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Abstract. The existing Generalised Hough Transform, although altered
to cater for scaling and rotation of the object in the plane, fails to detect
the object under rotations out of the plane. This is due to the lack of 3-
dimensional information contained in the 2-dimensional template image.
In this paper we present a new Hough Transform, known as the Surface
Normal Hough Transform (SNHT), which using a suitable 2-dimensional
surface representation, transforms a set of surface normals to a surface
parameter space. The effect of the SNHT is to map point sets represent-
ing a surface in the input space, to a peak in the parameter space. The
coordinates of this peak parameterise the given surface and hence allow
for pose invariant object detection and localisation.
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1 Overview

It is generally accepted that the main aim of computer vision is to realise an
adaptive system which is capable of navigation within, and interaction with, the
3-dimensional world. This interaction is facilitated through the interpretation of
visual information received from some imaging devices. In order to achieve this
goal, some robust method(s) for segmenting objects in images from the perceived
background is required.

The Generalised Hough Transform (GHT) [1,5] is a technique used to lo-
cate arbitrary curves in images, based on a 2-dimensional template. Given this
template, the first stage of the computation is to build an internal representa-
tion of the curves it contains. This representation is based on the position and
orientation of each edge point with respect to some reference point. Using this
representation, the GHT then looks for similar configurations of edge points in
other input images. If such a configuration is found to exist, the template object
is said to be localised, upon which the subsequent segmentation of the object
from the background is trivial.

Although this technique has been altered to cater for variation in object scale
and object orientation, at present it is not capable of handling variation in object
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pose. That is, the rotation of the object out of the image plane. This is due to
the fact that our only representation of the object is generated from a single
edge-detected 2-dimensional projection, and therefore contains no information
regarding 3-dimensional structure.

In this paper we redress this problem. Here it is proposed that by extend-
ing the space of the template image from IR? to IR®, as well as altering the
technique for generating the template representation, a new type of represen-
tation which takes the 3-dimensional nature of the object into account may be
constructed. Since the GHT is a two staged approach, i.e. (i) the model extrac-
tion and definition stage, and (%), the Hough transform or localisation stage,
it will be necessary to alter the second stage sufficiently to allow for this new
representation.

Section 2 gives a formal introduction to the Hough transform and describes
the necessary mathematics for what is to follow. In Sect. 3, the stages necessary
to compute the existing 2-dimensional GHT are outlined. This is accompanied by
a description of techniques for achieving orientation and scale invariance in the
GHT (Sect. 3.2). Section 3.3 identifies the limitations of the GHT and justifies
the necessity for its extension.

The proposed strategy to be used in extending the technique to cater for 3-
dimensional objects is outlined in Sect. 4. This paper concludes with a discussion
on the material presented (Sect. 5).

2 The Hough Transform

The Hough transform (HT) [2,4] is a technique which, using some curve rep-
resentation, transforms a set of points defined over the image space to a set of
points defined over some parameter space (known as Hough space).

Points in Hough space represent particular instances of the curve in the
image. Therefore, the strategy used by the HT is to map sets of points from a
particular instance of the considered curve, i.e. the template curve, to the point
representing the curve in Hough space and, in effect, cause a peak to occur at
that point. Once each point in the image plane has been considered, the Hough
space is searched for the peak of maximum height. The coordinates of this peak
in Hough space give the parameters which define the curve in the image plane.

Equations (1) and (2) define such a mapping. Here H() denotes the appli-
cation of the Hough transform, H(p1,... ,pn) denotes the parameter or Hough

space, I(x1,...,z,) denotes the image space, and C' denotes the set of curve
points in I. The § function evaluates to 1 if the Hough transform of the curve
point (z1,%s,...,x,) transforms to the parameter point (p1,pa,...,pm), and

the function evaluates to 0 otherwise. So, the Hough space,

H(p17p27"' :pm) = Z 5($17$2:"' ; Lny P1,P2,--- ,pm) (]-)
(z1,22,... .z, )EC



where,

1 lfH(I(IEl,IE2IIIETL)) =
6(3317332:"':3771; pl:pZ:"':pM): (pl;p2;---;pm) (2)
0 otherwise.

It can be seen from the above equations that the value of a point in Hough space
corresponds to the number of curve points in image space which transform to
that position.

The main advantages of the HT are that it is particularly resilient to both
occlusion and noise. This is due to the fact that each point on the curve is
considered independently and therefore still maps to the same point in Hough
space, regardless of the presence or absence of auxiliary points.

In general, existing HT's may be divided into two categories: (i) The Standard
or Classical Hough Transform (SHT) and, (ii) the Generalised Hough Transform.
The main difference between (i) and (ii) is the mechanism used in representing
the desired curves. The SHT requires a parametric formulation whereas, the
GHT uses a look-up table to define the shape. Hence, the SHT is constrained to
curves which may be defined analytically, whilst the GHT may be used for the
segmentation of arbitrary curves.

3 The Generalised Hough Transform

In the absence of a closed form analytical equation for the considered curve, the
GHT defines a new function relating curve point orientations to vector directions
and magnitudes. More specifically, the GHT uses an internal representation,
R(12), to define the relationship between the orientation of the tangent line,(?
at each curve point to the magnitude, r, and direction, 3, of the vector joining
that curve point to a predefined reference point (see Fig. 1). Therefore R can be
viewed as a one-to-many mapping from orientation-space to (r, §)-space.

The GHT, on the other hand, may be viewed as a mapping from image space,
I(z,y), to a Hough space, H (Zyef, Yref), defined over the possible coordinates of
the reference point,

H(wreh yI'Ef) = Z 6($, ya Tref, yI'Ef) (3)
(z,y)€C

where,

() -
6(337 Y, Tref, yref) = (mref: yref) (4)
0 otherwise.

Here, the summation is performed for each point contained in the set C', defined
as the set of curve points contained in I(z,y).

To compute H(I(z,y)), the orientation, {2, of the tangent line at I(x,y)
is calculated. Using this value, the possible (r,3) pairs for the respective edge



Fig. 1. Computing the required angles

points may be extracted using R((2). Since these pairs give the relationship
between the template curve point and the position of the reference point, we
may now compute the possible positions of the object reference point in the
image. Equations (5) and (6) define this computation, giving us the reference
point coordinates (yef, Yref), through the mapping,

H(I(T, y)) = (mref; yref) (5)
= (z +rcos(B),y + rsin(s8)) . (6)

Note that it is possible for more than one curve point in the template image to
be at any given orientation, hence this computation may need to be computed
more than once for a particular £2 [7].

3.1 Algorithmic and Representational Issues

Typically, a look-up table known as an r-table, is used to represent R (see Fig.
2). Hence, the first stage of processing involves computation of the r-table. This
is achieved by first choosing a reference point (Z,ef, yrer) Within the template,
normally taken to be the centroid of the curve. Next each curve point ¢; is
visited, at which the orientation of tangent line {2;, the angle 3;, and magnitude
r;, of the vector joining the reference point to the edge point are calculated.
These values are then stored as a pair, (r;, 5;), in the r-table at the position
indexed by the edge point’s orientation, {2;.
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Fig. 2. The GHT r-Table

Equations (7), (8) and (9) define the calculations for the required values
detailed above,

ci = (w4, Yi) (7)

ri = \/(wref - wi)Q + (yref - yi)2 (8)

ﬂi — tan71 <yref - yz) ) (9)
Lref — Tg

During the second, or transform, stage a 2-dimensional array known as an
accumnulator array is used to store each (Zyef,Yrer) as they are computed. The
accumulator array then represents the Hough space for the given transform. The
sampling density of the accumulator array is normally chosen to be equivalent
that of the unknown image. This allows for the maximum degree of accuracy
required in specifying the reference point in the image. Once the second stage is
completed, i.e. after each point in the image has been considered, the final stage
is to search the accumulator for the point at which the peak of maximum height
has occurred. This point is taken to be the position of the object reference point
in the unknown image.

3.2 Incorporating Orientation and Scale Invariance

From the description of the GHT presented here, it can be seen that the tech-
nique does not cater for rotation or scaling of the object. That is, when the
object is rotated by some offset, ¢, the computed orientation, 2, of each point
differs from the template orientation, {2, as in (12). This results in the mapping
to (r, B)-space being computed for R(2'), as opposed to R({2).

Scaling of the object by a factor of s results in the correct mapping, R(f2), but
invalid magnitudes, r, of the extracted (r, 8)-vectors, i.e. the distance between



the curve points and reference point in the image space has increased, but the
corresponding r’s defined by R({2) have not been scaled accordingly.

To overcome these problems, instead of computing the GHT for the curve at
a specific scale and orientation, the GHT is computed for each of the possible
values of s and ¢, over a selected range of orientations and scales [1]. We refer to
this strategy as the orientation and scale-invariant generalised Hough transform
(OSIGHT). The Hough space for the OSIGHT is defined as

H(wreﬁyrefzsz(ﬁ) = Z 6(37:?;’; xref7yref757¢) (10)
(z,y)€C

where,

it H(1(2,)) =
6(3372/; wref:yref) = (wref:yrefasz(ls) (11)
0 otherwise.

As can be seen from (10) and (11), specification of a curve now requires a 4-
dimensional vector, (Zyef, Yref, S, @), where s and ¢ denote scale and orientation,
respectively, and the template curve is assumed to have s = 1 and ¢ = 0. Hence,
we must extend the Hough space from two-dimensions to four-dimensions (i.e.
the Hough space is now defined over @yef, Yref, s and ¢).

In the transform stage, as each point in the unknown image is visited, its
orientation, (2, is calculated. We then calculate (%yef, Yref, S, @) for each possible
s and ¢ in a brute force manner, as outlined below.

For each possible orientation offset, ¢, the corresponding curve point orien-
tation, (2’, is calculated as,

P =0-¢. (12)

This value is then mapped to a set of points in (r, 3) space using R({2'). Equa-
tions (13) and (14) may be used in conjunction with each element in this (r, §)
set, to map the image point to the corresponding Hough point,

H(I(az,y)) = (wref:yrefzsz(ls) (13)
=(z+ (sr)cos(B+ @),y + (s.r)sin(B + ¢), s, 9) . (14)

Again, as each (r, 8)-pair is considered, a set of reference points is calculated,
where each element of this set corresponds to a specific scale s.

3.3 Limitations of the GHT

A significant problem encountered with the GHT, with regard to 3-dimensional
vision, is variation due to object pose. Since the template is a 1-dimensional
curve defined over 2-dimensions, the technique is restricted to an single edge-
detected two-dimensional projection of the desired object. Subsequently, rotation
of the object out of the image plane results in a new 2-dimensional projection



Fig. 3. Spherical Polar Coordinate System

and consequently an unknown edge image which will not be localised using the
GHT. Note, symmetry is not considered here.

It should also be noted that this is a problem of representation, that is to
say that the computational model (Sect. 2) of the Hough Transform is capable
of catering for 3-dimensions if it is provided with the necessary 2-dimensional
surface representation and H equations.

In the following section we present a new technique known as the Surface
Normal Hough Transform (SNHT) for generating this required representation in
conjunction with the necessary H equations for performing the Hough transform
stage.

4 The Surface Normal Hough Transform

The Surface Normal Hough Transform (SNHT) is a new technique for computing
the 3-dimensional position of a surface having a specified pose and, by extension,
a technique for computing the 3-dimensional position and pose of a surface with
respect to the pose of a prototypical exemplar of that surface. This technique,
therefore, overcomes the problem discussed in Sect. 3.3 and may also be used as
a solution to the familiar registration problem.

As with the GHT, in the absence of a closed form analytical equation for
the considered surface the SNHT defines a new function relating surface point
orientations, to vector directions and magnitudes. To specify the orientation of
a given surface point, the orientation of the unit normal n at that point is used.
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Fig. 4. 3-dimensional vector representations.

This may be defined as,

0 = (6,9) (15)

where, 8 and ¢ denote polar and azimuth angle, respectively (see Fig. 3).

In a manner analogous to the GHT, the SNHT also uses an R-mapping to
represent the considered surface, although in this instance it is a function of the
two variables # and ¢ described above. Also, because the surface is defined over
3-dimensions, the reference point must in turn be 3-dimensional i.e. the reference
point is now chosen to be some predefined point (zyef, Yret, zref) . Hence, the vector
joining the surface point to the reference point is represented in spherical polar
coordinates as an (r, 3, 7)-triple (see Fig. 4). R is therefore defined as a mapping
from (6, ¢)-space to (r, 3,7)-space.

In order to allow for this new surface representation the Hough transform
equations of the second stage must also be altered accordingly. Extending the
computational model described in Sect. 2, the SNHT may now be mathematically
defined as

H(mref: Yref, zref) = Z 6(337 Y, 2, Tref,Yref, Zref) (16)
(z,y,2)€S

where,

| HI(,2) =
5(37: Y, 25 Tref, Yref, Zref) = (wref: Yref, zref) (]_7)
0 otherwise.

Here, S is defined as the set of surface points in the input image space, I(z,y, 2).



To compute #H, the orientation, (8, ¢), of the surface normal at each point
in the image I(z,y, z) is first calculated. These orientations then allow the cor-
responding surface point’s (r, 8, y)-triples to be computed from R(6,$). Since
an (r,f3,7)-triple represents a 3-dimensional vector from a surface point to a
possible reference point, this reference point may now be recovered using the H
equation,

H(I(a:7yz)) = (wref:yref:zref) (18)
= (z + rsin(B) cos(y), y + rsin(f) sin(7y), z + r cos(y)) . (19)

4.1 Algorithmic and Representational Issues

We represent the R-mapping through the use of an r-table, similar to that de-
scribed in Sect. 3.1,although since the R-mapping is now defined as a function
of two variables, a 2-dimensional array is used to represent it (see Fig.5). Also,
since the vectors joining the surface points to the reference point are of the form
(r,B,7), the r-table now stores triples instead of 2-tuples.

Computation of the r-table is achieved by first choosing a reference point
(Zref, Yref, zret) for the surface, again typically taken to be the center-of-mass.
Next, each surface point, s;, is visited at which the orientation of the unit normal,
n;, is calculated. Using this orientation to index into the r-table, the vector
(ri, Bi, Vi), joining s; to the reference point is added to that position.

To calculate the required surface normal we proceed as follows. Let s(z,y)
denote the considered surface and, let p and g denote the partial derivatives of
this surface in the x and y directions, respectively, i.e. p = %S(azhyi) and p =
3%8(5% yi)- Then in Cartesian coordinates the normal vector may be calculated
as [3],

n;
n; 20
%= ] (20)
—a.. 1T
— ( pl ‘q27 ) (21)
1+pi2+qz2

where, ||n;|| denotes the magnitude of the vector n;. In keeping with convention,
and to allow easier manipulation in what follows, we will specify n; in terms of a
spherical polar coordinate system, with origin at the feature point, azimuth angle
¢ parallel to the XY-plane, and polar angle 6 taken to be the angle between the
vector and the Z-axis (see Fig. (4)).



These angles may be specified, in terms of the Cartesian formulation, as
follows,

¢; = tan! <ne> (22)
n;.ey
=tan "' <_pi> (23)
—qi
f; = cos™ ' (n;.e.) (24)

1
=cos ! | ——— (25)
V1+pi® + a7

where, n;.€; denotes the inner product of the vectors n; and €;, and é,,e, and
€. denote unit vectors along the X, Y, and Z axes, respectively.
Equations (26), (27), (28) and, (29) may be used to calculate (r,3,7), the

vector joining the surface point, s;, to the reference point, (Zref, Yref, Zref),

Si = (”Ez Yi, Zz) (26)
ri =/ (Tret — )2 + (Yret — Yi)® + (2rer — 2i)> (27)
v = cos ! (z;:’f (28)
B; = cos™! (%) . (29)

As with the GHT, the transform stage is simply a reversal of the above
process. That is, given a surface s(z,y), for each point, s(z;,y;), contained in
this surface the orientation of the unit normal, n; = (6;, ¢;), is calculated. Using
this value to index into the r-table, the (r,[,y)-triples corresponding to this
orientation are extracted. Recovery of the reference point for each triple is carried
out as detailed in (18) and (19). Representation of the Hough space may again be
achieved through the use of an accumulator array, which, due to the dimensions
of the reference point, must in this instance be 3-dimensional.

4.2 Introducing Invariance

Extension of the SNHT to allow invariance to both scaling and orientation, in 3-
dimensions, is also possible. Again this pertains to extending the dimensionality
of the accumulator array and altering the transform equations sufficiently for
each of the invariants required. We refer to this strategy as the orientation and
scale invariant SNHT (OSISNHT) and mathematically describe it as

H(wref:yref:zref7s76n:6<761/}) = Z 6(3372/:'2; Trefy Yref, Zref7s76n:6<76¢)
(z,y,2)€S
(30)
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Fig. 5. SNHT r-Table.

where,

if H(I(w,y,2)) =
0(x, Y, 2; Tref, Yref, Zref, S, 0N, 6C, 0¢) = (@ ret; Yret; Zrefs S, 1, C, ) (31)
0 otherwise.

It can be seen from (31) that three independent rotations are possible. Here,
we use the familiar roll-pitch-yaw conventions [6] (see Fig. 6), where roll corre-
sponds to a rotation about the Z-axis, pitch corresponds to a rotation about the
Y -axis, and yaw corresponds to a rotation about the X-axis.

In order to compute the OSISNHT, the relationships between the angles
described in (22), (24), (28) and (29), and these three rotations described above,
are required. Using these relationships, the change in the unit normals for a given
surface, resultant from any of the rotations described above, may be calculated.
For example, if we have a unit normal n, and we rotate it about the X-axis by
an arbitrary angle, the resultant vector i’ may be computed.

To describe the relationships outlined above, the angles 7, {, and ), are
defined as those angles resulting from the projection of n onto the Y Z- X Z-,
and XY -planes, respectively (see Fig. 6). Using these angles we may now define
roll, pitch, and yaw as the changes 67, d¢, and v, in the angles n, {, and %,
respectively.



Fig. 6. Roll, Pitch, and Yaw angles

For a given unit normal, n = (#, ¢), calculation of the three angles in Fig. 6
may be carried out as,

=tan! _ (32)
= tan(6) cos(¢)
1
a1
¢ = tan (tan(a) sin(¢)> (33)
v=29¢ . (34)
Therefore, the unit vector i’ = (', ¢'), resulting from a rotation of dz, about
the X-axis, may be calculated using,
8" = cos™! (cos(¢) sin(n + n)) (35)
1 —1 tan(¢)
¢' = tan (Fs(n o) (36)

The unit vector, i’ = (#', ¢'), resulting from a rotation of 6, about the Y-axis,
may be calculated using,

' = cos™ ! (sin(8) sin(¢ + 6¢)) (37)
¢ =tan"! (tan(#) cos(¢ + 6¢)) . (38)

The unit vector, n' = (¢, ¢'), resulting from a rotation of 6¢, about the Z-axis,
may be calculated using,

6 =46 (39)
¢ =¢+ Y . (40)



Therefore, computation of the OSISNHT corresponds to calculating the -
mapping over a range of 5,47, ¢, and 41 in a brute force manner similar to that
of the OSIGHT described in Sect. 3.2. Again we extend the dimensions of the
Hough space accordingly to cater for the the chosen invariance.

Therefore, given a surface point, s(z;, y;, z;), we compute the unit normal, n;,
at that point. Using the equations defined above, we then calculate the rotated
unit normal ﬁ; for each possible d7;, 6(;, 6¢; combination. Next, for each ﬁ;

the corresponding (7, 3;,7;) triples are extracted using R(6;', ¢;').

H(L(2,y,2)) = (Tref, Yref, Zret)
= (5 + (s1.r) sin(B) cos(),
y + (sg.r) sin(B) sin(y),
z + (sg.r) cos(y)) .

(41)

For each triple we also rotate it by 0n;, 6¢;, and dv;. Then, using the resul-
tant values and the H equation defined in (41) we calculate the corresponding
reference point, (Tref, Yref, 2ref; S, 07, 8¢, 010) for each s over a specified range.

5 Conclusion

Although modifications to the Generalised Hough Transform cater for scaling
and rotation of the object in the plane, the GHT fails to detect the object under
rotations out of the plane. This is due to the lack of 3-dimensional information
contained in the 2-dimensional template used in generating the R-mapping. In
this paper our computational model for the Hough transform shows that this
is a problem of representation, and that the Hough transform is capable of
catering for three-dimensions if it is provided with the necessary 2-dimensional
surface representation and H equations. Accordingly, we have proposed a new
Hough transform, the Surface Normal Hough Transform, which overcomes the
out-of-plane rotation problem by extending the dimensionality of both the input
space and transform equations to directly incorporate surface information. Our
current work involves enabling the SNHT to detect patterns in 2-dimensional
input images, by extracting 3-dimensional surface normals through the use of
occluding contours.
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