
Purdue University
Purdue e-Pubs

ECE Technical Reports Electrical and Computer Engineering

1-5-2008

Using Polyvariant Union-Free Flow Analysis to
Compile a Higher-Order Functional-Programming
Language with a First-Class Derivative Operator to
Efficient Fortran-like Code
Jeffrey M. Siskind
Purdue University, qobi@purdue.edu

Barak A. Pearlmutter
barak@cs.nuim.ie

Follow this and additional works at: http://docs.lib.purdue.edu/ecetr

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Siskind, Jeffrey M. and Pearlmutter, Barak A., "Using Polyvariant Union-Free Flow Analysis to Compile a Higher-Order Functional-
Programming Language with a First-Class Derivative Operator to Efficient Fortran-like Code" (2008). ECE Technical Reports. Paper
367.
http://docs.lib.purdue.edu/ecetr/367

http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fecetr%2F367&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F367&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ece?utm_source=docs.lib.purdue.edu%2Fecetr%2F367&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/ecetr?utm_source=docs.lib.purdue.edu%2Fecetr%2F367&utm_medium=PDF&utm_campaign=PDFCoverPages

Purdue ECE TR-08-01

Using Polyvariant Union-Free Flow Analysis to Compile a
Higher-Order Functional-Programming Language with a

First-Class Derivative Operator to Efficient Fortran-like C ode

Jeffrey Mark Siskind
School of Electrical and Computer Engineering

Purdue University, USA
qobi@purdue.edu

Barak A. Pearlmutter
Hamilton Institute

NUI Maynooth, Ireland
barak@cs.nuim.ie

Abstract
We exhibit an aggressive optimizing compiler for a functional-
programming language which includes a first-class forward auto-
matic differentiation (AD) operator. The compiler’s performance
is competitive with FORTRAN-based systems on our numerical ex-
amples, despite the potential inefficiencies entailed by support of
a functional-programming language and a first-class AD operator.
These results are achieved by combining (1) a novel formulation of
forward AD in terms of a reflexive mechanism that supports first-
class nestable nonstandard interpretation with (2) the migration to
compile-time of the conceptually run-time nonstandard interpreta-
tion by whole-program inter-procedural flow analysis.

Categories and Subject Descriptors G.1.4 [Quadrature and Nu-
merical Differentiation]: Automatic differentiation; D.3.2 [Lan-
guage Classifications]: Applicative (functional) languages; D.3.4
[Processors]: Code generation, Compilers, Optimization; F.3.2
[Semantics of Programming Languages]: Partial evaluation, Pro-
gram analysis

General Terms Performance, Languages

Keywords Forward AD, Source-to-source transformation, Reflec-
tion, Higher-order functions, Nonstandard interpretation

1. Introduction
Numerical computing could greatly benefit from more expres-
sive programming languages, as evidenced by growing use of
MATLAB , OCAML , SCIPY, HASKELL, etc. The impact of func-
tional programming languages on the numerical programming
community has, however, been seriously diluted by two issues.
First, the most important higher-order function for numerical pro-
gramming, namely an exact efficient derivative operator, is not
available; and second, the speed penalty has been dramatic. In this
paper we demonstrate that it is possible to combine the speed of
FORTRAN with the expressiveness of a higher-level functional-
programming languageaugmentedwith first-class automatic dif-
ferentiation (AD).

[Copyright notice will appear here once ’preprint’ option is removed.]

Consider some stereotypical numerical code and its associated
execution model. Numerical code typically does not use union
types and thus its execution model does not use tags or tag dis-
patching. In numerical code, all aggregate data typically has fixed
size and shape that can be determined at compile time. Thus in the
execution model, such aggregate data is unboxed and does not re-
quire indirection for data access and run-time allocation and recla-
mation. Numerical code typically does not use higher-order func-
tions. Thus in the execution model, all function calls are to known
targets and do not involve indirection or closures. Numerical code is
typically written in languages that do not support reflection so code
cannot be accessed, modified or created during execution. We refer
to such code and its corresponding execution model as FORTRAN-
like. When properly compiled, FORTRAN-like numerical code can
exhibit significantly greater performance than numerical code writ-
ten in a non-FORTRAN-like style compiled with typical compilers.

This performance comes at a price in expressiveness, so numer-
ical programmers face a tradeoff. They can use a high-level lan-
guage, like MATLAB , that provides convenient access to mathemat-
ical abstractions like function optimization and differential equa-
tion solvers or they can use a low-level language, like FORTRAN, to
achieve high computational performance. The convenience of high-
level languages results in part from the fact that they support many
forms of run-time dependent computation: storage allocation and
automatic reclamation, data structures whose size is run-time de-
pendent, pointer indirection, closures, indirect function calls, tags
and tag dispatching, etc.

This tradeoff is particularly poignant in the domain ofautomatic
differentiationor AD. AD is a collection of techniques for evaluat-
ing the derivative of a function specified by a computer program at
a particular input.1 In its simplest form, AD could be provided with
a simple API:

(derivative f : R → R x : R) : R

or a curried variant (Sussman et al. 2001). This formulation as a
higher-order function would allow construction of a whole hier-
archy of mathematical concepts, like partial derivatives, gradients,
function optimization, differential-equation solvers, etc., that are
built upon the notion of a derivative. Moreover, once one defines
such abstractions, it is natural and useful to nest them:

(optimize (λ (x) (optimize (λ (y) . . .) . . .)) . . .)

(optimize (λ (x) (solve-ode (λ (y) . . .) . . .)) . . .)

1 AD is distinct from symbolic manipulation as performed by computer
algebra systems, like MACSYMA and MAPLE, which cannot handle the
control flow and aggregate data structures that distinguishprogramsfrom
mathematical expressions and thus cannot handle the examples in Section 7.

Purdue ECE TR-08-01 (CVS: tr-08-01.tex 1.1) 1 2008/1/22

Since the derivativeis a higher-order function, it is most naturally
incorporated into a language that supports higher-order functions
in general. We present a powerful and expressive formulation of
forward AD based on a novel set of higher-order primitives, and
develop the novel implementation techniques necessary to support
highly efficient implementation of this formulation.

2. Review of Forward AD
A dual number(Clifford 1873) is a pair〈x,−⇁x 〉 of two real num-
bersx and−⇁x , which supports arithmetic by regarding it as a trun-
cated power seriesx+−⇁x ε. This arithmetic can be derived be anal-
ogy with arithmetic on complex numbers, where instead of taking
i2 = −1 we takeε2 = 0 but ε 6= 0. Like complex numbers,
dual numbers are represented as simple tuples rather than as terms,
but also like complex numbers we write them using the notation
x+−⇁x ε for ease of manipulation. Dual numbers can also be viewed
as tangent-bundle pairs, and for this reason we refer tox and−⇁x as
the primal and tangent values ofx + −⇁x ε.

Forward AD2 computes the derivative of a univariate func-
tion f : R → R at a scalar pointc by evaluatingf (c + ε) under a
nonstandard interpretation replacing real numbers with dual num-
bers and extracting the coefficient ofε in the result. To see how this
works, let us manually apply the mechanism to a simple example:
computing the first derivative off(x) = x4 + 2x3 atx = 3. To do
this, we first evaluatef(3 + ε):

f(3 + ε) = (3 + ε)4 + 2(3 + ε)3

= (81 + 108ε) + 2(27 + 27ε)

= 135 + 162ε

From this we can extract the tangent, which gives the derivative,
162. Note that the above makes use of the restriction thatε2 = 0,
dropping theε2, ε3, andε4 terms when evaluating the expressions
(3+ε)3 = 27+27ε and(3+ε)4 = 81+108ε. This is the essence
of traditional forward AD when limited to the univariate case.

AD, in both its forward (Wengert 1964) and reverse (Speelpen-
ning 1980) variants, is widely used for scientific and engineering
computation. Seewww.autodiff.org for a plethora of implemen-
tations of forward and reverse AD in a multitude of programming
languages. Broadly speaking, these implementations employ one of
two general approaches for performing the nonstandard interpreta-
tion, described above, that is characteristic of forward AD. One is
to represent the dual numbers〈x,−⇁x 〉 (henceforth referred to sim-
ply as bundles, as a contraction of tangent-bundle pair) as objects
and overload the arithmetic primitives to manipulate such objects.
FADBAD++ (Bendtsen and Stauning 1996) is one of example of
this approach. The other is to transform the source code, replacing
each real variablex with a pair of real variablesx and−⇁x and aug-
menting the source code with expressions and statements to com-
pute the−⇁x values.ADIFOR (Bischof et al. 1996) and TAPENADE
(Hascöet and Pascual 2004) are two examples of this approach.

These two approaches exhibit complementary tradeoffs. The
overloading approach, particularly when it allows arithmetic oper-
ations to apply to either real numbers or bundles, supports acallee
derivesprogramming style. A function optimizer can be be writ-
ten as a higher-order function, taking an objective function as its
argument. The optimizer can invoke the objective function with a
bundle to compute its derivative and perform gradient-based opti-
mization, without knowledge of the caller. In contrast, the trans-

2 There is a complementary variant of AD called reverse AD (Speelpenning
1980). While the programming language that we present also supports
reverse AD, our focus here is on forward AD and the compiler optimizations
that we have implemented to support forward AD. Our intent is toextend
these compiler optimizations to support reverse AD in the future.

formation approach requires acaller derivesprogramming style.
The optimizer takes two function arguments, the objective function
and its derivative, and the caller must arrange for the build system
to transform the code for the objective function into code for its
derivative. The overloading approach thus supports a greater level
of modularity while the transformation approach requires exposing
the need for derivatives in the signatures of functions.

The overloading approach exhibits another advantage. When
implemented correctly, one can take derivatives of functions that
in turn take derivatives of other functions. (The utility of doing so
is illustrated in Section 7.) This involves computing higher-order
derivatives. Some overloading-based implementations can com-
pute derivatives of arbitrary order, even when the requisite order
is not explicitly specified and only implicit in the control-flow of
the program. When implemented correctly, the transformation ap-
proach can also transform transformed code to compute higher-
order derivatives. The difference is that, since the transformation
is typically done by a preprocessor, the preprocessor must be ex-
plicitly told which higher-order derivatives are needed.

In contrast, the overloading approach exhibits a computational
cost that is not exhibited by the transformation approach. Unless
specifically optimized, bundles must be allocated at run time, ac-
cessing the components of bundles requires indirection, and over-
loaded arithmetic can require run-time dispatch and perhaps even
indirect function calls. The transformation approach, however, can
yield FORTRAN-like code without these run-time costs and has thus
become the method of choice in communities where the speed of
numerical code is of paramount importance.

We present a novel approach that attains the advantages of
both the overloading and transformation approaches. We define
a novel functional-programming language,VLAD , that contains
mechanisms for transforming code into new code that computes
derivatives. These mechanisms apply to the source code that is, at
least conceptually, part of closures, and such transformation hap-
pens, at least conceptually, at run time. Such transformation mech-
anisms replace the preprocessor, support a callee-derives program-
ming style where the callee invokes the transformation mechanisms
on closures provided by the caller, and allow the control flow of
a program to determine the transformations needed to compute
derivatives of the requisite order. Polyvariant flow analysis is then
used to migrate the requisite transformations to compile time.3

3. Overview
Given the formulation from the previous section, evaluation of
(f x) under the nonstandard interpretation implied by forward
AD requires two things. First, one must transformf so that it
operates on bundles instead of reals. We introduce the functionj*
to accomplish this. Second, one must bundlex with a tangent. We
introduce the functionbundle to accomplish this.

When computing simple derivatives, the tangent of the inde-
pendent variable is one. This is accomplished by evaluating the
expression((j* f) (bundle x 1)). This yields a bundle con-
taining the value off(x) with its derivativef ′(x). We introduce
the functionsprimal andtangent to extract these components.
With these, the derivative operator for functionsR → R can be
formulated as a higher-order function:

(define ((derivative f) x)
(tangent ((j* f) (bundle x 1))))

3 Existing transformation-based AD preprocessors, likeADIFOR and
TAPENADE, use inter-procedural flow analysis for different incompara-
ble purposes, namely not to eliminate run-time reflection but todetermine
which subroutines to transform and which variables need tangents.

Purdue ECE TR-08-01 (CVS: tr-08-01.tex 1.1) 2 2008/1/22

Several complications arise. The functionf may call other func-
tions, directly or indirectly, and all of these may call primitives. All
of these need to be transformed. We assume that primitives are not
inlined (at least conceptually) and that every function or primitive
that is called is reachable as a (possibly nested) value of a free vari-
able closed over byf . A reflective mechanism calledmap-closure
(Siskind and Pearlmutter 2007) is used to access these values from
otherwise opaque closures.

We assume that all constants accessed byf are represented as
values of free variables closed over byf (i.e., constant conversion).
These, along with other closed-over variables (that are treated as
constants for the purpose of computing derivatives) must have all
(potentially nested) reals bundled with zero. Thusj* conceptually
incorporates the mechanism ofbundle.

Similarly, the input datax might be aggregate. In this case, par-
tial derivatives can be computed by taking one real component to
be the independent variable, and thus bundled with one, and the
other real components to be constants, and thus bundled with zero.
Alternatively, directional derivatives can be computed by bundling
the real components ofx with the corresponding components of the
direction vector. Thus we generalizebundle to take aggregate data
paired with an aggregate tangent containing the direction-vector
components. It is necessary to have the primal and tangent argu-
ments to bundle have the same shape. Thus when the primal ar-
gument contains discrete values, we fill the corresponding compo-
nents of the tangent argument with the same values as the primal
argument (see Section 4.1).

Just as the input data might be aggregate, the result of a func-
tion might also be aggregate. Accordingly, we generalizeprimal
andtangent to take arbitrary aggregate data that contains (possi-
bly nested) bundles as arguments and traverse such data to yield
result data of the same shape containing only the primal or tangent
components of these (possibly nested) bundles. Such aggregate
data may contain opaque closures. So thatprimal andtangent
can traverse these closures, they too are formulated with using the
map-closure reflective mechanism.

The aggregate valuex may contain closures (which get called
by f). Thus these (and all functions and closed-over reals that they
can access) also need to be transformed. Thusbundle conceptually
incorporates the mechanism ofj*. The mechanism ofj* conceptu-
ally is the same as bundling all closed-over values with zero. How-
ever, since closed-over values are often opaque closures, we need
a way to construct an appropriate closure as a tangent value whose
slots are zero. We introduce thezero function to map an arbitrary
data structurex, possibly containing possibly nested closures, to a
tangent value of the same shape with zero tangent values in all slots
that correspond to those inx that contain reals.

With this,j* can be defined as:

(define (j* x) (bundle x (zero x)))

so long asbundle transforms primitives andprimal andtangent
are able to transform transformed primitives back to the corre-
sponding original primitives.

4. VLAD : A Functional Language for AD
VLAD is a simple higher-order functional-programming language
designed to support AD. It resembles SCHEME (Clinger and Rees
1991), differing in the following respects:
• The only SCHEME datatypes supported are the empty list,

booleans, reals, pairs, and procedures.
• Only a subset of the builtin SCHEME procedures and syntax are

supported.
• Rest arguments are not supported.
• The constructcons is builtin syntax.

• The constructlist is a macro:
(list) ’()
(list e1 e2 . . .) (cons e1 (list e2 . . .))

• Procedure parametersp can be variables,’() to indicate an
argument that is ignored, or(cons p1 p2) to indicate the
appropriate destructuring.

• All procedures take exactly one argument and return exactly
one result. This is accomplished in part by the basis, in part by
the following transformations:

(e1) (e1 ’())
(e1 e2 e3 e4 . . .) (e1 (cons* e2 e3 e4 . . .))

(lambda () e) (lambda ((cons*)) e)
(lambda (p1 p2 p3 . . .) e)
 (lambda ((cons* p1 p2 p3 . . .)) e)

together with acons* macro:

(cons*) ’()
(cons* e1) e1

(cons* e1 e2 e3 . . .) (cons e1 (cons* e2 e3 . . .))

and by allowinglist andcons* as parameters.
The above, together with the standard SCHEME macro expansions,
a macro forif:
(if e1 e2 e3)
(if-procedure e1 (lambda () e2) (lambda () e3))

and conversion of constants into references to variables bound in
a top-level basis environment (i.e., constant conversion) suffice to
transform any program into the following core language:

e ::= x | (lambda (x) e) | (e1 e2)
| (letrec ((x1 e1) . . . (xn en)) e) | (cons e1 e2)

We often abbreviate(lambda (x) e) and (cons e1 e2) as
(λx e) and(e1, e2) respectively. For expository purposes, we omit
discussion ofletrec for the remainder of this paper.

We usex to denote variables,e to denote expressions, andv to
denoteVLAD values. Values are either scalar or aggregate. Scalars
are either discrete, such as the empty list, booleans, or primitive
procedures (henceforth primitives), or continuous, i.e., reals. Ag-
gregate values are either closures〈σ, e〉 or pairs(v1, v2), whereσ
is an environment, a (partial) map from variables to values, rep-
resented extensionally as a set of bindingsx 7→ v. Pairs are con-
structed by the core syntax(e1, e2) and the components of pairs
can be accessed by the primitivescar andcdr.

4.1 The Forward AD Basis

We augment the space of aggregate values to includebundlesde-
noted as(v1⊲v2). We refer to the first component of a bundle as the
primal value and the second component of a bundle as thetangent
value. Unlike pairs, which can contain arbitrary values as compo-
nents, bundles are constrained so that the tangent is a member of
the tangent space of the primal. We will define the tangent space
momentarily. We augment the basis with the primitivebundle to
construct bundles, the primitivesprimal andtangent to access
the components of bundles, and the primitivezero to construct
zero elements of the tangent spaces. Part of the complexity of the
following formulation is due to the fact that these notions are gener-
alized to support aggregate datatypes, not just reals, and also nested
and composed application ofj*.

We denote an element of the tangent space of a valuev as−⇁v
and an element of the bundle space of a valuev, i.e., the space of
bundles(v ⊲ −⇁v), as−⇀v . We will formally define the tangent and
bundle spaces momentarily. We first give the informal intuition.

Defining the tangent and bundle spaces for reals is straightfor-
ward. The tangent of a real is a real and the bundle of a real with its

Purdue ECE TR-08-01 (CVS: tr-08-01.tex 1.1) 3 2008/1/22

real tangent is a pair thereof. We use(v1⊲v2) instead of(v1, v2) to
distinguish bundles from pairs created bycons. The definition of
tangent and bundle spaces becomes more involved for other types
of data. Conceptually, at least, we can take the bundle space of
any valuev1 to be the space of bundles(v1 ⊲ v2) wherev2 is
a member of an appropriate tangent space ofv1. For now, let us
take the tangent of a pair to also be a pair. (We will justify this
momentarily.) With this, we can take the bundle space of a pair
(v1, v2) to be((v1, v2)⊲(v3, v4)). Alternatively, we can interleave
the components of the tangent with the components of the primal:
((v1⊲v3), (v2⊲v4)) The former has the advantage that extracting
the primal and tangent is simple but the disadvantage that extract-
ing thecar andcdr requires traversing the data structure. The latter
has complementary tradeoffs.

Conceptually, at least, we can use either representation for the
bundle space of closures. However, the interleaved representation
has an advantage in that it is also a closure:

〈{x1 7→ (v1 ⊲ v′
1), . . . , xn 7→ (vn ⊲ v′

n)}, e〉

and thus can be invoked by the same evaluation mechanism as ordi-
nary closures for primal values. The non-interleaved representation,
however, is not a closure:

(〈{x1 7→ v1, . . . , xn 7→ vn}, e〉⊲ (. . . , v′
1, . . . , v

′
n, . . .))

It is a primal closure bundled with an element of the tangent space
of that closure, whatever that is, and would require a novel evalu-
ation mechanism. This motivates using the interleaved representa-
tion, at least for closures.

Conceptually, at least, the above issue affects only closures. One
could adopt either representation for other aggregate data. How-
ever, we wish our programs to exhibit another desirable property.
In the absence of AD, the semantics of a program is unchanged
when one replaces a builtin aggregate datatype, like pairs, with an
encoding as closures, like that of Church (1941) or Scott. This im-
plies, that conceptually at least, all aggregate data must use the in-
terleaved representation.

This creates an ambiguity: does((v1⊲v3), (v2⊲v4)) represent
a pair of two bundles(v1⊲v3) and(v2⊲v4) or a bundle of two pairs
(v1, v2) and (v3, v4) that have been interleaved? To resolve this
ambiguity, we introduce the notion of a ‘bundled’ pair(v1−⇀, v2).
We augment our core syntax with expressions(e1−⇀, e2) to con-
struct bundled pairs. Note that we must support the ability to rep-

resent and construct multiply bundled pairs(v1
−⇀−⇀, v2), (v1

−⇀−⇀−⇀, v2),
etc.

A similar ambiguity arises for closures, i.e., does:

〈{x1 7→ (v1 ⊲ v′
1), . . . , xn 7→ (vn ⊲ v′

n)}, (λx e)〉

represent a primal closure that happens to close over bundle values
or a bundled closure? To resolve this ambiguity, we adopt a tagging
scheme−⇀x for variablesx to indicate that they contain bundles. The
above would indicate a primal closure (that happens to close over
bundle values) while:

〈{−⇀x1 7→ (v1 ⊲ v′
1), . . . ,

−⇀xn 7→ (vn ⊲ v′
n)}, (λ−⇀x −⇀e)〉

would indicate a bundled closure. We transform the bodiese of the
lambda expressions associated with closures to access the suitably
tagged variables and also to construct suitably bundled pairs.

The question then arises: what form should the tangent space of
aggregate data take? The tangent of a piece of aggregate data must
contain the same number of reals as the corresponding primal. Con-
ceptually, at least, one might consider representing the tangent of
one object with an object of a different type or shape, e.g., taking
the tangent of a closure to be constructed out of pairs. However,
one can show that any functionf that only rearranges a data struc-
ture containing reals to a different data structure containing reals,

without performing any operations on such reals, must exhibit the
following property:

((j* f) x) = (bundle (f (primal x)) (f (tangent x)))

Sincef must perform the same rearrangement on both the primal
and the tangent, it must be insensitive to its type or shape. As
VLAD functions can be sensitive to their argument’s type or shape,
this implies that the tangent of an aggregate object must be of
the same type and shape as the corresponding primal. This further
implies that the tangent of a discrete object such as the empty list,
a boolean, or a primitive must be the same as that object.

We now formalize the above intuition. We introduce a mecha-
nism for creating a new variable−⇀x that corresponds to an existing
variablex (which may itself be such a newly created variable). The
variable−⇀x must be distinct from any existing variable includingx.
Any variable−⇀x will contain an element of the bundle space of the
corresponding variablex. Our AD transformations rely on a bijec-
tion between the space of variablesx and the space of variables−⇀x .

We introduce the following transformation between the space
of expressionse that manipulate primal values to the space of
expressions−⇀e that manipulate bundle values:

−−−⇀
(λx e) (λ−⇀x −⇀e)
−−−−⇀
(e1 e2) (−⇀e1

−⇀e2)
−−−−⇀
(e1, e2) (−⇀e1−⇀,

−⇀e2)

We require this to be a bijection sincebundle will map e to −⇀e
andprimal andtangent will map −⇀e back toe. Note that the
code−⇀e is largely the same as the codee except for two differences.
First, the variable binders and accesses have been mapped fromx
to −⇀x . This is simplyα conversion. Second, thecons expressions
(e1, e2) are mapped to(−⇀e1−⇀,

−⇀e2) where ‘−⇀, ’ denotes a new kind
of expression that constructs bundled pairs.

We now can formally define the tangent space ofVLAD values:

−⇁v = v whenv is a discrete scalar
−⇁v ∈ R whenv ∈ R

−−−−−−−−−−−−−−−−−−−−−−−−⇁
〈{x1 7→ v1, . . . , xn 7→ vn}, (λx e)〉 =

〈{x1 7→ −⇁v1 , . . . , xn 7→ −⇁vn}, (λx e)〉
−−−−−⇁
(v ⊲ −⇁v) = (−⇁v ⊲

−⇁−⇁v)
−−−−⇁
(v1, v2) = (−⇁v1 ,−⇁v2)

Purdue ECE TR-08-01 (CVS: tr-08-01.tex 1.1) 4 2008/1/22

and the corresponding bundle space:

−⇀v = (v ⊲ −⇁v) whenv is a non-primitive scalar
−⇀v = 〈σ, (λ−⇀x (bundle ((v (primal −⇀x)),

(* ((v(1) (primal −⇀x)),
(tangent −⇀x))))))〉

whenv is a primitiveR → R

−⇀v = 〈σ, (λ−⇀x (bundle ((v (primal −⇀x)),

(+ ((* ((v(1,0) (primal −⇀x)),
(car (tangent −⇀x)))),

(* ((v(0,1) (primal −⇀x)),
(cdr (tangent −⇀x)))))))))〉

whenv is a primitiveR × R → R

−⇀v = 〈σ, (λ−⇀x (j* (v (primal −⇀x))))〉
whenv is a primitive predicate

−−−−−−−−−−−−−−−−−−−−−−−−⇀
〈{x1 7→ v1, . . . , xn 7→ vn}, (λx e)〉 =

〈{−⇀x1 7→ −⇀v1 , . . . ,−⇀xn 7→ −⇀vn},
−−−⇀
(λx e)〉

−−−−−⇀
(v ⊲ −⇁v) = (−⇀v ⊲

−⇀−⇁v)
−−−−⇀
(v1, v2) = (−⇀v1−⇀,

−⇀v2)

In the above,v(1) denotes the derivative ofv, andv(1,0) andv(0,1)

denote the partial derivatives ofv with respect to its first and second
arguments. A finite number of such explicit derivatives are needed
for the finite set of primitives. We only show how to transform
arithmetic primitives. Transformations of other primitives, such
as if-procedure, car, and cdr, as well as the AD primitives
bundle, primal, tangent, andzero themselves, follow from the
earlier observation about functions that only rearrange aggregate
data. Also note that the environmentσ in the closures created for
transformed primitives must map all of the free variables to their
values in the top-level environment. This includesv itself, as well
asprimal, tangent, bundle, j*, car, cdr, +, *, and anything
needed to implementv(1), v(1,0), andv(0,1).

We now can give formal definitions of the AD primitives. The
primitive bundle is defined as follows:

bundle (v,−⇁v)
△
= (v ⊲ −⇁v) whenv is a non-primitive scalar

bundle (v,−⇁v)
△
= −⇀v whenv is a primitive

bundle (〈{x1 7→ v1, . . . , xn 7→ vn}, (λx e)〉,
−−−−−−−−−−−−−−−−−−−−−−−−⇁
〈{x1 7→ v1, . . . , xn 7→ vn}, (λx e)〉)

△
=

〈{−⇀x1 7→ (bundle (v1,
−⇁v1)), . . . ,−⇀xn 7→ (bundle (vn,−⇁vn))},

−−−⇀
(λx e)〉

bundle ((v ⊲ −⇁v),
−−−−−⇁
(v ⊲ −⇁v))

△
=

((bundle (v,−⇁v))⊲ (bundle (−⇁v ,
−⇁−⇁v)))

bundle ((v1, v2),
−−−−⇁
(v1, v2))

△
=

((bundle (v1,
−⇁v1)), (bundle (v2,

−⇁v2)))

The primitiveprimal is defined as follows:

primal −⇀v
△
= v whenv is a primitive

primal
−−−−−−−−−−−−−−−−−−−−−−−−⇀
〈{x1 7→ v1, . . . , xn 7→ vn}, (λx e)〉

△
=

〈{x1 7→ (primal −⇀v1), . . . , xn 7→ (primal −⇀vn)}, (λx e)〉

primal (v ⊲ −⇁v)
△
= v

primal
−−−−⇀
(v1, v2)

△
= ((primal −⇀v1), (primal −⇀v2))

The primitivetangent is defined as follows:

tangent −⇀v
△
= −⇁v whenv is a primitive

tangent
−−−−−−−−−−−−−−−−−−−−−−−−⇀
〈{x1 7→ v1, . . . , xn 7→ v2}, (λx e)〉

△
=

〈{x1 7→ (tangent −⇀v1), . . . , xn 7→ (tangent −⇀vn)}, (λx e)〉

tangent (v ⊲ −⇁v)
△
= −⇁v

tangent
−−−−⇀
(v1, v2)

△
= ((tangent −⇀v1), (tangent −⇀v2))

And the primitivezero is defined as follows:

zero v
△
= −⇁v whenv is a discrete scalar

zero v
△
=

−⇁
0 whenv ∈ R

zero 〈{x1 7→ v1, . . . , xn 7→ vn}, (λx e)〉
△
=

〈{x1 7→ (zero v1), . . . , xn 7→ (zero vn)}, (λx e)〉

zero (v ⊲ −⇁v)
△
= ((zero v)⊲ (zero −⇁v))

zero (v1, v2)
△
= ((zero v1), (zero v2))

Note the reflection on closure environments that occurs in all four
of the above primitives. Also note the reflective transformation
that is performed on the closure expressions. While the former
falls within the conceptual framework ofmap-closure, the latter
transcends that framework.

5. Flow Analysis
STALIN∇ performs a polyvariant union-free flow analysis using a
formulation based on abstract interpretation. For expository pur-
poses, in the following overview, we omit many details and, at
times, give a simplified presentation that differs in technicalities,
but not in spirit, from the actual implementation.Inter alia, we omit
discussion ofletrec, bundled pairs, and primitives.

5.1 Concrete Values and Environments

A concrete valuev is either a concrete scalar or a concrete aggre-
gate. Aconcrete environmentσ is a (partial) map from variables
to concrete values, represented extensionally as a set of bindings
x 7→ v. Let B denote{#t, #f}. A concrete scalaris either(), a
concrete booleanb ∈ B, aconcrete realr ∈ R, or aconcrete prim-
itive p. A concrete aggregateis either aconcrete closure〈σ, e〉, a
concrete bundle(v1 ⊲ v2), or aconcrete pair(v1, v2). We assume
that the concrete environment of a concrete closure maps precisely
the free variables of the expression of that concrete closure. Acon-
crete functionis either a concrete primitive or a concrete closure.
We use⊤ to refer to the set of all concrete values. We often omit
the specifier ‘concrete’ when it is clear from context.

5.2 Concrete Equivalence

Our formulation of flow analysis requires notions of equivalence
for expressions, concrete values, and concrete environments. Lan-
guages typically do not define equivalence for function values. We
need such a notion of equivalence for flow analysis since abstract
values and environments denote sets of concrete values and en-
vironments and flow analysis is formulated in terms of unions of
such sets, and equality relations between such sets, which in turn
requires a notion of equivalence between the members of such sets.

Flow analysis typically formulates expression equivalence as
equivalence between indices assigned to source-code expressions.
This is suitable only in the traditional case where the source pro-
gram is fixed and explicitly available, in its entirety, prior to the start
of flow analysis. Here, application of the AD primitivesbundle,
primal, andtangent creates new expressions via the transforma-
tion −⇀e (and its inverse), at least conceptually. Thus we instead

Purdue ECE TR-08-01 (CVS: tr-08-01.tex 1.1) 5 2008/1/22

use a structural notion of expression equivalence, because inVLAD
some expressions are not explicitly available prior to the start of
flow analysis and are created during the process of flow analysis.

Expression, value, and environment equivalence are mutual no-
tions. Nominally, expression, environment, and function equiva-
lence are extensional: two expressions are equivalent if they eval-
uate to equivalent values in equivalent environments, two environ-
ments are equivalent if they map equivalent variables to equiva-
lent values, and two functions are equivalent if they yield equiv-
alent result values when applied to equivalent argument values.
Equivalence for other values is structural. The extensional notion
of expression, environment, and function equivalence is undecid-
able. Thus we adopt the following conservative approximation. We
take two expressions to be equivalent if they are structurally equiv-
alent, take two environments to be equivalent if they map equiva-
lent variables to equivalent values, take primitives to be equivalent
only to themselves, and take two closures to be equivalent if they
contain equivalent expressions and environments. While we do not
currently do so, one can strengthen this approximation with a suit-
able notion ofα-equivalence.

5.3 Concrete Evaluation

We develop our abstract evaluator by modifying the following
standard eval/applyconcrete evaluator:

A 〈σ, (λx e)〉 v2
△
= E e σ[x 7→ v2]

E x σ
△
= σ x

E (λx e) σ
△
= 〈σ, (λx e)〉

E (e1 e2) σ
△
= A (E e1 σ) (E e2 σ)

E (e1, e2) σ
△
= ((E e1 σ), (E e2 σ))

The above, however, does not enforce the constraint that the con-
crete environment of a concrete closure map precisely the free vari-
ables of the expression of that concrete closure. We can enforce this
constraint, as well as the constraint thatσ map precisely the free
variables ine in any call (E e σ), by judiciously restricting the
domains of concrete environments at various places in the above
evaluator. So as not to obscure the presentation of our formulation,
we omit such restriction operations both above and in similar situ-
ations for the remainder of the paper.

A concrete analysisa is a finite extensional partial representa-
tion of the concrete evaluator as a set of bindingse 7→ σ 7→ v.
A concrete analysisa is sound if for every (e 7→ σ 7→ v) ∈ a,
v = (E e σ).

5.4 Abstract Values and Environments

Most standard approaches to flow analysis take the space of ab-
stract values to include unions. This is because they are typically
applied to languages whose execution model supports tags and tag
dispatching. Since we wish to compile code to a FORTRAN-like ex-
ecution model that does not support tags and tag dispatching, our
space of abstract values does not include unions.

Preclusion of unions further precludes recursive abstract values
as such recursion could not terminate. As a consequence, all of our
abstract values will correspond to data structures of fixed size and
shape in the execution model. This allows our code generator to
unbox all aggregate data.

An abstract valuev is either an abstract scalar or an abstract
aggregate. Anabstract environmentσ is a (partial) map from vari-
ables to abstract values, represented extensionally as a set of bind-
ingsx 7→ v. An abstract scalaris either a concrete scalar, an ab-
stract booleanB, or an abstract realR. An abstract aggregateis
either anabstract closure〈σ, e〉, anabstract bundle(v1 ⊲ v2), an
abstract pair(v1, v2), or anabstract top⊤. We assume that the ab-

stract environment of an abstract closure maps precisely the free
variables of the expression of that abstract closure. Anabstract
function is either a concrete primitive or an abstract closure.

Abstract values and environments denote theirextensions, sets
of concrete values and environments:

EXT v = {v}
EXT B = B

EXT R = R

EXT 〈σ, e〉 =
[

σ∈(EXT σ)

{〈σ, e〉}

EXT (v1 ⊲ v2) =
[

v1∈(EXT v1)

[

v2∈(EXT v2)

{(v1 ⊲ v2)}

EXT (v1, v2) =
[

v1∈(EXT v1)

[

v2∈(EXT v2)

{(v1, v2)}

EXT ⊤ = ⊤
EXT {x1 7→ v1, . . . , xn 7→ vn}

=
[

v1∈(EXT v1)

· · ·
[

vn∈(EXT vn)

{{x1 7→ v1, . . . , xn 7→ vn}}

When(EXT v) ⊂ (EXT v′) we say thatv′ is wider thatv.

5.5 Abstract Equivalence and Union

Our formulation of flow analysis uses notions of equivalence be-
tween abstract values and environments as well as unions of ab-
stract values and environments. We take the equivalence relation
between two abstract values or two abstract environments to de-
note the corresponding relation between their extensions. These re-
lations can be determined precisely:
• v = v
• 〈σ, e〉 = 〈σ′, e〉 whenσ = σ′

• (v1 ⊲ v2) = (v′
1 ⊲ v′

2) when(v1 = v′
1) ∧ (v2 = v′

2)
• (v1, v2) = (v′

1, v
′
2) when(v1 = v′

1) ∧ (v2 = v′
2)

• {x1 7→ v1, . . . , xn 7→ vn} = {x1 7→ v′
1, . . . , xn 7→ v′

n}
when(v1 = v′

1) ∧ · · · ∧ (vn = v′
n)

We take the union of two abstract values or two abstract envi-
ronments to denote the abstract value or the abstract environment
whose extension is the union of the extensions of those two ab-
stract values or two abstract environments. Such an abstract value
or abstract environment may not exist. We compute a conservative
approximation to this notion, widening the result if necessary:
• v ∪ v =⇒ v
• b1 ∪ b2 =⇒ B whenb1 6= b2

• b ∪ B =⇒ B

• r1 ∪ r2 =⇒ R whenr1 6= r2

• r ∪ R =⇒ R

• 〈σ, e〉 ∪ 〈σ′, e〉 =⇒ 〈(σ ∪ σ′), e〉
• (v1 ⊲ v2) ∪ (v′

1 ⊲ v′
2) =⇒ ((v1 ∪ v′

1)⊲ (v2 ∪ v′
2))

• (v1, v2) ∪ (v′
1, v

′
2) =⇒ ((v1 ∪ v′

1), (v2 ∪ v′
2))

• {x1 7→ v1, . . . , xn 7→ vn} ∪ {x1 7→ v′
1, . . . , xn 7→ v′

n}
=⇒ {x1 7→ (v1 ∪ v′

1), . . . , xn 7→ (vn ∪ v′
n)}

• otherwise return⊤

5.6 Abstract Evaluation

An abstract analysisa is a set of bindingse 7→ σ 7→ v. The
extensionof an abstract analysisa is the following set of concrete
analyses:

cf

8

>

>

>

>

<

>

>

>

>

:

8

<

:

e 7→ σ 7→ v

˛

˛

˛

˛

˛

˛

0

@(∃σ, v)

0

@

((e 7→ σ 7→ v) ∈ a) ∧
(σ ∈ (EXT σ)) ∧
(v ∈ (EXT v))

1

A

1

A

9

=

;

˛

˛

˛

˛

„

(∃σ, v)

„

((e 7→ σ 7→ v) ∈ a) ∧
(σ ∈ (EXT σ))

««

9

>

>

>

>

=

>

>

>

>

;

Purdue ECE TR-08-01 (CVS: tr-08-01.tex 1.1) 6 2008/1/22

wherecf denotes the set-theoretic choice function, the function that
maps a sets1 of sets to a sets2 of all sets that contain one member
from each member ofs1. An abstract analysis issoundif it contains
a sound concrete analysis in its extension.

We need a notion of equivalence for abstract analyses to de-
fine the fixpoint of abstract interpretation. Nominally, two abstract
analyses are equivalent if their extensions are equivalent. We con-
servatively approximate this by taking two bindings to be equiva-
lent if their corresponding expressions, abstract environments, and
abstract values are equivalent and take two abstract analyses to be
equivalent if they contain equivalent bindings. We compute an ab-
stract analysis with the followingabstract evaluator:

E1 e σ a
△
=

(

v when(e 7→ σ 7→ v) ∈ a

⊤ otherwise

A 〈σ, (λx e)〉 v2 a
△
=

(

E1 e σ[x 7→ v2] a whenv2 6= ⊤

⊤ otherwise

A ⊤ v2 a
△
= ⊤

E x σ a
△
= σ x

E (λx e) σ a
△
= 〈σ, (λx e)〉

E (e1 e2) σ a
△
= A (E1 e1 σ a) (E1 e2 σ a) a

E (e1, e2) σ a
△
=

8

>

>

>

<

>

>

>

:

((E1 e1 σ a), (E1 e2 σ a))

when((E1 e1 σ a) 6= ⊤)

∧ ((E1 e2 σ a) 6= ⊤)

⊤ otherwise

E
′

1 e σ a
△
=

(

{e 7→ σ 7→ ⊤} when¬(∃v)(e 7→ σ 7→ v) ∈ a

{} otherwise

A
′
〈σ, (λx e)〉 v2 a

△
=

(

E
′

1 e σ[x 7→ v2] a whenv2 6= ⊤

{} otherwise

A
′
⊤ v2 a

△
= {}

E
′
x σ a

△
= {}

E
′
(λx e) σ a

△
= {}

E
′
(e1 e2) σ a

△
= (E

′

1 e1 σ a) ∪ (E
′

1 e2 σ a)

∪ (A
′
(E1 e1 σ a) (E1 e2 σ a) a)

E
′
(e1, e2) σ a

△
= (E

′

1 e1 σ a) ∪ (E
′

1 e2 σ a)

U a
△
=

[

(e7→σ 7→v)∈a

{e 7→ σ 7→ (E e σ a)} ∪ (E
′
e σ a)

We then computea∗ = U∗ a0, wherea0 = {e0 7→ σ0 7→ ⊤}
is the initial abstract analysis,e0 is the program,σ0 is the basis,
containinginter alia any bindings produced by constant conver-
sion, andU∗ is the least fixpoint ofU . The above flow-analysis
procedure might not terminate, i.e., the least fixpoint might not ex-
ist. It is easy to see that the initial abstract analysis is sound and
thatU preserves soundness. Thus by induction,a∗ is sound when
it exists. The algorithm has the property that⊤ will never appear
as the target of an abstract-environment binding or as a slot of an
abstract aggregate value. The only place in an abstract analysis
that ⊤ can appear is as the target of a abstract-analysis binding,
e.g.,e 7→ σ 7→ ⊤. Our code generator only handles abstract anal-
yses where(E1 e σ a∗) 6= ⊤ for all e andσ that would occur as
arguments toE during a concrete evaluation(E e0 σ0). We abort
the compilation if this condition is violated. This can only occur
when the union of two abstract values yields⊤. The only place

where the union of two abstract values is computed is between the
results of the consequent and alternate ofif-procedure.

5.7 Imprecision Introduction

The above flow-analysis procedure yields a concrete analysis for
any programe0 that terminates. This is equivalent to running the
program during flow analysis. To produce a non-concrete analysis,
we add a primitivereal to the basis that behaves like the identity
function on reals during execution but yieldsR during flow analy-
sis. In the examples in Section 7, we judiciously annotate our code
with a small number of calls toreal around constants, so that the
programs perform all of the same floating-point computation as the
variants in other languages, but leave certain constants as concrete
values so that flow analysis terminates and satisfies the non-⊤ con-
dition discussed above.

6. Code Generation
STALIN∇ generates FORTRAN-like C code using an abstract anal-
ysis produced by polyvariant union-free flow analysis. In such
an analysis, every application targets either a known primitive
or a known lambda expression, potentially one created by flow-
analysis-time source-code transformation induced by application
of AD primitives. Recent versions ofGCC will compile thisC code
to machine code similar to that generated by good FORTRAN com-
pilers, given aggressive inlining, mediated by ‘always inline’ di-
rectives produced by our code generator, and scalar replacement
of aggregates, enabled with the command-line option--param
sra-field-structure-ratio=0. For expository purposes, in
the following overview, we omit many details and, at times, give a
simplified presentation that differs in technicalities, but not in spirit,
from the actual implementation.Inter alia, we omit discussion of
letrec, bundled pairs, and primitives.

Our code generator producesC code that is structurally isomor-
phic to theVLAD code. There is aC function for each specialized
VLAD function, both closures and primitives. There is a function
call in theC code for each application in each specialized closure
expression. There are calls to constructor functions in theC code
for each lambda expression andcons expression in each special-
ized closure expression. And there isC code that corresponds to
each variable access in each specialized closure expression. The
aggregate data is isomorphic as well. There is aC struct for each
specialized aggregate datatype in theVLAD code, including clo-
sures, and a slot in thatC struct for each corresponding slot in
theVLAD object. (We adopt a flat closure representation. In the ab-
sence of mutation andeq?, as is the case forVLAD , all closure rep-
resentations are extensionally equivalent and reduce to flat closures
by unboxing.) One deviation from the above is that voidstructs,
struct slots, arguments, and expressions are eliminated, as well
as functions that return void results. The efficiency of the code gen-
erated results from polyvariant specialization, the union-free anal-
ysis, unboxing of all aggregate data, and aggressive inlining.

We assume a mapX from alpha-convertedVLAD variables to
unique C identifiers, a mapS from abstract values to uniqueC
identifiers, and a mapF from pairs of abstract values to unique
C identifiers.

An abstract value isvoid when it does not contain any (nested)
B or R values. Our code generator adopts the following map from

Purdue ECE TR-08-01 (CVS: tr-08-01.tex 1.1) 7 2008/1/22

non-void abstract values toC specifiers:

T v
△
=

8

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

>

:

int whenv = B

double whenv = R

struct (S v)

wherestruct si {(T v1) (X x1);

. . .;

(T vn) (X xn);};

whenv = 〈{x1 7→ v1, . . . , xn 7→ vn}, e〉

wherestruct (S v) {(T v1) p; (T v2) t;};

whenv = (v1 ⊲ v2)

wherestruct (S v) {(T v1) a; (T v2) d;};

whenv = (v1, v2)

eliminating void struct slots. We also generateC constructor
functions(M v) of the appropriate arity for each non-void abstract
aggregate valuev.

Our code generator adopts the following map fromVLAD ex-
pressionse that evaluate to non-void abstract values in the abstract
environmentσ to C expressions:

C x σ
△
=

(

(X x) whenx is bound
c.(X x) whenx is free

C (λx e) σ
△
= a call to(M (E1 (λx e) σ a∗)) with

arguments that have the form of variable
accesses

C (e1 e2) σ
△
=

(F (E1 e1 σ a∗) (E1 e2 σ a∗))((C e1 σ), (C e2 σ))

C (e1, e2) σ
△
=

(M ((E1 e1 σ a∗), (E1 e2 σ a∗)))((C e1 σ), (C e2 σ))

eliminating void arguments.
Our code generator generates distinctC functions for each ab-

stract closure〈σ, (λx e)〉 that yields a non-void abstract value
when called on each abstract valuev:

(T (A 〈σ, (λx e)〉 v a∗))
(F 〈σ, (λx e)〉 v)((T 〈σ, (λx e)〉) c, (T v) (X x))
{return (C σ[x 7→ v] e);}

eliminating void parameters. Finally, we generate the entry point:

int main(void){(C e0 σ0);return 0;}

For expository purposes, we omit discussion of the generation of
C functions for primitives and constructors. We generate ‘always
inline’ directives on all generatedC functions, including those
generated for primitives and constructors, except formain and
those selected to break cycles in the call graph.

With a polyvariant union-free flow analysis, the target of every
call site is known. This allows generating direct function calls or
inlined primitives for each call site. Calls to the AD primitives in-
volve nothing more than rearrangements of (aggregate) data struc-
tures from one known fixed shape to another known fixed shape. As
aggregate data is unboxed and calls to primitives are inlined, this is
usually compiled away.

7. Examples
We illustrate the power of our flow-analysis and code-generation
techniques for first-class forward AD with two examples. These
were chosen to illustrate a hierarchy of mathematical abstractions
built on a higher-order gradient operator. They werenot chosen to
give an advantage to the present system or to compromise per-

formance of other systems. They do however show how awk-
ward it can be to express these concepts in other systems, even
overloading-based systems. (Variants of both examples appear in
other papers, where they were used to exhibit the utility and ex-
pressiveness of first-class AD.)

Figure 1 gives the essence of the two examples. It starts with
code shared between these examples:multivariate-argmin im-
plements a multivariate optimizer using adaptive naı̈ve gradient
descent. This iteratesxi+1 = η∇f xi until either ‖∇f x‖ or
‖xi+1 − xi‖ is small, increasingη when progress is made and de-
creasingη when no progress is made. Omitted are definitions for
standard SCHEME primitives and the functionssqr that squares its
argument,map-n that maps a function over the list(0 . . . n − 1),
reduce that folds a binary function with a specified identity over
a list,v+ andv- that perform vector addition and subtraction,k*v
that multiplies a vector by a scalar,magnitude that computes the
magnitude of a vector,distance that computes thel2 norm of two
vectors, ande that returns thei-th basis vector of dimensionn.

The first example,saddle, computes a saddle point:

min
(x1,y1)

max
(x2,y2)

(x1
2 + y1

2) − (x2
2 + y2

2)

The second example,particle, models a charged particle travel-
ing non-relativistically in a plane with positionx(t) and velocity
ẋ(t) and accelerated by an electric field formed by a pair of repul-
sive bodies,p(x; w) = ‖x− (10, 10−w)‖−1 + ‖x− (10, 0)‖−1,
wherew is a modifiable control parameter of the system, and hits
the x-axis at positionx(tf). We optimizew so as to minimize
E(w) = x0(tf)2, with the goal of finding a value forw that causes
the particle’s path to intersect the origin.

Näıve Euler ODE integration:

ẍ(t) = − ∇x p(x)|
x=x(t)

ẋ(t + ∆t) = ẋ(t) + ∆t ẍ(t)

x(t + ∆t) = x(t) + ∆t ẋ(t)

is used to compute the particle’s path, with a linear interpolation to
find thex-axis intersect:

Whenx1(t + ∆t) ≤ 0

let: ∆tf = −x1(t)/ẋ1(t)

tf = t + ∆tf

x(tf) = x(t) + ∆tf ẋ(t)

Error: E(w) = x0(tf)2

E is minimized with respect tow by multivariate-argmin.
These examples were chosen because they both illustrate sev-

eral important characteristics of our compilation techniques. First,
they use standard vector arithmetic which, without our techniques,
would require allocation and reclamation of new vector objects
whose size might be unknown at compile time. Furthermore, access
to the components of such vectors would require indirection. Sec-
ond, they use higher-order functions: ones likemap-n andreduce,
that are familiar to the functional-programming community, and
ones likegradient andmultivariate-argmin, that are famil-
iar to mathematicians. Without our techniques, these would require
closures and indirect function calls to unspecified targets. Third,
they compute nested derivatives, i.e., they take derivatives of func-
tions that take derivatives of other functions. This involves nested
application of the AD primitives.

STALIN∇ performed a polyvariant union-free flow analysis
on both of these examples, and generated FORTRAN-like code.
Variants of these examples were also coded in SCHEME, ML ,
HASKELL, C++, and FORTRAN, and run with a variety of com-
pilers and AD implementations. For SCHEME, we used two imple-
mentations of forward AD. When compiling with MIT SCHEME

Purdue ECE TR-08-01 (CVS: tr-08-01.tex 1.1) 8 2008/1/22

(define ((gradient f) x) (let ((n (length x))) ((map-n (lambda (i) (tangent ((j* f) (bundle x (e i n)))))) n)))

(define (multivariate-argmin f x)
(let ((g (gradient f)))
(letrec ((loop (lambda (x fx gx eta i)

(cond ((<= (magnitude gx) (real 1e-5)) x)
((= i (real 10)) (loop x fx gx (* (real 2) eta) (real 0)))
(else (let ((x-prime (v- x (k*v eta gx))))

(if (<= (distance x x-prime) (real 1e-5))
x
(let ((fx-prime (f x-prime)))
(if (< fx-prime fx)

(loop x-prime fx-prime (g x-prime) eta (+ i 1))
(loop x fx gx (/ eta (real 2)) (real 0)))))))))))

(loop x (f x) (g x) (real 1e-5) (real 0)))))

(define (multivariate-argmax f x) (multivariate-argmin (lambda (x) (- (real 0) (f x))) x))

(define (multivariate-max f x) (f (multivariate-argmax f x)))

(define (saddle)
(let* ((start (list (real 1) (real 1)))

(f (lambda (x1 y1 x2 y2) (- (+ (sqr x1) (sqr y1)) (+ (sqr x2) (sqr y2)))))
((list x1* y1*) (multivariate-argmin (lambda ((list x1 y1)) (multivariate-max (lambda ((list x2 y2)) (f x1 y1 x2 y2)) start)) start))
((list x2* y2*) (multivariate-argmax (lambda ((list x2 y2)) (f x1* y1* x2 y2)) start)))

(list (list (write x1*) (write y1*)) (list (write x2*) (write y2*)))))

(define (naive-euler w)
(let* ((charges (list (list (real 10) (- (real 10) w)) (list (real 10) (real 0))))

(x-initial (list (real 0) (real 8)))
(xdot-initial (list (real 0.75) (real 0)))
(delta-t (real 1e-1))
(p (lambda (x) ((reduce + (real 0)) ((map (lambda (c) (/ (real 1) (distance x c)))) charges)))))

(letrec ((loop (lambda (x xdot)
(let* ((xddot (k*v (real -1) ((gradient p) x))) (x-new (v+ x (k*v delta-t xdot))))
(if (positive? (list-ref x-new 1))

(loop x-new (v+ xdot (k*v delta-t xddot)))
(let* ((delta-t-f (/ (- (real 0) (list-ref x 1)) (list-ref xdot 1))) (x-t-f (v+ x (k*v delta-t-f xdot))))
(sqr (list-ref x-t-f 0))))))))

(loop x-initial xdot-initial))))

(define (particle) (let* ((w0 (real 0)) ((list w*) (multivariate-argmin (lambda ((list w)) (naive-euler w)) (list w0)))) (write w*)))

Figure 1. The essence of thesaddle andparticle examples.

we usedSCMUTILS (Sussman et al. 2001) and when compiling
with IKARUS, STALIN , SCHEME->C, CHICKEN, BIGLOO, and
LARCENY we used a custom implementation of forward AD. For
ML , we used a translation of the latter and compiled with MLTON
and OCAML . For HASKELL, we used a simplified non-tower ver-
sion of the forward AD method of Karczmarczuk (2001) and com-
piled with GHC. ForC++, we used theFADBAD++ implementation
of forward AD and compiled withG++. For FORTRAN, we used
both theADIFOR and TAPENADE implementations of forward AD
and compiled withG77. In all of the variants, we attempted to be
faithful to both the generality of the mathematical concepts repre-
sented in the examples and to the standard coding style typically
used for each particular language. In other words, to make the ex-
amples fair, we coded theML variants of the examples the way an
ML programmer would, the HASKELL variants the way a HASKELL
programmer would, etc.

Note thatADIFOR and TAPENADE are transformation systems
based on a preprocessor. Except for STALIN∇, the remaining
systems use an overloading approach. Also note thatSCMUTILS,
FADBAD++, ADIFOR, and TAPENADE are existing AD implemen-
tations developed by others. While the remainder were written
by us, they use standard methods. Finally note that all of these
variants were compiled and run as machine code. In the case of
MZSCHEME, this was done by a JIT compiler; for all the others this
was done by ahead-of-time compilation, potentially viaC. Many of
these compilers are well acknowledged as being among the most
sophisticated and highly optimizing compilers in existence today.

Many of the variants of our examples require that the source
program be written in an unconventional fashion. Furthermore,
many require manual modification of the preprocessor output.
Many SCHEME implementations do not allow redefinition of
builtin arithmetic procedures. Thus the SCHEME variants of our
examples are written using alternate arithmetic proceduresd+, d-,
etc.SCMUTILS incorrectly implements the overloaded implementa-
tion of =. Thus theSCMUTILS variants of our examples are written
using an alternate procedured=. It is impossible to implement for-

ward AD in ML in a fashion that applies to unmodified source
code. Thus theML variants of our examples require that (a) all
code which implements the function whose derivative is taken,
including all code called by such code, be syntactically nested in-
side the redefinition of the primitives and (b) all real constants in
that code be syntactically wrapped with theBASE constructor. It is
conjectured to be impossible to implement nestable forward AD
in HASKELL in a fashion that applies to unmodified source code.
Thus the HASKELL variants of our examples require that the code
that implements the functions whose derivatives are taken be man-
ually annotated with appropriate calls tolift to properly handle
nesting. Code must be written with templates inFADBAD++ to
support taking derivatives of different orders. Code that is trans-
formed by TAPENADE multiple times must be post-edited. The
flow analysis used byADIFOR yields incorrect derivative code that
produces the wrong answer, without warning, when using the same
file organization as all of the other variants, where each exam-
ple is contained in a single file. Thus theADIFOR variants of our
examples circumvent this flaw by manually partitioning each ex-
ample into three files that contain the code that is transformed zero,
one, and two times. Finally, TAPENADE cannot transform code
that relies on indirect (i.e., external) subroutine calls. Thus the
TAPENADE variants of our examples require manual specializa-
tion of themultivariate_argmin subroutine. These AD-specific
limitations of existing languages and systems are in addition to the
standard limitations of languages likeC++ and FORTRAN relative
to higher-order functional-programming languages. For example,
since our examples make use of nested lambda expressions with
lexically-scoped free variables to implement the nested minimax
optimization insaddle and the potential function inparticle,
the FADBAD++, ADIFOR, and TAPENADE variants of our exam-
ples manually implement the requisite closures by way of global
variables inC++ and common blocks in FORTRAN.

Purdue ECE TR-08-01 (CVS: tr-08-01.tex 1.1) 9 2008/1/22

Table 1 summarizes the run times of our examples normalized
relative to a unit run time for STALIN∇.4 Note that STALIN∇ ex-
hibits an increase in performance of one to three orders of magni-
tude when compared with the overloading-based forward AD im-
plementations for both functional and imperative languages and
matches the performance of the transformation-based forward AD
implementations for imperative languages.

The different variants do not perform the exact same float-
ing point computation graph. First,FADBAD++, ADIFOR, and
TAPENADEsupport tangent-vector mode which can compute multi-
ple tangent values with a single primal value, which allows them to
compute gradients with fewer redundant primal calculations. Sec-
ond, the implementations ofmultivariate_argmin in FORTRAN
and C++ return both the location of the local optimum and the
value of the objective function at that location, while the others
use a redundant extra evaluation of the objective function to deter-
mine its value at the local optimum. Finally, the implementation of
multivariate_argmin in C++ determines the value of the ob-
jective function as a byproduct of computing the gradient of the
objective function, while the other implementations perform re-
dundant computation to determine that value. These factors bias
the performance measurements in favor ofFADBAD++, ADIFOR,
and TAPENADE and can account for the performance difference of
ADIFOR and TAPENADE vs.STALIN∇.

It is difficult to conduct meaningful performance comparisons
of multiple implementations of forward AD across multiple imple-
mentations of multiple programming languages. Changes in coding
style, compiler options, etc., are likely to affect the run times by per-
haps a few tens of percent. Thus we should not draw conclusions
from the particular measured run times. However, it seems unlikely
that changes in coding style, compiler options, and the like would
improve run times by an order of magnitude. It therefore appears
significant that STALIN∇ exhibits approximately the same perfor-
mance asADIFOR and TAPENADE and outperforms all of the other
systems, on both examples, by approximately one to three orders
of magnitude.

8. Discussion
Early transformation-based AD implementations were simple, but
produced inefficient transformed source code. As the field of AD
evolved, transformation-based systems started employing increas-
ingly sophisticated analyses and transformations with the goal of
producing efficient transformed source code. These analyses and
transformations mirror the analyses and transformations done by
compilers, leading to tremendous redundancy. Furthermore, the AD
community is slowly and systematically rediscovering techniques
that have been known in the compiler community for years, reim-
plementing them in various combinations for AD transformers for
different programming languages. This motivates including AD in
the compiler; in fact there is a commercial effort to incorporate AD
into the NAG FORTRAN compiler (Naumann and Riehme 2005).

Since at least as far back as Steele and Sussman (1976), the
programming-language community has realized the benefits of us-
ing variants of the lambda calculus as compiler intermediate lan-
guages. However, the AD community has not yet adopted the
lambda calculus as the intermediate language for transformation-
based AD. In contrast, the approach we advocate is illustrated in
Figure 2.VLAD is but one potential front end that is nothing more
than syntactic sugar for the untyped lambda calculus. Front ends
for other languages can be constructed given a suitable extension of

4http://www.bcl.hamilton.ie/∼qobi/tr-08-01/ contains the
source code for all variants of our examples, the scripts usedto produce
Table 1, and the log produced by running those scripts.Reviewer warning:
target page is not blinded.

VLAD

FORTRAN

C

VLAD

FORTRAN

Parser Generator

Compiler Optimizations

Lambda Calculus

AD Transformations

Machine Code

C

Figure 2. Our vision: using (a suitable extension of) the lambda
calculus as a unified intermediate language that supports both com-
piler optimizations and AD transformations for a variety of source
and target languages. This allows AD to incorporate known com-
piler optimizations and allows effort to build efficient AD to be
shared among different languages.

the intermediate language. Both AD transformations and compiler
analyses and optimizations apply to this intermediate language.
Back ends can be constructed to generate either machine code or
source code in a variety of languages. This allows the common
core of AD techniques to be shared among AD implementations
for multiple languages either as part of a compiler or as part of a
traditional transformation-based preprocessor.

We have embodied the ideas in this paper in a research proto-
type compiler sufficient to demonstrate their power and feasibil-
ity. Although it is not a production-quality compiler (it is slow,
cannot handle large examples, does not support arrays or other
update-in-place data structures, and is in general unsuitable for end
users) remedying its deficiencies and building a production-quality
compiler would be straightforward, involving only known methods
(Nielson et al. 1999; Wadler 1990). The limitation to union-free
analyses and finite unrolling of recursive data structures could also
be relaxed using standard implementation techniques.

9. Novelty and Significance
This paper makes two novel contributions:
(1) A novel set of higher-order functions (j*, primal, tangent,

bundle, andzero) for performing forward AD in a functional
language using source-to-source transformation via run-time
reflection. This is the focus of Sections 3 and 4.

(2) A novel approach for using polyvariant flow analysis to elimi-
nate such run-time reflection along with all other non-numerical
scaffolding. This is the focus of Sections 5 and 6.

We wish to make it completely clear that the contribution here
is neither the forward AD transformation (Wengert 1964) nor the
general idea of polyvariant flow analysis (Shivers 1988).

The above contributions are significant because they support
forward AD with a programming style that is much more expressive
and convenient than that provided by the existing preprocessor-
based source-to-source transformation approach, yet still provides
the performance advantages of that approach.

Acknowledgments
This work was supported, in part, by NSF grant CCF-0438806,
Science Foundation Ireland grant 00/PI.1/C067, and a grant from
the Higher Education Authority of Ireland. Any opinions, findings,
and conclusions or recommendations expressed in this material are
those of the author(s) and do not necessarily reflect the views of the
funding agencies. Shawn Brownfield wrote an early version of the
flow-analysis code and aided in formulating some of the algorithms
used therein.

Purdue ECE TR-08-01 (CVS: tr-08-01.tex 1.1) 10 2008/1/22

Language/Implementation

Example STALIN∇ IKARUS STALIN SCHEME->C CHICKEN BIGLOO GAMBIT LARCENY MZC MZSCHEME SCMUTILS MLTON OCAML GHC FADBAD ++ ADIFOR TAPENADE

saddle 1.00 59.12 95.42 111.86 231.03 155.01 129.90 190.62 611.38 719.82 715.7111.18 21.23 31.04 5.93 0.49 0.72
particle 1.00 148.92 244.48 311.56 608.33 427.49 351.58 564.34 1450.07 1869.64 1505.52 33.35 59.31 75.00 32.09 0.85 1.76

Table 1. Run times of our examples normalized relative to a unit run time for STALIN∇.

References
C. Bendtsen and O. Stauning. FADBAD, a flexible C++ package for auto-

matic differentiation. Technical Report IMM–REP–1996–17,Depart-
ment of Mathematical Modelling, Technical University of Denmark,
Lyngby, Denmark, Aug. 1996.

C. H. Bischof, A. Carle, P. Khademi, and A. Mauer. ADIFOR 2.0: Au-
tomatic differentiation of Fortran 77 programs.IEEE Computational
Science & Engineering, 3(3):18–32, 1996.

A. Church.The Calculi of Lambda Conversion. Princeton University Press,
Princeton, NJ, 1941.

W. K. Clifford. Preliminary sketch of bi-quaternions.Proceedings of the
London Mathematical Society, 4:381–95, 1873.

W. Clinger and J. Rees.Revised4 Report on the Algorithmic Language
SCHEME, Nov. 1991.

L. Hascöet and V. Pascual. TAPENADE 2.1 user’s guide. Rapport technique
300, INRIA, Sophia Antipolis, 2004. URLhttp://www.inria.fr/
rrrt/rt-0300.html.

J. Karczmarczuk. Functional differentiation of computer programs.Higher-
Order and Symbolic Computation, 14:35–57, 2001.

U. Naumann and J. Riehme. A differentiation-enabled Fortran 95 compiler.
ACM Transactions on Mathematical Software, 31(4), 2005.

F. Nielson, H. R. Nielson, and C. Hankin.Principles of Program Analysis.
Springer-Verlag, New York, 1999.

O. G. Shivers, III. Control flow analysis in SCHEME. In Proceedings of
the 1988 SIGPLAN Conference on Programming Language Designand
Implementation, pages 164–74, June 1988.

J. M. Siskind and B. A. Pearlmutter. First-class nonstandardinterpretations
by opening closures. InProceedings of the 2007 Symposium on Princi-
ples of Programming Languages, pages 71–6, Nice, France, Jan. 2007.

B. Speelpenning.Compiling Fast Partial Derivatives of Functions Given by
Algorithms. PhD thesis, Department of Computer Science, University of
Illinois at Urbana-Champaign, Jan. 1980.

G. L. Steele, Jr. and G. J. Sussman. Lambda, the ultimate imperative.
A. I. Memo 353, MIT Artificial Intelligence Laboratory, Mar. 1976.

G. J. Sussman, J. Wisdom, and M. E. Mayer.Structure and Interpretation
of Classical Mechanics. MIT Press, Cambridge, MA, 2001.

P. L. Wadler. Comprehending monads. InProceedings of the 1990 ACM
Conference onL ISP and Functional Programming, pages 61–78, Nice,
France, 1990.

R. E. Wengert. A simple automatic derivative evaluation program. Comm.
of the ACM, 7(8):463–4, 1964.

Purdue ECE TR-08-01 (CVS: tr-08-01.tex 1.1) 11 2008/1/22

	Purdue University
	Purdue e-Pubs
	1-5-2008

	Using Polyvariant Union-Free Flow Analysis to Compile a Higher-Order Functional-Programming Language with a First-Class Derivative Operator to Efficient Fortran-like Code
	Jeffrey M. Siskind
	Barak A. Pearlmutter

