

A CONNECTIONIST TECHNIQUE FOR ON-LINE PARSING

Ronan Reilly
Educational Research Centre
St Patrick's College, Dublin 9

Connectionist Parsing

Abstract

A technique is described that permits the on-line construction and dynamic modification
of parse trees during the processing of sentence-like input. The approach is a combination
of simple recurrent network (SRN) and recursive auto-associative memory (RAAM) . The
parsing technique involves teaching the SRN to build RAAM representations as it processes
its input item-by-item. The approach is a potential component of a larger connectionist
natural language processing system, and could also be used as a tool in the cognitive
modelling of language understanding. Unfortunately, the modified SRN demonstrates a
limited capacity for generalisation.

2

Connectionist Parsing

A Connectionist Technique for On-Line Parsing

Ronan Reilly
Educational Research Centre
St Patrick's College, Dublin 9

One way of characterising the problem of natural language processing is to view it
as an effort to reconstruct the complex non-linear structure of the sender's message from
its linear representation in the speech stream. The brain solves this problem successfully
by using a combination of structural and contextual clues. The focus of this paper will be
on the structural regularities, or syntax, of language. A technique will be described that
permits the on-line construction and dynamic modification of parse trees during the
processing of sentence-like input. The approach is a combination of two recent
innovations in connectionist representation: the simple recurrent network (SRN) of Elman
(1990) and the recursive auto-associative memory (RAAM) developed by Pollack (1990).
The parsing technique involves teaching the SRN to build RAAM representations as it
processes its input item-by-item.

Some Promising Techniques

A localist approach to representation (i.e., for a given level of description one unit
is used to represent one term in the description language) has tended to dominate
connectionist research on syntax and parsing. With this approach, the greater the
complexity of the representation, the more units required. Furthermore, the maximum
number of units required, needs to be known in advance. This is a major weakness when
contrasted with the productive capacity and fundamental open-endedness of symbolic
systems. The question then is, how can one achieve the desirable productive capacity of a
conventional symbolic system within a fixed capacity connectionist network?

Representing Complex Structure

A recent development by Pollack (1990) has provided some insight into how this
goal might be achieved. Pollack's recursive auto-associative memory (RAAM) is based on
an application of the backpropagation algorithm called an encoder. Encoders were first
described by Rumelhart, Hinton, & Williams (1986). The idea behind them is quite
simple. A three-layer feedforward network is trained to reproduce on its output units, the

3

Connectionist Parsing

pattern of activation that is on its input units. A key feature of encoder networks is that
the number of intervening hidden units is less than the number of input units. This means
that the network must learn an encoding of the input pattern that is sufficiently precise to
allow the reconstruction of the pattern on the output units. So, for example, an 8-3-8
encoder (8 input and output units, three hidden units) must learn to develop something
like an octal code in order to encode a set of one-in-eight bit patterns. This simple
mechanism gives us a means of preserving information through change in the width of the
representation. Thus, by taking the pattern of activation on the three hidden units in
conjunction with the weights from the hidden units to the output units, it is possible to
reconstruct the original 8-bit pattern.

<Figure 1 about here>

Consider now the binary parse-tree in Figure 1. The terminals of the tree can be
taken to represent the syntactic categories determiner (D), noun (N), verb (V), and
adjective (V). The tree can be represented as a list: ((D N) (V (D (A N)))). This might be
the structural analysis given to a sentence such as The boy kicked the red ball. Using a
2k-k-2k encoder (see Figure 2a), it can be encoded in a fixed-width representation by
recursively training the encoder on the following set of patterns:

input pattern hidden pattern output pattern

(D N) R1(t) (D'(t) N'(t))
(A N) R2(t) (A'(t) N'(t))
(D R2(t)) R3(t) (D(t)' R2(t)')
(V R3(t)) R4(t) (V(t)' R3(t)')
(R1(t) R4(t)) R5(t) (R1(t)' R4(t)')

where A, D, N, and V are represented by k width one-in-k bit vectors. The input at each
training step consists of two adjacent vectors. For any given epoch t, all of the above
training patterns are presented. Obviously, the Rn vectors will be changing as the training

proceeds. Consequently, these particular patterns present something of a moving target to
the learning algorithm. Nevertheless, given a suitable choice of learning parameters, the
representations converge and stabilize. At the end of the training procedure, the pattern
R5 can be said to represent the entire tree structure. The elements of this structure can be
recursively unpacked by taking R5 , inserting it into the hidden units of the encoder
network, and using it to generate the patterns R1' and R4 ' on the output units, which will be
close approximations to R1 and R4. These patterns, in turn, can be used to recursively

generate the terminal elements of the tree.

4

Connectionist Parsing

The advantage of the RAAM technique is that the structures can be of varying
complexity, yet still be represented in a fixed-width pattern. There are, however, upper
limits to the capacity of RAAM networks of given widths. This is one aspect of the
approach that has some psychological appeal, since the limitations are suggestive of
similar limitations in humans.

A disadvantage of RAAMs is that they do not capture the temporal character of the
structures they encode. All elements of a tree structure (or set of tree structures) are
simultaneously encoded. We must turn to another development in connectionist
representation to discover a way of capturing the temporal dimension of language while
still preserving the representational advantages of the RAAM .

<Figure 2 about here>

Representing Temporal Structure

Language is encountered in the speech modality as a temporal sequence of
phonemes. The consequence of this for connectionist models is that some way must be
found to integrate information over time. The main technique used until quite recently
was to transform the temporal dimension into a spatial one. In the context of a speech
processing model, the input to a network might consist of a window spanning a particular
period of time. The obvious limitation to this approach is that the model is limited in how
far back in time it can make use of the input data. The modeller must set an arbitrary limit
on the temporal memory of the system. In the case of a language-processing system, this
temporal-to-spatial mapping entails a fixed upper limit on the number of words allowed in
a sentence (Cottrell, 1985; Fanty, 1985).

A more appealing solution to the problem of capturing temporal structure without
recasting it in a spatial form is to use a recurrent network. Recurrence can be
implemented by taking the state of some part of the network at time t and using it as input
to the network at time t+1, in addition to the conventional input. The first researcher to
use recurrence in this form was Jordan (1986). His goal was to devise a connectionist
system that could generate a sequence of plan-like actions that were dependent on a
particular state. The training of his system required that activation from the output units
be fed back as input on the next time step. In this way, the network could use the result
from one time step to help determine the next output.

A variant of this network was used by Elman (1990) to explore the temporal
nature of linguistic data. Elman's model consisted of a modified feedforward network in
which the activation values of the hidden units at time t were copied to a set of additional

5

Connectionist Parsing

input units and are used as input at time t+1. The weights from the hidden-unit copies
are modifiable in the same way as those from any other units. There are, however, no
biases associated with the copy units. This type of network is usually referred to as a
simple recurrent network (SRN).

 Elman explored the ability of simple recurrent networks to carry information over
a long sequence of inputs. Take the following linguistic example:

The boys whom the girls see in the field behind the school eat the apples

In this sentence there is a dependency between the number of the noun boys and the
number of the verb eat. When a listener is presented with this sentence and is asked, for
example, to judge whether it is grammatical or not, s/he must carry information about the
noun and use it in assessing whether the verb number is correct. This must be done
irrespective of the number of intervening words. In reality, the greater the number of
intervening words, the more difficulty people have in performing this task. What Elman
demonstrated was that given the task of anticipating what the next word in a sentence was
going to be, a simple recurrent network was able to utilise information encountered
several time-steps previously. However, just as with people, the network did not
demonstrate perfect performance, rather the performance degraded as the number of
intervening words increased.

Now, the task Elman set his network was by no means as demanding as having to
perform a parse, but it did entail operations that were similar. The main facet of language
processing that was captured by his network was the impact of expectancies at a given
point in a sentence. Such expectancies do seem to be important in natural language
understanding (Marslen-Wilson & Welsh, 1978).

An On-Line Parsing Architecture

The parsing technique proposed here is a straightforward combination of SRN and
RAAM (see Figure 2b). The task of the SRN, rather than anticipation of the next item in the
input sequence, is the construction of a RAAM representation of the input. In order to train
the SRN, a necessary first step is to create the relevant RAAM representations.

The idea of deriving RAAMs from sequential input is not entirely new. Pollack
(1990) sketched out a scheme in which RAAMs could be incrementally generated from
sequential input using a recurrent architecture. However, the architecture he proposed
was quite complex (e.g., the output from one network yields the weights for another
network). The combination of RAAM and SRN proposed here is much simpler and

6

Connectionist Parsing

performs the same function. Sharkey (personal communication) has also used a
combination of SRN and RAAM, similar to the one described here.

Training Set

The training set consisted of sequences of word categories generated from a
simple context-free grammar (the same one as used in Pollack, 1990). The terminals of
the grammar were the same as described above, with an additional terminal representing
the category preposition (P). The rules for the grammar were:

S ® NP VP | NP V
NP ® D AP | D N | NP PP
PP ® P NP
VP ® V NP | V PP
AP ® A AP | A N

This grammar generates the sample sequence given earlier, (D N V D A N), which can be
represented as a bracketed binary tree, thus: ((D N) (V (D (A N)))). Some restrictions were
placed on the generation process. No more than two recursive applications of the
adjectival phrase rule (AP) were permitted. Thus, there could be no more than three
adjectives (A) preceding a noun (N). In addition, only one NP ® NP PP expansion was
permitted, which served to restrict the number of prepositions (P) in a noun phrase to one.

A corpus of 1000 sequences was generated using the above rules. This corpus
comprised 168 unique sequences. In order to reduce their number and complexity, only
sequences containing nine elements or less were considered further. This reduced the
relevant set to 40. Initial attempts to train a 40-20-40 RAAM on this set were not
successful, which left two options: either scale up the size of the RAAM, or reduce the size
of the training corpus. The latter approach was taken, since the goal of the research was
not to explore the capacity of RAAMs, but to test the viability of using SRNs to generate
RAAMs. Consequently, a random sample of 20 sequences was selected from the corpus of
40, and four of these were removed for use in the tests of generalisation. The rationale for
the selection of the generalisation set will be discussed later. This left 16 different
sequences or sentence types for use in training (see Table 1).

<Table 1 about here>

RAAM Encoding

A 40-20-40 RAAM was constructed to encode the 16 sentence-types in the training
set. The generalised, as opposed to sequential RAAM, was used for this purpose.

7

Connectionist Parsing

Consequently, training this set of 16 sequences involved decomposing them into a set of
31 unique binary sub-trees, just as in the example given at the beginning of the paper.
Training these required 30,000 epochs, and involved using a modification of the standard
backpropagation algorithm called Quickprop due to Fahlman (1988). This is a so-called
second-order learning algorithm, which uses an interpolation method to estimate more
accurately the error minimum for each weight. A potential disadvantage of this type of
algorithm for the RAAM learning task is that it performs best if a number of training
patterns are presented before the weights are changed. Usually, the weight changes are
accumulated and put into effect at the end of each epoch. However, because the training
patterns themselves change as the weights change, if weight updates do not take place
often enough, learning will not converge. A way around this is to have updates occur
after some portion of the training patterns have been presented. The update rate chosen
for this application was every 10 patterns. The Quickprop algorithm1 used in this way
was found to be faster and more effective than conventional backpropagation (Rumelhart,
Hinton, & Williams, 1986).

SRN/RAAM Parser

The RAAM representations (i.e., the vectors of hidden unit activations) associated
with each sentence-type were used in the training of an SRN (henceforth, the SRN/RAAM).
The SRN/RAAM consisted of six input units, 20 hidden units, and 20 output units. The
output units comprised the 20 units used to represent the RAAM encoding of the input
sentence. In addition to the six input units connecting to the hidden units, there were also
20 context units which were used to store a copy of the hidden unit activations from the
previous time step. The standard backpropagation algorithm, as opposed to the
Quickprop variant, was used for training, since algorithms like Quickprop do not perform
well with recurrent architectures. Earlier attempts to use fewer hidden units (10 and 15),
resulted in learning failing to converge.

The SRN/RAAM was trained on the 16 sequences for 20,000 epochs. A regime of
decreasing learning rates was used. Initially set relatively high (0.5), the learning rate was
decreased every 1,000 epochs to a minimum of 0.01. It should be emphasised that at any
given time step, the only input to the SRN/RAAM was an element of the input sequence and
the hidden unit activations from the previous time step. No information about the
structure of the sequence was included in the input. Furthermore, at the end of each

1 Some more details on learning parameters: A learning rate of 1.0 was used, but for a given unit it was
divided by the fan-in to that unit. A standard sigmoid activation function was used, with output in the range
0.0 to 1.0. All other parameters, were kept at the defaults specified in Fahlman (1988).

8

Connectionist Parsing

sequence, the context units were reset. Below is a schematic of the training regime for the
two sequences ((D N) V) and ((D N) (V (D N))):

Time Input Teacher
1 D Ra
2 N Ra
3 V Ra
4 . Ra
5 D Rb
6 N Rb
7 V Rb
8 D Rb
9 N Rb
10 . Rb

where Rb and Ra are the RAAM encodings of ((D N) V) and ((D N) (V (D N))), respectively.

At time-step 5, the context units are reset, thus obliterating information about the
preceding sequence.

Results

The main result from this experiment was the finding that it is indeed possible to
train an SRN to generate accurate RAAM representations of an input sequence, though with
some difficulty. As can be seen from Table 1, five out the 16 sequences were not
trainable. The five that gave trouble all contained the sequence (A (A N)). During several
training runs the performance of the network showed a tendency to deteriorate after
around 20,000 epochs. Training was halted at this point.

One interesting aspect of the behavior of a the trained SRN is the way in which its
structural expectancies change as a sequence is input. This is illustrated in the following
sequence (D N P D N V D A N .):

Input Decoded RAAM Output

D ((D ?))
N (?)
P (((D N) (P (D ?))) V)
D (((D N) (P (D ?))) V)
N (((D N) (P (D N))) V)
V (((D N) (P (D N))) V)
D (((D N) (P (D ?))) ?)

9

Connectionist Parsing

A (((D N) (P (D (A N)))) V)
N (((D N) (P (D N))) (V (D (A N))))
. (((D N) (P (D N))) (V (D (A N))))

A "?" in the above parse trees indicates that the RAAM vector was not decodable at this
point. For a given vector, the decoding process continues either until there are no more
non-terminal branches2, or until an embedding depth of 10 is reached. The latter case is
marked by a "?." In the above example, an attempt is made to decode the output at each
input step. When the V is encountered, there is enough information to produce a well-
formed parse. This preliminary "hypothesis" must be revised as more input is received.
An interesting feature of this sequence is the output produced when the A is reached. A
valid parse tree is produced, but one which does not reflect the order of the input
sequence. What seems to have happened is that a learned sequence has acted as an
attractor. This view is confirmed when the network's generalisation performance is
examined.

As well as looking at overall performance, the ability of the SRN/RAAM to generate
correct parse trees for sentences that it had not been exposed to in training was tested. As
has already been mentioned, four sequences from the initial corpus of 20 were selected for
use in tests of generalisation. The goal of the generalisation tests was to discover if the
SRN/RAAM could demonstrate a sensitivity to certain sub-structures in the training set
irrespective of their position in the input sequence. The sub-structure (P (D N)) was
chosen, and it occurred in different locations in the four generalisation sequences.

<Insert Table 2 about here>

The results of the generalisation test are given in Table 2. In two out of the four
cases the sub-structure was correctly dealt with, although in no case was the entire parse
correct. It is obvious from these results that the representations of learned sequences are
acting as attractors for new ones. In the context of a richer training environment, this
processing strategy would certainly yield a higher rate of correct sub-structure parsing
than in the present case.

It is informative to look also at the way in which the RAAM encoder/decoder dealt
with the generalisation set. The results are given in Table 3. Generalisation in this
context was tested by first encoding the structures and then attempting to decode them.
The decoding criteria used with the SRN/RAAM output was also applied here. In only one
case, was the (P (D N)) sub-structure entirely recovered. It was partially recovered in two

2 A vector is considered to be a non-terminal if it is not a one-in-k binary vector.

10

Connectionist Parsing

cases, and not at all in the third. It seems that generalisation in regular RAAM networks is
more conservative than in the SRN/RAAM variant.

<Insert Table 3 about here>

Discussion

The main goal of this paper has been to demonstrate the feasibility of combining
an SRN and RAAM in order to perform on-line parsing. Although the training set was
trivial and the scale of the model quite small, the technique does permit the exploitation of
a relatively powerful connectionist representation, the RAAM, in a form that is useful to
on-line language processing. Furthermore, the temporal nature of the SRN/RAAM makes it
attractive as a cognitive modelling tool in the study of natural language understanding.
For example, the way in which the RAAM representation unfolds over time might be useful
in modelling the processing of structurally ambiguous sentences (e.g., The boy saw the
man with the telescope, where with can indicate facilitation or possession). Of course, to
model this phenomenon the training set would need to comprise words rather than word
categories.

There are, however, a number of problems with the SRN/RAAM parsing approach as
it is currently formulated. One of the most important is the poor generalisation ability of
the both the RAAM and SRN/RAAM networks. Pollack (1990) acknowledges that RAAMs do
not demonstrate a desirable degree of generalisation. In the case of the SRN/RAAM, one
way around poor generalisation is to enlarge the size of the training set, but this puts
additional demands on the RAAM encoding process. RAAMs have limited capacity and are
troublesome to train. In fact, the learning demands of the two architectures are in conflict
with one another.

The answer to this problem may lie in developing a more psychologically
plausible approach to the development of RAAM-like representations. The technique used
for generating RAAMs cannot bear much relationship to the way in which representations
are created in the brain of the language user. But, RAAMs have a number of appealing
properties from a psychological point of view. It may be possible, therefore, to devise a
method of learning representations with the same functional properties as RAAMs, but
developed in manner that is truer to the time-varying sequential nature of language. One
promising approach is described by St John and McClelland (1990), where they propose a
complex representation called a "sentence gestalt" which is trained in a sequential manner
to encode the case-role assignments of sentence. Such a representation might be extended
to encode RAAM-like structural information as well.

11

Connectionist Parsing

References

Cottrell, G. W. (1985). Connectionist parsing. In Proceedings Seventh Annual
Conference of the Cognitive Science Society. Irvine, CA.

Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14, 179-212
Fahlman, S. E. (1988). Faster learning variations on back-propagation. In D. Touretsky,

G. Hinton, & T. Sejnowski (Eds.), Connectionist models Summer school. San
Mateo, CA: Morgan Kaufman.

Fanty, M. (1985). Context-free parsing in connectionist networks (Technical Report TR-
174). Rochester, NY: Dept. of Computer Science, University of Rochester.

Jordan, M. I. (1986). Attractor dynamics and parallelism in a connectionist sequential
machine. Proceedings of the Cognitive Science Society. Amherst, MA, August,
pp. 531- 546.

Marslen-Wilson, W. D., & Welsh, A. (1978). Processing interactions and lexical access
during word recognition in continuous speech. Cognitive Psychology, 10, 29-63.

Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning internal
representations by error propagation. In D. E. Rumelhart, J. L. McClelland and the
PDP Research Group (Eds.), Parallel distributed processing. Explorations in the
microstructure of cognition. Volume 1: Foundations (pp. 318-362). Cambridge,
MA: MIT Press.

Pollack, J. B. (1990). Recursive distributed representations. Artificial Intelligence, 46, 77-
105.

St John, M. & McClelland, J. L. (1990). Learning and applying contextual constraints in
sentence comprehension. Artificial Intelligence, 46, 217-257.

12

Connectionist Parsing

Acknowledgements

Thanks to Pat O'Seaghdha for commenting on an earlier draft of this paper, to
Gerry Orchard for his forebearance, and to two anonymous reviewers for their helpful
comments.

13

Connectionist Parsing

Figure and Table Captions

Figure 1

A parse tree which could be the structural analysis for a phrase such as The boy
kicked the red ball. Reading from left-to-right, the terminals of the tree stand for
determiner, noun, verb, and adjective. The non-terminal nodes stand for noun phrase,
verb phrase, and adjectival phrase.

Figure 2a

The architecture of a RAAM network. The lower half of the network is used for
encoding nodes from individual branches of a binary tree. The top half is used to decode
a node into its component branches.

Figure 2b

A modified simple recurrent network (SRN). The input is an element in a sequence
along with the pattern of activations from the hidden units at the previous time step. Note
that the link marked copy is not modifiable. The output from this network is a structural
analysis of the input sequence encoded in a recursive auto-associative memory (RAAM)
vector.

Table 1

The training set used in the study. When used in training the RAAM network the
structures were broken down into 31 sub-trees, and the nodes of each of these sub-trees
were auto-associated in a 40-20-40 RAAM encoder. When used to train the SRN/RAAM
network, the structures were transformed into a linear sequences, all structural
information was dispensed with, and the task of the network was to reproduce the correct
RAAM encoding for each input sequence. The sequence numbers in boldface indicate
those that the SRN/RAAM failed to learn.

Table 2

The generalisation set used in the study. Note that the input to the SRN/RAAM was
strictly linear and contained no structural information. The emboldened sub-sequence
was the particular focus of the generalisation test.

14

Connectionist Parsing

Table 3

The result of using the RAAM to decode the generalisation set. The decoding
process entailed encoding the sequence, and then attempting to decode the resulting
representation. A "?" indicates that the sequence was undecodable at that point.

15

Connectionist Parsing

Table 1

 ID Sequence

 1 (((d (a (a n)))(p (d n)))v)

 2 (((d (a n))(p (d (a n))))v)

 3 (((d (a n))(p (d n)))v)

 4 (((d n)(p (d (a n))))v)

 5 (((d n)(p (d n)))(v (d (a n))))

 6 (((d n)(p (d n)))v)

 7 ((d (a (a n)))(v (d (a n))))

 8 ((d (a (a n)))(v (d n)))

 9 ((d (a (a n)))(v (p (d (a n)))))

 10 ((d (a (a n)))v)

 11 ((d (a n))(v (d (a n))))

 12 ((d (a n))(v (p (d (a n)))))

 13 ((d (a n))v)

 14 ((d n)(v (d (a n))))

 15 ((d n)(v (p (d (a n)))))

 16 ((d n)v)

16

Connectionist Parsing

Table 2

Input Structure SRN Input

Sequence

SRN Output

 Structure

(((d n)(p (d n)))(v (d n))) d n p d n v d n. (((d n)(p (d n)))(v (d (a n))))

(((d (a n))(p (d n)))(v (d n))) d a n p d n v d n . (((d n)(p (d n)))(v (d (a n))))

((d (a n))(v (p (d n)))) d a n v p d n . ((d (a n))(v (p (d (a n))))

((d n)(v ((d n)(p (d n))))) d n v d n p d n . ((d n) (v (d (a n))))

17

Connectionist Parsing

Table 3

Input Structure RAAM Decoded

Structure

(((d n)(p (d n)))(v (d n))) (((d n) (p (d n))) (v (? n)))

(((d (a n))(p (d n)))(v (d n))) (((d (a n)) (p (? n))) ?)

((d (a n))(v (p (d n)))) ((d (a n) (v (p (? n))))

((d n)(v ((d n)(p (d n))))) ((d n) (v ((d ?) ?)))

18

Connectionist Parsing

19

Connectionist Parsing

20

	Abstract
	Some Promising Techniques
	Representing Complex Structure
	Representing Temporal Structure

	An On-Line Parsing Architecture
	Training Set
	RAAM Encoding
	SRN/RAAM Parser
	Results

	Discussion
	References
	Acknowledgements
	Figure and Table Captions
	Figure 1
	Figure 2a
	Figure 2b
	Table 1
	Table 2
	Table 3

	Table 1
	Table 2
	Table 3

