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Summary. Current implementations of automatic differentiation are far from automatic
We survey the difficulties encountered when applying four existing ADesys, ADIFOR,
TAPENADE, ADIC, andFADBAD ++, to two simple tasks, minimax optimization and control of
a simulated physical system, that involve taking derivatives of functioaisthemselves take
derivatives of other functiona\DIcC is not able to perform these tasks as it cannot transform
its own generated code. UsirgDBAD ++, one cannot compute derivatives of different orders
with unmodified code, as needed by these tasks. One must either matugibate code for
the different derivative orders or write the code using templates to atéosuch code du-
plication. ADIFOR and TAPENADE are both able to perform these tasks only with significant
intervention: modification of source code and manual editing of gertecatte. A companion
paper presents a new AD system that handles both tasks without anglnrgeovention yet
performs as well as or better than these existing systems.

Key words: Nesting, multiple transformation, forward modepIFOR, TAPENADE, ADIC,
FADBAD ++

1 Introduction

The hallmark of Automatic Differentiation is that it is—or at least should laetematic One
wishes to take derivatives of unmodified programs with minimal, and ideallymanual in-
tervention. In this paper, we demonstrate how far we are from this id&eé [9] for another
viewpoint.) We present two simple mathematical tasks, collectively codedder 300 lines,
code both tasks in ®BRTRAN, C, andc++, and relate our experiences in getting them to run
with ADIFOR [2], TAPENADE [4], ADIC[3], and FADBAD++[1]. We were able to run these
programs undeaDIFOR and TAPENADE only by modifying the source code in different fash-
ions that are specific to each preprocessor and with significant meditialy of the output of
TAPENADE. We discovered that usirfRDBAD ++ one cannot compute derivatives of different
orders with unmodified code, as needed by these tasks. One mustreitheally duplicate
code for the different derivative orders or write the code using tet@plo automate such
code duplication. Finally, we discovered that it is not possible to perfdtimereof these tasks
with ADIC at all.

The central limitation discovered in all of these systems in the inability to nestirdds
fundamental to programming: one expects to be able to nest conditiosale tonditionals,
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do loops inside do loops, etc. In the context of AD, this corresponds tegalerivatives of
functions that take derivatives. In Sect. 2 we give two realistic tasksaxeh nesting is cru-
cial: minimax optimization to find a saddle point of a function, as is done in ghewy, and
determining an optimal value of a control parameter for a simulated pisistem, as is done
in automatic control. See [5] for another recent application of nestingtrensformation-
based AD systems, likeDIFOR, TAPENADE, and ADIC, such nesting is accomplished by
transforming the transformed code produced by the preprocessppassing code through
the preprocessor multiple times. For overloading-based AD systemsAikeaD++, such
nesting is accomplished by overloading the overloaded operators.

ADIFOR, TAPENADE, and ADIC all provide a mechanism to allow the user to change
the naming convention of differentiated components of programs pkapthat this feature
was included in these systems precisely to support nesting, i.e., tnaasion of transformed
code. Itis necessary to avoid conflating the tangents of differentadiés as could otherwise
potentially occur when nesting derivatives [7, 8]. We know of no ottser for this feature.
While we make crucial use of this feature in the tasks in Sect. 2, this fedtme & not
sufficient to support transformation of transformed code.

The authors the above systems are aware of the issues involved wittgnésgiaper [2]
ONADIFOR states on p. 18:

While we currently can just process theiFOR-generated code [.]
The TAPENADE FAQ athtt p: // www sop.inria.fr/tropi cs/ states:

For example, one can use the forward mode twice, to get directionahdeteriva-

tives. We know of some people who have tried that witPENADE, and apparently

it worked.

[...]

However this requires a bit more interaction with the end-user.

[.]

The idea to obtain second derivatives is to apply Automatic Differentiatioretwic

Starting from a procedur® in file p. f that computesy = f(x), a first run of

TAPENADE e.g., in tangent mode through the command line:
$> tapenade -d -head P -vars "x" -outvars "y" p.f

returns in filep_d. f a proceduré_Dthat computeyd = f’(x).xd. Now a new run

of TAPENADE on the resulting file e.g., in tangent mode again through the command

line:
$> tapenade -d -head P_D -vars "x" -outvars "yd" p_d.f

returns in filep_d_d. f a proceduré®_D_D that computeydd = f”(x).xd.xdO.

Specifically if you callP_D_Dwith inputsxd = 1.0 andxd0 = 1.0 in addition to the

currentx, you obtain in outpuydd the second derivativé” (x).

[...]

Doing this, you might encounter a couple of simple problems that you wéitinie

fix by hand like we usually do:

e The first multi-directional differentiation creates a program that incladesw

file DI FFSI ZES. i nc, containing information about array sizes. Precisely, the
include file must declare the integer constabti r smax which is the maxi-
mum number of differentiation directions that you plan to compute in a single
run. nbdi r smax is used in the declarations of the size of the differentiated
arrays. You must create this filel FFSI ZES. i nc before starting the second
differentiation step. For instance, this file may contain
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i nteger nbdi r smax
paraneter (nbdirsmax = 50)
if 50 is the max number of differentiation directions. If what you want is the

Hessian, this max number of differentiation directions is the cumulatedaizes
all the inputsx.

e The second multi-directional differentiation requires a new maximum siltesv
nbdi r smax0, which isa priori different fromnbdi r smax. For the Hessian
case, itis probably equal tthdi r smax. What's more, RPENADE has inlined
the 1st level include file, so what you get is a strange looking piece dddec
tions:

I NCLUDE ' DI FFSI ZES. i nc’

C Hint: nbdirsmax shoul d be the maxi mum ...
I NTEGER nbdi r smax
PARAMETER ( nbdi r smax=50)

We sugges't“you just remove theNCLUDE ' DI FFSI ZES. i nc’ line, and
hand-replace each occurrencentdi r smax0 by eithernbdi r smax or even
50!

We reported one of the issues discussed in Sect. 5 relatingito and received this Email
from Paul Hovland in response:

This is a known issue, but not one that we've thought very hard abmutto work
around because we haven't had a compelling application. | think we @ae cp
with a workaround, but we'll need to discuss it for a while. One of us wyilttr get
back to you later in the week.

TheFADBAD++ web site atit t p: / / www2. i mm dt u. dk/ ~km FADBAD/ states:

Combinations of automatic differentiation

One of the very unique things ¢ADBAD ++ is the ability to compute high order
derivatives in a very flexible way by combining the methods of automafiereifitia-
tion. These combinations are produced by applying the templates on them$®or
example the typ8< F< doubl e > > can be used in optimisation for computing
first order derivatives by using the backward method and secatet derivatives by
using a backward-forward method.

The remainder of this paper demonstrates the distance between thedal@lerata and cur-
rent practice. A companion paper presents a new language and amgiar that can process
both of the tasks presented without any manual intervention and whiehages code that is
as fast as or faster than the above mentioned systems.

2 Tasks

We use two tasks to illustrate the nesting issues that arise with current AD imipiam
tions. Variants of both tasks appear in other papers, coded in diffenegiages for differ-
ent AD systems. For this paper, we coded each taskaRTRRAN, C, andc++, for use by
ADIFOR, TAPENADE, ADIC, andFADBAD++. The variants in the different languages differ
only in ways specific to the language and the AD implementation. They shargathe al-
gorithms, structure, order, naming conventions, etc. In the nextdections, we use these
two tasks as a running example to illustrate the nesting issues that arise wightcib
implementations. For each task and each AD system, we went throughmbenwf vari-
ants as we attempted to get the task working. Figure 1 gives the essetiw fobt vari-
ant for FORTRAN with ADIFOR. Length restrictions preclude including all variants of all
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tasks for all AD systems in this paper. However, all of these variantsaeaidable from
http://ww. bcl . ham | ton. i e/ ~gobi/tr-08-02/.Thatweb site containsraun
script for each variant that replicates the issues involved along with adite t ext giving
the output of that script for each variant. We recommend that the rezale use of the ‘Try’
entries in that web site to follow the discussion in the next four sections.

Figure 1(a) gives the essence of the common code shared betwseasbics. It omits the
subroutinevpl us andvmi nus that perform vector addition and subtraction, the subroutine
kt i mesv that multiplies a vector by a scalar, the subroutimagni t ude_squar ed and
magni t ude that compute the magnitude of a vector, and the subroutines
di st ance_squar ed anddi st ance that compute thé, norm of the difference of two
vectors. The subroutineul ti vari at e_ar gm n implements a multivariate optimizer us-
ing adaptive nive gradient descent. This iteratgs.1 = nOf X; until either |[Of x|| or
I[Xi+1 — xi|| is small, increasingy when progress is made and decreasjnghen no progress
is made.

Figure 1(b) contains the essence of the first taskld| e, that computes the saddle point
of a function:

min_ max (x° +y1%) — (% +y2°)

(X1.y1) (%2.y2)
(It omits the code fogr adi ent _out er as this code is analogous to the code for
gr adi ent _i nner.) This task is a variant of an example from [6], differing in that it uses
forward AD instead of reverse AD to compute gradients aridengradient descent instead of
gradient descent with a line search.

Figure 1(c) contains the essence of the second feskt i ¢l e, a variant of an example
from [8] where the textbook Newton’s method for optimization has beplaced with nave
gradient descent. (It omits the code fpradi ent _p andgr adi ent _nai ve_eul er as
this code is analogous to the code fpradi ent _i nner .) This task models a charged par-
ticle traveling nonrelativistically in a plane with positiotit) and velocityx(t). The particle
is accelerated by an electric field formed by a pair of repulsive bodies,

p(X;w) = [|x — (10,10—w) | ~*+ ||Ix— (10,0)| *

wherew is a modifiable control parameter of the system, and hitxttes at position(ts).
We optimizew so as to minimizeéE (w) = Xo(t;)?, with the goal of finding a value faw that
causes the particle’s path to intersect the origin. We uged\2uler ODE integration:

X(t) = — B P(X) [xex(t)

X(t+At) = X(t) + At(t)
X(t+At) = X(t) + At(t)

to compute the particle’s path. We use linear interpolation to find the pointevtherparticle
hits thex-axis:
Whenx; (t+At) <0
let: Aty = —xq(t)/Xq (1)
tf = t+ At
X(tf) = x(t) + Atsx(t)
Error: E(W) = Xo(tf)?

We minimizeE with respect tav usingrrul ti vari at e_ar gmi n.
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subroutine f(x
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incl ude 'saddl e

doubl e Precw si on xz(m nner), r, x(ntotal), s, xlc(nouter)
common /¢ X1

X

closure/

subroutine gradi em inner(x, g)
include 'saddl e.
doubl e precisi on x(nl nner),
integer k, |
do k™= 1, ninner

do | 1, ninner

x
endds
x(k, k) = 1d0

enddo
cal I g_inner(x, g_x,
end

g(ninner), g_x(ninner, ninner), y
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subroutine ou(er(xl r)

i ncl ude ' saddl e.

Ububl e preci si on Xi(nouter), r, x2(ni ner),
doubl e Frecw sion x1c(nouter), g_xlc(ninner,
conmon / cl osur e/

common /g_closure/ g_xlc

i nteger
external inner,
x1c = x1(1

x2_star(ninner), s
nout er)

gradi ent _i nner

ninner, inner, gradient_inner, x2, x2_star, s)

subroutine gradient_outer(x, g)

program mai n

i nclude 'saddle.inc’

doubl e precision x1_start(nouter), x2_start(ninner)
doubl e precision x1_star(nouter), x2_star(ninner), r
double preci si on x1g(nouter), ~g_Xic(f ner, nout er)

common /cl osur e/ c
conmon /g_closure/ g_xlc
i ntege X .
external outer, gradl ent_outer, inner, gradient_inner
x1_start(1l) = 1d
x1”start (2, 1d0
x2_start(1) = 1d0
x2 start(2) = 1d0
all Itivariate_argnmn
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xlc(1) = x1_star(1
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o k = 1, ninn
g_xic(k, 1) =
x1c(k, 2) = 0dO
o
call multivariate_argnmn
+ inner, innér, gradient_inner, x2_start, x2_star, r)
X1_star(2), x2 star(1), x2_star(2)

n
print =, x1_star(1),
end

(b)

subrouune p(x, r)
cl ude ' parncl e.inc’
oubl'e prect ston x(d charge(dins), s

recision ¢ arges(n:harges, di ns)

doubl e

comon /closure/ charg

|meger .

r = 0d

do | = 1, ncharges
do k

i ms
gharge(k) = charges(l, k)

nd
call dl s(?nce(mrrs x, charge, s)
r

enddo |

end

subroutine gradient_p(x, g)

subrouune nai ve_eul er(w r)
include 'particle.in
doubl e préci si on Cent rol S
doubl e preci sion x{dims), xd t(? rrs),) deitat,
i),
_f(di )‘ charges(ncharges
. ncharges, dins)

g(di s)
doubl e preci si on xddul(dl ns),

doubl e precision delta f, x
doubl e Frecl sion g charges(dl
comon /closure/ charges
comon /g_closure/ g_charges
integer

delta_t

i
t(di
Ctf di )
e

1
2) =
Efa 9)
timesv(dims, -1d0, g, xddot)
ktimesv(dims, delta_f, xdot, t)
V| usg s, X, t, Xx_new)
xfnevx( ).31 0d0) then

1 ms
X(J) = x_new(j)

ktinmesv(dins, delta_t,

xddot, t)
plus(dims, xdot, t, xdot)

subroutine gradi ent_naive_eul er(x, g)

program "’Hl n
include ’particle.
doubl e pr bel si on Wo(cont rol s)

w_star(controls), r
ext er nal naive_euler, |
0d0

gradl ent _nai ve_eul er

ca}\ mul ti vari ate _argm
ntrols, naive_te eul er,

gradi ent _nai ve_eul er,
Torint O S a ()
end

w0, w.star, r)

(©

Qv orewoiny

| Led

Fig. 1. The essence of the baselineIFOR code for thesaddl e andpar ti cl e tasks. (a) The common code shared between the tasks. (b) The code
for thesaddl e task. (c) The code for thgarti cl e task.

(€]
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3 ADIFOR

Forsaddl e, we first try to perform the first transformation to generate the codg fonner
(Try 1). We get the error:

Procedure g_inner undefined: required by procedure gradient_inner in nodule saddle.f.

Procedure h_outer undefined: required by procedure gradient_outer in nodule saddle.f.

despite the fact that we specifie®D_TOP=i nner and none ofg_i nner, h_out er,
gradi ent _i nner, andgr adi ent _out er, are reachable fromnner . So we add
g_i nner andh_out er to AD_EXCLUDE_PRCCS for the first transformation (Try 2). Now
we get the error:
Recursive procedure set:

nul tivariate_argmin.f.2

out er

mul tivariate_argmn
despite the fact that there really is no recursion, since the nested call to
mul tivari at e_ar gm nis to a transformed variant. So we add
mul tivariate_argnm n to AD_EXCLUDE_PROCS for the first transformation and the
first transformation succeeds. We then try to perform the seconddraration to generate
the code folh_out er . This compiles successfully (Try 3), but gives the wrong answer:

1. 1. 8.24632483E-06 8.24632483E-06

Inspection ofh_saddl e. f reveals thataDIFOR generated incorrect derivative code for
h_out er . We conjecture that it may be confused by the nested calls to

mul tivari at e_ar gm n. So we manually copy the code to make two versions of

mul tivari ate_argm n so that there is no potential for confusion. This compiles suc-
cessfully (Try 4) and gives the correct answer, but does so ordidewtally, as inspec-
tion of h_saddl e. f reveals thatnDIFOR has still generated incorrect derivative code for
h_out er . We conjecture that it may be confused by the indirect subroutine cakinahant

of mul ti vari at e_ar gm n that is differentiated. Se we manually specialize that variant
to eliminate the indirect subroutine call. Again, this compiles successfullygrand gives
the correct answer, but does so only accidentally, as inspectionsdddl e. f reveals that
ADIFOR has still generated incorrect derivative codetioout er . So we splitsaddl e. f

into three filessaddl el. f, which will be transformed in the first passadd| e2. f , which

will be transformed in the second pass, awaddl| e. f, which will not be transformed.
Now we see thatDIFOR has generated correct derivative code that yields the correceansw
(Try 6):

8. 24632483E- 06 8. 24632483E-06 8.24632483E-06 8. 24632483E- 06

Forparti cl e, we first try to formulate the program as a single file, as this task requires
no differentiation through nested or indirect subroutines calls. We retuoexperience with
saddl| e and start by adding_p andh_nai ve_eul er to AD_EXCLUDE_PROCS for the
first transformation anti_nai ve_eul er to AD_EXCLUDE_PRCCS for the second trans-
formation. This compiles successfully (Try 1), but gives the wrorsyean:

0.

Inspection ofh_parti cl e. f reveals thanDIFOR has generated incorrect derivative code
for h_nai ve_eul er. So we again rely on our experience withdd| e and split

particl e. f intothree files. Now we see thabiFOR has generated correct derivative code
that yields the correct answer (Try 2):

0. 207191875
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4 Tapenade

For saddl e, we start with the same code as for the initibIFOR version, differing
only in the naming and calling conventions for differentiated subroutingst, Fve per-
form the first transformation to generate the codeifoner _gv. Then, we create the file
DI FFSI ZES. i nc as required by the output of the first transformation. Then, we parfor
the second transformation to generate the codetdrer _hv. Then, we augment the file
Dl FFSI ZES. i nc as required by the output of the second transformation. Howevegitees
issuing no errors or warningsAPENADE generates code that gives compiler errors (Try 1).
Inspection oksaddl e_hv. f reveals that APENADE generated incorrect derivative code for
out er _hv. We conjecture that, likeDIFOR, it may be confused by the indirect subroutine
call in the variant ofrul ti vari at e_ar gmi n that is differentiated. Se we again manu-
ally specialize that variant to eliminate the indirect subroutine call. Again, #rRENADE-
generated code gives compiler errors. Thus, we createdascript to fix these errors, as
discussed in the aboveaAPENADE FAQ entry and find that APENADE has now generated
correct derivative code that yields the correct answer (Try 2).

Forparti cl e, we again start with the same code as for the inikimlFOR version,
differing only in the naming and calling conventions for differentiated subnes, perform
the first transformation to generate the code goigv, create the fileDl FFSI ZES. i nc,
perform the second transformation to generate the codegfove_eul er _hv, augment the
file DI FFSI ZES. i nc, and create aed script to fix the errors in the APENADE-generated
code. This compiles successfully (Try 1), but gives the wrong answe

0.

Inspection ofparti cl e_hv. f reveals that APENADE generated incorrect derivative code
for nai ve_eul er _hv because our code contains a subroutine call that modifies aliased
arguments. While this violates theoRTRAN 77 standardabiFOR andG77 were nonetheless
able to generate correct code for this task. Furthermore, whikeTADE issued a warning,

the TAPENADE FAQ only discusses how this affects reverse mode, not forward medeed

in this task. We modify our code to eliminate the aliasing violation, modifysthd script
accordingly, and find that APENADE has now generated correct derivative code that yields
the correct answer (Try 2).

5 ADIC

For saddl e, we start with a straightforward translation of the®TRAN code used for the
initial ADIFOR version intoc. Since we will need to transforrmonmon. ¢ as part of the
second transformation, we first try to transform this code. Compiling thde ¢Try 1) yields
syntax errors. Inspection afonmon. ad. ¢ indicates thanbDiCc has generated incorrect code
for the transformation aful ti vari at e_ar gmi n:

void mul tivariate_argmn(int n,
void (*f)(double *, double *),
void (*g)(double *, double *),
doubl e *x,
doubl e *x_star,
double *fx) {...}

void g_nmultivariate_argmn (int n,void (*f)(DER V_TYPE *, DERI V_TYPE x);
void (*g)(DERIV_TYPE ) {...}

We conjecture that, likeDIFOR and TAPENADE, ADIC cannot differentiate code with indirect
function calls. Thus we again manually specialimé t i vari at e_ar gm n to eliminate
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the indirect function call. Furthermore, sina@ic does not use flow analysis to determine
what code needs to be differentiated, and thus differentiates everythinfile, this necessi-
tates splittingsaddl e. c into three files, as before. However, unlike before, the unspecialized
version ofrrul ti vari at e_ar gnm n must be moved fromormon. ¢ tosaddl e. ¢ since

we will need to differentiate onmron. c.

We next try to transfornsaddl el. ¢ twice, as is needed by this task. However, the
output of the first transformation uses variables declared to be oDgpeV_TYPE and this
is defined by the generated féel_deri v. h to be:

typedef struct {
doubl e val ue;
doubl e grad[ ad_GRAD_MAX] ;
} DERIV_TYPE;
Note thatapic failed to prefix many of the above identifiers, despite the fact that we spec
ified prefi x, var _prefix, andtype_prefi x. It also failed to control the file-name
prefixes. Thus we rename the files appropriately and creséalascript to edit the code gen-
erated byabic to manually prefix the unprefixed identifiers. Furthermore, sikme cannot
process much of its own generated_der i v. h, we make a variant that contains just the
bare essentials. The second transformation attempt, however, iscassfut (Try 2). Since
saddl el. ¢ contains only two extremely simple functions, we conjecture Amat is not
able to transform transformed code and abandon our attempt at guounitwo tasks iraDIC.

We also point out a further difficulty we have encountered in transfartriansformed
code withapic. With ADIFOR and TAPENADE, the driver code is straightdRTRAN. (See the
code forgr adi ent _i nner in Fig. 1(b).) WithADpic, the corresponding driver code must
use primitives likeDERI V_val , ad_AD_Set | ndepArray, ad_AD_Set | ndepDone,
andad_AD_Extract Gr ad:

voi d gradient_inner(double *x, double *g) {
g_DERI V_TYPE g_x[ I NNER], y;
int k;
for (k = 0; k<INNER, k++) DERIV_val (g_x[k]) = x[k];
ad_AD_Set | ndepArray(&g_x[0], INNER);
ad_AD_Set | ndepDone() ;
g_inner(&y_x[0], &y);
ad_AD ExtractGrad(&g[0], vy);}
Nesting requires transforming such drivers and we have not beeessful in doing so.
This also affects global variables which are written and then read adiffesentiation
boundaries. In our tasks, the functiont er must initialize the tangents aflc to zero and
the functionnai ve_eul er must initialize the tangents afhar ges to zero. This is done
using the primitivead_AD_Cl ear G- ad. However,out er andnai ve_eul er must be
transformed and a similar problem arises.

6 FADBAD

For FADBAD++, we describesaddl e andparti cl e jointly. Our initial FADBAD++ vari-
ants are similar to the initiadDIC variants, differing primarily in that the functions

magni t ude_squar ed, magni t ude, di st ance_squar ed, di st ance,

mul tivariate_argm n,f,inner,outer,p,andnai ve_eul er, return results rather
than modify arguments passed by reference, use+af 1/0, and formulating the imple-
mentation of the drivergr adi ent _i nner, gradi ent _out er, gradi ent _p, and
gradi ent _nai ve_eul er to use theFADBAD++ API instead of theaDic API (Try 1).
These variants, however, cannot be run, since they don’'t implegiéntner, h_out er,
g_p, andh_nai ve_eul er.



Automatic AD: Part | 9

One way of providing these is to manually simulate the behavior of a pregsoc
like ADIFOR, TAPENADE, or ADIC. We do this by making a copy of all of the functions
in common. cpp, prefixing all function identifiers in this copy witg_ and changing all
instances ofdoubl e in this copy toF<doubl e>. We also manually apply such a pro-
cess to selected portions efiddl e. cpp andparti cl e. cpp, making prefixed, type-
lifted copies of certain functions and global variables, nanielx1c, i nner, char ges,
and p. This simulates the first transformation. To simulate the second trarsfiorm we
make copies of all of the functions monmon. cpp, including the ones created by the first
transformation, prefixing all function identifiers in this copy whh and changing all in-
stances ofloubl e in this copy toF<doubl e>. This creates some identifiers prefixed with
h_g_ and some instances of the typgF<doubl e>> (which must be manually changed
to the typeF<F<doubl e> >). We also manually apply such a process to selected portions
of saddl e. cpp andparti cl e. cpp, including the portions created by the first trans-
formation, namelyf , x1c, i nner, g_f, g_x1c, g_i nner, gr adi ent _i nner, outer,
char ges, p, g_char ges, g_p, gr adi ent _p, andnai ve_eul er. This compiles suc-
cessfully, and gives the correct answer (Try 2). However, this th beelegant and labor
intensive. Thus we rewrite the code from Try 1 using templates. This ibesnguccessfully,
and gives the correct answer (Try 3). Note that this also requiresfigaitbn of our original
code.

7 Conclusion
The goal of AD is to be able tautomaticallytake derivatives otinmodifiedprograms. We
are far from this goal, at least when considering nesting, i.e., takirigatiges of functions
that take derivatives of other functions. All the systems that we have tequire manual
modification of either the source code, the automatically generated cottetto ADIFOR
requires manual partitioning of the code into different files to be transfdrdifferent num-
bers of times. APENADE requires manual specialization of subroutines to eliminate indirect
subroutine calls and manual post-editing of code that has been tnaesfonultiple times.
FADBAD++ requires either manual simulation of a transformation process or wiiite
using templates. Andbpic is not able to handle such nesting at all. Furthermore, along the
path to solving these tasks, we encountered situations with both tasks uimrgiieor and
TAPENADE where incorrect derivative code was produced without warningmr,esome-
times leading to subsequent compiler errors and sometimes, but rytsall@ading to incor-
rect computational results.

In this paper, we have rationally reconstructed the minimal path from dginal intent
to the solution of each task using each AD system. The actual processdoigng these vari-
ants was very labor intensive and involved the exploration of many blingsaifat have been
omitted. For example, before we specifislB EXCEPTI ON_FLAVOR = per f or mance,
we needed to adehsf i d andehuf DOto AD_EXCLUDE_PROCS. Even then, transforming
transformed code witADIFOR yielded incorrect code that gave compiler errors due to redun-
dant declaration ofi_ehf i d. And with long file namesaDIFOR generates calls tehsf i d
with long Hollerith constants that extend past column 72, again giving conggiters. We
had to creatsed scripts to post-edit theDIFOR-generated code to remove these flaws. Sim-
ilarly, TAPENADE generates pedantic warnings about code that compares floating ploies v
for equality. But it itself generates code that triggers such warnings spbsequent transfor-
mation of transformed code.

Even ignoring the flaws encountered, the documented mode of usefer sistems is far
from automatic, requiring manual specification, through script filedudecfiles, and com-
mand line parameters, of things like the files to scan, the functions andlesi@ include or
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exclude from the transformation process, the prefixes to use, anéhteeslons of generated
arrays. Furthermore, much of this information is specific to a particulasystem. Both the
official mode of use, as well as the specific source-code changgmatrediting steps we had
to employ to achieve success, vary significantly betwesiFor and TAPENADE despite the
fact that they both apply to#@RTRAN77. The same occurred betweeniC andFADBAD ++,
despite the fact that our initial code for both of these systems was writteamitiasc(except
for use ofc++ 1/0). (FADBAD++ can handle functions that return real values whitac
requires returning results by mutating values passed by referenad like ADIFOR and
TAPENADE can only transform subroutines, not functions.) This is all furtherpgaated by
the fact that the different AD systems needed different codedirer , nai ve_eul er, and
themai n for saddl e) to handle the initialization of the tangents of the variabés and
char ges that were implemented as common variables @RFRAN and global variables in
clc++.

Our companion paper describes a novel language and a novel cothpiladdresses the
shortcomings described in this paper. We hope that this paper clarifiew@helieve that the
work described in the companion paper is novel and significant anesgkk issues that are
not addressed by current AD implementations.
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