
Verifying SimpleGT Transformations Using an
Intermediate Verification Language

Zheng Cheng, Rosemary Monahan, and James F. Power

Computer Science Department, Maynooth University, Co. Kildare, Ireland
{zcheng, rosemary, jpower}@cs.nuim.ie

Abstract. Previously, we have developed the VerMTLr framework that
allows rapid verifier construction for relational model transformation lan-
guages. VerMTLr draws on the Boogie intermediate verification language
to systematically design a modular and reusable verifier. It also includes
a modular formalisation of EMFTVM bytecode to ensure verifier sound-
ness. In this work, we will illustrate how to adapt VerMTLr to design
a verifier for the SimpleGT graph transformation language, which al-
lows us to soundly prove the correctness of graph transformations. An
experiment with the Pacman game demonstrates the feasibility of our
approach.
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1 Introduction
Relational model transformation (MTr) is one of the main paradigms used in

model transformation (MT). It has a “mapping” style, and aims at producing a
declarative transformation specification that documents what the model trans-
formation intends to do. Graph transformation (GT) is another model transfor-
mation paradigm. It has a rewriting style, and usually represents model trans-
formation graphically (e.g. UML-related models) and at a high level of abstrac-
tion. Thus, it is well suited to describe scenarios such as distributed systems
or behaviours of structure-changing systems (e.g. mobile networks). The two
paradigms share some similarities (e.g. they are both declarative in nature).
However, they are fundamentally different in their execution semantics.

In this work, we will focus on GTs. SimpleGT is a textual GT language
based on double push-out semantics [17]. A SimpleGT program is a declarative
specification that documents what the SimpleGT transformation intends to do.
It is expressed in terms of a list of rewrite rules, using the Object Constraint
Language (OCL) for both its data types and its declarative expressions. Then,
the SimpleGT program is compiled into an EMFTVM implementation to be
executed.

Verifying the correctness of a SimpleGT transformation means proving as-
sumptions about the SimpleGT program. These assumptions can be made ex-
plicitly by transformation developers via annotations, so-called contracts. The
contracts are usually expressed in OCL because of its declarative and logical
nature.



To allow automatic correctness verification for MTr, we have designed the
VeriMTLr development framework to provide rapid verifier construction [7]. At
the core of our framework is the Boogie intermediate verification language (Boo-
gie) which enables Hoare-logic-based automatic theorem proving [4]. Boogie pro-
vides imperative statements (such as assignment, if and while statements) to
implement procedures, and supports first-order-logic (FOL) contracts (i.e. pre/-
postconditions) to specify procedures. It allows type, constant, function and
axiom declarations, which are mainly used to encode libraries that define data
structures, background theories and language properties. A Boogie procedure is
verified if its implementation satisfies its contracts. The verification of Boogie
procedures is performed by the Boogie verifier, which uses the Z3 SMT solver1

as its underlying theorem prover.
Our framework encapsulates the semantics of the EMF metamodel library

(based on the Burstall-Bornat memory model [6]) and a subset of OCL (i.e.
OCLAny, OCLType, Primitive and collections) as Boogie libraries. The two
libraries provide a foundation to encode the execution semantics of MTr lan-
guages. The unique feature of VeriMTLr is its ability to ensure sound verifier
design through a translation validation approach. That is, it automatically veri-
fies that each encoded execution semantics of an MTr specification is sound with
respect to its corresponding runtime behaviour of the MTr implementation [9].

Our main contribution in this work is to articulate how to adapt VeriMTLr
to soundly design the VeriGT system, which is used to verify the correctness of
SimpleGT transformations. In particular:

– We demonstrate the difference between the execution semantics of relational
and graph transformations, and quantify how the difference would affect
their verifier design (Section 3).

– We demonstrate VeriGT on the wellknown Pacman game, and share our
experience on verifying three contracts for the Pacman game (Section 4). One
interesting observation is that by carefully designing the Pacman metamodel,
we do not require explicit tool-support or formalisms (e.g. CTL) to handle
temporal constraints.

2 The SimpleGT Language and its Correctness
We use the Pacman game adapted from [15] to introduce the SimpleGT

language. The game is based on the Pacman metamodel as shown in Fig. 1. The
game consists of a single Pacman, a ghost and zero or more gems on a game
board (consisting more than zero grids). Each grid can hold Pacman, a ghost
and a gem at the same time. The Pacman game is controlled by the GameState,
which records important attributes such as STATE, SCORE and FRAME.
It also contains a list of actions. Each action defines the moves to be done by
either Pacman or the ghost, and is executed when it has the same frame as the
GameState.

We have defined the semantics of a Pacman game via 13 GT rules in Sim-
pleGT (Fig. 2). Each rule includes an input pattern (from section), a correspon-

1 Z3. http://z3.codeplex.com/.



Fig. 1: Pacman metamodel

dence pattern, and an output pattern (to section). The correspondence pattern
is implicit, and is represented by the intersection of the input and the out-
put pattern. Thus, the coarse operational semantics of SimpleGT is that the
differences from input pattern to correspondence pattern are deleted, the corre-
spondence pattern is left unchanged, and the differences from output pattern to
correspondence pattern are created. SimpleGT uses explicit negative application
condition patterns (NACs), which specify input patterns that prevent the rule
from matching. Optionally, the matching operator (‘=∼’) can be used to match
the existence of an edge or an attribute value in the input or output pattern.
In addition, SimpleGT enforces injective matching and follows an automatic
“fall-off” rule scheduling, for which we give more details in Section 3.

1 rule PlayerMoveLeft{
2 from
3 s:P!GameState(STATE=~PacMove,record=~rec), rec:P!Record, pac:P!Pacman,
4 grid2:P!Grid, grid1:P!Grid(hasPlayer=~pac,left=~grid2),
5 act:P!Action(DONEBY=~Pacman,FRAME=~rec.FRAME,DIRECTION=~Left)
6 not grid2: P!Grid(hasEnemy=~ghost), ghost: P!Ghost
7 to
8 s:P!GameState(STATE=~GhostMove,record=~rec), rec:P!Record, pac:P!Pacman,
9 grid2:P!Grid(hasPlayer=~pac), grid1:P!Grid(left=~grid2) } ...

Fig. 2: Part of the Pacman graph transformation rules in SimpleGT

We have 10 rules to move Pacman and the ghost in different directions (5
rules for each role). We prevent Pacman from committing suicide by prohibiting
it from moving to the grid that already has the ghost. We ensure that Pacman
moves before the ghost. However, the evaluation (i.e. Kill or Collect rule) takes
place after both of them have moved. Pacman collects a gem if both the gem
and Pacman share the same grid. Pacman is killed by the ghost if both of them
share the same grid. Finally, the GameState is updated by the UpdateFrame
rule.

Our quest is to systematically design a modular and reusable verifier that ver-
ifies the correctness of the SimpleGT programs. The correctness of a SimpleGT
program is specified using OCL contracts. In this work, we specify three contracts
as shown in Fig. 3, i.e. gemReachable, PacmanSurvive and PacmanMoved.
The rationale behind each specified contract is explained further in Section 4.
In addition, we enforce a list of preconditions that should hold before executing
the GT. This is to ensure the game starts in a valid game state. For example, to
ensure that no grid is isolated on the game board, we require that any two grids
are reachable (defined in Section 4).



1 context GameState pre ValidBoard: −− any two grids are reachable.
2 self.grids->forAll(g1,g2:Grid|reachable(g1,g2))
3 ... −− other well−formatness contracts of the Pacman game.
4 context Grid inv gemReachable: −− all grids containing a gem must be reachable by Pacman.
5 self.allInstances()->forall(g1,g2:Grid|not g1.hasPlayer.isOclUndefined() and not

g2.hasGem.isOclUndefined() implies reachable(g1,g2))
6 context GameState inv PacmanSurvive: −− exists a path where the ghost never kills Pacman.
7 self.STATE==GhostMove implies self.grids->forall(g1:Grid|g1.hasEnemy.oclIsKindOf(Ghost)

implies not g1.hasPlayer.oclIsKindOf(Pacman))
8 context Action inv PacmanMoved: −− the Pacman must move within a time interval I.
9 let col:Sequence=self.allInstances()->select(a:Action|a.DONEBY=Pacman and not

a.Direction=Stay)->asSequence() in
10 col->forall(i:int|0<=i<col->size()-1 implies col->at(i+1).FRAME-col->at(i).FRAME<=I)

Fig. 3: OCL contracts for Pacman

3 Design of VeriGT Verifier
The three core components of the VeriGT design are the Boogie encoding

for the EMF metamodel, the OCL transformation contracts and the execution
semantics of SimpleGT. We can directly reuse the EMF metamodel library and
OCL library from our previous work on the VeriMTLr framework for the first
two kinds of encoding. The main challenge stems from encoding the execution
semantics of SimpleGT. Specifically, the semantics of rule scheduling in Sim-
pleGT must be able to match rules with their own output, i.e. re-matching after
each rule application2:

– Initially, rules are matched to find the source graph pattern as specified in
the from section of the rule (match step).

– Next, the first match is applied, i.e. deleting input elements, creating output
elements, and initializing output elements as specified in the to section of
the rule (apply step).

– After each application, the rule scheduling restarts immediately.
– When all rules have been processed (i.e. no more match for any rules), the

rule scheduling stops.

To the best of our knowledge, none of MTr languages share the same execu-
tion semantics. Taking the ATL MTr language as an example, we found three
major differences between the execution semantics of ATL and SimpleGT:

– First, ATL is scheduled to first match each rule, and then apply each rule.
This is to ensure the confluence of an ATL transformation [3].

– Second, ATL applies an implicit resolution algorithm while binding the tar-
get metamodel elements, which do not exist in SimpleGT.

– Third, ATL has a simpler match step, whereas the match step of SimpleGT
is more complex:

• The first sub-step performs a structural pattern matching (by apply-
ing a search plan strategy [16]), where all the patterns that match the
specified model elements and their structural relationship (i.e. an edge
between model elements) are found. A subtlety here is that SimpleGT
requires injective matching, i.e. all the model elements in each matched

2 For simplicity we do not consider rule inheritance [17].



structural pattern are unique. ATL does not enforce the same constraint
on matching.

• The second sub-step is to iterate on the matched structural patterns
for semantic pattern matching, where a pattern that satisfies specified
semantic constraints is found (i.e. constraints on the attributes of model
elements given by the matching operator).

Thus, we cannot reuse our encoding of the execution semantics for MTr
languages here. In Fig. 4 we show part of the Boogie encoding for the execution
semantics of the Pacman game. This can be verified against the OCL contracts
specified in Fig. 3 as follows:

– First, the OCL contracts are encoded as a Boogie contract (line 1 - 11).
For instance, the contract PacmanSurvive of Fig. 3 is encoded as both a
precondition (line 3 - 5) and a postcondition (line 9 - 11).

– Then, the execution semantics of the Pacman SimpleGT program is encoded
as a Boogie implementation (line 13 - 29). Specifically, the rule scheduling is
encoded in a loop (line 15 - 27). During the loop, the execution semantics of
match and apply steps of each rule are performed. If no match is found for
a GT rule, it falls off to match the next rule (line 23). The fall-off-matching
is repeated until the last GT rule jumps out of the loop.

– Finally, we pair the Boogie contract that represents the specified OCL con-
tracts, with the Boogie implementation that represents the execution seman-
tics of the SimpleGT program. Such a pair forms a verification task, which is
input to the Boogie verifier. The Boogie verifier either gives a confirmation
that indicates the SimpleGT program satisfies the specified OCL contracts,
or trace information that indicates where the OCL contract violation is de-
tected.

4 Evaluation
We evaluate VeriGT on the Pacman game, previously presented by [15]. Our

evaluation runs on an Intel 2.93 GHz machine with 4 GB of memory running
on Windows OS. Verification times are recorded in seconds. Table. 1 shows the
performance of our transformation correctness verification. The second column
shows the size of the Boogie code generated to verify each of the transformation
contracts that are specified in Fig. 3 (including Boogie encoding for the Pacman
metamodel, transformation contract and execution semantics of Pacman game
in SimpleGT). Corresponding verification times are shown in the third column.

The first contract (gemReachable) we verified is that all grid nodes contain-
ing a gem must be reachable by the Pacman. The key to this task is to define
the reachable relation on grids. We define two grids to be reachable if they are
adjacent to each other. The reachable relation is also reflexive, symmetric and
transitive. Recall that to ensure no grid is isolated on the game board, we re-
quire that any two grids are reachable (including all the grids that contain the
gem, and Pacman) as a precondition of the Pacman game. Since there are no
rules that modify the layout of the grid, the first contract can be automatically
verified with ease.



1 procedure main ( ) ;
2 /* inv : PacmanSurvive */
3 requires (∀ gs1 : ref • ( gs1∈ f i nd ( srcHeap , pacman$GameState ) ∧

read ( srcHeap , gs1 , pacman$GameState .STATE)=STATE. GhostMove ) =⇒
4 (∀ gr id1 : ref • gr id1∈ f i nd ( srcHeap , pacman$Grid ) ∧

dtype ( read ( srcHeap , gr id1 , pacman$Grid . hasEnemy))< : pacman$Ghost =⇒
5 ¬( dtype ( read ( srcHeap , gr id1 , pacman$Grid . hasPlayer ))< : pacman$Pacman) ) ) ;
6 . . .
7 modifies srcHeap ;
8 /* inv : PacmanSurvive */
9 ensures (∀ gs1 : ref • ( gs1∈ f i nd ( srcHeap , pacman$GameState ) ∧

read ( srcHeap , gs1 , pacman$GameState .STATE)=STATE. GhostMove ) =⇒
10 (∀ gr id1 : ref • gr id1∈ f i nd ( srcHeap , pacman$Grid ) ∧

dtype ( read ( srcHeap , gr id1 , pacman$Grid . hasEnemy))< : pacman$Ghost =⇒
11 ¬( dtype ( read ( srcHeap , gr id1 , pacman$Grid . hasPlayer ))< : pacman$Pacman) ) ) ;
12 . . .
13 implementation main ( ) {
14 . . . // var i ab l e dec lara t ions
15 while ( true ) . . . {
16 Label PlayerMoveLeft :
17 Label Match PlayerMoveLeft :
18 ca l l p:=match PlayerMoveLeft ( ) ;
19 Label Apply PlayerMoveLeft :
20 i f (p 6= {}){
21 ca l l apply PlayerMoveLeft (p ) ;
22 goto Labe l r e s ta r t ;}
23 else { goto Label PlayerMoverRight ; }
24 Label PlayerMoverRight :
25 . . .
26 Labe l r e s ta r t :
27 }
28 Label exit point :
29 }
30

31 procedure match PlayerMoveLeft ( ) returns (p: Seq ref ) ;
32 . . . // Boogie contract for the execut ion semantics of match s tep .
33 procedure apply PlayerMoveLeft (p: Seq ref ) ;
34 . . . // Boogie contract for the execut ion semantics of apply s tep .

Fig. 4: Boogie encoding to verify the correctness of the Pacman transformation

The second contract (PacmanSurvive) we verified is that there exists a path
where the ghost never kills Pacman. Our verification strategy is to provide a path
that witnesses the existence of such a path. First, we consider the state when
the ghost starts to move. Then, under such a state, our goal is to verify that the
ghost and Pacman do not share the same grid. Thus, the path where the ghost
stays at the Pacman-free grid is our witness (recall that the move strategy of
Pacman is not to commit suicide as shown in Fig. 2).

The third contract (PacmanMoved) we verified is that Pacman must move
within a time interval I. We use a contract-only variable (also known as a model
field or a ghost variable [12]) for this task. Contract-only variables do not partic-
ipate in the runtime execution of a program, they are simply used to make the
contract easier to express. In particular, we introduce the contract-only variable
acts, which is a set of actions of Pacman that move toward any direction. We
need to explicitly update the contract-only variable acts when the action of Pac-
man is updated (e.g. delete an action as in the PlayerMoveLeft rule in Fig. 2),
since it is not part of the runtime execution of a SimpleGT program. After that,
we can automatically verify the third contract. This is due to the fact that if



Boogie (LoC) Veri. Time (s)

gemReachable 598 0.998
PacmanSurvive 587 1.747
PacmanMoved 579 0.109

Total 1764 2.854

Table 1: Performance measures for verifying transformation correctness of Pacman

we assume that all the actions in acts will perform within a time interval I as
a precondition of the Pacman game, then after we remove an action from acts,
the remaining actions should not be changed and they will still be performed
within a time interval I.

We also use our EMFTVM library in the VeriMTLr framework to encode
the runtime behaviour of SimpleGT in Boogie. Consequently, we can verify that
our encoding of the execution semantics of SimpleGT soundly represents its
corresponding runtime behaviour using the translation validation approach. Due
to space limitations, we are unable to explain the details of our verification for the
sound encoding of the execution semantics of SimpleGT. We refer to our previous
work for how to do this [9]. The generated Boogie programs for the Pacman
game (including the soundness encoding verification and OCL transformation
contracts verification) can be found in our online repository [8].

5 Related and Future Work

Model transformation verification is an active research area [1]. In this sec-
tion, we will focus on GT verification. Syriani and Vangheluwe propose an
input-driven simulation approach using the Discrete EVent system Specifica-
tion (DEVS) formalism [15]. Bill et al. extend OCL with CTL-based temporal
operators to express properties over the lifetime of a graph [5]. Both of these
approaches are bounded, which means the GT is verified against its contracts
within a given search space (i.e. using finite ranges for the number of models,
associations and attribute values). Bounded approaches are usually automatic,
but no conclusion can be drawn outside the search space. Our approach is based
on automatic theorem proving, which is unbounded to ensure the contracts hold
for the GT over an infinite domain. However, VeriGT is based on FOL, and
thus suffers from the same expressibility issue as any other FOL-based verifier.
Nevertheless, we show that by carefully designing the Pacman metamodel, we
can use FOL to verify temporal constraints without using formalisms such as
DEVS or CTL.

There are also interactive theorem proving approaches for GT verification.
Asztalos et al. use category theory to describe graph rewriting systems [2]. This
approach is implemented in the VMTS verification framework, but it is not tar-
geted to a specific graph rewriting-based model transformation language. Schätz
presents an approach to verify structural contracts of GT [14]. The transfor-
mation rules are given as a textual description based on a relational calculus.
The formalizations of model, metamodel and transformation rules are based on
declarative relations in a Prolog style, and target the Isabelle/HOL theorem
prover. These approaches rely on encoding the execution semantics of the GT



language. In addition to this, we are able to address a different challenge. That
is we also verify that the execution semantics of GT encoded in Boogie faithfully
represents its corresponding runtime behaviour (i.e. GT implementation), which
makes our approach complementary to the existing approaches. Our approach is
inspired by the translation validation approach used in compiler verification [13].
An earlier proposal to adapt translation validation approach in GT verification
was also made by Horváth [11].

Finally, the two most widely used intermediate verification languages are
Boogie, and Why3 [10]. Both languages have mature implementations and frame-
works to parse, type-check, and analyse programs. We concentrate on Boogie in
this paper, but all results can be carried over to Why3, or to other verification
languages with similar functionality.

Our future work will concentrate on automating the compilation from Sim-
pleGT to Boogie, and its integration into Eclipse with a user interface.
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