
ar
X

iv
:c

s/
06

09
09

6v
2

 [
cs

.C
C

]
 2

9
N

ov
 2

00
6

Finite-State Dimension and Lossy Decompressors

David Doty∗ Philippe Moser†

Abstract

This paper examines information-theoretic questions regarding the difficulty of
compressing data versus the difficulty of decompressing data and the role that infor-
mation loss plays in this interaction. Finite-state compression and decompression
are shown to be of equivalent difficulty, even when the decompressors are allowed
to be lossy.

Inspired by Kolmogorov complexity, this paper defines the optimal decompres-

sion ratio achievable on an infinite sequence by finite-state decompressors (that
is, finite-state transducers outputting the sequence in question). It is shown that
the optimal compression ratio achievable on a sequence S by any information loss-

less finite state compressor, known as the finite-state dimension of S, is equal to
the optimal decompression ratio achievable on S by any finite-state decompressor.
This result implies a new decompression characterization of finite-state dimension
in terms of lossy finite-state transducers.

1 Introduction

This paper addresses the fundamental information-theoretic question: is the problem of
compressing data to a short representation of the same difficulty as the problem of decom-
pressing data from a short representation? It is known that for certain cases admitting
sufficient computational resources, both problems are indeed of equivalent difficulty. For
example, consider the case of polynomial-space-bounded Kolmogorov complexity [11].
The shortest program computing a string x in polynomial space can be computed from
x in polynomial space, by reusing space to conduct an exponential time search for short
polynomial space programs for x. However, this result is not known to hold at lower
levels of complexity, such as polynomial-time-bounded Kolmogorov complexity. At the
level of unbounded computation, there is a known incongruity between compression and

∗Department of Computer Science, Iowa State University, Ames, IA 50011 USA. ddoty at iastate dot

edu.
†Dept de Informática e Ingenieŕıa de Sistemas, Centro Politécnico Superior, Zaragoza, Spain. mosersan

at gmail dot com. This work was partially supported by subvenciones para grupos de investigación
Gobierno de Aragón UZ-T27 and subvenciones de fomento de movilidad Gobierno de Aragón MI31/2005.

1

http://arxiv.org/abs/cs/0609096v2

decompression: a string is computable from its shortest program, but the converse does
not hold.

This paper settles the case at a level of computational complexity lower even than
polynomial time: the finite-state level. It was already known [9, 10] that, if attention
is restricted to information lossless (IL) finite-state transducers [9], compression and
decompression are of equivalent difficulty. Our main result shows that we need not restrict
attention to IL transducers to obtain this equivalence. Inspired by Kolmogorov complexity
[11], we define the optimal decompression ratio achievable on an infinite sequence by
(possibly lossy) finite-state transducers acting as decompressors. Our result implies that
this quantity is equal to the optimal compression ratio achievable on the sequence with
IL finite-state compressors.

More precisely, given an infinite sequence S, Ziv and Lempel [20] defined the finite-
state strong dimension of S (called the finite-state compressibility of S in [20]) to be

DimFS(S) = lim
k→∞

lim sup
n→∞

Ck
ILFS-LZ(S ↾ n)

n
, (1.1)

where Ck
ILFS-LZ(S ↾ n) is the length of smallest string output by any information lossless

finite-state transducer (ILFST) with at most k states, when given S ↾ n as input. An
analogous quantity, the finite-state dimension dimFS(S) of S [3, 1], is defined similarly,
by replacing the limit superior in (1.1) with a limit inferior. Finite-state dimension and
strong dimension are so called because they have been shown [3, 1] to be finite-state
effectivizations, respectively, of classical Hausdorff dimension [5] and packing dimension
[18, 17], the two most widely-used fractal dimensions. Each admits a host of different
characterizations, in terms of finite-state gamblers [3, 1], entropy rates [20, 2], information
lossless finite-state compressors [20, 3, 1], and finite-state log-loss predictors [7]. This
indicates that finite-state dimension is a robust and stable quantity that truly measures the
information density of a sequence as perceived by finite-state machines, to a certain extent
independent of the details of the particular finite-state machine model under consideration.

An ILFST is a finite-state transducer (FST) that must create an output from which the
input can be uniquely recovered, whereas a general FST has no such restriction. An ILFST
T therefore cannot output small strings on most inputs, which limits which strings T can
significantly compress. By contrast, the quantity Ck

FS(x), defined similarly to Ck
ILFS-LZ(x),

but without the IL requirement, is trivially equal to 0 for all strings x, because a 1-state
FST that always outputs the empty string compresses every string to length 0. This FST
“cheats” by throwing away information contained in its input. Requiring the FST to be
IL prevents this cheating and limits the compression performance of the FST. From this
perspective, we consider the following two questions.

1. Does the characterization of finite-state dimension still hold if we consider decom-
pressors instead of compressors? That is, suppose the FST, rather than aiming
to compress the given sequence to a more compact sequence, is instead aiming to
expand a compact sequence into the given sequence.

2

2. If the answer to question 1 is yes, is it mandatory that the decompressor be IL
in order to characterize finite-state dimension? In other words, would allowing a
decompressor to be an arbitrary FST afford it more power to decompress than if it
were IL, as in the case of compression?

An affirmative answer to question 1 follows in a straightforward manner from the well-
known result [9, 10] that every ILFST computes a function whose inverse is computable by
another ILFST (in a technical sense described in Theorem 3.3). The answer to question
2 is less obvious. There are clearly functions that are computable by a FST but not
computable by any ILFST (for example, any constant function). Informally, question 2
asks, can a FST acting as a decompressor improve its performance – i.e. output a larger
string than otherwise possible – by throwing away information?

The main result of this paper answers question 2 negatively. We show that given a
lossy FST T , there is an ILFST T ′ with the property that, for all strings x, the shortest
input to T ′ that outputs x is no larger than the shortest input to T that outputs x.
Therefore, while T ′ cannot do everything that T can do, it can decompress as effectively
as T . The intuitive reason this is possible is that, although T is lossy, optimally compressed
input to T follows an “information lossless path” through T . We construct T ′ to preserve
such IL paths, while amending only the “lossy paths” through T in order to make it IL.

This result implies that the finite-state dimension of a sequence can be characterized
in terms of the optimal decompression ratio achieved on the sequence by any finite-state
decompressor. More precisely, define Dk

FS(x) to be the length of the smallest string that
produces x as output, when given as input to some FST that requires at most k bits to
describe in a standard binary representation of FST’s.1 We show that the finite-state
strong dimension of a sequence S can be characterized by replacing Ck

ILFS-LZ with Dk
FS in

(1.1) (and analogously for finite-state dimension).
One interpretation of Dk

FS is as a finite-state adaptation of Kolmogorov complexity,
with Kolmogorov complexity considered to measure “optimal decompression” at the level
of unbounded computation. From this perspective, our finite-state dimension character-
ization mirrors previously known characterizations of other effective dimensions, such as
constructive dimension [13, 14], computable dimension, and various space-bounded di-
mensions such as polynomial-space dimension [12, 6], in terms of Kolmogorov complexity
or space-bounded Kolmogorov complexity [11]. It remains an open question whether
polynomial-time dimension [12] can be characterized in terms of polynomial-time Kol-
mogorov complexity (see [8] for a summary of recent progress on this question).

After writing this paper, the authors became aware of a very similar result proven by
Lempel, Sheinwald, and Ziv [16]. Therefore, our proof of Theorem 3.11 may be considered
a new proof of Corollary 2.3 of [16].

1Unlike in the quantity Ck

ILFS-LZ
used by Ziv and Lempel, the k in Dk

FS
does not represent the number

of states of the FST, but rather its total description length. This discrepancy is explained in §2.

3

2 Preliminaries

2.1 Notation

Throughout this paper, Σ is a finite alphabet. N is the set of all nonnegative integers. All
strings are elements of Σ∗, and all sequences are elements of Σ∞. For all x ∈ Σ∗, we write
|x| to denote the length of x. For all k ∈ N, Σk, Σ≤k, and Σ<k are the set of strings of
length exactly k, at most k, and less than k, respectively. λ denotes the empty string. If
x is a string or sequence and i, j are integers, x[i . . j] denotes the string consisting of the
ith through jth symbols in x, with x[i . . j] = λ if j < i, noting that x[0] is the leftmost
symbol in x, and we write x ↾ n to denote x[0 . . n−1]. If w is a string and x is a string or
sequence, we say w is a prefix of x, and we write w ⊑ x, if x = wu for some u ∈ Σ∗, and
we write w ⊏ x if w ⊑ x and w 6= x. We say w is a suffix of x if x = uw for some u ∈ Σ∗,
and we say w is a proper suffix of x if w is a suffix of x and w 6= x. For a set X ⊆ Σ∗, we
say X is suffix-free if, for all x, y ∈ X, x is not a proper suffix of y.

2.2 Finite-State Compression

In this section, we develop a notion of finite-state compression and decompression that
serves to measure the optimal amount by which strings and sequences can be compressed
and decompressed by finite-state transducers. We base our model of finite-state trans-
ducers on that studied in [3], which was introduced in a similar form by Shannon [15]
and investigated by Huffman [9] and Ziv and Lempel [19]. Kohavi [10] gives an extensive
treatment of the subject.

A finite-state transducer (FST) is a 4-tuple

T = (Q, δ, ν, q0),

where

• Q is a nonempty, finite set of states,

• δ : Q × Σ → Q is the transition function,

• ν : Q × Σ → Σ∗ is the output function,

• q0 ∈ Q is the initial state.

Furthermore, we assume that every state in Q is reachable from q0. Given q1, q2 ∈ Q

and a ∈ Σ such that δ(q1, a) = q2, we refer to the triple (q1, a, q2) as a transition arrow
in the directed graph representing the FST, in order to emphasize where the arrow starts
and ends, and what input symbol causes the FST to follow it. By this interpretation,
if a 6= a′ but q2 = δ(q1, a) = δ(q1, a

′), then (q1, a, q2) and (q1, a
′, q2) constitute different

transition arrows, even though they start and end at the same states.

4

For all x ∈ Σ∗ and a ∈ Σ, define the extended transition function δ̂ : Σ∗ → Q by the
recursion

δ̂(λ) = q0,

δ̂(xa) = δ(δ̂(x), a).

For x ∈ Σ∗, we define the output of T on x to be the string T (x) defined by the recursion

T (λ) = λ,

T (xa) = T (x)ν(δ̂(x), a)

for all x ∈ Σ∗ and a ∈ Σ. Given any FST T , we say π ∈ Σ∗ is a minimal program for T if,
for all π′ ∈ Σ<|π|, T (π) 6= T (π′); i.e., π is a shortest input to T that produces the output
T (π).

A FST can trivially act as an “optimal compressor” by outputting λ on every transition
arrow, but this is, of course, a useless compressor, because the input cannot be recovered.
A FST T = (Q, δ, ν, q0) is information lossless (IL) if the function x 7→ (T (x), δ̂(x)) is
one-to-one; i.e., if the output and final state of T on input x uniquely identify x. An
information lossless finite-state transducer (ILFST) is a FST that is IL. We write FST to
denote the set of all finite-state transducers, and we write ILFST to denote the set of all
information lossless finite-state transducers.

Let S ∈ Σ∞. The finite-state dimension [3] and the finite-state strong dimension [1]
of S are respectively defined

dimFS(S) = inf
T∈ILFST

lim inf
n→∞

|T (S ↾ n)|

n
,

and

DimFS(S) = inf
T∈ILFST

lim sup
n→∞

|T (S ↾ n)|

n
.

Intuitively, the finite-state dimension (resp. strong dimension) of a sequence represents
the optimal best-case (resp. worst-case) compression ratio achievable on the sequence
with any information lossless finite-state compressor. (This is a different definition of
finite-state dimension than that given in the Introduction; Lemma 3.1 tells us that they
are in fact equivalent.)

Fix some standard binary representation σT ∈ {0, 1}∗ of each FST T , and define
|T | = |σT |. For all k ∈ N, define

FST≤k = { T ∈ FST | |T | ≤ k } ,

ILFST≤k = { T ∈ ILFST | |T | ≤ k } ,

ILFST≤k-state = { T = (Q, δ, ν, q0) ∈ ILFST | |Q| ≤ k } .

Note that, for all k ∈ N, ILFST≤k ⊆ ILFST≤k-state and ILFST≤k ⊆ FST≤k.

5

We next define quantities that may be considered parameterized finite-state analogs of
Kolmogorov complexity. For all k ∈ N and x ∈ Σ∗, define the k-finite-state decompression
complexity of x by

Dk
FS(x) = min

π∈Σ∗

{
|π|

∣∣ (∃T ∈ FST≤k) T (π) = x
}

,

the k-IL-finite-state decompression complexity of x by

Dk
ILFS(x) = min

π∈Σ∗

{
|π|

∣∣ (∃T ∈ ILFST≤k) T (π) = x
}

,

the k-IL-finite-state compression complexity of x by

Ck
ILFS(x) = min

π∈Σ∗

{
|π|

∣∣ (∃T ∈ ILFST≤k) T (x) = π
}

,

and the k-IL-finite-state Lempel-Ziv compression complexity [20] of x by

Ck
ILFS-LZ(x) = min

π∈Σ∗

{
|π|

∣∣ (∃T ∈ ILFST≤k-state) T (x) = π
}

.

3 Information Loss and Finite-State Decompression

The following lemma is due to Athreya, Hitchcock, Lutz, and Mayordomo [1].

Lemma 3.1. For all S ∈ Σ∞,

lim
k→∞

lim inf
n→∞

Ck
ILFS-LZ(S ↾ n)

n
= inf

T∈ILFST
lim inf
n→∞

|T (S ↾ n)|

n
(= dimFS(S)),

and

lim
k→∞

lim sup
n→∞

Ck
ILFS-LZ(S ↾ n)

n
= inf

T∈ILFST
lim sup

n→∞

|T (S ↾ n)|

n
(= DimFS(S)).

For all k ∈ N and all T ∈ ILFST≤k, Ck
ILFS-LZ(S ↾ n) ≤ Ck

ILFS(S ↾ n) ≤ |T (S ↾ n)|. By
Lemma 3.1, we arrive at the following characterization of finite-state dimension.

Observation 3.2. For all S ∈ Σ∞,

dimFS(S) = lim
k→∞

lim inf
n→∞

Ck
ILFS(S ↾ n)

n
,

and

DimFS(S) = lim
k→∞

lim sup
n→∞

Ck
ILFS(S ↾ n)

n
.

6

We choose this characterization of finite-state dimension to investigate the relationship
between compression and decompression because, in contrast to Ck

ILFS-LZ, the decompres-
sion complexity measures Dk

FS and Dk
ILFS would become trivial if the transducers in FST≤k

and ILFST≤k were limited only to those FST’s with at most k states: for each x ∈ Σ∗, a
1-state FST with x on a transition arrow would suffice to produce x from a single input
symbol. Therefore, we limit the total description length of the transducer when consider-
ing FST≤k and ILFST≤k, in order to account for both the number of states and the size
of the output strings.

The following well-known theorem [9, 10] states that the function from Σ∗ to Σ∗

computed by an ILFST can be inverted – in an approximate sense – by another ILFST.

Theorem 3.3. For any ILFST T , there exists an ILFST T−1 and a constant c ∈ N such
that, for all x ∈ Σ∗, x ↾ (|x| − c) ⊑ T−1(T (x)) ⊑ x.

The following lemma shows that, due to Theorem 3.3, finite-state dimension can be
characterized in terms of optimal decompression by ILFST’s.

Lemma 3.4. For all S ∈ Σ∞,

dimFS(S) = lim
k→∞

lim inf
n→∞

Dk
ILFS(S ↾ n)

n
,

and

DimFS(S) = lim
k→∞

lim sup
n→∞

Dk
ILFS(S ↾ n)

n
.

Proof. We prove the result for dimFS. The proof for DimFS is analogous.

To show dimFS(S) ≥ lim
k→∞

lim inf
n→∞

Dk

ILFS
(S↾n)

n
, let d > d′ > dimFS(S), and let ǫ = 1− d′

d
>

0. By our choice of d′, there exists k ∈ N and C ∈ ILFST≤k such that for infinitely
many n ∈ N, |C(S ↾ n)| < d′n. Let D = C−1 and c ∈ N be given by Theorem 3.3.
Thus D ∈ ILFST≤k′

for some k′, and for every n ∈ N , D(C(S ↾ n)) = S ↾ mn where
n − c ≤ mn ≤ n. If pn = C(S ↾ n), then for infinitely many n ∈ N , D(pn) = S ↾ mn

where
|pn|

mn

≤
|pn|

n − c
≤

|pn|

n − ǫn
≤

|pn|

n(1 − ǫ)
<

d′

1 − ǫ
= d,

whence dimFS(S) ≥ lim
k→∞

lim inf
n→∞

Dk

ILFS
(S↾n)

n
.

To show dimFS(S) ≤ lim
k→∞

lim inf
n→∞

Dk

ILFS
(S↾n)

n
, let d > lim

k→∞
lim inf
n→∞

Dk

ILFS
(S↾n)

n
. By choice of

d, there exists k ∈ N and D ∈ ILFST≤k such that for any n ∈ N, there exists pn ∈ Σ∗

such that D(pn) = S ↾ n and |pn| < dn. Let C = D−1 and c ∈ N be given by Theorem
3.3. Thus C ∈ ILFST≤k′

for some k′, and for every n ∈ N , C(D(pn)) = p′n where p′n ⊑ pn.
Hence for infinitely many n ∈ N,

|C(S ↾ n)|

n
=

|C(D(pn))|

n
=

|p′n|

n
≤

|pn|

n
< d,

7

whence dimFS(S) ≤ lim
k→∞

lim inf
n→∞

Dk

ILFS
(S↾n)

n
.

Let T = (Q, δ, ν, q0) be a FST. Define a path in T to be a finite sequence p =
(p0, a0, p1, a1, . . . , pn−1, an−1, pn), where pi ∈ Q and ai ∈ Σ, satisfying, for all 0 ≤ i ≤ n−1,
δ(pi, ai) = pi+1. Let |p| = n denote the length of p, the number of transition arrows it
follows. For 0 ≤ i ≤ n, define

p ↾ i = (p0, a0, p1, a1, . . . , pi−1, ai−1, pi),

with p ↾ 0 = (p0). Let

ν(p) = ν(p0, a0)ν(p1, a1) . . . ν(pn−1, an−1)

denote the output of the path p, with ν(p) = λ if |p| = 0 (i.e., if p = (p0) for some p0 ∈ Q).
Define a path c = (p0, . . . , pn) to be a cycle in T if |c| > 0 and p0 = pn. Given a cycle c,
we say that c is a λ-cycle if ν(c) = λ.

Let T = (Q, δ, ν, q0) be a FST, and let s, f ∈ Q. If two unequal paths p = (s, . . . , f)
and q = (s, . . . , f) from s to f satisfy ν(p) = ν(q), we call the pair (p, q) a bad pair (for
(s, f)). The following property of FST’s is well-known [9, 10].

Lemma 3.5. A FST is IL if and only if it contains no bad pairs.

Given a path
p = (p1, a1, . . . , pn−1, an−1, pn),

define a (proper) 1-step subpath

p′ = (p′1, a
′
1, . . . , p

′
m−1, a

′
m−1, p

′
m)

of p, written p′ ≺1 p, to be a path satisfying m < n and one of the following conditions:

1. p′ is a proper prefix of p: for all 1 ≤ i ≤ m, p′i = pi, and a′
i = ai when i < m.

2. p′ is a proper suffix of p: for all 1 ≤ i ≤ m, p′i = pi+n−m, and a′
i = ai+n−m when

i < m.

3. p′ is a cycle-reduced subpath of p. This means that there exists a cycle c in p such
that removing c from p results in p′. For example, if p has a cycle as follows:

p = (p1, a1, . . . , pi, ai, . . . , pj, aj , pi︸ ︷︷ ︸
cycle

, bi, . . . , pn),

then by removing this cycle, p gives rise to the 1-step subpath

p′ = (p1, a1, . . . , pi, bi, . . . , pn).

8

(a) FST with a non-simple bad pair due to
cycles

(b) FST with a non-simple bad pair due to overlapping pre-
fixes

(c) FST with a non-simple bad pair due to overlapping pre-
fixes

(d) FST with only a simple bad pair

Figure 3.1: Examples of three non-simple bad pairs and a simple bad pair. Figure
3.1(a) shows an FST in which the only simple bad pair for (s, f) is the pair of paths
p = (s, 0, p1, 0, f) and q = (s, 1, q1, 0, f). Other bad sets may be constructed from p and q

by adding cycles (e.g. p′ = (s, 0, p1, 1, p1, 1, p1, 0, f) and q′ = (s, 1, q1, 1, q1, 1, q1, 0, f)), but
since these can be changed into the bad pair (p, q) by removing the cycles, they are not
simple bad pairs. In Figure 3.1(b), there is no simple bad pair for (s, f), although there
is a bad pair consisting of the paths p = (s, 0, s′, 0, p1, 0, f) and q = (s, 0, s′, 1, q1, 0, f),
which, by removing the prefix (s, 0) from p and q, forms a simple bad pair for (s′, f).
Similarly, in Figure 3.1(c), there is a bad pair, but no simple bad pair, for (s, f), although
there is a simple bad pair for (s, f ′). Finally, in Figure 3.1(d), the only bad pair for (s, f),
which is the pair of paths p = (s, 0, p1, 0, f) and q = (s, 1, q1, 0, f), is also simple.

9

Let � = ≺∗
1 denote the reflexive, transitive closure of ≺1. We say p′ is a subpath of

p if p′ � p. We say p is a proper subpath of q if p � q and p 6= q. Let s, f ∈ Q, and let
(p, q) be a bad pair for (s, f). We say (p, q) is a simple bad pair for (s, f) (a.k.a., (p, q) is
simple) if, for all p′ � p and q′ � q, (p′, q′) is a bad pair if and only if (p′, q′) = (p, q).

Note that, if a λ-cycle is removed from a path, then the subpath’s output is the same
as that of the path, leading to the following observation.

Observation 3.6. If (p, q) is a simple bad pair, then neither p nor q contains a λ-cycle.

Intuitively, the paths of a simple bad pair cannot be shrunken through removal of
prefixes, suffixes, or cycles, while remaining a bad pair. See Figure 3.1 for an example of
three types of bad pairs that are not simple, and one bad pair that is simple. A simple
bad pair (p, q) is “canonical” in the sense that the bad pairs formed by its superpaths are
bad only because (p, q) is bad, and if (p, q) could be “fixed” somehow, then the bad pairs
formed by the superpaths of p and q would be fixed as well. This intuition is reinforced
by the following lemma.

Lemma 3.7. A FST is IL if and only if it contains no simple bad pairs.

Proof. Let T be a FST. By Lemma 3.5, T is IL if and only if it contains no bad pairs.
Since every simple bad pair is a bad pair, it suffices to show that, if T is not IL, then it
contains a simple bad pair.

Assume that T is not IL. Then by Lemma 3.5, T contains a bad pair (p, q). If (p, q)
is simple, then the proof is complete. Otherwise, (p, q) is a non-simple bad pair, which
means that there exist subpaths p′ � p and q′ � q, at least one of them proper, such that
(p′, q′) is a bad pair. Note that |p′| + |q′| < |p| + |q|, since at least one of p′ or q′ is a
proper subpath. Therefore, if (p′, q′) is not a simple bad pair, we can repeat this process
to produce another bad pair (p′′, q′′) with |p′′|+ |q′′| < |p′|+ |q′|. However, this sum must
be positive for any bad pair. Therefore, the process must eventually terminate with a
simple bad pair.

Lemma 3.8. Let T = (Q, δ, ν, q0) be a FST, let f ∈ Q, and let

X = { ν(f ′, a) | f ′ ∈ Q, a ∈ Σ, δ(f ′, a) = f }

be the set of output strings on transition arrows entering f . If X is suffix-free and the
total number of transition arrows entering f is |X| (i.e., if every such transition arrow
has a unique output string), then f is not the final state of any simple bad pair.

Proof. Let T , f , and X be as in the statement of the lemma. Then by the definition of
a simple bad pair, for any simple bad pair (p, q) ending in f , the final transition arrows
(f ′

p, ap, f) and (f ′
q, aq, f) must be different. Otherwise, p and q could have their last

transition removed and remain a bad pair, and (p, q) would not be simple. But since X

is suffix-free, ν(p) 6= ν(q), so (p, q) cannot be a simple bad pair.

Lemma 3.9. Every FST has a finite number of simple bad pairs.

10

Proof. Let T = (Q, δ, ν, q0) be a FST. Let l = maxs∈Q,a∈Σ{|ν(s, a)|} be the length of the
longest output string on any transition arrow in T . Then for any path p in T , |ν(p)| ≤ l|p|.
Note that, if p contains no λ-cycles, then |p| ≤ |Q||ν(p)|. By Observation 3.6, if (p, q) is
a simple bad pair, then neither p nor q contains a λ-cycle. Thus, for any simple bad pair
(p, q), since ν(p) = ν(q), |p| ≤ |Q||ν(p)| = |Q||ν(q)| ≤ |q||Q|l and likewise, |q| ≤ |p||Q|l.
Therefore, for any N ∈ N, there are only a finite number of simple bad pairs (p, q) for
which |p| ≤ N or |q| ≤ N . We will complete the proof by showing that any bad pair (p, q)
such that |p|, |q| > l|Q|3|Σ|l cannot be simple.

Let (p, q) be a bad pair such that |p| > l|Q|3|Σ|l and |q| > l|Q|3|Σ|l. If p ↾ 1 = q ↾ 1,
then (p, q) is not simple, so assume that p ↾ 1 6= q ↾ 1. We proceed through the paths
p and q in stages in an attempt to “approximately synchronize” their outputs. For each
stage n ∈ N, define the positions in, jn ∈ N (with i0 < i1 < . . . and j0 < j1 < . . .)
recursively as follows. i0 = j0 = 0. For all n ∈ N, let in+1 be the smallest integer such
that ν (q ↾ jn) ⊏ ν (p ↾ in+1), and let jn+1 be the smallest integer such that ν (p ↾ in+1) ⊑
ν (q ↾ jn+1). in and jn ensure that the output of path q at stage n is at least as long as
the output of path p at stage n, but no longer than is necessary to ensure that this holds,
and the output of path p at the stage n + 1 is just long enough to extend the output of
path q at stage n.

For all stages n ≥ 0, 0 < |ν(p ↾ in+1)|−|ν(p ↾ in)| ≤ l, 0 < |ν(q ↾ jn+1)|−|ν(q ↾ jn)| ≤ l,
and 0 ≤ |ν(q ↾ jn)| − |ν(p ↾ in)| < l. In other words, the length of the output between
successive stages in either path grows by at most l, and, in any stage, the amount by
which the length of q’s output exceeds the length of p’s output at that stage is less than
l. These bounds follow from the definition of in and jn.

For all n ≥ 0, let pn be the final state of p ↾ in, let qn be the final state of q ↾ jn, and
let un ∈ Σ<l be the string such that ν(q ↾ jn) = ν(p ↾ in)un, the “extra extension” of the
output of path q at stage n. Note that each triple of the form (pn, qn, un) is an element
of the finite set Q × Q × Σ<l, of cardinality less than |Q|2|Σ|l. As noted earlier, since
there are no λ-cycles in p or q, the length of any path is at most |Q| times the length
of its output. Because |p|, |q| > l|Q|3|Σ|l, it follows that |ν(p)|, |ν(q)| > l|Q|2|Σ|l. Since
the length of either output increases by at most l with each stage, there are more than
|Q|2|Σ|l stages. By the pigeonhole principle, at least one triple (pi, qi, ui) ∈ Q × Q × Σ<l

must appear twice in the stage-by-stage enumeration (p0, q0, u0), (p1, q1, u1),
Let 0 < i < j represent two different stages such that (pi, qi, ui) = (pj, qj, uj). Then

cp = (pi, . . . , pj) and cq = (qi, . . . , qj) each represent a cycle in p and q, respectively, of the
same output length. While these cycles do not have the same output, ν(cp) is a “shifted”
version of ν(cq): ν(cp)ui = uiν(cq). Therefore, removing cp from p and cq from q will
create two different subpaths p′ � p and q′ � q such that ν(p′) = ν(q′). Since i > 0,
p′ ↾ 1 = p ↾ 1 6= q ↾ 1 = q′ ↾ 1, therefore p′ 6= q′. Because ν(p′) = ν(q′), (p′, q′) is a bad
pair, whence (p, q) is not simple.

The following theorem is the main theorem of this paper. It establishes that, unlike
the trivial case of compression, up to a constant change in the size of the FST’s, lossy
FST’s cannot achieve better decompression than ILFST’s.

11

(a) T before the procedure

(b) T after the procedure

Figure 3.2: Part of a lossy FST T before and after the procedure to eliminate one simple

bad pair. Transition arrows are labeled incompletely for readability, and most output strings are

not shown; the full formal description of the transformation is given in the text. Figure 3.2(a)

illustrates that there exist two different paths from some vertex s to some vertex f that produce

the same output. Here, m ≥ n. States pp1 and ppp1 are other successor states of p1 (besides

p2), and likewise with the states pp2, ppp2, etc. Figure 3.2(b) shows that, to prevent both paths

from reaching f with the same output, the upper path is “cloned” by creating clones of the

states (indicated with a prime) comprising the upper path, and sending T along this new path

instead, if the symbol a is read. The new states are shown surrounded by dashed lines. The new

path completely duplicates the behavior of the old path (because each cloned state also clones

the outgoing transition arrows, including the output strings), unless the second-to-last state of

the path, p′m, is reached. In this case, instead of going to state f , T goes to state p′end (and

outputs a string x′ possibly different from x), all of whose transition arrows self-loop. Since the

set X = { xα | α ∈ Σ } ∪ {x′} of in transition arrows to p′end is suffix-free, p′end cannot be the

end state of a simple bad pair. Intuitively, the states p′1, . . . , p
′
m behave exactly like p1, . . . , pm,

but they remember that they were reached via s, and they prevent T from entering state f at

the end of the path and thereby losing information.

12

Theorem 3.10. For all k ∈ N, there exists k′ ∈ N such that, for all x ∈ Σ∗,

Dk′

ILFS(x) ≤ Dk
FS(x).

Proof. Let k ∈ N, and let T = (Q, δ, ν, q0) ∈ FST≤k be a lossy FST. We construct an
ILFST T ′ such that, for every minimal program π ∈ Σ∗ for T , there is a program π′ ∈ Σ|π|

such that T (π) = T ′(π′). In other words, for all x ∈ Σ∗, the shortest program for T ′ that
outputs x is no larger than the shortest program for T that outputs x. Since |FST≤k| is
finite, this establishes the theorem with k′ = maxT∈FST≤k |T ′|.

We proceed as follows. By Lemma 3.7, if T is not IL, then it has one or more simple
bad pairs. By Lemma 3.9, it has a finite number of these. The construction of T ′ from
T will simply eliminate these simple bad pairs one by one, while ensuring that, for each
n ∈ N such that there is a minimal program of length n for a string x, at least one program
of length n for x remains. Of course, even though there are a finite number of simple bad
pairs, it may be the case that the procedure to eliminate one simple bad pair introduces
others. At the conclusion of the proof we demonstrate how to account for this.

Let s, f ∈ Q, x ∈ Σ∗, and let (p, q) be a simple bad pair for (s, f) with output x.
Figure 3.2 shows the part of T relevant to the simple bad pair (p, q), and it illustrates the
procedure to eliminate this simple bad pair, which we now describe formally.

Write p = (s, a, p1, a1, p2, a2, . . . , pm, am, f) and q = (s, b, q1, b1, q2, b2, . . . , qn, bn, f).
Since (p, q) is simple, a 6= b and either pm 6= qn or am 6= bn (i.e., p and q have different
first and last transition arrows).

Assume without loss of generality that m ≥ n, i.e., that |p| ≥ |q|. Then, if m > n, no
minimal program will ever (completely) traverse the path p, since any program traversing
p can be converted to a smaller program, producing the same output, by traversing q

instead. If m = n, then it may be the case that a minimal program traverses p. However,
any program that traverses p can be converted into a program of the same length that
traverses q instead. Hence, if there is a minimal program that traverses p, then there
is another minimal program producing the same output that never traverses p. We will
remove p from T in such a way that T ’s output will remain unaltered on any program
that never traverses p.

To remove the bad pair (p, q), we alter T ’s state set and transition and output functions
in the following way. Add the states p′1, p

′
2, . . . , p

′
m, p′end to Q. Note that even if the path p

contains cycles and so has fewer than m unique states, we add exactly m + 1 unique new
states to Q (i.e., we “unroll” any cycles in p). Choose a suffix-free set X ⊆ Σ∗ such that
|X| = |Σ| + 1. Assign to each α ∈ Σ a unique element xα ∈ X, and let x′ ∈ X denote
the remaining element of X not assigned to any α ∈ Σ. Alter the transition and output
functions from δ and ν to δ′ and ν ′, respectively, as follows.

1. Let δ′(s, a) = p′1.

2. For all 1 ≤ i < m, let δ′(p′i, ai) = p′i+1 and ν ′(p′i, ai) = ν(pi, ai).

3. For all 1 ≤ i ≤ m and α ∈ Σ − {ai}, let δ′(p′i, α) = δ(pi, α) and ν ′(p′i, α) = ν(pi, α).

13

4. Let δ′(p′m, am) = p′end and ν ′(p′m, am) = x′.

5. For all α ∈ Σ, let δ′(p′end, α) = p′end and ν ′(p′end, α) = xα.

Let p′ = (s, a, p′1, a1, p
′
2, a2, . . . , p

′
m, am, p′end) denote the new path taken by strings that

would have traversed the path p.
Let T\p denote the FST obtained by altering T in this way. It is clear that T (π) =

T\p(π) for any program π ∈ Σ∗ that, when given as input to T , never causes T to traverse
p. Since every output string x of T has at least one minimal program for T that never
traverses p, this alteration does not increase the complexity of any string relative to T\p.

Recall that there are a finite number of simple bad pairs in T . We now demonstrate
that repeated application of this procedure to T will eventually rid T of all simple bad
pairs, even if new simple bad pairs are introduced by the procedure itself. Consider how
new simple bad pairs may be introduced by the procedure just described. Since the only
existing transition arrow that moved was (s, a, p1) (to (s, a, p′1)), and since this is the only
transition arrow into any state of the path p′ from outside of p′ (see the dashed lines in
Figure 3.2), for any new simple bad pair (r, t), either (1) (r, t) must have one of its paths
traverse this transition arrow, or (2) (r, t) must originate from one of the “cloned” states
p′1, . . . , p

′
m.

(1) Suppose that a new simple bad pair (r, t) has a path (assume it is r) that traverses
the transition arrow (s, a, p′1). Then, either (1a) r continues all the way along the
path p′, (1b) r terminates on p′i for some i, or (1c) r leaves p′ before reaching p′end.

(a) If r continues all the way to p′end, then, because the set of outputs on the transition
arrows into p′end is a suffix-free set, by Lemma 3.8, p′end cannot be the end state
of a simple bad pair, so (r, t) is not a simple bad pair.

(b) If r terminates on p′i for some i, then note that p′i has only one in transition arrow,
and any singleton set is trivially suffix-free. By Lemma 3.8, p′i is not the end state
of a simple bad pair, so (r, t) is not a simple bad pair.

(c) If r leaves p′ before reaching p′end, then, since the path p′ otherwise replicates the
behavior of p, this will result in a new simple bad pair that simply replaces an
old simple bad pair that was destroyed when the transition arrow (s, a, p1) was
removed. Therefore, no paths of net new simple bad pairs traverse the transition
arrow (s, a, p′1).

(2) Suppose that a new simple bad pair (r′, t′), where r′ = (p′i, ar, . . .) and t′ = (p′i, at, . . .),
originates from one of the cloned states p′1, . . . , p

′
m. (1a) and (1b) tell us that no simple

bad pair can end in any state along p′. Thus, (r′, t′) is “equivalent” to an existing
simple bad pair (r, t), where r = (pi, ar . . .) and t = (pi, at . . .), in the sense that their
paths traverse the same states, except for the fact that one of r′ (resp. t′) has an
initial segment that traverses the cloned states p′i, p

′
i+1, . . . instead of pi, pi+1, . . . for a

time before leaving p′ and “rejoining” with r (resp. t). Given two simple bad pairs,

14

place them in the same equivalence class if they were initially the same simple bad
pair, but are now different because their first state was cloned. While (r, t) and (r′, t′)
are not the same simple bad pair, they are in the same equivalence class. When the
simple bad pair (r, t) is fixed by the procedure, the transition arrow (pi, ar, r1) will be
redirected to (pi, ar, r

′′
1), where r′′1 is the first state in a new path r′′ introduced into T

(r′′1 plays the same role as p′1 did in the bad pair (p, q)). To simultaneously fix (r′, t′),
we redirect the transition arrow (p′i, ar, r

′
1) to (p′i, ar, r

′′
i) as well; in other words, if T

is in state p′i and reads ar, send T along the same new path r′′ to which it would be
redirected if it were in state pi. Since r′′ ensures the path r does not lose information,
r′′ will do so for r′ as well. Of course, it is possible for the procedure to make a clone
of a clone, which would admit more than 2 simple bad pairs to the same equivalence
class; this case is handled in the obvious way, where all of the longer paths of each
simple bad pair in the class would be redirected to the same newly created path in
one step.

Since we have altered the procedure to fix all simple bad pairs in an equivalence class in
one step, it is clear that the number of equivalence classes will decrease by one each time
the procedure is applied. Since each equivalence class described in (2) will correspond
to one simple bad pair that was present in the initial FST T , by iteratively applying
this procedure to each equivalence class of simple bad pairs, all simple bad pairs will be
eliminated in a finite number of steps.

Theorem 3.10 implies a new characterization of the finite-state dimension of individual
sequences in terms of decompression by (possibly lossy) finite-state transducers.

Theorem 3.11. For all S ∈ Σ∞,

dimFS(S) = lim
k→∞

lim inf
n→∞

Dk
FS(S ↾ n)

n
,

and

DimFS(S) = lim
k→∞

lim sup
n→∞

Dk
FS(S ↾ n)

n
.

Proof. Since every ILFST is a FST, for all k ∈ N and x ∈ Σ∗, Dk
ILFS(x) ≥ Dk

FS(x). The
theorem follows by Theorem 3.10 and Lemma 3.4.

Finally, we note that an analog of the definition of finite-state dimension given in §2
holds for lossy decompressors as well. Given a sequence R ∈ Σ∞ and a FST T , define
T (R) to be the output of T on R, the shortest element S ∈ Σ∞ ∪ Σ∗ such that, for all
n ∈ N, T (R ↾ n) ⊑ S.

15

Theorem 3.12. For all S ∈ Σ∞,

dimFS(S) = inf
T∈FST,R∈Σ∞

T (R)=S

lim inf
m→∞

m

|T (R ↾ m)|
,

and
DimFS(S) = inf

T∈FST,R∈Σ∞

T (R)=S

lim sup
m→∞

m

|T (R ↾ m)|

Proof. We show the result for dimFS; the proof for DimFS is analogous. By Theorem 3.3,

dimFS(S) , inf
T∈ILFST

lim inf
n→∞

|T (S ↾ n)|

n

= inf
T∈ILFST,R∈Σ∞

T (R)=S

lim inf
m→∞

m

|T (R ↾ m)|

≥ inf
T∈FST,R∈Σ∞

T (R)=S

lim inf
m→∞

m

|T (R ↾ m)|

≥ lim
k→∞

lim inf
n→∞

Dk
FS(S ↾ n)

n
= dimFS(S),

because allowing the FST’s to be lossy, and allowing a different FST of length ≤ k for
each prefix of S, cannot increase the complexity of S.

Acknowledgments. We thank Jack Lutz for pointing out [10] and for advice in preparing
this paper, and Elvira Mayordomo for suggesting the addition of Theorem 3.12. We thank
the organizers of the Second Computability in Europe Conference, where part of this
research was completed, and the Association for Symbolic Logic, which funded part of
the first author’s travel to that meeting.

References

[1] K. B. Athreya, J. M. Hitchcock, J. H. Lutz, and E. Mayordomo. Effective strong
dimension, algorithmic information, and computational complexity. SIAM Journal
on Computing. To appear. Preliminary version appeared in Proceedings of the 21st
International Symposium on Theoretical Aspects of Computer Science, pages 632-643.

[2] C. Bourke, J. M. Hitchcock, and N. V. Vinodchandran. Entropy rates and finite-state
dimension. Theoretical Computer Science, 349:392–406, 2005. To appear.

[3] J. J. Dai, J. I. Lathrop, J. H. Lutz, and E. Mayordomo. Finite-state dimension.
Theoretical Computer Science, 310:1–33, 2004.

16

[4] G. A. Edgar. Classics on Fractals. Westview Press, Oxford, U.K., 2004.

[5] F. Hausdorff. Dimension und äusseres Mass. Mathematische Annalen, 79:157–179,
1919. English version appears in [4], pp. 75-99.

[6] J. M. Hitchcock. Effective fractal dimension: foundations and applications. PhD
thesis, Iowa State University, 2003.

[7] J. M. Hitchcock. Fractal dimension and logarithmic loss unpredictability. Theoretical
Computer Science, 304(1–3):431–441, 2003.

[8] John M. Hitchcock and N. V. Vinodchandran. Dimension, entropy rates, and com-
pression. Journal of Computer and System Sciences, 72(4):760–782, 2006.

[9] D. A. Huffman. Canonical forms for information-lossless finite-state logical machines.
IRE Trans. Circuit Theory CT-6 (Special Supplement), pages 41–59, 1959. Also
available in E.F. Moore (ed.), Sequential Machine: Selected Papers, Addison-Wesley,
1964, pages 866-871.

[10] Z. Kohavi. Switching and Finite Automata Theory (Second Edition). McGraw-Hill,
1978.

[11] M. Li and P. M. B. Vitányi. An Introduction to Kolmogorov Complexity and its
Applications. Springer-Verlag, Berlin, 1997. Second Edition.

[12] J. H. Lutz. Dimension in complexity classes. SIAM Journal on Computing, 32:1236–
1259, 2003.

[13] J. H. Lutz. The dimensions of individual strings and sequences. Information and
Computation, 187:49–79, 2003.

[14] E. Mayordomo. A Kolmogorov complexity characterization of constructive Hausdorff
dimension. Information Processing Letters, 84(1):1–3, 2002.

[15] C. E. Shannon. A mathematical theory of communication. Bell System Technical
Journal, 27:379–423, 623–656, 1948.

[16] D. Sheinwald, A. Lempel, and J. Ziv. On encoding and decoding with two-way head
machines. Information and Computation, 116, 1995.

[17] D. Sullivan. Entropy, Hausdorff measures old and new, and limit sets of geometrically
finite Kleinian groups. Acta Mathematica, 153:259–277, 1984.

[18] C. Tricot. Two definitions of fractional dimension. Mathematical Proceedings of the
Cambridge Philosophical Society, 91:57–74, 1982.

[19] J. Ziv. Coding theorems for individual sequences. IEEE Transactions on Information
Theory, 24:405–412, 1978.

17

[20] J. Ziv and A. Lempel. Compression of individual sequences via variable-rate coding.
IEEE Transaction on Information Theory, 24:530–536, 1978.

18

	Introduction
	Preliminaries
	Notation
	Finite-State Compression

	Information Loss and Finite-State Decompression

