directs the
ions toward the wafer surface where they interact both chemically and phys-
ically with the silicon wafer, etching away the exposed surface [26]. Figure
2.1| provides a graphical representation of the plasma etching process.
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Figure 2.1: Plasma etching process. The ions bombard the exposed surface.
Figure from https://www.scorec.rpi.edu.
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2.2.2.1 Electron Cyclotron Resonance Plasma Etcher

Plasma etching takes place in a plasma etcher. In this section an Electron
Cyclotron Resonance plasma etcher is considered.

Definition 2.2.5 (Electron Cyclotron Resonance). Electron Cyclotron Res-
onance (ECR) refers to the phenomenon according to which a electron in a
static and uniform magnetic field will move in a circle due to the Lorentz
force.

The ECR plasma etcher makes use of microwave energy and a strong mag-
netic field to produce a low pressure and high density plasma and provides
the necessities for achieving plasma etching [27]. The main components of
an ECR etcher include a magnetic field generation system, a microwave os-
cillator, a gas supply system, a Radio Frequency (RF) generator and an etch
chamber, as illustrated in Figure 2.2l A microwave power supply generates
microwave which are oscillated by a magnetron, transmitted along a waveg-
uide and injected into a quartz plate. The microwaves produce a dynamic
electric field, which is perpendicular to the static magnetic field, which is
generated as a DC current flowing through the solenoid coils. The interac-
tion of these two fields generates a Lorentz Force, which causes the electrons
to spiral in a helical motion. In this way, the microwaves transfer the en-
ergy to free electrons which in turn accelerate and collide with the atoms or
molecules in the gas and produce ionization. The low gas pressure, which
helps to reduce electron impact recombinations, is achieved by controlling
the flow rates of the gases supplied to the chamber. A separate RF bias
is applied to the wafer electrode to independently control ion energy at the
wafer surface. The wafer temperature, which is an important factor influenc-
ing the uniformity of etch across the wafer surface, is reduced with the use
of helium. An important feature of the ECR etcher is that ion energies can
be controlled separately by the RF supply, allowing much greater control
of etch rate. An OES (Optical Emission Spectroscopy) sensor and a PIM
(Plasma impedance monitor) sensor are also shown in the figure. These can
be used to monitor the optical and electrical characteristics of the plasma,
respectively. In this thesis, we are concerned exclusively with analysing OES
data.

2.2.3 Optical Emission Spectrometer

Analysis of plasma emission spectra can be used to estimate the instanta-
neous composition of a plasma over time. An Optical Emission Spectrometer
is an optical device used to detect the optical emissions of plasma species,
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Figure 2.2: Illustration of the basic features of a plasma etching chamber.

providing direct information on plasma chemistry [11]. In Optical Emission
Spectroscopy (OES), visible light is collected and redirected onto a Charged
Coupled Device (CCD) detector with different wavelengths dispersed to dif-
ferent CCD [28]. The key component of a typical Optical Emission Spec-
trometer is the CCD detector. CCDs are a type of quantum detectors, which
are used to measure the flux of photons. CCDs have been widely employed in
modern optical detection devices for their fast response time and sensitivity
to small photon fluxes.

2.2.3.1 Data Collection During Plasma Etch Processing

In a production process wafers are usually grouped in lots, with wafers in a
lot arranged in slots on a cassette. Wafers in a lot are processed sequentially
(according to slot number) undergoing several etching steps. Lots are are
also processed sequentially through etch chambers, interspersed with clean-
ing and maintenance operations. Cleaning cycles are typically done between
each lot to remove the by-products of plasma etching that build up on the
chamber walls, and are detrimental to etching performance. This leads to
a chamber seasoning effect during the first few wafers processed following
each cleaning cycle, and consequently slot dependent differences in processed
wafers. A consequence of this is shown later in Figure [2.11]
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In this work the considered OES datasets are collected using Ocean Optics
USB2000 spectrometers with CCD detectors consisting of a variable number
of channels each one recording a single wavelength. Wavelength intensity
measurements are taken without interruption with a fixed sampling rate dur-
ing processing of wafers. This results in chronologically ordered values for
a set of wafers. Figure shows the graphical representation of the OES
measurements for an example wafer. In this example wavelength intensity
was measured during 40 seconds of plasma etching, at a sampling rate of 1
second for p = 2000 channels.

Intensity
N
8
[=3
(=]

2000
1800

5 Channel ID
Time

Figure 2.3: Plasma etch OES data for a single wafer (X ), recorded over two
etching steps. The units on the time axis are in seconds.

2.3 Mathematical Representation of OES Data

In the previous section the physical concepts behind plasma and the tools
that are used to collect the OES measurements are described. In a produc-
tion environment the OES measurements are collected continually at a fixed
sampling interval while the wafers are processed resulting in OES time series
data. In this section the OES time series data is described and some datasets
that will be used throughout the thesis are introduced.
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2.3.1 Wafer Measurements

As noted in [12]| plasma etch processing OES data is naturally organized in
three dimensions: Wafer; Time; and Wavelength. With this in mind it is
reasonable to represent a generic element of the OES data as:

;" (t) (2.6)

This represents the intensity of the i*" wavelength at time ¢ for the k-th wafer.
In this chapter K represents the total number of wafers and p the number of
wavelengths. It is assumed that the whole production ends after T samples
and that during production 7 equally spaced measurements are taken for
each wafer. While this is not entirely true, it is a good approximation of the
reality and it is required in order to define a formal structure for analysis.
Given these assumptions the OES spectrum for a single wafer w; can be
mathematically represented as a matrix X € R™*P where 7 is the number
of time samples and p is the number of wavelengths measured during etching,
that is:

T (th-1yrr1) Ty (Ep-1)re1) Ty (E(k-1)7+1)
X,— | “t-nrr2) T (Eenr2) o 2 (Ee-1)r2) c R7¥P
2 (E-1yrr) T E-1yrr) 0 T (g—1)rtr)

(2.7)
In some cases, in order to simplify the notation, x;* (t(;—1)-+;) is denoted as
z;*(t;). OES time series datasets thus st of as a set of matrices where each
one contains the spectrum for a given wafer:

S={X; eR™: j=1,...,K} (2.8)

Under the assumption that measurements are recorded at 7 time points for
each wafer, the data in the set S can then be represented as a three dimen-
sional matrix.

X € RFExPx7 (2.9)

where K corresponds to the number of wafers, p to the number of wave-
lenghts and 7 is the number of samples recorded for each wafer. Similar
representations are reported in [29).

For practical applications this three dimensional matrix can be reshaped in
a two dimensional matrix in three different ways:

e Aggregated by Time Point. The data is stored in a matrix A € RT5*P
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o Aggregated by Wafer. The data is stored in a matrix W & R&xp7

o Aggregated by Wafer Processing Time. The data is stored in a matrix
Fc ]RTXPK

A deeper description and an analysis of the data aggregated in the three
matrices A, W and F will follow in the next sections.

2.3.2 OES by Time Point

The data can be aggregated in a A € R™*? matrix. Here each row contains
a sample instant and each column corresponds to a wavelength. This format
corresponds to the way the data is usually collected during production as the
samples (rows) are chronologically ordered. A can be formed by vertically
stacking the set of matrices 5, i.e.

X1
A= X2 € RET>p (2.10)
XK
More specifically,
ay' (t)  ay'(h) " (t1)
oy () ay' () o ap(fe)
A= ' (t,) vy (tr) e ap(ty) (2.11)
55111)2 (tTJrl) 37121)2 (t7+1) e :sz (t‘rJrl)
vy (T)  ay™(T) 2 (T)
or equivalently
' (t)  xy' () x) (th)
a7t () 2y () " (t2)
A= 27 (t;) x5 (t;) x) () (2.12)
xy? () 2y (t) 2, (1)
" (ty) " (tr) w;UK (tr)

Each column of the A matrix is a time series representing a wavelength over
K wafers. Two sample columns of the A matrix are plotted in Figure [2.4
The figure shows the periodic repetition of values that corresponds to the
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different wafers. According to [12]| this data format is particularly useful
when performing wavelength selection. This simply follows from the fact
that each column is a different wavelength. An example of this will be shown
in Chapter [6] as an application of anomaly detection with OES data.
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Figure 2.4: Two sample columns of the A matrix.

2.3.3 OES by Wafer

Alternatively the wafers in S can be aggregated in the wafer format as a
matrix W. In the W matrix each row corresponds to a wafer and each
column contains the measurements of a given wavelength at a given time. W
is obtained by transforming the elements of S into row vectors and stacking
them vertically. Mathematically given a sample element of S:

() @y (h) z 'k (th)
wk wk .« .. w
Xk: — .171. (tQ) .112' <t2) o ka(tQ) c RT*P (213)
oM (tr)  wyt(tr) .- "E;}k (tr)

it is reshaped as a row vector

Xk = (J};Uk (tl), . ,l’pwk (tT)) S RIXTP (214)
and the W representation is obtained by combining all the reshaped matrices
in S to give:
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X1
W= | - | eRE*® (2.15)
Xk
or equivalently
W= (W,,...,W,) € RF*"P (2.16)
where
wy () i (f) y (tr)
w2 w2 .. w2
rpt () () - 2 ()

When the data is stored in the W format each sample (row) represents a
single wafer. This representation of the OES data is convenient for comparing
the characteristics of different wafers. It was, for example, used in |30] for
an anomaly detection task. A challenge with this representation is that the
number of columns (or variables) increases dramatically.

2.3.3.1 Time Window

In some circumstances it is important to analyse the difference between
wafers at a given time interval during the etching process. This is for ex-
ample used in Chapter [6] to understand when during the production a fault
occurred and can be used to perform on-line analysis during the etching pro-
cess. With this in mind an alternative data representation based on the W
format is proposed as follows.

Taking into account the fact that each column of W is associated with a dif-
ferent sample instant /wavelength combination, the variables can be grouped
in matrices according to their ¢ value. Sorting the columns of the W matrix
(Equation in chronological order it is possible to write:

Wi = (Wi, Wo, . W) (2.18)
where
M (t)  wy () x;:l (t:)
w2 w2 w2 (.
Wti — Il (tl) x? (tl) xp (tl) c RKX]) i = 17 T (219)
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The matrix

W, = (Wh Whe . Wh) ¢ REXG—tr (2.20)

contains the information required to analyse the process between time t;
and t;. If the time interval [t;,¢;] is sufficiently small the dimension W,fj
will be small enough to avoid the need for further dimensionality reduction.
Increasing the value of ¢; and t; it is possible to analyse the full process
using the full information available for a given time interval and to use only
p(t; —t;) variables each time. In Chapter @ this approach is used for anomaly
detection and to understand when during a wafer processing the anomaly
occurred.

2.3.4 OES by Time

The third and final way to aggregate the data is to stack the matrices in S
horizontally, that is

F = (Xy,...,Xg) € RTPK (2.21)

where Xy, as defined in equation 2.7 contains the OES measurements for
the k" wafer. The F matrix can be used to analyse the process in time.
For example a PCA analysis of FT can detect redundancy along the time
dimension of the data, suggesting that it is sufficient to analyse the process
at only few instants (sampling points). The F matrix is not used for any
application in this thesis and it is reported only for completeness.

2.4 Industrial Case Studies

In this section two industrial datasets are introduced. These will be used as
case studies throughout the thesis.

2.4.1 PSI Time Series

The first production dataset referred to as the PSI Time Series (PSI) dataset.
This dataset contains all OES measurements collected from a single plasma
etch chamber over several months.

Dataset 2.4.1 (PSI Time Series). The PSI dataset contains the measure-
ments of p = 1747 wavelengths related to the production of K = 1006 wafers
divided in 83 lots (with up to 25 wafers per lot). All the wafers were pro-
cessed according to the same recipe and processed in 7 steps for 3 different
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products. The number of samples recorded for each wafer varied in the
range 7 € [184,192]. Following an initial preprocessing step to remove irrel-
evant data the number of time samples per wafer was reduced to 7 = 165
with a sampling period of 0.5 seconds. The reasons for and the method
used to achieve this reduction are described later in the thesis (Observation
. After the preprocessing step the reference values for this datasets are
K = 1006, 7 = 165 and p = 1747. A summary of the data is reported in
Table and Figure shows the number of wafers per lot. The figure
shows that most lots contain 12 or 13 wafers. This follows from the fact that
a lot in general contains only odd or even slot numbers. A few lots contain
less than 5 wafers. These slots were probably occupied by particular wafers
that were used for monitoring and cleaning. These wafers were removed as
they are not relevant for the considered analysis.

Feature Total Number
Wavelengths 1747
Walfers 1006
Time points for each wafer 165
Total time points 190406
Lots 83
Slots 25
Recipes 1
Steps 7

Table 2.1: Summary of the PSI dataset (Dataset [2.4.1))

Figure [2.6] shows the variation in OES spectrum wavelength values during
wafer processing. In the figure each coloured line corresponds to a row of the
matrix Xj. To aid visualisation only 5 selected rows of X, are plotted.

The mean:

_ 1 .
S:§ZX;€€R xp (2.22)
k=1
and the standard deviation:
1 K
o Q2
Std(S) = — ;(Xk S) (2.23)

obtained for the PSI data (Dataset [2.4.1)) after some data cleaning steps are
shown in Figures 2.7 and 2.8
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Figure 2.5: Number of slots in each lot for Dataset [2.4.1]

Observation 2.4.1. The hypothesis that each wafer is processed during the
same amount of time T is required in order to create a one to one relationship
between wafers at a given time:

i (t;) — xi (t5) (2.24)

7

xéuv (t'r(v—l)-i-j) — 1’2”“ (tT(u—1)+j) (2'25)
In a real-time production scenario this is often not exactly true and the data
may require a preliminary cleaning step. In the considered data, for ezample,
during the processing of some wafers, the machine started to record wave-
length values before wafer processing had actually started. As a consequence
the time point measurements for some wafers are preceded by some zeros for
each wavelength i.e.

Vi x*(t) =0 fori=0,...,2" (2.26)

J

where 2% is defined as:

2% =min{z: T (tgn) > 0} (2.27)

In order to align the start of etching for each wafer these initial zeros are
removed, i.e.:

T (1) = 2 (Fa ) (2.28)
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Figure 2.6: An illustration of the variation in OES spectrum wavelength
intensities over time for a given wafer. Each line spectrum represents a
different time instant (sample).
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Figure 2.7: The 3-dimensional representation of the mean of the PSI dataset

(Dataset [2.4.1)) as defined in equation for t < 150.
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Figure 2.8: The 3-dimensional representation of the standard deviation of

the PSI dataset (Dataset [2.4.1]) as defined in equation for t < 150.
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Figure shows the traces for a given wavelength of several wafers before
and after alignment. In the first plot the wafer represented by a red line is
slightly shifted with respect to the others while all the wafers are aligned in the
second plot. Several problems may arise if the data is not properly aligned.
In an anomaly detection context for example the misaligned wafers will be
wrongly labelled as an anomaly. A similar problem is investigated in Chapter
0.

Henceforth, unless otherwise stated wafer {Xy} =1, x will be assumed to be
aligned and the same length (T samples).
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Figure 2.9: A given wavelength for 10 wafers before and after alignment.

2.4.1.1 PCA Analysis of the PSI Data

In order to better understand the structure of the PSI dataset a PCA analysis
of the data presented in the W and A formats is performed.

W format PCA: The W matrix is scaled to unit variance and a PCA de-
composition is performed. Due to the large size of the data and for computa-
tional efficiency an approximation of PCA is obtained with the Incremental
PCA algorithm [31]. The percentage of explained variance is plotted as a
function of the number of components in Figure [2.10, The figure shows that
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the percentage of explained variance grows quickly with the first 20-30 prin-
cipal components getting close to the 70%. The following components do not
contribute much in terms of explained variance. This reflects the redundancy
of the data that can be summarised by only 30 components. The remaining
components are associated with variations that are not representative of the
majority of the data and are likely to be capturing the noise in the data.
Figure shows the projection of the W matrix onto its first five principal
components. In the figure the samples are coloured according to their slot
number. Particularly interesting is the projection onto the first principal
component. In this case the samples on the left are coloured blue. These
correspond to the samples with the lowest slot number. Gradually the colour
of the samples changes from blue to red as we move from left to right with
red corresponding to samples with the largest slot number. This suggests
that the W format is particularly useful for detecting inner wafer variations.
Indeed, in Chapter [6] good anomaly detection performance is obtained using
datasets derived from the W format of the data.
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Figure 2.10: The percentage of explained variance by the first 100 PC's of
the W matrix for Dataset [2.4.1l The matrix was scaled in order to have unit
variance.

A format PCA: The A matrix is scaled to unit variance and a PCA de-
composition is performed. Figure shows the percentage of explained
variance as a function of the number of principal components. Seven compo-
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Figure 2.11: Dataset [2.4.1} The scores obtained projecting the W matrix
on the subspace generated by its first 5 PC's. The data was scaled in order
to have unit variance and the samples are coloured according to their slot
number.
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Figure 2.12: Dataset The scores obtained by projecting the W matrix
on the subspace generated by PCs 6 to 10. The data was scaled in order
to have unit variance and the samples are coloured according to theirs slot
number.
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nents explain more than 99% of the total variance. This is a consequence of
the high level of redundancy in the data. In this data format each column is
a wavelength. These are very correlated for physical reasons as they are all
measurements of light emitted from plasma as described in section [2.2] Also
the rows are highly correlated as they contain the time points that repeat
almost periodically for each wafer after 7 samples (this was previously shown
in Figure . Figures and show the projection of the rows of A
corresponding to two wafers from a randomly selected lot (one from slot 1
and one from slot 25) respectively onto the PCA subspace. It is interesting
to observe that the measurements corresponding to the two wafers behave
similarly in the subspace defined by the first 3 PC's and start to behave
differently onto the subspace generates by later PC's. This is a consequence
of the fact that the two wafers have a similar main trend given by the peri-
odical repetition of values characterising each wafer and some higher order
differences probably related to the seasoning effect.
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Figure 2.13: The percentage of explained variance by the first 100 PC's of
the A matrix for Dataset 2.4.1 The matrix was scaled in order to have unit
variance.

2.4.2 J2M Dataset

J2M is the second semiconductor manufacturing dataset introduced in this
section. It was obtained from an OES time series represented in the W format
through the use of summary statistics as defined in the next paragraph.
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Figure 2.14: Dataset The scores obtained projecting the A matrix on
the subspace generated by its first 5 PCs. The data was scaled in order to
have unit variance. Only samples corresponding to the measurements of a
wafer in slot 1 (blue) and a wafer in slot 25 (red) from a randomly selected
lot are plotted.
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Figure 2.15: Dataset The scores obtained projecting the A matrix on
the subspace generated by its 6 to 10 PC's. The data was scaled in order to
have unit variance. Only samples corresponding to the measurements of a
wafer in slot 1 (blue) and a wafer in slot 25 (red) from a randomly selected

lot are plotted.
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Summary Statistics: The time interval over which a wafer is processed
is split into intervals and the intensity values of each wavelength in each in-
terval are summarised with summary statistics. Using the previously intro-
duced notation the time interval [t1,t,] is split into [ roughly equal intervals
([t1,tiy)s [tiy tin), - - -, [ti;, t]) and the evolution of each wavelength over each
interval is summarized using s summary statistics {m; :i=1,...,s}. For
simplicity assuming 7 is a multiple of [ this is mathematically expressed as:

w w w 7 iy Listi+r
(xi k<tj>7 xz; k(tj+1>7 e I k(tj—i-T/l)) — (m17 cee 7ms)l[cj o /l] (229)
Defining
(mi,... m")gtj’tﬁ”ﬂ]
M (t, tjrmt) == . (2.30)
(mi,... m")gj’tﬁm]

the matrix W; defined in equation [2.17is reduced to:

nyl = (MZ(tb tl—i—T/l)u SR 7Mi(t7'—7'/l7 tT)) e RFx® (231>

Finally, a lower dimensional version of W is then obtained as:
W= (Wil Wity e RIS (2.32)
Observe that in general:

sl<<r (2.33)

This means that the dimension of W*! € RE*sP ig much lower than the
dimension of W € RE*7P,

Dataset 2.4.2 (Joints Two Moments (J2M)). The J2M dataset consists of a
matrix X € R1600x1228 and a vector y € R, The matrix X was obtained
by summarising time series OES measurements stored in W matrix format
using 6 summary statistics, namely, mean, variance, skewness, kurtosis, min
and max. Using the notation introduced earlier the data was reduced using
summary statistics with [ = 1 and s = 6. The vector y contains the Etch
Rate (ER) measurement for each wafer. ER is a measure of how fast material
is removed from a wafer surface during plasma etch. This measurement is not
available during the manufacturing process, and typically is sparsely sampled
from groups of processed wafer lots hours after the plasma etching process
has finished. Within this dataset, the ER value of each wafer was measured
and is plotted in Figure [2.16] In this dataset, ER under normal operation is
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defined to be in the range [66,72]. Within this dataset, a process fault was
introduced that resulted in the etching rate of certain wafers falling outside
permitted control limits. These faulty wafers, positioned near index 150, can
be visually identified in Figure [2.16] as the group whose ER < 60. Similarly,
a process shift was introduced between wafer 950 and wafer 1380.
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Figure 2.16: The normalized ER for the J2M data (Dataset [2.4.2]).

The idea of reducing the dimension of the data by employing summary statis-
tics has been extensively used in the industry and in research. In , for
example, the dimension of a time series is reduced taking its mean value in
a given time interval. In the previous notation this is equivalent to s = 1
and m; = mean. In other studies, for example [33], each time interval was
summarized by six statistics. This justifies the use of this dataset as one of
the main case studies in the thesis.

J2M PCA Analysis: A PCA analysis is performed on the J2M dataset
(Dataset . Figure shows the percentage of variance explained by
the first 100 principal components. Also in this case the percentage of ex-
plained variance grows quickly with the first 20-30 components. These ex-
plain more than 90% of the total variance and are representative of the
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majority of the information contained in the data. The other components
contribute only slightly to the percentage of explained variance and are prob-
ably associated with noise. From the PCA analysis it follows that less than
10% of the variance in the data is noise. A low level of noise can be explained
by the fact that the data was initially reduced with summary statistics a pro-
cedure that may reduce the impact of noise. From the PCA scores, plotted
in Figures [2.19] it is possible to observe the strong relationship between
OES measurements and ER value. In most of the subspaces generated by
the first 5 PC's the samples colour moves gradually from yellow to red cor-
responding to the change in ER. In addition the faulty samples associated
with low values of ER and represented in blue are often well separated from
the normal behaving samples.
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Figure 2.17: The percentage of explained variance by the first 100 PC's for
Dataset [2.4.21 The matrix was scaled in order to have unit variance.

2.5 A Novel Multi-Sensor Spectral Alignment
Procedure

In this section a novel multi-sensor spectral alignment procedure is proposed.
In the previous section the OES measurements were stored in a three dimen-
sional matrix X (equation[2.9). This and the derived mathematical formula-
tions were based on the idea that the data was perfectly clean. As described
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Figure 2.18: Dataset [2.4.2] The scores obtained projecting the data on the
subspace generated by its first 5 PC's. The data was scaled in order to have
unit variance and the samples are coloured according to their ER value as
represented in Figure [2.16
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Figure 2.19: Dataset The scores obtained projecting the data on the
subspace generated by 6 to 10. The data was scaled in order to have unit vari-
ance and the samples are coloured according to their ER value as represented

in Figure
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in section the collection of OES measurements is the result of complex
chemical reactions and requires advanced and sensitive sensors. Often, for
high volume production, wafers are processed on several chambers simultane-
ously. In order to ensure quality and consistency of production engineers at-
tempt to match all chambers so that they operate identically, determined by
measurements taken from each chamber. Currently, the use of OES measure-
ments in process matching across multiple etch chambers presents difficulties
due to the nonlinearities in detector response and errors in sensor calibra-
tion. These effects lead to variations between the observed intensity vectors
at corresponding wavelengths between different OES detectors [34]. As a
result, two identical etching processes acquired by different sensors can have
different intensity values at the same corresponding wavelengths. In recent
years, spectroscopy sensor calibration has been the topic of research in the
fields of biology [35] and chemistry [36], [37] and [38]. Work by He et al. |39]
demonstrated an alignment procedure for mass spectra alignment, in which
a warping function is approximated from calibration peaks throughout the
spectrum. A favourable comparison is made between the developed method
and alignment techniques detailed by Monchamp et al. [34], Nielsen et al. [40],
Tomasi et al. [41], Nederkassel et al. [42], Pravdova et al. [43|, Eilers [44],
Wong et al. [45] and Wong et al. [46].

This section presents work towards a spectral alignment methodology. A
retrospective calibration process is proposed based on a minimisation of the
difference in intensity between reference OES signals from different sensors.
The key feature of the methodology is the use of Particle Swarm Optimisation
(PSO, [24]) to estimate a calibration curve that is used to retrospectively
apply a calibration correction to a set of reference signals from uncalibrated
OES sensors. The resulting calibration curve estimation problem leads to
a non convex optimization problem with multiple local minima, hence the
need for PSO. Once estimated, this calibration curve can be used to align all
OES recordings for each sensor.

2.5.1 Calibration Methodology
Given two discrete signals, f and g described by
£=(f1,e s fw) tf:(t{,...,t{v) (2.34)

where N and M are the number of discrete samples in f and g, respectively,
t/ is the vector of sample wavelengths related to points in f and t9 is the
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vector of sample wavelengths related to points in g. The aim is to find a
parametrisation s(t) that aligns these signals

s(t) = arg(mm [Z 1F(s(tD)) = g(t)* + @ (2.36)

where K is the number of sample wavelengths compared and ® is a limiting
factor which constrains the selection of s(t), such that temporal shifts outside
the dynamic range of the sensor are penalised. ® is given by

The first step in this process is to transform the discrete signals f and g into
the continuous functions f(¢) and g(¢). This may be achieved in several ways
[47], here a cubic splines interpolation onto all real values of ¢ is adopted,
where all extrapolated values are set to zero. The details of this transform
are given by equation [2.38 and equation [2.39 respectively.

(2.37)

F(t) = { F(&)if t € [t ¢4] else o} (2.38)

g(t) ={g(t) if t € [t],9,] else 0} (2.39)

Because OES recordings are taken from very similar sensors, it is reasonable
to assume that the calibration function s(¢) should be very close to the iden-
tity function, as f(¢) and ¢(¢) should be similar. Therefore, it follows that
we should be able to align each signal using a function that slightly modifies
f(t), which is mathematically expressed by a function similar to the identity.
As a result, polynomials of the form

K
= Zaiti where a1 &~ 1 and a; = 0if i # 1, (2.40)

1=0

are considered and the family of functions F that we consider for our min-
imisation problem is defined as

F ={s(t) : s(t) = polynomials ~ ¢} . (2.41)

This characterisation can be used to inform the initial condition of a minimi-
sation procedure, as it indicates the general region of the optimal solution.
From a computational point of view the cost function will be discrete. As a
result, 5(t) is given by
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seF

5(t) = argmin | > [ f(s(t)) — g(t))]* + @ (2.42)

In general, the cost function defined by the expression in the [ | in equation
is very irregular and contains multiple local minima. Therefore, the
optimisation algorithm used must be able to escape from local minima and
find the global optimum.

There are several techniques which have this ability [48], [49]. In particular,
particle swarm optimisation (PSO) is well suited to minimising such a func-
tion as it aims to avoid local minima [50]. PSO is a computational method
which iteratively searches a solution space while trying to improve a candi-
date solution with regard to a given measure of quality [24] and [51]. PSO
optimises a given problem by having a population of candidate solutions,
known as particles, and moves these particles stochastically within a search-
space as a function of previous performance and neighbour performance [52].

2.5.2 PSO Calibration: Examples and Applications

Two simulated examples are presented in order to better illustrate the prob-
lem and the solution methodology. These two examples are designed in order
to match as closely as possible the characteristics of real spectra. As such the
generated signals are characterised by having several peaks. The misalign-
ment of these peaks between two spectrometers generates a cost function with
several local minima. In the first example two signals with linear distortion
are considered:

Example 2.5.1 (Linear Distortion). Consider two simulated signals f and
g, with ¢g(i) = f(s(i)) + €, where € is measurement noise and s(i) = 1.01i +
1.1, as depicted in Figure We can construct f(t) and g(t), using the
aforementioned spline interpolation procedure given by equations and
2.39 respectively. Here, the associated cost function is given by

c(ag,ar) = Y |flarts + ag) — g(tx)|* + @. (2.43)

By plotting the additive and multiplicative coefficients, as illustrated in Fig-
ure and Figure [2.22] it is observed that both have numerous local min-
ima. Using PSO [53], it is possible to estimate the calibration function, §(t),
required to align f(t) and g(t), to a mean squared error (MSE) accuracy of
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0.1058. This compares favourably to an initial error of 249.4048. The aligned
signals are depicted in Figure [2.23

120
=/

—9

100 m

80

60

Intensity

40

20

\k

. . . . . . . . )
50 100 150 200 250 300 350 400 450
Channel Id

Figure 2.20: Simulated signals f and g, where signal offset is based on a
linear function as described in Example [2.5.1]

Typically, the alignment characteristics between two non calibrated OES sen-
sors exhibits a non-linear relationship. To model this behaviour two signals
with quadratic distortion are used in the next example.

Example 2.5.2 (Quadratic Distortion). Consider the two signals as de-
scribed in Example . This signal f(i) is altered such that g(i) =
f(s(i)) + € where s(i) = 0.000017% + 1.0008i + 3. As before, f(t) and g(t) may
be constructed using the spline interpolation procedure given by equation
2.38 and equation respectively. f(t) and g(t) are illustrated in Figure
2.24) Applying PSO to solve §(t) as above, it is possible to align f(¢) and g(t)
with a MSE of 0.0879. This is compared with an initial MSE of 297.8234.
The aligned signals are depicted in Figure [2.25 while Figure [2.26] illustrates
the estimated calibration function.

To demonstrate the effectiveness of the proposed retrospective calibration
methodology for OES, calibration is performed on a sample dataset from an
industrial plasma etch chamber as a case study.

Example 2.5.3 (OES Calibration). The dataset, which consists of 60 time
samples x 2048 OES channels (wavelengths), was collected from the cham-
ber exhaust from two etching tools. Before retrospective calibration can be
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Figure 2.21: The cost function in Example [2.5.T] as a function of the additive
coefficient. The multiplicative coefficient has been set equal to its true value.
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Figure 2.22: The cost function defined in Example as a function of the
multiplicative coefficient. The additive coefficient has been set equal to its
true value.
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Figure 2.23: Calibrated f(¢) and g(¢) on the problem described in Example
The calibration function is estimated using PSO.

Intensity

. . . . . . . . )
50 100 150 200 250 300 350 400 450
Channel Id

Figure 2.24: Simulated signals f(¢) and g(t), where signal offset is based on
a quadratic function as described in Example [2.5.2]
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Figure 2.25: Calibrated f(¢) and g(¢) on the problem described in Example
The calibration function is estimated using PSO.
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Figure 2.26: The estimated calibration curve §(¢) obtained using PSO in

Example 2.5.2]
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applied between the two sensors, suitable time series signals need to be ex-
tracted for each etching step. Using one sensor as a reference, a suitable
time series signal for an individual step is extracted based on the statistical
distance of each temporal sample within X, to the centre of all temporal
samples of X for that particular step. This distance is calculated using the
Mahalanobis distance [54]. The centrally distributed signal, p, corresponds
to the minimum distance signal. This method is used to find the reference
time series signal for each step, because the centrally distributed signal will
correspond to the average behaving time series signal in that step. Once a
centrally distributed signal, p, is found for a given step, «a, the equivalent
signal from the second sensor, o, is given by

o = argmin » _|p(q) —o(q)[* . (2.44)

O'EXQ q=

where X, is the set of OES recordings for step «, on the second sensor. For
each set of matched signals, p and o, the calibration function §(¢) is estimated
using the methodology described in Section [2.5.1] The estimated calibration
curve , §(t), for each process is depicted in Figure . When compared to
the actual calibration curve, it is clear that the estimated calibration curve
produced for step 2 is a better approximation compared to the one estimated
for step 1. Applying the calibration curve produced for step 2, alignment
across each step is achieved, as illustrated by Figure [2.28] The difference
between §(t) for step 1 and 2 highlights the impact of etching species on
calibration estimation. Therefore, in a multi-step etching process where the
etching species varies, certain spectral regions for each step may be more
suited for alignment proposes.

The proposed methodology consists of several stages summarised in the fol-
lowing algorithm:

Algorithm 2.5.1. OES alignment

1. Select one OES sensor as a reference sensor, and one as the target
Sensor.

2. For each process step, find the centrally distributed temporal OES
recording from the reference sensor, p.

3. For each p, find the matching measurement from the target sensor, o.

4. For each pair of matched signals, p and o, construct a calibration curve
5(t) using PSO to minimise the difference between p and o.
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Figure 2.27: The estimated calibration curve §(¢) obtained using PSO for

each process step.
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Figure 2.28: A portion of calibrated spectrum from two OES sensors, where

the calibration function is estimated using PSO.



2.6 Conclusion 49

5. Construct a global calibration curve by combining suitable subsections
from different process step calibration curves.

The etching species of a given step can have a significant impact on calibra-
tion performance. Consequently, to achieve alignment across each process
step it may be necessary to construct a global calibration curve from subsec-
tions of individual step calibration curves.

2.6 Conclusion

This chapter provided the background material for the whole thesis. A basic
introduction to the physics behind plasma etching is provided and the pro-
cess behind OES measurements is described. It is shown how the raw data
collected during production needs to be cleaned as wafer measurements are
not properly aligned. After that the OES time series is formally described
as a 3-dimensional matrix and various two dimensional representations are
discussed. Some techniques commonly used in the industry for dimension-
ality reduction of OES time series are described and some of the datasets
that will be used in the rest of the thesis are introduced. It is shown that
slot variation can be tracked with the W matrix and the idea to partition
the W matrix into time intervals is proposed. This will be very useful in
the anomaly detection application in Chapter [6] as it allows an high dimen-
sional matrix to be split into a set of matrices of lower dimension. In the
last part of the chapter the multi-sensor matching problem is investigated.
A matching procedure based on the Particle Swarm Optimization algorithm
is proposed. Results indicate that good alignment is possible given suitably
matched signals.



Chapter 3

Stable Supervised Feature
Selection

3.1 Introduction

Variable selection in the context of regression and classification has received
increasing attention in recent years due to the huge growth in data collected
across many fields of science and engineering |17, 55, 56]. While the goal
is often focused on developing models for accurate output prediction, with
these large datasets estimation of model structure and identification of the
few variables driving the output variation is also mandatory for understand-
ing and interpreting the underlying processes that generated the data [57,
58]. Often, the numerical identification of such models is challenging because
of the data presenting, either a high correlation among subsets of predictors,
or because the number of measured variables is bigger than the number of
available data points [59]. For this reason, several techniques have recently
been developed for sparse model identification, i.e. where only a few impor-
tant variables are selected. A first possibility is to look for the best subset of
variables considering all the possible combinations. However, this strategy
becomes infeasible as the number of candidate variables increases. Rather
than searching through all possible combinations, we can seek a path through
them. For example, Forward-Stepwise selection starts with no variables and
includes in the model one variable at the time with an order that depends on
the improvement in terms of fit (or other cost functions such as the Akaike
information criterion [60]). An alternative strategy is the so called Backward-
Stepwise selection that starts with all variables in the model and iteratively
removes them according to their ability to explain the output value. Com-
binations of these methods can also be used to give improved performance,
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for example sequential floating forward selection as proposed in [61] and the
two-stage algorithm incorporating a backward refinement step proposed in
162].

Regularization based methods represent a different class of variable selection
algorithm. These involve the estimation of the regression model by minimiz-
ing a cost function consisting of two terms, the first representing the model
fit, and the second the complexity of the model. A classical approach is to
consider the sum of squares of the model coefficients as a measure of com-
plexity, leading to the so-called ridge regression model. The resulting model
suppresses the influence of irrelevant variables by forcing them to have small
coefficients relative to those assigned to the important variables. In the last
decade, Tibshirani and co-workers [63] showed that employing the sum of
the absolute values of the model coefficients as the regularization penalty
has the desirable effect of shrinking the non-important variable coefficients
to exactly zero implicitly performing variable selection. This technique is
the well known Least Absolute Shrinkage and Selection Operator (Lasso),
also known as basis pursuit in the signal processing community [64]. In re-
cent years, several modifications of the Lasso have been proposed such as
the elastic-net [65], and the group Lasso [66], [67] and new penalized regres-
sion methods have been proposed such as the Dantzig selector [68] and the
Non-Negative Garrotte Estimator [69]. These methods have been designed
in order to improve different aspects of the lasso estimator such its prediction
performance and its handling of groups of similar variables.

In general sparsity and algorithmic stability are two desired properties of
learning algorithms. This means that the output of the model should be a
function of only a small subset of the input variables and that this subset
should not change with small variations in the training data. Unfortunately a
sparse algorithm cannot be stable and vice versa |70]. While this is a general
problem of all sparse algorithms, this chapter focuses on the lasso estimator.
The stability of the lasso is investigated and algorithms for detecting a stable
set of variables are proposed. Four new algorithms are proposed: High Fre-
quency Lasso (HF); High Mean (HM); Monte Carlo High Frequency (MCHF);
and Monte Carlo High Mean (MCHM). The aim of these algorithms is to sta-
bilize the lasso solution under CV variability taking into account both the
K-fold Cross-Validation and the Monte Carlo Cross-Validation (bootstrap).
These algorithms are easy to use and automate and at the same time provide
competitive results with respect to competing approaches in the literature. In
particular, we compare our algorithms with Stability Selection [71]|, Kappa
Selection Criterion [72] and Lasso Percentile |73| for a range of simulated
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and real datasets in order to highlight their strengths and drawbacks, both
in terms of prediction accuracy, and in terms of their ability to recover the
true model structure.

The outline of the chapter is as follow: Section provides an introduction
to linear models and penalized linear models. Section reviews existing
methods that attempt to obtain stable estimates from LASSO. Then section
introduces the four new algorithms, HF, HM, MCHF and MCHM. Sec-
tion B.5] describes some datasets used to benchmark the different methods
and reports the results obtained for both the simulated and real datasets.
Section describes the computational complexity of the various algorithm
and finally Section concludes the chapter with some final remarks and
suggestions.

3.2 Linear Regression and Penalized Models

The linear regression model is defined as:

y=XB+e (3.1)

for a set of n observations of p variables where y is a (n x 1) vector, X is a
(n x p) matrix collecting the data, B is a (p x 1) vector containing the linear
model coefficients and € the (n x 1) vector describing the portion of the data
not described by the linear model. An important value associated with the
linear model is the Signal to Noise Ratio (SNR, [74]) measuring the relation
between the strength of the signal and the noise:

Var(y)
SNR = ———= 3.2
Var(e) (3:2)
The ordinary least squares estimator (OLS) of 3 in equation is obtained
by minimizing the least squares cost function Y ;" | || v; — ¥; ||3 given by the
difference between the true output y and the one estimated by the model

y=Xp (3.3)

Estimating 8 by OLS is in general an ill-conditioned problem, unless the pre-
dictors are orthogonal. Usually, these numerical problems arise when dealing
with high-dimensional datasets, i.e. where p >> n, and when there is high
correlation between subsets of the input variables (i.e. columns of X). We
work under the assumption that the vector B is sparse in the sense that
5 << p coefficients 3; are non-zero and that s < n. Here we denote the set
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of non-zero coefficients as Sy = {j : §; # 0} and our goal is to obtain a good
estimate of Sy that allows us to build a sparse model with good prediction
performance using the Lasso estimator.

In order to describe the structure of the data some new notations are intro-
duced. Define D = {1,...,n} as the index set of the rows of X and y and
¢ C D such that X, and y,4 are the submatrices of X and the subvector of
y, obtained using only the rows of X and y with indexes in ¢, respectively.
Moreover, given A C D, the complementary set is defined as A = D — A.

The Lasso estimator is formally defined as the solution of a convex optimiza-
tion problem:

B() Za%ynﬂl y—XB 5 +all B} (3.4)

where « is the regularization gain that controls the degree of sparsity in
the model. For a given a the lasso estimator can be computed iteratively
using various algorithms, e.g. LARS [75] or coordinate descent [76]. In
this chapter the LARS algorithm is used. The optimum value of o can be
estimated using a Cross-Validation (CV) procedure [77], |78]. Among these
the most widely used is k-fold Cross-Validation as it provides a good balance
between computational complexity and prediction error estimation accuracy.
In order to perform k-fold Cross-Validation the data is randomly divided
into K roughly equal-sized folds, with the index set for the k™ fold denoted
as f¥. Then for a sequence of values for the tuning parameter a, penalized
models are estimated using all but one of the folds as training data and the
predictive performance of each model tested on the omitted “left-out” fold.
This process is repeated until each fold has been left out. Thus

1 & )
V() = &= > llype - X Bz (a) [I3 (3.5)
k=1

where ,é?k (cv) are the lasso coefficients estimated using all the samples except

the ones in the fold f* as training data and « as the regularization gain. The
optimum value of « is then chosen to be the value in the sequence that
minimizes the CV error, that is:

af = argg‘nn{CV(oz)} (3.6)

In the literature the number of folds K is often chosen as 5 or 10 |60]. In
this chapter we will always use K = 10. The CV procedure is very popular
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because it is intuitively appealing, easy to implement and can provide a good
estimate of the expected prediction error |60]. However, the CV procedure
is highly influenced by several factors such as the noise on the data and
the split of the dataset into smaller subsets |73]. Problems arise when we
are interested in identifying the underlying model structure Sy. In particu-
lar, different (random) data splits typically result in different o* values and
different subsets of variables being selected. Indeed even for a fixed a the
selected variables will vary substantially with different data permutations,
especially if the candidate variables are highly correlated as will be described
in the next section.

3.2.1 Oracle Property and Irrepresentable Condition

In general it is important to be aware of the prediction capabilities of a
penalized model. This can be expressed through the Oracle Property:

Definition 3.2.1. A penalized estimator is said to have the Oracle Property
if it is asymptotically equivalent to the oracle estimator, which is defined as an
ideal estimator obtained when using the true variables without penalization.

More formally let X and y be the input matrix and the output vector and
let Sy be the set of true variables. The Oracle estimator is then defined as:

y = Xs,8s, (3.7)

where X, is the set of columns of X whose indices are contained in Sy and

Bs, = argmin || y — Xg,Bs, |l2 (3.8)

Bs,

A penalized estimator is said to have the Oracle property if there is a sequence
An such that with A = )\,

A slightly weaker definition is

A

P(S =5y — 1 (3.10)

In [79], [80] and [81] it is proven that under certain conditions the least
square estimator with Smoothly Clipped Absolute Deviation (SCAD), Ridge
or Lasso penalty has the oracle property. In this context for the Lasso esti-
mator the Irrepresentable Condition, presented in the next definition, plays
an important role.



3.3 Review of Existing Approaches 55

Definition 3.2.2. The neighborhood stability condition, also known as the
irrepresentable condition [82], [83], [84] is defined as:

max
keSs

: -1
sign(Bs,)” (X§,Xs,) XgoXk‘ <1 (3.11)

where Xg, is the set of true variables.

In [83] the authors prove that the Irrepresentable Condition (equation [3.11]),
except for a minor technicality (according to which a model is consistent if
sign(B;) = sign(B;) Vi), is ‘almost necessary and sufficient for consistency
of the lasso estimator (the word ’almost’ refers to the fact that a necessary
relationship uses < instead of <). Consistency implies that, for each random
realization there exists a correct amount of regularization that selects the
true model. If this condition is violated, all that we can hope for is recovery
of the regression vector 3 in an L2-sense of convergence by achieving

1B~ Bslla— 0 for n— oo (3.12)

This type of L2-convergence can be used to achieve consistent variable selec-
tion in a two-stage procedure by thresholding or, preferably, by employing
the adaptive lasso [84]. The disadvantage of such a two-step procedure is the
need to choose several tuning parameters without proper guidance on how
these parameters can be chosen in practice. In conclusion if this condition
is violated, the true B cannot be recovered unless some two-stage procedure
based on thresholding or the adaptive LASSO are used [84], [85].

3.3 Review of Existing Approaches

In this section some methods from the literature are discussed. These meth-
ods can be split into two families: the first one is based on data resampling
(similar to bootstrapping) and the second is based on repeated CV proce-
dures with different choices of the folds. The standard Lasso model whose a
is obtained by applying the standard CV procedure is denoted as LCV
and is used as baseline reference method.

To provide a graphical comparison between the various methods a simple
dataset is introduced as follows:

Dataset 3.3.1. Set n = 50, p = 100 and SNR = 1 and generate X € R"*?
as a random multivariate normal distribution such that cov(x;,x;) = 0.6/,
y € R" is generated according to equation where only ten randomly cho-
sen regression coefficients are non-zero and their values have been randomly
chosen between 0.1 and 1.
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3.3.1 Resampling Based Method
3.3.1.1 Stability Selection

Stability Selection (SS) is not a new variable selection technique but rather
it is an enhancement of the existing Lasso method for estimating 3. It is
able to perform consistent variable selection even when the irrepresentability
condition (equation is violated |71].

Input: The input matrix X € R"*P, the target variable y € R", the number
of simulations B , the threshold II, the Lasso LARS path A, the weakness
O<u<l1

Output: xi,...,x, the variables chosen by the algorithm.

1: X = () (the empty matrix)
2: for « € A do
3: for j =1to B do

4: Choose ¢ a random subset of D of size ng without replacement.
LnJ LnJ
Zix =
5: From ¢ obtain X4 € R 2 " and yo € R 27 taking the rows of X
and y with index ¢.
6: wg ~Wu, 1) k=1,...,p
A ) B
o —argmin s - Xool+a s, 2
8: end for
9: fort=1,...,p do
B
10: Tai = E Zj:l 1{Ba’j7’50}
11: if 7,; > Il and x; ¢ X then
12: X = (X, Xz)
13: end if
14: end for
15: end for

Pseudocode 3.3.1: Stability Selection

Stability Selection is based on a generalization of the Lasso, referred to as
the randomized Lasso (see Pseudocode , where each penalty «; in the
path A = {ay,..., .} is changed to a randomly chosen value in the range
[, a/u] where u is called the "weakness u € (0,1]. A detailed explanation
of SS is presented in the following algorithm:

Algorithm 3.3.1. Let W = (wy,...,w,) be the IID random variables in
[u,1] for k =1,...,p. The random Lasso estimator for a given «; is defined
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as:

BeRP

p
B”’Wzargmin{llY—Xﬂ!!§+aZ|Z—’“|} vacA  (313)
k
k=1

The randomized Lasso is applied many times (indicated by B in Pseudocode
to a subset of the available data. The probability 7, ; that each variable
is selected for each values of « is calculated and then each variable is assigned
a score II; = MaT Mo A variable is thus selected if its score is larger than

a given threshold II. In the original paper [71] the authors suggest using as
threshold a value between 0.6 < II < 0.9.

We have observed that in numerous experiments this algorithm selects too
many variables when a@ — 0. To solve this problem we have decided to use
only the LARS path A larger than a certain value «a,,;,. In particular we
have decided to fix a,,;, = 0.1. Another possible solution would be to choose
the subset ¢ of size smaller than p as the LARS algorithm selects min(n, p)
variables when o = 0 this ensures that not all the variables are selected even
for small values of . The general impression is that the choice of the a,,;,
and u parameters strongly influences the results and that better results can
be obtained by a visual analysis of the stability path. This has already been
reported by Sylvia Richardson in the discussion at the bottom of [71]: “The
authors seem to rely instead on a semi qualitative interpretation of the plots
described in terms such as “variables standing out”, “better separated”, ...
without giving quantitative a guidelines on how to judge such a separation”.
A comparison between the path generated by stability selection and the Lasso

path is given in Figure for Dataset [3.3.1]

3.3.1.2 Kappa Selection Criterion

The Kappa Selection Criteria (KSC) has recently been proposed in |72]. The
main difference between SS and KSC is that while the former mainly focuses
on selecting the informative variables, the latter aims at selecting the optimal
tuning parameter. This method focuses on the estimation of the penalty
value o such that the estimated active set is robust with respect to dataset
changes, for example when the dataset is split for the CV procedure. In this
algorithm an important role is played by Cohen’s Kappa Coefficient K [86|
calculated in Pseudocode Given two sets of active variables A; and Ay
the value of k ranges between —1 < K(A4, As) < 1 and gives a measure of the
agreement between the active sets in terms of selected variables |72]. The full
algorithm is described in Pseudocode [3.3.3] Note that the treatment in Step
14 of the algorithm is necessary since some informative variables may have
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Figure 3.1: The lasso path (top) and the stability selection path (bottom)
obtained using as weakness value u = 0.5. Both plots have been obtained
using Dataset [3.3.1] The black lines are the true variables while the grey
dashed lines are the noise variables. The dashed red lines on the Stability
Selection path plot are the threshold values and the value of «,,;,.
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relatively weak effect compared with others. A large value of @ may produce
an active set that consistently overlooks the weakly informative variables,
which leads to an underfitted model with large variable selection stability.

Input: Two estimated sets of active variables A;, A, and p the number of
variables
Output: A score —1 < k(A;, Ar) <1

Lif Ay =Ay=0or Ay = Ay ={1,...,p} then
2: return £k = —1

3: end if

4: N = ’Al N A2|

5 Nig = |A1 N A§|

6: N9y = |A§ N A2|

7 ngy = |A{ N AS|

8: Pr(a) = ¥ M2

9: Pr(e) = (n11 + ni2)(ni1 + na1)/p?

10: return X(A;, Ap) = Prl(a) ]_3 lz’r)(e)
— Pr(e

Pseudocode 3.3.2: Cohen’s Kappa coefficient

3.3.1.3 Bolasso

Bolasso [87] is a method that can be used to improve the performance of lasso.
We will describe this method as a possible way to increase the performance
of some of the proposed algorithms but we will not include it in our study.
The Bolasso method does not provide a way to select the penalty parameter
a but the common method such as Cross-Validation can be easily used in
order to set the o value. The Bolasso algorithm is described in Pseudocode
[3.3.4] In general the idea of subsampling introduced by Bolasso has the same
effect as the resampling based method introduced in Section [3.3.1] and the
Monte Carlo approach that will be introduced in Section [3.4.3]

3.3.2 K-folds Cross-Validation Based Methods

The methods described in this section overcome the instability in CV by
repeating the CV procedure r-times, changing at each iteration the split
of the data into folds, and then applying some rules based on the dis-
tribution of the results. At each repetition, the optimum regularization
value « is saved in order to obtain a sequence of ordered optimal values
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Input: An input matrix X and an output vector y.
Output: A penalty value a, a set of active variables A and the estimated

10:
11:

12:
13:

14:

15:

linear model.

Set a path of penalty values A = a4,...,a. and B the number of itera-
tions
set §(a) =0
set A, (the authors suggest to use A, = 0.1)
for : =0 to B do
Randomly partition X and y in two distinct subsets of the same size

X¢17 Y and X¢>27 Yo
for o in A do

Obtain two sets of active variables /Alla and Aga using the lasso
estimator with penalty a on the two subsets Xy, y4, and Xg,, ¥4,

3(e) = 8() + k(Aja, Asg)
end for
end for
for a in A do
Sa) = 2@
end for

s(a)

———>1=)\,
max $(a)

Estimate the lasso using as penalty &

Pseudocode 3.3.3: Kappa Selection Criterion

Input: An input matrix X, an output vector y, a penalty value o and the

number of bootstrap replicates r.

Output: A set of active variables.

1
2
3
4:
5
6

: fori=1tordo

Generate bootstrap samples Xy, y4
Compute Lasso estimate ,[;’¢(oz)

Compute the set of active variables A;

: end for

: Compute the set of active variables S = N}_, A;

Pseudocode 3.3.4: Bolasso
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& = (Q1,49,...,4,) 0 a1 < Gy < --- < &, Denoting the true set of non-
zero B; as Sp and S(a) as the estimation of Sy using Lasso with penalty «,
CV based methods are based on the assumption that the true set of variables

So is contained within S(a) [59], that is:
SoCS(&) Yi=1,...,r (3.14)

or equivalently it is at the intersection of the variables selected at each iter-
ation:

&gﬁm@ (3.15)

3.3.2.1 Lasso Percentile

Another recently proposed method, the Lasso Percentile (LP) |73|, repeats
the CV procedure for obtaining & r-times as can be seen in Pseudocode
[3.3.5] Then, the penalty value dpe,. is chosen as a percentile 6 of the &
sequences. The value of # can be chosen manually or estimated through CV.
The model can then be estimated running Lasso with penalty value d&pepc.
In this algorithm the elements that have to be tuned are the number of
simulations r and the value of .

Input: Input matrix X, output vector y, r the number of simulations and
0 a percentile value.

Output: xi,...,x; the variables chosen by the algorithm.

: for j=1tor do

—_

2: &; = argmin CVj(«a)
«
3: end for
4: Choose & as the 6 percentile of (G, ..., &,).

ot

: Compute Lasso with penalty value &

Pseudocode 3.3.5: Lasso Percentile

3.4 Novel Lasso Stabilization Algorithms

In this section four new lasso based algorithms are proposed: High Frequency
Lasso (HF); High Mean (HM); Monte Carlo High Frequency (MCHF); and
Monte Carlo High Mean (MCHM).
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3.4.1 High Frequency Lasso

Here a new algorithm called High Frequency Lasso (HF) is proposed. In this
algorithm the regular Lasso estimator is calculated using &; obtained
with the CV procedure as the penalty value. According to Pseudocode
, the procedure is repeated r times and at each iteration &; and B(&j)
are saved. The 3 estimated by Lasso are sparse. The selection probability for
each variable is obtained as the number of times a variable is selected (line 6
in Pseudocode normalized by r. In particular, a variable is selected if
its probability is greater than a given threshold p as can be seen from lines
7-8 of Pseudocode 3.4.1]

Input: Input matrix X, output vector y, r the number of simulations, the
cut level p
Output: xi,...,x; the variables chosen by the algorithm.
1: initialize an empty matrix X = ()
2: for j =1tor do

3: & = argmin CVi(a)

4 Bl=Bh(a) i=1,....p
5: end for

6: for i =1 to pdo

T pi= - > i1 Lgiso

8: if p; > p then

9: X = (X, Xi)

10: end if

11: end for

Pseudocode 3.4.1: High Frequency Lasso

This algorithm is easy to use and the results are easy to interpret. The values
that have to be defined by the user are r (the number of simulations) and p
(the probability threshold). When 7 is set to a value greater than 1000, we
observed that good results occur using p = max; p;. Intuitively, selecting the
threshold value correspondence of the coefficient with greatest probability,
should return only the variable with highest probability p;. However, HF
returns many coefficients with the same probability, thus several of them are
selected. An alternative is to set p = cmax; p; with ¢ € [0, 1] chosen with a
Cross-Validation procedure. The HF algorithm with ¢ chosen a priori equal
to 1 is denoted as HF (max). An illustration of how the number of correctly
selected variables (True Positive TP) and wrongly selected variables (False
Positive FP) change as a function of the threshold p is provided in Figure
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for Dataset In this example the number of iterations was set as

r = 100.
100 ]
80 |
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Figure 3.2: In the first figure the number of True Positives (TP) divided
by the total number of true variables and the number of False Positives
(FP) divided by the total number of variables with 0 regression coefficient
are represented as a function of the threshold parameter p from the HF
algorithm. The second figure shows the value of p assigned to each variable
by the HF algorithm.

3.4.2 High Mean Lasso

High Mean Lasso (HM) has been developed observing that in many simula-
tions the false positives, i.e. §; coefficients estimated as non-zero when they
actually are zero, have a small mean value (3; across the » CV repetitions:

3 . Z;:l Bl(dgzv)

i 1
5 . (3.16)
but a large standard deviation &; w.r.t. f;:
1 4 _
Az = - i Atjzv — i 2 3.17
6= |~ D_(Bi(ad) - By) (3.17)
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HM is implemented in Pseudocode 2| with lines 1-4 the same as in HF,
i.e. describing a CV procedure repeated r times. Then, for each coefficient
51 the mean and standard deviation are calculated as in and -
respectively. Moreover, the score Z is defined as:

Zi =B/ (3.18)
Finally, the hypothesis test is performed on each BZ

where yi; = E(8;) and  is independent of ¥ j # k because their randomness
depends only on the fold. So, under Hy, Z; ~ t(r — 1). x; is selected if Hy
is rejected. We reject Hy if P (|z] > |Z;i|) < p; where z ~ t(r — 1) as can be
seen in lines 9-10 of Pseudocode [3.4.2| In this algorithm the two parameters
that have to be tuned by the user are the p-value threshold and the number
of repetitions.

Input: Input matrix X, output vector y, r the number of simulations, the
p-value p
Output: xi,...,x; the variables chosen by the algorithm.
1: initialize an empty matrix X = [ ]
2: for j =1tor do

3 A&l = argmin CV;(a)
4: Bl=piad) i=1,...,p
5: end for .
6: for i = 1t0pd0@-:—zgzlﬁij
,
X T A -
0i = \/; Zj:l(ﬁij — B;)?
Zi = \/rBi/ 0
7: if P (|z| > |Zi]) < pi where z ~t(r — 1) then
8: X = (X, X,)
9: end if
10: end for

Pseudocode 3.4.2: High Mean Lasso

Observation 3.4.1. HF(max) was defined as a particular case of HF where
the ¢ parameter is tuned at priori based on some statistical considerations. It
may be tempting to similarly define HM(95% ) or HM(99% ) as the algorithms
that select all the variables such that (referring to line 7 of Pseudocode
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P(|z| > |Zi]) is smaller than 0.05 or 0.01 respectively. In general this does not
lead to good results as the Z; values estimated by HM are often quiet large
requiring p-values much smaller than 0.01 in order for irrelevant variables
to be discarded. This can for example be observed in Figure where the

Z; i . . . .
N = — walues, estimated using the data described in Dataset |3.3.1), are
T g;

reported.

High Mean Percentile (HMP) is a sparser version of HM which is obtained
by performing the same first steps of HM as can be seen from lines 1-8 of
Pseudocode [3.4.3] Once the score Z is obtained only the variables with
relative higher score are selected. In particular, we select the 6 percentile of
Z. The value of # can be chosen using CV or according to the number of
variables that we want to select.

Input: Set r the number of simulations, 6 a percentile value
Output: xi,...,x; the variables chosen by the algorithm.
1: initialize an empty vector Z = ()
2: for j =1tor do

3 &, = argminCVj(a)
t Bl=pad) i=1.p
5. end for
6: for i =1 to pdo
I D
T ﬁz - ; Zj:l ﬁzj

& 0= \/% S (B = Bi)?

10: if Z; #0 then

11: Z=(Z,72;)
12: end if
13: end for

14: Set 6 the 0 percentile of Z.
15: Select X; if S; > 6

Pseudocode 3.4.3: High Mean Percentile

3.4.3 Monte Carlo methods

Monte Carlo Cross-Validation (MCCV) is an alternative to K-folds Cross-
Validation that has been extensively used in literature. The M CCV has two
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Figure 3.3: The value of é assigned to each variable by the HM algorithm.

o
The true variables and the noise variables are represented by white and black
circles, respectively.

user defined parameters v, ¢ and is defined as
— - 3 2
MCCVyq(@) = > | Vo) — XowBsw (@) |13 (3.20)
i=1

where v is the number of simulations, ¢ is a number in (0, 1) and represents
the split between training and validation data, ¢(i) is a random subset of
D : |¢p(i)| = ¢|D|. As was the case for K-folds Cross-Validation, MCCV,,
can be computed r times but, in this case is simply equivalent to MCCV
with different parameters i.e. MCCV,, ,. This follows from the fact that:

T v vVXT
DD ¥otd) — XownBaep (@) 5= | Yoty — XeionBaaian (@) |13
j=1 i=1 i=1

(3.21)
Within the MCCV framework a number of different approaches can be con-
sidered.

e Global Alpha, Global Beta (GAGB): The regression coefficient are es-
timated as Bp(dg) where a¢ is defined as:

dg =min MCCV, ,(a) (3.22)
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e Local Alpha, Global Beta (LAGB): A sequence of local penalty values,
ar = (aF, ... al) is generated as described in the following equation.

&) = argmin || yo0) — Xo@Bawm (@) |15 (3.23)

A sequence of regression coefficients is then defined as {BD(@iL)}izl ,,,,, v
and techniques similar to the ones described for the Cross-Validation
Methods in Section can be used to estimate the set of active
variables.

e Local Alpha, Local Beta (LALB): Starting from the sequence of penalty
values obtained in equation [3.23] a sequence of regression coefficients is
estimated as {Bd,(i)(df )}iz1,.» and then techniques similar to the ones
described for the Cross-Validation Methods in Section [3.3.2can be used
to estimate the set of active variables.

The distinction between LAGB and LALB is that in LALB 3 is computed
for each ¢(i) random subsample, while with LAGB the full dataset is used
at all times. From [60] it can be easily deduced that the GAGB method will
roughly behave like LCV with K = 2 folds. In particular, we can observe

K-1
that if K is chosen such that |D| = q| D] then:

1y e = XpBpe(@) 13=11 Yoty — XowBao (@) I3 if fF=0(i) (3.24)

and so MCCV will behave very similarly to repeated K-folds CV [88]. The
main difference is that while in MCCV the data is split totally randomly in
repeated K-folds CV the data split is more structured. Therefore

r K
DD lyp = XpBa(a) 3= Z | you) = XowBaw (@) I3 if K=1

i=1 k=1

(3.25)
In particular, if r >> 0 replacing = with ~ the previous equation holds
also if K # 1. From this, it follows that the methods based on LAGB will
return results very similar to those of the methods described in Section|3.3.2
The only Monte Carlo method that brings something new in our study is
the LALB. We will define Monte Carlo High Frequency (MCHF') and Monte
Carlo High Mean (MCHM) as two methods similar to HM and HF based on
this MCCV variant.
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3.5 Comparison of Methods

All the methods presented in the previous section estimate a subset S of the
original variables with the aim of optimally predicting y. It is important to
obtain S that is as small as possible and at the same time to include all the
variables that influence the output y. The methods are therefore evaluated
according to how close S is to the original set of variables Sy and to how well
a linear model built with the selected variables can approximate y.

Before presenting the comparison some simulated datasets are described.
These will be used as illustrative examples and in the simulation study in
this section.

Dataset 3.5.1. Several datasets are generated using a linear model as in
Equation 3.1 Here 3 is a vector with only 20 nonzero elements that are
randomly generated uniformly between (—2,2) with the restriction |3| > 0.1,

and € ~ N(0,0?) where o2 has been chosen according to the value of the

Var(XB)
2

Signal-to-Noise ratio SNR = . In particular, different structures

of X that have already been used in the literature [71] have been considered:

(A) Independent predictor variables. All predictor variables are i.i.d. stan-
dard normally distributed random variables. This dataset can be con-
sidered a simple one where the covariance between variables is not an
issue.

(B) Factor model with 10 factors. Let ¢1,..., ¢ be ten latent variables
following i.i.d. standard normal distributions. Each predictor variable

Xy, for k =1,...,pis generated as x;, = fr 101+ fro@2+. ..+ fr10P10+
N, where fr1,..., fe10, Mk have i.i.d. standard normal distribution for
allk=1,...,p.

(C) The same as B but with 2 instead of 10 factors.

(D) Toeplitz design. The predictor variable follows a N(0, ¥) distribution,
where Xy, = 0.7lk=ml

The introduced datasets are characterized by different correlation structures.
The next example investigates the likelihood of the irrepresentable condition
holding in each dataset.

Example 3.5.1. Several instances of the data described in Dataset
are generated and for each one the value on the left term of equation
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is computed in order to establish if the dataset satisfies the irrepresentable
condition (IC). The results, which are reported in Table[3.1] show that the IC
is strongly influenced by the values of n, p, the number of nonzero regression
coefficients (|| Bs, ||lo) and by the correlation of the data. As expected, A is
the dataset that is more likely to satisfy the IC due to the low correlation
between its variables. It is interesting to observe that even though variables
in B are less correlated than variables in C', B is less likely to satisfy IC than
C'. This happens because the false variables can be better approximated by a
linear combination of the true variables in dataset B than in dataset C. The
relation between p and n also has a strong influence. Even dataset A fails
to satisfy IC if p is too large compared to n. Dataset A with || Bg, [[o= 10
ranges from 100% to 0% for different values of n and p. It is also interesting
to observe the effect of || Bs, |lo. Even when n > p IC may not hold if
| Bs, |lo is large. In A(n = 100,p = 50, Bs, |lo= 20), for example, the
IC is satisfied only 6% of the time while it is satisfied 96% of the time in
A(” = 100, p = 50, || ﬁSo ||0: 5)

3.5.1 Highly Correlated Variables

OES data is characterized by high correlation. Many of the methods pre-
sented break in the presence of highly correlated variables. It is then impor-
tant to understand how they behave under this condition. The next example
shows that when variables are estimated using different subsamples of the
data, a relevant variables which is correlated with some others is not always
selected.

Example 3.5.2. Let x1,%11,...,%50 ~ N(0,1), €1,...,€e10 ~ N(0,0.0001)
and € ~ N(0,2) be independent random variables. A set of variables corre-
lated with x4 is defined as: x; = x1+¢; fori=1,...,10. The full data is then
X = (x1,...,X50). The data is generated such that X € R%*50, The vector
containing the regression coefficients is all 0 except 51 = 1,811 = 1, f12 = 1.
The output y = X3 + €. In this dataset the first 10 variables are very
correlated. Therefore in order to have a good recovery performance a model
should select at least one variable from this group, x;; and x;5. All the meth-
ods that assign a score to each variable among the ones described in Section
are applied to the dataset. The score assigned to each variable by each
method is reported in Figure While all methods are able to correctly
assign a large score to x;; and x5 none recognize X; as a relevant variable.
This problem is mitigated by the selection of one of the variables correlated
with x; (X1). This ensures good prediction performances even if the identi-
fied model is not the right one. HM and MCHM are the only methods able to
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Data n p |l Bsy llo 1C ‘ Data n p |l Bs, llo 1C
A 100.0 50.0 5.0 96.0 | B 100.0 50.0 5.0 3.0
A 100.0 50.0 10.0 56.0 | B 100.0 50.0 10.0 0.0
A 100.0 50.0 20.0 6.0 | B 100.0 50.0 20.0 0.0
A 100.0 100.0 5.0 91.0 | B 100.0 100.0 5.0 4.0
A 100.0 100.0 10.0 33.0 | B 100.0 100.0 10.0 0.0
A 100.0 100.0 20.0 0.0 | B 100.0 100.0 20.0 0.0
A 100.0 500.0 5.0 73.0 | B 100.0 500.0 5.0 1.0
A 100.0 500.0 10.0 4.0 | B 100.0 500.0 10.0 0.0
A 100.0 500.0 20.0 0.0 B 100.0 500.0 20.0 0.0
A 100.0  1000.0 5.0 62.0 | B 100.0  1000.0 5.0 1.0
A 100.0  1000.0 10.0 0.0 | B 100.0  1000.0 10.0 0.0
A 100.0  1000.0 20.0 0.0 | B 100.0  1000.0 20.0 0.0
A 300.0 50.0 5.0 100.0 | B 300.0 50.0 5.0 1.0
A 300.0 50.0 10.0 100.0 | B 300.0 50.0 10.0 0.0
A 300.0 50.0 20.0 86.0 | B 300.0 50.0 20.0 0.0
A 300.0 100.0 5.0 100.0 B 300.0 100.0 5.0 5.0
A 300.0 100.0 10.0 98.0 | B 300.0 100.0 10.0 0.0
A 300.0 100.0 20.0 81.0 | B 300.0 100.0 20.0 0.0
A 300.0 500.0 5.0 100.0 | B 300.0 500.0 5.0 2.0
A 300.0 500.0 10.0 98.0 | B 300.0 500.0 10.0 0.0
A 300.0 500.0 20.0 340 | B 300.0 500.0 20.0 0.0
A 300.0 1000.0 5.0 100.0 | B 300.0 1000.0 5.0 1.0
A 300.0 1000.0 10.0 97.0 | B 300.0 1000.0 10.0 0.0
A 300.0 1000.0 20.0 290 | B 300.0 1000.0 20.0 0.0
C 100.0 50.0 5.0 38.0 D 100.0 50.0 5.0 12.0
C 100.0 50.0 10.0 38.0 | D 100.0 50.0 10.0 3.0
C 100.0 50.0 20.0 370 | D 100.0 50.0 20.0 0.0
C 100.0 100.0 5.0 320 | D 100.0 100.0 5.0 11.0
C 100.0 100.0 10.0 290 | D 100.0 100.0 10.0 0.0
C 100.0 100.0 20.0 17.000 | D 100.0 100.0 20.0 0.0
C 100.0 500.0 5.0 31.0 | D 100.0 500.0 5.0 14.0
C 100.0 500.0 10.0 25.0 D 100.0 500.0 10.0 1.0
C 100.0 500.0 20.0 1.0 | D 100.0 500.0 20.0 0.0
C 100.0  1000.0 5.0 290 | D 100.0  1000.0 5.0 9.0
C 100.0  1000.0 10.0 11.0 | D 100.0  1000.0 10.0 0.0
C 100.0  1000.0 20.0 1.0 | D 100.0  1000.0 20.0 0.0
C 300.0 50.0 5.0 46.0 | D 300.0 50.0 5.0 12.0
C 300.0 50.0 10.0 65.0 | D 300.0 50.0 10.0 4.0
C 300.0 50.0 20.0 74.0 D 300.0 50.0 20.0 1.0
C 300.0 100.0 5.0 39.0 | D 300.0 100.0 5.0 14.0
C 300.0 100.0 10.0 55.0 | D 300.0 100.0 10.0 3.0
C 300.0 100.0 20.0 71.0 | D 300.0 100.0 20.0 0.0
C 300.0 500.0 5.0 38.0 | D 300.0 500.0 5.0 12.0
C 300.0 500.0 10.0 41.0 | D 300.0 500.0 10.0 1.0
C 300.0 500.0 20.0 45.0 | D 300.0 500.0 20.0 0.0
C 300.0 1000.0 5.0 350 | D 300.0 1000.0 5.0 16.0
C 300.0 1000.0 10.0 41.0 | D 300.0 1000.0 10.0 1.0
C 300.0 1000.0 20.0 36.0 D 300.0 1000.0 20.0 0.0

Table 3.1: The percentage of time that a random realization of each dataset
described in Dataset satisfies the irrepresentable condition (IC) for
different values of n and p and number of nonzero regression coefficients

(Il Bso llo)-
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separate (X,X11,X12) from the noise variables. Also HF and MCHF are able
to assign to the 3 variables an higher score than most of the other variables.
SS is not able to strongly separate x; or any of its correlated variables from
the rest. This is a common problem of methods that select variables using
different subsets of the data. Indeed at each iteration a different variable in
X1,...,X1o is selected. The same problem can affect the Monte Carlo based
methods. In this case for example MCHM and MCHF assign to x; a lower
score than HM and HF.

Oracle HF
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Figure 3.4: Score assigned to each variable by the various algorithms on the
datasets described in Example |3.5.2

The previous example shows that bootstrap based methods are not reliable
when used with highly correlated datasets. This problem can be solved by
removing the groups of correlated variables. This may be achieved by pre-
processing the data with algorithms such as Forward Selection Component
Analysis [89] or Max Separation Clustering [90] which will be introduced in
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Chapters and [0}, respectively.

From the previous example it follows that Bootstrap based methods are weak
when the data is composed of groups of highly correlated variables. On the
other hand they seem to be the only algorithms able to correctly infer the set
of active variables when the irrepresentable condition does not hold. This is
shown in the next example.

Example 3.5.3. In this example we will discuss the performance of the dif-
ferent approaches on a dataset where the irrepresentable condition (equation
does not hold. The dataset considered is the same as the one used in
[83]. To define this dataset we generate the variables x;, xo, €,€ ~ N(0,1).

A third noise variable is defined as x3 = —=x; + =X» + —e and finally the out-

put is given by y = 2x; + 3x5 + €. In this dataset we use n = 1000 samples.
Observe that in this dataset the irrepresentable condition does not hold [83].
This leads to the presence of a false positive for each value of the penalty «
as can be observed in Figure It follows that all the algorithms based on
Cross-Validation will not be able to correctly estimate 33 = (. In the second
plot we can observe that Stability Selection with weakness v = 0.8 is able to
recognize X3 as a true negative. Also in this example we can observe that the
result can be strongly influenced by the choice of u. Stability Selection with
u = 0.2 is not able to correctly classify the variables. In practice with real
datasets it would be difficult determine the correct value for u. The method
MCHF estimates the selection probability of each variable as p = (1, 1,0.97)
and hence is able to exclude the third variable. In this example MCHF is
able to estimate the correct set of variables without the need for difficult pa-
rameter tuning. MCHM estimates Z as Z = (98.42,141.87,13.38) and hence
in this case there is a good separation between x;,xs and x3. Also in this
case it can be difficult to determine a way to automatically remove x3 from
the active set.

3.5.2 Not Convexity of KSC Score Function

KSC selects the penalty value & in order to maximise the function §. The
following example shows a situation in which the § function has two maxima
making it difficult to understand which values of o should be chosen.

Example 3.5.4. Consider the matrix X = (x1, ..., Xj03) where Xy, ..., Xj03 ~
N(0,1) and cor(x1, Xg) = cor(xy,X3) = cor(Xg,x3) = 0.9 and x4, ..., X3 are
independent. The output vector is defined as y = 2x; + X3 + X190 + € where

€ ~ N(0,0.5). The values of _ )

~

for this example are reported in
maz,(s(a))
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Figure 3.5: The Lasso path and the stability selection path with weakness
u = 0.2 and u = 0.8 for the data described in Example [3.5.3] The dashed

line is fB5(a).

Figure 3.6 The figure shows two different maxima. It is difficult to decide
if the first one should be ignored or considered. In this case for values of «
around 0.1 (corresponding to the first maximum) the lasso selects 44 variables
while for values of o around 0.25 (corresponding to the second maximum) it
selects only one variable.

3.5.3 Performance Evaluation

The algorithms described in Section [3.3|are compared on the datasets defined
in Dataset For each type of data different datasets are generated vary-
ing the values of n, p and SNR. The experiment is conducted according to
the following modeling rationale. Two versions of each dataset described in
Dataset are generated in order to have a training set and a testing set.
The training set is used to select a set of variables with each method. Then,
using the training set a model is estimated using the ridge estimator consid-
ering only the selected variables. The optimum ridge penalty is determined
using 10 folds Cross-Validation. The testing set is only used to evaluate the
prediction performance of the estimated models. The methods are evaluated
based on the following criteria:
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Figure 3.6: The function & obtained with KSC as described in

mazxy($(a))
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e Normalised Mean Square Error defined as:
MSE = M (3.26)
Iy 113
e Number of Selected Variables
e Sensitivity
e Specificity

3.5.3.1 Data Preprocessing

In order to use lasso the data must be scaled as a preprocessing step. A
dataset X = {Z;;}iz1,..m: j=1,.p € R™P where each variable has mean
and variance o7, is scaled to zero mean and unit variance as:

X = {Zij}Yie, ony j=1,..p (3.27)

where

Tij = Lig — Hi (3.28)
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In practice the data will often be divided into a training dataset and a test
dataset:

train trazn test test
X = {37 i=1,0m; j=1,...p ond X {x i=1,m; j=1,.p  (3:29)

If pirein gtrain are the mean and the standard deviation of X" respectively

the two dataset can be scaled as:

virain __ train test test
X = (FOY et and XU = {FOY i, (3.30)
where ) ‘
train __  train test Mtrazn
~ 7,
xtram — J 4 J and xtest — J (331)
2y train [2¥} train
9; Uj

In general the X! dataset will not have zero mean or unit variance.

3.5.3.2 Discussion of the Results

The average of the relevant performance metrics, as defined in section |3.5.3
are reported in Tables , , , (The standard deviation and a
graphical representation of the results are reported in Appendix . Some
interesting conclusions can be reached from an analysis of the tables. Among
the reported metrics the most interesting is the Normalised Mean Square
Error (NMSE) obtained with the various algorithms on the test datasets.
First of all it is clear that the performance of all the algorithms is strongly
influenced by the SN R value and by the ratio between the number of samples
(n) and the number of variables (p). The performance of each algorithm
improves with larger values of SNR and with smaller values of p/n. This
shows that the main influencing factors are the quality of the measurements
and the number of collected samples and that the choice of the algorithm
plays only a secondary role. That said, the choice of the algorithm is still an
important influencing factor. As expected the Oracle estimator always yields
the lowest prediction error. The difference between the Oracle estimator and
the other methods is particularly marked when only n = 100 samples are
used. In this case SNR does not play an important role. This may be
explained by the presence of a larger number of correctly selected variables
as MSE and Sensitivity seems to follow the same trend. From a prediction
point of view the inclusion of several irrelevant variables does not significantly
reduce the performance of the model. This can for example be observed in
dataset A with n = 100, p = 1000 and SNR = 1. Here MCHM and MCHF
select a large number of irrelevant variables as can be observed from their
low specificity values. Despite this their prediction performances are roughly
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equivalent to the ones of the other methods. This can be explained by the
fact that when an irrelevant variable is selected by virtue of using the ridge
estimator, its estimated regression coefficient is small and as such it does not
have much influence on the predicted output.

Observation 3.5.1. The lasso hyper-parameters are often estimated with
Cross-Validation. This may not be the optimal procedure if the aim is to
reconstruct the set Sy as closely as possible. Cross-validation chooses the
parameters in order to minimize the prediction error. In order to achieve
good prediction performance a large sensitivity value is required and the result
1s not penalized by having a low specificity value. It follows that often when
hyper-parameters are estimated with Cross-Validation many false positives
can be included in the estimated set of active variables i.e.:

SoC S (3.32)

Resampling based methods: Among the presented methods only SS
and KSC are not based on Cross-Validation. Both these methods perform
worse than the methods based on Cross-Validation in terms of NMSE. This
was expected as the methods are designed in order to select a robust set of
variables. This does not necessarily imply that the estimated set of active
variable will lead to good prediction performance. In order to mitigate this
problem in [91] the KSC parameter is tuned in order to maximise a func-
tion which combines the strength of both stability selection (measured with
the Cohen’s Kappa coefficient as in Pseudocode and prediction error
(measured with Cross-Validation). In terms of sensitivity and specificity SS
and KSC tend to have different behaviours. SS has generally low sensitivity
while it performs well in terms of specificity. In contrast KSC tends to select
a large number of variables resulting in large sensitivity and low specificity.
SS is very difficult to automate and better performance can be obtained by
visually analysing the stability path. The same is true for KSC as manual
control is required in order to avoid the problems described in example|3.5.4
In conclusion, we discourage the use of SS and KSC in automated industrial
applications.

Cross-Validation Based Methods: All the other methods are based on
bootstrap or Cross-Validation. These obtain generally better prediction per-
formances than SS and KSC. All these methods tend to have the same NMSE
performance. It is then reasonable to assume that they all select the most
relevant variables and that differences in the sensitivity values may be due
to the presence or the absence of variables with small regression coefficient.
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Methods with similar NMSE performance can then be evaluated according to
the number of selected variables. The number of selected variables depends
on the choice of a threshold in HM, HF, MCHM and MCHF and by the cho-
sen percentile in LP. These parameters are tuned with Cross-Validation. It
is then clear that they will select a larger number of variables. On the other
hand with HF (max) where the parameter p is not chosen via Cross-Validation
the number of variables selected tends to be lower.
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‘ MSE N. Var Sens Spec ‘ MSE N. Var Sens Spec ‘ MSE N. Var Sens Spec

‘ n=100 p=100 SN R=1 Data=A n=100 p=100 SN R=1.5 Data=A n=100 p=100 SN R=2 Data=A
Real 0.545 20.000 1.000 1.000 0.409 20.000 1.000 1.000 0.313 20.000 1.000 1.000
HM 0.687 37.111 0.685 0.695 0.538 38.333 0.750 0.699 0.416 38.111 0.802 0.712
HF 0.676 36.778 0.701 0.702 0.530 30.556 0.687 0.780 0.409 35.000 0.817 0.755
MCHM 0.656 21.556 0.599 0.865 0.518 24.000 0.633 0.847 0.406 28.000 0.739 0.823
MCHF 0.659 22.556 0.584 0.850 0.519 22.889 0.624 0.858 0.401 25.000 0.724 0.857
HF (max) 0.664 18.000 0.481 0.884 0.530 24.444 0.607 0.836 0.405 29.444 0.759 0.810
SS 0.726 33.000 0.444 0.692 0.604 29.667 0.404 0.725 0.541 25.889 0.385 0.770
LP 0.672 18.444 0.465 0.874 0.535 28.667 0.642 0.792 0.408 34.222 0.805 0.762
KSC 0.939 87.111 0.945 0.144 0.678 83.444 0.910 0.182 0.500 80.889 0.896 0.211
LCV 0.661 19.111 0.510 0.875 0.531 31.556 0.676 0.765 0.411 37.222 0.811 0.726
n=100 p=500 SN R=1 Data=A n=100 p=500 SN R=1.5 Data=A n=100 p=500 SN R=2 Data=A
Real 0.618 20.000 1.000 1.000 0.398 20.000 1.000 1.000 0.306 20.000 1.000 1.000
HM 0.799 57.444 0.425 0.898 0.590 56.556 0.580 0.906 0.497 59.000 0.684 0.905
HF 0.792 52.111 0.414 0.908 0.584 56.222 0.585 0.907 0.483 67.111 0.701 0.889
MCHM 0.824 81.556 0.469 0.849 0.596 60.889 0.587 0.897 0.508 54.444 0.626 0.912
MCHF 0.809 43.556 0.364 0.924 0.594 59.778 0.576 0.899 0.493 44.444 0.590 0.932
HF (max) 0.763 19.667 0.269 0.970 0.576 30.000 0.478 0.957 0.481 39.778 0.602 0.942
Ss 0.814 73.667 0.294 0.859 0.681 19.556 0.173 0.966 0.589 18.333 0.201 0.970
LP 0.766 30.111 0.309 0.950 0.589 44.889 0.512 0.927 0.473 57.667 0.664 0.907
KSC 0.834 96.333 0.517 0.821 0.617 96.222 0.655 0.826 0.499 94.667 0.723 0.832
LCV 0.774 27.778 0.294 0.954 0.585 52.111 0.590 0.916 0.480 62.889 0.677 0.897

‘ n=100 p=1000 SNR=1 Data=A n=100 p=1000 SN R=1.5 Data=A n=100 p=1000 SN R=2 Data=A

Real 0.573 20.000 1.000 1.000 0.427 20.000 1.000 1.0 0.334 20.000 1.000 1.000
HM 0.779 52.444 0.318 0.953 0.657 67.889 0.528 0.941 0.561 68.667 0.614 0.942
HF 0.781 50.667 0.312 0.955 0.650 65.222 0.523 0.944 0.568 70.444 0.629 0.941
MCHM 0.777 161.778 0.464 0.844 0.673 159.333 0.594 0.849 0.591 126.111 0.617 0.884
MCHF 0.773 173.556 0.448 0.832 0.674 115.444 0.556 0.893 0.586 97.444 0.612 0.913
HF (max) 0.781 16.889 0.178 0.986 0.667 21.444 0.317 0.984 0.562 31.333 0.485 0.978
SS 0.788 62.556 0.244 0.941 0.686 70.889 0.335 0.934 0.622 91.778 0.463 0.916
LP 0.768 18.333 0.194 0.985 0.659 42.667 0.456 0.966 0.568 59.778 0.585 0.951
KSC 0.784 96.444 0.335 0.908 0.658 96.667 0.557 0.913 0.553 96.000 0.641 0.915
LCV 0.775 24.111 0.223 0.980 0.654 47.000 0.451 0.961 0.556 54.000 0.540 0.956
n=300 p=100 SN R=1 Data=A n=300 p=100 SN R=1.5 Data=A n=300 p=100 SN R=2 Data=A
Real 0.324 20.000 1.000 1.000 0.217 20.000 1.000 1.000 0.164 20.000 1.000 1.000
HM 0.349 36.333 0.834 0.745 0.237 41.111 0.902 0.697 0.177 42.000 0.945 0.696
HF 0.353 37.111 0.841 0.736 0.236 40.222 0.921 0.713 0.179 42.222 0.952 0.696
MCHM 0.350 31.556 0.829 0.801 0.232 24.000 0.811 0.887 0.174 27.111 0.921 0.873
MCHF 0.348 25.778 0.787 0.862 0.231 27.000 0.865 0.862 0.174 24.556 0.890 0.898
HF (max) 0.352 33.222 0.823 0.780 0.235 36.889 0.902 0.750 0.178 40.222 0.952 0.720
SS 0.423 14.111 0.238 0.881 0.319 25.000 0.412 0.786 0.310 13.778 0.221 0.881
LP 0.353 34.444 0.823 0.765 0.235 38.444 0.914 0.734 0.179 41.667 0.952 0.703
KSC 0.360 58.222 0.945 0.500 0.242 55.444 0.946 0.532 0.181 52.667 0.976 0.573
LCV 0.354 38.889 0.848 0.716 0.236 40.556 0.927 0.711 0.179 42.889 0.958 0.689
n=300 p=500 SN R=1 Data=A n=300 p=500 SN R=1.5 Data=A n=300 p=500 SN R=2 Data=A
Real 0.328 20.000 1.000 1.000 0.222 20.000 1.000 1.000 0.167 20.000 1.000 1.000
HM 0.396 58.333 0.744 0.909 0.273 75.667 0.891 0.878 0.208 78.222 0.926 0.874
HF 0.392 51.444 0.727 0.922 0.271 68.000 0.885 0.894 0.207 74.667 0.926 0.882
MCHM 0.393 58.444 0.709 0.907 0.264 58.222 0.873 0.914 0.198 57.556 0.914 0.917
MCHF 0.397 65.889 0.743 0.893 0.270 61.889 0.861 0.906 0.200 61.222 0.914 0.909
HF (max) 0.382 40.556 0.698 0.944 0.261 49.889 0.862 0.931 0.197 54.222 0.908 0.924
SS 0.480 89.667 0.377 0.829 0.377 129.111 0.581 0.755 0.329 67.222 0.322 0.873
LP 0.388 44.556 0.704 0.936 0.263 54.444 0.867 0.921 0.200 57.778 0.908 0.916
KSC 0.508 229.000 0.830 0.557 0.331 212.889 0.925 0.594 0.253 209.667 0.960 0.602
LCV 0.389 47.333 0.727 0.931 0.265 58.333 0.879 0.914 0.203 65.000 0.914 0.901

‘ n=300 p=1000 SN R=1 Data=A n=300 p=1000 SNR=1.5 Data=A n=300 p=1000 SN R=2 Data=A

Real 0.308 20.000 1.000 1.000 0.221 20.000 1.000 1.000 0.167 20.000 1.000 1.000
HM 0.388 89.000 0.658 0.922 0.277 94.889 0.837 0.920 0.211 102.000 0.899 0.914
HF 0.387 85.667 0.658 0.926 0.277 91.444 0.832 0.923 0.212 98.889 0.899 0.917
MCHM 0.378 78.222 0.653 0.933 0.274 83.333 0.803 0.931 0.202 65.444 0.877 0.951
MCHF 0.376 71.111 0.658 0.941 0.273 74.444 0.803 0.940 0.209 81.333 0.877 0.935
HF (max) 0.367 45.667 0.613 0.966 0.266 52.222 0.792 0.963 0.202 60.000 0.888 0.957
SS 0.427 227.000 0.455 0.777 0.367 87.222 0.338 0.918 0.317 140.556 0.521 0.867
LP 0.371 54.444 0.613 0.957 0.269 67.111 0.820 0.948 0.205 69.889 0.888 0.947
KSC 0.417 232.778 0.743 0.777 0.306 245.111 0.911 0.768 0.236 244.889 0.950 0.769
LCV 0.374 56.889 0.619 0.954 0.271 71.222 0.826 0.944 0.207 78.222 0.899 0.938

Table 3.2: The mean value of MSE, the number of selected variables, the
sensitivity and the specificity of each method when applied to dataset A.
The reported values are the mean over 10 Monte Carlo repetitions.
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MSE N. Var Sens Spec ‘ MSE N. Var Sens Spec ‘ MSE N. Var Sens Spec
n=100 p=100 SN R=1 Data=B n=100 p=100 SNR=1.5 Data=B n=100 p=100 SN R=2 Data=B
Real 0.588 20.000 1.000 1.000 0.403 20.000 1.000 1.000 0.315 20.000 1.000 1.000
HM 0.629 19.333 0.276 0.826 0.437 25.556 0.42 0.781 0.345 28.444 0.511 0.764
HF 0.624 17.444 0.264 0.846 0.439 22.222 0.408 0.819 0.339 22.889 0.461 0.822
MCHM 0.63 18.000 0.283 0.844 0.446 20.333 0.346 0.829 0.347 23.556 0.476 0.818
MCHF 0.623 19.444 0.305 0.830 0.431 22.889 0.414 0.812 0.344 25.333 0.468 0.794
HF (max) 0.613 11.333 0.182 0.902 0.435 15.000 0.306 0.885 0.341 16.333 0.396 0.888
SS 0.635 13.556 0.198 0.879 0.483 15.889 0.271 0.866 0.416 12.111 0.253 0.907
LP 0.617 16.556 0.268 0.857 0.430 18.667 0.342 0.848 0.341 22.111 0.432 0.825
KSC 0.708 53.222 0.594 0.481 0.476 40.889 0.575 0.628 0.368 43.556 0.627 0.606
LCV 0.615 18.333 0.273 0.837 0.440 23.111 0.409 0.809 0.340 23.556 0.462 0.814
n=100 p=500 SN R=1 Data=B n=100 p=500 SN R=1.5 Data=B n=100 p=500 SN R=2 Data=B
Real 0.633 20.000 1.000 1.000 0.432 20.000 1.000 1.000 0.331 20.000 1.000 1.000
HM 0.731 32.889 0.145 0.937 0.504 36.333 0.208 0.933 0.404 41.444 0.269 0.925
HF 0.732 31.778 0.151 0.940 0.504 34.222 0.208 0.937 0.389 36.556 0.262 0.935
MCHM 0.756 113.667 0.348 0.777 0.498 70.333 0.314 0.866 0.401 106.444 0.441 0.796
MCHF 0.695 47.333 0.190 0.909 0.502 53.444 0.252 0.899 0.389 54.333 0.330 0.900
HF (max) 0.678 10.556 0.087 0.981 0.509 12.333 0.132 0.98 0.392 17.0 0.177 0.972
SS 0.709 37.000 0.189 0.931 0.493 25.444 0.178 0.954 0.402 26.111 0.194 0.953
LP 0.672 14.667 0.110 0.974 0.474 17.556 0.151 0.969 0.374 23.333 0.206 0.960
KSC 0.768 67.778 0.206 0.867 0.532 64.889 0.244 0.875 0.408 51.778 0.263 0.903
LCV 0.684 18.889 0.104 0.965 0.473 20.111 0.149 0.964 0.371 22.667 0.194 0.961
‘ n=100 p=1000 SN R=1 Data=B n=100 p=1000 SN R=1.5 Data=B n=100 p=1000 SN R=2 Data=B
Real 0.584 20.000 1.000 1.000 0.401 20.000 1.000 1.000 0.313 20.000 1.000 1.000
HM 0.642 37.333 0.089 0.964 0.492 43.778 0.151 0.958 0.399 46.111 0.210 0.957
HF 0.641 36.778 0.089 0.964 0.493 46.444 0.151 0.956 0.400 49.333 0.227 0.954
MCHM 0.671 195.889 0.265 0.806 0.483 160.333 0.309 0.843 0.401 161.000 0.394 0.844
MCHF 0.686 124.667 0.197 0.877 0.479 165.333 0.325 0.838 0.389 122.889 0.338 0.881
HF (max) 0.616 11.444 0.033 0.989 0.449 13.444 0.078 0.988 0.377 14.667 0.106 0.987
SS 0.694 25.222 0.05 0.975 0.575 11.111 0.022 0.989 0.486 12.556 0.050 0.988
LP 0.617 14.667 0.039 0.986 0.442 20.778 0.106 0.981 0.367 24.667 0.146 0.978
KSC 0.726 88.333 0.156 0.913 0.512 85.111 0.241 0.918 0.405 80.778 0.297 0.924
LCV 0.620 14.444 0.044 0.986 0.454 25.444 0.117 0.976 0.373 30.778 0.180 0.972
| n=300 p=100 SNR=1 Data=B n=300 p=100 SNR=1.5 Data=B n=300 p=100 SNR=2 Data=B
Real 0.313 20.000 1.000 1.000 0.210 20.000 1.000 1.000 0.159 20.000 1.000 1.000
HM 0.327 22.556 0.444 0.823 0.220 30.889 0.678 0.773 0.167 38.111 0.784 0.708
HF 0.325 23.667 0.455 0.812 0.220 32.000 0.689 0.762 0.167 36.333 0.797 0.732
MCHM 0.326 20.444 0.417 0.843 0.219 23.667 0.581 0.839 0.166 28.444 0.705 0.810
MCHF 0.324 19.667 0.416 0.852 0.220 28.444 0.625 0.791 0.166 26.778 0.699 0.828
HF (max) 0.324 18.000 0.370 0.863 0.223 22.222 0.536 0.848 0.167 28.222 0.688 0.808
Ss 0.345 19.444 0.303 0.829 0.258 15.444 0.262 0.869 0.219 17.111 0.291 0.856
LP 0.323 21.000 0.414 0.836 0.219 27.222 0.624 0.806 0.166 33.222 0.761 0.762
KSC 0.326 28.333 0.485 0.762 0.220 30.556 0.640 0.769 0.167 32.111 0.767 0.777
LCV 0.324 21.444 0.419 0.832 0.219 27.889 0.623 0.797 0.167 34.889 0.779 0.746
n=300 p=500 SN R=1 Data=B n=300 p=500 SN R=1.5 Data=B n=300 p=500 SN R=2 Data=B
Real 0.294 20.000 1.000 1.000 0.198 20.000 1.000 1.000 0.150 20.000 1.000 1.000
HM 0.326 42.111 0.301 0.924 0.225 51.556 0.451 0.911 0.178 60.556 0.554 0.896
HF 0.324 40.889 0.301 0.927 0.224 49.556 0.445 0.915 0.176 55.889 0.542 0.905
MCHM 0.327 56.444 0.330 0.896 0.224 42.778 0.342 0.925 0.175 48.667 0.490 0.918
MCHF 0.322 38.444 0.251 0.930 0.223 42.333 0.393 0.928 0.173 47.889 0.495 0.920
HF (max) 0.313 16.667 0.209 0.974 0.217 25.556 0.329 0.960 0.169 30.222 0.457 0.955
SS 0.355 13.778 0.087 0.975 0.260 16.333 0.121 0.971 0.230 16.889 0.096 0.969
LP 0.312 20.778 0.221 0.966 0.218 31.000 0.358 0.95 0.171 38.667 0.485 0.939
KSC 0.359 121.778 0.424 0.764 0.236 83.444 0.480 0.846 0.179 66.889 0.573 0.884
LCV 0.316 28.333 0.272 0.952 0.219 33.000 0.352 0.945 0.172 42.667 0.508 0.932
| m=300 p=1000 SNR=1 Data=B n=300 p=1000 SNR=1.5 Data=B n=300 p=1000 SN R=2 Data=B
Real 0.343 20.000 1.000 1.0 0.231 20.000 1.000 1.000 0.175 20.000 1.000 1.000
HM 0.383 59.222 0.225 0.944 0.266 71.556 0.343 0.934 0.204 83.111 0.472 0.925
HF 0.382 58.111 0.219 0.945 0.266 71.444 0.343 0.934 0.204 80.556 0.472 0.927
MCHM 0.395 129.333 0.307 0.874 0.264 105.444 0.398 0.900 0.207 128.222 0.500 0.879
MCHF 0.381 64.222 0.206 0.939 0.267 107.222 0.380 0.898 0.207 105.889 0.478 0.902
HF (max) 0.366 14.444 0.112 0.988 0.255 23.444 0.231 0.981 0.199 27.778 0.286 0.977
SS 0.393 30.889 0.136 0.971 0.308 28.778 0.144 0.974 0.264 27.889 0.156 0.975
LP 0.361 22.889 0.135 0.979 0.253 30.111 0.242 0.974 0.198 36.444 0.309 0.969
KSC 0.424 176.0 0.308 0.827 0.265 84.111 0.321 0.921 0.204 75.000 0.473 0.933
LCV 0.364 26.222 0.147 0.976 0.254 35.667 0.258 0.969 0.199 50.333 0.371 0.956

Table 3.3: The mean value of MSE, the number of selected variables, the
sensitivity and the specificity of each method when applied to dataset B.
The reported values are the mean over 10 Monte Carlo repetitions.
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MSE N. Var Sens Spec ‘ MSE N. Var Sens Spec ‘ MSE N. Var Sens Spec
n=100 p=100 SN R=1 Data=C n=100 p=100 SN R=1.5 Data=C n=100 p=100 SN R=2 Data=C
Real 0.478 20.000 1.000 1.000 0.330 20.000 1.000 1.000 0.252 20.000 1.000 1.000
HM 0.577 31.000 0.484 0.728 0.403 34.556 0.661 0.724 0.323 35.000 0.703 0.728
HF 0.590 29.333 0.469 0.745 0.403 34.111 0.654 0.727 0.320 37.444 0.723 0.702
MCHM 0.560 26.889 0.46 0.773 0.397 25.778 0.573 0.811 0.309 28.556 0.652 0.795
MCHF 0.547 23.111 0.426 0.812 0.400 24.556 0.555 0.823 0.307 23.111 0.624 0.855
HF (max) 0.550 16.556 0.351 0.876 0.403 23.556 0.553 0.834 0.315 28.556 0.664 0.798
SS 0.592 26.333 0.333 0.752 0.477 12.556 0.206 0.891 0.418 19.333 0.283 0.826
LP 0.547 19.667 0.396 0.847 0.396 29.222 0.625 0.781 0.317 32.667 0.683 0.752
KSC 0.692 76.778 0.793 0.238 0.468 73.222 0.823 0.288 0.378 70.333 0.848 0.330
LCV 0.572 24.667 0.420 0.791 0.401 30.444 0.611 0.762 0.323 38.778 0.731 0.688
n=100 p=500 SN R=1 Data=C n=100 p=500 SNR=1.5 Data=C n=100 p=500 SN R=2 Data=C
Real 0.572 20.000 1.000 1.000 0.392 20.000 1.000 1.000 0.307 20.000 1.000 1.000
HM 0.683 33.667 0.251 0.940 0.503 40.889 0.348 0.929 0.417 52.000 0.452 0.910
HF 0.679 35.333 0.281 0.938 0.501 36.667 0.337 0.937 0.416 47.778 0.439 0.918
MCHM 0.693 44.333 0.286 0.919 0.495 26.667 0.310 0.957 0.430 51.778 0.391 0.908
MCHF 0.684 34.778 0.234 0.937 0.493 33.778 0.344 0.944 0.420 31.111 0.345 0.949
HF (max) 0.647 14.444 0.195 0.978 0.486 19.111 0.269 0.971 0.407 19.667 0.310 0.972
SS 0.729 58.667 0.251 0.888 0.540 58.889 0.305 0.890 0.473 55.444 0.334 0.898
LP 0.656 16.778 0.218 0.974 0.488 22.333 0.286 0.965 0.399 31.333 0.383 0.950
KSC 0.759 94.222 0.367 0.819 0.543 91.000 0.436 0.828 0.440 89.778 0.516 0.834
LCV 0.661 21.000 0.230 0.966 0.486 24.556 0.292 0.961 0.411 33.444 0.388 0.946
n=100 p=1000 SN R=1 Data=C n=100 p=1000 SN R=1.5 Data=C n=100 p=1000 SN R=2 Data=C
Real 0.616 20.000 1.000 1.000 0.419 20.000 1.000 1.000 0.323 20.000 1.000 1.000
HM 0.771 56.000 0.163 0.946 0.585 58.222 0.275 0.946 0.485 62.444 0.375 0.944
HF 0.770 55.889 0.157 0.946 0.585 51.667 0.263 0.953 0.486 62.222 0.375 0.944
MCHM 0.792 127.667 0.318 0.876 0.576 79.778 0.285 0.924 0.494 73.000 0.330 0.932
MCHF 0.785 98.556 0.245 0.904 0.590 112.667 0.335 0.892 0.496 84.778 0.347 0.921
HF (max) 0.738 8.000 0.044 0.993 0.559 14.111 0.123 0.988 0.476 22.111 0.213 0.982
SS 0.788 32.222 0.078 0.969 0.630 58.778 0.164 0.943 0.549 54.333 0.203 0.949
LP 0.736 20.556 0.067 0.98 0.575 42.444 0.218 0.961 0.477 41.222 0.280 0.964
KSC 0.813 95.556 0.207 0.907 0.600 92.778 0.320 0.912 0.494 93.556 0.392 0.912
LCV 0.748 26.556 0.083 0.975 0.56 42.667 0.218 0.961 0.470 48.889 0.342 0.957
n=300 p=100 SNR=1 Data=C n=300 p=100 SNR=1.5 Data=C n=300 p=100 SN R=2 Data=C
Real 0.303 20.000 1.000 1.000 0.204 20.000 1.000 1.000 0.154 20.000 1.000 1.000
HM 0.334 39.778 0.714 0.671 0.223 45.444 0.865 0.635 0.170 52.000 0.933 0.570
HF 0.326 34.000 0.706 0.739 0.220 40.667 0.859 0.692 0.167 42.778 0.897 0.674
MCHM 0.326 25.222 0.611 0.826 0.218 30.667 0.793 0.799 0.164 27.778 0.837 0.844
MCHF 0.325 27.667 0.643 0.803 0.218 25.667 0.790 0.859 0.165 29.556 0.846 0.824
HF (max) 0.325 29.111 0.667 0.791 0.220 38.222 0.853 0.720 0.167 39.556 0.884 0.711
Ss 0.337 18.444 0.427 0.869 0.271 14.778 0.333 0.894 0.226 21.778 0.434 0.831
LP 0.326 32.556 0.693 0.754 0.221 40.889 0.853 0.688 0.168 43.778 0.903 0.664
KSC 0.336 61.889 0.872 0.437 0.226 59.889 0.939 0.475 0.171 54.000 0.946 0.548
LCV 0.330 37.556 0.711 0.697 0.222 43.889 0.865 0.654 0.169 47.000 0.909 0.625
n=300 p=500 SNR=1 Data=C n=300 p=500 SN R=1.5 Data=C n=300 p=500 SN R=2 Data=C
Real 0.308 20.000 1.000 1.000 0.208 20.000 1.000 1.000 0.158 20.000 1.000 1.000
HM 0.354 44.556 0.482 0.927 0.254 72.778 0.733 0.878 0.196 82.333 0.795 0.861
HF 0.351 42.667 0.471 0.930 0.252 68.556 0.727 0.887 0.195 77.111 0.784 0.871
MCHM 0.359 42.111 0.425 0.930 0.239 42.444 0.615 0.936 0.186 42.111 0.699 0.941
MCHF 0.346 32.000 0.408 0.950 0.243 48.111 0.632 0.925 0.186 48.000 0.722 0.929
HF (max) 0.346 30.000 0.414 0.954 0.240 41.667 0.655 0.940 0.188 54.889 0.750 0.916
SS 0.383 45.222 0.288 0.918 0.296 16.556 0.194 0.973 0.261 15.222 0.200 0.976
LP 0.348 34.222 0.437 0.946 0.242 50.778 0.677 0.922 0.189 60.444 0.762 0.905
KSC 0.444 218.000 0.749 0.577 0.297 187.222 0.811 0.643 0.223 165.111 0.846 0.691
LCV 0.348 37.333 0.464 0.941 0.241 48.000 0.677 0.927 0.190 63.000 0.767 0.900
n=300 p=1000 SNR=1 Data=C n=300 p=1000 SNR=1.5 Data=C n=300 p=1000 SNR=2 Data=C
Real 0.305 20.000 1.000 1.000 0.205 20.000 1.000 1.000 0.154 20.000 1.000 1.000
HM 0.378 70.667 0.522 0.939 0.262 82.556 0.628 0.929 0.205 107.000 0.739 0.906
HF 0.375 68.556 0.528 0.941 0.261 79.444 0.633 0.932 0.204 104.222 0.733 0.909
MCHM 0.364 50.889 0.494 0.958 0.257 62.667 0.589 0.948 0.194 57.444 0.650 0.955
MCHF 0.362 48.667 0.478 0.960 0.252 57.111 0.578 0.954 0.198 69.000 0.661 0.943
HF (max) 0.359 45.667 0.483 0.963 0.248 56.333 0.622 0.955 0.195 61.444 0.656 0.951
Ss 0.411 117.333 0.383 0.888 0.310 80.667 0.356 0.925 0.251 41.889 0.300 0.963
LP 0.361 54.667 0.500 0.954 0.254 68.000 0.622 0.943 0.197 71.000 0.678 0.941
KSC 0.424 243.778 0.639 0.764 0.286 224.667 0.744 0.786 0.220 205.333 0.800 0.807
LCV 0.369 66.556 0.511 0.943 0.254 79.333 0.644 0.932 0.201 87.667 0.700 0.925

Table 3.4: The mean value of MSE, the number of selected variables, the
sensitivity and the specificity of each method when applied to dataset C.
The reported values are the mean over 10 Monte Carlo repetitions.
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MSE N. Var Sens Spec ‘ MSE N. Var Sens Spec ‘ MSE N. Var Sens Spec
n=100 p=100 SN R=1 Data=D n=100 p=100 SN R=1.5 Data=D n=100 p=100 SN R=2 Data=D
Real 0.558 20.000 1.000 1.000 0.385 20.000 1.000 1.000 0.296 20.000 1.000 1.000
HM 0.682 38.778 0.610 0.660 0.440 37.444 0.718 0.699 0.361 41.000 0.794 0.673
HF 0.628 26.111 0.522 0.796 0.435 31.222 0.693 0.770 0.346 33.556 0.756 0.755
MCHM 0.613 19.444 0.485 0.869 0.428 20.333 0.600 0.882 0.335 22.333 0.668 0.873
MCHF 0.628 18.667 0.466 0.874 0.425 20.889 0.604 0.877 0.331 21.111 0.687 0.892
HF (max) 0.606 18.889 0.473 0.873 0.425 23.333 0.625 0.851 0.339 29.333 0.731 0.801
SS 0.685 31.667 0.448 0.712 0.494 28.889 0.517 0.760 0.408 26.778 0.549 0.793
LP 0.613 20.444 0.485 0.857 0.433 25.889 0.649 0.826 0.342 34.556 0.744 0.740
KSC 0.831 76.778 0.851 0.25 0.554 74.556 0.839 0.274 0.417 71.778 0.880 0.318
LCV 0.657 27.111 0.521 0.783 0.471 32.889 0.687 0.748 0.374 39.889 0.780 0.683
n=100 p=500 SN R=1 Data=D n=100 p=500 SN R=1.5 Data=D n=100 p=500 SN R=2 Data=D
Real 0.600 20.000 1.000 1.000 0.406 20.000 1.000 1.000 0.313 20.00 1.000 1.000
HM 0.792 54.111 0.368 0.902 0.583 69.333 0.576 0.879 0.495 79.222 0.685 0.863
HF 0.784 52.333 0.357 0.906 0.584 62.556 0.570 0.893 0.485 70.778 0.696 0.881
MCHM 0.833 56.333 0.407 0.899 0.587 50.556 0.515 0.916 0.477 48.778 0.594 0.923
MCHF 0.796 42.222 0.357 0.927 0.586 49.556 0.497 0.917 0.468 41.444 0.576 0.937
HF (max) 0.766 14.111 0.181 0.978 0.563 23.111 0.389 0.968 0.472 34.778 0.554 0.950
Ss 0.821 79.778 0.283 0.845 0.641 122.333 0.448 0.764 0.592 89.222 0.355 0.829
LP 0.781 18.444 0.163 0.968 0.564 51.222 0.543 0.916 0.468 49.778 0.634 0.922
KSC 0.889 95.556 0.48 0.821 0.643 94.556 0.554 0.826 0.500 93.889 0.667 0.832
LCV 0.776 19.333 0.198 0.968 0.577 41.222 0.481 0.934 0.475 54.444 0.638 0.913
‘ n=100 p=1000 SN R=1 Data=D n=100 p=1000 SN R=1.5 Data=D n=100 p=1000 SN R=2 Data=D
Real 0.606 20.000 1.000 1.000 0.415 20.000 1.000 1.000 0.320 20.000 1.000 1.000
HM 0.806 64.000 0.339 0.942 0.614 64.556 0.492 0.944 0.506 72.333 0.571 0.938
HF 0.796 56.556 0.339 0.949 0.603 70.222 0.526 0.939 0.510 66.222 0.560 0.944
MCHM 0.838 158.111 0.487 0.848 0.643 123.889 0.515 0.884 0.515 106.000 0.566 0.903
MCHF 0.814 138.444 0.451 0.868 0.618 83.889 0.493 0.924 0.507 79.889 0.525 0.929
HF (max) 0.768 19.000 0.192 0.984 0.593 24.778 0.322 0.981 0.491 36.222 0.492 0.973
SS 0.784 58.333 0.192 0.944 0.647 62.444 0.249 0.941 0.583 71.444 0.255 0.932
LP 0.769 39.000 0.255 0.965 0.591 49.333 0.407 0.958 0.500 66.778 0.571 0.943
KSC 0.824 96.333 0.356 0.909 0.608 96.556 0.497 0.911 0.510 96.778 0.577 0.913
LCV 0.780 35.222 0.244 0.969 0.598 55.222 0.469 0.953 0.497 57.667 0.549 0.952
| m=300 p=100 SNR=1 Data=D n=300 p=100 SNR=1.5 Data=D n=300 p=100 SN R=2 Data=D
Real 0.297 20.000 1.000 1.000 0.200 20.000 1.000 1.000 0.152 20.000 1.000 1.000
HM 0.315 33.111 0.665 0.744 0.216 45.333 0.849 0.635 0.163 45.333 0.897 0.646
HF 0.313 30.444 0.682 0.780 0.214 40.889 0.848 0.690 0.163 42.556 0.867 0.673
MCHM 0.308 25.222 0.661 0.840 0.207 20.000 0.741 0.921 0.159 28.444 0.818 0.835
MCHF 0.311 19.333 0.612 0.901 0.208 22.667 0.758 0.893 0.159 26.000 0.825 0.868
HF (max) 0.313 27.000 0.645 0.814 0.211 36.556 0.848 0.743 0.161 37.444 0.849 0.732
Ss 0.352 29.111 0.482 0.752 0.270 30.667 0.488 0.736 0.218 30.333 0.534 0.750
LP 0.312 28.667 0.663 0.798 0.212 38.556 0.848 0.719 0.162 39.111 0.861 0.715
KSC 0.327 52.778 0.798 0.533 0.218 54.222 0.89 0.535 0.166 55.667 0.921 0.525
LCV 0.315 34.444 0.705 0.736 0.214 42.556 0.86 0.672 0.163 44.444 0.891 0.656
n=300 p=500 SN R=1 Data=D n=300 p=500 SN R=1.5 Data=D n=300 p=500 SN R=2 Data=D
Real 0.351 20.000 1.000 1.000 0.234 20.000 1.000 1.000 0.176 20.000 1.000 1.000
HM 0.422 61.778 0.694 0.900 0.291 77.111 0.819 0.873 0.226 86.778 0.881 0.855
HF 0.419 57.000 0.683 0.909 0.286 67.000 0.796 0.893 0.219 73.778 0.864 0.882
MCHM 0.409 40.667 0.620 0.941 0.276 39.444 0.729 0.948 0.208 47.333 0.836 0.935
MCHF 0.409 37.556 0.615 0.947 0.276 40.444 0.734 0.946 0.209 46.556 0.830 0.937
HF (max) 0.408 42.556 0.660 0.938 0.279 53.889 0.785 0.920 0.213 59.889 0.853 0.910
SS 0.480 93.556 0.399 0.822 0.380 77.556 0.316 0.851 0.330 69.000 0.328 0.870
LP 0.413 46.333 0.666 0.931 0.280 57.000 0.785 0.913 0.216 66.778 0.859 0.896
KSC 0.512 189.000 0.789 0.639 0.346 194.111 0.874 0.632 0.261 186.000 0.910 0.650
LCV 0.415 51.444 0.677 0.920 0.284 64.444 0.802 0.898 0.216 70.333 0.870 0.889
| n=300 p=1000 SNR=1 Data=D n=300 p=1000 SNR=1.5 Data=D n=300 p=1000 SN R=2 Data=D
Real 0.337 20.000 1.000 1.000 0.226 20.000 1.000 1.000 0.171 20.000 1.000 1.000
HM 0.418 92.889 0.715 0.92 0.288 108.444 0.865 0.907 0.219 107.667 0.887 0.908
HF 0.416 84.667 0.709 0.928 0.282 93.556 0.843 0.922 0.216 97.111 0.887 0.919
MCHM 0.405 64.444 0.658 0.948 0.269 56.111 0.754 0.958 0.202 57.111 0.837 0.959
MCHF 0.404 66.000 0.676 0.946 0.271 65.889 0.793 0.949 0.200 57.000 0.854 0.959
HF (max) 0.396 53.333 0.642 0.959 0.269 63.556 0.815 0.952 0.207 70.444 0.871 0.946
Ss 0.503 187.444 0.391 0.817 0.357 77.111 0.381 0.929 0.300 135.667 0.545 0.873
LP 0.397 57.444 0.659 0.955 0.274 74.333 0.826 0.941 0.209 78.333 0.871 0.938
KSC 0.489 247.333 0.749 0.763 0.334 255.333 0.877 0.757 0.256 243.222 0.916 0.770
LCV 0.406 69.444 0.681 0.943 0.276 80.889 0.832 0.934 0.211 87.444 0.876 0.929

Table 3.5: The mean value of MSE, the number of selected variables, the
sensitivity and the specificity of each method when applied to dataset D.
The reported values are the mean over 10 Monte Carlo repetitions.
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3.5.4 Virtual Metrology

As a final case study in this section the methods proposed in Section [3.3| are
applied to a Virtual Metrology (VM) problem. VM aims to predict metrology
values using sensor data from production equipment and physical metrology
values of preceding samples. VM is a promising technology for the semi-
conductor manufacturing industry as it can reduce the frequency of in-line
metrology operations and provide supportive information for other opera-
tions such as fault detection, predictive maintenance and run-to-run control.
The J2M case study (Dataset is used as an example. 800 samples are
used as a training set and the remaining samples as a test set to compute the
prediction error. Noise variables are eliminated by selecting only the 5000
wavelength statistics with the highest variation over the training samples.
The data is then scaled to zero mean and unit variance. The models are
evaluated according to their NMSE and the number of variables selected.

The prediction error and the number of variables used by each algorithm
are reported in Table [3.6l The prediction error varies between 19.4% and
26.7%. The best performance is obtained with the Ridge model when all
the variables are considered (19.4%). Among the sparse models SS and KSC
have the worst performances (100% and 26.7%). SS does not select any
variable and KSC only 19, which is not sufficient to obtain a good model.
The data is highly correlated; this may be the reason for the low performance
of SS and KSC which focus on selecting a stable set of variables. The other
methods have all roughly the same prediction performances (=~ 22% error).
HM and HF select a larger number of variables than MCHM and MCHF.
This is probably a consequence of the high correlation between the variables
as in Monte Carlo based methods the score of groups of correlated variables
is penalized and they are less likely to be selected. Optimal performance is
obtained with HF (max) which selects the smallest number of variables among
the algorithms and performs well in terms of prediction error. While the lasso
seems to perform well both in terms of prediction error and model complexity,
its main weakness is its instability. In this study LCV was repeated 100 times
with random folds. Figure shows how often each variable is selected
and Figure 3.8 shows the frequency of the model complexity over the 100
repetitions. It is clear that the instability in the model leads also to an
instability in model performance as shown in Figure [3.9]
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NMSE (Prediction) NMSE (Training) Number of Variables

Ridge 0.194 0.082 5000
LCV 0.225 0.125 192
SS 1.0 1.0 0
LP 0.221 0.13 133
KSC 0.267 0.22 19
HM 0.221 0.112 225
HF 0.221 0.115 206
MCHM 0.221 0.135 131
MCHF 0.225 0.13 164
HF (max) 0.222 0.134 110

Table 3.6: Prediction error, training error and number of variables selected
by each algorithm for the problem described in Section [3.5.4
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Figure 3.7: The frequency with which each variable is selected over 100
repetitions of LCV for the dataset described in Section
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Figure 3.8: The frequency with which a given number of variables is selected
over 100 repetitions of LCV for the dataset described in Section [3.5.4]
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Figure 3.9: The NMSE obtained on the test set with the different models
obtained with LCV for 100 repetitions. The case study is described in Section

B.5.4
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3.6 Computational Time Evaluation

In this section the computational complexity of the various algorithms is
evaluated. Define C(n,p) as the cost required to compute the lasso estimator
on a dataset X € R"? and y € R" using a fixed penalty value. This value
can change according to the algorithm that is used to compute the lasso
estimator. We define [ the length of the penalty path (as, ..., ;). We assume
that the cost to perform lasso is independent of the penalty value o. This
does not affect our study because all the methods use the same penalty path
and so the speed comparison will still be fair. We consider simple operations
like finding the maximum in a vector or extracting two random subsamples
of constant complexity. This is because their computational complexity is
much lower than C(n,p). Consider the Cross-Validation function defined
in equation [3.5} then the cost of evaluating the Cross-Validation function

is C(n

algorithms where the Cross-Validation function is computed r times (HF,
LP, HM, HMP) is

,p) X I x K. From this it follows that the complexity of the

K—-1
,p) X I x K. (3.33)

cost; =1 x C(n

On the other hand for the algorithms based on bootstrapping (KSC, SS),
where for each value of the penalty path the lasso is computed B times, the
complexity is

costy = C(g,p) x | x B. (3.34)

-1 1
Under the assumption that > 3 We have that:

K—-1 n
Costl_er(n—K ,p)XlXK>7’><C'(§,p)><K_rXK 3.35)
costy C(5:p) x 1x B C(5.p) x B B

If we assume that both B and r are two large numbers of similar order we
obtain that

K
~ costa X K (3.36)

T
costy > costsy

and hence cost; is K times larger than costs. The complexity of LCV is
cost; when r = 1 and is therefore the fastest among all the methods. On

the other hand we observe that all methods can be easily parallelized and
costy

the computational cost when using P processors became respectively
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costy

and In particular in the extreme case when P = r or P = B the

computational speed would be similar the one required to compute LCV.
The Monte Carlo methods with splitting parameter ¢ and with r repetitions
MCHF and MCHM have as complexity costs = C(q X n,p) X [ x r and so
have similar complexity to the bootstrap based methods. To conclude this
paragraph we observe that in stability selection the weakness parameter u
has to be selected at the beginning of the algorithm and so the algorithm
has to be restarted if we want to try a different weakness value. This can
drastically increase the computational time required if a search of the optimal
weakness parameter u has to be performed.

3.7 Conclusion

In this chapter the robustness of the lasso algorithm was investigated. Par-
ticular focus was given to datasets composed of more variables than samples
(p > n). This is a common situation in semiconductor manufacturing as for
example was observed in the case study considered (Dataset , where
each sample is a wafer and thus n is generally small. While it is in general
impossible to have a sparse and robust estimator, some algorithms that allow
estimation of a set of variables that are consistent with the true model more
than those obtained with lasso are proposed. The proposed algorithms com-
pare favourably with competing approaches in the literature. In addition, it
is demonstrated through the use of a simulation study that Cross-Validation
based hyper-parameters selection is not suitable as the focus on prediction
accuracy leads to many superfluous variables being included. In this sense
the HF (max) algorithm is proposed as an enhancement of lasso that performs
well both in real and simulated datasets.



Chapter 4

Linear Unsupervised Feature
Selection

4.1 Introduction

The need to analyse large volumes of multivariate data is an increasingly com-
mon occurrence in many areas of science, engineering and business. In order
to build more interpretable models, or to reduce the cost of data collection,
it is important to discover good compact representations of high-dimensional
datasets. This leads to the fundamental problem of dimensionality reduction.
Many methods have been developed to perform supervised dimensionality re-
duction, for example the lasso [63] (discussed in Chapter [3) or [92], [93], [94].
Given an input matrix X € R™*? (containing n measurements of p variables)
and an output value y € R" these methods try to understand what subset
of variables, or derived features of X optimally explain y. Dimensionality
reduction can also be defined as an unsupervised problem. In this case we
look for the subset of variables/derived features that retain the maximum
information content with respect to the original set of variables, in the sense
of being able to reconstruct the full data matrix X. Different unsupervised
dimensionality reduction techniques have been proposed. Some of them, such
as Unsupervised Feature Selection Using Feature Similarity|95], FSSEM [96],
Spectral Feature Selection [97] and the techniques proposed in [98], have
been developed with the goal of maximising performance when used as a
pre-processing step in clustering or classification algorithms, while others,
such as [99], [100], [101], [90], have been developed in order to obtain the
optimal reconstruction of the full dataset. Among this latter group Principal
Component Analysis (PCA, [101]) is the best known and most widely used
technique. PCA provides the most efficient linear transformation of data to a
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lower dimensional space and is relatively straight forward to compute. It has
found many applications in chemometrics and other fields where datasets
are encountered involving large numbers of variables with significant lev-
els of inter-variable correlation and hence redundancy (see for example [102]
and [103]). However, a weakness of PCA is that the resulting latent variables
(principal components) are a linear combination of all original variables mak-
ing it difficult to identify the significant variables within the data [104]. This
is especially true in the case of highly correlated datasets due to the grouping
effect, whereby the contribution of a group of highly correlated variables to
a given principal component is distributed evenly across all variables in the
group. While this characteristic is beneficial in terms of noise suppression,
it means that the contribution of individual variables can be small making
important variables difficult to identify. Hence, tasks such as identification of
key variables, root-cause analysis and model interpretation can be challeng-
ing using PCA. Consequently, various approaches have been developed to
obtain sparse approximations of PCA. The simplest strategy is to manually
set to 0 the values of the principal components (PCs) that are smaller than
a given threshold but this can lead to significant variables being missed if
they are part of a group of highly correlated variables [105], [104]. More so-
phisticated approaches such as SCOTLASS [106], DSPCA [107], sparse PCA
[108], SSPCA [109], sPCA-rSVD [110] and SOCA [111] use a lasso like L,
or Ly penalty or are formulated as constrained maximization problems in or-
der to encourage sparsity in the PCA loadings. However, these methods are
generally computationally intensive and difficult to use and interpret due to
the need to establish the appropriate level of sparsity for each PC' computed.
These challenges motivated the development of various techniques with the
aim of identifying a small number of key variables that are representative of
the observed variance across all variables.

The particular focus of this chapter is on unsupervised feature selection us-
ing the Forward Selection Components Analysis algorithm (FSCA). This was
initially introduced in the context of Optical Emission Spectroscopy (OES)
data analysis of plasma etch processes [112] where isolating a small number
of wavelengths is important for understanding the underlying plasma chem-
istry. More recently, FSCA has been found to be a particularly effective
tool for optimising measurement site selection for spatial wafer metrology in
semiconductor manufacturing [89]. The method works by iteratively deriv-
ing a set of orthogonal components which are a function of only a subset of
the original variables, and which sequentially maximize the explained vari-
ance. At one level FSCA can be regarded as the unsupervised counterpart
of Forward Selection Regression in that it returns a set of Forward Selected
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Variables (FSVs), but equally it retains some of the characteristics and utility
of PCA in that it also returns a set of Forward Selection Components (FSCs)
which form an orthogonal basis. This allows, for example, the contributions
of individual components to be easily isolated.

In this chapter, we present, a complete framework for unsupervised dimen-
sionality reduction showing that unsupervised feature selection algorithms
share a similar structure to PCA. We show that several algorithms are based
on principles similar to those of FSCA. FSCA is then used as an example
methodology. It is described and efficient algorithm implementations devel-
oped. In addition, a number of backward refinement enhancements to FSCA
are proposed and evaluated.

4.2 Background

A variety of variable selection methods have been developed based on mak-
ing comparisons with or extracting information from a PCA decomposition of
the data matrix (e.g. [113], [114], [115] and |116]). Other approaches employ
clustering of features using a suitable feature similarity metric as the basis for
variable selection (e.g. [95], [97] and [90]). Recently [117] proposed a novel
Ly regularised formulation for the unsupervised variable selection problem
which has a similar philosophy to sparse PCA and can be thought of as the
unsupervised counterpart of LASSO [63]. In addition to FSCA, two other
techniques which can be considered as performing direct variable selection
are the algorithms by Whitley et al. [118] and Wei and Billings [119], both of
which employ orthogonalisation procedures. In the former, variables are se-
lected based on sequentially finding the variables in the dataset that are most
uncorrelated with linear combinations of the variables already selected, while
in the latter the criterion used for variable selection is the maximum average
squared correlation with all other variables in the dataset. Wei and Billings’s
algorithm, which they refer to as Forward Orthogonal Search (FOS), is simi-
lar in character to FSCA and, as will be discussed in Section [4.6] yields iden-
tical results to FSCA if the data is appropriately pre-scaled. Recently [120]
introduced a kernel extension of variable selection that enables non-linear
relationships between variables to be taken in account, while [121] developed
an efficient parallel implementation for data parallel distributed computing
that scales well for large problems. Both these algorithms are equivalent to
FSCA in terms of the sequence of variables selected, but operate directly in
the variable space rather than producing FSCs.
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4.3 Data Decomposition and Reconstruction

Given a matrix X € R™?, S € R™F* is said to be a good lower dimen-
sional representation of X if £ << p and if it is possible to obtain a good
reconstruction of X from S. In other words:

3 : Rk — R™P (4.1)

such that: R R
X=®(S) and || X-X|, issmall (4.2)

The idea of good reconstruction expressed in the previous equation is still
vague as it may depend on the application or by the desired results. Indeed
different metrics can be used to quantify the approximation error between
the matrix X and its reconstruction X (such as element-wise or induced Ly,
Ly and Ls norms of X — X). The metric that is often considered when
working with Principal Component Analysis, and the one adopted here, is
the percentage of explained variance, that is, the percentage of the variance
observed in X explained by X. Assuming, without lose of generality, that
the columns of X have zero mean, this can be expressed in terms of the
Frobenius norm (|| - ||¢) as

R ‘a 2
VX(X) =100 x [ 1— M . (4.3)
| X (|7

Observation 4.3.1. The value VX(X) 15 1nversely proportional to the ap-

proximation error A A
Errx(X) =|| X=X Hf, (4.4)

Magimising Vx (X) is therefore equivalent to minimising Errx (X). Observe
i particular that:

A

Errx(X)
np
Mazimising the explained variance is therefore equivalent to minimise the

mean square €rror (MSE) between the original matriz X and its approxima-
tion X.

= MSE(X,X) (4.5)

In chapter [6] (Section some limitations of Vx as a metric are shown and
possible alternatives are investigated. It follows that the choice of the norm
is strongly related to the field of application.
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4.3.1 Linear Dimensionality Reduction

The simplest version of the dimensionality reduction problem is when the
function @ is linear. Given a matrix X € R"*P representing a dataset with
n measurements of p variables, the aim is to estimate a matrix S € R"*¥,
where k < rank(X) < min(n,p), such that it is possible to obtain a good
reconstruction of X by linear regression on S:

X = SO where S € R™* and @ € R¥*? (4.6)

In general, given a regressor matrix S, the optimal least square error linear
reconstruction of the original signal X is given by

© = argmin|| S© — X |2, (4.7)
OcRFxP
where (|| - [|r) is the Frobenius norm. The solution to (4.7)) is the well known
least-squares solution:

® = (878)!'8TX, @ ¢ RF*» (4.8)
Hence, defining the projection matrix
®(S) = S(S”S)~'ST, ®(S) e R (4.9)

for a given matrix S, the optimal linear reconstruction of X can be expressed
as:

X =®(S)X, X eR™P (4.10)
Observation 4.3.2. While Vx (X) (defined in_equation is unbounded in

the negative direction for arbitrary X, when X is computed as a projection
of X onto the subspace spanned by S, as given by eqt. , Vx(X) >0 for
arbitrary S. (A proof is provided in Appendiz[B)

4.3.2 PCA

Principal component analysis (PCA) is probably the most popular unsuper-
vised data reduction technique. PCA extracts explanatory or latent variables
from a dataset using a matrix decomposition. The earliest descriptions of
PCA-like algorithms were given by Pearson [122] in 1901 and Hotelling [123]
in 1933. Both papers adopted different approaches. Pearson concentrated on
finding lines and planes that best fit a set of points in p-dimensional space
while Hotelling’s motivation was to find a "fundamental set of independent
variables".
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4.3.2.1 Geometric Interpretation of PCA

A sample in a dataset is a row vector and its i*" element contains the mea-
surement of the it variable. It follows that the matrix storing the data is
represented according to a canonical base

E={ey,...,ey} (4.11)

where e; € R? has all its elements equal 0 except the i** element, which is
equal to 1. The same matrix can be described using a new geometrical base.
Under the assumption that rank(X) = p the covariance matrix

XTX
n—1

> = € RP¥P (4.12)

is symmetric and positive definite. It is then possible to extract p eigenvectors
{Pi}ie1 , that are used as a new base for the space, that is:

Epca={P1,---,Pp}. PiERP fori=1,...,p (4.13)
where
Xpi = Aips (4.14)
and
| pill=1 Vi (4.15)

Since all the eigenvalues of 3 are positive they can be expressed as:
N\ = o? with o; € R (4.16)

The PCA eigenvectors are called loadings and they are usually assumed to
be sorted according to their eigenvalue i.e.

0l <o} Vi (4.17)

7

4.3.2.2 PCA Decomposition

Two matrices P € RP*P and T € R"*P are particularly important in the PCA
decomposition. P is the matrix whose columns are the p loadings i.e.

P =(p.,...,p,) € R (4.18)

The matrix T € R™ P is called the scores matrix. It is the representation
of the data X when the columns of P are used to describe the space or
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equivalently the projection of X onto the columns of P. It follows that the
two matrices are related by the change of base equation:

X =TP" (4.19)

The columns of P are the eigenvectors of the matrix 3. P is then an or-
thonormal matrix:

PP =1 (4.20)

From the two previous equations it follows that

T = XP (4.21)
Equations and are the two fundamental PCA equations. So far the
score matrix T has still the same dimensionality of the original data X. In
the next section is shown how to use PCA for dimensionality reduction.

4.3.2.3 Dimensionality Reduction with PCA

The PCA decomposition of the data can be used for dimensionality reduction.
The loadings {p;},_, , are assumed ranked according to their associated
eigenvalue as in equation A lower dimensional version of P is obtained
using only the first & loadings i.e.

The PCA decomposition of X defined in equation becomes
) k
Xbhoa = TPy => tip], (4.23)
i=1

where P;, € RP** is then computed as the first k& ordered eigenvectors of
the data covariance matrix X7 X (in descending eigenvalue order), and T} €
R™** is the geometrical projection of X on the columns of Py, that is:

T, = XP,. (4.24)

Here, p; and t; are the i-th column’s of Py and T}, respectively. If k =r =
rank(X) then the PCA decomposition is exact and

X = X%, = T,PT. (4.25)
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Otherwise, if k < rank(X) PCA provides the best rank & approximation to
X [101], that is, Py is the solution to the optimisation problem

argmaz Vx(XPLP}). (4.26)
P, cRpxk
or equivalently
P, = argmin | X —XMM? |r (4.27)
M1, MzeRpxk

In particular, it can be shown that the approximation error is:

| X = XPP] [[p=\foF,, +- -+ 07 (4.28)

Consequently, it follows that when S is restricted to k columns, the optimal
choice is S = T}, in which case © = P7.

Example 4.3.1 (PCA J2M). J2M is a dataset derived from the OES spectra
obtained from a plasma etch process as described in chapter [2| (Dataset
X € R2I9XI22TT and relative etch rate (ER) measurements y € R*194 A
detailed description of the data is reported in dataset The result of
a PCA analysis on the J2M data is represented in Figure In the first
plot the Ty matrix (i.e. the PCA scores corresponding to the first 2 PC's)
is represented. The samples are coloured according to their ER value. It
can be observed that the lower dimensional approximation keeps the main
structure of the data. Samples that have similar ER are close together in
the two dimensional plot. The second plot shows the percentage of explained
variance as a function of the number of PCA components. The OES data
is characterized by high correlation between variables. It follows that only a
few PC's are required to obtained a good approximation of the data. In this
case k = 10 PC's explain more than 99% of the variance.

4.3.2.4 T? and () Statistics

Hotelling’s T2 and the lack-of-fit () are two important statistics associated
with a PCA decomposition. Hotelling’s 72 statistic measures the variation
of each sample X € R? within the PCA model.

TR (%) = (XPy) S5, (XPy)" (4.29)

where 34 is the diagonal matrix whose diagonal contains the k largest
eigenvalues of . Observe that XPy, is the projection of X on the k-dimensional
PCA subspace.
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Figure 4.1: PCA analysis of the J2M dataset: The upper plot shows the
two dimensional representation of the OES data obtained using PCA. The
samples are coloured according to the ER value. The bottom plot shows the
percentage of explained variance as a function of the number of PC's.

The Q-statistic, also known as the squared prediction error (SPE), is a mea-
sure of the degree of variation exhibited by a sample of the input variables
(a row of X) that is unexplained by the PCA model.

Qr(X) = X(I - PyP)x" (4.30)

An application of the T" and @ statistics to anomaly detection is described

in chapter [6] (Section [6.3.1)).

4.3.3 PCA Algorithms

Various algorithms exist for computing the PCA decomposition. Among
these the most popular are the singular value decomposition (SVD, |124]) and
the Nonlinear Iterative Partial Least Squares (NIPALS, [125] ). While SVD
is more numerically robust and efficient when a full PCA decomposition is
required, NIPALS computes the PCA decomposition iteratively, one principal
component (PC') at a time, in descending order. This makes it highly efficient
in high dimensional problems where typically only a small number of PC's
needs to be computed.
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Definition 4.3.1 (SVD). The Singular Values Decomposition (SVD) of a
matrix X € R"*? is its factorization into the product of three matrices:

X = UDV” (4.31)

where D € R™*? is a diagonal matrix of singular values while U € R"*" and
V € RP*P are unitary matrix i.e.

U'U=UU"=1 and VV!' =V'V =1 (4.32)
U and V are referred as left and right singular matrices.

PCA and SVD are strictly related as reported in [126]. Given a matrix X €
R™*P the columns of V obtained from its SVD decomposition as in equation

4.31| are the eigenvectors of its estimated covariance matrix 3 =

XTX.
n—1

Taking into account the notation used in the PCA section it easily follows
that V.= P and UD = T. As previously discussed the SVD decomposition is
not an efficient algorithm if only k& << p PC's are required. In such a scenario
the Nonlinear Iterative Partial Least Squares Algorithm (NIPALS) is much
more efficient [127] as it recursively computes the principal components one
component at a time. The algorithm calculates p; and t; from X. X is then
updated as

X=X —t;pl (4.33)

and iteratively all the principal components are computed. This results in
a dramatic reduction in computational time since calculation of the covari-
ance matrix is avoided. A complete description of the algorithm is given in
Pseudocode [4.3.7]

4.4 Unsupervised Feature Selection

As discussed in the previous sections PCA is an efficient method for reducing
the dimensionality of the data. The main drawback of PCA is the fact that
each principal component is a linear combination of all the original variables,
thus it is often difficult to interpret the results. It is desirable not only to
achieve a good lower dimensionality approximation but also to reduce the
number of explicitly used variables. An ad hoc way is to artificially set the
loadings with absolute values smaller than a threshold to zero. This informal
thresholding approach is frequently used in practice but can be potentially
misleading [105].
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[Py, Ty |=NIPALS(X, k)

Input: Data matrix X, number of PCs k
1: Set E=X
2: Initialise Py = Ty = ()
3: Set ¢ = 1079 (convergence threshold)
4: Initialise t to a non-zero column of X
5: for j =1 to k do

6 Set tew =t and t g =t + 2¢
7 while || tod — trew ||2 > ¢ do
8 told = thew
9: p=E"t/tTt

10: p=p/VP'P

11: t=Ep

12: thew =t

13: end while

14: Pj = (Pj—lap)

15: T; = (T;_1,t)

16: E=E — tp”

17: end for

18: return Py, T,

Pseudocode 4.3.1: PCA NIPALS Algorithm
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4.4.1 Sparse PCA

Sparse Principal Components Analysis (Sparse PCA |108]) was developed as
a more interpretable PCA alternative. In Sparse PCA the loading matrix P
is sparse (i.e. only few elements are nonzero). The score matrix T will then
be obtained as a linear combination of only a few of the original variables.
The relevant variables are the ones with nonzero coefficients in the loadings
matrix. This allows dimensionality reduction and features selection to be
performed at the same time. The next theorem shows that the PCA loadings
can be obtained as the solution of a least square problem.

Theorem 4.4.1. Let X = UDVT be the singular values decomposition of X
and Y; = U;D; the projection of X on PC;. Given the solution of the Ridge
regression problem

Briage = argming || Y; = XB 3+ || B |13 (4.34)
and define
v = 5—@2 (4.35)
|| lgridge ”2

it follows that v = V;

The same theorem also holds without the ridge penalty but A # 0 allows us
to handle high dimensional data p > n where a unique solution to the least
square problem does not exist [108§].

The ridge regression problem in equation can be generalized to yield the
elastic net problem.

B = argming || Y; = XB |5 +A | B 15 +A: [ 8 |1 (4.36)

The L, penalty makes B a sparse vector. Indeed this is essentially the lasso

problem discussed in chapter [3, The vector V,; = is the sparse ap-

B
I B [h

proximation of V;. For consistency with the PCA notation we define

A

P =V (4.37)

where \ is used to signify the dependency of P on the penalty weighting .
The main PCA equation is then updated as:

XpP* =T* (4.38)
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where T? is the projection of X in the space defined by P*. The equation
does not hold in this case due to the non orthogonality of P*. Instead
the lower dimensional reconstruction of X, corresponding to the projection
of X onto the space spanned by P* can be obtained by linear regression as
explained in Section [£.3]

4.4.1.1 Challenges with Variables Selection with SPCA

SPCA was initially motivated to obtain a more interpretable approximation
of the PCA model and is commonly used as a benchmark for unsupervised
features selection methodologies. The main issue with using SPCA for feature
selection is the difficulty with determining what features to select. This
problem was already reported in [117] and is illustrated in the following
example.

Example 4.4.1 (SPCA on Glass data). Glass is a popular datasets often
used in machine learning. Its reference paper is |128|. The data has a total
of p = 9 variables. 3 components are computed with SPCA and the result
is reported in Table [{.1] From the table it is difficult to understand what
variables should be selected. Variable x5 for example has a nonzero loading
in the first component but variable xg has a much larger weight on the third
one. It is difficult to decide if variable x5 should be preferred to variable xg.

pPC, PCy, PCs

r1 -9.164 0.0 0.0
T 0.0 0.0 0.0
T3 0.0 6.872 0.0
T4 0.0 -6.724 0.0
r5  2.98D 0.0 0.0
T 0.0 0.0 -9.595
r7 -8.343 0.0 0.0
T 0.0 -6.86 0.0
Ty 0.0 0.0 0.0

Table 4.1: The first three PC's obtained with SPCA on the glass data.

In addition SPCA is not efficient for unsupervised variable selection. The
reason for this is that in certain situations SPCA assigns similar loadings to
similar variables. This follows from the fact that, even if it is not guaranteed,
lasso can have the grouping effect [65]. This will be illustrated in Example
[4.7.3] which will be presented later in the chapter.
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4.4.1.2 SPCA Algorithms

Different algorithms have been developed in order to efficiently compute the
sparse PCA decomposition. In the original paper [108] SPCA is computed
with an iterative algorithm. This algorithm needs to compute the SVD de-
composition of the data several times and it is consequently inefficient for
high dimensional datasets. An alternative algorithm denoted as sPCA-rSVD
is proposed in [110]. The sPCA-rSVD is described in Pseudocode [1.4.1] In
step two of the original version of the algorithm the best rank one approxi-
mation of X is obtained with SVD. It is better to obtain it with the NIPALS
algorithm as it is more efficient as only one PCA component is required.

Input: Input matrix X, k the number of components, A\; the penalty value
and the tolerance 7.
1: fori=1:kdo

2 Compute Wpew; View : UnewVi,, is the best rank one approximation
3 Uog =0, voig =0

4 while H Vnew — Vold HZ VoidT Or H Upew — Wold HZ Uoid T do
o: Vold = Vnew; Wold = Upew;

6 View = Sign(XTuold)<|XTuold| - /\1>+ ;

7 d :H Xvnew ||27

8 Upew = Xvnew/ || Xvnew ||2 ;

9: end while

10: X=X=-0(upew)X ;

11: save V,ew;

12: end for

13: return T, P

Pseudocode 4.4.1: sPCA-rSVD

4.5 More Effective Unsupervised Feature Se-
lection Algorithms

As explained in the previous section it is difficult to perform unsupervised
variable selection using the PCA and SPCA decompositions. In the litera-
ture several algorithms have been developed as better alternatives to PCA
and SPCA. Many of these algorithms may be thought of as extensions to the
unsupervised domain of algorithms like lasso [63], forward selection regres-
sion (FSR) and backward elimination regression (BER) that were originally
designed for supervised regression [129]. The unsupervised version of lasso is
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proposed in the paper convex principal features selection [117], CPFS and is
described in the following algorithm.

Algorithm 4.5.1 (Convex Principal Features Selection). CPFS is defined
by the following minimization problem:

p
Ay = argmin | X — XA || +)\Z | & [l (4.39)
AcRpxp Py
where
aj
A=| ® (4.40)
ép

The result of the minimization problem is a sparse matrix A, that contains
the regression coefficient of each variable. The rows of A whose values are all
0 or smaller than a certain threshold || a; ||2< € correspond to the variables
that are redundant and that can be discarded.

A more aggressive feature selection approach can be obtained with the un-
supervised version of FSR and BER. Forward selection and backward elimi-
nation of variables are well known techniques extensively used in supervised
learning. Given an input dataset X = (x3,...,%x,) € R"*? an output y € R"
and a function ® that maps X into y, it is of interest to estimate the set of
k < p variables (x;,,...,X;,) that can optimally reconstruct y. Determining
the optimal solution to the problem requires the evaluation of all (Z) combi-
nations which become computationally intractable even for moderate values
of p and k. An approximation of the solution is obtained using the forward
selection [130], [131], [132], |133] or backward elimination procedure [129],
[17]. Different algorithms have been proposed based on these principles for
unsupervised features selection. These iteratively select or remove variables
according to a maximization criteria.

4.5.1 Unsupervised Forward Selection and Backward Elim-
ination of Variables

4.5.1.1 FOS-MOD

Among the unsupervised forward selection algorithms one of the most fa-
mous is FOS-MOD [119], Forward Orthogonal Search (FOS) algorithm by
Maximizing the Overall Dependency (MOD), described in the following al-
gorithm.
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Algorithm 4.5.2 (FOS-MOD). The similarity between two variables is de-
fined as:

(x"y)?
se(X,y) = —————— (4.41)
(x"x)(y"y)
and a matrix of similarity between variables is computed as:
C' = {¢; }igmt,p = {5¢(xi, %)) Yot p (4.42)
The first variable is then selected as z; = x;, where [; is obtained as:
_ 1<
Cj=-> ¢ (4.43)
L
ly = argmax (_3]1- (4.44)
1<j<n
and the associated orthogonal variable is chosen as
q1 — 74 (445)
At step m — 1, m — 1 variables have been selected
Sm—l = {Zl7 ce 7Zm—1} (446)
and their respective m — 1 associated orthogonal variables are
mel = {qb T 7qm71} (447>

All the variables in the set complementary to S,,—1 (C(S,,—1)) are transformed
as:

aqu aTqm—l
Q' =~ —— — = Y a; € C(S1) (4.48)
q1 Q1 Q- 19m—1
The matrix C at step m is then defined as:
C" = {c]}ij=1,.p = {5¢(Xi, q}") }ij=1,...0 (4.49)

and the m-th chosen variable is then z,, = x;,, where

n

i=1
lm = argmaz C}' (4.51)

1<j<n
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FOS-MOD bases all its computation on the covariance matrix C. Other
methods base the selection of variables on the reconstruction error or ex-
plained variance. This makes them more similar to PCA. Some of these are
Orthogonal Feature Selection (OF'S, [134] ), Selection of Variables to Preserve
Multivariate Data Structure (SV, [114]) and Forward Selection Component
Analysis (FSCA, [89]). In the next section a high level overview of these al-
gorithms is presented. It will be clear that they all share a similar structure.
FSCA will then be used as an exemplar methodology and described in detail.
It will be also shown that FOS-MOD is a particular case of FSCA.

4.5.1.2 Orthogonal Feature Selection

In Orthogonal Feature Selection (OFS) [134] the best rank one approximation
of the data is computed with PCA (t;p?). The variable z; is then selected
as the one most correlated with t;. The data is then projected in the space
orthogonal to z; and the procedure is repeated until £ variables are selected.
The pseudocode for the algorithm is reported in [£.5.1] The main advantage
of this algorithm is the low computational complexity when the number of
variables p is large. Indeed t; can be efficiently computed with the NIPALS
Pseudocode and all the other operations are relatively low complexity
even if large datasets are used. On the other hand the algorithm relies on the
fact that the variables are selected in order to approximate t; which is itself
an approximation of the original matrix X. This means that the obtained
reconstruction is, in general, less accurate than the one obtained with FOS-
MOD or with the FSCA algorithm which will be presented in Section [4.6|

Input: Input matrix X = (xy,...,%,) and k the number of components.
1: forr=1,...,k do
2: Compute t; the projection of X on its first PC.
3: z, = argmax, corr(x;, t1)
4: Save z, as the r*" variable
5 X =X — ®(z,)X (Deflate X)
6: end for
7. return z,...,7z

Pseudocode 4.5.1: Orthogonal Features Selection

4.5.1.3 Selection of Variables to Preserve Multivariate Data Struc-
ture

In [114] another feature selection method SV is proposed. At first all the vari-
ables are considered and then they are recursively discarded. The variables
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are selected according to their ability to approximate the PCA scores. Indeed
the algorithm is based on ideas similar to the ones used in OFS described
in the previous section. A full description of the algorithm is reported in
Pseudocode [£.5.2] The main drawback of this algorithm is its computational
complexity. It is based on backward elimination, an algorithm that is more
computationally demanding than forward selection. In addition PCA must
be computed several times. In addition the backward elimination procedure
does not work if the number of variables is larger than the number of samples
as discussed in [135].

Input: Input matrix X = (xy,...,%,) and k the number of components.
1: while X has more than k£ variables do
2: Compute T, the projection of X on its first v PC's

3: fort=1,...,pdo

4: Obtain X; removing x; from X.

5: Compute T,(7) the projection of X; on its first v PC's
6: UX VT is the SVD decomposition of TZT, (i)

7: D; = trace(TI'T, — T,(i)TT, (i) — 2%)

8: end for

9: v = argmin; D;

10: Discard the variable x, from X

11: end while

Pseudocode 4.5.2: Selection of Variables to Preserve Multivariate Data
Structure.

4.6 Forward Selection Component Analysis

In contrast to PCA, which produces a reduced set of new variables (PCs) that
are linear combinations of all existing variables, Forward Selection Compo-
nent Analysis (FSCA) derives a set of new variables (FSCs) that are a func-
tion of only a subset of the original variables that maximises the explained

variance. This is achieved using the iterative procedure detailed in Pseu-
docode [4.6.1] The FSCA algorithm returns:

e A matrix Z; composed of a subset of the columns of X (FSVs) ranked
according to how well they contribute to the reconstruction of X.

e A matrix of FSCA components (FSCs) My. The first column of My,
is equivalent to the first column of Z;. The second column of M, is a
function of the first and the second column of Z; and so on. In general
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the k-th FSC will be defined as a function of itself and of the previous
k — 1 components and so is a function of the first £k selected variables.

e A matrix of FSCA loadings Uy.

FSCA leads to a decomposition of X of the form

k

i=1

where My, is an orthogonal matrix of Forward Selection Components (FSCs).
Equivalently we can express the decomposition directly in terms of the For-
ward Selection Variables (FSVs), Zj, as

k
Xbov = ZiBY =) _zb]. (4.53)

i=1

Here Zy, = (21, ..., zx) = (X4, ..., X;,) C X and B are the corresponding least
squares regression coefficients, that is

B, = X"Z(Z]Z;,) " (4.54)

Observation 4.6.1. X R
Xrsca = Xrpsv (4.55)

In a similar fashion to NIPALS (Pseudocode , the FSCs generated by
FSCA are ordered in descending order in terms of the variance of X explained.
Furthermore, by virtue of their orthogonality the variance contribution of the
i-th FSC is simply obtained as (m’m;)(u’u;). A similar expression holds
for PCA, but since Py, is an orthonormal matrix this reduces to t7t;.

The FSV decomposition could be computed directly, rather than as a by-
product of the FSC computation by solving

i, = argmazx Vx(®((Zr_1,%;))X) (4.56)

x;€X

and setting Zy = [Zx_1 x;,], with Zg = (). However, the results are equiva-
lent for a given number of components, that is X?SC = X?SV. In particular,
once Zj; has been computed, the corresponding FSC matrix My can be ob-
tained as the Gram-Schmidt orthogonalization of Z;. Thus an alternative
FSV based implementation of FSCA is as given in Pseudocode [£.6.2] Note
that steps 5 and 7 are place holders for the refinement step which will be
introduced in Section [4.7] and are not part of the basic algorithm, which we
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will refer to as the FSV algorithm (FSVA). If we are only interested in FSVs
steps 8 and 9 can be omitted, in which case the algorithm corresponds to the
feature selection methods presented in [120] and [121].

Since PCA provides the optimal representation in terms maximising the vari-
ance explained (eq. |4_ﬂl it follows that Vx(Xkeo) < Vx(Xk,). Hence
PCA can be regarded as providing an upper bound on the performance
achievable with FSCA with a given number of variables k, or equivalently a
lower bound on the number of variables needed to achieve a desired recon-
struction accuracy.

4.6.1 Computational Complexity of FSCA

The computation time of the FSCA algorithm (Pseudocode is domi-
nated by the combinatorial optimisation problem in step 4. It is relatively
straight forward to show that maximising the explained variance is equivalent
to maximising the Rayleigh Quotient of XX, that is

I'XXTx,
argmazx Vx(®(x;)X) = argmax XZT—X, (4.57)
x;€X x;€X X; X;
which can be computed efficiently as
—~ (x/x;)”
5 — 4.58
arxgigax XTx, (4.58)

This is proved in Theorem in Appendix [B]

It is interesting to note that the corresponding expression for maximising the
average squared correlation metric employed in the FOS algorithm proposed
by Wei and Billing [119] is

_Oax)”
argmaz Z X;‘FXz)( )’ (4.59)

Hence, while the FOS optimization objective has an additional scaling factor
in the denominator, both algorithms will in fact yield identical results pro-
vided the columns of the data matrix X are normalised so that they are all
the same length (XJTXj will then be invariant with respect to 7).

It is also worth noting that if x; is not constrained to be a column of X the
solution to (4.57)) is the largest eigenvector of XX, but this is simply the
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direction of the score vector t; corresponding to the first PC of the data.
This shows the similarity between FSCA and the OPFS whereby the first
variable selected is the one that is most closely correlated with the first PC.
OPFS is in general only an approximation to FSCA. This can be deduced as
follows. Recalling the definition of the PCA decomposition in equations [4.23]
and the FSCA optimization objective (eqt. can be expressed as

—~ (x[t;)”
argmazx = 4.60
gex ; XiTXi ( )
or equivalently as
argmaz ZAjcorr(xi,tj)Z, (4.61)
x;€X j=1

where \;(= t]th) is the variance contribution of the j-th PC. In contrast the
OPF'S optimization objective corresponds to

argmaz corr(x;, t1)%. (4.62)

x;,€X
Thus, while OPFS selects variables based on their squared correlation with
the first PC, FSCA selects them based on the variance-weighted average
squared correlation with all PCs. Hence, the sequence of variables selected
by OPFS will in general differ from, and explain less variance than, the vari-

ables selected by FSCA.

If FSCA is computed using the FSVA implementation (Pseudocode [4.6.2)) an
efficient solution can be obtained by noting that the combinatorial optimisa-
tion problem in equation (4.56)) is equivalent to

x;€EX

argmazx fo@((zk,l,xi))xj. (4.63)
j=1
Recalling the definition of ® (eqt. this can be recast as

argmaz > 40 Z6Zw) a0, (4.64)

X4 ]:1
where q;;) = Z%;)Xj, and Zg) = (Zy—1,%;). Hence, determining the optimum
x; requires p? evaluations of the vector terms q;) and p evaluations of the
matrix inverse term (Za)Z(i))*l. We can take two steps to substantially

reduce the computation time for these terms. Firstly, as proposed in [120,
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121], an O(k?) complexity recursive computation of the matrix inverse can
be obtained by taking advantage of the fact that

7T 7y, ry
T . k—14Hk—1 ()
Z(i)Z(i) = [ o7 - ] ) (4.65)
(%) (%)
where r;y = Z,_1x;, and ag) = xI'x;, and applying block matrix inversion

algebra to obtain an expression for (Z%;)Z(Z-))*l in terms of (Z1 Z;_1)7!
which has already been computed in the previous iteration, that is:

(4.66)

b = (folzk_l)’lr(i), W = (a(i) — I‘z;)b)il.

In contrast direct calculation of the matrix inverse has O(k?) computational
complexity.

Secondly, evaluating the terms q;(;, r(;) and a(;) all involve computing vector
products x; x; many times, with substantial repetition both within each vari-
able selection iteration and between iterations. This repetition can be elimi-
nated by precomputing the covariance matrix C = X*X, where ¢;; = x! x;,
at the cost of O(p?n) floating point operations (flops) and O(p?) additional
memory. Table shows the estimated complexity in terms of floating point
operations for computing k FSCs with the FSCA and FSVA algorithms, with
and without the covariance matrix precomputed, while Fig. shows how
complexity varies as a function of p and n for specific combinations of the
other dimensions. As can be seen, the reduction in complexity is of the or-
der O(k?) for FSVA. Precomputing C is also beneficial for FSCA, but the
impact is less significant since it has to be re-computed at each iteration due
to the deflation step. That said, a factor of two reduction in computational
complexity is achieved for FSCA. All algorithms scale quadratically with p
and linearly with n, but differ in how they behave with respect to k, with
FSCA implementations growing linearly and FSVA implementations grow-
ing cubically. If precomputing the covariance matrix is not an issue, the
preferred algorithm is FSVA when k& < +/1.5n (approx.) and FSCA other-
wise. FSCA is substantially superior to FSVA when the covariance matrix is
not precomputed and also outperforms precomputed FSVA when k& > v/3n.
When the computational burden of FSCA becomes prohibitive OPFS may
offer an attractive compromise due to its significantly lower computational
complexity. In OPFS the PC needed at each step can be computed efficiently
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using NIPALS yielding and algorithm with O((4a + 8)np) complexity per
selected variable, compared to order O(np?*) with FSCA. Here, « denotes the
average number of iterations per selected variable for the NIPALS algorithm
to converge. It is a function of the spread of the eigenvalues of the covariance
matrix C, and hence problem dependent.

Notation: k = k(k —1)/2; k? = k(k + 1)(2k + 1)/6; and PC denotes

implementation with precomputed covariance matrix.

Method | Floating point operation count Complexity
k<<wv

2 2 ok —
FSCA %(Zp nk+6pnk+v°k+2nk—pk O(2pnk)
FSCA 9 9 9
(PC) O(v*nk + 2pnk + 2p°k) O(p*nk)

2. 7T. 27.2 2 7.2 2
FSVA O(2p°nk +2p°k 4—24pnk +4pk”+ | O(p*nk?+ §p2k3)

dpnk — 2pk + 2nk* 4 4nk)

FSVA | O(p’n+v?(2k*+k)+2nk?*+2pnk+ s 2,
(PC) Ank — pk + p(4k* — 6k + 3k)) Op™n + 3p°k”)

Table 4.2: Flop count and asymptotic complexity for computing k& FSCs of
X e R™* with different FSCA algorithm implementations

4.7 Backward Refinement Procedure for FSCA

In this section a series of novel backward refinement procedures that improve
the FSCA algorithm are proposed. Ideally we would like to find the subset
of k columns of X (variables) that can optimally reconstruct X, that is

argmax Vx(®(Z;)X). (4.67)

ZipeX

However, this is an NP hard combinatorial optimisation problem (requires
the evaluation of *Cy, = v!/((v—k)!k!) possible combinations of the variables).
In general FSCA and other greedy local search approaches are sub optimal
(i.e. they are not guaranteed to find the optimal subset of variables according
to the defined optimization criteria), but they represent a pragmatic solu-
tion as searching over all possible subsets quickly becomes computationally
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[Z, My, U] =FSCA(X, k)

Input: Data matrix X, number of FSCs k
1: Set E=X
2: Initialise Zo = My = Uy =0
3: for j =1to k do

i = argmaz Vg(®(e;)E)
e, cE

m=e;

7 =X;

u=FEle;/(ele;)
M; = (M;_;, m)
Zj = (Zj,2)

10: Uj = (Uj—h U)
11: E=E—-®(m)E
12: end for

13: return Z;, My, U,

Pseudocode 4.6.1: FSCA Algorithm

[Zy, My, Uy]=FSVA(X,k)

Input: Data matrix X, number of FSVs k
1: Zo = 0
2: for j =1to k do
3: i; = argmaz Vx(P®(Z;_1,%;))X)
x;EX
Zj = (Zj1,x)
Optional refinement step (recursive)
end for
Optional refinement step
M, = GramSchmidt(Zy,)
U, = XTMk(Mng)_l
10: return Z;, M, U

Pseudocode 4.6.2: Direct FSV implementation of FSCA
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k=10,m=200 k=10,v=200

log(flops)
log(flops)

1 102 103 4
log(m)

k=30,m=200 k=30,v=200

log(flops)
log(flops)

10 1 10° 10 1 10"

0* 10" 0 10°
log(v) log(m)

Figure 4.2: Complexity of FSCA algorithms as a function of v and m: Plots
show FSCA (blue) and FSVA (green) implementations with precomputed
covariance matrices (dashed lines) and without (solid lines).

intractable with increasing problem dimension.

As a consequence of the greedy strategy adopted by FSCA variables that are
selected in early iterations of the algorithm can become redundant as other
variables are included in later iterations. This can result in sub-optimal so-
lutions and can also be detrimental to the performance of some applications,
for example, the clustering application which will be presented in Section
[4.7.6, To overcome this weakness, we propose introducing a backward re-
finement step similar to that presented in [62], [136] for forward selection
regression applications, where, following completion of the forward selection
process, selected variables are reviewed to see if they are still relevant and
replaced if they are not.

Denoting Z,(cj )(xi) as matrix Z; with its j-th column replaced by x;, that is:

2 (x;) = Zi, + (x; — z;)eT (4.68)



4.7 Backward Refinement Procedure for FSCA 112

where e; is a vector with its j-th element equal to 1 and all others elements
equal to zero, we define z; € Z; as relevant if

Vx(®(Zp)X) > maz Vx(®(ZY)(x;))X). (4.69)

x;€X/Zy,

This backward refinement step can be performed either at step 5 or step 7 of
the FSV implementation of the FSCA algorithm, as highlighted Pseudocode
[4.6.2l When placed at step 7 the refinement step is only undertaken once
after the FSV algorithm has completed. In contrast, the refinement step is
executed following the addition of each new variable if placed at step 5. We
will refer to this latter implementation as recursive backward refinement.
There are also two flavours of the refinement step itself. In the first, referred
to as Single-Pass Backward Refinement (SPBR) (summarised in Pseudocode
, the relevance of each variable is evaluated in turn moving sequentially
through the variables from the oldest to the newest. In the second, to take
account of the fact that variables that are initially relevant may become
irrelevant following refinements to variables later in the sequence, the process
is repeated until a complete pass occurs without any refinements taking place.
This version of the algorithm (summarised in Pseudocode is referred
to as Multi-Pass Backward Refinement (MPBR).
Note that by virtue of the sequencing of operations in each algorithm it
follows that ) R )

Vx(Xisca) < Va(Xsppr) < Vx(Xiippr)- (4.70)

However, no such statement can be made with regard to R-SPBR or R-
MPBR as they may follow different ’hill climbing’ solution paths and hence
it is possible for the solutions to be inferior to the non-recursive implemen-
tations when k£ > 2.

One of the side-effects of employing the backward refinement step is that it
breaks the ordering of selected variables in terms of variance explained. If
recovering this ordering is desirable, an additional modified FSV step can be
performed on Z; with respect to X after the refinement process has been
completed (i.e. between Step 7 and 8 in Algorithm 3). As summarised in
Algorithm 6, this involves recursively selecting the variables in Z; based on
how much of the variance of X that they explain.

4.7.1 Computational Complexity of Backward Refine-
ment

The inclusion of backward refinement has major implications for the com-
plexity of FSCA. The lowest complexity implementation is SPBR, which
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involves a combinatorial search of similar complexity to the basic FSV al-
gorithm (eqt. - the only difference being that Z is now a fixed size
matrix, that is Zg — Z( )( i), where Z(])(XZ) is as defined in eqt. (4.68)).
Since the covariance matrix, and hence the qj(; terms, will have already
been precomputed for the forward selection step, the only concern is the de-
VeIO})ment of an efficient recursive update procedure for the inverse matrix

(27 (x;)TZ7 (x;))~1. This can be achieved by noting that
79 (x)"Z (x;) = ZT Zy + giwe; +ehl,, (4.71)
where
i) = Z;}F(Xz’ —zj), (4.72)
hjoy = g + (% —25) " (xi — z))e;. (4.73)

It then follows, by application of the matrix inversion lemma [137], specifi-
cally the Sherman-Morrison formula [138], that
A (z)eth. A (4)

1+hT(Z)A() ’

(4.74)

(29 ()72 (%)™t = Ay —

where .
_ (Z;Zr)"'gj00€] (Zi Zw) ™"
1+ el (Z[Z1)  gju

This recursive inverse update can be computed in O(8%k* + 4k + 6) flops and
hence has O(8%?) complexity, which compares favourably to the O(4k?) com-
plexity of the forward step inverse (eqt. . The overall additional com-
plexity of executing SPBR is then O(2p*k® +8pk?). In contrast, the recursive
SPBR implementation contributes O(0.5p%k* + 2pk?) additional complexity.
Since repetition of the MPBR loop is dependent on refinements taking place
in the previous pass, the number of repetitions and hence overall algorithm
complexity of the multi-pass implementations cannot be determined a priori.
If we denote the average number of repetitions as A then their complexity
can be expressed as A\ times the complexity of the corresponding SPBR and
recursive SPBR implementations. The optional reordering step has O(2pk?)
complexity. Hence, the overall algorithm complexity of FSVA with Backward
refinement is

Ajiy = (ZyZi) ™" (4.75)

O(p*nk* + (2X\ + %)p2k3) (4.76)

for non-recursive implementations and

A 2
O(p*nk?* + §p2k4 + §p2k3 + 2\pk*) (4.77)
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for recursive implementations, where A = 1 corresponds to SPBR and A > 1

MPBR.

Empirically evaluated time performances for FSCA and its refined versions
are reported in Example 4.7.5

[Z,r.|=SPBR(X,Z;,)

Input: Forward selected variables Z,, data matrix X
1: r. = 0 (refinement count)
2: for j=1tok—1do '
3 i; = argmaz Vx(®(ZY (x:))X)

x;€EX

4: if Z; 7é Xij then

5: re = 1.+ 1 (increment refinement count)
6: Zy = Z,(cj) (x4,) (i.e. replace z; with x;,)
7: end if

8: end for

9:

if r. > 0 then

10: Repeat steps 3-7 for j =k
11: end if

12: return Zyg, r.

Pseudocode 4.7.1: Single-Pass Backward Refinement Algorithm

[Zi]=MPBR(X,Z)

Input: Forward selected variables Z,, data matrix X
1: 7. = 1 (refinement flag)
2: while r, > 0 do
3 |Z, .| =SPBR(X,Zy,)
4: end while
5: return Z;

Pseudocode 4.7.2: Multi-Pass Backward Refinement Algorithm

4.7.1.1 Refinement Step in the literature

The idea of improving greedy optimization algorithms with a refinement step
is not new. A refinement step was used for supervised features selection in
[139], [135] and [140]. In the first case the problem starts with K randomly
selected variables and a refinement step is repeated 1" times. Each time [
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[Z2]=ReOrder(X,Zy)

Input: Forward selected variables Z,, data matrix X
1: Zg =0

2: for j =1to k do

3: i; = argmax VX(<I>((Z;?_1,ZZ~))X)

2i€Z/29_,
Z? = (Zg—lﬂ Zij)
5: end for
6: return Z7

>

Pseudocode 4.7.3: Modified FSV procedure for reordering variables fol-
lowing backward refinement

variables are replaced according to the magnitude of their regression coeffi-
cient. The algorithm is based on the idea that after T iterations the set of
variables is stable. In the second case variables are recursively selected with
a forward selection (FS) algorithm. Each time that a variable is added to
the model a backward elimination (BE) step is performed to eliminate pos-
sible redundant variables. It is interesting to observe that both the FS and
the BE steps are suboptimal and can both benefit from the application of a
refinement step of the form discussed for FSCA. The third case uses similar
ideas to the second one but it is based on an optimization procedure similar
to the one proposed in [133].

4.7.2 Simulated Datasets

In this section various simulated datasets are used to highlight the differences
between FSCA and FSCA with backward refinement. Comparisons are also
made with PCA, Sparse PCA and OPFS where appropriate.

Example 4.7.1 (Four Distinct Variables). As a first example we define
four base variables wg, Xg,yo0,20 ~ N(0, 1), 20 noise variables €1, ..., €y ~
N(0,0.1) and two larger noise variables €a1, €90 ~ N(0,0.4). These variables
are used to generate a subset of variables similar to wo: {w; = wo +¢€},_;
a subset of variables similar to xq: {x; = xo + €i+5}i:1,...,5v a subset of vari-
ables similar to yo: {y; = yo + eiﬂo}i:lmg), a subset of variables similar to
zo: {2zi =20+ €115} i—1,..5 and two additional redundant variables defined
as hy = wg + X9 + €27 and hy = yo + zg + €22. The complete dataset
is then defined as X = [wq,...,Ws5,X0,...,X5,Y0,---,¥5, Z0; - - - » Z5, 1, ho],
with X € R™*26_ Hence, by design the dataset is highly redundant, with
only 4 of the 26 variables independent. As such, the information it contains
can be optimally summarized by the 4 base variables (wg, Xq, Yo, Zo). Table
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[4.3] shows the variance explained by PCA, OPFS, FSCA and the 4 backward
refinement FSCA enhancements as a function of the number of selected vari-
ables k for an instance of the dataset with m = 1000, while Table shows
the sets of variables selected by FSCA, SPBR and OPFS for each value of
k. Results for MPBR, R-SPBR and R-MPBR are omitted from Table 4.4
as they are identical to SPBR. When FSCA is applied to this dataset in
general the first FSV will be h; and the second will be hy, or viva versa, as
dictated by the noise realization. Subsequent selections are then from among
the base variables until at £ = 6 all 4 based variables are selected. Hence,
the initial selections become redundant as additional variables are added. As
expected the backward refinement algorithms explain greater variance than
FSCA when &k = 3,4 and 5. Note, that at & = 4 the refinement of the
FSCA solution by SPBR identifies the optimum set of variables (i.e. the 4
base variables), hence there is no scope for further improvement by the more
advanced refinement algorithms. For comparison purposes OPFS results are
also presented in the tables. As can be seen, the variable selections for k = 1
and 2 are the same as FSCA, but thereafter OPFS takes a different path, and
ends with a suboptimal solution at k& = 6 (explained variance of 96% versus
99%). The performance of OPFS varies considerably for different instances
of the dataset. This is illustrated in Figure [4.3] which shows the variation
in performance of each method over 200 different dataset realizations with
m = 100 when selecting k = 4 and 6 components. FSCA also shows consider-
able variation in performance but is in general superior to OPFS. A pairwise
comparison of the variance explained by OPFS and FSCA over 1000 repe-
titions of the dataset shows that OPFS only outperforms FSCA 2% of the
time. In contrast, SPBR and the other refinement algorithms are consistently
superior to FSCA and OPFS and show little variation in performance over
the different dataset realizations.

k. PCA OPFS FSCA SPBR MPBR R-SPBR R-MPBR
1 3041 2588 2588 25.88 25.88 25.88 25.88
2 56.68 54.34 54.34 54.34 04.34 54.34 04.34
3 8047 75.72 75.82 78.11 78.11 78.11 78.11
4 98.60 93.62 93.80 98.22 98.22 98.22 98.22
5 99.03 96.36 96.56 98.78 98.78 98.78 98.78
6 9943 96.40 99.31 99.31 99.31 99.31 99.31

Table 4.3: Example The percentage of explained variance achieved
with PCA, OPFS, FSCA, and its backward refinement variants, for different
numbers of selected components
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FSCA

SPBR

OPFS

{hi}
{hy, hy}
{h1, h,, Xo}

DU W N~

{hlv h27 X0, ZO}
{h1> h2) X0, 2, WO}
{h17h27X07207W07YO} {XOaYO7W07Z07h17h2} {h17h27W07ZOaYO7W2}

{hi}

{hi, ho}

{Wo, h,, Xo}

{WO, Yo, Xo, Zo}
{YO, hy, %, o, Wo}

{hi}

{hi, hy}

{hh hy, Wo}

{hlv h27 Wo, ZO}
{hla h27 Wo, Zo, y0}

Table 4.4: Example Variables selected at each step by FSCA, SPBR

and OPFS
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Figure 4.3: Example Boxplots showing variation in performance of
each method for kK = 4 and 6 components, over 200 Monte Carlo repetitions
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Example 4.7.2 ( Block Redundancy). In this example the dataset consists
of a block of independent variables X° augmented by a second block of noise
perturbed redundant variables X! generated as a linear combination of the
variables in X°. In particular we define:

o X0 e R™™ : X?, ~ N(0,1)

o pc R~ 1 @~ N(0,1)
e c c R~ ¢ . ~ N(0,0.1)
o X! =X ¢p+e¢

o X =[XX]]

We generated 1000 instances of this dataset for different values of u and p
for n = 200 and in each case computed a k = u components FSCA, SPBR,
R-SPBR, MPBR and R-MPBR. The variance explained by the k£ components
selected by each algorithm averaged over the 1000 repetitions is reported in
Table[d.5] The table also reports S., the percentage of true variables selected
by each method, defined as

Se = 1{z1,. .. zZ,} N {x1,...,x,}|/u x 100. (4.78)

As expected, the introduction of a refinement step consistently increases
the explained variance relative to FSCA with SPBR reducing unexplained
variance by 50%-64% and MPBR reducing it by 58%-73%. There is no
appreciable difference between the performance of the recursive and non-
recursive implementations of each algorithm. A similar pattern is observed
with respect to the number of true variables selected by each method, FSCA:
12%-22%, SPBR/R-SPBR: 35%-49% and MPBR/R-MPBR: 66%-82%.
Noting that PCA provides an upper bound on achievable explained variance
for a given number of components, Figure[d.4shows the variance explained by
FSCA and the various backward refinement algorithms with £ =1,2,...,12
selected components for the case where v = 10, p = 30 and n = 1000,
expressed as a percentage of the variance explained by the equivalent number
of PCs obtained using PCA. As can be seen, SPBR consistently provides
improved performance over FSCA for k£ > 1. For values of k in the vicinity of
the true dimensionality of the data, MPBR is marginally superior to SPBR
(57.5% versus 49.2% reduction in unexplained variance at k = 10, 11.8%
versus 9.7% at k = 8 and 27.0% versus 23.9% at k = 12). In general the
improvement due to backward refinement decreases rapidly as k increases
beyond the true dimensionality of the data.
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Percentage of variance explained (Vx)
U p FSCA SPBR MPBR R-SPBR R-MPBR

10 30  99.75 99.87 99.89 99.88 99.89
15 50  99.77 99.89 99.92 99.90 99.92
20 75 99.78 99.90 99.94 99.90 99.94
25 100  99.78 99.91 99.94 99.91 99.94

Percentage of true variables selected (.S.)

U p FSCA SPBR MPBR R-SPBR R-MPBR

10 30 22.38 48.80 70.11 47.73 66.30
15 50 16.03 43.73 74.20 41.98 72.06
20 75 14.70 41.60 81.66 45.11 79.82
25 100  12.85 34.74 71.46 38.21 71.95

Table 4.5: Example |4.7.2; Percentage variance explained (Vx) and percent-
age of true variables selected (S.) with FSCA and its backward refinement
variants (averaged over 1000 repetitions)

100
o8|
96|
§ 94|
~
~
>* 92}
X
S oo
—
FSCA
88| e e SPBR
=@ MPBR
86 — R-SPBR |
— R-MPBR
84 ‘ ‘ ‘ ‘ ‘ ‘ ‘ ‘ n n
1 2 3 4 5 6 7 8 9 10 11 12

Number of Components

Figure 4.4: Example [£.7.2} The percentage of variance explained as a func-
tion of the number of selected components for u = 10, p = 30
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.

PCy PCo SPC1 SPCs FSCq FSCo SPBR1 SPBR2

1 -0.13 0.48 -80.00
2 -0.13 0.48 -80.00
3  -0.13 0.48 -80.00 1 1
4 -0.13 0.48 -80.00
5 0.39 0.16 79.61 1 1
6 0.39 0.16  79.61
7 0.39 0.16 79.61
8 0.39 0.16  79.61
9 0.41 0.01  77.43 3.09 1 1
10 0.41 0.01  77.43 3.09
Vx 60.80 99.99 59.43 99.99  60.75  99.99 58.22 99.99

Table 4.6: Example [£.7.3} The 1st and 2nd loading generated by PCA and
SPCA (X = 20) and the 1st and 2nd FSC obtained with FSCA and SPBR

Example 4.7.3 (Sparse PCA Dataset). This example is a simulated dataset
used in [108| to assess the performance of the sparse PCA algorithm intro-
duced therein. The dataset is generated by 3 hidden variables vi, vy, v3

o vi ~ N(0,290) vy~ N(0,300).
o vy = —0.3v; + 0.952v, + € where € ~ N(0,1).
and 10 observed variables
e x; = vy +¢ where e, ~ N(0,1) fori=1,...,4
e X; = vy + ¢ where €2 ~ N(0,1) fori=5,...,8
e x; =v3+ ¢ where € ~ N(0,1) for i =9,10

The final data matrix X € R"*1% is then defined as X = [xy, ..., Xjo|, where
n = 1000 is the number of samples. The results reported in Table [4.6 which
are for a single realization of the dataset, show that both FSCA and SPBR
with 2 components explain more than 99% of the total variance. In general,
for other realizations FSCA will always select either xg or x;1y as one of the
two variables. SPBR and MPBR will instead select one variable from the
group generated by v, and one of from the group generated by vo. PCA and
SPCA assign similar values to similar variables due to the grouping effect.
However, as a result they do not omit redundant variables. Thus, while
SPCA yields sparse solutions it is not the optimal choice if the objective is
to select a compact set of variables to represent the data.
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4.7.3 Application Examples

In this section some applications of FSCA and its improved versions are
presented.

Example 4.7.4 (Pitprops Dataset). The pitprops dataset, originally intro-
duced by [141] as a PCA case study, is a widely used benchmark problem for
evaluating the performance of PCA and SPCA like methods. The dataset
consists of 180 samples of 13 variables describing properties of timber and
was used by the British Forestry Commission in a study to establish if home-
grown timber had sufficient strength to be used to provide roof support struts
"Pitprops’ for mines. Using the correlation matrix for the dataset provided in
[141] we generated 180 samples of a multivariate normal distribution to syn-
thesise an approximation of the original dataset. For the synthesised dataset
six SPCA components were computed for a range of different values of the
penalty A. For each value of A\ the number of uniquely selected variables was
identified and then the corresponding number of FSVs computed with FSCA,
SPBR, R-SPBR, MPBR and R-MPBR. The number of variables selected and
the percentage of explained variance are reported in Table .7 In order to
provide an upper bound for the percentage of explained variance that can be
achieved we have also reported the corresponding values obtained with PCA.
From the results it can be observed that SPCA is the method that explains
the least variance for a given number of selected variables. In SPCA the
number of selected variables is indirectly chosen trough a penalty parameter
A. In some situations it can be difficult to choose A to select a specific num-
ber of variables. In our case, for example, it has not been possible to select
1,2,8 or 13 variables using SPCA. In particular, observe that for 7 and 11
selected variables SPCA returns 2 different results. This is due to the fact
that two different subsets of 7/11 variables were returned for two different
values of \. Table lists the variables selected by a 6 components FSCA,
SPBR, MPBR, R-SPBR and R-MPBR together with the set of 6 variables
that maximize the percentage of explained variance (BEST). This set has
been determined by evaluating all possible subsets of 6 variables. Observe
that MPBR, R-SPBR and R-MPBR select the same variables as BEST while
SPBR replaces the variable 'moist’ with ’testsg’. In contrast, FSCA selects
only 3 variables in common with BEST.

Example 4.7.5 (Plasma Etch OES Analysis). In semiconductor manufac-
turing Optimal Emission Spectroscopy (OES) is increasingly used to monitor
plasma etch processes. Due to the high dimensionality and correlated nature
of OES data dimensionality reduction techniques such as PCA are usually
employed as a pre-processing step (see for example [90], [112], [12] and [142]).
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NCP PCA SPCA FSCA SPBR MPBR R-SPBR R-MPBR
3 6741 36.16 55.98 60.04 60.04 60.04 60.04
4 7552 60.86 67.13 67.13 67.13 68.33 68.33
5 8213 6540 74.07 75.76 75.76 75.76 75.76
6 83.00 71.65 80.18 82.38 82.38 82.38 82.38
7 9233 7259 85.73 86.67 87.89 87.89 87.89
7 9233 7743 85.73 86.67 87.89 87.89 87.89
9 97.63 8531 94.52 95.87 95.87 95.87 95.87

11 99.38 93.05 98.79 98.79 98.79 98.79 98.79
11 99.38  95.11 98.79 98.79 98.79 98.79 98.79
12 .99.72  96.89 99.41 99.41 99.41 99.41 99.41
13 100.0  100.0  100.0 100.0 100.0 100.0 100.0

Table 4.7: Example [£.7.4} Percentage of explained variance as a function of
the number of variables selected for each algorithm

FSCA SPBR MPBR R-SPBR R-MPBR BEST
whorls  ringbut ringbut ringbut ringbut ringbut
moist moist moist moist moist moist
length  length length length length length
ringtop clear clear clear clear clear
clear bowmax bowmax bowmax bowmax bowmax
ovensg  ovensg ovensg ovensg ovensg ovensg
Vx
80.18 82.38 82.38 82.38 82.38 82.38

Table 4.8: Example[£.7.4} The 6 variables selected by each algorithm and the
optimum set of 6 variables (BEST) in terms of maximizing the percentage of
explained variance in the dataset
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Here we employ a sample OES dataset collected during the processing of a
single wafer as a case study for comparing the orthogonal decompositions
generated by FSCA and PCA. The OES spectrum in question, plotted in
Fig. [4.5] consists of optical emission intensity time series data for each of
the 2000 active spectrometer channels (each channel corresponds to a differ-
ent optical wavelength in the range 192-875 nm). FEach time series has 55
samples, hence the resulting dataset is a matrix X € R5*20%0 of intensity
values.

4000

2000

Intensity
o

-2000

-4000
0 600
400

| 107
time (s) 200 Wavelengh (nm)

Figure 4.5: Plasma Etch Process OES Spectrum

The highly correlated nature of the data is evident from Table which
shows that the first 4 PCs and the first 4 variables selected by FSCA and its
backward refinement variants explain more than 99% of the variation in data.
In Fig. [4.6] the PCA loadings and scores are compared with the FSVs and
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k. PCA FSVA SPBR MPBR R-SPBR R-MPBR
1 77.04 76.63 76.63 76.63 76.63 76.63
2 96.53 96.00 96.37 96.37 96.37 96.37
3 98.20 98.00 98.14 98.14 98.14 98.14
4 9947 99.27 99.42 99.42 99.42 99.42
9 99.69 99.50 99.65 99.65 99.65 99.65
6 99.81 99.66 99.75 99.79 99.79 99.79
7 99.88 99.79 99.85 99.86 99.87 99.86
8 99.93 99.89 99.91 99.92 99.92 99.92
9 99.95 99.93 99.94 99.95 99.95 99.95

Table 4.9: Example 4.7.5; Accumulative variance explained by PCA, FSCA
and the four backward refinement variants of FSCA for different values of &

FSCs obtained with FSCA. This reveals that the etch process can be analysed
using either PCA scores or FSCA components. In particular, observe that
the FSCA components and PCA scores tend to have similar trends. As noted
previously, the PCA scores are obtained as a linear combination of all 2000
original variables (as defined by the PCA loadings), while the four FSCs can
be expressed as a linear combination of just 4 original variables (the FSVs).
The benefit of being able to trace process variably back to a small number of
OES wavelengths is that individual wavelengths map to specific chemical
species present in the plasma, enabling process engineers to gain insight
into the underlying drivers of process variability. The computation time in
seconds for each algorithm in reported in Table for different numbers of
computed components/variables selected. As expected, computational time
grows rapidly with increasing k for the more complex refinement algorithms.
For example, while SPBR is only twice as computationally intensive as FSVA
at kK =9 R-MPBR is more than 20 times more computationally intensive.

Example 4.7.6 (Wafer Site Optimisation). As a final application example,
we evaluate the performance of SPBR, MPBR, R-SPBR and R-MPBR as al-
ternatives to FSCA for the semiconductor wafer metrology site optimisation
methodology developed in [89]. The pertinent details are as follows. The
objective of the methodology is to use historical metrology data for a set of
candidate measurement sites to determine the minimum set of sites that need
to be measured in order to accurately reconstruct wafer profiles. The case
study dataset consists of production metrology data for a deposition process
used in the manufacture of read-write heads, a key component of hard disk
drives. The dataset, which was collected over several weeks from a single
production tool for the process, contains measurements of 50 candidate sites
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k. PCA FSVA SPBR MPBR R-SPBR R-MPBR
1 0.03 0.05 0.10 0.10 0.10 0.10
2 0.04 0.10 0.20 0.31 0.25 0.36
3 0.05 0.16 0.32 0.50 0.47 0.75
4 0.07 0.22 0.46 0.96 0.80 1.32
o 0.09 0.28 0.60 1.25 1.16 2.32
6 0.10 0.36 0.76 2.40 1.67 3.25
7 013 0.42 0.93 3.54 2.22 5.85
8 0.14 0.49 1.09 291 2.90 8.35
9 0.15 0.56 1.29 3.47 3.63 11.86

Table 4.10: Example 4.7.5 Computation time for PCA, FSVA and the four
backward refinement variants of FSCA for different values of &

for 316 wafers. Hence, X € R316%%0 and the site selection problem equates
to selecting the subset of columns of X that best describe X. For a detailed
description of the problem statement, solution methodology and case study
dataset the reader is referred to [89).

Here, FSCA and the newly proposed backward refinement variants are em-
ployed to determine the optimum subset of wafer sites. The percentage of
variance explained by each method for different numbers of selected sites
(k) is reported in Table [£.11] Defining 99% variance explained as the min-
imum reconstruction accuracy threshold, it follows that 7 sites are needed
when using FSC, while 6 sites are sufficient when using SPBR, MPBR, R-
SPBR and R-MPBR. The PCA results, which are also recorded in Table
[4.11] show that the lower bound on the number of sites required is 5. Again
in this example we observe that, as expected, SPBR out performs FSCA and
MPRB outperforms SBBR (to a lesser extent), but that unlike the previous
examples, R-SPBR and R-MPBR are sometimes marginally inferior to their
non-recursive counterparts (i.e. for k > 5).

It is also interesting to observe how representative the FSCA selected sites
are of the full wafer surface. This can be visualised by clustering the un-
measured sites in k clusters C,,, ..., C,, according to their similarity to the
k FSCA selected sites. Here, the similarly between an FSCA site, z;, and
an unmeasured site, x;, is defined in terms of the impact on reconstruction
accuracy of replacing z; with x;. Specifically, denoting the k selected vari-

ables as Zy = {21, ..., 2}, and noting the definition of Z,(j) (x;) given in eqt.
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PCA FSCA SPBR MPBR R-SPBR R-MPBR

1 42.69 38.84 38.84 38.84 38.84 38.84
2 68.69  64.44 67.01 67.01 67.01 67.01
3 85.72  82.59 84.57 85.08 84.79 85.08
4 98.48  96.37 97.40 97.58 97.58 97.58
5 99.12  97.59 98.63 98.74 98.72 98.73
6 99.47 98.76  99.19 99.20 99.17 99.16
7 99.67 99.22 99.45 99.46 99.42 99.39
8 99.75  99.47 99.60 99.60 99.59 99.58
9 99.81 99.64 99.71 99.71 99.71 99.69
10 99.86  99.72 99.77 99.80 99.78 99.79

Table 4.11: Example [4.7.6f The percentage of variance explained by the
various methods for different values of k£, the number of selected variables

(4.68)), sites are assigned to clusters according to the rule

x; € C,, if @ = argmax VX(Q(Z,(CP) (x;))X) (4.79)

p=1...k

Fig. [4.7 shows the clusters obtained with each of the FSCA algorithms for
k =4 and k = 8. The clusters are represented by markers of different colour
and/or shape. Of particular note is the variation in spatial consistency of
clusters. It is apparent that the refinement steps yield much better spatial
consistency of clusters than FSCA, especially when £ = 8. Contrast, for
example, the FSCA and R-MPBR plots. With FSCA a number of clusters
have sites which are distributed in a disjoint fashion across the whole wafer
surface, while with R-MPBR the clusters are localised to particular regions of
the wafer surface. Note, in particular, that in the FSCA plot the "black star’
site is clustered with only one other site which is in a spatially unrelated area
of the wafer. These anomalies are a consequence of the sites initially selected
by FSCA becoming redundant as additional sites are selected, as discussed in
Section This issue, which detracts from the interpretability of clusters,
is addressed through the introduction of the backward refinement step. As
expected, the most consistent clusters are obtained when using MPBR and
R-MPBR.

Example 4.7.7 (ER Prediction). In this example FSCA and its refined
version are used as preprocessing step to select regressors for a regression
model to predict a target output. The dataset is a reduced version of the
J2M data consisting of an input matrix X € R?194*2% and an output vector
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Figure 4.7: Example[4.7.6; The FSCA clusters obtained with FSCA, SPBR,
MPBR, R-SPBR and R-MPBR for kK = 4 and k£ = 8. In each case the FSCA
selected sites are indicated by circles and the associated clusters by markers
of different colour and/or shape. The percentage variance explained by the
different algorithms is reported under each plot.
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y € R2. The data is randomly split into a training dataset and in a
test set dataset corresponding respectively to 70% and 30% of the data.
The data is scaled in order to have zero mean and unit variance on the
training data. Then K components are selected using the training dataset
with FSCA and its refined versions. These components are then used to
build a linear regression model also estimated using the training data. The
prediction performance of the models are then evaluated on the test dataset.
The process is repeated 20 times. The mean and the standard deviation of
the prediction error and the mean of the percentage of explained variance
on the training data is reported in Table [4.12] It is easy to observe that all
the refined methods have a lower prediction error than FSCA when K =5
components are used. FSCA and SPBR have the same performances when
K = 10 while the more complex refinement methods have a lower prediction
error. All the methods have roughly the same performances when K = 15.
This seems to be compatible with the fact that all the methods express
roughly the same amount of variance.

‘FSCA SPBR R-SPBR MPBR R-MPBR

K ‘ Mean

5 0.341 0.315 0.315 0.315 0.315
10 | 0.289 0.291 0.282 0.291 0.277
15 | 0.260 0.265 0.269 0.265 0.271
K | Std

5 0.025 0.022 0.022 0.022 0.021
10 | 0.023 0.029 0.030 0.031 0.028
15| 0.017 0.019 0.018 0.018 0.018
K ‘ Explained Variance

5 96.16 96.74 96.74 96.74 96.74
10 | 98.80 99.04 99.06 99.07 99.07
15 | 99.57 99.68 99.70 99.71 99.70

Table 4.12: Example The mean and the standard deviation of the
prediction error and the mean of the percentage of explained variance on
the train set is reported. These values were estimated with 20 bootstrap
iterations for the problem described in Example [4.7.7]
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4.7.4 Discussion

This section has sought to provide a comprehensive presentation of Forward
Selection Component Analysis, as the unsupervised counterpart of Forward
Selection Regression and an alternative to PCA for dimensionality reduction
and variable selection in large highly correlated datasets. A number of alter-
native FSCA algorithm implementations have been proposed, namely FSCA
and FSVA, with and without pre-computation of the covariance matrix, and
their computational complexity analysed. In particular, this analysis reveals
that:

e All algorithms scale linearly with the number of measurements m and
quadratically with the number of variables v.

e FSCA implementations grow linearly with the number of selected vari-
ables k, while FSVA implementations grow cubically with k.

e The optimum choice of implementation is dependent on the ratio k/+/n.

In general, it is computationally advantageous to pre-compute and store the
covariance matrix when using either FSCA or FSVA, with FSVA computa-
tionally the most efficient implementation provided k//n < v/1.5. FSCA
without pre-computation of the covariance matrix is the superior implemen-

tation when k/y/n > /3.

A number of novel backward refinement variants of FSCA have also been
proposed and efficient algorithm implementations developed. Results from
simulated and application case studies confirm that the refinements yield im-
provements in performance relative to FSCA in terms of variance explained
for a given number of components/variables selected, better variable selec-
tion and, in the case of the wafer site optimisation problem, more coherent
FSCA clusters. Overall the key observations are that MPBR is superior to
SPBR, which is, in turn, superior to FSCA, and that there is little, if any,
benefit to be gained from employing the recursive formulations (R-SPBR and
R-MPBR) over their non-recursive counterparts. Indeed, in some instances
the recursive implementations can yield poorer results.

In terms of computational complexity the ordering is FSCA < SPBR <
MPBR < R-SPBR < R-MPBR, with SPBR having the same asymptotic
complexity as FSCA. It is also noteworthy that the largest relative improve-
ment in performance in terms of variance explained occurs with the change
from FSCA to SPBR. As such, for most practical applications SPBR is rec-
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ommended as it provides a good balance between complexity and quality of
results.

4.8 Conclusion

In this chapter the unsupervised variable selection problem is introduced. It
is shown that feature selection and dimensionality reduction, share the same
structure. Indeed variable selection is equivalent to dimensionality reduction
with the restriction that the lower dimensional approximation of the data
must be obtained using only a subset of the original variables. In the chap-
ter several variable selection algorithms are presented and FSCA is described
in detail and used as an example methodology. It is in particular shown that
the performance of the FSCA algorithm improves if a refinement step is in-
troduced. On the application side it is shown that unsupervised features
selection algorithms become particularly helpful when used on high dimen-
sional datasets composed of highly correlated variables, for example OES
data. Indeed these algorithms can be used to obtained a more compact and
easy to understand representation of the data that is a good approximation
of the original one.



Chapter 5

Nonlinear Unsupervised Feature
Selection

5.1 Introduction

In chapters [3|and [4] the problem of supervised and unsupervised feature selec-
tion is introduced. In these chapters the relationship between the inputs and
outputs or between the data and a subset of its variables is considered to be
linear as respectively defined in equations [3.1] and [£.10] A natural extension
of linear variable selection is the nonlinear variable selection (NVS) problem.
Supervised NVS is equivalent to the model identification problem. In this
sense several algorithms have already been proposed. Some examples are
[143] where variables that are not related to the output are detected through
the use of random forest or [144] where the number of nodes of a neural
network is reduced with a pruning strategy. On the unsupervised side many
nonlinear dimensionality reduction approaches exist. For example, several
non-linear extensions of PCA have been proposed in the literature, such as
[145] and [146]. In the former, the dimensionality of the data is reduced by
using a neural network autoencoder, while in the latter a nonlinear kernel is
employed to translate nonlinear PCA in the feature space into linear PCA in
a high dimensional kernel space. Despite this, unsupervised nonlinear vari-
able selection (UNVS) is a relatively new problem. Some recent contributions
are [147), where variables are selected based on a multivariate version of the
CART algorithm and [148] where variables are selected according to an evolu-
tionary search. Both these algorithms are designed as a pre-processing step in
order to optimize an unsupervised procedure such as clustering. In this thesis,
instead, features are selected with the aim of obtaining a good reconstruc-
tion of the original data. Hence, the focus of this chapter is on investigating
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UNVS methodologies that can lead to more compact data representations
than conventional FSCA or PCA which assume linear relationships between
variables. While several nonlinear data-driven algorithms exist, in this chap-
ter particular focus is on linear-in-the-parameters models as they can be used
for multi-output regression.

In the first sections of the chapter an introduction to neural networks and
extreme learning machine is provided. A methodology for training ELMs is
described which enables ELM models to be estimated with minimal user in-
tervention. In particular, a new strategy for determining the distribution of
the random hidden layer weights in ELMs is proposed that, for the industrial
case study considered, enables improved and more consistent prediction per-
formance when compared with lasso and ridge estimators. As such, ELMs
offer a promising alternative to conventional linear regression for ER pre-
diction and similar VM applications. Then FSCA and FSV algorithms are
extended to nonlinear scenarios with ELMs used to perform the nonlinear
mappings. It is shown that if nonlinearities are taken into account the two
methods are not equivalent anymore. A data decomposition and reconstruc-
tion paradigm is introduced as a nonlinear extension of the one proposed in
Section of Chapter [l Based on this several nonlinear variables selection
algorithms are proposed and compared. The proposed methods outperform
the linear FSCA and FSV and are often better than PCA.

5.2 Neural Network

Artificial Neural Networks (ANN) are a family of models inspired by biolog-
ical neural networks. They are generally presented as systems of intercon-
nected "neurons" (node) which exchange messages between each other. The
connections have numeric weights that can be tuned based on experience,
making neural nets adaptive to inputs and capable of learning. Often an
ANN can be represented as a function

y = f(X) (5.1)

that maps the input variables X € R? into the output y € R°. In an ANN the
p nodes containing the input variables are called input nodes and the nodes
containing the o outputs are called the output nodes. All the other nodes
are called hidden nodes. In Figure [5.1] a graphical representation of a neural
network is shown. Usually the nodes in an ANN are grouped in layers, as
illustrated in Figure [5.2] The layer containing the input nodes is called the
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input layer, the ones containing the output nodes is the output layer and the
ones in the middle are the hidden layers.
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Figure 5.1: A graphical representation showing the typical structural features
and information flow in neural networks.

5.2.1 Feedforward Neural Network

The feedforward neural network (FNN, [149]) was the first and simplest type
of ANN devised. In this network, the information moves in only one direction,
forward, from the input nodes, through the hidden nodes (if any) to the
output nodes. There are no cycles or loops in the network. In a neural
network the value of a neuron w is defined by the input that it receives from
the connected neurons vy, ..., v,. The value of u is then defined as:

k
u=o (Z viwi> (5.2)

i=1
where wj; is the weight of the link between node u and node v; and o is called
the activation function. The structure of an ANN is then defined by the
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number of nodes, their connections and the activation function of each node.
The weights W = {w; }i—1,.. 5., where n,. is the number of connections in the
network, are the free parameters of the neural network and they are tuned
in order to obtain a good approximation of the data.

Indeed, given a training dataset

(X,y) € R x R™*° (5.3)

the weights are estimated as:

W = afgvgliﬂz I¥: — fw (%) II5 (5.4)
i=1

In general training a neural network is a very complex task. This is due to
the fact that the cost function Y » | || ¥: — fw(X;) ||3 is not convex as a
function of W. Indeed neural networks have often numerous local minima
and saddle points.

5.2.1.1 Single Hidden Layer Feedforward Network

One of the the simplest and most popular versions of FNN is the Single
Hidden Layer Feedforward Network (SLFN). The SLFN is composed of an
input layer, a single hidden layer and an output layer. In SLFNs each node
is connected with all the nodes in the previous layer. A SLFN with p inputs,
[ hidden nodes and k outputs, is mathematically represented by a function:

f(X) = g2(bz + W3 gi(b; + W{X)) (5.5)

where W, € RP*! is the matrix of the weights connecting the inputs and the
hidden layers, g is the activation function of the neurons in the hidden layer,
W, € R>F is the matrix of the weights between the hidden and output layers
and g, is the activation function of the output layer. In general the weight
matrix between layer r and r + 1 is defined as W, = {wj ;} where w;; is the
weight between the i-th neuron in layer r» and j-th node in the layer r + 1.
An example of an SLFN with p =4, [ =5 and k = 1 is illustrated in Figure
The performance of neural networks are strictly related to their weights
W defined as the solution of the optimization problem reported in equation
This optimization problem is very challenging for neural networks with
several hidden layers with the result that most applications have focused on
SLFN. Recently new methods for training multi-layer ANNs have been pro-
posed [145], |[150] making research on this topic more popular again. In [145|
the focus was on ANNs with several hidden layers and resulted in the birth of
a new field called deep learning. In deep learning a huge amount of data and
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high computing power is often required. In semiconductor manufacturing
the data is usually scarce and our computational resources are very limited.
For these reasons only a few examples of deep learning will be presented. In
[150] the Extreme Learning Machine (ELM) is proposed as a new method for
training single hidden layer neural networks which makes training easy and
efficient. ELMs are described in detail in Section and some applications
to semiconductor manufacturing are presented.

Input Hidden Layer Output
Layer Layer

Figure 5.2: An example of SLFN with four input variables and one output.

5.2.1.2 Features Selection with Neural Network

Neural networks are much more complex structures than linear models. In
linear models variable selection is based around a few simple ideas as de-
scribed in chapters [3] and [d] Several algorithms for variables selection with
neural network are presented in the literature. The majority of these algo-
rithms are designed for supervised learning i.e. given an input matrix X and
an output y the aim is to find the variables in X that can best estimate y.
Some examples are: [151] where both the structure of the network and its
weights are optimized with a genetic algorithm. This automatically leads to
a variable selection system as there is a strict connection between the struc-
ture of the neural network and the input variables considered; [152| where the
variables are ranked according to the sensitivity of the outputs for each input;
[153] where features are selected penalizing the weights between the input
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layer and the first hidden layer in a lasso like fashion; |154] where features
are recursively added according to the minimization error on a validation set
and each time the network is only partially trained; and [155] where the ant
algorithm is used to select the optimal set of variables.

Neural networks can easily handle multi-output regression problems. This
is obtained using an output layer composed of a different neuron for each
target instead of a single output node. Some examples of multi-output neural
networks are reported in [156] and [157]. It follows that all these methods
can be used for unsupervised feature selection if the data X is used both
as input data and target output data. In general training a neural network
is a difficult task. The training problem becomes particularly difficult if, in
addition to the weights, the set of input variables also needs to be optimized.
In semiconductor manufacturing it is important to have systems that can
run with minimal user intervention. With this in mind the focus here is on
algorithms where variables are iteratively added or removed to the model
as in the linear models described in chapter [l In addition, the problem of
training neural networks is simplified through the use of Extreme Learning
Machine neural networks (ELM, [158]) described in the next section.

5.2.2 Extreme Learning Machines

In a SLFN weighted connections between the layers propagate information
through the network, and through appropriate training of these weights
the neural networks can learn desired input-output mappings. Various ap-
proaches have been proposed to train feedforward neural networks, most of
which take advantage of the natural formulation of training as an optimi-
sation problem, for example the classical backpropagation [159], Levenberg-
Marquardt [160] and hybrid BFGS training algorithms [161]. However, in
general even with the most advanced algorithms, training is computation-
ally time-consuming and not guaranteed to converge to suitable values, due
primarily to the challenges posed by the nonlinear hidden layer weights. Al-
ternatively in [162], a method that was recently renamed Extreme Learning
Machine (ELM, [150]), has been proposed as a new algorithm to train sin-
gle hidden layer feed forward neural networks (SLFN), where only the linear
output layer weights are optimised. In contrast to the common belief that
all network weights need to be optimized, with ELMs it has been shown that
the hidden layer weights can be chosen randomly, leaving only the output
layer weights to be optimized.

Algorithm 5.2.1. Consider an input matrix X € R™*? and an output vector
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y € R"*° defined by n distinct samples (X;,¥;) € RP xR°, each one composed
of p input and o target variables. A SLFN with L hidden nodes and a linear
output layer activation function is mathematically represented as:

L

where g(x) is the activation function and w; is the j* column of the weights
matrix W = {w;;},_, .y € RP" and w; is the weight of the con-
nection between node i of the input layer and node j of the hidden layer in
the SLFN. The previous equation can be expressed in matrix form with an
abuse of notation as:

fo(X) =Hp (5.7)
where H is defined as:

H=H(W,b,X)c R™": H;; = g(w, - X; + b)) (5.8)

and b is defined as b = {b;},_; ;. In [150] the authors demonstrate that
universal approximation capabilities can be achieved by randomly choosing
the weights of the hidden layer W leaving only the output layer weights to
be optimised. Hence, training reduces to estimating the linear model:

B = arggnin |y —HB |2 (5.9)

This has a closed form solution given by the Moore-Penrose generalized in-
verse [163]: A
B=MHH'Hy (5.10)

and hence A
y=Hp (5.11)

From the algorithm it is easy to observe that an ELM is simple to implement
and computationally efficient. In addition in [164], [165] and [166] provide
proof of its modelling capabilities. While in this thesis only the original
version of the ELM is considered, some generalizations are reported in [167]
where locally connected networks are considered and [168] and [169] where
pruning is incorporated to improve network performance.

Example 5.2.1. In order to show the properties of the ELM algorithm the
method is applied to a simple example. Let x be a one dimensional vector,
x = (x1,...T1000), of equally spaced points, where x1 = —10, x990 = 10 and
xr = 1 + 0.02k, and define

W= S G 20, o= 1if =0 (5.12)

(2
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and
yi = y; + € where e ~ N(0,0.5), vy = (y1,- -, 1000 (5.13)

The number of nodes in the hidden layer is set to L = 20 and random values
are assigned to the matrices W and b.

The non-linear activation function ¢ is defined as

B 1
Cl4e®

g(x) (5.15)
From the results reported in Figure [5.3|it is clear that the estimated ELM
model is able to capture the non-linear relationship between the input and
output and provides a good reconstruction of y.

YR s o Samples

Figure 5.3: The input data (samples) and the estimated output function y
obtained with an ELM model with 20 neurons

5.2.2.1 Parameter tuning

In practical applications in manufacturing and other time-critical environ-
ments there is a need for data analysis techniques that require minimum
user intervention. Considering this requirement, Lasso and Ridge regression
are very good choices because they only require the tuning of a single penalty
value and this can easily be achieved through an automated Cross-Validation
procedure . Neural networks generally required tuning of multiple pa-
rameters. Indeed, even with ELMs various parameters such as the number
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of hidden nodes in the hidden layer (L), the activation function g, and the
random distribution of the weights matrix W need to be selected. In this
section we will show that it is possible to set these parameters in order to
obtain a totally automated estimator.

5.2.2.2 Number of Hidden Nodes and Network Structure

In general the performances of a neural network and the family of functions
that it is able to approximate are strongly dependent on the structure of
the network. The structure of the SLFN, defined in equation is only
dependent on the number of nodes in the hidden layer L and on the activation
function g.

Activation Function Various activation functions have been proposed in
the literature. Among these, the most popular are radial basis functions
(RBF) and the sigmoid function [170]. Here we consider ELMs with sigmoid
activation function i.e.

g(x) = (5.16)

Number of hidden nodes In ELMs, once the activation function g has
been chosen the only missing parameter is L: the number of hidden nodes.
In [171] the authors show that it is possible to increase the prediction per-
formance of ELMs if the number of nodes in the hidden layer L is set to a
random large number and the linear model in equation is replaced with
the lasso estimator

arg;nin Iy —HB 2 +A[ B |l . (5.17)

As previously highlighted the lasso estimator is a sparse estimator, i.e. it se-
lects only a subset of the columns of H when generating the regression model.
Observing that each node in the hidden layer corresponds to a column of the
matrix H, this is equivalent to automatically selecting the number of nodes
in the hidden layer. Again to achieve an automated solution we will tune
the regularization parameter A with a 10-fold Cross-Validation procedure as
described in equation (Chapter [3]).

5.2.2.3 Choosing the weights

While in ELMs the weights are usually chosen randomly without any indica-
tion as to the range of the uniform distribution it is shown in [172] that the



5.2 Neural Network 141

size of the weights has a great influence on the performance of a neural net-
work. The data that we will considered in this thesis is usually characterized
by high dimension p >> 0 and so it is very likely that

p
Z Ti kWi + bj >> 0 (518>
k=1

At the same time the sigmoid and Radial Basis Function (RBF, [173]) acti-
vation functions show variation with respect to the input only in a compact
interval i.e.

Ve>0 e maxg(r) —ming(x) <e if || > c (5.19)

as can be observed in Figure for the sigmoid and RBF function. We will
now propose a method to ensure that the norm of the matrix H is not too
small and we will show that this leads to an improvement in the performance
of the ELM model. Let X; = (z;1,...,%;,) be an input sample. A generic
element of H associated with this sample is then defined as:

p
H,; = 90> aigwn + b;) (5.20)
k=1
and Ve > 0:
L P
Z VCLT(H.J-) > Le s Zx@kwj,k + bj < C¢ (521)
j=1 k=1

It follows that the matrix H is strongly influenced by the norm of the weights
W. If W and b are both drawn from a uniform distribution Unif(—c,c),
then the value ¢ can be used to control || W || and hence the norm of H.
Observe that if ¢ is large the elements of H tend to be small while if ¢ is small
the variance of || W ||3 is small as well. In both cases the approximation
capability of the ANN is reduced, as shown in Figure 5.5l Only when the
appropriate value of ¢ is selected does the neural network achieve a good
approximation of the data. Renaming the neural network f7(X;) in equation
as f5(X;) to reflect the dependency on ¢, the optimum choice of ¢ can
be determined as

n
¢ = argmin 3 | g5 — £5(%,) Il (5.22)

C jzl
where the minimization is performed over the training data. Note, that this
should not lead to over fitting because the weights are still chosen randomly.
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Figure [5.6|shows the training error and the prediction error for various values
of ¢ computed on two independent subsets of the J2M data as described in the
next example (Example . We can observe that training and prediction
errors have similar trends if defined as a function of ¢. In the next example
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Figure 5.4: A Sigmoid (top) and Radial Basis Function (RBF) (Bottom).
These are commonly used as activation functions in neural networks.

ELM is used for virtual metrology and its performance compared with the
ones obtained with Lasso and Ridge regression.

Example 5.2.2. In this example the J2M data (Dataset is used as a
benchmark dataset for etch rate prediction. The size of the OES spectrum is
reduced keeping only the 100 variables with the highest variation. The data is
then reduced to (X, y) € R*194x100R2194 Apn ELM with L = 1000 nodes and
the weights chosen according to the procedure described in Section[5.2.2.3|was
used to estimate a VM model for this dataset and its prediction performance
compared to the models obtained with lasso and ridge regression. Initially,
the lasso, ridge and ELM models were trained using the full OES dataset
(X,y) and their reconstruction accuracy evaluated on the same data. The
results obtained are reported in Figure [5.7] and clearly show that, while all
methods are able to achieve a reasonable approximation to the ER over
most of the wafers, the ELM model is the only one able to give a reasonable
approximation for values of X around 200 where there is a clear discontinuity
in the data. The prediction capability of the models was also evaluated
using bootstrapping [60]. Here, the data (X,y) is split into two independent
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sin(zx)

X
of the parameter ¢ as described in Section [5.2.2.3] The data is described in

Figure 5.5: The approximation of the function for different values
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Figure 5.6: Training and prediction error as a function of ¢, the width of the
uniform probability distribution used to generate the random weights. The
plot on the right is a zoomed in version of the plot on the left focusing on
the trend for small values of c.
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Figure 5.7: A plot of the actual evolution of ER as a function of the number
of wafers processed, and the VM estimates obtained using ELM, lasso and
ridge regression models.
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ELMC:é Lasso Rldge ELMCZO.l ELMC:0_5 ELMC:1

Mean  0.0617 0.0697 0.0697 0.0638 0.0809 0.0927
Std 0.0027 0.0055 0.0055 0.0039 0.0065 0.0079

Table 5.1: Mean and standard deviation of the prediction error obtained with
ELM, the lasso estimator and the ridge estimator.

disjoint sets (X°,y°), (X', y') respectively composed of Ny and N; samples.
The first set (X°,y%) is used to estimate the model and the second one
(X', y') is used as test data to score its prediction performance, defined as:

1 2
_ . — 1 5.23
err N1§ 1Yyi — Uil (5.23)

Yi€Yy1

This procedure is repeated 100 times and the mean and the standard devia-
tion of the prediction error (err) computed. The results obtained with lasso,
ridge and ELM with various values of ¢ are reported in Table 5.1} As can be
seen the lasso and the ridge estimators have almost identical performance,
while the performance of the ELM model is strongly influenced by the choice
of the ¢ parameter. Significantly the best results are achieved if ¢ is optimized
in accordance with equation , in which case the ELM yields the best
results overall.

5.3 Novel Nonlinear Unsupervised Features Se-
lection Algorithms

To date nonlinear extensions of the FSCA algorithm have not been investi-
gated. Hence, the focus of this section is to investigate such extensions and
whether they can lead to more compact data representations than conven-
tional FSCA, which assumes linear relationships between variables. The non-
linear extensions are achieved by replacing the linear reconstruction model
in FSCA with linear-in-the-parameters nonlinear models [174] or neural net-
works. A classical measure to estimate the goodness of a dimensionality
reduction approach is the percentage of explained variance as defined in equa-
tion [4.3] The question is how much of the original data can be reconstructed
from the selected variables. In linear feature selection this is simply done as
in equation .10} The equivalent relationship in the nonlinear case between
the dataset X € R™? and a subset of its columns Z = (zy,...,z;) € R is
defined as
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X = Ux(Z) (5.24)

where WUx is the nonlinear model that is used to estimate X from Z.

5.3.0.1 Overfitting

As with standard nonlinear regression, one of the challenges with using non-
linear FSCA is avoiding overfitting, which can occur if too complex a model
is used. Even in the case of linear-in-the-parameter models, it can become an
issue if the number of regressors approaches, or is greater than, the number of
samples. One approach to controlling model complexity is to constrain or pe-
nalize the norm of the parameter vector, such that irrelevant parameters are
suppressed |175], or forced to zero [63]. An example of node selection trough
penalization for ELMs is presented in [22|. This can easily be extended to
multi-output problems by considering a multi-level regularization approach
such as presented in |176]. This introduces a substantial computational over-
head as choosing the appropriate weight for the penalty term, referred to as
the regularization gain, requires repeated parameter estimation and model
evaluation over a grid of values. Alternatively, the optimal model complexity
can be determined by systematically evaluating models of increasing com-
plexity on a dataset that is independent of the data used in model parameter
estimation, a process referred to as cross-validation [60]. The optimum model
is then selected the one with the minimum cross-validation error.

5.3.0.2 Multi-output Regressor
The function ¥x maps Z € R™¥ into X = (x4,...,x,) € R™P,
Ux : RE — R? (5.25)

Ux can in theory be defined as the union of p single output nonlinear regres-
sion models, that is:

Ux = [Py, ..., Ug] (5.26)
where .
Ui RE SR (5.27)
%; = Uk (2Z) (5.28)
and

X = (%1,...,%,) (5.29)
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If general nonlinear models are used this may be too complex from a prac-
tical point of view as each function U4 would need to be individually tuned
according to the target variable x;. It is thus preferable to consider linear-in-
the-parameter nonlinear modelling paradigms, as these naturally generalize
to multi-output problems.

5.3.1 Nonlinear FSCA and FSV

An implementation of the FSV algorithm is reported in Pseudocode in
chapter [l Given nonlinear function Wx, the nonlinear version of the FSV
algorithm is obtained by replacing line 3 of Pseudocode with:

i; = argmin || ¥x((Z;-1,%;)) — X ||r (5.30)

x;€EX

In other words, the linear estimation of X based on the variables (Z;_1,x;) is
replaced with the approximation of X obtained with a nonlinear model Wx
trained on the input data (Z;_;,x;) and outputs X.

Similarly to FSCA, the nonlinear version of FSCA is instead obtained with
an iterative procedure. At each iteration a variable is chosen in order to
minimize the current error.

i; = argmin || Vg, (e;) — E; ||F (5.31)
eiEEj
The detailed implementation of Nonlinear FSCA is reported in Pseudocode
5.3.1] The considered implementation returns the matrix of components Q,
the associated variables Z and the set of functions required to reconstruct X
from Z.

Observation 5.3.1. In the linear case FSCA and FSV lead to the same
result both in term of explained variance and the variables selected. This is
not the case for their nonlinear counterparts. Indeed nonlinear FSCA and
nonlinear FSV may lead to totally different results.

Observation 5.3.2. In chapter [f| a number of refinement algorithms were
introduced in order to improve the performances of FSCA. These algorithms
were based on the FSV implementation of FSCA. Since in the nonlinear case
FSCA and FSV lead to different results the same algorithms can only be used
to improve the performance of nonlinear FSV.

For nonlinear FSV the reconstruction of the original data is obtained as in
equation [5.24] where Wx () is estimated in the last step of the FSV algorithm.
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Input: Input data X, a function ¥ : R® — R"*P_ the number of components

El - X

for j=1,...,K do ' 4
ij = argming; g | Ug,(e!) —E; |[r // (Notation: E; = (ef,...,€l))
Z= (Z7Xij)
E;1 = ‘I’Ej(egj) —E;

end for

return Q, Z and (Vg,,..., Vg, )

H
=

Pseudocode 5.3.1: Nonlinear FSCA

In the nonlinear FSCA algorithm Wx(-) is not explicitly estimated in the
algorithm as it does not appear in equation [5.31]

Observation 5.3.3. In FSV the optimization problem in equation is
based on all currently selected variables (Z;). On the other hand the FSCA
optimization problem is based on only one component (e;). The FSV algo-
rithm s then expected to perform better than FSCA, since at each step a
multivariate optimization is performed.

5.3.1.1 Projection and Reconstruction with Nonlinear FSCA

The nonlinear FSCA algorithm returns an ordered set of components that
are the columns of the Q matrix:

Q = QK = (Xineiza ce >eiK) (532)
and a set of functions:
Vg, (v) : R" = R"? fori=1,... K (5.33)

Given a new matrix X the components obtained with Nonlinear FSCA are
computed as in Pseudocode The reconstruction of X (i.e. X) is ob-
tained from the nonlinear FSCA components as described in Pseudocode
5.3.3l

In the rest of the chapter several nonlinear models are described. From the
theory discussed in this section it follows that for each model it is sufficient
to show how the function ¥x : R™* — R™P is defined. The nonlinear
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Input: The index of the selected variables 7y, ..., ix as in equation [5.32] the
set of functions as in equation and a matrix X

1: El =X

2: for j=1,..., K do

3 Ej=E;—Ug (&) // (Notation: E; = (&],...,8&))
4: end for

5: return &; ,..., &

Pseudocode 5.3.2: Nonlinear FSCA components

Input: The Q matrix containing the selected components as in equation
and the set of functions as in equation [5.33]
: X=0
2. forj=K,...,1do
3 X=X+ Ug(e])
4: end for
5: return X

Pseudocode 5.3.3: Nonlinear FSCA Reconstruction

FSV algorithm associated with the model will then follows from equation
while the nonlinear FSCA algorithm will follows from Pseudocode [5.3.1]

using the univariate restriction of Ux : R” — R™*P.

5.3.2 Polynomial Regression

Polynomial regression [174] without interaction terms is the simplest form
of nonlinear regression. While it is commonly used for supervised regression
it can be easily adapted to the UFS problem. The polynomial version of
Z = (z1,...,2) of degree d is defined as:

Zpory = (1,21,27,...,2},29,...,25,...,2%) € R (dh+1) (5.34)

where 1 is a column vector with all elements equal to 1. Given a target
matrix y € R"*° the relationship between Z and y if defined by the linear
model between y and Z,,,.

5.3.2.1 Polynomial FSV and FSCA

The polynomial FSV (PFSV) implementation is obtained by replacing Z with
Z,01y at each iteration of the FSV algorithm. The corresponding approxima-
tion of X is given by )

X =Ux(Z) = ®(Zpoy)X (5.35)
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PFSV is the simplest nonlinear extension of FSV. While it may lead to better
performance than FSV, its capabilities are limited by the absence of nonlinear
interactions between variables. This is shown with the aid of some examples

in Section 5.3.6.1].

Similarly to PFSV polynomial FSCA (PFSCA) is defined by replacing line
5 of Pseudocode with

1= argmin I q)(egpoly)
el €E;

E,-E;|r (5.36)
It is interesting to observe that, while PFSV does not include nonlinear
interactions between variables, PFSCA does generate interaction terms. This
follows from the fact that the matrix E; is recursively updated during the
PFSCA algorithm.

Computational Complexity The computational complexity of polyno-
mial regression is roughly the same as linear regression. It follows that the
computational complexity of the polynomial versions of FSCA and FSV will
be computationally similar to the linear implementations.

5.3.3 Extreme Learning Machines FSV
As described in Section ELMs have been used for both single output

and multi-output supervised regression problems. The approach can be eas-
ily extended to unsupervised problems. In order to use it in an FSV like

algorithm it is sufficient to use X as the output of the neural network and a
subset of its variables (Z) as the input. The SLFNN equation in [5.6] becomes

~

L
X = fu(@) =Y Big(wi-Z; + by) (5.37)
i=1

where Z; € R” is the j row of Z. Equation can be expressed in matrix
form as:
X = f.(Z) = HZ3 (5.38)

where HZ is defined as:

H” =H*(W, b,Z) e R™": H?, = g(w; -Z; + b)) (5.39)

.....

of the hidden layer W are randomly initialized, with only the output layer
weights optimised as:
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Bx = argmin || X — HZ3 |2 (5.40)
ﬁERLXp
X = H?Bx (5.41)

The ELM based version of FSV (ELM-FSV) is then obtained by replacing
Ux(Z) in equation with

X = Ux(Z) = ®(H%)X (5.42)

The ELM used in this section is a single hidden layer multilayer perception
architecture with sigmoid activation functions in the hidden layer neurons.

Hence, g(z) is defined as:
() 1
x) = :
g l+e™®

The ELM-FSCA implementation is obtained in a similar fashion.

(5.43)

5.3.3.1 Random weights initialization in ELM-FSV

In the ELM-FSV algorithm variables are recursively added as input nodes
in the neural network. At step k of the ELM-FSV algorithm the ELM has &
input variables and L hidden nodes. In the classical version of ELM the input
weights {w;;},_, . ;i are randomly initialized and stored in a matrix
WF ¢ R¥*L Since the dimension of W* changes at every step, the ELM
needs to be retrained for each new input. If the values of W**! are randomly
assigned at each step they will have no relationship with the weights at step
k. This is not desirable as the first k& selected variables are selected based
on the values of the weight matrix W*. If their values change the first &
selected variables may no longer be optimal. In order to avoid this problem
W+ is obtained by adding a randomly generated row to W, that is:

—

w

k
Wk’-‘rl _ ( W ) c R(k+1)><L (544)

where w € R” is a randomly generated vector. As shown in [22] and dis-
cussed in Section [5.2.2.3| the performance of ELMs is strongly influenced by
the distribution that is used to generate the weights matrix W. In this sec-

11
tion W ~ Unif(——,—) where p is the total number of variables. This is
b p

reasonable because all the variables are assumed to have zero mean and unit
variance.
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5.3.3.2 ELM with Direct Linear Feed-through

In FSCA and FSV like algorithms some of the variables appear both as inputs
and as outputs. This is because the input is defined as Z = (x;,, ..., x;,) and
the output as X = (xy,...,x%,) where k << p (i.e. the input variables are
a subset of the output variables). The identity function is the appropriate
mapping for these variables, and estimating this mapping using the ELM
will be sub-optimal. The same is true if the underlying relationship between
inputs and outputs is linear. To overcome this shortcoming of the basic
ELM model a modification is introduced whereby the inputs are also directly
connected to the output. Mathematically, this corresponds to the selected
variables being added as additional columns in the matrix HZ, that is:

HZ = (H% Z) ¢ R (5.45)

Neural networks where the input neurons are connected to both the first
hidden layer and the output layer neurons are called Direct Linear Feed-
through Artificial Neural Networks [177]. Hence, we refer to the modified
ELMS as an Extreme Learning Machine with Direct Linear Feed-through
(ELMDLF). The related ELM-FSCA algorithm is called ELMDLF-FSCA. At
the k' step of the ELMDLF-FSCA algorithm the matrix H is then defined
as:

HZ = (H%*, Zy) (5.46)

5.3.4 Kernel FSV

In [120] an algorithm equivalent to FSV and a possible kernel generalization
is proposed (KFSV). Here the KFSV algorithm is reviewed and integrated in
the context of features selection and data reconstruction. The optimization
problem defined in equation [4.7] has a unique solution as given by equation
[4.10] In order to shrink the size of the coefficients the problem can be refor-
mulated as a Ridge Regression problem:

min | X-ZO ||p +A ] © ||r (5.47)

The solution is then: )
©=(Z"Z+\)'Z"X (5.48)
or equivalently using the dual solution as in [178|

© =27"(27" + \)7'X (5.49)

It follows that: )
X =ZZ"(ZZ" + \I)7'X (5.50)
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or if the reconstruction of new data has to be computed:
Xopew = ZnewZF (ZZT + XI)7'X (5.51)

In this formulation Z and Z,.,, appear only in the form of a matrix product.
Nonlinearities can be included through the use of a kernel K [179|. The
previous equations become:

X = K(Z,Z7)(K(Z,Z") + \[)'X (5.52)

Xoew = K(Zpew, ZT)(K(Z,Z7) + MI)7'X (5.53)

where K(Z,Z") € R™" is the matrix whose (,7)-th element is given by
K(Zi, Zj).

In an FSV context Xnew represents the reconstruction of X obtained with
the variables in Z when the kernel X is used. The selection of variables or
components with KFSV is done with the standard FSV or FSCA algorithms
using as estimation of X equations or Several types of kernel can
be used. The most popular are:

e Linear Kernel:
K(xi, X)) = X X; (5.54)

In this case KFSV is equivalent to the standard FSV

e Polynomial:

K(xi, %) = (x] x; +¢)? (5.55)
e Radial Basis Function:
B I xi — x5 [l
K(xi,xj) =e 20 (5.56)

Observation 5.3.4. The KFSV algorithm is defined starting from the ridge
regression problem defined in equation[5.]7 instead of the least square problem
as in equation[{.7. This was required as in equations[5.59 and[5.53 the term
(K(Z,ZT) + NX) is not of full rank if X = 0. This follows from the fact that
in the FSV algorithm Z € R™* with k < n and ZZT € R™*"

Observation 5.3.5. The term (K(Z,Z*) + MX)~! in equation requires
the computation of an inverse of an n X n matriz, where n is the number of
samples. This may be computationally very demanding.
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The penalty value A\ can be tuned using bootstrap or cross-validation. In
sections [5.3.6.1], [5.3.6.2f where the methods are compared the penalty value is
fixed to A = 0.001. This is required to reduce the computational complexity
of the methodology and to make a fair comparison with the other methods
where parameters are decided at priori, rather then tuned with the data.

5.3.5 Deep Learning Based Feature Selection

All the algorithms introduced in this chapter are based on the FSV and FSCA
algorithms. They allow nonlinear unsupevised feature selection with roughly
the same computational cost as FSV and FSCA. In addition, similarly to
their linear counterparts they require minimal user intervention. On the
other hand these methods allow only a limited degree of non linearity. PFSV
for example is not able to detect nonlinear interaction between variables.
ELMFSV is limited by the approximation capabilities of a single hidden layer
neural network. Indeed when a function can be compactly represented by a
deep architecture, it might need a very large architecture to be represented
by an insufficiently deep one [180]. For this reason an unsupervised feature
selection algorithm based on a deep neural network architecture is introduced.
A fully connected multilayer neural network is defined by the sequence of
neurons in each layer

Topology = [Lo, L1, ..., Li_2, L;_1] (5.57)
and by the activation function of each layer:
Activaction = [Ag, A1, ..., A2, A1) (5.58)

where

A R—>R (5.59)

The weights of the neural network, that are in general randomly initialized are
then trained in order to solve the minimization problem defined in equation
In the next algorithms it is shown how a Multilayer neural network can
be used to perform unsupervised features selection.

Algorithm 5.3.1. Given a dataset X € R"*P a neural network with [ layers
is constructed having X as both input and output. The layers then have the
following sequence of nodes cardinality:

Nodes = [p, L1, ..., Li_9,p| (5.60)
and the activation functions are

Activaction = [Id, Ay, ..., A9, 1d] (5.61)
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where Id(z) =z Vo € R and A; is a function defined by the user.

Once the structure of the network is defined it is trained with the back-
propagation algorithm. Among the input variables the variable whose dele-
tion leads to the smallest training error is removed. The topology is then:

Topology = [p—1,Ly, ..., Li_2,p] (5.62)

The procedure is repeated using only the p — 1 remaining variables. The
algorithm ends when only K input variables remain i.e. when:

Topology = [K, Ly, ..., Li_2,1) (5.63)

Employing ANNs with several hidden layers has lead to state-of-the-art per-
formance with several benchmarking datasets [181]. It follows that they can
lead to optimal unsupervised features selection if they can be effectively opti-
mized. A major drawback of ANNs and the method described in Algorithm
[6.3.Tjis that they have numerous hyperparameters. It is indeed necessary to
choose the structure of the neural network and the activation function of
each neuron. While these parameters may be tuned with a grid search algo-
rithm, it may become computationally impossible to try all combinations of
parameters. In the next section, where the performance of all the algorithms
is compared, a fixed configuration is used for all datasets considered. The
neural network chosen is composed of 5 layers (an input and output layer
and 3 hidden layers). The hidden layers each have 2p nodes. The rectified
activation function:

RELU(xz) = max(0, x) (5.64)

is used for each node in the hidden layers. The rectified function was shown
to perform better than sigmoid and radial basis function activation functions
when used in deep neural networks [182]. The number of hidden nodes is set
to 2p in order to have a higher dimensional representation of the data in each
hidden layer. The performance of a neural network is strongly influenced by
the initialization of the weights [183]. It is therefore important to make sure
that the initial weights are close to a good solution when Algorithm [5.3.1]
starts. At the beginning of Algorithm the input and the output are
equivalent. The neural network is then trained in order to be the identity
function on X i.e.

fw(X) =X (5.65)
This is in theory always possible in the specified settings as the hidden layers
have an higher dimensionality than the visible ones (L; = ...L;_o» = 2p).

In the experiments described in Section [5.3.6.2] the training was performed
using 30000 iterations of the ADAM optimization algorithm [184].
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Observation 5.3.6. Some of the main drawbacks of Algorithm [5.3.1) are the
computational complexity, the sensitivity with respect to the hyperparameters
|185] and the general difficulty in training an ANN with a deep architecture
[186]. The procedure is particularly complex because it requires training of
the ANN to be performed p — K times. In particular, due to the hierarchical
procedure used to select variables initial error may significantly influence the
final result.

Observation 5.3.7. This ANN based method is different from all the others
as it is based on a backward elimination procedure. This is in general not
effective in datasets where the number of samples is smaller than the number
of variables. For this reason and due to the fact that ANNs require a large
number of training samples this method will be tested only on datasets with
few variables and many samples.

5.3.6 Performance Evaluation

The performances of the proposed nonlinear FSV and FSCA algorithms are
evaluated in this section. For the evaluation procedure several datasets are
used. Each one is split into a training and a testing set (Xypgin and Xies).
The training set is used to build the model while the test set is only used to
evaluate the reconstruction performance, defined as:

o || Xtest - Xtest ||2
|| Xtest ||2

EViey = 1 (5.66)

where R
Xtest - \I/Xtmm (Ztest) (567)

and Z.s is the matrix composed of the variables of X, s that were selected
during training.

As shown in Section [5.2.2) the perfomance of the ELM algorithm is influenced
by the choice of the distribution of the random weights. In order to make
the experiments simpler, for all the datasets considered the weights were
generated according to a uniform distribution whose width is determined by
the number of outputs p, that is:

11
W, ~ Unif(—=, - 5.68
j (=) (5.68)

This is a reasonably good choice as all variables have zero mean and unit
variance. Also the test data is then scaled to zero mean and unit variance
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as explained in Section [3.5.3.1] While scaling of the data does not affect
linear regression models it helps the ELM based methods as it avoids neu-
ron saturation problem as described in equation [5.21] It also avoid potential
numerical problems with polynomial regression as the power of a large num-
ber can easily become numerical intractable (i.e. ¢ >>> 0 if x >> 0 and
d>>0).

5.3.6.1 Simulated Examples

The methods are initially compared on two simple simulated datasets. These
are defined in order to highlight the differences between the considered algo-
rithms, in particular with regard to their ability to model nonlinear interac-
tion between variables.

Dataset 5.3.1 (Cubic-Additive). Consider the variables x;,xs ~ N(0,1).
The variables x3 and x4 are obtained from x; and x, as:

X3 = X; + X5 (5.69)
X4 = X] + X (5.70)
Each variable is then scaled to zero mean and unit variance.

Dataset 5.3.2 (Cubic-Interactions). Consider the variables x;, x5 ~ N(0,1).
The variables x5 and x4 are obtained from x; and x; as:

X3 = xlxg + X1 (571)
X4 = X7X5 + XX (5.72)
Each variable is then scaled to zero mean and unit variance.

A noisy version of both datasets is generated by adding a random error to
the data matrix:
Xnoise =X+E (573)

where
E={e;}, €;~N(0,01) fori=1,...,nandj=1,...,p (5.74)

For each type of data 2000 samples are generated. The first half is used to
train the model and the second half is used to evaluate its performance (test
set). The percentage explained variance obtained with each method on the
training and test data when 2 variables are selected is used as a metric. The
process is repeated 10 times and the mean results obtained on the training
and test set are reported in Tables and [5.3], respectively.
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Results on the simulated dataset The first interesting observation is
that all the methods perform relatively well on the training data. Indeed
almost all the methods are better than FSCA. On the other hand many
methods perform very poorly on the test dataset. These methods overfit the
training data. Model selection should then therefore be carefully evaluated
in real applications. We observed that FSCA based methods tend to overfit
the data more than the FSV ones. For this reason ELMFSCA is used with
a smaller number of hidden nodes than ELMFSV. From the results obtained
on the test dataset it is possible to make more interesting observations.

e In the first dataset (dataset all the nonlinear methods perform
significantly better than PCA and FSCA. PFSV with d > 3 generally
achieve optimal performance. This was expected as they contain the
exact model. The same is true for KFSV with polynomial kernel. Sur-
prisingly slightly better performance is obtained with ELMFSV-DL50.
It is interesting to observe that PFSV performs generally better than
PFSCA. This was expected as PFSCA is not necessarily able to infer
the real model. In particular PFSCA seems to overfit much more than
PFSV. This may be observed by comparing PFSCA and PFSV with
degrees 7, 8 and 9.

All the methods have slightly worse performance when noise is intro-
duced. Apart from that the presence of noise does not have much
influence on the results.

e In the second dataset (dataset the performance of PFSV and
PFSCA drops. This is expected as the polynomial model is not able
to represent nonlinear interactions. It is interesting to observe that
PFSCA with degree 2 and 3 is slightly better than PFSV with the same
complexity. This may be explained by the fact that PFSCA is able
to generate nonlinear interactions. Polynomials with higher degrees
tend to overfit resulting in bad performances. In this data the best
performance is obtained with ELMFSV, ELMFSV-DLF and KFSCA
with RBF kernel. These are all methods that are able to represent
nonlinear interactions.

While there is no method that is always better than the others, some general
conclusions can be drawn:

e Overly complex models lead to overfitting. Some examples are PF-
SCA10, PFSV10 and ELMFSV-DLF50.

e For each method the FSCA implementation is in general worse than
the FSV one.
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e The overall best results are obtained with the ELM methods even
if careful tuning is required to choose the optimal number of hidden
nodes.

e The introduction of DLF in the ELM based methods leads to improve-
ments especially when a small number of neurons is used.

e Methods with a low degree of nonlinearity, susch as PFSV2, PFSV3
and ELMFSV-DLF with a small number of nodes, provide, in general,
better performance than FSCA.

In the next section the various algorithms are compared on real datasets.
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Methods ‘ Dataset
Cubic Additive  Cubic Interaction = Cubic Additive  Cubic Interaction
with noise with noise
PCA 83.17 82.30 82.83 82.14
FSV 72.3 72.87 71.98 72.86
PFSCA2 91.82 75.70 91.02 78.33
PFSCA3 99.97 83.01 98.65 83.94
PFSCA4 99.97 84.71 98.65 85.60
PFSCA5 99.96 86.80 98.65 86.90
PFSCAG6 99.95 88.60 98.65 87.61
PFSCAT 99.94 89.71 98.66 88.09
PFSCAS 99.94 90.50 98.66 88.64
PFSCA9 99.93 90.79 98.66 88.97
PFSCA10 99.92 91.31 98.66 89.70
PFSV2 91.83 75.25 91.08 77.56
PFSV3 100.0 82.33 98.69 83.25
PFSV4 100.0 84.28 98.70 85.01
PFSV5 100.0 86.16 98.70 86.51
PFSVé6 100.0 87.96 98.70 87.33
PFSV7 100.0 89.16 98.71 88.04
PFSVS8 100.0 90.02 98.72 88.46
PFSV9 100.0 90.63 98.72 89.07
PFSV10 100.0 91.10 98.73 89.48
ELMFSV2 71.58 70.20 71.09 70.08
ELMFSV5 89.02 77.33 88.10 76.62
ELMFSV10 95.97 97.21 94.01 95.92
ELMFSV15 99.87 99.13 98.58 97.88
ELMFSV25 99.92 99.71 98.65 98.40
ELMFSV50 100.0 99.97 98.82 98.66
ELMFSV-DLF2 83.25 86.96 82.75 86.45
ELMFSV-DLF5 85.69 93.13 84.65 91.97
ELMFSV-DLF10 99.57 98.52 98.24 97.17
ELMFSV-DLF15 99.61 99.45 98.11 98.20
ELMFSV-DLF25 99.98 99.81 98.74 98.51
ELMFSV-DLF50 100.0 99.98 98.83 98.66
ELMFSCA2 87.59 76.34 85.84 78.10
ELMFSCA3 99.11 82.19 96.78 82.43
ELMFSCA4 99.62 83.61 98.47 84.66
ELMFSCA5 99.92 86.21 98.65 86.71
ELMFSCA10 99.92 90.77 98.65 89.07
ELMFSCA-DLF2 99.38 82.25 96.62 83.71
ELMFSCA-DLF3 99.91 83.57 98.56 85.54
ELMFSCA-DLF4 99.94 85.92 98.63 86.83
ELMFSCA-DLF5 99.95 87.66 98.65 87.57
ELMFSCA-DLF10 99.92 91.37 98.65 89.34
KFSV 99.99 99.99 98.89 98.72
KFSVPoly2 95.67 77.03 93.67 79.07
KFSVPoly3 100.0 96.20 98.69 95.68
KFSVPoly4 100.0 97.26 98.71 96.42

Table 5.2: Percentage Variance Explained by various linear and nonlinear un-
supervised variable selection technique when applied to the simulated dataset
introduced in section [5.3.6.1] The table shows the result for the training
dataset when 2 variables are selected by each method.
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Methods ‘ Dataset
Cubic Additive  Cubic Interaction = Cubic Additive  Cubic Interaction
with noise with noise
PCA 82.53 82.03 82.23 81.63
FSV 71.31 71.60 70.69 71.19
PFSCA2 90.69 73.17 89.78 72.41
PFSCA3 99.53 77.83 98.23 78.31
PFSCA4 99.52 72.64 98.16 54.89
PFSCA5 99.35 43.20 97.44 39.29
PFSCAG6 98.00 16.27 87.92 13.91
PFSCAT 89.47 7.83 78.18 20.91
PFSCAS8 89.41 15.60 58.86 8.09
PFSCA9 49.67 8.27 47.88 7.95
PFSCA10 49.21 0.00 29.18 4.38
PFSV2 90.76 72.35 88.39 69.97
PFSV3 99.63 74.19 98.26 66.41
PFSV4 99.63 72.19 98.24 49.71
PFSV5 99.63 64.21 98.21 45.58
PFSV6 99.63 47.10 98.16 34.02
PFSV7 99.63 29.60 97.96 24.99
PFSVS8 99.63 26.43 97.69 21.39
PFSV9 99.63 16.02 95.61 19.99
PFSV10 99.63 10.75 91.33 12.13
ELMFSV2 70.66 68.97 70.26 68.54
ELMFSV5 88.49 73.65 86.94 72.45
ELMFSV10 94.06 95.74 90.94 93.65
ELMFSV15 99.36 97.52 97.93 94.73
ELMFSV25 99.28 96.90 97.60 91.75
ELMFSV50 99.62 85.41 95.82 54.47
ELMFSV-DLF2 82.42 84.92 81.29 82.94
ELMFSV-DLF5 84.40 91.55 82.72 89.19
ELMFSV-DLF10 99.04 96.19 97.58 95.30
ELMFSV-DLF15 98.59 97.79 96.92 96.19
ELMFSV-DLF25 99.52 97.62 97.99 95.77
ELMFSV-DLF50 99.63 71.32 94.87 45.92
ELMFSCA2 86.09 74.20 84.11 71.78
ELMFSCA3 98.40 78.28 95.88 78.67
ELMFSCA4 99.13 79.85 97.88 79.12
ELMFSCAS5 99.36 65.16 98.01 68.17
ELMFSCA10 59.19 7.23 58.33 7.20
ELMFSCA-DLF2 98.77 79.25 96.02 78.86
ELMFSCA-DLF3 99.38 76.81 98.03 73.14
ELMFSCA-DLF4 99.48 61.80 97.98 54.82
ELMFSCA-DLF5 99.38 48.15 93.33 33.64
ELMFSCA-DLF10 36.09 7.59 35.59 7.21
KFSV 98.79 91.30 96.41 85.72
KFSVPoly2 95.36 70.89 92.75 68.69
KFSVPoly3 99.63 93.25 98.25 82.40
KFSVPoly4 99.63 87.60 98.20 75.30

Table 5.3: Percentage Variance Explained by various linear and nonlinear un-
supervised variable selection technique when applied to the simulated dataset
introduced in section [5.3.6.1] The table shows the result for the test dataset
when 2 variables are selected by each method.
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5.3.6.2 Real Datasets

The proposed methods are now tested on a set of real world datasets. The
datasets considered are:

e J2MRed consisting of n = 2194 samples and p = 200 variables.

e Nino consisting of n = 93935 samples and p = 11 variables.

Parkinson consisting of n = 5875 and p = 22 variables.

Community Crime (CC) consisting of n = 2107 and p = 118 variables.
e Magic consisting of n = 19020 samples and p = 10 variables.
e Arcene consisting of n = 99 samples and p = 400 variables.

The J2MRed dataset is defined by the 200 variables with the highest variance
from dataset [2.4.2] All the others benchmark datasets are taken from a public
online repository [187].

Study methodology A set of k = 5 variables is selected with each method
using a training dataset. The training dataset is then used to build the model
and a testing dataset is used to evaluate the model performance. The exper-
iment is repeated several times. At each iteration the data is randomly split
into training and test datasets. The number of samples in the test dataset is
randomly selected between 10% and 50% of the total data. Performance is
then evaluated according to the percentage of explained variance in the test
set as in equation [5.66] The mean and the standard deviation obtained on
the training and testing set is reported in Tables[5.4]and [5.5. The best result
obtained on the test set for each family of methods is reported in Figure [5.8

Comments on the results The first obvious observation is that PCA
performs well on all the datasets and is only outperformed by nonlinear vari-
able selection methods for two of the datasets: Parkinson 81.58 vs 84.47
and Nino 74.91 vs 82.74. The Arcene data is characterized by more vari-
ables than samples. In this scenario all the nonlinear methods tend to overfit
while simple linear methods like FSV achieved almost optimal performance.
Despite this a small improvement over FSV can be obtained with PFSV
with low degree, ELMFSV-DLF with a small number of hidden nodes and
KFSV. In other words, adding a small amount of nonlinearity improves the
performances of FSV. In all the other datasets ELMFSV-DLF achieves the
best solution and is always more effective than its counterparts (ELMFSV,
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ELFSCA, ELMFSCA-DLF). Among the polynomial based methods PFSV
generally performs better than PFSCA with PFSV often outperforming lin-
ear FSCA. While PFSV is normally inferior to ELMFSV-DLF it may be the
preferred choice if a lower complexity easy to interpret model is required.

The deep learning based method (NN) is only tested on 3 datasets, due
its computational cost, and it performs relatively well in all of them. It
obtains the optimal perfomance on the Parkinson dataset and beats PCA on
the Nino dataset. However, overall its performance is not good enough to
justify the use of such a computationally complex method. The method may
perform better on larger datasets and if its parameters are more carefully
tuned. Unfortunately due to limited computing power this hypothesis is not
investigated here.
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Figure 5.8: The mean and the 95% confidence interval of the explained
variance obtained on the testing set on the datasets described in Section
with various algorithms when optimal hyper-parameters are chosen
and K = ) variables are selected.
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CC Arcene Parkinson Magic Nino J2MRed

PCA 60.58 (4.33)  95.65 (0.73)  81.58 (1.06)  85.53 (0.53)  74.91 (0.06)  97.44 (0.1)
FSV 53.97 (5.12)  93.64 (1.55)  77.77 (1.24) 7822 (0.43)  67.77 (0.11)  96.12 (0.17)
PFSCA2 56.93 (2.41)  95.69 (0.83)  79.52 (1.4) 82.77 (2.31)  69.68 (0.14)  96.48 (0.17)
PFSCA3 58.50 (3.15)  96.06 (0.99)  79.21 (1.51)  81.43 (0.54)  70.34 (0.14)  96.79 (0.11)
PFSCA4 60.03 (3.52)  96.0 (1.46) 79.96 (1.51)  82.18 (0.29)  70.67 (0.12)  96.97 (0.2)
PFSCAS5 60.43 (4.04) 96.11 (1.5) 80.63 (1.54) 82.14 (1.22) 71.01 (0.11)  97.12 (0.17)
PFSCA6 61.85 (3.02)  96.59 (1.49)  81.55 (1.12)  82.66 (0.3) 70.97 (0.47)  97.19 (0.32)
PFSCA7 62.13 (3.09)  96.23 (1.58)  82.06 (1.16)  82.81 (0.21)  71.22 (0.12)  97.39 (0.07)
PFSCAS 63.41 (0.39)  96.59 (1.28)  82.38 (0.93) 82.89 (0.18)  71.4 (0.09) 97.42 (0.1)
PFSCA9 63.51 (0.54)  96.69 (1.44) 82.28 (1.36)  82.95 (0.13)  71.46 (0.08) 97.44 (0.07)
PFSCA10 63.78 (0.6)  96.68 (1.61)  82.18 (1.43)  82.97 (0.13) 71.43 (0.11)  97.46 (0.08)
PFSV2 57.40 (2.69) 9512 (1.46)  80.17 (1.27)  84.84 (2.6)  69.73 (0.14)  97.04 (0.13)
PFSV3 59.94 (3.16)  94.68 (1.53)  80.23 (1.64)  82.82 (0.45)  70.44 (0.15)  97.22 (0.14)
PFSV4 59.31 (4.74)  95.09 (1.57)  80.73 (1.68)  83.02 (0.6) 71.51 (0.08)  97.33 (0.12)
PFSV5 62.20 (3.22) 94.59 (1.34) 80.58 (1.57) 82.90 (1.04) 71.74 (0.07)  97.34 (0.13)
PFSV6 62.44 (3.4) 95.24 (2.08)  82.41 (1.2) 82.63 (2.05)  71.91 (0.08)  97.44 (0.1)
PFSV7 62.53 (4.06)  95.72 (2.23) 82.67 (1.94)  83.68 (1.31)  71.94 (0.08)  97.46 (0.13)
PFSVS 62.66 (4.83)  95.65 (2.27)  83.07 (2.08)  83.86 (1.05)  72.01 (0.1) 97.31 (0.31)
PFSV9 64.37 (3.0)  96.40 (2.28)  83.11 (2.17)  83.76 (1.58)  72.08 (0.1) 97.40 (0.26)
PFSV10 64.03 (3.31) 96.84 (2.35) 83.90 (1.56)  84.25 (0.43) 72.11 (0.1)  97.46 (0.15)
ELMFSV2 32.43 (0.21)  88.08 (0.82)  47.38 (2.16)  49.6 (0.11) 38.83 (0.02)  81.44 (0.41)
ELMFSV5 49.41 (0.39)  93.85 (1.24)  68.73 (0.46)  70.91 (0.13)  63.18 (0.01)  92.17 (0.16)
ELMFSV10 53.70 (2.2) 94.82 (1.67)  74.04 (1.08)  74.89 (0.14)  66.91 (0.01)  95.63 (0.18)
ELMFSV15 57.09 (2.29)  95.92 (1.56)  78.09 (1.26)  78.73 (0.53)  68.62 (0.14)  96.92 (0.11)
ELMFSV25 58.17 (2.32)  97.70 (1.71)  80.49 (1.06)  79.89 (0.42)  70.11 (0.11)  97.31 (0.11)
ELMFSV50 59.81 (2.89)  99.46 (0.05)  83.12 (1.5) 83.98 (0.32)  72.76 (0.09)  97.51 (0.11)
ELMFSV75 58.06 (4.27)  100.0 (0.0)  83.47 (1.63)  84.48 (0.3) 73.85 (0.09)  97.7 (0.11)
ELMFSV100 59.42 (5.79)  100.0 (0.0) 84.43 (1.52)  84.56 (0.4) 74.43 (0.1) 97.71 (0.13)
ELMFSV200 73.49 (0.47)  100.0 (0.0) 85.17 (2.57) 85.38 (0.41) 81.77 (0.11) 97.41 (0.12)
ELMFSV-DLF2 55.17 (5.35)  94.86 (1.32)  78.26 (1.3) 78.62 (0.62)  68.24 (0.12)  96.5 (0.15)
ELMFSV-DLF5 56.04 (5.43)  94.82 (1.04)  79.15 (1.39)  79.05 (0.57)  69.21 (0.12)  97.21 (0.18)
ELMFSV-DLF10  57.27 (4.7) 95.79 (1.32)  79.77 (1.1) 79.88 (0.42)  69.87 (0.09)  97.13 (0.11)
ELMFSV-DLF15 5861 (4.63)  97.04 (1.24)  81.26 (1.25)  81.75 (0.4) 70.66 (0.12)  97.37 (0.17)
ELMFSV-DLF25  60.43 (4.24)  98.15 (1.46)  82.41 (1.13)  82.22 (0.45)  71.31 (0.28)  97.51 (0.12)
ELMFSV-DLF50  60.32 (3.61)  99.62 (0.03)  83.51 (1.6) 84.38 (0.4) 76.48 (0.09)  97.60 (0.09)
ELMFSV-DLF75  59.54 (5.68)  100.0 (0.0)  83.74 (1.65)  85.17 (0.37)  78.50 (0.12)  97.64 (0.11)
ELMFSV-DLF100 60.68 (8.15) 100.0 (0.0) 84.20 (1.81) 85.32 (0.32) 79.35 (0.09) 97.79 (0.11)
ELMFSV-DLF200  73.54 (0.47) 100.0 (0.0) 84.79 (3.77) 85.60 (0.41) 82.74 (0.09) 97.40 (0.15)
ELMFSCA2 51.99 (1.88)  86.4 (2.65) 77.19 (1.15)  80.23 (1.46)  68.94 (0.52)  94.97 (0.6)
ELMFSCA3 53.63 (2.03)  88.94 (2.57)  78.47 (1.27)  81.34 (1.63)  69.59 (0.67)  95.47 (0.69)
ELMFSCA4 53.59 (2.25)  90.88 (1.73)  78.68 (1.13)  81.68 (1.73)  70.01 (0.15)  96.10 (0.37)
ELMFSCAS5 55.17 (2.51) 92,51 (0.67)  79.18 (1.35)  81.66 (1.2) 70.17 (0.19)  96.27 (0.24)
ELMFSCA10 56.10 (2.28) 93.74 (0.97) 80.24 (1.14) 82.00 (0.42) 70.42 (0.16) 96.42 (0.23)
ELMFSCA-DLF2  56.95 (5.44)  94.63 (0.83)  79.2 (1.45) 81.41 (1.41)  69.73 (0.51)  96.54 (0.24)
ELMFSCA-DLF3  56.01 (3.05)  94.46 (0.96)  79.41 (1.6) 81.32 (1.55)  70.09 (0.45)  96.57 (0.17)
ELMFSCA-DLF4  56.30 (5.35)  94.70 (1.02) 79.96 (1.49)  82.37 (1.64)  70.16 (0.36)  96.58 (0.19)
ELMFSCA-DLF5  57.02 (5.27)  94.29 (1.24)  79.90 (1.48)  81.75 (0.4) 70.35 (0.17)  96.60 (0.3)
ELMFSCA-DLF10 57.93 (4.72) 9453 (1.02)  80.45 (1.34) 82.14 (0.47) 70.45 (0.13) 96.83 (0.2)
KFSV 66.67 (0.97)  95.8 (0.12) 84.72 (0.75) 97.29 (0.12)
KFSVPoly2 64.03 (1.42)  96.46 (0.23)  80.87 (1.79) 97.26 (0.12)
KFSVPoly3 67.92 (1.29) 97.55 (0.18) 84.79 (1.57) 97.59 (0.22)
KFSVPoly4 71.32 (0.93) 98.17 (0.09) 88.34 (1.35) 98.09 (0.09)
NN 85.48 (3.09)  85.51 (3.18) 75.71 (1.08)

Table 5.4: Mean an standard deviation of the explained variance obtained
on the training dataset over 10 repetitions when k = 5 variables are selected
with the various algorithms. The experiment is described in section [5.3.6.2
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CC Arcene Parkinson Magic Nino J2MRed

PCA 60.58 (4.33) 95.65 (0.73) 81.58 (1.06) 85.53 (0.53) 74.91 (0.06) 97.44 (0.1)
FSV 53.97 (5.12)  93.64 (1.55)  77.77 (1.24)  78.22 (0.43) 67.77 (0.11)  96.12 (0.17)
PFSCA2 55.92 (3.12) 93.66 (2.24) 79.52 (1.4)  82.77 (2.31)  69.68 (0.14) 96.48 (0.17)
PFSCA3 <0 92.84 (2.2) 78.91 (1.51) 80.75 (2.16) 70.34 (0.14) 90.41 (13.68)
PFSCA4 <0 <0 <0 <0 70.67 (0.12) <0
PFSCAS5 <0 <0 <0 <0 71.01 (0.11) <0
PFSCAG6 <0 <0 <0 <0 <0 <0
PFSCAT7 36.93 (23.44) <0 <0 <0 71.22 (0.12) <0
PFSCAS8 <0 <0 <0 <0 <0 <0
PFSCA9 <0 <0 <0 <0 <0 <0
PFSCA10 <0 <0 <0 <0 <0 <0
PFSV2 56.57 (2.84) 94.13 (1.39)  80.17 (1.27)  84.84 (2.6)  69.73 (0.14)  97.04 (0.13)
PFSV3 <0 94.52 (1.33)  80.23 (1.64)  82.82 (0.45) 70.44 (0.15)  97.22 (0.14)
PFSV4 <0 94.53 (1.57)  80.73 (1.68)  83.02 (0.6) 71.51 (0.08)  97.33 (0.12)
PFSV5 <0 94.59 (1.34) 80.58 (1.57) 82.9 (1.04) 71.74 (0.07) 97.34 (0.13)
PFSV6 <0 93.62 (2.11) 81.24 (2.47) 81.63 (3.32) 71.91 (0.08) 97.44 (0.1)
PFSV7 <0 92.90 (3.03) 79.07 (5.44) 70.68 (27.91)  71.94 (0.08) 97.46 (0.13)
PFSV8 <0 92.09 (6.16) 67.73 (24.45)  75.94 (9.06) 72.01 (0.1) 97.31 (0.31)
PFSV9 <0 73.54 (60.78) <0 19.82 (116.69)  72.08 (0.1) 97.23 (0.54)
PFSV10 <0 76.67 (50.49) <0 1.19 (121.03)  72.11 (0.1)  96.40 (2.15)
ELMFSV2 32.66 (4.06)  86.37 (3.25)  46.69 (3.45)  49.67 (0.7) 38.77 (0.08)  81.46 (2.87)
ELMFSV5 47.65 (2.44) 92.96 (1.48) 68.81 (1.39) 70.88 (0.64) 63.14 (0.13) 92.10 (1.0)
ELMFSV10 52.59 (3.85) 93.96 (1.15)  73.55 (1.55) 75.02 (0.59) 66.89 (0.1) 95.52 (0.23)
ELMFSV15 54.77 (2.23) 92.62 (4.25) 78.13 (1.47) 78.74 (0.52) 68.62 (0.14) 96.92 (0.11)
ELMFSV25 57.53 (2.28)  90.74 (8.12)  80.49 (1.06)  79.89 (0.42) 70.11 (0.11)  97.31 (0.11)
ELMFSV50 59.87 (3.02) <0 83.12 (1.5) 83.98 (0.32) 72.76 (0.09)  97.51 (0.11)
ELMFSV75 57.70 (3.37) <0 83.47 (1.63) 84.48 (0.3) 73.85 (0.09) 97.70 (0.11)
ELMFSV100 56.77 (4.56) <0 84.43 (1.52) 84.56 (0.4) 74.43 (0.1) 97.71 (0.13)
ELMFSV200 12.70 (26.78) <0 84.12 (2.5) 85.38 (0.41) 81.77 (0.11) 97.41 (0.12)
ELMFSV-DLF2 54.77 (5.22) 94.27 (1.27) 78.26 (1.3) 78.43 (0.74) 68.24 (0.12) 96.50 (0.15)
ELMFSV-DLF5 56.04 (5.43) 94.73 (0.94) 79.15 (1.39) 79.05 (0.57) 69.21 (0.12) 97.21 (0.18)
ELMFSV-DLF10 57.27 (4.7) 94.39 (1.83) 79.77 (1.1) 79.88 (0.42) 69.87 (0.09) 97.13 (0.11)
ELMFSV-DLF15 5861 (4.63)  91.53 (7.2) 81.26 (1.25)  81.75 (0.4) 70.66 (0.12)  97.37 (0.17)
ELMFSV-DLF25 60.43 (4.24) 76.82 (35.25)  82.41 (1.13) 82.22 (0.45) 71.31 (0.28) 97.51 (0.12)
ELMFSV-DLF50  60.32 (3.61) <0 83.51 (1.6) 84.38 (0.4) 76.48 (0.09)  97.6 (0.09)
ELMFSV-DLF75  56.56 (3.23) <0 83.74 (1.65)  85.17 (0.37) 78.50 (0.12)  97.64 (0.11)
ELMFSV-DLF100  53.00 (4.38) <0 84.2 (1.81)  85.32 (0.32) 79.35 (0.09)  97.79 (0.11)
ELMFSV-DLF200 <0 <0 82.00 (3.8) 85.60 (0.41) 82.74 (0.09) 97.40 (0.15)
ELMFSCA2 50.45 (3.66) 85.37 (2.66) 77.14 (1.77) 80.23 (1.46) 68.93 (0.55) 94.84 (0.87)
ELMFSCA3 52.41 (4.15)  87.82(2.97)  78.59 (1.93)  81.34 (1.63) 69.59 (0.67)  95.34 (1.05)
ELMFSCA4 52.29 (4.17) 89.75 (2.7) 78.56 (1.1) 81.68 (1.73) 70.01 (0.15) 96.06 (0.58)
ELMFSCAS5 54.26 (3.47)  91.35 (1.59)  79.24 (1.41)  81.66 (1.2) 70.17 (0.19)  96.24 (0.22)
ELMFSCA10 55.45 (2.09) 92.59 (1.42) 80.24 (1.14) 82.00 (0.42) 70.42 (0.16) 96.42 (0.23)
ELMFSCA-DLF2 5492 (6.02)  93.72 (1.55)  79.28 (1.52)  81.41 (1.41) 69.73 (0.51)  96.54 (0.25)
ELMFSCA-DLF3  56.67 (5.46) 93.80 (1.62) 79.41 (1.6) 81.32 (1.55) 70.09 (0.45) 96.57 (0.17)
ELMFSCA-DLF4  55.82 (5.39) 93.95 (1.25)  79.96 (1.49) 82.37 (1.64)  70.16 (0.36) 96.58 (0.19)
ELMFSCA-DLF5  56.84 (5.22)  93.90 (1.21)  79.90 (1.48)  81.75 (0.4) 70.35 (0.17)  96.60 (0.3)
ELMFSCA-DLF10 57.93 (4.72) 93.76 (1.34) 80.45 (1.34) 82.14 (0.47) 70.45 (0.13) 96.83 (0.2)
KFSV 53.52 (7.3) 93.85 (1.34)  75.50 (3.89) 96.77 (0.32)
KFSVPoly2 56.17 (2.18) 94.84 (1.04) 79.00 (1.03) 97.11 (0.23)
KFSVPoly3 <0 95.17 (1.38)  76.85 (4.66) 97.34 (0.23)
KFSVPoly4 <0 95.02 (1.32) <0 97.56 (0.33)
NN 85.48 (3.09) 85.51 (3.18) 75.71 (1.08)

Table 5.5: Mean an standard deviation of the explained variance obtained
on the test dataset over 10 repetitions when k& = 5 variables are selected with
the various algorithms. The experiment is described in section [5.3.6.2
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5.4 Conclusion

This chapter has provided a comprehensive presentation of nonlinear unsu-
pervised variables selection algorithms. In the first part of the chapter, an
introduction to neural networks with a particular focus on ELM is presented.
Methodologies for initializing the weights and choosing the optimal number
of nodes in an Extreme Learning Machine regression problem are presented.
The proposed methodologies tune the parameter without requiring user inter-
vention. This is a necessary condition for industrial application. In addition,
it is shown that the performance of ELMs is often improved with the addi-
tion of Direct Linear Feed Through. The chapter then focuses on nonlinear
extensions of the FSCA and FSV algorithms originally presented in Chap-
ter 4l A general framework for data decomposition and reconstruction in a
nonlinear scenario is presented based on both forward selection of variables
and on forward selection of components. These frameworks are then used by
several algorithms based on Polynomial Regression, Extreme Learning Ma-
chine Neural Networks, Kernel Regression and Multilayer (Deep Learning)
Neural Networks. These algorithms are described in detail and compared
on real and simulated datasets. Among all the algorithms ELMFSV-DLF
achieves the best results in many situations. It is interesting to note that
PCA can often be outperformed by forward variables selection methods if
nonlinearities are considered.



Chapter 6

Anomaly Detection and the
Dimensionality Reduction
Problem

6.1 Introduction

In a semiconductor manufacturing context, the ability to detect faults early
during the production process reduces the number of incorrectly processed
wafers and directly translates into improved overall process yield and through-
put [188]. As a result, fault or anomaly detection is an active area of research
within the semiconductor manufacturing environment. Some examples are
[189], [188] and [190] where clustering is used to separate normal and anomaly
samples. Closer to our application area is the work of [191], [192] and [193]
where, starting from the measurements of some characteristic of the wafer, a
Gaussian Process is used to model the standard geometric profile of a wafer.
New wafers are then classified as normal or as anomaly according to how
close to the default profile they are. The focus in this chapter is on anomaly
detection with OES data. This has previously been considered in [23] and
[194] where anomaly detection in OES time series is performed with unsu-
pervised random forest and one class support vector machines (OCSVM).

OES data is generally characterized by high dimension [89], which poses a
problem for anomaly detection algorithms. In addition to the exponential
growth in computational complexity with dimension, a major challenge is
the Curse of Dimensionality [195], [196], [197], [198]. In this chapter the
aspect of the "Curse of Dimensionality" we are concetrated with is the fact
that distance measures become unreliable in high dimensional spaces. This
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is formalized in [199] with the following theorem:

Theorem 6.1.1. Consider the hypothesis that the ratio of the variance of
the length (|| - ||) of any point vector ( X4 € R? ) to the length of the mean
point vector (denoted by E[|| X4 ||]) converges to zero with increasing data
dimensionality. (This assumption covers a broad range of data distributions
and distance measures (generally: all L, norms with p > 1)). Then the pro-
portional difference between the farthest point distance D,,.. and the closest
point distance Dy, (the relative contrast) vanishes. Formally:

Dmax - Dmin

min

[ % |l
Ell xa ]

From the previous theorem it follows that in high dimensions the data is
sparse with large distances between samples and that algorithms based on a
distance measure between points become unreliable [200]. The work is then
oriented toward algorithms that scale well to high dimensional data (in the
sense that are not affected by the Curse of Dimensionality) and towards ad-
dressing the impact of dimensionality reduction in anomaly detection.

=0 (6.1)

d—00

If lim Var ( ) =0 then

In chapters 4| and |5| the dimensionality reduction problem was considered.
The current chapter analyses the effect of high dimension and dimensional-
ity reduction in anomaly detection. The chapter makes several contributions.
Firstly a review of unsupervised anomaly detection algorithms is introduced.
In this context it is shown that Unsupervised Random Forest [201] and Ex-
tremely Randomized Trees [202] are effective algorithms for anomaly detec-
tion with OES data. In addition, a new anomaly diagnosis method based
on the Isolation Forest [203| algorithm is proposed that allows the variables
causing the anomaly to be identified. In certain situations dimensionality
reduction cannot be avoided. For this reason a dimensionality reduction al-
gorithm explicitly designed for anomaly detection is developed. It is then
shown how the proposed methods can be used for anomaly detection with
the PSI data (Dataset . Finally, it is shown how the Similarity Ratio
algorithm (SR, [204]), a method particularly designed for anomaly detection
with the OES time series, can be improved trough the use of the formalism
introduced in chapter [2{ and One Class SVM [205].

The remainder of the chapter is divided into 3 sections. The first section
provides an introduction to anomaly detection and a review of the most
popular algorithms. The second section of the chapter investigates the effect
of dimensionality reduction on anomaly detection. In the final section the
methodologies proposed in the first 2 sections of the chapter are applied to

the PSI data (Dataset [2.4.1]).
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6.2 Anomaly Detection

This section provides an introduction to anomaly detection. It starts by
providing a definition of anomaly. In order to keep the problem as general as
possible the whole discussion is based on a generic dataset D and distance
measure d. In general for all our applications we may assume that D = R?
and d is the Euclidean distance.

6.2.1 Definition of Anomalies

The aim of an anomaly detection system is to detect anomalies or outliers.
An intuitive definition of outlier was provided by Hawkins [206].

Definition 6.2.1. Hawkins-Outlier: An outlier is an observation that de-
viates so much from other observations as to arouse suspicion that it was
generated by a different mechanism.

A more formal definition based on distance (Distance Based) is instead pro-
vided in [207]:

Definition 6.2.2. DB(«,d;,)-Outlier: An object p in a dataset D is a
DB(«, dpr) outlier if at least percentage « of the objects in D lies greater
than distance d,,;, from p, i.e., the cardinality of the set

{g€ D: dp,q) < dpin} (6.2)
is less than or equal to (100 — )% of the size of D.

The above definition only captures certain kinds of outliers. Because the
definition takes a global view of the dataset, these outliers can be viewed as
"global" outliers. However, for many interesting real-world datasets which
exhibit a more complex structure, there are other kinds of outliers. These
can be objects that are outlying relative to their local neighbourhoods, par-
ticularly with respect to the densities of the neighbourhoods. These outliers
are regarded as "local" outliers. An example dataset with global and local
outliers is depicted in Figure (6.1}

6.2.1.1 Local Outliers

Breunig et al. [208] provide a formal definition of local outliers. The key dif-
ference between this notion and the previous notions of outliers is that being
outlying is not a binary property. Instead, it assigns to each object an outlier
factor, which is the degree to which the object is considered outlying. The
proposed local outlier factor (LOF) is mathematically described in equation
but some preliminary definitions are required.
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Figure 6.1: A 2 dimensional dataset defined by a main cluster (green) and
two smaller clusters (red and blue). Global anomalies are represented with
yellows stars while local anomalies associated with the smaller clusters are
respectively represented with blue and red stars.

Definition 6.2.3. (k-distance of an object p) For any positive integer k, the
k-distance of object p, denoted as k-distance(p), is defined as the distance
d(p,0) between p and an object 0o € D such that:

i) for at least k objects o' € D/p it holds that d(p,o") < d(p,0).
i1) for at most k — 1 objects o’ € D/p it holds that d(p, o) < d(p,0).

Definition 6.2.4 ( k-distance neighbourhood of an object p). Given the k-
distance of p, the k-distance neighbourhood of p contains every object whose
distance from p is not greater than the k-distance, i.e.

Ni(p) ={q € D/p: d(p,q) < k-distance(p)} (6.3)
The objects g are called the k-nearest neighbours of p.

Definition 6.2.5. (reachability distance of an object p w.r.t. object o) Let
k be a natural number. The reachability distance of object p with respect to
object o is defined as

reach-distg(p, 0) = maz {k-distance(o), d(p, 0)} (6.4)
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Intuitively, if object p is far away from o, then the reachability distance
between the two is simply their actual distance. However, if they are "suf-
ficiently" close, the actual distance is replaced by the k-distance of 0. An
illustration of this concept (reproduced from the original LOF paper [208])
is provided in Figure [6.2]

N
/ P1 N
/ reach—distkéa 7, 0) = k-distance(o)
oo ,‘
°
\ N » °
s

reach-dist(p,, 0)
P2

Figure 6.2: reach-dist(p;,0) and reach-dist(ps,0), for k& = 4. Figure from
[208)].

Definition 6.2.6. The local reachability density of p is defined as the inverse
of the reachability distance that is:

> oen., . Teach-dist,(p, o) -
MMZ( T ) o

Definition 6.2.7. It is finally possible to define the Local Outlier Factor
(LOC) for a point p as:

Ird,(o)
20EN,0) T (p)

Ny (p)

Ird,(p) is a measure of the density of points around p. LOF is the value of
the average density of data and the v neighbours of p and p itself. It is clear
to see that if the density of the data aound p is much less than that of its v
nearest neighbours then LOF for p will be large.

LOF =

(6.6)

In [208] the authors use the LOF factor to detect anomalies. While the
method is important because it provides a formal definition of local outliers
and the idea to use an outliers score instead of a binary classifier this will
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not be further discussed in this thesis because it has been outperformed by
more recent methods both in computing time and accuracy [203].

To complete the classification of the different kind of anomaly the definition
of contextual anomaly is now reported:

Definition 6.2.8 (Contextual Anomalies). The term Contextual Anomaly
is reported in [209] to describe a particular case of outlier. If a data instance
is anomalous in a specific context (but not otherwise), then it is termed as a
contextual anomaly (also referred to as conditional anomaly). The notion of
a context is induced by the structure in the data set and has to be specified
as a part of the problem formulation. For example the time in a time series
dataset is an attribute that defines a context.

6.2.2 Introduction to Anomaly Detection Algorithms

Anomaly detection is a classical field of study. Over the years numer-
ous anomaly detection algorithms have been developed. According to [210]
anomaly detection algorithms can be classified in three main groups:

e Supervised Anomaly Detection. In this case the anomaly detection
problem is reduced to a classification task. It assumes the availability
of a training data set which has labeled instances for normal as well
as anomaly behaviour in which case standard classifiers such as Linear
Discriminant Analysis (LDA), Support Vector Machines (SVM) and k-
nearest neighbours can be trained to distinguish between normal and
anomalous samples [210].

e Semi-supervised Anomaly Detection. Assume that the training
data has labeled instances for only the normal class. Systems can
then be trained to assign an anomaly score to new samples accord-
ing to how distant they are from the normal behaving ones. Several
algorithms have been developed with this aim, including Multivariate
Control Charts |211], one-class SVMs [205] and Unsupervised Random
Forests [201], [23]. While some methods are explicitly designed for
unsupervised anomaly detection, it is possible to transform an unsu-
pervised problem to a supervised one using the technique described
in [201]. Since Semi-Supervised anomaly detection methods do not re-
quire labels for the anomaly class, they are more widely applicable than
supervised techniques.

e Unsupervised Anomaly Detection. Techniques that operate in
unsupervised mode do not require labelled data and thus are most
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widely applicable. The techniques in this category make the implicit
assumption that normal instances are far more frequent than anomalies
in the test data. This structure is then revealed and potential anomalies
identified though the application of unsupervised clustering techniques
such as DBSCAN [212] and Max Separation clustering [90] or through
isolation based methods such as Isolation Forest [203].

6.2.2.1 Unsupervised Anomaly Detection

In semiconductor manufacturing measurements of normal behaving wafers
are in general available while often no information regarding the anomaly
data is available. For this reason in this thesis the focus is on semi-supervised
and unsupervised techniques as they do not require data labelled as anomaly.
In addition, due to the high dimension of the OES datasets, of particular im-
portance are algorithms that can scale to large and high dimensional datasets.
Unless otherwise specified, in the reminder of the thesis unsupervised algo-
rithm will be used to refer to both unsupervised and semi-supervised algo-
rithms. Unsupervised algorithms for anomaly detection can be divided in 4
main groups. Good descriptions of these groups are reported in [208| and
[213].

e Distribution-Based: In distribution-based methods a standard dis-
tribution (e.g. Normal, Poisson, etc.) is used to fit the data. Out-
liers are then defined based on the probability distribution. Over one
hundred tests in this category, called discordancy tests, have been de-
veloped for different scenarios [214]. A key drawback of this category
of tests is that most of the distributions used are univariate. Some
examples of multivariate tests are described in [215]. In addition, for
the majority of applications, the underlying distribution is unknown.
Fitting the data with standard distributions is costly, and may not
produce satisfactory results.

e Depth-Based. Each data object is represented as a point in a p-
dimensional space, and is assigned a depth. With respect to outlier de-
tection, outliers are more likely to be data objects with smaller depths.
There are many definitions of depth that have been proposed such as
the Mahalanobis depth [216]| and the convex hull peeling depth [217].
In theory, depth-based approaches could work for large values of p.
However, in practice, while there exist efficient algorithms for p = 2
or 3 [218], [219], depth-based approaches become inefficient for large
datasets for p > 4. This is because depth-based approaches rely on the



6.3 Unsupervised Anomaly Detection Algorithms 175

computation of p-dimensional convex hulls which have a lower bound
complexity of O(np/2) for n objects.

e Cluster-Based. Most clustering algorithms (e.g. DBSCAN [212],
BIRCH [220]), are to some extent capable of handling exceptions. How-
ever, since the main objective of a clustering algorithm is to find clus-
ters, they are developed to optimize clustering, and not to optimize
outlier detection. The exceptions (called "noise" in the context of clus-
tering) are typically just tolerated or ignored when producing the clus-
tering result. Even if the outliers are not ignored, the notions of outliers
are essentially binary, and there is no quantification of how outlying an
object is.

e Density-Based. As previously mentioned this methodology was orig-
inally proposed by Markus et al. [208|. It relies on the local outlier
factor (LOF) of each object, which depends on the local density of its
neighborhood. Algorithms that are part of this group include: LOF
[208], LOCT |213], Isolation Forest [203].

In the next sections a review is presented of selected anomaly detection algo-
rithms. The algorithms have been chosen according to their popularity and
for their performance on large and high dimensional datasets.

6.3 Unsupervised Anomaly Detection Algorithms

In this section a number of popular anomaly detection algorithms are intro-
duced and are evaluated with respect to anomaly detection with OES data.
The J2M datased (Dataset [2.4.2)) is used as illustrative case study.

6.3.1 Univariate and Multivariate Control Chart

Univariate and multivariate control charts are among the most popular fault
detection algorithms. This is due to their ease of use, simple implementation
and numerical stability. Control charts were introduced by Hotelling in 1930-
1940 and they are still the state-of-the-art in many industries.

6.3.1.1 Univariate Control Chart

A univariate control chart is an anomaly detection method designed to mon-
itor a single variable. A probability distribution D is used to model the
normal behaviour of the variable. Given the probability distribution of the
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normal behaving data an in control interval is defined as I, = [L,, U,| such
that P(d € I,) =1 — a where d ~ D. A new sample X € R is considered in
control at level o if X € 1.

Example 6.3.1 (Normal distribution). In many applications the normal be-
having samples are modelled with the normal distribution i.e. D = N(u,0)
where 1 and o are parameters estimated with the normal data. Figure
[6.3] shows the histogram of the frequencies of 10,000 values sampled from
a N(0,1) distribution. Three pairs of vertical lines are plotted corresponding
to the I, interval for three commonly used values of .

0.45

— a=0.01
0.40f a=0.05 |4

— «a=0.10

0.35f

0.30F

©

N

n
T

Frequency
o
N
e

Figure 6.3: The histogram of frequencies for 10,000 samples from a N (0, 1)
distribution. Each pair of vertical lines represents the I, interval for a given
value of «a.

The univariate control chart is easy to use and interpret, but has one major
limitation. It is not able to capture the interaction between variables of a
multivariate distribution as shown in the following example.

Example 6.3.2 (Bivariate distribution). Figure[6.4]shows a two dimensional
dataset X = (x1,X2). The dataset contains an anomaly (represented by a
star in the figure). The limits obtained with two univariate control charts
respectively, for variable x; and x5, are also shown. A sample is considered
normal if it is inside the black square in the top plot and if it is between
the two vertical lines in the second figure. Clearly it is impossible to distin-
guish the anomaly from the normal data as it is in the region where samples
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are labelled as normal. It follows that it is impossible to detect this kind
of anomaly with univariate control charts due to their inability to model
interactions between variables.
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Figure 6.4: A scatter plot of a 2-dimensional dataset and its projection onto
its two axes. The white star represents an anomaly. The 95% control limit
obtained with the two univariate control charts is represented by black lines
as explained in Example [6.3.2]

To address this limitation problem multivariate control charts have been
developed as an extension of the univariate control chart.

6.3.1.2 Multivariate Control Chart

Multivariate Control Charts (MCC) are the natural extension of the Univari-
ate Control Chart to multidimensional datasets. Several versions of (MCC)
have been proposed in the literature. Among these one of the most pop-
ular is the Hotelling T control chart [221]. In the most common form of
MCC the normal data is modelled as a multivariate normal distribution
X ~ N(p,¥), X € R™P. Given a new sample y € RP the distance
from the normal data d? is computed as:

E(X,¥) = (Y- ="' - p) (6.7)
Figure considers the same dataset as used in Example [6.3.2] This time
each sample y is coloured as log(d*(X,¥)). As can be seen the MCC al-
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gorithm is correctly able to assign an high anomaly score to the sample at
coordinates (0.5, —1.5).

Figure 6.5: The same dataset considered in Example The color repre-
sent the value log(d?(X,y)) obtained for each sample.

6.3.1.3 MCC and the Curse of Dimensionality

The anomaly score d? obtained by MCC is based on the Euclidean distance.
Due to the curse of dimensionality [198|, the Euclidean distance becomes
unreliable as a similarity metric in high dimensional spaces. It follows that
MCC is an inefficient method, when the number of variables is large as shown
in the following example.

Example 6.3.3 (MCC high dimensional data). Consider the matrix X =
(X1, .. .,X100) € R9%100 where the variables xi, ..., X100 ~ N(0,1) i.i.d..
An anomaly is introduced by setting the value of the 100" variable of the
final sample to 8, i.e. x500,100 = 8. Figure shows the d? value assigned by
MCC to each sample. It is easy to observe that the last sample represented
by a star has a lower d? value than many other samples.

OES data is often characterized by high dimension. In order to apply MCC to
the OES data a dimensionality reduction step is required. The next example
illustrates how the performance of MCC changes when the dimension of the
data is first reduced with PCA.
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Figure 6.6: The d? values obtained with MCC for each sample for the data
described in Example [6.3.3} The last sample in the right is the anomaly and
it is represented with a star (coordinates (500,5.2) )

Example 6.3.4. Consider X € R2194*12277 the OES spectrum of the J2M
data (dataset 2.4.2). The dimension of the data is reduced with PCA by
selecting the first £ = 10 and then k& = 700 components. This is done to
avoid having more features than samples and to ensure that the 3 matrix is
of full rank. 800 wafers are sampled among the ones with normal values of
ER and they are used to train a MCC. The d? value is then evaluated for all
the data. The ER values coloured according to their d? value are reported
in Figure [6.7 It can be easily observed that when k& = 10 MCC is able to
recognize the anomaly samples and the small shift during production. When
k = 700 MCC is still able to recognize the anomaly (orange) but it is not
able to provide good separation between the normal data and the small shift.

Observation 6.3.1. In the previous example it is shown that the perfor-
mances of MCC improves if the dimension of the data is reduced with PCA.
Instead of applying MCC to the original matriz X € R"*P it is applied to the
score matrix

T, = XP, c R k<<p (6.8)

This is equivalent to the T? statistic described in chapter (Section|4.5.2.4)).
In the same chapter the @ statistic (equation was also defined. In an
anomaly detection context it is used to monitor how well the PCA model



6.3 Unsupervised Anomaly Detection Algorithms 180

80 ‘ k=10 ‘
9
75| \ 1 8
o Ageanded .«
6
Q: 65 1 5
& 2
60} 3
55| 2
50 ° !
2500 0 500 1000 1500 2000 2500
Wafer
k=700
80 ‘ : ; ‘ w 18.0
75F 1 B 16.5
15.0
708 1 13.5
A 65l | 12.0
K 10.5
601 9.0
55| | 7.5
50 L ‘ L L L L 6.0
2500 0 500 1000 1500 2000 2500
Wafer

Figure 6.7: The ER for the J2M data. The wafers are coloured according to
the d? value obtained as described in Example [6.3.4]

monitors the new samples. If Q) is too large the anomaly detection system is
not effective anymore as too much information is not being modelled.

In the next example the J2M dataset is summarized using only its first two
principal components. The resulting two dimensional dataset can be graph-
ically represented and this makes it easier to interpret the model and the
process behaviour.

Example 6.3.5 (Elliptic Envelope J2M). A 2 components PCA decomposi-
tion is performed on the normal behaving samples of the J2M data (dataset
. Figure shows the 2 dimensional projection of all the J2M samples
coloured according to their ER value. In the Figure the T2 value is repre-
sented by concentric ellipses. It can be observed that samples with an ER
which is either too large or too small are far from the center of the ellipse.
The samples with small and high ER values are respectively in the upper
right and lower left of the plot. This suggests that the process variations are
caused by two different mechanisms.

Observation 6.3.2. While the use of PCA as a preprocessing step with
MCC is very common, better performance may be obtained through the use

of nonlinear dimensionality reduction. This is for example investigated in
where the dimension of the data is reduced with kernel PCA.
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Figure 6.8: The T values for the J2M datasets when represented by its first
two principal components.The PC projection was computed using only the
samples with normal ER values. All samples are then mapped based on this
projection. The samples are coloured according to their ER value.

6.3.2 Clustering-Based Methods

In unsupervised fault detection clustering algorithms are a very popular op-
tion. Their aim is to detect the clusters of normal behaving samples and label
as anomaly all the samples that are far from these clusters. In this section
two of the most popular clustering algorithms are described. The clustering
algorithms are by their nature based on a distance measure. This makes then
less effective when high dimensional data is used as they are impacted by the
curse of dimensionality [223].

6.3.2.1 Self-Organizing Map

The Self Organizing Map (SOM) [|224] may be described as a nonlinear, or-
dered and smooth mapping of high dimensional input data into the elements
of a regular low dimensional array (grid). The SOM algorithm assigns to
each sample a neuron of the grid. The closer two samples are in the original
p dimensional space, the closer their neurons are in the grid. A graphical
representation of a self organizing map is shown in Figure [6.9] The grid is
composed of M neurons with each one associated with a subset of the data.
This is equivalent to obtaining M clusters. Some more complex algorithms
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use a two step clustering procedure. In these cases the number of SOM clus-
ters is reduced by merging those that are similar. Some of the techniques
used for the second clustering step are described in |225|.

SizeX

&
\ 4

input vector

Figure 6.9: A graphical representation of SOM.

Algorithm 6.3.1 (SOM). Consider the input data X € R™*? and the grid
G defining a discrete 2 dimensional space of cardinality M (for simplicity it
is assumed that M = k?).

9:{ri€kaZk:i:1,...,M} (69)

The SOM algorithm is defined by a base step that is recursively repeated
T times. It starts with a set of centroids {m; e RP: ¢ =1,..., M} and to
each one of them is associated a position on a k x k grid. A neighbourhood
function is then defined as

he; = a(t)exp (—%) (6.10)

where a(t) is the learning-rate factor, which decreases monotonically with
the regression steps and o(t) corresponds to the width of the neighbourhood
function, which also decreases monotonically with the regression steps.

For each sample X € RP the M vectors are recursively updated as

cx = argmin || X — m; ||? (6.11)
i=1,..,

and the process is recursively repeated T times.
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The SOM can be used to cluster the data. This is done by assigning to each
sample X its closest centroid m. SOM also provides a 2-dimensional grid
graphical representation of the data with each centroid assigned a position
in the grid. Figure [6.10] shows the positions of the centroids at 4 different
iterations of the SOM algorithm in a 2 dimensional dataset.
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Figure 6.10: The position of the centroids (m;, i = 1,...,4) at 4 different
iterations of the SOM algorithm for a sample two dimensional dataset.

6.3.2.2 K-Nearest Neighbours

k-Nearest Neighbour (KNN) is another popular clustering based approach.
While KNN is in general considered a supervised algorithm it is used for
unsupervised anomaly detection in Verdier et al. [226]. In the paper the
authors show that KNN has better performance than a MCC. According to
the authors the reason for this is that in general MCC is applied under the
hypothesis that the data follows a normal distribution which is often not true
in reality.

Algorithm 6.3.2. (Unsupervised KNN) The unsupervised version of KNN
is very similar to the supervised one and is obtained with the following steps:

e Consider X a matrix whose rows are the samples in control and a new
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sample z. The distance between Z and X is obtained as
k
d(7) = Y (%, 7) (6.13)
i=1

where X1, ...,X, are the k closest samples in X to Z according to the
distance d.

e 7 is then labelled an anomaly if di(Z) is larger than a threshold chosen
by the user.

Observation 6.3.3. Observe the similarity between the KNN distance in
equation|[6.13 and the local reachability density of the LOF algorithm in equa-
tion[6.8. In both the cases the obtained value is the distance of a sample from
its meighbours based respectively on the d distance (that is in often the eu-
clidean distance) and the k-distance (Definition [6.2.3). The latter one may
be considered a more fine grained anomaly distance as it takes into account
the locality of the samples.

6.3.3 Depth Based Anomaly Detection

In depth based anomaly detection a depth is assigned to each sample or
region of the space. The outliers are the samples with the lowest depth.
Different definitions of depth are described in the literature. Several of them
are described in [227]. Here two of the most popular are reported:

e The Mahalanobis depth [216] of X with respect to the data X is defined

as: ]
MD = — — (6.14)
1+ (X — px) By (X — px)
where Xx and px are the covariance matrix and the mean vector of
X. Observe the similarity to the multivariate control chart distance

(equation

e The convex hull peeling depth [217] of a sample X in a dataset X is the
level of convex layer that X belongs to. A convex layer is defined as
follows. Construct the smallest convex hull which encloses all sample
points in X. The sample points on the perimeter have depth 1 and
are removed. The convex hull of the remaining points is constructed;
the points on the perimeter of this hull are the second convex layer
and have depth 2. The process is repeated, and a sequence of nested
convex layers is formed. While this approach can be in theory used
for an arbitrary dimensional space, efficient algorithms to compute the
hull only exist for small dimensional spaces [208|.
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Depth based anomaly detection methods are implicitly related to an idea of
distance. Indeed it is important to understand the geometrical position of a
sample respect to all the others. For this reason depth based methods are
affected by the curse of dimensionality making it difficult to use them with
highly dimensional datasets.

6.4 Algorithms for High-Dimensional Data

All the anomaly detection algorithms described in the previous section are
intrinsically linked to the idea of distance. As previously noted most distance
measures become unreliable in high dimensional space. It is therefore impor-
tant to choose algorithms that can scale well to high dimensional problems.
In this section the most popular of these algorithms are presented.

6.4.1 One Class SVM

One Class Support Vector Machine (OCSVM) is probably one of the most
popular anomalies detection algorithms. It was originally developed to es-
timate the support of high dimensional distributions [205] and it has been
successfully used for anomaly detection in several fields. Some examples are
[228], [229], [230] and [231] where it is respectively used to detect anomaly
in time series, image classification, fault detection of wearable devices and
novelty detection in chiller systems. In the one-class formulation, data are
first mapped into a feature space using an appropriate kernel function and
then maximally separated from the origin using a hyperplane. The aim of
OCSVM is to define a function f that takes the value +1 in a small region
containing most of the training data and —1 elsewhere.

Algorithm 6.4.1 (OCSVM). Consider a training dataset X € R"*?, X C X
where X is a compact subset of R? and ® a map into the dot product space:

O(X): X = F and (X)) -d(y) =K(X,¥) VX, ¥y € X (6.15)

The OCSVM optimization problem is then defined as:

: 1 ., 1
WeFEER peR 2 I 1z Ton 2& —r (6.16)

subject to the constraints:

(w-@(X;)) >2p—§& i=1,....n >0 (6.17)
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where & = (&1,...,&,) € R" and v is a tunable parameter that determines
the trade-off between minimising the size of the support and maximising the
number of training data points within the support.

Since the & vector is penalized it is expected that for the w and p solution
to the problem the decision function

f(X) = sign((w - ©(X)) — p) (6.18)

will be positive for most samples X;. At the same time the || w ||3 is small
forcing f(X) > 0 only on a small region. The trade-off between the support
of f(X) and its positiveness on the training data is regulated by v. The
minimization problem defined in equation [6.16 can be solved through the
use of Lagrange multipliers and quadratic programming as described in [205].
An anomaly score for a given sample X can then be defined as

s(X)=—(w-®(X))+p (6.19)

This represents how far X is from the support of the data used to train the
model.

Example 6.4.1. Figure shows the decision function obtained with
OCSVM for a simulated two dimensional example. In the Figure three clus-
ters of samples are represented. The OCVSM is trained on this data using
the Gaussian kernel ®(X) = e~ IIKIZ. The colour coded shaded regions rep-
resent how far each sample is from the estimated support, as measured in

equation [6.19]

6.4.1.1 OCSVM Diagnosis

OCSVM is a black box algorithm. While the algorithm provides an efficient
anomaly score, it is difficult to extract information and to understand the rea-
sons behind an anomaly. In [232] a fault diagnosis procedure is proposed. The
authors use a SVM based Recursive Feature Elimination procedure (SVM-

RFE) defined by the following algorithm:

Algorithm 6.4.2 (OCSVM Recursive Features Elimination). The set of &k
variables causing the anomaly is estimated with the following steps:

e Variables are ranked according to the change in the cost function (equa-~
tion |6.16]) if all the variables but one are used.

e The lowest ranked variable is removed.
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Figure 6.11: OCSVM on a simulated 2 dimensional problem. The samples
are coloured according to their anomaly score reported in the lateral bar.
The estimated support of the distribution is represented by the shaded area.

e The process is repeated until k£ variables remain.

e The first three steps can be repeated using different subsamples of the
data. Sets of k variables are then obtained and the set with the highest
Area Under the Curve (AUC, [233]) score can be used as the set of

most relevant variables.

Observation 6.4.1. [t is interesting to observe that the diagnostic system
described in Algorithm has similar characteristics to the unsupervised
feature selection algorithms described in chapter (for example FSCA). It is
then reasonable to assume that this algorithm can be improved using similar
techniques to the ones proposed in Section [4.7

6.4.2 Isolation Forest

The Isolation Forest (IF, [203]) is a more recent anomaly detection algorithm
based on an isolation procedure. It is based on the idea that anomalies are
the minority of the data consisting of only a few instances, and that they
have attribute-values that are very different from those of normal instances.
Anomalies are therefore more susceptible to a mechanism that the authors
call isolation. IF does not rely on any distance or density measure and it
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is therefore particularly efficient for high dimensional datasets as it is not
influenced by the curse of dimensionality [198].

Algorithm 6.4.3 (Isolation Forest). Isolation forest is an ensemble of iso-
lation trees, similar to the more popular decision trees and random forest
which will be introduced in Section [6.5.1l An isolation tree is constructed
starting with a matrix X as described in Pseudocode [6.4.1] An Isolation
Forest is then defined by numerous Isolation Trees

IF ={t,,... tr} (6.20)

For each tree t it is possible to compute the number of iterations hy(X) re-
quired to isolate a sample X. The average number of steps required to isolate
a sample X in a forest is then

h(®) = % S h(®) (6.21)

telF

The idea is that only a few steps are required to isolate an anomaly. The
number of steps required to isolate an observation X is influenced by the
number of samples n in the data. To account for this a normalized anomaly
score s(X,n) is defined as:

s(®n) =2 cn) (6.22)
where ¢(n) is:
2Hn—1)—2(n—1)/n ifn>2
cn)=4¢ 1 ifn=2 (6.23)
0 otherwise
and H (i) is the harmonic number estimated as:

H (i) ~ In(i) + 0.5772156649. (6.24)

It can be proven that ¢(n) is the average number of steps required to isolate
a sample from the other n samples [203|. In this sense it provides a normal-
ization factor that makes the s value independent of the number of samples

().

Figure shows the s(X) and h(X) values obtained with the Isolation forest
on a simple two dimensional dataset.
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Input: Input matrix X € R"*P.

1:

t = 0 (the empty tree)

if nrow(X) == 1 then return ¢

end if

Randomly select x; a feature of X

Randomly select a split point p € (min(x;), max(x;))

Add to t the node Ny, ,

Define X; and X, as the matrix composed of the samples of X where the
variable x; is respectively larger and smaller than p.

Repeat the algorithm with X = X;. Link the obtained tree as the left
child of t.

Repeat the algorithm with X = X,.. Link the obtained tree as the right
child of t.

Pseudocode 6.4.1: Isolation Tree

Anoma]y chre s(x)
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Figure 6.12: Samples in a two dimensional spaces coloured according to the

s(X) and h(X) values obtained with Isolation Forest.
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6.4.2.1 Weakness of the Isolation Forest Method

The Isolation Forest algorithm has been shown to be one of the most efficient
algorithms both in terms of computational complexity and anomaly detection
performance [203]|. Despite this the algorithm has several limitations.

Local Anomalies In [234] it is shown that the IF method is not able
to recognize local anomalies. This problem is replicated in the following
example:

Example 6.4.2. In Figure [6.13] a two dimensional dataset is represented.
The dataset is composed of 3 clusters of samples and three global anomalies.
All the clusters are composed of 50 samples characterized by different density.
The samples in the cluster in the lower right part of the Figure have a lower
density. The samples at the bottom of this cluster have a higher anomaly
score than some of the global anomalies. The local anomalies in the two
smaller clusters have a lower anomaly score than most of the samples in the
larger cluster.

0.78

1t °® 0.75
® Cluster with a Local Anomaly|
Global Anomalies 10.72
of ]
°%
o) & 10.69
o ° 8
o O
™~ o
g 1 o % o0°g {0.66
ClusPer with 2 Local Anomalies oo
€ o %o
o 40.63
-2t [} Ie) @ le)
Global Anomaly Og Oo
‘) €] 0.60
®

Cluster of highly spaced samplesi
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Ty
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Figure 6.13: A two dimensional dataset containing local and global anoma-
lies. The color represents the anomaly score obtained with the isolation forest
method.

The previous example has shown that IF is not able to correctly assign an
anomaly score to local anomalies and it is unreliable if the data contains
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clusters with different densities. In [234] the authors propose solving this
problem through the introduction of a Mass-Based Local Ranking Measure.
In general, relative mass of an instance is the ratio of data mass in two
regions covering the instance, where one region is a subset of the other. The
relative mass measures the degree of anomaly locally by considering the data
distribution in the local regions (superset and subset) covering an instance
[235]. In each isolation tree T; the anomaly score of an instance X w.r.t. its
local neighbourhood s;(X) is estimated as:

- m(T;(X)
(R) = : 6.25
55 = mE®) xn (6:25)
where T}(X) is the leaf node in 7} in which % falls, 7}(X) is the immediate
parent of T;(X), m(-) is the data mass of a tree node and n is the size of the
training set used. The global anomaly score of an isolation forest composed
of ¢ isolation trees is then defined as:
1 t
s(X) =) si(X) (6.26)

t 4
=1

Clusters of Local Anomalies In [236] it is shown that IF is not able to
detect clusters of local anomalies and the SCIFOREST method is proposed
as a more powerful alternative. An example of a cluster of local anomalies
is shown in Figure [6.14] SCiForest is similar to IF but the trees are built in
a slightly different manner. In each node of the tree, given an hyperplane f
the data X is split into X! and X" based on which side of f a samples falls.
Defining the standard deviation gain (Sdgqn,) as:

l r
) o3 — 2R £ (X7 i
- 75 (X)) (027
where 7m¢(X) is the projection of X over f and o(mf(X)) is its standard
deviation, f is chosen as the hyperplane with the best split point p that yields
the highest Sdﬁam among 7 hyperplanes of ¢ randomly selected attributes.
The parameters ¢ (number of attributes used in a hyperplane) and 7 (number
of hyperplanes considered in a node) are chosen by the user.

Sd’

gain

Locality of the Isolation Forest Method Consider an isolation forest
trained on a dataset X = (xi,...,%,). In [203] the authors states that
efficient anomaly detection is possible without the need of retraining. It is
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Figure 6.14: An two dimensional dataset defined by normal data (blue),
global anomalies (red) and a cluster of local anomalies (green)

clear that the method is able to efficiently assign an anomaly score to a new
sample that is inside the hypercube defined by:

D = [min(xy), max(xy)] x - -+ X [min(x,), maz(x,)] (6.28)

On the other hand the anomaly score assigned to new samples outside of the
hypercube D is not reliable.

Example 6.4.3. A two-dimensional dataset is represented in Figure[6.15] In
the two dimensional problem hypercube D is represented by a black square.
The samples used to train the isolation forest are all contained inside D
and they are represented by triangles. New samples represented by circles
are then introduced. It can be observed that while the new points inside the
black square have a reasonable anomaly score it is not the same for the points
outside of the square. In particular the points on the higher side of the figure
have a low anomaly score and the points in the lower part of the figure have
an high one. According to the distribution of the data those points should
all be classified with the same anomaly score.

Observation 6.4.2. In the J2M case study (dataset [2.4.9) the OES data
1s characterized by a drift. This can be observed both in Figure |6.10| and
Figure [6.17.  The first figure shows the projection of the J2M data on the
first two principal components. It can be observed that the training data
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Figure 6.15: The data described in Example[6.4.3] The training samples are
represented by triangles while the new samples are points. The black square
is the D hypercube.

(represented by triangles) is all in the left part of the figure while most of the
new data is on the right side (i.e. it is outside of the hypercube D). In the
second Figure the first variable selected by FSCA (FSV}) is plotted. It can
be observed that this variable shows a decreasing pattern. In both cases most
of the new samples are outside of the hypercube defined by the training data.
As previously observed their anomaly score may be biased.

Isolation Forest can still be used with OES data. In order to avoid the
locality problem the forest can be retrained each time that a new sample is
included. This may negatively influence the computational performance of
the method. In addition, this makes it difficult to use the method to measure
the distance between two datasets. With OCSVM or MCC, for example, a
dataset composed of normal behaving samples is used to train the model
which is then used as reference to measure how distant the new samples are
from the normal behaving ones. This would not be possible with IF if it is
retrained every time a new sample is introduced.

Bias Toward Correlated Variables IF tends to assign an higher anomaly
score to the samples which have the anomaly in a group of correlated vari-
ables. This is shown in the next example.
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Figure 6.16: The projection of the J2M dataset on the first 2 principal com-
ponents. The samples are coloured according to their anomaly score obtained
with isolation forest.
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Figure 6.17: The first forward selection variable (F'SV;) of the J2M dataset.
The vertical line represents the end of the training set while the horizontal
ones indicate the maximum and the minimum of F.SV) in the training set.
The color represents the anomaly score obtained with the isolation forest
method.
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Example 6.4.4. Two base variables are generated as x;,xs ~ N(0,1) and
two different samples in x; and x, are replaced with the value 6. These
samples are anomalies and are denoted as n; and ng, respectively. A set of
variables correlated with x, is generated as: x; = x5 + €; for ¢t = 3,...,10
where €; ~ N(0,0.01). It is clear that sample ny is also an anomaly with
respect to the variables {x;},_, ,,- The full data X is then defined as
X = (x1,...,%109). The anomaiy’score obtained for each sample with IF
is represented in Figure [6.18] It can be observed that the anomaly in the
vertical direction has an higher anomaly score than the one in the horizontal
direction. The reason for such bias can easily be found by considering the
operations of the isolation forest algorithm. Consider the anomaly samples
ny and ny. When the data is split in an isolation tree ny has 9 times the
probability of being isolated from the rest of the samples as n;. This is
because n; can be isolated only by the variable x; while ny can be isolated
by all the others variables.
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Figure 6.18: The data described in Example projected on the vari-
ables x; and x5. The samples are coloured according to their anomaly score
assigned with IF.

The performance of IF can therefore be improved by preprocessing the data
and removing redundant variables. Some variables selection algorithms ex-
plicitly designed for anomaly detection are introduced in Section [6.6]
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6.4.2.2 Fault Diagnosis with Isolation Forest

Consider an anomaly a € R? and h(a) the average number of splits that are
required to isolate a. Consider the two subsets of variables X; = {x;,,...,X;, }
(p—k>} such that X = (X;,X;). X; is the set of vari-
ables from which subsets of variables can be extracted which can isolate a

with a few splits. X instead contains the set of variables from which it is
more difficult to extract a subset than can isolate a in a few splits. Since

h(@) = % S h(@) (6.29)

telF

and X] = {le,...,Xj

it is clear that trees which have as an initial split variables that are mainly
from set X require more steps to isolate a than ones that have most of their
initial split variables from the set X;. Using this observation it is possible
to detect which variables are causing the anomaly. Consider the following
example:

Example 6.4.5. Let X ~ N(0,1) € R**100 and compute h(X) for each X
sample of X. In this example the value a defined as:

a = argmax h(X) (6.30)
xeX

is used as an anomaly. Figure shows the distribution of the value
{h(a)},c;p- It is possible to observe that there are trees with hy(a) < 5
and trees with value h,(a) > 20. The first set of trees are probably the ones
where initial split variables are from X; while the second group has proba-
bly most of the initial split variables from X;. Table reports the split
variables that are used to isolate a in the trees with h.(a) < 3. It is easy
to observe that the variables x,, = 0 and x,, = 46 are the most frequently
occurring. The projection of the data on these two variables is represented in
Figure [6.19 and from the figure it is easy to understand that & is an anomaly
for x4, ,Xq,.

to ti to ty tg ts ts tr ts to

0 40 0 49 0 46 17 43 92 55
82 46 0 99 60 46 65 14 95
32 12 98 50 97

Table 6.1: The split variables used to isolate a for all the trees such that
ha(8) < 3
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Figure 6.19: The distribution of the h;(&) across the forest and the projection
of the data on the variables x,, and x,, for the problem described in Example
6.4.51

In the next example the IF diagnosis system is used to diagnose the anomaly
in the J2M data.

Example 6.4.6. An IF with 200 trees is build on the J2M data (Dataset
. Figure m shows the J2M ER coloured according to the anomaly
score assigned to each sample by IF. It is easy to observe that the faulty
wafers have a higher anomaly score than the rest of the samples. The shift
is not recognized as when all the data is used to train the model the samples
in the shift are as numerous as the normal samples. Therefore they are not
anomalies. Some of the trees in the isolation forest have height smaller than
3. The values of some couples of variables for these small trees are represented
in Figure It is easy to see that these variables are sufficient to isolate
the anomaly.

6.5 Unsupervised Training of a Supervised Al-
gorithm

An unsupervised anomaly detection algorithm can be derived from a su-
pervised classifier with a simple trick. In this section this methodology is
explained using Random Forest (RF, [237]) as an example classifier yielding
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Figure 6.20: The ER of the J2M data coloured according to the anomaly
score obtained with IF.
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Figure 6.21: Projection of the J2M data on some of the variables detected
with the diagnosis algorithm based on IF.
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Unsupervised Random Forest (URF, [201]). It will be shown that URF is
particularly efficient for highly correlated datasets such as those generated
by OES. We begin with an introduction to decision trees and random forest.

6.5.1 Decision Trees and Random Forest

Decision trees and Random Forest are popular techniques used in regression
and supervised classification [238|, [239] and [237]. A decision tree is a tree-
like graph or hierarchical decision structure in which leaves represent class
labels and branches represent divisions of features that lead to those class
labels. In literature numerous algorithms have been proposed to build de-
cision trees such as the CART algorithm [240|, extremely randomized trees
[202] and the unbiased recursive partitions [241] where each split is based on
a statistical test.

Algorithm 6.5.1 (CART). The CART is probably the most popular algo-
rithm for training decision trees. In CART the data is recursively split trying
to minimize an impurity measure. Defining s as a set of samples and f; the
fraction of samples in the set s labelled with value i, the Gini impurity for a

set is defined as:
I(s)=>_ fil—f) (6.31)

This is a measure of how often a randomly chosen element from the set
would be incorrectly labeled if it were randomly labeled according to the
distribution of labels in the subset. Total purity is obtained when all the
samples in the set s have the same label, i.e. I(s) = 0.

Given a variable x;, the set s can be split by x; into two subsets:

sh={i:aip <c} and sh={i:z;i) >c} (6.32)

The value of ¢ is chosen in order to maximise the decrease in impurity DI,
where

_ _ Istl _ Ex{
DI(s, k) =1(s) 5] I(sy) 5] I(s3) (6.33)
s s
Given a set of variables (x;,,...,X; .) the data is split using the variable x;,

where i; = argmax, DI(s,k).

In the CART algorithm each split is done using the variable that maximizes
the DI. In general we may assume that there are variables that are stronger
i.e. they are more likely to be selected as they lead to larger decreases in
the Gini Impurity. The resulting tree will be so characterized by a higher
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presence of these strong variables. While this may be a desiderable property
in many situations, in anomaly detection it is also important to keep track
also of the weakest variables. For this reason extremely randomized trees are
also considered in this thesis. Observe that a similar argument will be used

to justify the introduction of alternative dimensionality reduction techniques
to FSCA and PCA in Section [6.6]

Algorithm 6.5.2 (Randomized Trees). Randomized Tree [202] is an alter-
native algorithm to train decision trees. The data is recursively split into
subsets as described in equation but, the variable x; and the split value
c are chosen almost randomly. In a tree constructed with Extremely Ran-
domized Trees all the variables and all the split points appear roughly the
same number of times. This ensure the presence in the tree of the weak
variables i.e. the ones that will not be included by the CART algorithm.

6.5.1.1 Random Forest

Random Forest is an ensemble learning method, where the output from sev-
eral trees are combined to produce a single decision. We refer to the original
random forest, the ones where trees are trained with the CART algorithm
as RF and to the forest composed of Randomized Trees as ERT. In RF each
tree is trained using a subset of equally sized random samples (with replace-
ment), from the original dataset. The ERT forest instead is composed of all
the randomly generated trees trained on the original data. In RF and ERT
each tree returns a classification result, and we say the tree “votes” for that
class. The forest chooses the classification having the most votes (over all
the trees in the forest). An estimation of the prediction error by RF can be
extracted using the out of bag error (OOB, [242]). In the CART algorithm
the number of variables used to find the optimal split point is p*. In [237]
it is shown that a large value of p* increases the correlation of the trees in
the forest and the strength of the single threes. These are two values that
influence the forest error rate |237]. It is important to find the right balance
between the correlation of the trees and their strength as individual predic-
tors. It is indeed important to choose the right value p* in order to optimize
the performance of the algorithm. A random forest similarity distance [243]
can be used in an unsupervised context to detect anomalies as described in
the following algorithm.

Algorithm 6.5.3 (Unsupervised Random Forest). Given a dataset for nor-
mal operation X" € R™P, we label all the samples in X° as class 0. We
create a synthetic second class X! of the same size that will be labelled as
class 1. The synthetic second class is created by sampling at random from
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the univariate distributions of the original data. In order to create a sin-
gle member of class two, the first coordinate is sampled from the n values
{Xgl ce=1,... ,n}. The second coordinate is sampled independently from
the n values {XB2 ci=1,... ,n}, and so forth. Thus, class two has the
distribution of independent random variables, each one having the same uni-
variate distribution as the corresponding variable in the original data. Class
2 therefore destroys the dependency structure in the original data. As a re-
sult, there are now two classes and this artificial two-class problem can be
run through a random forest.

Once the random forest has been trained using the two classes, we can com-
pute the proximity between samples. This is done as follows:

e After a tree is grown, put all data trough the tree.

e In a tree each sample ends up in a leaf. The proximity function Pr(X, ¥)
computes the number of times that samples X and y end up in the same
leaf of the tree.

e Normalise the estimated proximity by dividing by the total number of
trees and then replacing each value with its square.

The average proximity of a sample Z to a class k is defined as

Pri(z) = ﬁ Pr(j,z) . (6.34)

The distance of a new sample § from the class k is then defined as

j+ class(§)=k

5 2 ||
O =5 (6.35)
and reported in its scaled version:
. Dy(8) — Dy
D =————— )
k(8) std(Dy) (6.36)
where ]
Dy, = T > D@ (6.37)
Z:class(Z)=k
and L2
. 1 L \2
st(De) = | 3 (Dk(z) - Dk> . (6.38)

Z:class(Z)=k
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To perform anomaly detection, a single class k& may be constructed from
normal behaving samples. The observed distance a new sample is from this
class can be a measure of how dissimilar the new sample is from previously
observed normal behaving data. For this method to be effective, the training
samples must reflect the structure of the normally observed samples. To
quantify the Dy, range that corresponds to normal samples, the mean (u) and
standard deviation (9) from normal behaving samples is calculated. Using
the limit p + 30 as a bound on typically observed Dy, outliers are identified
as samples where Dy > p+30. OOB error can be used to test if the training
set size was sufficiently large in this regard. In a classification problem, the
distance of a sample from the previous considered classes can be used to
discover class membership or the identification of a new class.

An intuitive explanation of how the method works is provided in the next
example.

Example 6.5.1. The dataset X° is composed of 100 samples generated
according to a two dimensional normal multivariate distribution N (0, X?),
where the covariance matrix is defined as:

, (1 09
»2 = (0'9 . ) (6.39)

In order to introduce an artificial anomaly, the value of the second variable
x, for sample n = 100 was set equal to 3. The dataset X! is then computed
from X, as detailed above. The datasets X° and X! are depicted in Figure
6.22] Here, X° and X' samples are indicated by “()” and “57”, respectively.
The anomaly introduced at n = 100 is indicated by a ‘x’and is located close
to coordinate (—1, 3). This figure illustrates the lack of correlation between
x; and X, within dataset X!, and the high correlation between x; and X
within dataset XO.

The similarity measurement, Dy, was applied to X? and the results are de-
picted in Figure[6.23] From examining Figure[6.23] it is clear that the sample
n = 100 has been identified as the outlier from samples within XP°.

The next examples illustrate how Unsupervised RF works well when vari-
ables are very correlated and performs poorly if they are not. OES data are
often characterized by highly correlated variables, hence unsupervised RF is
expected to perform well on this data.

Example 6.5.2 (Unsupervised RF and uncorrelated variables). The unsu-
pervised RF algorithm is applied to the dataset described in Example [6.3.3
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Figure 6.22: Graphical representation of the dataset described in Example
. The original data X is represented with blue points; X!, the dataset
obtained by randomly sampling from the columns of X°, is represented by
red triangles; the anomaly is indicated by a “star”.
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Figure 6.23: The distance measure obtained when URF is applied to the data
in Example
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and the results are represented in Figure It is clear that the RF al-
gorithm is not able to recognize the anomaly. This is because the method
works only if the data shows a certain level of correlation. This easily follows
from how the synthetic anomalies are created (i.e. class 1).
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Figure 6.24: The distance obtained with random forest on the dataset de-
scribe in Example [6.3.3] The anomaly is denoted with a star.

Example 6.5.3 (Highly correlated data). A dataset X € R190%30 is gener-
ated as in Example ie.

o X0 RIOS . X0~ N(0, 1)
o p € R . ¢, ~N(0,1)

o c € RI0OX2T ¢, -~ N(0,0.1)
e X! =X"¢+e¢

o X = (X X1

An anomaly is introduced by replacing the first 15 elements in the last row
of the matrix with values sampled from an N(0,1) distribution. The value
of D obtained with RF and ERT for each sample is represented in Figure
6.25. Both RF and ERT are correctly able to recognize the anomaly but
ERT distinguishes it more clearly.
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Figure 6.25: The D value obtained with unsupervised RF and ERT on the
data described in Example [6.5.3

Unsupervised Random Forest is particularly effective on highly correlated
datasets and scales well to high dimensional datasets. It is indeed a suit-
able algorithm for anomaly detection with OES data, which is commonly
characterized by highly correlated variables as shown in the next example.

Example 6.5.4 (Unsupervised Random Forest on J2M). The Unsupervised
RF technique is applied to the J2M case study (Dataset . Taking 400
randomly sampled normal wafers from Z (i.e. wafers whose ER is in the
normal operating range) as a training dataset, the random forest similarity
distance for all other wafers was calculated using the methodology detailed
in Algorithm [6.5.3] The computed random forest similarly distance is visu-
alised in Figure [6.26, Here, the number of variables selected in each split to
train the forest is p* = 50 and the number of trees used within the forest
was set to 100. From visual inspection, it is clear that both the process shift
and faulty wafers can be identified using the applied random forest similarity
distance.

Typically in the context of fault detection systems applied to high dimen-
sional datasets, if the system is trained only on normal behaving data and
a dimensionality reduction step is required, there is the potential to exclude
a variable which captures the information that would describe a previously
unseen fault or anomaly. However, due to the unsupervised random variable
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Figure 6.26: Random forest similarity distance with respect to normal be-
having process wafers. Sample points are coloured according to their ER
value. Normal operation ER is defined to be in the range [66, 72].

selection process used within random forest, dimensionality reduction is not
applied. Therefore, there exists, given a sufficient forest size and px value,
the opportunity to include the variable which captures this information.

Forest size, N, and px value are important parameters in the calculation of
the random forest similarly distance. To evaluate the impact of each param-
eter, a study was carried out in which, for a given training and validation
dataset, one value of either N or px was fixed, while the other was varied.
The results of a fixed px and varying N are presented in Figures
and . Here px = 50, while N = {50, 100, 200, 500, 1000, 10000}. The
results of varying px are depicted in Figures [6.30] , [6.31] and [6.32] In this
instance, N = 100, while px = {20, 50, 100, 200, 300, 400, 500, 750}.

Due to the nature of OES recordings, there is typically a high correlation
between observed variables. As a result, there is an increased probability
that each tree within the forest would be a strong predictor and the majority
of trees within the forest will be highly correlated. From inspecting Figures
6.27] [6.28] [6.29] [6.30] [6.31] and [6.32] it is clear that forest size, N, has a
greater impact on calculated similarity distance compared to the value of
p*. Indeed increasing N improved the distinguishing power in relation to
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Figure 6.27: Random forest similarity distance for different values of N,

where px = 50: wafers

1 to 1600.
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Figure 6.28: Random forest similarity distance for different values of N,
where px = 50: wafers 150 to 250.
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Figure 6.29: Random forest similarity distance for different values of N,
where px = 50: wafers 800 to 1600.
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Figure 6.30: Random forest similarity distance for different values of px,
where N = 100: wafers 1 to 1600.
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Figure 6.31: Random forest similarity distance for different values of px,
where N = 100: wafers 150 to 250.
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Figure 6.32: Random forest similarity distance for different values of px,
where N = 100: wafers 800 to 1600.
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the process shift, as illustrated in Figure while if N is large enough the
fault and the drift are well distinguished from the normal samples for all the
values of p* as shown in Figure [6.30

Observation 6.5.1 (RF Importance). RF is classically used as a supervised
algorithm for classification and regression problems. In such situations it is
common to extract from RF a measure defining how important each variable
is [244)], [237]. Practitioners may be tempted to use such a measure with
unsupervised RF in order to detect the variables causing a fault. This will
result in wrong conclusions. Taking into account how class 1 and class 2 are
defined in Section |6.5.1] it is clear that the most important variables from
a classification perspective are the variables that are more correlated with
each other. The importance assigned to each variable will then not have any
relation with the anomaly detection task.

6.6 Dimensionality Reduction for Anomaly De-
tection

OES spectra are generally characterized by high dimension and anomaly de-
tection can then be affected by the curse of dimensionality. In order to avoid
the curse of dimensionality data is often preprocessed with dimensionality re-
duction techniques [245]. In supervised anomaly detection, where a classifier
is used to separate normal samples from anomalies, dimensionality reduction
is based on the same principles that are used to avoid overfitting in super-
vised classification and regression algorithms. Some examples in this sense
are [246] where forward selection and backward elimination like methods are
used for cloud classification, [247] where features are selected through ran-
dom mutation hill climbing, [248] where PCA is used to pre-process the data
and a single hidden layer neural network is then used to classify each sample
as normal or anomaly and [249] where nonlinear PCA is used as a prepro-
cessing step. In unsupervised anomaly detection the dimension of the data
must be reduced with unsupervised dimensionality reduction algorithms like
PCA or unsupervised features selection algorithms such as FSCA and similar
approaches, as presented in chapters |4 and [5| In other circumstances tech-
niques that take the structure of the data into account can be used. Some
examples are |250] where a discrete wavelength transform is used to reduce
the dimension of time dependent process data or as shown in Chapter [2] where
the dimension of the data is reduced through wavelength selection or with
summary statistics. The situation in an black box unsupervised framework
is more complicated as most of the dimensionality reduction techniques are
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not specifically designed for anomaly detection. This may lead to some side
effects as described in the next section.

6.6.1 Side Effect of Dimensionality Reduction

Dimensionality reduction techniques such as PCA and FSCA seek to ob-
tain lower dimensional approximations of datasets from which it is possible
to reconstruct the majority of the information in the original high dimen-
sional datasets, usually defined in terms the percentage of explained variance.
While they are generally very useful for generating compact representations
of highly correlated datasets, the reduced representations are not guaranteed
to retain sufficient information to detect isolated anomalies. In particular, in
datasets with several large clusters of correlated variables, the contributions
of isolated uncorrelated variables to explained variance may be insignificant,
with the result that such variables may not be included in the reduced data
representation. It is then not possible to detect an anomaly if it is only
reflected in such isolated variables. Some side effects of dimensionality re-
duction are shown in the following examples.

Example 6.6.1. Figure shows a two dimensional dataset X = (x1, X3).
All the data lies on a diagonal line apart from the anomaly. It is very easy
to spot the anomaly from the scatter plot of X. A very good approximation
of the data which reconstructs more than 99.99% of the variance can be
obtained with a single PCA or FSCA component. Unfortunately in both
cases it is impossible to distinguish the anomaly from the normal data when
it is projected onto the resulting lower dimensional subspace. This can be
observed in the second and third plots of the figure. It follows that the
percentage of explained variance is not a reliable measure for the quality of
dimensionality reduction in anomaly detection.

Example 6.6.2. Consider a two dimensional time series X (t) = (x1(t), x2(t))
where the variables x;(t) and x,(t) are as represented in Figure It is
common in anomaly detection to build a model of the normal data and then
to measure how different the new data is from the normal one. In this exam-
ple the first 50 samples of the data are considered normal. A one component
PCA is computed on the normal data and the projection of all the data on
this component is given in Figure [6.34 It is clear from the first plot that
there is a change in the signal after ¢ = 50 as the variable x; changes its
behaviour. The same change of behaviour cannot be spotted in the second
plot where the PCA approximation of the data is represented. This can be
explained by the fact that the PCA trained on the normal data assigns a
very small loading to x,. This is because x5 has a very small variation in the
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Figure 6.33: The original two dimensional data and the one dimensional
approximation obtained with PCA and FSCA
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normal data and it provides only a small contribution to the total variance.
The influence of x5 on the data is lost after the dimensionality reduction
while it was fundamental to spotting the anomaly.
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Figure 6.34: The variables x; and x» of the data described in Example [6.6.2]
and the projection of the data onto first PC

6.6.2 Dimensionality Reduction that Keeps the Small
Patterns

Most dimensionality reduction algorithms in the literature focus on the mini-
mization of the reconstruction error. As previously observed those algorithms
may not be the most suitable for anomaly detection. In the following sections
some algorithms that perform dimensionality reduction while seeking to keep
all the variability in the data are described.

6.6.2.1 Most Distinctive Variables

In [95] an algorithm to select the most dissimilar features is proposed which
will be referred to as MDYV in this thesis. The MDV algorithm is based on a
similarity measure s(x,y) that measures the similarity between the variables
x and y. The authors propose three different similarity measures:

e Correlation Coefficient: s(x,y) =1 — |cor(x,y)|



6.6 Dimensionality Reduction for Anomaly Detection 213

e Linear Regression: s(x,y) = ming, |y —ax —b ||2

e Maximal information compression: s(x,y) is the smallest eigenvalue of
the covariance between x and y.

In all the cases s(x,y) = 0 for maximal similarity and the bigger s(x,y) is
the less similar x and y are.

Having chosen s(x,y) variables are then recursively clustered and the ones
that are more similar to their centroid are discarded. A detail description of
the algorithm is presented in Pseudocode [6.6.1]

Input: Input matrix X € R™*P k the number of neighbours considered and
s(x,y) is a function that measures the similarity between two variables

1: Start with F' as the set of all the variables

2: VF; € F compute the similarity with its k' neighbour r¢

3: Choose F; : j = argmin; 7} and set € = —oo (Most similar Neighbour)
4: In F' remove the first k neighbours of F}; but keep F}

5: while 7 > ¢ do

6: if £ =1 then

7 return F

8: end if

9: €= T’i

10: k =k —1 (reduce k until the k™" nearest neighbour of at least one of

the variables is less than e-dissimilar with the variable)
11: 7l =infrer 17
12: end while
13: Go to step 2
14: return F

Pseudocode 6.6.1: Unsupervised Feature Selection Using Feature Similar-
ity (MDV)

6.6.2.2 Max separation clustering

The Max Separation Clustering (MSC) algorithm [90] is based on similar
ideas of MDV. In this algorithm two centroids are initially selected as the
most distant variable in the dataset and their cluster are defined by the
variables whose correlation with the centroid is more than a threshold &. In
subsequent iterations a new centroid is selected as the sample that is furthest
from the existing clusters. The procedure is iteratively repeated until each
variable is in a cluster. A computationally efficient variant of the algorithm
is reported in Pseudocode In the code the newly selected variable m is
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the most distant from the centroids of existing clusters while in the original
version of the algorithm m was chosen as the most distant sample from all
smaples in the clusters.

Input: Input matrix X € R"™P  d(x,y) a distance measure between the
variables x and y and & a threshold value

1: Define the set of available variables F' = {x1,...,x,}
2: Define the set of maxoids M = )
3: Select x;,x; such that (i,7) = argmazr d(x,,x,)

U)Xy, X EF

4: Choose one between x; and X;. )Usually the one with higher variance.
Denote this variable m
M = MU {m}
F=F—{feF:corr(m,f) > ¢}
if I is empty then

return M
end if

10: m = argmax d(x,, m) (The new m is the most distant variable from the
Xy EF

previous m.)
11: go to step 5

Pseudocode 6.6.2: Max Separation Clustering

6.7 Novel Dimensionality Reduction Algorithm
for Anomaly Detection

In this section a novel dimensionality reduction algorithm specifically de-
signed for anomaly detection is proposed. This is superior to the ones previ-
ously described as it select variables based on a multivariate procedure rather
than through the use of a bivariate similarity measure.

6.7.1 Forward Selection Independent Variable Analysis

Both [95] and [90] select features based on a function s(z,y) that measures
the similarity between two variables. In general, instead of discarding vari-
ables that are similar to those already selected, it is more interesting to know
which variables are not adequately represented by the selected ones. In ad-
dition, as shown in the next example using a univariate measure such as
the correlation is a suboptimal choice. With this in mind Forward Selection
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Independent Variable (FSIV) analysis is proposed in Algorithm as a
multivariate extension of MDV and MSC and as a tool for efficient unsuper-
vised features selection for anomaly detection.

It is known that uncorrelated variables are linearly independent. On the
other hand weakly correlated variables can be linearly dependent as shown
in the following example.

Example 6.7.1 (Weakly correlated but linearly dependent variables ). Let
{xi}iz1,.p be a set of uncorrelated variables with unit variance. Define

1 p
Vi=X——-Y X (6.40)
P4
The variables {y;}!_, are linearly dependent because

> yi=0 (6.41)

y; can be rewritten as:

—1 1
yi = p—Xi — =) X (6.42)
p Pz
it follows:
p—1
Var(y;) = —— (6.43)
b
and 1
Cou(y;,y;) = - (6.44)
The correlation is then
1
LYi) = ——— 6.45
corr(yi, y;) p— (6.45)

The previous example shows that by increasing p the correlation can be
made arbitrary small while having a linearly dependant set of variables. It
follows that feature selection based on pairwise similarity check is suboptimal
and that better results may be obtained selecting the variables based on a
multivariate model as described in the following algorithm.
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Algorithm 6.7.1 (Forward Selection Independent Variables (FSIV)). The
FSIV algorithm begins by selecting its first k& variables (zq,...,2zx) using
the FSCA algorithm. This step is required to ensure the presence of the
variables that represent the largest variation in the data. Then, additional
variables are added in order to model significant isolated variations that are
not captured by the first k£ variables. The process ends when K variables are
selected or when the error €; defined according to equations @ and

is smaller than a given threshold. The FSIV algorithm is thus defined as
follows:

1) Start with the full data X = (x3,...,x,) € R™*? and set k and a stop
criterion.

2) Scale the data such that each variable has zero mean.

)
3) Select k variables z, ...,z using the FSCA algorithm.
4) Define the matrix Z = (z1, ..., zg).

)

5) Compute the linear approximation of X
X = Z(Z"Z)'Z2"X e R™*F (6.46)
where R
X =(X1,...,%p) (6.47)

6) For each variable x; in X compute its approximation error
& =[x —%i |3 (6.48)
where X; is the ¢th column of X.

7) Select x; the variable with the highest approximation error where:

j= argmax €; (6.49)

(2

8) Add x; to the Z matrix.

9) Stop if the termination criterion is reached, otherwise set k = k + 1
and repeat from step 5
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The distinguishing feature of FSIV is that a variable is added to the model if it
cannot be adequately reconstructed by a linear combination of those already
selected. In FSIV variables are selected through the use of a multivariate
model while in MDV and MSC variables are selected through the use of
univariate operators such as the euclidean distance or the correlation. In
the previous example it was shown that weakly correlated variables can be
linearly dependent. In the next example the benefit of using FSIV in such
circumstances is illustrated.

Example 6.7.2. Define a matrix X = (xi,...,Xg) where xj,...,Xjg ~
N(0,1) and x99 = 312 %; 4+ € where € ~ N(0,0.001) and consider it in

its scaled form so that each variable has mean 0 and unit variance. The
problem is to detect the two variables that can best describe all the variation
in the data. It is clear that the two variables are x; and xy0. x; has to be
considered as it is independent of all the rest while x5 is a linear combination
of x5,...,%x19. FSCA, FSIV, MDV and MSC are applied to this dataset
and the results are reported in Table [6.2] Only MDV and FSIV are able to
correctly select the variables x; and x99. There is not a value of the threshold
¢ that results in only two selected variables with MSC. A minimum of 4
variables is selected by MSC, as reported. Significantly neither x; and x»
are among them.

MDV FSIV MSC FSCA

1 20 17 20
20 1 12 7
7
8

Table 6.2: Variables selected by MDV, FSIV, MSC and FSCA in the problem
defined in Example [6.7.2

Observation 6.7.1. Similarly to FSCA, X is the linear reconstruction of
X obtained from Z. It follows that the algorithm can easily be extended to
nonlinear cases as presented for FSCA in chapter[3]

The following example illustrates the difference in performance between PCA,
FSCA and FSIV and why it is important to keep track of all the variables in
a fault detection context.

Example 6.7.3. Consider the simulated data X = (x;,...,x7) € R™7
defined by three groups of variables X; = {x1, Xs,x3}, X3 = {x4, X5, Xg} and
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X3 = {x7}. Each variable has correlation 0.9 with the others in the same
group and between the variables in X; and X, there is a correlation of 0.4.
The variable in X3 is instead isolated and has only correlation 0.1 with all
other variables. Specifically, X = (xy,...,%x7) ~ N(0,X) where ¥ = {%; ;}
is defined as:

(1 ifi=y

09 ifi,je{l,2,3}ori,je {4,506}

¥, =¢ 04 if i€ {1,2,3} and j € {4,5,6}
0.4 if 7€{1,2,3} and i€ {4,5,6}

\0.1 ifi=Torj="17

An anomaly is then introduced by replacing one of the samples in x; with
the value 10. Dimensionality reduction is performed with PCA, FSCA and
FSIV. In each case only two variables are selected. In FSIV parameter £ is
chosen as £ = 1. The two dimensional representations of the data obtained
with the various methods is reported in Figure From the figure it can be
observed that only FSIV is able to isolate the anomaly. In particular, FSCA
tends to select one variable from X; and one from X, while FSIV selects
a variable from X; and x;. The PCA components instead are obtained as
a weighted linear combination of all the variables. However, the weighting
associated with x; is insufficient to materially affect the behaviour of the
components, with the result that the anomaly is not distinguishable from
the normal samples.

In general the challenge with FSIV is knowing what value to choose for £ and
K. Tt is reasonable to choose k in order to have the percentage of explained
variance higher than a predefined threshold (as for example 99.99%) or to
stop when the percentage of explained variance grows too slowly (similar
criteria are used to chose the number of components in PCA and FSCA).
The value of K may instead be chosen as the total number of desired variables
or to be large enough in order to have the error €; from equations and

small enough.

6.8 Anomaly Detection with OES Time Series

In this last section the techniques developed are applied to the problem of
anomaly detection with OES time series data. The PSI dataset (Dataset
, described in Chapter , is used as a case study. In Algorithm m
the Similarity Ratio (SR) methodology [204] is described. SR was originally
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Figure 6.35: The two dimensional approximation of the data obtained with
PCA, FSCA and FIV. The anomaly is represented by a white star

designed for anomaly detection with OES time series, it is now presented
and extended taking into account the framework introduced in Chapter
Throughout the section the different ways in which the data can be ag-
gregated plays an important role. The following matrices are particularly
important: A (equation , W (equation @ and W? (equation .

Algorithm 6.8.1. Similarity Ratio (SR, ) is a recent method for early
stage fault detection for plasma etching processes. For each wavelength a
pair of fitting functions describe the wavelength intensity upper boundary
(UBF(t))and lower boundary (LBF(t)). Given a dataset X = (x1,...,X})
composed of p wavelengths, for each wafer w each wavelength x; can be
considered as a function

x(t) te|0,7] (6.50)

7

where t = 0 when w starts to be processed and t = 7 when the production
of w is completed. Given a set of normal behaving wafers W for each value
of t the mean and the variance can be computed for each wavelength as:

(1) = g7 3 at(e) (651)

2 1 w 2
O e D EACRYOL (652)
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a matrix, which the authors denote as, the SRA -Library is then obtained

as:
UBF\(t) LBF(t)

UBF,(t) LBFy(t)

SRA — Library(t) = (6.53)

UBF,(t) LBF,(t)
where UBF;(t) = pi(t) + co;i(t), LBF;(t) = p;(t) — co;(t) and ¢ is a constant
defining how large the confidence interval is. The level of anomaly of a new

wafer w is measured according to how many wavelengths are outside the
control limits:

z2(t) > UBF;(t) or z¥(t) < LBF;(t) (6.54)

The similarity ratio SR; is then defined as the percentage of wavelengths
that are inside of the control limit at time ¢. A graphical representation of
the SRA — Library for a given wavelength is shown in Figure [6.36]

Taking into account the framework introduced in Chapter [2 the SR algo-
rithm reduces to p univariate control charts as explained in the following
observation.

Observation 6.8.1 (Similarity Ratio and Univariate Control Chart). Con-
sider the representation of the data in the W matriz format defined in equa-
tion[2.16. In this case it is easy to observe that SR is equivalent to p univari-
ate control charts. Indeed in a real world scenario the time measurements
take discrete values t; < ty < -+ < t, and the z;” (t) function is a discrete
vector

X (t) = (277 (t), 277 (2), -+ 27 (87)) (6.55)

In this case the wavelengths measured for each wafer can be aggregated in a
matrixz. Suppose for example that K wafers and p wavelengths are available,
then the data can then be rewritten as:

W= (Wi,...,W,) (6.56)
where
xi ' (t) @ (t2) ;" (tr)
ws ws R
w,= | sl e e By (67
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Observe that the obtained W matriz is equivalent to the matriz defined in
equation . It follows that the SRA-Library (equation 18 equivalent
to applying a univariate control chart to each column of W. Indeed p;(t;)
and o,(t;) are the mean and the standard deviation of the 7™ column of W.

As explained in Section the main weakness of Univariate Control
Charts (UCC) is their inability to detect interactions between variables. In
this case a UCC is not able to model the interaction between wavelengths
and the evolution of a wavelength during different time points.

60
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Figure 6.36: The functions u(t), UBF(t) and LBF(t) when ¢ = 1.96 for a
given wavelength.

6.8.1 OCSVM as a Multivariate Extension of SR

Once it is clear that SR is nothing more than an application of UCC to the
W matrix it is easy to extend and generalize the method in order to take
advantage of the multivariate structure of the data. In order to obtain a mul-
tivariate alternative to SR it is enough to apply a multivariate fault detection
algorithm to the matrix W. Unfortunately the W matrix has a huge number
of columns (7 x p = 288255) that makes the application of an algorithm on
the full matrix impractical from a computational point of view. It is then
necessary to reduce the dimension of W. This can be done in several ways.
It is for the moment assumed that it is possible to reduce the dimension of
W. This can be done using some of the techniques described in chapters
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and [4] or the ones particularly designed for anomaly detection introduced in
Section of this chapter.

Once a lower dimensional representation of the data is obtained the anomaly
detection performance of the method is determined as reported in Pseu-
docode [6.8.1 As shown in Pseudocode [6.8.1] in semi-supervised anomaly
detection it is necessary to know which samples are normal. In addition, we
need to have labelled normal and abnormal samples in the test set in order
to evaluate the performance of the methodology. Domain knowledge is used
to label the normal and abnormal samples in the OES spectrum. Note that
the algorithm only needs to be trained on normal behaving wafers; the sam-
ples labelled as anomalies are only used for evaluation purposes. In plasma
etching wafers are normally processed is batches of 25, called lots, with the
chamber undergoing a cleaning cycle between each lot. As a consequence
of the cleaning step there is a seasoning effect during the processing of the
first few wafers in each lot as chemicals absorb into the chamber walls, with
the result that the processing of wafers 1,2,3 and 4 differ slightly from the
remaining wafers 5 to 25. For the purposes of evaluating the performance of
the anomaly detection methodology, we will consider wafers 1,2,3 and 4 in
each lot as abnormal wafers.

The next examples show how the use of feature selection algorithms and the
two formulations of the PSI data can be used for anomaly detection. The
first example is specifically designed to show the differences between FSCA
and FSIV in an anomaly detection context.

Input: The data X, an anomaly detection algorithm W and a dimensionality
reduction algorithm D

Define Xy,4in a subset of X containing only normal samples.
Define X, as the samples that are in X but not in Xy,qin.
Compute p and o the mean of each variable in Xy,.4in-
Xirain = (Xtrain - /1;)/0'

Xtest = (Xtest - [,L)/G'

Train the dimensionality reduction algorithm on Xy,qin
Xfffﬁfed = ®(Xtrain)

Xjedheed — (X,

Train ¥ on X;ﬁgﬁfe‘l.

Obtain an anomaly score for Xredueed from W,
11: Use the AUC error to evaluate the performance of W.

H
=

Pseudocode 6.8.1: Anomaly detection evaluation procedure algorithm.
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Example 6.8.1. In this example a smaller version of the PSI dataset (Dataset
2.4.1)) is considered. The data is composed of K = 500 wafers each one con-
taining the light intensity measurements of p = 1747 wavelengths at 7 = 165
time points. Initially the data is stored in the A € RE7*? format (Equation
2.11). The number of wavelengths is reduced to 200 by selecting the ones
with the highest standard deviation in recorded light intensity. In order to
better show the difference between FSCA and FSIV an artificial wavelength
x,*(t) is added to the OES spectrum. z,”(¢) is defined for each wafer as

x(t) = 285(sin(t) +¢€) t€ [—m, 7] (6.58)

where € ~ N(0,0.05) and the amplitude 285 is selected to give a signal power
that is similar to the other wavelengths. A fault is then introduced in the
final wafer in the dataset by clamping the I wavelength to lie between —100
and 100, that is:

() if ()] < 100
2R (1) = 100 + ¢ if x"%(t) > 100 (6.59)
—100+€ if 2% (t) < —100

where ¢ ~ N(0,10). Figure shows the time evolution of the light in-
tensity for the artificial wavelength ;" (¢) and a normal wavelength for a
group of five wafers. It follows that the faulty wafer can be classified as
anomaly only if the wavelength [ is among the selected ones. In order to
perform anomaly detection the data must be aggregated in the W format.
This data format is particularly useful for comparing wafers and performing
anomaly detection as each row corresponds to all the data observed for a
given wafer. Even in this reduced version of the data, the dimension of the
matrix is very large as it has p7 = 33000 columns. The dimension of the data
can be drastically reduced by selecting only a subset of the wavelengths from
the A matrix. If 14 wavelengths are selected from A the number of columns
in the W matrix is reduced to 147 = 2310 columns. The W matrix is still
high dimensional but now it is small enough for high dimensional anomaly
detection algorithms such as Unsupervised Random Forest and OCSVM to
be efficiently applied.

Wavelengths are selected from the A format of the data using the FSCA and
FSIV algorithms. FSCA and FSIV select variables using different criteria.
Figull%_3_8| shows the maximal error ¢; defined according to equations
and [6.49, as a function of the number components selected by FSCA and
FSIV, while Figure m shows the corresponding explained variance (EV,
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Equation . In total 14 components are selected by both the FSCA and
FSIV algorithms. The first 7 components of the FSIV algorithm are selected
with FSCA, hence it follows that the performances of the both methods in
terms of both EV and €; are identical for these components. In contrast for
the remaining 7 components we can observe that as expected the variables
selected with FSIV lead to a lower error €;, while those selected by FSCA
yield a larger percentage of EV. Notably, the I** wavelength is not selected
by FSCA but is selected by FSIV as the 8 component. It can be observed
in Figure that the 8" component is where the performance of FSCA
and FSIV begin to deviate in terms of the error €;.

Figure 6.37:  Light Intensity variation of the artificial wavelength and a
normal wavelength over 800 time points and 5 wafers.

In order to train and test the anomaly detector the wafers in W are split
into a training set of 300 wafers containing measurements of only normal be-
having wafers and a test set of 200 wafers containing normal and abnormally
behaving wafers.

Observation 6.8.2. Observe that the defined scenario is a semi-supervised
anomaly detection problem where the training data is known to be normal
behaving. The presence of normal and abnormal behaving wafers in the test
set is required only to asses the performance of the model.

The OCSVM algorithm is used to assign an anomaly score to each wafer. The
anomaly score assigned by OCSVM to each wafer in the test dataset when
using each of the dimensionality reduction techniques is given in Figure[6.40]
For completeness, the results obtained without dimensionality reduction are
also reported. The results show that in general a larger anomaly score is
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Figure 6.38: The error €; as a function of the number of components selected
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110

100+
901
801
70
60
50

EV

eee FSIV |]
smg FSCA[{

40
0

2 4 6 8 10 12 14
Number of Components

99.8}

99.61

EV

99.4}1

99.21

99.0

eoe FSIV ||

ssa FSCA

6 8 10 12 14
Number of Components

Figure 6.39: The error percentage of explained variance as a function of the
number of components selected with FSCA or FSIV.



6.8 Anomaly Detection with OES Time Series 226

AW. FSCA FSIV.  PCA
AUC 0.9564 0.9507 0.9650 0.9527

Table 6.3: The AUC score obtained using OCSVM when all the wavelengths
are used (A.W.), when a subset of 14 wavelengths is selected with FSCA and
FSIV, and when 14 PCA components are employed as inputs.

assigned to the abnormal wafers allowing them to be identified. The one
exception is the artificially created abnormal wafer, denoted by the star,
which is only correctly identified as an anomaly when FSIV is used. Even
when all the wavelengths are used the artificial anomaly has a low anomaly
score. This may be due to over fitting caused by the excessive number of
variables. The performance of each method is also summarized in terms of
the Area Under the Curve (AUC) classifier performance metric in Table
and again this underscores the superiority of FSIV.

The previous example was mainly used to show the differences between FSCA
and FSIV in an industrial context. The same analysis is now shown for the
full original dataset without the introduction of the artificial wavelength and
considering all 1747 wavelengths.

Example 6.8.2. From the PSI data in the A format (Equation [2.11]) two
sets of wavelengths are selected. In the first case all the wavelength are
selected with FSCA while in the second case the first 20 wavelengths are
selected with FSCA and 20 additional wavelengths are selected with FSIV.
In both the cases a total of 40 wavelengths are selected. The remaining data
is then stored in the W matrix which now has dimensions K x 407, where
the number of columns, 407 is only 6600. The data is divided into a training
and test datasets. The OCSVM algorithm is then used to assign an anomaly
score to the samples in the test dataset. The process is repeated several
times using a bootstrap algorithm. The mean and the standard deviation of
the obtained AUC scores are reported in Table [6.4 In the table the results
obtained using the first 40 principal components computed from the original
W are also reported. All the methods lead to very good AUC scores. PCA
is the method with the best performance followed by FSIV and FSCA. This
confirms FSIV to be better than FSCA for variable selection in an anomaly
detection context. Figures and show the anomaly score assigned
to wafers in the test dataset. It can be observed that in general normal and
anomaly wafers are well separated but a certain number of false positives
is present. It is interesting to observe in Figure [6.42] that the distribution
of anomaly scores as a function of slot number is slightly U shaped with
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normal wafers, and the artificial anomaly wafer is represented by a star.
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lower anomaly scores for wafers in slots 10 to 20. This seems to reflect the
seasoning effect of the process.
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Figure 6.41: Anomaly score assigned to the wafers in the test set when the
dimension of W is reduced with PCA. The white circles are the anomalies
while the black ones are the normal wafers.

AUC

Mean Std
FSIV 0.96713 0.00749
FSCA 0.96657 0.00843
PCA 0.97998 0.00820

Table 6.4: AUC score obtained with OC-SVM when a subset of wavelengths
is selected with FSCA or FSIV or when the dimension of W is reduced with
PCA.

In conclusion FSIV provides an effective way to reduce the dimensionality of
W by performing wavelengths selection on the A matrix. In both the ex-
amples considered better performance is achieved if wavelengths are chosen
with FSIV rather than with FSCA. As illustrated in the first example, if the
anomaly appears in a wavelength that is weakly correlated with the rest of
the data FSIV is even preferable to PCA. In conclusion, FSIV assists with



6.8 Anomaly Detection with OES Time Series 229

60—
SO| T
T : T
A T T T T T T T R S S S
Tt | L OO O L VO VOO WO 00 Wi 0 S O N OO
3017 .. T “““““ 00T O T e
S R T T T T N S N
20 4 R
s

I
i n Lo

Anomaly Score

B R e o

Sy S S
-5
T :
b o
T} H
o DT SUR
R I
Lty | SEECEEEEE
EREEREER EREEREERCEE
|
b=}
i

S U OO0 UL UOO S O O A
““““““““““““““

—20L

10111213141516171819202122232425

Wafer Slot

,_.
ol
wh
N
wl
ol
o
ol
ol

Figure 6.42: Anomaly score obtained with OCSVM + FSIV as a function of
wafer slot number.

building an effective and easily interpretable anomaly detection system with
the OES data. Its performance is similar to PCA with the added advantage
that the model keeps a physical meaning. This is an important property as
it is often not enough to detect a fault; it is also necessary to understand the
physical reason behind the fault.

6.8.1.1 False Positive Analysis

In the two previous examples some false positives were found. These where
wafers with slot number larger than 4 to which a large anomaly score was
assigned. This can, for example, be observed in Figures and [6.42] A
more detailed analysis shows that the reason behind the large number of
false positives is an imperfect alignment of the wafers. Consider for example
the False Positive with the largest anomaly score. This was in slot 20. The
values of a single wavelength over all the production time for this and all the
wafers in the same slot are reported in Figure [6.43] From the figure it can
be observed that the wafer is aligned with all the others if ¢ < 45 while it is
not aligned anymore if ¢ > 85. A similar problem is shown in Figure for
a false positive in slot 15.
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Figure 6.44: The value of a wavelength for all the wafers in slot 15. One of
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6.8.2 Time Window

As stated in Section [6.6] dimensionality reduction in an anomaly detection
context comes with several side effects. In this section a way to perform
anomaly detection avoiding the dimensionality reduction of the W matrix
is proposed. Taking into account that to each column of W is associated a
time point ¢, it is possible to study the behaviour of the process in a time
interval. Given a starting time point ¢; and a final one ¢; only the matrix
WZ defined as in equation is considered. The following example shows

the kind of analysis that can be performed using the matrix Wij .

Example 6.8.3. In this example anomaly detection on the PSI data (dataset
is performed using the matrix WIJ . Different values of ¢; and t; are
tried with the restriction of not considering more than 14 time points i.e.
j=14,0+1,...,9+ 13. This is necessary for computational reasons as the
number of variables used each time is

(j—i+1) %1747 (6.60)

The minimum number of considered variables is then 1747 obtained when
j = i and the maximum number is 24458 obtained with j = i+ 13. The AUC
score obtained for different values of the starting time ¢; and number of time
points considered (j—1) are represented in Figure m The figure shows that
the AUC score drops if ¢; > 110. This may suggest that anomaly wafers are
not very different from normal wafers during the final part of their production
process. This impression seems to be confirmed in Figure where some
sample wavelengths for normal and anomaly wafers are represented. Indeed
it can be observed that the anomaly wafers show a different behaviour with
respect to the normal ones only in the first half of the process. This is also
reflected in Figure[6.47 where the boxplot of the anomaly score obtained with
OCSVM when t; > 110 for normal and anomaly wafers is reported. In the
figure normal an anomaly wafers have roughly the same anomaly score.

From the previous example it follows that the time window study, based
on the matrix W:J can be used to understand when during the production
process the anomaly occurred. In addition it suggests that an anomaly can be
detected in real time during wafer production rather than having to wait the
full wafer to be processed. Instead of a single anomaly score for each wafer
the approach provides a set of values indicating how anomalous a wafer is at
a given point in time during production.

Observation 6.8.3. Since anomalous wafers are different from normal wafers
only for certain values of t it follows that the A data format is not suitable
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Figure 6.47: A box plot showing the score assigned to the normal and anoma-
lous data using the OC-SVM algorithm for starting point t = 10 and ¢ = 120,
as described in Example [6.8.3]

for anomaly detection. Consider for example the row of A containing the
measurement of an anomaly wafer at a time t, where it is not distinguish-
able from a normal wafer. That sample will always be considered normal
even if the wafer is faulty. The W matrixz format is therefore more appropri-
ate for anomaly detection as each sample contains all the history of a wafer
production.

6.9 Conclusion

This chapter has provided a comprehensive presentation of unsupervised
anomaly detection in semiconductor manufacturing. In the first part of the
chapter an introduction to anomaly detection and a review of the most popu-
lar algorithms is reported. It is shown that the Unsupervised Random Forest
algorithm can successfully be applied to the OES data and better results are
obtained if trees are constructed with the Extremely Randomized Trees al-
gorithm rather than the more popular CART algorithm. In addition a fault
diagnosis algorithm based on Isolation forest is proposed. In the second part
of the chapter the effect of dimensionality reduction on anomaly detection
is investigated. Forward Selection of Independent Variables (FSIV) is pro-
posed as a new unsupervised variables selection algorithm. This leads to
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better anomaly detection performance than PCA and FSCA. The last part
of the chapter describes how the OES time series can be used for anomaly
detection in addition using F'SIV to obtain interpretable and effective models.
In addition the Similarity Ratio algorithm [251], that was originally designed
for anomaly detection with OES time series, is generalized and improved.



Chapter 7

Concluding Summary and Future

Work

7.1 Concluding Summary

The work presented in this thesis was dedicated to the development of ad-
vanced analytical tools for data analysis with a particular focus on Optical
Emission Spectroscopy (OES) data collected during plasma etching in semi-
conductor manufacturing processes.

The thesis starts with a description of the process behind the generation
of OES data and how it can be represented in matrix formats convenient
for analysis. Temporal and wavelength alignment issues are highlighted and
addressed. In particular, the problem of multi sensor spectral alignment is
described and a novel retrospective alignment methodology developed. In
the reminder of the thesis OES measurements are assumed to be aligned.

OES data is very high dimensional, posing major challenges to its use in prac-
tical applications such as process monitoring and virtual metrology. Conse-
quently the rest of the thesis focuses on the variable selection problem as a
means of reducing the dimensionality. Several variable selection techniques
are developed to address different scenarios. These can be classified as either
supervised or unsupervised algorithms.

Among the supervised variable selection algorithms, the lasso estimator is
one of the most popular and has previously been employed in semiconduc-
tor manufacturing problems. Lasso has good prediction performance and is
computationally efficient. As the OES data is characterized by highly corre-
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lated variables, the set of variables selected by lasso may change significantly
with small variations in the training set. In order to improve the robustness
of lasso, several lasso based model selection procedures are reviewed and a
number of new algorithms are proposed. This results in sparser or more sta-
ble models with equivalent or better performance than lasso.

In the thesis supervised variable selection is considered in the context of Vir-
tual Metrology (VM), the specific instance being the estimation of etch rate
using OES signals as model inputs. VM is a particularly attractive proposi-
tion as ER values are often only available several hours after production is
completed and then only for a few selected wafers.

Unsupervised dimensionality reduction is an important area or research with
application in many domains. Principal Component Analysis (PCA) is one
of the most popular dimensionality reduction techniques in semiconductor
manufacturing. The main drawback of PCA is that since the PCs are lin-
ear combination of all underlying variables, it is difficult to identify the key
variables. In the case of OES this means that PCA cannot be used to de-
termine the most important wavelengths, which is an important requirement
for plasma etch process monitoring, as the variation in wavelength intensities
define the underlying variations in plasma chemistry, and hence the drivers of
process changes. For this reason the thesis focuses on unsupervised variables
selection instead of unsupervised dimensionality reduction. As an alternative
to PCA the recently proposed Forward Selection Component Analysis algo-
rithm is investigated in detail and several enhancement proposed. Its compu-
tational efficiency is improved with the introduction of optimized algorithms
and its variables selection performance is increased with the introduction of
refinement steps. The new FSCA implementation highlights the similarity
between FSCA and multi-output regression models. This led to a natural
extension of FSCA and its alternative implementations to the nonlinear case.
The use of nonlinear multi-output models substantially improves the FSCA
performance in terms of explained variance. Particularly good performance is
obtained when Extreme Learning Machine with Direct Linear Feed-Through
are used. The associated algorithm ELMFSV-DLF beats linear FSCA in
all datasets investigated and PCA in some of the considered cases. Good
performance is also obtained with polynomial models. (PFSV). PFSV has
in general worse performance than ELMFSV-DLF but it performs generally
better than FSCA and keeps the model easy to interpret.

Anomaly detection is one of the most important applications of OES data.
As a consequence, the last chapter of the thesis is dedicated to anomaly
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detection. The high dimension of the data poses several challenges in this
context. This is, in particular, expressed by the, Curse of Dimensionality,
(COD), according to which relative distances between samples are not reli-
able in high dimensions. COD implies that anomalies, that are by definition
samples that are distant from the normal behaving ones, are difficult to de-
tect when high dimensional datasets are considered. After a review of the
most popular anomaly detection algorithms and the discussion of their effi-
ciency with high dimensional datasets, the effect of dimensionality reduction
on anomaly detection is investigated. It is clear that classical dimensionality
reduction algorithms that try to maximize the percentage of explained vari-
ance, like PCA and FSCA, are not always suitable for anomaly detection.
This is because the information contained in variables that do not contribute
much in terms of explained variance may be absent or weakly represented
in the obtained lower dimensional representation of the data. This led to
the development of a new unsupervised variables selection technique called
Forward Selection Independent Variables (FSIV) with the aim of providing
a lower dimensional representation of the data that keeps track of all the iso-
lated variations. The proposed algorithm is then used to perform wavelength
selection in an anomaly detection case study based on OES data and it per-
forms better than PCA and FSCA when the dataset contains uncorrelated
wavelengths.

In conclusion it is shown that OES data can be successfully used for anomaly
detection given that effective dimensionality reduction is performed. It is in
addition shown that dimensionality reduction can be avoided if the wafers
are analysed in time intervals resulting in a measure of anomaly at each time
instant during production. This may be useful when seeking to identify when
during production the anomaly occurred.

As a summary the proposed variables selection algorithms are here reported.
e Supervised Variables Selection (Lasso based methods)

— HM, HF, MCHM, MCHF are used to identify a stable set of vari-
ables.

— HF(max) allows the number of selected variables with lasso to be
reduced as hyperparameters chosen with cross-validation may be
too generous in terms of number of selected variables.

e Unsupervised Variables Selection
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— FSCA and FSV perform linear unsupervised variables selection
and their performance is improved with the introduction of refine-
ment steps denoted as: SPBR, MPBR, R-SPBR and R-MPBR.

— Several linear in the parameter algorithms are developed as non-
linear extension of FSCA and FSV. These were obtained using
nonlinear multi-output models. The considered models and the
associated nonlinear version of FSCA and FSV were: Polynomial
(PFSCA and PFSV), Extreme Learning Machine Neural Networks
(ELMFSCA and ELMFSV), and Extreme Learning Machine Di-
rect with Linear Feed-Through Neural Networks (ELMFSCA-DLF
and ELMFSV-DLF).

— Variables selection based on multilayer neural networks.

— FSIV for unsupervised variables selection for anomaly detection.

7.1.1 Guidelines for Practical Applications.

All the work in this thesis is oriented toward the development of new algo-
rithms that are of practical use in semiconductor manufacturing. It is then
important to guide practitioners in the use of the algorithms. While there
isn’t an algorithm that stands out from the rest, as the method of choice
under all conditions, as each method has its advantages and disadvantages,
some of them work well in general and, as a consequence, are more valuable
for practitioners that do not want to go into the details of each method.

e For supervised problems HF(max) is the most effective method as it
is easy to use and, at the same time, produces robust and accurate
predictive models.

e For generic unsupervised problems FSCA provides an interpretable al-
ternative to PCA. If the percentage of explained variance obtained
with FSCA is not sufficient its performance can be improved through
the introduction of refinement steps or nonlinearities. Among these
ELMFSV-DLF is the method that is most likely to achieve the best
performance and therefore the suggested one.

e For anomaly detection, and in particular for semi-supervised anomaly
detection, the most common scenario in semiconductor manufacturing,
variables that behave differently from the majority of the data need
to be included in the final model, even if they do not contribute much
in terms of explained variance. For this reason, the FSIV algorithm is
recommended for anomaly detection.
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7.2 Future Work

The algorithms proposed in this thesis open up new possibilities for future
work. Some suggestions are discussed below, which are certainly not an
exhaustive list.

Time context

Most of the developed algorithms do not take into account normal variation
in the process over time. The currently developed algorithms need to be
periodically retrained in order to keep track of these variations. Wavelengths
that are important at the beginning of the wafer etching may not be relevant
any more later in the cycle. An automatic update of the model can be
obtained through the introduction of time series analysis techniques or the
development of automatic retraining procedures. This may reduce the need
for human intervention during production leading to a more automated and
effective production control.

PCA for anomaly detection

FSIV shows the limit of classical dimensionality reduction techniques like
PCA in an anomaly detection context. FSIV is defined as a constrained
minimization procedure where the cost function is defined in terms of the L*>
norm rather the L? norm as used in PCA and FSCA. It is then reasonable to
wonder if a modified version of PCA defined in order to minimize a convex
combination of the L? and L* norms may lead to better performance than
FSIV due to its lack of constraints.

Microarray Data Analysis

Most of the algorithms developed and discussed in the thesis are not limited
to OES data and can be applied in various domains. They are specifically
designed for high dimensional datasets with a significant level of redundancy
among variables.

DNA microarray data has characteristics similar to OES data. It contains the
measurements of many thousands of genes and is characterized by high di-
mension, high volume and highly levels of redundancy. The SPCA technique
was, in fact, originally developed for microarray data analysis and many of
the algorithms that can handle high dimensional data, for example lasso and
random forest, are commonly used for microarray data analysis. Microarrays
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can be used diagnostically to determine the disease that an individual is suf-
fering from and to predict the effectiveness of a course of therapy. The use of
microarray technology is rapidly spreading in medicine and pharmaceutical
industries with several applications among which personalised medicine has
major growth potential. It will be interesting to establish the utility of the
algorithms developed in the thesis for analysis of this type of data.



Appendices



Appendix A

Stable Lasso

This appendix tabulates the numerical results obtained in the experiments
described in Section [3.5.3] of Chapter
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MSE N. Var Sens Spec

MSE N. Var Sens

Spec |

MSE N. Var Sens Spec

n=100 p=100 SN R=1 Data=A

n=100 p=100 SN R=1.5 Data=A

n=100 p=100 SN R=2 Data=A

Real 0.034 0.000 0.000 0.000 0.045 0.000 0.000 0.000 0.033 0.000 0.000 0.000
HM 0.071 13.299 0.111 0.149 0.065 13.865 0.118 0.150 0.060 10.879 0.076 0.118
HF 0.058 14.601 0.128 0.163 0.057 10.477 0.160 0.111 0.046 6.245 0.075 0.077
MCHM 0.052 6.729 0.130 0.066 0.074 12.166 0.207 0.114 0.055 11.597 0.123 0.123
MCHF 0.059 9.396 0.128 0.098 0.079 7.132 0.141 0.072 0.057 8.000 0.086 0.085
HF (max) 0.057 15.540 0.221 0.148 0.074 8.890 0.186 0.086 0.054 6.784 0.125 0.077
SS 0.082 35.518 0.426 0.347 0.092 35.302 0.442 0.339 0.108 32.964 0.440 0.313
LP 0.054 12.561 0.245 0.110 0.076 10.161 0.174 0.097 0.048 5.426 0.091 0.071
KSC 0.378 3.060 0.059 0.034 0.124 3.644 0.077 0.054 0.082 3.887 0.051 0.046
LCV 0.071 11.624 0.234 0.102 0.076 8.546 0.153 0.085 0.051 5.357 0.091 0.068
n=100 p=500 SNR=1 Data=A n=100 p=500 SNR=1.5 Data=A n=100 p=500 SN R=2 Data=A
Real 0.100 0.000 0.000 0.000 0.053 0.000 0.000 0.000 0.043 0.000 0.000 0.000
HM 0.103 28.161 0.101 0.056 0.076 21.232 0.051 0.044 0.078 23.016 0.096 0.046
HF 0.109 22.391 0.09 0.045 0.080 20.017 0.061 0.040 0.075 16.744 0.086 0.034
MCHM 0.093 66.365 0.148 0.134 0.098 38.251 0.071 0.079 0.100 33.087 0.089 0.068
MCHF 0.113 12.074 0.075 0.024 0.089 50.702 0.113 0.102 0.075 12.238 0.065 0.025
HF (max) 0.133 16.233 0.136 0.030 0.085 15.588 0.126 0.028 0.085 17.420 0.107 0.033
SS 0.149 105.133 0.347 0.206 0.074 19.724 0.206 0.033 0.043 18.748 0.216 0.031
LP 0.125 21.056 0.138 0.040 0.081 27.859 0.211 0.051 0.074 25.353 0.114 0.049
KSC 0.120 1.581 0.061 0.004 0.099 1.202 0.100 0.004 0.087 2.784 0.094 0.006
LCV 0.113 23.118 0.144 0.045 0.084 17.940 0.085 0.034 0.073 21.688 0.084 0.043
n=100 p=1000 SN R=1 Data=A n=100 p=1000 SN R=1.5 Data=A n=100 p=1000 SN R=2 Data=A
Real 0.084 0.000 0.000 0.000 0.049 0.000 0.000 0.000 0.045 0.000 0.000 0.000
HM 0.097 16.203 0.085 0.015 0.094 22.452 0.071 0.022 0.083 26.467 0.085 0.026
HF 0.099 17.328 0.091 0.016 0.096 24.165 0.071 0.024 0.079 18.242 0.087 0.018
MCHM 0.091 66.056 0.154 0.065 0.093 89.997 0.110 0.090 0.085 84.954 0.122 0.084
MCHF 0.105 51.525 0.148 0.050 0.079 74.487 0.124 0.074 0.084 53.577 0.070 0.054
HF (max) 0.103 11.016 0.103 0.010 0.089 16.303 0.191 0.013 0.070 17.299 0.163 0.015
Ss 0.094 65.913 0.217 0.063 0.100 79.433 0.254 0.077 0.087 80.944 0.256 0.078
LP 0.106 11.147 0.113 0.010 0.084 20.365 0.129 0.019 0.071 26.649 0.120 0.025
KSC 0.103 1.333 0.088 0.002 0.090 1.732 0.071 0.003 0.087 1.803 0.061 0.003
LCV 0.098 15.186 0.122 0.014 0.089 31.595 0.155 0.030 0.076 33.890 0.160 0.032
n=300 p=100 SN R=1 Data=A n=300 p=100 SN R=1.5 Data=A n=300 p=100 SN R=2 Data=A
Real 0.030 0.000 0.000 0.000 0.033 0.000 0.000 0.000 0.025 0.000 0.000 0.000
HM 0.027 12.874 0.091 0.150 0.034 14.469 0.099 0.157 0.027 15.297 0.053 0.174
HF 0.027 8.448 0.058 0.095 0.035 8.526 0.055 0.097 0.026 7.579 0.042 0.088
MCHM 0.032 8.033 0.077 0.088 0.034 13.210 0.109 0.141 0.027 7.574 0.04 0.087
MCHF 0.034 5.932 0.082 0.063 0.033 11.303 0.103 0.117 0.027 7.715 0.090 0.075
HF (max) 0.029 7.259 0.052 0.085 0.036 7.253 0.075 0.078 0.026 7.645 0.042 0.087
SS 0.043 21.439 0.353 0.182 0.078 29.745 0.412 0.279 0.076 26.841 0.356 0.253
LP 0.029 8.187 0.052 0.100 0.036 7.126 0.055 0.081 0.026 7.500 0.042 0.086
KSC 0.026 8.555 0.03 0.101 0.034 8.338 0.053 0.098 0.026 7.159 0.04 0.085
LCV 0.027 9.905 0.056 0.116 0.034 9.167 0.046 0.107 0.025 8.358 0.045 0.098
n=300 p=500 SN R=1 Data=A n=300 p=500 SN R=1.5 Data=A n=300 p=500 SN R=2 Data=A
Real 0.029 0.000 0.000 0.000 0.031 0.000 0.000 0.000 0.023 0.000 0.000 0.000
HM 0.040 15.050 0.135 0.029 0.040 15.199 0.064 0.032 0.028 16.865 0.051 0.035
HF 0.040 14.187 0.124 0.027 0.040 12.258 0.061 0.025 0.028 17.769 0.051 0.037
MCHM 0.038 23.744 0.129 0.047 0.035 15.040 0.063 0.030 0.032 15.820 0.034 0.033
MCHF 0.046 28.603 0.140 0.057 0.041 26.46 0.069 0.054 0.031 12.824 0.034 0.027
HF (max) 0.034 11.392 0.132 0.020 0.040 10.717 0.067 0.021 0.029 8.090 0.033 0.017
Ss 0.061 113.069 0.367 0.221 0.088 129.215 0.423 0.255 0.085 105.021 0.458 0.202
LP 0.039 14.993 0.135 0.028 0.042 13.648 0.062 0.027 0.030 8.182 0.033 0.017
KSC 0.071 68.414 0.147 0.137 0.066 64.801 0.064 0.134 0.045 37.888 0.043 0.079
LCV 0.037 15.875 0.125 0.030 0.041 11.091 0.062 0.022 0.029 8.860 0.034 0.019
n=300 p=1000 SNR=1 Data=A n=300 p=1000 SN R=1.5 Data=A n=300 p=1000 SN R=2 Data=A
Real 0.036 0.000 0.000 0.000 0.024 0.000 0.000 0.000 0.018 0.000 0.000 0.000
HM 0.065 29.808 0.068 0.03 0.034 25.067 0.084 0.025 0.023 28.614 0.086 0.029
HF 0.064 30.781 0.068 0.031 0.034 26.392 0.077 0.027 0.024 27.034 0.086 0.027
MCHM 0.054 29.949 0.054 0.031 0.039 21.148 0.081 0.022 0.029 35.599 0.093 0.035
MCHF 0.054 26.676 0.074 0.026 0.043 28.470 0.094 0.028 0.025 24.637 0.079 0.025
HF (max) 0.057 17.769 0.092 0.016 0.039 9.025 0.100 0.008 0.029 11.726 0.089 0.011
SS 0.063 268.399 0.390 0.267 0.063 135.275 0.373 0.131 0.054 152.551 0.426 0.148
LP 0.058 23.104 0.092 0.022 0.037 16.167 0.099 0.015 0.027 20.757 0.089 0.020
KSC 0.066 85.668 0.077 0.086 0.042 42.070 0.070 0.042 0.033 23.170 0.043 0.023
LCV 0.059 22.245 0.092 0.021 0.033 18.999 0.096 0.018 0.026 16.776 0.086 0.017

Table A.1: The standard deviation of MSE, the number of selected variables,
the sensitivity and the specificity of each method when applied to dataset A.
The reported values are the standard deviation over 10 Monte Carlo repeti-

tions.
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| MSE
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| n=100 p=100 SNR=1 Data=B

n=100 p=100 SN R=1.5 Data=B

n=100 p=100 SN R=2 Data=B

Real 0.089 0.000 0.000 0.000 0.064 0.000 0.000 0.000 0.051 0.000 0.000 0.000
HM 0.097 10.38 0.185 0.100 0.064 7.748 0.116 0.085 0.044 6.839 0.152 0.072
HF 0.095 9.951 0.186 0.096 0.067 10.060 0.160 0.099 0.050 8.177 0.141 0.081
MCHM 0.094 12.369 0.183 0.120 0.068 10.571 0.194 0.090 0.052 16.156 0.177 0.163
MCHF 0.099 13.371 0.224 0.120 0.063 9.020 0.123 0.094 0.055 10.977 0.129 0.113
HF (max) 0.093 5.099 0.100 0.053 0.070 6.910 0.142 0.057 0.047 5.979 0.127 0.055
SS 0.100 16.516 0.205 0.160 0.121 20.374 0.299 0.185 0.135 16.496 0.266 0.145
LP 0.095 7.939 0.184 0.069 0.065 6.837 0.120 0.063 0.052 6.314 0.147 0.057
KSC 0.156 17.915 0.179 0.186 0.091 16.412 0.140 0.172 0.063 14.293 0.140 0.151
LCV 0.091 9.695 0.189 0.086 0.067 7.114 0.126 0.073 0.050 8.079 0.128 0.080
‘ n=100 p=500 SN R=1 Data=B n=100 p=500 SNR=1.5 Data=B n=100 p=500 SN R=2 Data=B

Real 0.145 0.000 0.000 0.000 0.098 0.000 0.000 0.000 0.077 0.000 0.000 0.000
HM 0.218 27.016 0.111 0.053 0.138 28.045 0.132 0.055 0.110 27.180 0.153 0.051
HF 0.218 26.352 0.118 0.052 0.141 28.778 0.132 0.056 0.087 26.968 0.149 0.051
MCHM 0.250 91.571 0.180 0.184 0.119 73.573 0.185 0.146 0.083 87.788 0.202 0.175
MCHF 0.173 75.127 0.196 0.149 0.144 78.363 0.210 0.155 0.081 44.964 0.147 0.088
HF (max) 0.170 4.927 0.079 0.009 0.143 6.205 0.100 0.010 0.093 7.550 0.084 0.014
SS 0.172 24.254 0.116 0.046 0.098 20.761 0.137 0.039 0.070 18.496 0.133 0.034
LP 0.165 5.123 0.095 0.008 0.000 5.570 0.117 0.009 0.082 8.246 0.070 0.016
KSC 0.222 33.29 0.101 0.067 0.147 27.957 0.120 0.055 0.112 26.584 0.135 0.052
LCV 0.171 9.089 0.095 0.016 0.109 7.322 0.108 0.013 0.083 6.690 0.063 0.014

n=100 p=1000 SN R=1 Data=B n=100 p=1000 SN R=1.5 Data=B n=100 p=1000 SN R=2 Data=B
Real 0.146 0.000 0.000 0.000 0.095 0.000 0.000 0.000 0.070 0.000 0.000 0.000
HM 0.154 36.871 0.093 0.036 0.130 27.133 0.102 0.026 0.097 25.877 0.100 0.025
HF 0.151 36.728 0.096 0.036 0.131 29.005 0.096 0.028 0.097 22.804 0.098 0.022
MCHM 0.154 136.567 0.167 0.136 0.105 109.714 0.211 0.108 0.079 99.28 0.194 0.098
MCHF 0.176 102.785 0.163 0.102 0.107 113.282 0.217 0.111 0.083 79.857 0.183 0.078
HF (max) 0.154 4.773 0.050 0.005 0.104 6.692 0.075 0.006 0.083 9.055 0.080 0.008
Ss 0.187 37.366 0.087 0.037 0.166 22.746 0.051 0.022 0.177 21.807 0.083 0.021
LP 0.155 4.848 0.049 0.005 0.103 7.328 0.088 0.007 0.072 10.124 0.085 0.010
KSC 0.171 3.000 0.067 0.004 0.121 3.790 0.076 0.004 0.089 3.701 0.078 0.004
LCV 0.157 4.693 0.053 0.005 0.106 9.580 0.106 0.009 0.075 8.423 0.071 0.009

‘ n=300 p=100 SN R=1 Data=B n=300 p=100 SN R=1.5 Data=B n=300 p=100 SN R=2 Data=B

Real 0.070 0.000 0.000 0.000 0.046 0.000 0.000 0.000 0.035 0.000 0.000 0.000
HM 0.074 13.249 0.269 0.107 0.050 4.400 0.096 0.047 0.036 8.253 0.149 0.078
HF 0.074 8.411 0.242 0.057 0.050 4.664 0.127 0.039 0.037 6.000 0.134 0.058
MCHM 0.075 11.469 0.228 0.094 0.050 9.341 0.213 0.079 0.038 14.833 0.200 0.152
MCHF 0.073 9.734 0.261 0.066 0.051 12.778 0.213 0.118 0.038 9.821 0.196 0.086
HF (max) 0.073 5.788 0.196 0.034 0.054 7.855 0.232 0.047 0.039 5.495 0.148 0.036
SS 0.071 17.728 0.269 0.164 0.046 15.517 0.267 0.142 0.092 15.252 0.262 0.140
LP 0.074 6.144 0.193 0.041 0.051 5.869 0.175 0.038 0.037 5.652 0.150 0.047
KSC 0.074 13.638 0.231 0.118 0.051 6.540 0.174 0.047 0.038 3.180 0.141 0.033
LCV 0.073 7.715 0.242 0.046 0.051 6.030 0.167 0.041 0.037 6.234 0.144 0.055

n=300 p=500 SN R=1 Data=B n=300 p=500 SN R=1.5 Data=B n=300 p=500 SN R=2 Data=B
Real 0.085 0.000 0.000 0.000 0.057 0.000 0.000 0.000 0.044 0.000 0.000 0.000
HM 0.089 24.867 0.137 0.048 0.062 22.990 0.111 0.047 0.049 18.869 0.106 0.040
HF 0.086 25.502 0.132 0.049 0.062 24.764 0.116 0.050 0.048 20.196 0.101 0.042
MCHM 0.097 38.685 0.129 0.077 0.065 41.551 0.133 0.083 0.049 25.387 0.088 0.052
MCHF 0.084 31.013 0.138 0.060 0.066 36.637 0.132 0.073 0.049 45.778 0.106 0.091
HF (max) 0.082 11.662 0.137 0.020 0.057 10.138 0.128 0.018 0.046 9.808 0.110 0.018
Ss 0.140 19.499 0.128 0.036 0.086 17.642 0.140 0.031 0.078 22.751 0.150 0.041
LP 0.085 9.615 0.134 0.016 0.059 10.050 0.120 0.019 0.050 9.055 0.076 0.017
KSC 0.109 44.648 0.192 0.086 0.071 32.738 0.133 0.064 0.050 18.361 0.109 0.037
LCV 0.084 10.989 0.100 0.020 0.060 11.511 0.138 0.020 0.049 11.630 0.105 0.023

n=300 p=1000 SN R=1 Data=B n=300 p=1000 SN R=1.5 Data=B n=300 p=1000 SN R=2 Data=B
Real 0.073 0.000 0.000 0.000 0.050 0.000 0.000 0.000 0.038 0.000 0.000 0.000
HM 0.075 33.707 0.113 0.033 0.052 42.632 0.109 0.042 0.041 49.456 0.160 0.048
HF 0.074 33.599 0.121 0.033 0.052 42.779 0.109 0.042 0.041 46.782 0.160 0.045
MCHM 0.077 91.778 0.176 0.091 0.045 83.400 0.214 0.081 0.036 89.424 0.180 0.088
MCHF 0.071 61.145 0.158 0.059 0.048 83.895 0.224 0.082 0.036 91.919 0.168 0.091
HF (max) 0.075 6.784 0.074 0.006 0.053 12.208 0.143 0.010 0.042 15.246 0.146 0.013
SS 0.105 23.929 0.147 0.022 0.114 26.804 0.149 0.025 0.118 25.780 0.159 0.023
LP 0.074 7.288 0.070 0.007 0.054 12.015 0.135 0.010 0.041 15.661 0.146 0.013
KSC 0.089 9.862 0.122 0.012 0.052 57.240 0.136 0.056 0.041 34.000 0.128 0.032
LCV 0.076 10.208 0.077 0.009 0.052 16.508 0.152 0.014 0.040 36.000 0.181 0.034

Table A.2: The standard deviation of MSE, the number of selected variables,
the sensitivity and the specificity of each method when applied to dataset B.
The reported values are the standard deviation over 10 Monte Carlo repeti-

tions.



250

MSE N. Var Sens Spec MSE N. Var Sens Spec ‘ MSE N. Var Sens Spec

n=100 p=100 SN R=1 Data=C n=100 p=100 SN R=1.5 Data=C n=100 p=100 SN R=2 Data=C
Real 0.082 0.000 0.000 0.000 0.057 0.000 0.000 0.000 0.042 0.000 0.000 0.000
HM 0.111 13.684 0.141 0.140 0.091 13.030 0.116 0.143 0.070 10.476 0.101 0.119
HF 0.136 15.628 0.161 0.158 0.090 12.524 0.104 0.142 0.067 12.32 0.070 0.140
MCHM 0.111 11.677 0.141 0.120 0.076 10.651 0.060 0.122 0.060 9.422 0.084 0.109
MCHF 0.093 9.493 0.114 0.100 0.075 8.338 0.071 0.091 0.063 8.418 0.088 0.096
HF (max) 0.097 9.554 0.178 0.084 0.087 11.759 0.173 0.117 0.065 10.933 0.110 0.118
Ss 0.092 30.360 0.370 0.292 0.106 20.809 0.267 0.200 0.105 25.981 0.353 0.241
LP 0.097 10.724 0.130 0.107 0.087 11.465 0.112 0.128 0.064 12.083 0.096 0.135
KSC 0.154 5.674 0.074 0.060 0.094 5.932 0.072 0.064 0.062 6.144 0.059 0.070
LCV 0.123 15.540 0.164 0.155 0.092 16.417 0.140 0.179 0.069 11.660 0.092 0.135

n=100 p=500 SNR=1 Data=C n=100 p=500 SNR=1.5 Data=C n=100 p=500 SNR=2 Data=C
Real 0.159 0.000 0.000 0.000 0.114 0.000 0.000 0.000 0.092 0.000 0.000 0.000
HM 0.174 19.962 0.091 0.039 0.121 16.966 0.084 0.033 0.103 18.317 0.108 0.034
HF 0.166 17.349 0.054 0.035 0.120 13.295 0.057 0.027 0.102 20.843 0.122 0.039
MCHM 0.177 20.839 0.070 0.041 0.126 12.166 0.075 0.024 0.132 49.411 0.150 0.098
MCHF 0.177 21.499 0.111 0.042 0.122 20.185 0.075 0.040 0.117 17.892 0.095 0.034
HF (max) 0.160 6.227 0.074 0.012 0.124 5.183 0.054 0.011 0.119 6.164 0.082 0.011
SS 0.141 45.406 0.192 0.087 0.086 56.208 0.268 0.106 0.053 51.563 0.279 0.097
LP 0.159 7.480 0.075 0.014 0.129 5.809 0.049 0.012 0.095 9.899 0.077 0.018
KSC 0.178 3.833 0.074 0.006 0.136 4.387 0.110 0.007 0.121 4.295 0.100 0.008
LCV 0.161 9.028 0.062 0.018 0.125 8.946 0.055 0.018 0.111 16.898 0.108 0.031

n=100 p=1000 SN R=1 Data=C n=100 p=1000 SN R=1.5 Data=C n=100 p=1000 SN R=2 Data=C
Real 0.150 0.000 0.000 0.000 0.102 0.000 0.000 0.000 0.079 0.000 0.000 0.000
HM 0.166 36.657 0.091 0.036 0.123 27.797 0.131 0.028 0.092 22.317 0.159 0.022
HF 0.166 36.347 0.097 0.036 0.127 22.951 0.130 0.022 0.089 24.621 0.159 0.024
MCHM 0.170 81.265 0.125 0.081 0.127 87.224 0.092 0.088 0.112 58.498 0.122 0.059
MCHF 0.174 85.289 0.142 0.085 0.128 109.385 0.125 0.110 0.115 68.262 0.178 0.067
HF (max) 0.167 4.873 0.039 0.005 0.137 9.584 0.044 0.010 0.100 11.624 0.088 0.011
Ss 0.205 49.398 0.130 0.048 0.150 63.085 0.209 0.060 0.126 58.000 0.234 0.055
LP 0.176 28.557 0.079 0.028 0.135 31.663 0.116 0.031 0.096 25.956 0.127 0.025
KSC 0.175 1.667 0.108 0.003 0.126 3.073 0.150 0.004 0.097 3.245 0.146 0.004
LCV 0.174 29.462 0.094 0.028 0.119 31.639 0.103 0.031 0.092 23.267 0.157 0.023

n=300 p=100 SNR=1 Data=C n=300 p=100 SN R=1.5 Data=C n=300 p=100 SN R=2 Data=C
Real 0.068 0.000 0.000 0.000 0.045 0.000 0.000 0.000 0.033 0.000 0.000 0.000
HM 0.070 16.169 0.136 0.169 0.047 12.095 0.092 0.133 0.035 11.158 0.035 0.134
HF 0.070 9.785 0.101 0.109 0.045 8.775 0.094 0.096 0.034 7.207 0.066 0.083
MCHM 0.072 10.402 0.153 0.103 0.047 13.491 0.108 0.153 0.035 13.664 0.118 0.154
MCHF 0.071 8.775 0.141 0.090 0.046 4.899 0.098 0.047 0.034 6.187 0.096 0.067
HF (max) 0.068 9.427 0.118 0.100 0.045 8.482 0.094 0.093 0.034 8.383 0.066 0.094
SS 0.065 10.967 0.245 0.088 0.056 15.951 0.321 0.130 0.069 20.216 0.362 0.174
LP 0.069 11.159 0.112 0.121 0.045 9.968 0.094 0.109 0.033 9.757 0.073 0.112
KSC 0.070 12.036 0.092 0.137 0.046 5.061 0.043 0.060 0.034 4.243 0.052 0.051
LCV 0.066 12.012 0.112 0.132 0.044 10.868 0.094 0.120 0.033 8.602 0.069 0.096

n=300 p=500 SN R=1 Data=C n=300 p=500 SN R=1.5 Data=C n=300 p=500 SN R=2 Data=C
Real 0.084 0.000 0.000 0.000 0.057 0.000 0.000 0.000 0.045 0.000 0.000 0.000
HM 0.078 21.932 0.162 0.040 0.064 23.355 0.103 0.045 0047 30.594 0.108 0.060
HF 0.076 20.000 0.135 0.037 0.060 24.409 0.097 0.048 0.048 29.187 0.112 0.057
MCHM 0.081 35.904 0.174 0.069 0.052 24.83 0.147 0.047 0.048 20.799 0.109 0.040
MCHF 0.078 21.616 0.140 0.04 0.052 19.871 0.115 0.038 0.045 15.788 0.108 0.030
HF (max) 0.078 14.080 0.111 0.026 0.055 15.313 0.121 0.029 0.045 19.348 0.107 0.037
SS 0.075 54.032 0.297 0.101 0.058 22.333 0.231 0.037 0.056 20.523 0.226 0.034
LP 0.078 18.054 0.135 0.034 0.053 23.296 0.128 0.045 0.045 22.317 0.100 0.044
KSC 0.108 23.822 0.052 0.049 0.074 25.208 0.067 0.052 0.052 29.793 0.066 0.062
LCV 0.079 13.379 0.119 0.024 0.055 16.432 0.100 0.032 0.045 19.026 0.091 0.037

n=300 p=1000 SN R=1 Data=C n=300 p=1000 SN R=1.5 Data=C n=300 p=1000 SN R=2 Data=C
Real 0.041 0.000 0.000 0.000 0.026 0.000 0.000 0.000 0.019 0.000 0.000 0.000
HM 0.045 31.008 0.154 0.029 0.034 30.546 0.152 0.029 0.023 47.877 0.105 0.047
HF 0.047 26.773 0.137 0.025 0.033 24.198 0.150 0.023 0.024 46.882 0.115 0.046
MCHM 0.046 26.909 0.124 0.025 0.031 20.833 0.111 0.021 0.019 25.505 0.141 0.024
MCHF 0.043 24.845 0.139 0.023 0.033 22.464 0.118 0.022 0.022 32.928 0.127 0.033
HF (max) 0.045 15.500 0.127 0.013 0.027 19.365 0.154 0.017 0.022 20.175 0.151 0.018
SS 0.055 113.100 0.272 0.110 0.073 95.265 0.312 0.092 0.051 54.567 0.229 0.052
LP 0.042 25.952 0.144 0.024 0.033 28.644 0.154 0.026 0.025 22.517 0.148 0.021
KSC 0.052 4.944 0.114 0.004 0.030 11.402 0.092 0.010 0.025 11.281 0.094 0.010
LCV 0.039 31.86 0.139 0.031 0.027 33.838 0.157 0.032 0.026 37.868 0.171 0.036

Table A.3: The standard deviation value of MSE, the number of selected
variables, the sensitivity and the specificity of each method when applied to
dataset C. The reported values are the standard deviation over 10 Monte
Carlo repetitions.
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MSE N. Var Sens Spec

MSE N. Var Sens Spec

MSE N. Var Sens Spec

n=100 p=100 SN R=1 Data=D

n=100 p=100 SN R=1.5 Data=D

n=100 p=100 SN R=2 Data=D

Real 0.115 0.000 0.000 0.000 0.073 0.000 0.000 0.000 0.056 0.000 0.000 0.000
HM 0.186 16.529 0.156 0.176 0.073 12.788 0.087 0.146 0.054 11.758 0.103 0.134
HF 0.120 10.529 0.165 0.104 0.073 6.833 0.086 0.078 0.051 9.697 0.089 0.113
MCHM 0.109 6.227 0.155 0.052 0.066 7.348 0.109 0.085 0.045 11.113 0.121 0.113
MCHF 0.101 7.106 0.187 0.05 0.065 6.972 0.149 0.060 0.047 11.396 0.091 0.120
HF (max) 0.099 8.551 0.189 0.074 0.065 6.265 0.093 0.063 0.050 6.652 0.082 0.076
SS 0.114 27.432 0.308 0.270 0.080 19.554 0.232 0.190 0.083 18.061 0.246 0.171
LP 0.102 9.043 0.186 0.078 0.069 6.234 0.101 0.069 0.054 9.501 0.079 0.114
KSC 0.276 8.997 0.109 0.094 0.147 4.876 0.079 0.053 0.075 3.962 0.045 0.049
LCV 0.179 15.664 0.191 0.154 0.115 13.402 0.144 0.142 0.084 17.324 0.114 0.194
n=100 p=500 SN R=1 Data=D n=100 p=500 SN R=1.5 Data=D n=100 p=500 SN R=2 Data=D
Real 0.049 0.000 0.000 0.000 0.034 0.000 0.000 0.000 0.023 0.000 0.000 0.000
HM 0.069 33.292 0.108 0.066 0.055 27.559 0.084 0.056 0.066 33.918 0.118 0.068
HF 0.074 35.189 0.110 0.07 0.057 17.98 0.088 0.036 0.070 24.529 0.109 0.049
MCHM 0.147 31.540 0.168 0.059 0.067 15.363 0.081 0.030 0.063 24.823 0.116 0.048
MCHF 0.072 18.254 0.132 0.034 0.062 16.935 0.098 0.032 0.071 13.427 0.090 0.026
HF (max) 0.080 12.221 0.100 0.022 0.066 9.701 0.091 0.018 0.063 13.036 0.126 0.023
SS 0.060 104.567 0.335 0.204 0.052 120.634 0.386 0.236 0.074 106.421 0.352 0.208
LP 0.080 18.709 0.159 0.033 0.055 24.504 0.114 0.047 0.053 16.400 0.130 0.030
KSC 0.099 2.128 0.058 0.004 0.087 3.087 0.089 0.006 0.068 1.764 0.079 0.003
LCV 0.090 15.748 0.110 0.029 0.047 15.023 0.088 0.03 0.057 20.501 0.113 0.039
n=100 p=1000 SN R=1 Data=D n=100 p=1000 SN R=1.5 Data=D n=100 p=1000 SN R=2 Data=D
Real 0.114 0.000 0.000 0.000 0.078 0.000 0.000 0.000 0.059 0.000 0.000 0.000
HM 0.112 28.548 0.114 0.028 0.094 26.116 0.106 0.026 0.081 26.851 0.080 0.027
HF 0.111 22.176 0.114 0.022 0.088 26.295 0.086 0.026 0.080 18.72 0.066 0.019
MCHM 0.151 82.142 0.146 0.082 0.099 65.674 0.143 0.064 0.082 79.090 0.126 0.078
MCHF 0.152 102.261 0.153 0.102 0.075 62.315 0.118 0.062 0.072 52.37 0.074 0.052
HF (max) 0.128 16.492 0.129 0.014 0.098 13.944 0.122 0.012 0.084 12.578 0.095 0.012
Ss 0.120 73.622 0.235 0.071 0.090 67.330 0.233 0.064 0.071 113.160 0.293 0.110
LP 0.125 28.513 0.157 0.027 0.091 30.004 0.120 0.028 0.069 20.382 0.080 0.020
KSC 0.131 1.500 0.093 0.002 0.085 1.590 0.093 0.002 0.079 1.716 0.071 0.002
LCV 0.123 27.435 0.154 0.025 0.096 24.020 0.105 0.023 0.074 20.773 0.084 0.020
n=300 p=100 SN R=1 Data=D n=300 p=100 SN R=1.5 Data=D n=300 p=100 SN R=2 Data=D
Real 0.036 0.000 0.000 0.000 0.025 0.000 0.000 0.000 0.020 0.000 0.000 0.000
HM 0.036 12.722 0.100 0.143 0.025 10.452 0.070 0.122 0.021 10.235 0.072 0.124
HF 0.037 8.293 0.107 0.085 0.024 7.897 0.089 0.086 0.020 9.528 0.084 0.105
MCHM 0.035 7.311 0.058 0.089 0.022 6.305 0.131 0.059 0.020 14.664 0.103 0.164
MCHF 0.037 6.500 0.104 0.065 0.023 6.103 0.101 0.078 0.019 8.337 0.101 0.103
HF (max) 0.038 8.276 0.115 0.080 0.026 7.213 0.089 0.080 0.020 7.650 0.086 0.086
SS 0.038 25.964 0.434 0.224 0.07 30.948 0.435 0.286 0.077 27.924 0.385 0.263
LP 0.037 9.341 0.128 0.089 0.026 7.764 0.089 0.086 0.021 8.038 0.088 0.089
KSC 0.039 13.728 0.104 0.157 0.027 8.614 0.087 0.094 0.021 7.890 0.073 0.086
LCV 0.039 11.436 0.126 0.123 0.025 10.064 0.088 0.108 0.020 9.235 0.079 0.100
n=300 p=500 SN R=1 Data=D n=300 p=500 SN R=1.5 Data=D n=300 p=500 SN R=2 Data=D
Real 0.017 0.000 0.000 0.000 0.012 0.000 0.000 0.000 0.009 0.000 0.000 0.000
HM 0.035 8.423 0.071 0.019 0.020 12.713 0.066 0.027 0.017 16.354 0.050 0.033
HF 0.038 9.500 0.069 0.021 0.022 9.407 0.047 0.020 0.020 20.651 0.065 0.042
MCHM 0.032 15.476 0.086 0.031 0.018 8.531 0.083 0.015 0.016 8.803 0.046 0.019
MCHF 0.029 7.091 0.070 0.013 0.019 9.812 0.05 0.021 0.017 11.425 0.041 0.024
HF (max) 0.030 6.984 0.073 0.014 0.025 10.252 0.051 0.021 0.018 10.671 0.057 0.022
Ss 0.045 122.379 0.467 0.237 0.039 117.862 0.463 0.227 0.056 99.594 0.468 0.188
LP 0.035 8.803 0.070 0.018 0.025 11.000 0.051 0.023 0.016 11.819 0.047 0.025
KSC 0.054 55.039 0.078 0.114 0.033 32.743 0.053 0.069 0.025 23.022 0.060 0.047
LCV 0.033 9.645 0.075 0.019 0.021 10.944 0.075 0.021 0.017 12.460 0.050 0.025
n=300 p=1000 SN R=1 Data=D n=300 p=1000 SN R=1.5 Data=D n=300 p=1000 SN R=2 Data=D
Real 0.036 0.000 0.000 0.000 0.024 0.000 0.000 0.000 0.018 0.000 0.000 0.000
HM 0.052 22.014 0.104 0.022 0.035 19.743 0.105 0.019 0.026 23.324 0.092 0.023
HF 0.049 18.296 0.112 0.018 0.029 20.749 0.114 0.020 0.023 16.714 0.092 0.016
MCHM 0.043 18.716 0.117 0.018 0.033 16.654 0.088 0.016 0.030 20.429 0.121 0.019
MCHF 0.047 12.278 0.104 0.012 0.026 15.341 0.069 0.016 0.022 12.021 0.100 0.012
HF (max) 0.051 15.492 0.122 0.014 0.033 14.867 0.123 0.014 0.024 12.320 0.099 0.011
SS 0.054 219.308 0.375 0.216 0.047 81.008 0.38 0.075 0.072 151.151 0.404 0.148
LP 0.051 18.256 0.128 0.017 0.037 19.931 0.108 0.019 0.026 17.255 0.099 0.016
KSC 0.069 54.088 0.094 0.054 0.043 7.399 0.037 0.008 0.031 11.077 0.067 0.012
LCV 0.048 19.462 0.127 0.019 0.032 12.584 0.101 0.013 0.024 15.388 0.093 0.015

Table A.4: The standard deviation of MSE, the number of selected variables,
the sensitivity and the specificity of each method when applied to dataset D.
The reported values are the standard deviation over 10 Monte Carlo repeti-

tions.



Appendix B

Linear Unsupervised Variables
Selection

The proofs of two results discussed in Chapter [4] are reported here.

Theorem B.0.1. Given projection matriz ®(S) as defined in eqt. and
Vx () as defined in eqt. , if X = ®(S)X then Vx(X) >0 VS € Rk,

Proof. Choosing X = ®(S)X is equivalent to choosing X = SO, where O is
the solution to the convex minimization problem in eqt. (4.7). By definition,
the ® that minimizes eqt. (4.7) maximizes Vx(X), that is:

O = argmazVx(SO) (B.1)
©

It then follows that Vx(S©) > Vx(S®) V0. Choosing © as the zero matrix
0 gives X = 0 and hence Vx(0) = 0. Therefore Vx(S©®) > Vx(0) = 0.
[l

Theorem B.0.2. If Vx(.) is defined as in eqt. and ®(.) defined as in
eqt. then

iXXTx;
argmaz Vx(P(x;)X) = argmaa:XT—X. (B.2)
x;€X x;€X X; Xi

Proof. Tt immediately follows from eqt.(4.3]) that

argmaz Vx(X) = argmin || X — X ||%, (B.3)
x,eX x,eX
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where X = d(x;)X. Expressing the F-norm in terms of the trace operator
gives
I X =X 7= tr(X - X)(X - X)") (B.4)
= tr(XXT) + tr(XXT) — 2tr(XX)
= tr(XXT) 4 tr(® () XX D(x;)) — 2tr(D(x;)XXT),
where the last equivalence is obtained by replacing X with ®(x;)X and noting
that ®(x;) = ®(x;)T. By application of the cyclic property of the trace oper-

ator and observing that ®(x;)? = ®(x;) we can write tr(®(x;) XXTd(x;)) =
tr(®(x;)®(x;,)XXT) = ¢tr(XXT), and therefore

| X — X ||2= 2tr(XXT) — 26r(®(x;) X XT).
It immediately follows that

argmin | X — X || p= argmaz tr(®(x;)XX7).

x;,€X x;,eX

Finally, by application of the definition of ®(.) in eqt. (4.9) and the properties
of trace, the r.h.s. can be rewritten as

T

x;x7 X
x ,
argmaz tr(=—-XX") = argmaz tr(—-XX"x;)
xi€X X Xi x;i€X XiX;
xI' XX,
= argmar ——p——. (B.5)
XiEX Xi Xi
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