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In this paper we present a novel approach for generating viewpoint invariant features from single images
and demonstrate its application to robust matching over widely separated views in urban environments.
Our approach exploits the fact that many man-made environments contain a large number of parallel lin-
ear features along several principal directions. We identify the projections of these parallel lines to
recover a number of dominant scene planes and subsequently compute viewpoint invariant features
within the rectified views of these planes. We present a set of comprehensive experiments to evaluate
the performance of the proposed viewpoint invariant features. It is demonstrated that: (1) the resulting
feature descriptors become more distinctive and more robust to camera viewpoint changes after the pro-
cedure of 3D viewpoint normalization; and (2) the features provide robust local feature information
including patch scale and dominant orientation which can be effectively used to provide geometric con-
straints between views. Targeted at applications in urban environments, where many repetitive struc-
tures exist, we further propose an effective framework to use this novel feature for the challenging
wide baseline matching tasks.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

The motivation of our works is to develop a vision-based system
to facilitate intelligent navigation applications within cities. The
idea is that the user could arbitrarily capture an image in urban
environment and compare it against a database of stored landmark
images in order to determine the camera pose within the world
coordinate frame. Navigation information could be projected into
the image (e.g. augmented reality) and then transmitted back to
the user. In such system robust image matching is a crucial func-
tionality. Previously a number of successful image matching tech-
niques [1–6] have been proposed – a comprehensive review was
given in [7]. These methods usually consist of finding stable and
repeatable regions of interest, followed by computing feature
descriptors that characterize the local appearances in some invari-
ant manners. The underlying principle for achieving invariance is
to normalize the extracted regions of interest so that the appear-
ance of a region will always produce the same descriptor (in an
ideal situation) under the changes of illumination, scale, rotation,
and viewpoint. However, the performances of the existing 2D fea-
tures drop significantly under substantial camera viewpoint
changes [8]. The same object will appear very different when cam-
era viewpoint is significantly changed. Using descriptors directly
ll rights reserved.
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computed on such wide baseline images, it is difficult to establish
correct matches. In this paper we combine recent advances in 2D
feature extraction with the concept of 3D viewpoint normalization
to improve descriptive ability of local features for robust matching
over largely separated views.

General 3D reconstruction based on single monocular images is
a difficult task since the depth information remains ambiguous
without the provision of further image cues. In this paper, we in-
clude following prior knowledge and assumptions to enable the
task in man-made environments. First, we assume that the build-
ing facades are piecewise planar, and a number of dominant 3D
planes can be used to approximate the spatial layout of buildings.
In man-made environments, this approximation yields good per-
formances. Second, the building facades usually contain a large
number of parallel lines along several principal directions. The
images of these 3D parallel lines and their corresponding vanishing
points provide valuable cues for 3D recovery. Third, we assume
that the buildings have vivid enough vertical boundaries and their
images are captured using a nearly upright camera thus the verti-
cal direction can be robustly detected.

In this paper we propose an effective method to recover a num-
ber of 3D planes from single 2D images of urban environments and
then use them to describe the spatial layout of the imaged scenes.
The extracted regions of interest can be normalized with respect to
these recovered 3D planes to achieve viewpoints invariance. Spe-
cifically, line segments are extracted in an image and subsequently
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grouped into several principal directions by identifying common
vanishing points. In this step we include an effective tilt rectifica-
tion procedure to improve results. Then we take into account both
the distribution of line segments and the possible shape of building
structure to obtain a reasonable 3D understanding of the imaged
scene. As the last step, the individual patches on the original image,
each corresponding to an identified 3D planar region, are rectified
to form the front-parallel views of building facades. Viewpoint
invariant features are then extracted on these rectified views to
provide a basis for further matching. The key idea of the proposed
method is schematically illustrated in Fig. 1. This novel feature
scheme has many advantages over other conventional 2D features
(e.g. SIFT [3]). First of all, the resulting features are very robust to
large viewpoint changes after viewpoint normalization. Also, the
features contain robust local patch information for generating geo-
metric constraints between views. This makes viewpoint invariant
features particularly suitable for image matching in urban environ-
ments where substantial repetitive structures exist.

The main contribution of this paper is threefold. First, we pres-
ent a novel approach for generating viewpoint invariant features
from single images taken in urban environments. Compared with
some previous works on combining 2D features with 3D geometry
[9,10], our method only requires a single image, does not need
information from additional devices, and thus it offers wider appli-
cability. Second, we make systematical performance evaluations of
the proposed viewpoint invariant features. To the best of our
knowledge, this paper is the first to provide a quantitative analysis
of the performance gain of combining 2D features and 3D geome-
try. It is demonstrated that (1) after viewpoint normalization the
resulting descriptors remain more invariant to viewpoint changes;
(2) for all ground truth correspondences the scale ratios and dom-
inant gradient orientations are equal up to a small tolerance. These
improvements intuitively prove the feasibility of the one-point
RANSAC algorithm explained in [10]. Third, we further propose
an effective framework to use this novel feature for challenging
wide baseline matching tasks in urban environments where many
repetitive structures exist.
Fig. 1. The major steps involved viewpoint invariant feature extraction and
matching from single images.
The remainder of the paper is organized as follows. Section 2 re-
views some existing approaches for feature extraction and 3D
reconstruction. The procedures of generating viewpoint invariant
features, which include line segments grouping, 3D reconstruction
and viewpoint normalization, are explained in Sections 3–5,
respectively. In Section 6, the performance of viewpoint invariant
features is comprehensively evaluated. We further propose an
effective framework to use this novel feature for matching repeti-
tive structures in urban environments in Section 7. Finally, con-
cluding remarks and future works are provided in Section 8.
2. Related works

A large number of papers have been reported on robust 2D im-
age feature extraction. For a detailed review see [7]. Among them
the SIFT (scale-invariant feature transform) feature [3] is widely
used due to its superior performance under changes of illumina-
tion, viewpoint, scale and rotation. The potential keypoints are
firstly identified by searching for local extreme in a series of Differ-
ence-of-Gaussian (DOG) images. Next, local image patches at these
locations are normalized to achieve invariance up to a 2D similar-
ity. Finally, a 128-element SIFT descriptor is computed to charac-
terize the local patch appearance which can be subsequently
used for feature matching. In [11] the authors conducted a compre-
hensive evaluation of various feature descriptors and concluded
that the 128-element SIFT descriptor outperforms other schemes.
SIFT feature has been successfully applied to various computer vi-
sion tasks such as object recognition, 3D modeling, and pose esti-
mation. However, the performance of SIFT drops quickly under
substantial viewpoint changes, since the change of camera position
induces apparent projective distortion into the image.

Recently, many researchers have proposed to use the 3D object
geometry as an additional cue to improve 2D feature matching. A
novel feature scheme, Viewpoint Invariant Patches (VIP), based
on 3D normalized patches was proposed for 3D urban model
matching and querying [10]. In [9], both texture and depth infor-
mation were exploited to compute a normal view onto the surface.
In this way they kept the descriptiveness of similarity invariant
features (e.g. SIFT) while achieving extra invariance against per-
spective distortions. In [12], 3D gradients and histograms were
considered to generate 3D features which are invariant to changes
in rotation, translation, and scale. However, in these methods 3D
geometry information needs to be acquired in advance using either
multiple views (SfM or stereo vision) or additional active sensors
(Lidar or Radar). The idea of singe-image based 3D viewpoint nor-
malization was previously proposed in [13]. However, they only
make use of the improved feature descriptors to enable wide base-
line image matching. As pointed out in [10,14], both patch scale
and feature orientation provide valuable information for geometric
verification which should be made good use of.

Previously a number of techniques have been developed for 3D
reconstruction using monocular cues. Hoiem and his research
group estimated the coarse 3D properties of a scene by learning
appearance-based models of geometric classes, and then used the
recovered 3D geometry to improve the performance of computer
vision applications such as object detection and single view recon-
struction [15–18]. In [19], a supervised learning approach was pro-
posed for 3D depth estimation via the use of Markov Random
Fields. Usually architectural scenes are highly constrained, thus
their images contain many regular structures including parallel lin-
ear edges, sharp corners, and rectangular planes. The presence of
such structures suggests opportunities for constraining and there-
fore simplifying the reconstruction task. A number of techniques
[20,21,6] were proposed for detecting rectangles aligned with
principal directions using the recovered vanishing points. Such
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structures provide strong indications of the existence of co-planar
3D points. In [22–24], rigidity constraints on parallelepipeds were
exploited to infer adequate information for camera calibration and
3D reconstructions using single images. In [25], the authors used
the normals of building facades to represent their 3D layouts.
The linear constraints such as connectivity, parallelism, orthogo-
nality, and perspective symmetry, were imposed on the object
shape formulation and the optimal solution was obtained for 3D
reconstruction. In [26], visually pleasing urban 3D models were
generated from single images by solving the problem of model fit-
ting. Assuming the environment is composed of a flat ground plane
and vertical walls, they used a continuous polyline to parameterize
the ground-vertical boundary. The success of the above approaches
inspired us to extend the conventional 2D image features to the
third dimension using the obtained 3D geometry from single
images.

This paper is built upon our previously proposed method [27] and
is further extended in twofold. First, we perform a systematic eval-
uation of the proposed viewpoint invariant features. To the best of
our knowledge, this paper is the first comprehensive quantitative
evaluation of using 2D image texture together with 3D object geom-
etry. We demonstrate the resulting descriptors after viewpoint nor-
malization remain more invariant when viewpoint changes. Also, it
is shown that for all ground truth correspondences their scale ratios
and dominant orientations are equal up to a small tolerance. These
results experimentally verify the feasibility of the one-point RAN-
SAC algorithm [10]. Second, targeted at applications in urban envi-
ronments where many repetitive structures exist, we propose an
effective framework to use this novel feature for wide baseline
matching. We accept multiple matches to cope with repetitive urban
structures and then make use of the information (patch scale, dom-
inant orientation, feature coordinates) associated with the extracted
viewpoint invariant features to identify correct ones.
3. Line segments grouping

Given images taken in urban environments, we apply the ap-
proach described in [20] for line extraction. Strong edge pixels
are detected using the Canny edge detector and those with similar
gradient directions are merged together to generate a number of
straight lines. For better efficiency, only the line segments of length
greater than 30 pixels are kept for further analysis. In our experi-
ments this typically results in 200–400 line segments extracted
per image (640 � 480 pixels).

Next the line segments corresponding to building parallel edges
are identified and further grouped into principal directions. An
effective approach is proposed to this problem by adapting the ap-
proaches described in [28,26,20]. The method contains two major
steps: (1) select the images of vertical line segments and use them
to rectify camera tilt; (2) identify the horizontal parallel lines and
group them into principal directions. The details of each step are
presented in the following subsections.

3.1. Tilt rectification

We rectify camera tilts to make 3D vertical boundaries of build-
ings also appear vertical in 2D images. To do this, we start by con-
sidering a general 3 � 4 matrix P that projects a homogeneous 3D
world point X = [X,Y,Z,1]T into the 2D image plane. Without loss of
generality, we coincide the camera center with the world origin as:
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where ’ denotes equality up to scale, K is the camera intrinsic cal-
ibration matrix and R is the 3 � 3 camera rotation matrix. We can
decompose R into three rotation matrices corresponding to the roll
(/), pitch (h), and yaw (w) angles as:
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We seek a 3 � 3 homography Htilt to compensate the non-zero pitch
and roll angles as:
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After applying Htilt to the original image, as shown in Eq. (4), a 3D
vertical line (with constant X and Z coordinates) will appear vertical
in the wrapped 2D image (having the same x0 coordinate in the
wrapped image).
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The algorithm for tilt rectification is given as follows:

1. Select approximately vertical lines in the image (lines within
±p/6 radians of the vertical image direction) and apply the RAN-
SAC technique [29] to find the vertical vanishing point and its
corresponding line segments (the images of building vertical
edges). Record the endpoint coordinates of these line segments.
2. Normalize all endpoint measurements by pre-multiplying them
by K�1. A simplified camera model is used as:
K ¼
f 0 0
0 f 0
0 0 1

2
64

3
75 ð5Þ
where we assume the image skew is zero, the aspect ratio is one,
and the camera principal point coincides with the image center
[30]. The unknown camera focal length can either be retrieved
from the provided EXIF file (available for most modern digital
cameras) or be estimated using the existing camera self-calibra-
tion techniques [31,28,20,32].

3. Find the optimal estimates of pitch and roll angles so that the
resulting rotation matrix will transform the images of 3D verti-
cal lines to appear vertical in the rectified view. Specifically, we
apply nonlinear least-squares optimization to estimate the rota-
tion matrix which minimizes the column coordinate differences
between two endpoints of all selected line segments.
4. Compute the homography Htilt for tilt rectification as shown in
Eq. (3) and apply the transformation to the original image to
create a tilt rectified view where keystone effect is removed.

3.1.1. Performance evaluation
We tested the proposed tilt rectification method on building

images from the ZuBud dataset [33]. Since the camera focal lengths
are not provided in the dataset, we apply a simple technique de-
scribed in [31] to compute them independent of the method. Given
vanishing points V1 ¼ ½xv1 ; yv1

;1�T and V2 ¼ ½xv2 ; yv2
;1�T from two

orthogonal directions, focal length fcamera can be estimated as
follows:

xv1 xv2 þ yv1
yv2
þ f 2

camera ¼ 0) fcamera ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�xv1 xv2 � yv1

yv2

p
ð6Þ

In our implementation fcamera typically ranges between 600 and
1200 pixels. For 1005 urban building images in the ZuBuD dataset,
the distribution of the calculated focal lengths is shown in Fig. 2.
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Next we calculated the average column coordinate differences
between two endpoints of the vertical line segments before and
after tilt rectification. The quantitative results are given in Fig. 3.
Fig. 4 shows some example results of tilt rectification. The keystone
effects are very obvious in the original images (a rectangle struc-
ture will appear trapezoidal which is wider at the bottom in case
of camera pitching up). After rectification, the images of vertical
world lines become much more parallel to the image columns.
The building boundaries will appear vertical in the rectified image,
making the building structure more evident. We can divide an im-
age into several vertical strips where each strip represents a single
3D plane of the building surfaces.
3.2. Line grouping

Urban environments usually contain a good number of parallel
building edges. The images of a group of 3D parallel lines will inter-
sect into a common vanishing point. We propose to group the hor-
izontal parallel lines into several principal directions by identifying
such common vanishing points. In practice, this is a challenging
task for two major reasons: (1) a large number of outliers occur
in natural scenes (e.g. due to foliage, people, other facades, etc.);
(2) any two non-collinear lines will generate a possible vanishing
point at their intersection which will produce too many candidates
to verify.

In this step we propose an effective approach for line grouping
using the tilt rectified images. We equally divide the rectified im-
age into a number of vertical strips. Under the assumption that
each vertical strip contains a single 3D plane, we apply the RANSAC
technique [29] to find a dominant vanishing point for the lines con-
tained within it. We apply the criterion described in [28] to com-
pute a voting score for each potential vanishing point as follows:

voteðViÞ ¼
X

all accepted l of Vi

jlj
distðVi; lÞ

ð7Þ

A line segment l is accepted to vote for a potential vanishing point Vi

if their distance dist(Vi, l) is below a certain threshold. The vanishing
point with the highest voting score is chosen and its corresponding
inlier lines are kept for further grouping. After dividing the entire
collection of line segments into several small subsets, we can easily
identify the true vanishing points and remove outliers. Moreover,
we restrict the search of a possible vanishing point to a small hor-
izontal strip by exploiting the fact that the ‘‘horizon’’ (the line con-
necting the horizontal vanishing points) will appear horizontal in
the tilt rectified image. We find a vanishing point with high voting
score and use its row coordinate as the ‘‘horizon’’ level, as demon-
strated in Fig. 5. Only the candidates within a small horizontal strip
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Fig. 2. The distribution of the calculated focal lengths for 1005 images in the ZuBud
dataset.
around the ‘‘horizon’’ level (±100 pixels) will be further verified,
thus many false candidates can be immediately discarded. Finally,
we simultaneously refine the results of line grouping and vanishing
point estimation by applying the Expectation Maximization algo-
rithm (EM) [20]. EM iteratively estimates the coordinates of vanish-
ing points as well as the probability of an individual line segment
belonging to a particular vanishing direction.

3.2.1. Performance evaluation
We tested the line grouping algorithm on the ZuBud building

dataset [33]. The proposed method can generate good line group-
ing results in urban environments. For all 1005 building images,
the algorithm can identify at least one principal direction and its
associated parallel lines. Fig. 6 shows some representative results
of line grouping. It is noted the method can robustly identify par-
allel building edges in the presence of a large amount of clutters
as shown in Fig. 6a. Also the method can successfully find a vanish-
ing point for the lines on a minor plane (Fig. 6b) and can even han-
dle some curved building facades by approximating them as
piecewise-planar (Fig. 6c). The grouped line segments provide a
basis for the following 3D reconstruction and viewpoint normali-
zation procedures.

4. 3D planar reconstruction

After obtaining images of sets of parallel line segments, we pro-
pose an effective method to divide a single monocular image into
several vertical strips, with each strip corresponding to a 3D plane
in the scene (e.g. a single facade of the building surface). The meth-
od consists of two steps. First, we use the extracted vertical parallel
lines to generate a number of 3D layout candidates. Then, each
candidate is evaluated by referring to the distribution of parallel
line segments from horizontal directions. The best fitting model
is chosen to describe the 3D layout of the imaged scene.

Assuming buildings have vivid enough vertical boundaries, we
use the vertical lines extracted on a tilt rectified image to generate
3D layout models in a cascade manner. First we choose the left-
most and rightmost vertical lines to generate the simplest model
containing one single dominant 3D plane. Then we select another
vertical line and add it into an existing model to generate the mod-
els containing two planes. By repeatedly adding more vertical lines
into the existing structures, we can create models to describe
scenes containing multiple 3D planes, as demonstrated in Fig. 7.

The line segments from a horizontal vanishing direction provide
a strong indication of the existence of a 3D plane in their direction.
In Fig. 8a Line 1 defines a vertical strip which supports a 3D plane
in its corresponding direction, while Line 2 suggests another plane
in a different direction. After generating a number of 3D layout
models based on the extracted vertical lines, we evaluate how well
each one fits the collection of horizontal parallel line segments.

Let Lx be the candidate model which contains x planes. Accord-
ingly the image will be divided into x vertical image strips
S = {s1,s2, . . . ,sx}. For a strip sk, the supporting score for it belonging
to the vanishing direction Vi is computed as:

jðVi; skÞ ¼
P

lj2CðVi ;skÞjljjP
lj2CðskÞjljj

ð8Þ

where C(sk) is the set of line segments contained within the strip sk,
C(Vi,sk) is the set of lines belongs to the vanishing direction Vi with-
in the strip sk, and jljj denotes the length of a line lj. The direction V�k
with the maximum supporting score will be assigned to the whole
strip. Then the fitting score for this layout candidate is computed as:

KðLxÞ ¼
X
sk2S

j V�k; sk

� �
� AREAðskÞ ð9Þ
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Fig. 5. A demonstration of searching for the vanishing point along the horizontal
level (the line connecting the horizontal vanishing points). Image coordinates of the
two calculated orthogonal vanishing points are [�587,382,1]T and [1376,396,1]T,
respectively.
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where AREA(sk) is the area percentage of vertical strip sk in the im-
age. The model which produces the highest fitting score will be cho-
sen to describe the 3D layout of the imaged scene. In practice, if the
fitting score does not increase significantly (0.1 in our implementa-
tion) after adding more planes, we use the model of fewer planes to
represent the 3D layout for better efficiency. Fig. 8b shows the final
result of image segmentation, in which each color-coded vertical
strip corresponds to a different 3D plane.

4.1. Performance evaluation

We have tested this method on 100 images selected from the
ZuBuD building dataset [33]. We manually divided the images into
several vertical strips and labeled the ground truth for each one. In
total, 51 images have less than 10% misclassified pixels and 89
images have less than 20% misclassified pixels. On average, 84%
of the image areas are correctly labeled using the proposed meth-
od. Some example results are shown in Fig. 9. Compared with some
previously proposed monocular 3D recovery methods based on
statistic learning [17,16] or high-level characterization [24,6,21],
our approach is much simpler although it is capable of generating
satisfactory 3D models of urban scenes. The output of our approach
consists of a number of detected 3D planes which can be easily re-
ferred to perform viewpoint normalization.

5. Viewpoint invariant features

Within each extracted image strip which corresponds to a 3D
plane, we choose four line segments (two from the vertical direction
Fig. 4. Some example results of camera tilt rectification. The vertical edges are highlight
the tilt rectification.
P11P12; P13P14 and two from a horizontal direction P11P14; P12P13)
and compute their points of intersection to construct a quadrilateral
(P11,P12,P13,P14) (see Fig. 10). We then need to compute the homog-
raphy, H 2 R3�3, which relates the obtained quadrilateral in the 2D
image to a rectangle in the 3D world. Without loss of generality
we assume that the four corners of a rectangle in the 3D world are
denoted by homogeneous coordinates as follows:

X4 ¼

0 0 s � h s � h
0 h h 0
0 0 0 0
1 1 1 1

2
6664

3
7775 ð10Þ

where h is the height of a 3D rectangle and s is the ratio between its
width and height, as explained in Fig. 10. The mapping between 3D
world positions and 2D image coordinates satisfies the following
relations:

x4 ’ K½R1 R2 R3 t� � X4

¼ K½R1 R2 t�
0 0 s � h s � h
0 h h 0
1 1 1 1

2
64

3
75

¼ K½R1 R2 t�diagðs � h; h;1Þ
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2
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ed to demonstrate the effect. The building boundary edges will appear vertical after



Fig. 6. Example results of line grouping. The color coding corresponds to the membership assignment of the individual line segments.
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Denote Hs the transformation that maps the quadrilateral patch to a
unit square and substitute it into Eq. (11) to obtain:

Hs ¼ K½s � hR1 hR2 t� ð12Þ

Since the image coordinates of the four corners of the quadrilateral
are known, Hs can be solved in closed form. Note R1 and R2 are col-
umns of a rotation matrix and should have unit normal, and hence
the aspect ratio s can be recovered as follows:

s ¼
H1

s

���
���

H2
s

���
���

ð13Þ

where H1
s and H2

s are the first and second columns of matrix K�1Hs.
Once the aspect ratio s is recovered, we compute the warping
homography Hwarp which satisfies following relations:
Fig. 7. The process of generating multiple-plane 3D building layout candidates by
adding more vertical lines into the existing models.
x4 ¼ Hwarp

0 0 s � himg s � himg

0 himg himg 0
1 1 1 1

2
64

3
75 ð14Þ

The value of height himg controls the size and the resolution of the
warped image. We determine its value based on the size of the se-
lected quadrilateral as follows:

himg ¼
P11P12

�� ��þ P13P14

�� ��
2

ð15Þ

where jP11P12j denotes the length of a line segment P11P12. In the
case where several rectangles are detected in an image (each one
corresponding to a different 3D plane), we need to find a set of
appropriate height ratios to make them have the same universal
scale. Consider two quadrilateral (P11,P12,P13,P14) and
(P21,P22,P23,P24) detected in the image, we extend the horizontal
line segments P11P14; P12P13; P21P24; P22P23 towards the intersection
line Lintersect between the two planes, as shown in Fig. 10. Then
the relative height ratio is given as:

h1
img

h2
img

¼
P011P012

���
���

P021P022

���
���

ð16Þ

P011 ¼ P11P14 � Lintersect; P
0
12 ¼ P12P13 � Lintersect

P021 ¼ P21P24 � Lintersect; P
0
22 ¼ P22P23 � Lintersect ð17Þ

The computed homography Hwarp enables us to warp the original
image of a 3D plane back to a normalized front-parallel view where
the effects of 3D camera rotation and perspective are removed.
Fig. 11 shows some examples of such viewpoint normalization.
Obtaining the front-parallel view simplifies the task of recognizing
the same surface from different viewpoints.

On the normalized front-parallel views of building facades, the
viewpoint invariant features are computed in the same manner as
the SIFT scheme [3]. Considering each side of a building can be



Fig. 8. The line segments from horizontal vanishing directions provide important
cues for 3D understanding of the scene.

1 Selected buildings: 0005, 0007, 0010, 0013, 0015, 0025, 0039, 0040, 0041, 0043,
0051, 0055, 0056, 0062, 0077, 0086, 0092, 0094, 0101, 0108, 0110, 0115, 0118, 0123,
0142, 0149, 0157, 0184, 0186, 0190.
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approximated by a 3D plane, feature extraction is efficiently per-
formed in a single pass with respect to this plane. A complete view-
point invariant feature consists of the following components: (1) x
is its 2D coordinates in the original image; (2) x0 is its 2D position
in the normalized front-parallel view; (3) s is its corresponding
spatial patch scale; (4) g is the dominant gradient orientation of
the normalized patch; and (5) f is the 128-element descriptor.
The proposed viewpoint invariant feature is similar to [9,10] in
spirit, although our technique uses single images for both view-
point normalization and feature extraction.

5.1. Effects of inaccurate focal length

To calculate the aspect ratio s in Eq. (13), we need to pre-mul-
tiply the computed homography Hs by K�1. In this section, we
investigate the influence of error in the estimated focal length on
the performance of viewpoint normalization. Let f⁄ denotes the cal-
culated camera focal length, then we have

K��1Hs ¼
ashr11 ahr12 atx

ashr21 ahr22 aty

shr31 hr32 tz

2
64

3
75 ð18Þ

where the rij is the (i, j)th element of the camera rotation matrix and
a is the ratio between the true focal length ftrue and the estimated
focal length f⁄. Note if a = 1(f⁄ = ftrue), then the aspect ratio strue can
be correctly calculated as shown in Eq. (13). Since the none-zero
pitch and roll angles have been compensated in the step of tilt rec-
tification, we can approximate the rotation matrix of a tilt rectified
image as follows:

R �
cosw 0 �sinw

0 1 0
sinw 0 cosw

2
64

3
75 ð19Þ

Substituting the elements of this matrix into Eq. (18) we obtain

K��1Hs �
ash:cosw 0 atx

0 ah aty

sh:sinw 0 tz

2
64

3
75 ð20Þ

Then the ratio between the estimated aspect ratio s⁄ and the correct
aspect ratio strue is obtained as follows:

b ¼ s�

strue
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2cos2wþ sin2w

q

a
ð21Þ

It is noted that the ratio b is dependent on both the camera yaw an-
gle w and the focal length ratio a. We set w = 0�, 30�, 45�, 60� (0�
means the camera optical axis is normal to the building facade)
and the range of a is from 0.1 to 10, then the value of b is calculated
and shown in Fig. 12. It is noted that the estimation of aspect ratio s
is quite robust to small deviations of camera focal length. For
w = 45�, when f⁄ = 0.5 � ftrue (a = 2) and 1.5 � ftrue (a = 0.67), the
estimated aspect ratio s⁄ = 0.7906 � strue (relative error is
1 � 0.7906 = 20.94%) and 1.2704 � strue (relative error is
1.2704 � 1 = 27.04%), respectively. In Fig. 13, we show some results
of viewpoint normalization using the pre-calculated focal lengths
from the step of tilt rectification. As can be seen from the figure
the appearances of a same building are quite consistent in two indi-
vidually normalized views.
6. Performance evaluation

In this section we systematically evaluate the results of the pro-
posed viewpoint normalization. We used the benchmark urban
building image dataset – ZuBuD [33]. The dataset consists of multi-
ple images covering 201 buildings in Zurich city center. For each
building, five images were acquired at significantly varied view-
points, in various seasons, and under different weather and illumi-
nation conditions. Some of the images in ZuBuD dataset were taken
using cameras rotated 90� in roll, so we pre-rotated them 90� re-
versely before experiments.

For the purpose of our experiments we selected 30 buildings1

from the ZuBuD dataset where, for each building, we used the two
images taken over the widest baseline (the 1st and 5th views). These
images contain dominant planar structures, therefore we can easily
relate them via homography functions to facilitate quantitative eval-
uations. Some representative images are shown in Fig . 14, where
significant viewpoint changes can be observed. For each image pair,
a number of SIFT and viewpoint invariant features were extracted on
the original images and on the normalized front-parallel views,
respectively. Then, we followed the method described in [34] to de-
fine a set of ground truth matches. The extracted features in the first
image were projected onto the second one using the homography
relating the images (we manually selected 4 well-conditioned corre-
spondences to calculate the homography). A pair of features is con-
sidered matched if the overlap error of their corresponding regions is
minimal and less than a threshold [34]. We adjusted the threshold
value to vary the number of resulting feature correspondences.
6.1. Similarity evaluation

In the first experiment, we evaluate how well two correctly
matched features relate with each other in terms of the Euclidean
distance between their corresponding descriptors, their scale ratio,
and their orientation difference. For each image pair, we selected
200 correspondences and calculated the average Euclidean dis-
tance between their descriptors. The quantitative results are
shown in Fig. 15. It is noted from the results that the procedure
of viewpoint normalization will compensate the effects of perspec-
tive distortion and hence the resulting feature descriptors remain
more invariant when viewpoint changes. This is evident in the fact
that the average Euclidean distance between the matched features
deceased significantly from 0.6432 (the average value for 30 image
pairs) to 0.3651 after the procedure of viewpoint normalization.

For each pair of matched features, we also computed the differ-
ence between their dominant orientations and the ratio between
their patch scales. The results are shown in Figs. 16 and 17, respec-
tively. On a normalized front-parallel view, the camera viewing
direction is normal to the extracted 3D plane and the camera roll
angle becomes zero. The matched features extracted on such nor-
malized views should have the same dominant orientations and
scale ratios. In experiments, it’s observed that the dominant



Fig. 9. Some examples of image segmentation. The color-coded vertical strips
correspond to 3D planes in different directions.
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Fig. 10. Four line segments are chosen to construct a quadrilateral within each
extracted vertical strip. In case multiple 3D planes exist, we need to find an
appropriate height ratio to make them have the same universal scale.
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orientations and scale ratios are equal up to a very small tolerance
for all true correspondences after viewpoint normalization.

To qualitatively demonstrate the improvements, we show a
number of matched viewpoint invariant features on the normal-
ized images (see Fig. 18). Their corresponding scales and orienta-
tions are also displayed. It can be clearly observed from these
images that the matched viewpoint invariant features have similar
orientations and consistent scale ratios. The results demonstrate
that we can robustly make use of the scale and orientation infor-
mation associated with local image features to generate geometric
constrains between images. For viewpoint invariant features, a
Fig. 11. Some examples of viewpoint normalization. Note the perspective distortions are
window in the 3D world will also appear rectangular in the normalized image). In case m
make them have the same universal scale.
single correspondence is enough to completely determine a homo-
thetic function mapping two images. Using this simplified model, a
much smaller number of samples are required to generate a correct
hypothesis in the RANSAC iterations. Further efficiency evaluation
results are provided in Section 7.

6.2. Descriptiveness evaluation

Given a number of extracted image features, putative corre-
spondences are usually established by searching the matches with
minimum descriptor distances. In the second experiment, we dem-
onstrate that the performance of this step can be improved using
the viewpoint invariant features. To quantitatively evaluate the
performances, the following data was obtained:

(1) Within a number of putative matches which have the closest
descriptor distances – N1, we counted the number of correct
ones – N2.

(2) The ratio between N2 and N1 which provides the percentage
of correct correspondences in the putative set.

(3) The ratio between the closest Euclidean distance and the
second closest one. We only computed this ratio for those
correct correspondences.

The results are shown in Figs. 19–21, respectively. It is noted
that the descriptiveness of local features is improved in twofold
after the 3D viewpoint normalization. First, the putative match
sets contain more correct correspondences (Fig. 19) and higher
inlier percentages (Fig. 20). Therefore, more correct matches
can be found by searching the minimum descriptor distances.
Second, the gap between the closet distance and the second
removed in the warped front-parallel views of the building walls (e.g. a rectangular
ultiple planes are detected within the image, we set an appropriate height ratio to
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Fig. 13. Some results of viewpoint normalization using the focal lengths calculated in the step of tilt rectification. It is observed the appearances of the same building are quite
consistent in two individually normalized views.

Fig. 14. Example image pairs used for performance evaluations. These images all contain dominant planar structures, therefore we can easily relate them through a
homography function to facilitate quantitative experiments.
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closet one becomes wider (Fig. 21). It means that the best match
candidate significantly outperforms the second best one, thus it
is easy to identify a distinctive match. These improvements
enable us to establish robust matches over widely separated
views.

7. Wide baseline matching in urban environments

In this section we propose an effective framework for robust
wide baseline image matching in urban environments using the
extracted viewpoint invariant features. Given two images of an ur-
ban scene captured from widely separated viewpoints, which may
contain considerable repetitive structures (e.g. windows), our
objective is to establish robust feature correspondences between
them. This represents a challenging problem for two reasons. First,
the same building facade will appear very different when the cam-
era viewpoint is changed significantly. Using descriptors directly
computed on such wide baseline images, it is difficult to establish
correct matches. Second, man-made buildings usually contain
many structures of similar appearances. This can result in consid-
erable aliasing in the matching process. For example, it may be
possible to match any single window in the first image with any
window in the second one based on comparing local appearances.
Hence any solution to the above problem must be invariant to the
distortions introduced by the imaging process and be robust to ali-
asing within the scene.

We follow the commonly used image matching scheme of: (1)
establishing a set of putative correspondences based on matching
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Fig. 16. The average orientation differences between matched features for 30 selected image pairs. It is noted that the matched viewpoint invariant features have very similar
dominant orientations, and the average orientation difference is 3.17� (the average for 30 image pairs). In comparison, the average orientation difference of the matched SIFT
features is 23.84�.
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Fig. 15. The average Euclidean distances between the descriptors of matched features. For 30 image pairs, the average Euclidean distance between the matched features
deceased from 0.6432 to 0.3651 after the procedure of viewpoint normalization. Hence the matched features extracted on the normalized front-parallel views have more
similar descriptors.
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local descriptors, and (2) computing a global geometric constraint
to identify true correspondences across the views. Given a number
of extracted viewpoint invariant features, we first establish a set of
putative correspondences based on matching local descriptors. In
[3] a pair of features are considered matched if the ratio between
distances to the closest match and to the second closest is below
some predefined threshold. The ratio check scheme is justified be-
cause the correct match for a discriminative keypiont is often sig-
nificantly better (closer in the descriptor space) than the incorrect
ones [3]. However, in urban environments where many repetitive
structures (e.g. windows) exist, this criterion will falsely reject
correct matches since a feature cannot find a unique distinctive
match. In our proposed framework we accept multiple matches
to cope with repetitive urban structures. Two features are consid-
ered matched if the cosine of the angle between their descriptors fi

and fj is above some threshold d as [35]:

cosðfi; fjÞ ¼
f T
i :fj

kfik2kfjk2
> d ð22Þ
where k�k2 represents the L2-norm of a vector. In case multiple
matches meet the criterion, we keep the top 10 matches for further
verification. In urban environments where many repetitive struc-
tures (e.g. windows) exist, this criterion establishes matches be-
tween features having similar descriptors. This keeps the potential
correspondences extracted on the images of repetitive structures
for further geometric verification. After the tilt rectification (the
viewing direction is parallel to the ground plane and the camera roll
angle becomes zero) and the viewpoint normalization (camera
changes to a front-parallel view), the matched features will have
very similar gradient orientations (see Fig. 16). If the orientation dif-
ference between a pair of matched features is above some threshold
(5� in our implementation), the match is considered as an outlier
and removed from the putative set. However, Eq. (22) is a quite
loose criterion. The resulting putative set will contain a large per-
centage of outliers (90–95%), within which we need to identify
the correct correspondences.

After obtaining a set of putative feature matches based on the
matching of local descriptors, we need to refine the results and
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Fig. 17. The average scale ratios between matched features with the maximum and minimum annotated. It is shown that the matched viewpoint invariant features have very
consistent scale ratio. Given a single correctly matched features, the scale factor between two images can be robustly determined.

Fig. 18. Some examples showing the effect of viewpoint normalization. The matched viewpoint invariant features have very similar orientations and consistent scale ratios.
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to identify the true correspondences by imposing a geometric con-
straint. The RANSAC technique [29] is usually applied for this task.
The essence of the RANSAC algorithm is the generation of multiple
hypotheses by iteratively sampling the data and the verification of
each one by computing its corresponding supports. The number of
samples M required to guarantee a confidence q that at least one
sample is outlier free is computed as:

M ¼ lnð1� qÞ
lnð1� ð1� �ÞPÞ

ð23Þ

where � is the percentage of outliers and P is the number of obser-
vations required to generate a hypothesis per sample (in this case it
is the number of feature correspondences needed to compute the H-
matrix or F-matrix). As shown in Table 1, when the fraction of out-
liers is significant and the geometric model is complex, RANSAC
needs a large number of samples and becomes prohibitively expen-
sive. Since the effects of perspective transformation are not com-
pensated in the standard 2D feature schemes (e.g. SIFT), only the
2D image coordinates of extracted features can be used to generate
geometric constraints (e.g. F-Matrix or H-Matrix). Therefore, a num-
ber of SIFT feature matches are required to compute the F-Matrix (7
correspondences) or the H-matrix (4 correspondences). In compar-
ison, viewpoint invariant features contain enough information (i.e. x
and y coordinates, scale ratio, and orientation) to define a homo-
thetic constraint given a single feature correspondence as follows:

x
0
1 ¼

s1=s2 0 Dx

0 s1=s2 Dy

0 0 1

2
64

3
75x02 ð24Þ

where x01 and x02 are the 2D feature positions in the normalized
front-parallel views, s1 and s2 are their corresponding patch scales.
As shown in Figs. 16–18, the scale and orientation information asso-
ciated with local image features is robust enough to generate geo-
metric constrains between images. Using this simple geometric
model, a much smaller number of samples are needed to guarantee
the generation of a correct hypothesis.
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Fig. 19. For a number of putative correspondences which have the minimum descriptor distances N1, we counted the number of correct ones N2. Using viewpoint invariant
features, more correct matches can be found in the resulting putative set.
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Fig. 20. Inlier percentages in the putative sets given by the ratio between the number of correct matches (N2) and the number of putative matches (N1). The average inlier
percentage of 30 selected image pairs increased from 15.29% to 25.52% after the procedure of viewpoint normalization.
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To demonstrate such improvements an experiment was carried
out where we selected 200 ground truth correspondences to set up
the initial putative set. For each iteration of the experiment we in-
creased the number of false feature matches (outliers) into the
putative set and used the RANSAC algorithm to identify the inliers.
We set the maximum sampling number at 10000 and confidence
parameter q at 0.95. For each putative set (30 sets in total) we
run RANSAC for 10 times and compute the average sampling num-
ber. The results of this procedure are shown in Table 2. Here we
have implemented a H-constraint for SIFT, whereas for the view-
point invariant features, we used the geometric constraint de-
scribed in Eq. (24).

It is noted that the required number for RANSAC iterations de-
creased significantly due to the use of the simplified geometric
model. Moreover, RANSAC can successfully return the true corre-
spondences from a putative feature set containing a high percent-
age of outliers. As shown in Table 2, the true correspondences can
be identified from a putative set containing 98% outliers within a
few hundred iterations. This is an important observation. It means
we can set a weak criterion (Eq. (22)) to establish a large number of
putative matches (i.e. containing a large number of outliers) and
then effectively impose the simplified geometric constraint de-
scribed in Eq. (24) to identify the correct ones. However, this can-
not be achieved using the standard SIFT features since only the 2D
feature coordinates can be used to generate geometric constraints
(F-Matrix or H-Matrix). If the putative set contains a high percent-
age of outliers (more than 80%), RANSAC needs a large number of
iterations to return the true correspondences (see the required
sampling number using SIFT in Table 2).

7.1. Experiments

First we quantitatively evaluate our proposed scheme for fea-
ture matching across variable view angles. We used the image se-
quence covering the 0016 building in the ZuBuD dataset (see
Fig. 22) for this task. The first image was chosen as the reference
frame and the other images were matched against it. The other fea-
ture schemes we compared included SIFT [3], Harris-Affine [4,34],
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Fig. 21. The average ratio between the closest distance and the second closest one. Low distance ratio means the best match is significantly better than the second best one,
thus a distinctive match can be easily found for a feature. The average distance ratio is 0.7948 for the standard SIFT features, in comparison the ratio decreases to 0.6624 using
the viewpoint invariant features.

Table 1
The theoretical number of samples required for RANSAC to ensure 95% confidence
that one outlier free sample is obtained for the geometric constraint estimation. The
actual required number is around an order of magnitude more.

Outlier ratio 40% 50% 60% 70% 80%

Our method (1 point) 4 5 6 9 14
H-matrix (4 point) 22 47 116 369 1871
F-matrix (7 point) 106 382 1827 13696 234041

Table 2
The experimental number of trials to ensure RANSAC selects, with 95% confidence, an
outlier free sample for the geometric constraint estimation. It is noted that the
required sample number decreased significantly using viewpoint invariant features.
Moreover, RANSAC can successfully return the true correspondences from a putative
feature set of high outlier percentage (98% outliers contained). This is particularly
advantageous for image matching in urban environments where lots of respective
structures (e.g. windows, doors, bricks) exist.

Outlier ratio Viewpoint invariant features SIFT

40% (133 outliers) 5.5 44.2
60% (300 outliers) 9.4 155.8
80% (800 outliers) 22.4 2309.8
90% (1800 outliers) 37.6 > 10000
95% (3800 outliers) 74.8 > 10000
98% (9800 outliers) 212.2 > 10000

Table 3
The quantitative results of wide baseline matching, corresponding to the images in
Fig. 24. (M1/M2 – the numbers of extracted features on image 1 and 2 respectively, P
– the number of putative correspondences, I – the number of inlier correspondences
returned by the RANSAC technique, C – the number of correct ones). Using SIFT
features we need to make sure the resulting putative sets have a good portion of
inliers (more than 20%), otherwise RANSAC can’t return the correct correspondences
after reaching the maximum number of iterations. Setting a strict criterion will
sacrifice a large number of true correspondences (see the numbers of generated
putative matches for comparison).

Image pairs SIFT Viewpoint invariant features

a 993(M1)/1009(M2) 1401(M1)/1321(M2)
15(C)/33(I)/118(P) 125(C)/125(I)/2313(P)

b 1228(M1)/1308(M2) 1007(M1)/1198(M2)
3(C)/22(I)/124(P) 122(C)/126(I)/1954(P)

c 2021(M1)/2629(M2) 2502(M1)/3433(M2)
0(C)/35(I)/223(P) 64(C)/64(I)/1378(P)

d 1936(M1)/3223(M2) 2721(M1)/3090(M2)
0(C)/26(I)/135(P) 46(C)/48(I)/1381(P)

e 2595(M1)/2540(M2) 3241(M1)/2841(M2)
15(C)/22(I)/180(P) 298(C)/298(I)/2342(P)

f 3282(M1)/3064(M2) 3501(M1)/2972(M2)
4(C)/59(I)/320(P) 103(C)/104(I)/1894(P)

g 2830(M1)/1698(M2) 2910(M1)/2508(M2)
0(C)/21(I)/139(P) 98(C)/98(I)/2421(P)

h 4266(M1)/3198(M2) 4610(M1)/4111(M2)
0(C)/18(I)/194(P) 81(C)/89(I)/1711(P)

i 1974(M1)/1295(M2) 1810(M1)/1405(M2)
11(C)/26(I)/211(P) 54(C)/59(I)/1525(P)
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Hessian-Affine [34], Maximally Stable Extremal Regions (MSER)
[1], Edge Based Region (EBR) [5], and Intensity Based Region
(IBR) [5]. The features were individually extracted on each single
image and their characteristics were described using the 128-vec-
tor SIFT descriptor. A number of putative matches were initially
established by following the criterion described in Eq. (22) (d
was set at 0.9). Then the inlier correspondences were automatically
identified by using the RANSAC technique. For the viewpoint
invariant features, we implemented the homothetic mapping con-
straint described in Eq. (24). For other feature schemes, we imple-
mented the H-matrix mapping constraint. The final correct
matches were manually counted and the results are summarized
in Fig. 23.

Using the features extracted on the normalized front parallel
views, a good number of correct feature matches can still be found
under significant view angle changes (between the 1st and 5th
views). It is noted that the number of matches dropped signifi-
cantly when the viewpoint was changed from the 2nd image to
the 3rd image. This is because a large area of the reference frame
(the 1st image) is not covered in the 3rd image. The second best
feature detector is SIFT. Other detectors either fail or find a very
small number of matches between the images taken from different
viewpoints.

Next we demonstrate the advantages of the proposed feature
matching scheme by applying it to some difficult wide baseline
matching tasks. We tested the proposed method on the 1st and
the 5th views of buildings contained in the ZuBuD dataset, which
have the largest viewpoint changes (in many cases the view angles
changed more than 90�). We first found a number of putative cor-
respondences based on Eq. (22) (the threshold d was set at 0.9).



Fig. 22. The image sequence of the 0016 building in the ZuBuD dataset. Images were taken of the same building from changed viewpoints.
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Fig. 23. The performance of various feature techniques for image matching over
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Fig. 24. Some example results of wide baseline feature matching. Significant viewpoint
using SIFT and the right column is the results of using our proposed viewpoint invariant f
over widely separated images and to cope with repetitive structures in urban environm
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Then we removed outliers by checking the orientation differences.
Finally we applied the RANSAC algorithm to impose the constraint
described in Eq. (24) to identify inliers. The number of inlier corre-
spondences and correct ones were counted manually. For compar-
ison, we applied the SIFT feature scheme to the same image pairs. A
set of putative matches were firstly established. In this step, we
need to set a strict criterion to make the resulting putative sets
have a good portion of inliers (more than 20%), otherwise RANSAC
typically fails to return the correct correspondences after reaching
the maximum number of samplings (see Table 2). In experiments,
we applied the ratio check scheme [3] and set the ratio threshold at
0.85. Setting a strict matching criterion (ratio check [3]) will ini-
tially sacrifice many true correspondences (see the numbers of
generated putative matches in Table 3 for comparison). Then we
used RANSAC to compute the correct H-matrix to identify inlier
correspondences.

Out of 201 buildings, we get 185 (92.04%) good matching re-
sults (more than 20 correct matches can be identified) using the
(c)

(f)

(i)
changes can be observed in the image pairs. (The left column shows the results of

eatures). Using viewpoint invariant features we are able to establish correct matches
ents.



Fig. 25. Some failed matching results. (a) A large portion of building facade is blocked, thus appearance-based feature techniques cannot find correct correspondences. (b)
Due to significant viewpoint change a dominant plane in the first image only appears in a small area of the second view.
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viewpoint invariant features. In comparison, we only get 127 good
matching results (62.87%) using SIFT. Some representative match-
ing results are shown in Fig. 24 with the quantitative results pro-
vided in Table 3. It is noted that SIFT features only work well
when the viewpoint separation between two image centers is rel-
atively small compared to the distance between the camera and
the observed object (e.g. building 0161–0171 where images were
captured at a distant position, thus the appearance of a building
would not change too much when camera viewpoint is slightly
moved).

In total, there are 16 failed cases.2 Some examples are given in
Fig. 25. Building facades sometimes are blocked by foreground ob-
jects such as trees, signs, people, and other clutters in urban environ-
ments. When the blockage is significant, appearance-based feature
technique will fail to identify correct image correspondences, as
shown in Fig. 25a. Another reason for failure is that when camera
viewpoint is significantly changed, a dominant planar structure in
the first image might appear in a small region in the second view,
as shown in Fig. 25b. In these cases viewpoint invariant features can-
not produce satisfactory matching results.

To summarize, the proposed viewpoint invariant feature
achieves a two-fold improvement in terms of wide baseline match-
ing in urban environments. First, the procedure of viewpoint nor-
malization will compensate for the effects of perspective
distortion to ensure the resulting feature descriptors remain more
invariant when viewpoint changes, as shown in Fig. 15. Using the
improved local descriptors we can establish correct correspon-
dences over widely separated images. Second, the scale and orien-
tation information associated with viewpoint invariant features
can be robustly used for effective geometric verification (see
Figs. 16 and 17) to deal with visual aliasing in urban scenes. This
makes viewpoint invariant features particularly suitable for image
matching in urban environments where lots of repetitive struc-
tures exist.

8. Conclusions

In this paper we proposed an effective method for extracting
and matching viewpoint invariant features from single images.
The key idea is to use the 3D geometry as an additional cue to im-
prove the performance of 2D features. Given an image taken in ur-
ban environments, we present an effective method to recover its
3D layout from the extracted line segments. Then the viewpoint
invariant features are extracted on the normalized front-parallel
views of 3D building facades. In this work we systematically eval-
uated the performance of this novel feature. First, it is very robust
against perspective distortions and viewpoint changes. Second, it
contains robust local patch information (e.g. scale, orientation)
2 Failed cases: buildings 0002, 0003, 0006, 0017, 0018, 0058, 0098, 0107, 0109,
0112, 0114, 0119, 0121, 0122, 0199, 0200.
which enable efficient feature matching. Compared with some pre-
vious works on combining 2D feature with 3D geometry, our meth-
od works completely on single images and hence is more widely
applicable. We have demonstrated the suitability of these novel
features in the context of wide baseline matching tasks. In the fu-
ture, we will further extend the method for images taken in more
complex and larger scale environments. Eventually the method
will be used as an important component in applications such as
user navigation, augmented reality, and intelligent robotics in ur-
ban environments.
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