
Software Refinement with Perfect Developer

Gareth Carter
Department of Computer Science,

National University of Ireland, Maynooth
gcarter@cs.nuim.ie

Rosemary Monahan
Department of Computer Science,

National University of Ireland, Maynooth
rosemary.monahan@nuim.ie

Joseph M. Morris
School of Computer Applications,

Dublin City University
Joseph.Morris@computing.dcu.ie

1

Abstract

Perfect Developer is a software tool that supports the
formal development of object-oriented programs by refine-
ment, including formal verification of code. It is built
around a single language that supports both specification
and implementation. We critically examine how Perfect De-
veloper supports programming by refinement, focusing on
three refinement techniques: algorithm refinement, data re-
finement and delta refinement. In particular we examine the
extent to which Perfect Developer provides formal verifica-
tion for these techniques. We assess it as a tool for software
construction and compare it with related tools.

1. Introduction

Perfect Developer [8] is a software tool that supports the
formal development of object-oriented programs by refine-
ment [5]. By refinement is meant a style of development
that leads from a formal specification to a working imple-
mentation in a sequence of correctness-preserving steps.
Among the many tools that support formal programming,
Perfect Developer is interesting because it aims to offer a
unique combination of attributes: object-orientation, full
verification, and support for refinement. In this paper we
critically evaluate the extent to which Perfect Developer
achieves these goals, concentrating on refinement. We fo-
cus on three refinement techniques: algorithm refinement,
data refinement and delta refinement. The first two of these
are well described in the literature [18] [9]; the third will be
explained later.

1preprint of paper to appear in Proc. SEFM 2005, c©IEEE.

To keep the paper self-contained, we will begin with a
brief overview of Perfect Developer and its associated spec-
ification/programming language. At the end, we will com-
pare it with similar software tools, and draw some conclu-
sions. All the specifications and examples used in the paper,
along with other supporting material, are available on an ac-
companying web site; see http://www.cs.nuim.ie/
toolap/pd/.

2. Perfect Developer

Perfect Developer (PD) was designed to be a high-
productivity tool for developing formal specifications and
refining them to code [8]. It is available from Escher Tech-
nologies in three versions, an education, a professional and
a safety-critical version, all running under Windows XP,
Windows 2000, Windows NT4 or Linux.

Our experience of PD is primarily experimental and ed-
ucational, using version 2.10 running under Windows 2000.
Educationally we have used it on degree-level courses in
software engineering at two universities (National Univer-
sity of Ireland Maynooth and Griffith College Dublin). Es-
cher Technologies report an industrial use on a project of
several hundred thousand lines of source code [1].

For our purposes, PD consists of three components: the
Perfect Language (PL), the verifier, and the compiler. PL
is an object-oriented specification/programming language.
More precisely, it is a specification language with an im-
plementable subset identified as its programming language.
The verifier is a custom-built theorem prover that collects
and attempts to discharge proof obligations for the software
it is presented with. The compiler accepts code written in
the programming language and compiles it into equivalent
Java, C++ or Ada95 code. Third party editors and UML
modeling tools can be integrated into PD.



The verifier can be used to test run specifications, even
those that are not programs. The trick here is to accompany
the specification S with an assertion P where P in effect
states that S delivers a certain result for a certain input. If S
and P are together presented to the verifier, the verification
of P in effect is a test run of S. It is not always possible
to play this trick — the verifier will sometimes find it too
much effort — but when it works it is of some value in
testing specifications before committing to code.

In classical refinement theory [5, 19] there are typically
many steps on the path from original specification to final
implementation. Perfect Developer, however, does not sup-
port small refinement steps. In particular, data refinement
of a class must proceed in a single step from an abstract
specification to an executable concrete implementation.

3. Perfect Language

PL encourages a Z-like model-oriented specification
style. Like Z [23], it provides a library of useful collec-
tion and structure types such as sets, bags, sequences, and
maps. Like Java, it supports encapsulation via classes, mes-
sage passing, and inheritance. Methods are specified in the
style of design by contract [17]. We illustrate its main fea-
tures with the following very trivial example.

class A ˆ= // Empty Superclass
interface
// Constructor
build{}

end;

class B ˆ= inherits A
abstract // Specification
// Variables
var x:int;

// Restrictions
invariant 0<=x<10;

internal // Implementation
var y:int;
invariant 0<=y<10;

// Retrieve function
function x
ˆ= y;

interface // Public methods

// Constructor
build{} inherits A{}
post x!=0

via y!=0
end;

// Equality definition
operator =(arg);

// Getter Function
function x;

// Evaluation Function
function q(r:int): bool
ˆ= r<10;

// A Function with DbC specs
function g: int
pre x<9
ˆ= x+1
via value y+1;
end

assert q(result);

// An implemented Predicate Function
function h: int
satisfy result>=x
via value 2*y;
end;

// A schema
schema !k
pre x<9
post x!=g
via y!=g;
end

assert q(x’);
end;

In the example, class B inherits all the features of class A.
Inheritance is introduced by the keyword inherits. The
keyword must be used again in the constructor of class B to
invoke a call to the constructor of class A. Constructors are
introduced by the keyword build.

As illustrated by class B, classes typically have three
main sections: abstract, internal and interface.
The abstract section introduces the abstract (or model)
data by which the specification will be described. The
internal section introduces the concrete data that will
be used by the executable code. It also describes the rela-
tion between the abstract and concrete data by means of a
retrieve function from concrete to abstract values (PL does
not provide the option of a function from abstract to con-
crete values). The interface section defines the meth-
ods of the class.

The abstract data of class B is a single variable x, in-
troduced by the keyword var. The value of x is restricted



to the range 0 to 9, inclusive, as indicated by the boolean
term following the keyword invariant. The boolean
must evaluate to true whenever an object of class B is
constructed, and whenever a method of the class is called
or terminates. The concrete data is in this case (very triv-
ially) another integer variable, y.

There are three kinds of methods: constructors, side-
effect free methods, and state-changing methods. Construc-
tors instantiate objects of the class and initialize the instance
variables. Side-effect free methods are functions that re-
turn a result without changing the global state. The state-
changing commands, also called schemas, change the state
without returning a result. Exclamation marks are used lib-
erally in PL to draw attention to state changes. For example,
they occur in the name of the schema (!k) and in the ref-
erences to x and y in the post clause. All methods may
be specified using design by contract: the keyword pre in-
troduces the pre-condition of the method and the keyword
assert introduces the post-assertion (more traditionally
referred to as the “post-condition”’). The interface of class
B also includes an equality operator; this applies to concrete
data and must be included when refinement occurs.

There are in turn three varieties of functions in PL: get-
ter functions, evaluation functions, and predicate functions.
Getter functions return the value of a class attribute; they
have the same name as the attribute and have no body. Eval-
uation functions are like functions found in functional pro-
gramming languages: the body consists of a term (intro-
duced by ˆ=, read “is-defined-as”) whose evaluation yields
the result. A predicate function defines its result as a value
that satisfies a given boolean term. In the example, the re-
sult of invoking function h is defined to be some number
greater than x (note that the result need not be uniquely
specified). Specifications may include primed versions of
variables; the primed version denotes the value of the vari-
able after the action being specified has completed.

Many methods are not executable, including all pred-
icate functions and all functions specified using abstract
data. Before compilation is possible, functions must be
made executable by writing code in the body (introduced
by the keyword via). Executable code may be expressed
using concrete data only; no reference to abstract data is al-
lowed. Note that specification and implementation are kept
together as a single entity.

Loops in PL have a complex syntax. The general form is
as follows:

loop
var // local loop variables
change // other variables

// changed by loop
keep // loop invariant
until // end condition
decrease // loop variant

// the loop body
end;

We will see a concrete example shortly. Conditionals in
PL come in two forms. The conditional statement “if
condition C1 then statement S1 otherwise S2” is written
as if [C1]:S1 []:S2 fi, while the conditional term
“if condition C1 then term t1 otherwise t2” is written as
[C1]:t1, []:t2. A more complete description of the
language can be found in the Perfect Reference Manual [3].

4. Algorithm Refinement

Algorithm refinement as provided by PD allows either
an entire method or a fragment within it to be refined to an
appropriate implementation. The following sort program
illustrates this.

function sort(ip:seq of int):seq of int
satisfy isPermutation(result, ip),

isSorted(result);

(The comma in the satisfy clause denotes logical con-
junction). The function isPermutation is defined as

function isPermutation(a:seq of int,
b:seq of int):bool

ˆ= a.ranb=b.ranb;

(a.ranb denotes the bag of elements in sequence a).
Function isSorted is defined as

function isSorted(a:seq of int):bool
decrease #a
ˆ=([a.empty]:

true,
[]:
(forall e::a.tail :- a.head >= e)

& isSorted(a.tail)
);

(head and tail have their usual meanings: the head of a
sequence is the first element of the sequence, and the tail is
the sequence with the head omitted. Verification of a recur-
sive function requires the inclusion of a variant term intro-
duced by the keyword decrease. #a denotes the number
of elements in sequence a.) The sort specification may
be refined into an efficient insertion sort implementation,
as follows:

function sort(ip:seq of int):seq of int
satisfy isPermutation(result, ip),

isSorted(result)
via
var op:seq of int!=seq of int{};



loop
change op

keep 0<=#op’<=#ip,
isPermutation(op’,ip.take(#op’)),
isSorted(op’)

until #op’=#ip
decrease #ip-#op’;
op!=addInPlace(op,ip[#op]);

end;
value op;

end;

The helper function addInPlace inserts an element into
a sequence at an indicated position:

function addInPlace(a:seq of int,
b:int):seq of int

pre isSorted(a)
decrease #a
ˆ=([a.empty]:
// Insert item if an empty sequence

a.prepend(b),
[b > a.head]:

// Recurse if not in correct position
addInPlace(a.tail,b)

.prepend(a.head),
[]:

// Insert in the correct position
a.prepend(b)

)
assert isSorted(result),

isPermutation(result,a.prepend(b));

(The function a.prepend(b) prepends item b to se-
quence a.) When we first refined sort, we omitted the
post-assertion in addInPlace (introduced by the key-
word assert). It plays no role in the implementation, and
there is no a priori reason to believe it could play a role in
the verification. However, it had to be included to assist
verification.

PD’s support for algorithm refinement is not total. The
step from specification to implementation is often too great
a jump for the verifier, and the developer has to provide
hints in the form of additional assertions as in the preced-
ing example. Discovering the appropriate hints is a trial-
and-error process that is pretty time-consuming. The effort
required is exacerbated by the fact that it is not possible
to work on selected pieces of the code in relative isolation,
because the verifier treats the specification as a monolithic
entity. On the other hand, PL provides a rich assertion lan-
guage in which to write hints. We found that most of the ex-
amples we explored could eventually be verified, although
we sometimes had to re-work the code in addition to pro-
viding hints.

5. Data Refinement

Data refinement arises when we decide on a change of
data representation, and want to derive the new version of
the specification/program from the old one. The change of
data representation can arise for a variety of reasons, and we
focus on just two, each illustrated with an example. In the
first example, we illustrate the introduction of extra vari-
ables to improve efficiency (attribute introduction). The
second example illustrates the classical case of employing
one kind of data to facilitate the specification process, and
replacing it with a more concrete kind to allow implemen-
tation (type transformation).

5.1 Attribute Introduction

Attribute introduction pertains to the introduction of aux-
iliary data to reduce computational cost, for example by in-
troducing a variable to store the result of an evaluation of a
term that would otherwise be evaluated several times. Con-
sider a class that maintains a collection of numbers, and
provides a method (among others) that returns the sum of
the elements in the collection:

class ListOfNumbers ˆ=
abstract
var list: seq of int;

nonmember function
sum(s:seq of int):int

decrease #s
ˆ= ([s.empty]: 0,

[]: s.head + sum(s.tail)
);

interface
build{}
post list!= seq of int{};

schema !addNumber(n: int)
post list!= list.prepend(n);

function getSum: int
ˆ= sum(list);

end;

(A nonmember function is a static or class function.) Calls
to function getSum have time complexity O(n). We can do
much better by introducing a sumOfList attribute to keep
track of the sum of the elements in the list:

internal
var sumOfList: int;
invariant sumOfList = sum(list);



The methods of the class are refined accordingly:

interface
build{}
post list!= seq of int{}
via
list!= seq of int{};
sumOfList!= 0;
end;

schema !addNumber(n: int)
post list!= list.prepend(n)
via
list!= list.prepend(n);
sumOfList!= n+sumOfList;
end;

function getSum: int
ˆ= sum(list)
via
value sumOfList;
end;

end;

There are many alternatives to the above coding, some of
which we tried and not all of which were successful. For
example, the collection might have been modelled as a bag
rather than a sequence (assuming none of the omitted op-
erations relied on any positioning of numbers in the collec-
tion). The addNumber schema might append elements
to the sequence rather than prepend them. Or the sum
function might be discarded altogether by employing PL’s
built-in mechanism (“+ over”) for summing the elements
of a list. We tried all of these, but the verifier failed in each
case, and we were led to the solution presented above.

Suppose in the above example that there were no meth-
ods other than those explicitly written. In that case the
list attribute is redundant and we might feel that we may
as well remove it. Unfortunately, PD insists that it be re-
tained if the verification is to succeed.

PL has a rich language that would appear to support var-
ious specification styles. For example, it is possible to em-
ploy a more algebraic style of specifying (making corre-
spondingly less use of the model-oriented style). However,
we found that the verifier is at its best when the coding style
is not too distant from the specification style. We did not
manage to codify a universal style preferred by the veri-
fier. Rather, it seemed that each new problem requires some
experimentation to find a good pairing of specification and
implementation. However, one can build up experience in
each problem area. When verification is unsuccessful it is
usually unclear whether the fault lies with the developer or
the theorem prover. As a consequence we abandoned some
refinements whose correctness we were confident of (we

reasoneed very carefully about them) because the verifier
could not deal with them.

5.2. Type Transformation

As an example of type transformation, we define a rather
simple set data type with operations insert and remove,
and implement it using PL’s seq data structure.

class SetSeq ˆ=
abstract
var setofNums: set of int;

internal
var seqOfNums:seq of int;
function setofNums

ˆ= seqOfNums.ran;

(seqOfNums.ran in the retrieve function yields the set of
elements in sequence seqOfNums.) The example is trivial
in that it uses the set type provided by PL, but it never-
theless suffices to illustrate our points. The interface of the
class is specified and implemented as follows:

interface

// Equality definition
operator =(arg);

build{}
post setofNums!=set of int{}
via seqOfNums!=seq of int{}
end;

schema !insert(a:int)
post setofNums!=setofNums.append(a)
via seqOfNums!=seqOfNums.append(a)
end;

schema !remove(a:int)
post setofNums!=setofNums.remove(a)
via
loop
var i:nat!=0;
change seqOfNums

keep i’<=#seqOfNums’,
a ˜in seqOfNums’.take(i’),
seqOfNums’.ran<<=seqOfNums.ran,
seqOfNums.ran=seqOfNums’.ran |
seqOfNums.ran =

seqOfNums’.ran.append(a)
until i’=#seqOfNums’
decrease #seqOfNums’ - i’;



Figure 1. Refinement of S to I

if
[a=seqOfNums[i]]:
seqOfNums!=seqOfNums.remove(i);

[]:
i!=i+1;

fi;
end;
end;

(˜ and | denote logical negation and disjunction,
respectively, and <<= denotes the subset relation.
s.append(a) inserts item a to set s, or adds item a to
the end of a sequence s depending on the type of s.) The
remove schema is complex because it is necessary to re-
move all occurrences of the item being deleted, and that
requires an iteration over the sequence. We also made at-
tempts to maintain an injective (i.e. duplicate-free) version
of seqOfNums but we were let down by the verifier. The
loop invariant (following the keyword keep) is almost a
word-for-word description of set removal. Although for-
mally a weaker predicate suffices to verify the loop, the ver-
ifier needs the version presented. As mentioned earlier, the
relation between abstract and concrete data must be written
as a function from concrete to abstract data; it is not possi-
ble to use a relation, or a function from abstract to concrete
data.

6. Delta Refinement

Sometimes after specifying and refining a component we
may find we have use for an enhanced version. For exam-
ple, in object-oriented programming a component might be
described by a class which we might subsequently enhance
by inheritance (which can entail some combination of ex-
tension, overriding and descendant hiding). It is clearly de-
sirable that we should not have to refine the enhanced speci-
fication from scratch, but rather should be able to derive the
new implementation by an appropriately modest re-working
of the original. We refer to this as delta refinement.

In Figure 1, an initial specification S1 is refined by tech-
nique R1 into an implementation I1. Suppose now that

specification S1 is enhanced by some procedure E1 result-
ing in specification S2. I2 represents a candidate implemen-
tation of S2 obtained by the incremental refinement D1 cor-
responding to the enhancement E1. Let R2 denote the total
refinement represented by R1 plus D1. If R2 does indeed
represent a refinement of S2 into I2 – as we would wish –
then we refer to D1 as a delta refinement. Delta refinement
may be used repeatedly to enhance a component over and
over as Figure 1 indicates.

We present two examples of delta refinement. The first
enhances a specification by inheritance (class extension)
and the second enhances the specification of an algorithm
(specification adaptation).

6.1. Class Extension

Class extension allows specifications to include extra
features through inheritance. For our purposes we require
that descendant classes include all the features of their par-
ents, although this is not always the case in practice due
to descendant hiding [17]. Consider a class that defines a
point in the 2-dimensional integer plane, including a func-
tion distance that calculates the distance between two
points:

class Point ˆ=
abstract
var x:int, y:int;

interface

build{a,b:int}
post x!=a, y!=b;

function x;
function y;

function distance(p:from Point):int
ˆ= (let aˆ=x-p.x;

let bˆ=y-p.y;
let rootValˆ=(aˆ2) + (bˆ2);



that i::0..rootVal :-
(i*i <=rootVal < ((i+1)*(i+1)))

)
via
value ? is int;
end;

end;

(Keyword that introduces a variable that is assigned the
unique element in a collection that satisfies the accom-
panying predicate. PL allows a question mark following
via to indicate that code is omitted; we are omitting the
code here because it contributes nothing to the example.)
Note that parameter p of function distance has type
from Point; this indicates that p may be bound to any
object of class Point or a descendant of Point. The func-
tion distance employs an integer approximation to the
square root of an integer. Let us suppose that the imple-
mentation is animated and evaluated by the client, and that
he/she then requests that Point be enhanced to include
colour information. The new class is constructed using in-
heritance as follows:

class ColourPoint ˆ= inherits Point
abstract
var colour:int;

interface
build{a,b,c:int} inherits Point{a,b}
post colour!=c;

function colour;
function same(c:from ColourPoint):bool
ˆ= colour=c.colour;

end;

Observe that the implementation code of Point is retained
in ColourPoint.

Inheritance polymorphism does not occur in PL by de-
fault, but must be explicitly indicated using the from key-
word. On the face of it this seems like good practice, but
in fact the verifier is not at all comfortable with it because
it can no longer predict attribute types at run time. We
found ourselves avoiding the use of from where possible.
Notwithstanding this, class extension seems to be quite well
supported by PD.

6.2. Specification Adaptation

By specification adaptation we refer to the enhancing of
a method either by weakening the assumptions on its in-
puts and/or by strengthening the requirements on its out-
puts. This is what happens when methods are overridden
according to the rules of behavioural subtyping [16]. It may
also arise when we discover an implementation of a method

that delivers more than the specification actually asked for.
In this case, it is sometimes appropriate to enhance the spec-
ification to reflect this.

Consider a class that defines some abstract model and set
of interfaces for a suite of mathematical functions. Suppose
one of the functions calculates the square root of a nonneg-
ative real number to some given degree of accuracy:

class MathFunctions ˆ=
interface
function sqrRt(val:real,eps:real):real
pre val>=0.0, eps>0.02
ˆ= ?

assert resultˆ2<=val<(result+eps)ˆ2;
end;

Suppose now that a prototype of the system is generated
and animated, and that during this phase we discover and
decide to retain an implementation of sqrRt that works
for smaller values of eps. PL allows us to upgrade the
specification appropriately, by defining it as an adaptation
of the original. The new version has both a weaker pre-
condition and a stronger post-assertion:

class BetterMathFunctions ˆ=
inherits MathFunctions

interface
redefine function

sqrRt(val:real,eps:real):real
pre val>=0.0, eps>0.00002
ˆ= ?

assert resultˆ2<=val<(resultˆ2)+eps;
end;

(Keyword redefine introduces a function that is being
overridden.) Specification adaptation is useful because it
provides formal support for method overriding in inheri-
tance. We note, however, that it does not sit comfortably
with design by specialization of classes [22]. On the other
hand, PL supports specialization by providing so-called
functional contracts. By this is meant that instead of hard-
coding a specification into a pre clause, we can use class
functions to define the contract. The advantage is that we
may subsequently redefine the functions at different levels
of the inheritance hierarchy. This gives the contracts a dy-
namic form that allows specialization and behavioural sub-
typing abstractly. Functional contracts as provided by PD
provide strong support for specification adaptation.

7. Larger Experiments with PD

We briefly report on two larger examples that we worked
on, namely a library management system and a resource



manager. More details can be found on the web site ac-
companying the paper. The web site also records our exper-
iments with other language features such as as higher-order
functions and generics.

The library management system is essentially that for-
mulated by Kemmerer [12]. The software has to manage a
collection of library users consisting of both registered bor-
rowers and staff members, and a collection of borrowable
library items. Our specification made use of some primi-
tive data types in PL that provide good functionality but are
computationally expensive. They are therefore good candi-
dates for refinement.

The library catalog was specified as a set of items,
and we began by seeking to data refine this into a perma-
nent file data structure. We discovered that file handling in
PL is quite primitive and our effort failed because of this.
Our next approach was to refine the set into a custom-built
hash table implemented as an array of hash buckets. Speci-
fying and verifying the hash table per se proceeded with-
out difficulty, but the verifier struggled to prove that the
hash table data refined our original set. Some progress was
made by specifying the hash table differently, this time in
a style similar to that of the set class. However, we never
achieved full verification and indeed we were led to dis-
cover some underlying difficulties with type transformation
as discussed in Section 5.2.

The purpose of a resource manager is to manage a pool
of resources that are shared out among competing pro-
cesses. The manager must allocate the resources dynam-
ically on demand, while seeking to ensure high levels of
use, and dealing sensibly with any deadlock situations that
might arise. This proved particularly difficult as PL does
not support any kind of concurrency. We tried to simulate
multi-threading and deadlock but with limited success and
concluded that it was not possible to use PD to reason about
properties of concurrent systems.

Further analysis of these experiences can be found in [6].

8. Comparisons with other tools

The tools most closely related to PD include the B-
method, ProofPower, and JML. The B-method [4], sup-
ported by both Atelier-B [2] and the B-Toolkit [14], is one
of the best known methods for formal software construc-
tion. In place of PD’s single step refinement, B supports an
iterative refinement process, ultimately leading to a C im-
plementation. B does not support object-oriented program-
ming. B supports refinement relations between abstract and
concrete data. Unfortunately, B contains two languages for
specification alone, both of which require mathematical ex-
pertise and are challenging to learn and use. Unlike PD,
the theorem prover is interactive, and requires developers to
have a deep understanding of the logic of B. Work is ongo-

ing with B to make it more user-friendly with tools such as
U2B [20].

ProofPower [21] is a tool that supports the refinement
of Z specifications into Ada programs. It differs from PD
in that it supports iterative refinements during software de-
velopment. Each refinement step generates proof obliga-
tions that are discharged through application of the interac-
tive theorem prover. The theorem prover is based on HOL
[10] and requires an understanding of the associated logic.
ProofPower offers a mathematically richer refinement pro-
cess than PD. However, it relies on multiple languages and
technologies that must be understood before development
with ProofPower can commence.

The Java Modeling Language (JML) [15] is essentially a
specification language for Java, employing Java syntax and
semantics as much as possible. It is one of the few object-
oriented systems that supports some form of refinement.
JML is supported by a tool called ESC/Java2 [7]. This is
not a verifier but an “extended static type checker” — C pro-
grammers may think of it as a very sophisticated version of
lint. JML supports specification through design by con-
tract. Behavioural subtyping is the mechanism by which
refinement is supported. ESC/Java2 is built around the Sim-
plify theorem prover which is neither sound nor complete
[13], though research to replace it is underway. The LOOP
tool [11] is similar to ESC/Java2, but it attempts full verifi-
cation. LOOP is currently under development.

We summarize our comparisons in Table 1. In compari-
son with other tools, PD offers a software oriented approach
to refinement rather than a brutally mathematical one. This
may reduce the specification and refinement options for the
developer, but it increases the audience that might use such
a tool. PD supports specification and implementation in
a relatively simple language, so its learning curve is quite
gentle for practicing software engineers.

9. Conclusion

PD purports to do what is still an ambition for other
software development tools: to support the construction of
object-oriented software using refinement as a key tech-
nique while providing complete formal verification. The
tool is not difficult to use and its associated specifica-
tion/programming language is expressive, providing mul-
tiple specification styles for software development.

Unfortunately, the verifier is not strong enough to prove a
number of refinement techniques correct without excessive
additional work. It often requires the developer to re-work
code and add assertions that to the human appear needlessly
strong. The verifier was custom built for PD, and no sup-
porting documentation on its architecture is provided. Its
output is often difficult to understand, and it provides poor
guidance as to the causes of failure. The Perfect Language



B/B4Free ProofPower ESC/Java2 PD
Refinement Support Alg, Data Alg, Data Delta Alg, Data, Delta
Refinement process Iterative Iterative Iterative Single Step
Verification Interactive Interactive Auto Auto
OO No No Yes Yes
Language(s) AMN, GSL, C Z, Ada, HOL JML, Java PL
IDE Command Line Command Line Basic GUI Basic GUI
Learning Curve Steep Steep Slight Gentle

Table 1. Summary of Refinement Tools

provides fairly good specification and implementation ele-
ments, but the verifier limits the ability to use all the features
as one would wish. Indeed, one is inevitably led to adopt a
style of specification that best suits the verifier, rather than
one that suits the problem.

Despite all this, PD has attractive features. It is rela-
tively easy for software engineers to learn, even if they are
not mathematically inclined. Once learned, it rewards the
user with some surprisingly good verifications, and often
enough uncovers unexpected errors in code. It is particu-
larly rewarding when it successfully test runs specifications.
For these reasons, we have found it to be a good tool to use
in the classroom. It can enthuse students and software en-
gineers with what is possible in formal programming, and
what advantages it might bring. The technology has some
way to go before it is industrial strength, but it might well
be effectively used in designing and verifying small parts of
critical code.

10. Acknowledgements

We would like to thank the anonymous referees for their
constructive and helpful comments. Many thanks to David
Crocker of Escher Technologies for his help and support
with Perfect Developer. Enterprise Ireland provided fund-
ing under the Basic Research Grant SC/03/278.

References

[1] Escher Technologies website: http://www.
eschertech.com/index.php.

[2] Atelier B website: http://www.atelierb.
societe.com/index uk.htm.

[3] The Perfect Developer Language Reference Manual,
Version 3.0 : http://www.eschertech.com/
product documentation/LanguageReference/
language reference.pdf, 2004.

[4] J.-R. Abrial. The B-Book: Assigning Programs to Meanings.
Cambridge University Press, 1996.

[5] R.-J. Back and J. von Wright. Refinement Calculus: A Sys-
tematic Introduction. Graduate Texts in Computer Science.
Springer-Verlag, 1998.

[6] G. Carter. Automating formal software development. Mas-
ter’s thesis, (in Preparation), Dept. of Computer Science,
National University of Maynooth, 2005.

[7] D. R. Cok and J. R. Kiniry. ESC/Java2: Uniting ESC/Java
and JML. Technical Report R0413, Security of Systems
Group, Nijmegen Institute for Computing and Information
Science, 2004.

[8] D. Crocker. Perfect Developer: A tool for object-
oriented formal specification and refinement. In FME 2003,
Tools Exhibition Notes, http://www.eschertech.
com/papers/fme 2003 tools paper.pdf, 2003.

[9] W. P. de Roever and K. Engelhardt. Data Refinement:
Model-Oriented Proof Methods and their Comparison.
Cambridge Tracts in Theoretical Computer Science. Cam-
bridge University Press, 1998.

[10] M. Gordon and T. Melham. Introduction to HOL: A The-
orem Proving Environment for Higher Order Logic. Cam-
bridge University Press, 1993.

[11] B. Jacobs and E. Poll. Java program verification at Ni-
jmegen: developments and perspectives. Proc. Software Se-
curity - Theories and Systems, LNCS Vol. 3233:134–153,
Kokichi Futatsugi, Fumio Mizoguchi, Naoki Yonezaki (edi-
tors), Springer-Verlag, 2004.

[12] R. A. Kemmerer. Testing formal specifications to detect de-
sign errors. IEEE Transactions on Software Engineering,
11(1):32–42, 1985.

[13] J. Kiniry and E. Poll. Design by contract and automatic ver-
ification for Java with JML and ESC/Java2. Proc. ECOOP
2004, Object Oriented Programming, LNCS Vol. 3344,
Martin Odersky (editor), Springer-Verlag, 2004.

[14] K. Lano and H. Haughton. Specification in B: An Introduc-
tion Using the B Toolkit. Imperial College Press, 1996.

[15] G. T. Leavens, A. L. Baker, and C. Ruby. Preliminary de-
sign of JML: a behavioral interface specification language
for Java. Technical Report 98-06q, Department of Computer
Science, Iowa State University, 2001.

[16] B. H. Liskov and J. M. Wing. A behavioral notion of sub-
typing. ACM Transactions on Programming Languages and
Systems, 16(6):1811–1841, 1994.

[17] B. Meyer. Object-Oriented Software Construction. Prentice
Hall, 1997.

[18] C. Morgan. Programming from Specifications. Prentice
Hall, 1990.

[19] J. M. Morris. A theoretical basis for stepwise refinement and
the programming calculus. Science of Computer Program-
ming, 9(3):287–306, 1987.



[20] C. Snook and M. Butler. Verifying dynamic properties of
UML models by translation to the B language and toolkit.
Proc. UML 2000: Advancing the standard, LNCS Vol. 1939,
A. Evans, S. Kent, B. Selic (editors), Springer-Verlag, 2000.

[21] P. Steggles and J. Hulance. Z Tools Survey, 1993.
ftp://ftp.ist.co.uk/pub/doc/zola/
ztool-survey.ps.

[22] M. Torgersen. Inheritance is specialization. Proc. Object
Oriented Technology. ECOOP 2002 Workshop and Posters,
LNCS vol. 2548, Juan Hernandez, Ana M.D. Moreira (edi-
tors), Springer-Verlag, 2002.

[23] J. Woodcock and J. Davies. Using Z: Specification, Refine-
ment, and Proof. Prentice Hall, 1996.


