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We present a novel user independent framework for representing and recognizing hand postures used in
sign language. We propose a novel hand posture feature, an eigenspace Size Function, which is robust to
classifying hand postures independent of the person performing them. An analysis of the discriminatory
properties of our proposed eigenspace Size Function shows a significant improvement in performance
when compared to the original unmodified Size Function.

We describe our support vector machine based recognition framework which uses a combination of
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1. Introduction

Gestures are a form of body language or non-verbal communi-
cation. Stokoe and William (2005) defined three gesture aspects
that are combined simultaneously in the formation of a particular
sign; what acts, where it acts, and the act. These aspects translate
into building blocks that linguists describe; the hand shape, the po-
sition, the orientation and the movement. Using the four compo-
nents Stokoe uses to represent a gesture (Stokoe and William,
2005), hand gestures can be classified as either hand postures
(hand shape and orientation) or temporal gestures (movement
and position) (Wu et al., 1999). Since hand postures not only can
express some concepts, but also can act as special transition states
in temporal gestures, recognizing hand postures or human pos-
tures is one of the main requirements in gesture recognition. In this
work, we propose a novel hand posture feature, an eigenspace Size
Function, which is robust to classifying hand postures independent
of the person performing them.

1.1. Related work

To describe the shape of the hand, a number of methods for 2D
shape representation and recognition have been used. These in-
clude segmented hand images, binary hand silhouettes or hand
blobs, and hand contours. Cui and Weng (2000) used normalized
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segmented hand images as features and reported a 93.2% recogni-
tion rate on 28 different signs. Similarly Kadir et al. (2004) use nor-
malized segmented hand images and greedy clustering techniques
to recognize hand shapes with 75% accuracy. Principal component
analysis (PCA) has been shown to be successfully applied to ges-
ture data to reduce dimensionality of the extracted features. Deng
and Tsui (2002) apply a two-layer principal component analysis/
multiple discriminant analysis scheme. A non-user independent
experiment showed a recognition rate up to 70% on 110 signs.
Imagawa et al. (2000) calculate an eigenspace on segmented hand
images and signs are then represented by symbols which corre-
spond to clusters. Results show a recognition rate of 92% on 33
signs. Patwardhan and Roy (2007) uses a predictive Eigen-Tracker
to track the changing appearance of a moving hand. The algorithm
obtains the affine transforms of the image frames and projects the
image to the eigenspace. An accuracy measurement of 100% is re-
ported from tests using 80 gestures, although 64 of the test ges-
tures where used in training and gestures used were very simple
and distinct. Holden and Owens (2003) present a topological for-
mation shape representation that measures the fingers only. A rec-
ognition rate of 96% was achieved when classifying four distinct
hand shapes.

Contour based features have also been shown to perform well in
hand posture recognition. Huang and Huang (1998) used Fourier
descriptors of the hand contour, a Hausdorff distance measure
and graph matching algorithms within a 3D Hopfield neural net-
work to recognize signs with 91% accuracy. Al-Jarrah and Halawani
(2001) extracted features by computing vectors between the
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contour’s center of mass and localized contour sequences. Recogni-
tion of 30 gestures is reported with an accuracy of 92.55%. Hand-
ouyahia et al. (1999) presented a sign language alphabet
recognition system using a variation of Size Functions (Uras and
Verri, 1995) called moment based Size Functions, which recog-
nized 25 different signs with 90% accuracy.

Starner et al. (1998) show that geometric moments perform
well in hand gesture recognition. A head mounted camera tracks
the hands using skin color. Hand blobs are extracted from video se-
quences and a 16 element geometric moment feature vector is
used to describe hand shape. A recognition rate of 98% for sign lan-
guage sentences is reported. Tanibata et al. (2002) use a set of six
geometric moments to recognize Japanese Sign Language, although
it was reported that recognition performed well, no recognition
accuracy was specified. Bauer and Hienz (2000) describe a German
sign language recognition system where hand shape feature exper-
iments showed that the area of the hands performed well as a fea-
ture. It was reported that the system achieved an accuracy of 75%
when only taking hand area into account. All training and test data
was recorded from the same subject performing signs and a recog-
nition rate of 94% and 91.7% was reported for systems based on a
52 and 97 sign lexicon respectively.

Although the methods described above report high recognition
accuracy, most performance measures where results of signer
dependent experiments carried out by testing the system on sub-
jects that were also used to train the system. Analogous to speaker
independence in speech recognition, an ideal sign recognition sys-
tem should give good recognition accuracy for signers not repre-
sented in the training data set. Farhadi et al. (2007) propose a
signer independent ASL transfer learning model to build sign mod-
els that transfer between signers. Results show their method
achieved classification accuracy of 67% when classifying signs from
a 90 word vocabulary, but their method does not explicitly deal
with hand posture recognition. User independent hand posture
recognition is particularly challenging as a user independent sys-
tem must cope with geometric distortions due to different hand
anatomy or different performance of gestures by different persons.
Licsr and Szirnyi (2005) develop a hand gesture recognition system
with interactive training. Their proposed solution to user indepen-
dent hand posture recognition system is based around the idea of
an on-line training method embedded into the recognition process.
The on-line training is interactively controlled by the user and
adapts to his/her gestures based on user supervised feedback
where the user specifies if detected gesture were incorrectly clas-
sified. This method is shown to work very well in the scenario
where the hand posture recognition system is being used as a
HCI interface for a camera-projector system allowing users to di-
rectly manipulate projected objects with the performed hand ges-
tures. While it is feasible to implement on-line retraining of
gestures based supervised user feedback in this HCI scenario,
implementing this model in an automatic sign language recogni-
tion system would make the performance of sign language un-nat-
ural and thus is not a feasible option for this work. Triesch and von
der Malsburg (2002) proposed a user independent hand posture
recognition system using elastic graph matching which reported
a recognition rate of 92.9% when classifying 10 hand postures.
The elastic graph matching method showed very promising results
but was reported to have a high computational complexity with
the method requiring several seconds to analyze a single image.
Just et al. (2006) recognize the same of hand postures used by
Triesh et al. using the Modified Census Transform with a recogni-
tion rate of 89.9%.

It is the goal of this work to develop an accurate user indepen-
dent hand posture recognition system which can classify hand pos-
tures in real time allowing the classification of hand image from
continuous video shots.

2. Hand features

In this work we propose a pattern recognition framework to
classify segmented hand images. A number of works have pro-
posed techniques for the segmentation of hands from an image
sequence. Some hand segmentation techniques include the work
of Yang et al. (2009), Holden et al. (2005), Cooper and Bowden
(2007) where hand segmentation is carried out using motion
and skin color cues (see Fig. 1). These methods produce a binary
image, or hand contour, of the hand and experiments show the
methods perform robustly in the domain of sign language feature
extraction.

Based on the fact that there exists a number of robust hand seg-
mentation algorithms which can be used to produce a binary im-
age of the hand, we propose a technique which can robustly
recognizes hand postures using the binary image of the hand.

In this work, we will show how our proposed hand shape fea-
tures are computed from a segmented hand contour. A thorough
evaluation of the discriminatory properties of our proposed fea-
tures will be carried out as well as an evaluation of our proposed
recognition framework. Experiments will be carried out using dif-
ferent hand segmentation methods in order to evaluate our pro-
posed hand shape features.

3. Shape representations

Appearance-based gesture recognition requires an effective fea-
ture set that can separate the hand shapes (Pavlovic et al., 1997).
This work presents a method of hand shape representation com-
puted from the raw binary image and external contour extracted
from the image. We propose a novel eigenspace Size Function
shape representation which is calculated from the external con-
tour. A Hu moment feature set is also generated from the raw bin-
ary image. Accurate shape representations must be able to identify
similar shapes and distinguish between different shapes, therefore
performance tests on different variations of the proposed shape
representation will be carried out with the goal of achieving the
optimal hand shape representation.

3.1. Hu moments

Hu moments (Hu, 1962), which are a reformulation of the non-
orthogonal centralized moments, are a set of transition, scale and
rotation invariant moments. The set of Hu moments,
I={hL, 1, Is, 14, Is, I, I}, are calculated from the hand contour.

3.2. Size Functions

Size Functions are integer valued functions which represent
both qualitative and quantitative properties of a visual shape (Uras
and Verri, 1995).

For a given contour, extracted from the binary image of a hand,
let G be a graph whose vertices are the points of the contour. Let ¢,
the measuring function, be a real-valued function defined on the

(a) (b)

Fig. 1. Examples of different hand segmentation results from (a) Yang et al. (2009)
(b) Cooper and Bowden (2007) and (c) Holden et al. (2005).
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vertices of G (see Fig. 2a). The Size Function ¢, induced by the mea-
suring function ¢, is an integer valued function defined on a real
pair (x,y) according to the following algorithm:

1. Find the subgraph G,<, of G determined by the points p with
@(p) <y (see Fig. 2b).

2. Identify the connected components of G,<, (see Fig. 2b).

3. The Size Function ¢, at the point (x,y) equals the number of
connected components of G,., which contain at least a vertex
with G, (see Fig. 2c-e);

When identifying the number of connected components of the
graphs G,<, and G,y, it should be noted that the graphs are circu-
lar. Therefore, in Fig. 2d, there exists three connected components
of G,<, which contain at least a vertex with G,<, and not four
which would be the case if the graphs where not circular. This en-
sures that the number of connected components will remain the
same independent of the start and end point for which the measur-
ing function was computed.

The theory of Size Functions does not identify a formal tool to
resolve a suitable measuring function. Therefore, a suitable mea-
suring function must be found heuristically. As defined by Stokoes’
model (Stokoe and William, 2005), a hand posture is made up of
the shape and orientation of the hand. Thus, for the application
of classifying hand postures performed in sign language, the mea-
suring function chosen must be sensitive to orientation changes of
the hand (although a suitable classifier should not be sensitive to
minor changes in hand orientation). With Stokoes model in mind,
the measuring function model proposed in this work utilizes a
family of measuring functions indexed by the angle 0e 071%7
2504, (Ne = 1) ,%,—g}. where N is the total number of rotation an-
gles used. Each measuring function ¢,(p) is a function which ro-
tates p about the center of gravity of G and measures the
distance between the horizontal axis and a point p on the graph
Gy. The horizontal axis is a line which passes through the minimum
point of Gy. For every 0, a Size Function ¢, is generated, resulting in
a set of Size Functions I'y, = {€p1, ly2, - . ., Lyn, }. The sensitivity of
the system to orientation can then be controlled by means of
adjusting No. As Ne increases, the number of rotations and Size
Functions grows and the margin between each 0 decreases. As
the margin between each 6 decreases, the effect small changes in
orientation has on the final classification increases.

To illustrate the concept of Size Functions and their application
in analyzing hand postures used in sign language, a specific exam-
ple will be used. For this example, let Ng = 4. The hand contour is
rotated to each of the four 6 values (see Fig. 3(a)), the measuring
function is applied to each of the four rotated contours (see
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Fig. 2. (a) Graph of some measuring function ¢ (b) Shaded region = ¢ <y. (c)
Shaded region = ¢ < x. (d) Graph depicting ¢ <y and ¢ < x. (e) Graph of Size
Function I, with current I,(x,y) = 3.
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Fig. 3. (a) 0 rotation applied to hand contour (b) measuring function ¢, applied to
hand contour (c) Size Function ¢, generated.

Fig. 3b) and the Size Functions are then generated from each of
the measuring functions (see Fig. 3c).

3.3. PCA and Size Functions

In order to quantify the shape information held in a Size Func-
tion, we propose a more robust method of shape representation, as
compared to the unmodified normalized Size Function representa-
tion used in (Uras and Verri, 1995; Handouyahia et al., 1999). We
make an important improvement to the Size Function technique
by developing a Size Function feature which is more robust to
noise and small changes in shape which occurs from different peo-
ple. Our technique is a method of incorporating eigenspace infor-
mation into the hand posture feature using principal component
analysis (PCA). PCA computes a linear projection from a high
dimension input space to a low dimensional feature space. It is a
statistical technique used for finding patterns in data of high
dimensions. Since we are looking for similarities and differences
between two Size Functions, we can utilize PCA in order to reduce
the influence of noise, and small variations in shape by different
persons, and highlight portions of the Size Function useful for user
independent hand posture recognition.

To calculate the principal components of a Size Function, the
Size Function is described as an N x N matrix X, = ¢,. The vector
u is the empirical mean of X, (see Eq. (1)), By is the mean sub-
tracted N x N matrix (see Eq. (2)) and C, is the covariance matrix
of B, (see Eq. (3)).

1 N
uy[m] = N ;X(,[m,n] 1)
where m and n refers to the row index and column index of the

N x N matrix respectively and N refers to the width and height of
the Size Function.

By =Xy — [up, Uy, . .., Uy (2)
1
Co= BB 3
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Fig. 4. Size Functions reconstructed with varying numbers of components.

The eigenvectors and eigenvalues of C, are calculated according
to Eq. (4) were v is the eigenvector and w is the eigenvalue associ-
ated to the eigenvector.

C()‘V =wv (4)

The columns of the eigenvector matrix V, and the eigenvalue
matrix W, are sorted in order of decreasing eigenvalue. This re-
cords the components in order of significance, the eigenvector with
the highest eigenvalue being the principal component. Therefore the
first column of V,, a 1 x N vector, corresponds to the principal
component vector.

Fig. 4 shows a Size Function which was reconstructed with
varying numbers of components. It should be noted that the recon-
structed Size Functions are not used as features, we show the
reconstructed Size Functions in order to illustrate the effect PCA
dimensionality reduction has on the Size Function. The eigenvec-
tors used to reconstruct the Size Functions are the features we
use to recognize hand shapes.

4. Data collection

In the experiments we describe in this work, we evaluate our
techniques using hand shape videos and images from two separate
data sets.

4.1. Jochen-Triesch static hand posture database

The first data set is a benchmark database called the Jochen Tri-
esch static hand posture database Triesch and von der Malsburg,
2002. We utilize this data set in order to evaluate our hand posture
recognition framework and directly compare our system to other
hand postures recognition research. The database consists of 10
hand signs (see Fig. 5) performed by 24 different subjects against
different backgrounds. All images are greyscale images and the
backgrounds are of three types: uniform light, uniform dark and
complex. In our system, posture recognition is carried out indepen-
dent of hand segmentation. Neither motion or color are available in
this data set, but,in general, color and motion are two important
cues needed to segment the hands from complex backgrounds
and this is acknowledged by Triesch and von der Malsburg
(2002). Since there is no motion or color cues available, we do
not consider the hand images with complex backgrounds. It is still
possible to make a like with like comparison with other research in
this area as most results in the literature report recognition rates
achieved on the uniform background images independent of com-
plex background images. In this data set, we extract contours from
each image by segmenting the image using Canny edge detection

!

and extracting the contour from the edge detected image using a
border following algorithm (Suzuki and Be, 1985) (see Fig. 6).

4.2. ISL data set

The second data set is an Irish sign language (ISL) data set con-
sisting of 23 hand signs (see Fig. 7), from the Irish sign language
alphabet, performed by 16 different subjects wearing colored
gloves. A total of 11040 images were collected. Each subject per-
formed the 23 letters an average of three times. During the perfor-
mance of each letter, a video sequence of 10 image frames was
recorded and labeled in order to test the performance of our sys-
tem when classifying hand images from continuous video shots.
When performing a particular sign, subjects followed visual
instructions from official Irish Deaf Society materials with the
aim of ensuring natural performance of postures. A random selec-
tion of the images were validated by a certified Irish sign language
teacher to ensure subjects had performed signs correctly.

All hand posture images were recorded with subjects asked to
perform the postures as naturally as possible. Due to the natural
performance of the hand postures, there was a large variance in
the type of hand postures performed for each sign. Variations in
performance were only limited by that of sign language limitations
(i.e. a large variation in orientation may give a posture a different
meaning and thus was not allowed, as instructed by a certified Ir-
ish sign language translator). Fig. 8 shows a visual example of a
number of different ways the ‘D’ sign was performed by different
subjects.

In this data set, tracking of the hands is performed by tracking
colored gloves (see Fig. 9a) using the mean shift algorithm
(Comaniciu et al., 2000). To extract the external contour of the
hand (see Fig. 9c) we segment the glove region in the image, using
a back projection image computed during the mean shift algorithm
(see Fig. 9b), and extract the external contour of the hand blob
using a border following algorithm (Suzuki and Be, 1985).

The back projection image, which is used to find the hand con-
tour in an image, typically can hold varying levels of noise. The
noise in a back projection image refers to segmentation noise

v v IV

Fig. 6. Example of contour extraction from Y and C hand postures from Triesch data
set.

wabed

Fig. 5. The ten postures of the Triesch data set, performed by one subject against uniform light background.
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Fig. 7. 23 Static letters of the ISL alphabet (the signs for “j”,“x” and “z” cannot be performed statically and were not further considered).

Fig. 8. Example of variation in performance of the ‘D’ sign.

(c)

Fig. 9. Feature extraction from image: (a) original image, (b) back projection image,
(c) extracted contour.

where white pixels are not part of the hand region, or where black
pixels are part of the hand region. Noise in a back projection image
can produce hand contours which hold noise. Fig. 10 shows an
example of some noisy back projection images, and the corre-
sponding contours extracted from the images, which were used
during experiments discussed in later Sections.

In our experiments, the systems ability to deal with noise is
tested due to the presence of typical segmentation noise in the
back projection images.

5. Evaluation of discriminatory properties

In this section we perform experiments on different variations
of Size Functions to find the optimal performing features for dis-
criminating between hand postures. We also perform experiments
to evaluate the discriminatory properties of combining Hu mo-
ments with our Size Function features and examine whether or
not these features offer complementary information about hand
posture patterns.

5.1. Size Functions and PCA performance

To examine how the eigenspace representation of a Size Func-
tion performs at discriminating between correct and incorrect
signs performed by different people, an experiment was carried
out to compare the eigenspace Size Function and the unmodified
Size Function representations.

Fig. 10. Example of noisy back projection
contours.

images and corresponding noisy

We evaluate our proposed features on the Jochen Triesch static
hand posture data set and on the ISL data set. For each hand sign in
the data set we store a single hand image as a control image. The
remaining set of hand images are stored as test images. We evalu-
ate our proposed features by computing the distance between each
control Size Function representation and all test contour Size Func-
tion representations.

We generated ROC graphs for each of the Size Function repre-
sentations by calculating a confusion matrix from the control con-
tour and test shape distance comparisons.

We define the function D() as the distance measure computed
between the control contour k and the test contour L This proce-
dure is carried out for both the eigenspace Size Function and the
unmodified Size Function representations. To generate multiple
points on the ROC graph, a confusion matrix is calculated from dif-
ferent threshold values T(0 < T < +o0).

Firstly, we computed a ROC graph for the unmodified Size Func-
tion representation where the distance between two unmodified
Size Functions is calculated by Euclidean distance measure
according to Eq. (5). Results of this test produced a AUC measure-
ment of 0.735 and 0.756 for the ISL data set and the Triesch data set
respectively.

DY) = [ S S () T 5)

A ROC graph was then computed for the eigenspace Size Func-
tion representation. To measure the distance between two eigen-
space Size Functions, we generate the eigenvectors and
eigenvalues for that Size Function, and choose only the first P
eigenvectors, resulting in a matrix M, with dimensions N x P. A
Euclidian distance measure is then used to compare two eigen-
space Size Functions as shown in Eq. (6). Results of this test pro-
duced an AUC measurement of 0.789 and 0.801 for the ISL data
set and the Triesch data set respectively.

D (M*,M') = \/ZZO b oD o(Milp.il = Mifp.il)” (6)

A further modification to the eigenspace Size Function repre-
sentation is proposed. We propose a scaling of the eigenvectors
of each eigenspace Size Function based on a variance measure of
their associated eigenvalues. We first calculate a weighting factor
for each eigenvector x associated with the Size Function indexed
by 0 according to Eq. (7).
_ Wylx]
=

> p—oWolD]
where W, is the eigenvalues corresponding to the eigenvectors M,
calculated from the Size Function (.

A second weighting factor is then calculated for each set of
eigenvectors associated with the Size Function indexed by 6, such

that the Size Function with the greatest total variance gets a great-
er weighting according to Eq. (8).

o S Wolp)
NS o Walp)

@p(X)

(7)

)
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The weighted eigenspace Size Function { is then computed
according to Eq. (9).

Colp, 1] = Mop, i] x @y(p) x @, 9)

A Euclidian distance measure between the weighted eigenspace
Size Function is then calculated using Eq. (10).

) =SS S ()

A ROC analysis of the proposed weighted eigenspace Size Func-
tion produced an AUC measurement of 0.809 and 0.823 for the ISL
data set and the Triesch data set respectively. The results of the
experiment on the ISL data set show the weighted eigenspace Size
Function has a total improvement of 7.4% when compared to the
unmodified Size Function while results of the experiment on the
Triesch data set show a total improvement of 6.7%. Fig. 11 shows
the ROC graphs associated with the AUC measurements reported
above.

(10)

5.2. Hu moments performance

Along with the eigenspace Size Function representation of a
hand, Hu moments of a segmented binary hand image are used
as a feature to describe the posture of a hand. To test the suitability
of Hu moments as a hand posture feature, a similar experiment to
the one described in Section 5.1 was carried out. Hu moments were
extracted from the control and test images, described in Section
5.1. The distance between each of the control Hu moments and
the test Hu moments were calculated from the total absolute dif-
ference between each augmented moment described in (11).
Where the augmented moment is a metric implemented in the
OpenCV library (Intel-Corporation, 2000) and is described in (12).

A ROC graph was then generated for the Hu moments using a
method similar to the method described in Section 5.1. The AUC
for the ROC graph was 0.796 and 0.852 for the ISL data set and
the Triesch data set respectively.

7
Z ‘AHk
1
sign(Hy (i) x log(Hx(1))

5.3. Combining Size Function and Hu moments

D™ (H,, H)) — A, ()]

An (i) =

The ultimate goal of the system is to find the best possible clas-
sification scheme for recognizing hand postures. We have shown

1
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that both eigenspace Size Functions and Hu moments features
can sufficiently discriminate between positive and negative exam-
ples with an AUC of 0.809 and 0.796 respectively for the ISL data
set and an AUC of 0.823 and 0.852 respectively for the Triesch data
set.

The classification system designed in this work uses a combina-
tion of different features, therefore a measure of the performance
of the combination of eigenspace Size Functions and Hu moments
was carried out.

The boolean expression defined in Eq. (13) is used to determine
the combined classifier’s output. A true result corresponds to the
classifier predicting that hands H, and H, are of the same hand pos-
ture category.

W (Hi, H)) = D™ (H, Hy) (13)

To examine the combined performance of the two measure-
ments, an exhaustive grid search on the threshold values T, and
Ty, the threshold for the Hu moments measurement and the
threshold for the Size Function measurements respectively, was
carried out. For each {Tn,,T¢} a confusion matrix was computed
on the output of Eq. (13) when applied to the set of hand images
used in Sections 5.1 and 5.2. We then choose the confusion matrix
with the best True:False ratio (TFgq,) described in Eqs. (14) and
(15).

< T,m N D({kv Cl) < T5f

P FP
TPrae = ToralPositi ves’ FPrae = TotalNegatives (14)
TFRatio _ TPRute + (1 - FPRate) (15)

2

For both data sets, results of the grid search showed that the
best True:False ratio computed was better than that of any points
on the ROC graphs computed from the individual Size Function fea-
tures and Hu moment features respectively. Fig. 12 shows the ROC
graphs from the experiment and Table 1 details the best True:False
ratios for the different features. It can be concluded from the re-
sults of this experiment that, based on the data from both data sets,
the combination of the eigenspace Size Function and Hu moment
representations provide complementary information about the
shape of a hand.

5.4. Size Function parameters

To evaluate the best possible combination of the parameters
(N, N, P), the size of the Size Function, the number of graph rota-
tions and the number of principal components respectively, a ROC

TP Rate

02

m—Weighted Eigenspace Size Function
Eigenspace Size Function
Unmodified Size Functicn

il . L . L ) L )
0 01 02 03 04 05 06 07 08 09 1

FP Rate

(b)

Fig. 11. ROC graphs of weighted eigenspace Size Function, eigenspace Size Function and unmodified Size Function representations for (a) ISL data set and (b) Triesch data set.
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Fig. 12. ROC graph of combined features for (a) ISL data set and (b) Triesch data set.
Table 1 Table 2
Best True:False ratios. Parameter combination AUC.
ISL data set Triesch data set (N,Ng,P) ISL Triesch (N,Ne.P) ISL Triesch
Best combined TFyyg, 0.797 0.794 Data AUC Data AUC Data AUC Data AUC
Best Size Function TFgyio 0.733 0.75 (16,6,1) 0.809 0.823 (16,6,2) 0.794 0.811
Best Hu moment TFggo 0.764 0.77 (16,4,1) 0.791 0.822 (16,4,2) 0.783 0.804
(16,8,1) 0.799 0.814 (16,8,2) 0.786 0.792
(8,6,1) 0.782 0.801 (8,6,2) 0.779 0.787
(8,4,1) 0.780 0.796 (8,4,2) 0.769 0.783
(8,8,1) 0.791 0.807 (8,8,2) 0.773 0.792

analysis of the performance of the different parameters was carried
out.

The same process described in Section 5.1 was carried out to
evaluate the performance of the Size Function using different val-
ues of (N,Ne,P) where (2<N<32), (2<No<16) and
(1 < P < N). It should be noted that as N increases, the margin be-
tween G,<y and G, the graphs used to calculate the values of the
Size Function, decreases. As the margin decreases, smaller varia-
tions in the measuring function are identified as separate con-
nected components. Therefore, as N increases, the Size Function
becomes more sensitive to small changes in shape and noise. As
N decreases, the Size Function become less sensitive to large shape
variations and therefore performs poorly at discriminating be-
tween signs. Since the data collected in this work uses real sign
data, typical segmentation noise can be present in the extracted
contours. The existence of noise makes finding an optimal value
of N an important goal as we must find an N which is not sensitive
to noise but can discriminate between signs. During the perfor-
mance evaluation of the different parameters (N, Ng,P), we also
found that adjusting P varied the systems’ sensitivity to noise.
The more principal components used, the more sensitive the sys-
tem became to noise. We concluded from this that the principal
component held the main information about the hand posture,
while the lower components held information about small varia-
tions in the contour shape.

Table 2 details different ROC AUCs for different parameter com-
binations computed from the ISL data set and the Triesch data set.
Although experiments we carried out exhaustively on different
parameter combinations, we present only the 12 best parameter
combinations. Parameters within the bounds; (2 <N <32),
(2 <Np <16) and (1 < P < N), did not have a significant effect
on the AUC with the lowest AUCs being 0.681 and 0.693 for our
the ISL data set and the Triesch data set respectively. The parame-
ter combination which produced the best AUC was N = 16, No = 6
and P = 1. This was the parameter combination used in all tests de-
scribed in Sections 5.1 and 5.3 above, and will be used for the pos-
ture recognition techniques which we will discuss in Section 6.

6. Recognition framework

In Section 5 we have shown that our eigenspace Size Functions
and Hu moments possess strong hand shape discriminatory prop-
erties. We now describe our user independent framework for rec-
ognizing hand postures using these shape representations. A set of
support vector machines (SVM) (Chang and Lin, 2001) are trained
on data, using the discussed shape representations, extracted from
labeled images. Given an unknown hand image, the relevant fea-
tures are extracted and the SVMs use the data to estimate the most
probable hand posture classification.

To classify an image z, containing an unknown hand posture, it
must to be assigned to one of the C possible posture classes
(04,0, ..., ac). The proposed recognition framework uses two dis-
tinct measurement vectors to represent a hand posture. For each
posture class o, a set of two support vector machines
{sVvM¥,SVM™} is used to calculate P(o|L,, ¢,), the probability that
image posture z belongs to class o, given measurement vectors I,
and {,. Where [, is the set of Hu moments and ¢, is the weighted
eigenspace Size Function extracted from image z.

6.1. Support vector machines

Support vector machines are a set of supervised learning meth-
ods used in classification and regression. A one against all SVM
model is used in this work, and training of the SVM consists of pro-
viding the SVM with data for two classes. Data for each class con-
sists of a set of n dimensional vectors. An RBF kernel is applied to
the data and the SVM then attempts to construct a hyper plane in
the n-dimensional space, attempting to maximize the margin be-
tween the two input classes.

The SVM type used in this work is C-SVM using a non-linear
classifier by means of the kernel trick as proposed by Aizerman
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et al. (1964). The kernel used is a radial basis function (RBF) as de-
fined by k(x,x') = exp(—y||x — x'||).

SVM is extended to obtain class probability estimates by com-
puting pairwise class probabilities rj ~ p(y =ily =i or j,X) using
Lin et al’s (2007) improved implementation of Platt’s method
(Platt and Platt, 1999) which defines r;; ~ ];m

Where A and B are estimated by minimizing the negative log-
likelihood function using known training data and their decision
values f. We then use the second approach proposed by fan Wu
et al. (2004) to compute p; from all r’s by solving the optimization
problem min, $3°F 37,(rp; — Typ;)°  subject to Y{p; =1,
pi = O,V,‘.

6.2. Training

Given a training set of hand images consisting of multiple la-
beled images of each hand posture class we train a set of SVM clas-
sifiers as follows:

Weighted eigenspace Size Function data and Hu moment data
are extracted from the training set images to create the matrices
H: = (Ia1,1e2,...,In) and ¥. = ({4, ¢, - --,{q) Where L is the total
number of training images recorded for each posture class o,.

To train each SVMY, the matrix ‘P, is used as the positive la-
beled training data and ¥, := (‘¥))jzenjeq1.cy is used as the negative
labeled training data. Similarly, each SVM’C“‘ is trained using H. as
the positive labeled data and H, := (Hj)j#mje{,“f} as the negative la-
beled data. The support vector machines SVM¥ and SVM™ are then
trained to maximize the hyperplane margin between their respec-
tive classes (¥, ¥,) and (H.,H;).

There are two parameters while using RBF kernels: C and 7. V-
fold cross-validation was carried out to compute optimal values for
Cand y.

6.3. Posture classification

To classify an unknown image z, each SYMY and SVM™ will cal-
culate P(o|¢,) and P(a,|L;), the probability {, and I, belong to class
o, respectively using the method outlined in Section 6.1. Classifier
weights, used to determine the overall probability, are calculated
by Eq. (16), where c2¥ and cvM™ are the cross-validation accuracies
achieved for each SVMif and SVM?“ respectively. A weighted com-
bination of the probabilities is then calculated to generate the
overall probability P(o.|l;,{,) according to Eq. (17).

sf cz/ﬁf hu __ Cy?u
¢ T e = (16)
cvg +cop cvy +coht
P(0tc|l, &) = (P(0tc|C) x ) + (P(otelz) > ™). (17)

6.4. Experiments

We evaluate our recognition system using both data sets dis-
cussed in Section 4. For the ISL data set, we train the SVMs on
5520 hand posture images. The 5520 training images were com-
prised of data from 8 of the 16 subjects used. We then test our rec-
ognition framework on the remaining 5520 images.

For the Triesch data set we carry out two evaluation protocols
(P1 and P2). We first perform an evaluation based on the same pro-
tocol as Triesch and von der Malsburg (2002). We train the SVMs
on each of the 10 hand signs using data extracted from 3 of the
24 signers. The system is then tested on all hand signs from the
remaining 21 subjects. The second evaluation protocol we perform
is based on the work of Just et al. (2006), where eight signers are
used for training a validation and the remaining 16 are used for
testing.

Table 3
Classification AUC performance.

Letter Training set Test set Hu moment Size function
Recognition Recognition Weighting p Weighting ,uif
A 0.996 0.995 0.57 0.43
B 0.997 0.989 0.58 0.42
C 0.930 0.907 0.49 0.51
D 0.993 0.971 0.54 0.46
E 0.991 0.996 0.57 0.43
E 0.976 0.991 0.46 0.54
G 0.993 0.974 0.48 0.52
H 0.995 0.967 0.48 0.52
I 0.980 0.971 0.50 0.50
K 0.991 0.934 047 0.53
L 0.984 0.932 0.48 0.52
M 0.985 0.935 0.55 0.45
N 0.999 0.954 0.52 0.48
(o] 0.999 0.930 0.54 0.46
P 0.999 1.000 0.58 0.42
Q 0.962 0.989 0.45 0.55
R 0.992 0.960 0.51 0.49
S 1.000 1.000 0.56 0.44
T 1.000 1.000 0.56 0.44
U 0.976 0.993 0.52 0.48
\Y 1.000 1.000 0.49 0.51
W 1.000 1.000 0.45 0.55
Y 1.000 1.000 0.50 0.50
Mean 0.989 0.973 0.52 0.48
Table 4
Recognition performance.
# # Number Correct Percentage AUC
Training  Test
Our method 3 21 418 356 85.1 0.827
P1
Trieschetal. 3 21 418 392 95.2 -
Our method 8 16 320 294 91.8 0.935
P2
Just et al. 8 16 - - 89.9 -

We carry out the following tests for the ISL data set and both of
the Triesch evaluation protocols: For each image z;¢{1...L}, where
L is the total number of images in the test set, the classification
probabilities A, := [p(I;, {;|04), . . ., p(Iz, {;|ac)] is calculated. To test
the performance of the system a ROC analysis was carried out on
the classification of the test images. For each posture class
ne{l1...C} a confusion matrix was calculated. To generate multiple
points on the ROC graph, a confusion matrix is calculated from dif-
ferent threshold values T (0 < T < 1). Table 3 details the AUC of the
ROC graph generated from the classification of both the training
data and the test data of the ISL data set. It can be seen from the
AUC measures, generated from both the training data and test data,
that each classifier performs well at classification of each hand
shape.

The results also show that the overall recognition rate of the
test set is within only 0.016 less accurate than the overall classifi-
cation of the training set. Since the subjects used to record the test

(d)

Fig. 13. Feature extraction for continuous recognition experiment: (a) original
image, (b) skin color segmentation using mean shift algorithm, (c) edge detected
hand region and (d) extracted contour.
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Fig. 14. Recognition probabilities for continuous video stream. For each frame, the classifier which outputs the maximum likelihood is denoted as the grey area. For each
classifier output we denote the blue plot as the likelihood output of that classifier, while the red plot denotes the difference between the classifier output and the likelihood of
the classifier with the second highest likelihood (thus, for the red plot, values above 0 denotes the maximum likelihood, values equal to O denotes the second highest

likelihood and values below 0 denotes all other likelihoods).

data were different to the subjects used to record the training data,
it can be concluded from these results that the proposed hand pos-
ture recognition framework performs well at recognizing hand
postures independent of the subjects performing the postures.
Table 3 also shows the classifier weights, calculated during the
cross-validation stage of the training and used in the recognition
experiments. These weights give an indication of which classifier
performs best at classifying the different hand shapes. As can be
seen from Fig. 7, the hand shape for “A” and “E” are quite similar,
as is the hand shapes for “F” and “G”. From the classifier weights,
we see that the Hu moments have a greater discrimination when
classifying shapes with little contour variation, such as the signs
for “A” and “E”, whereas the eigenspace Size Function has a greater
discrimination when classifying signs with a larger variation in the
contour shape, such as the signs for “F” and “G”.

Results of the evaluation on the Triesch data set, detailed in Ta-
ble 4, show that the elastic graph matching algorithm of Triesch
and von der Malsburg (2002) achieves a higher recognition rate
than our method. The small amount of training data would seem
to contribute to the lower recognition rate of our method. Results
show that as the training set grows, from three subjects to eight
subjects, the recognition rate increases by 6.4%. Our method also
shows a better recognition rate than the work of Just et al.
(2006), when trained on data from eight subjects.

Although the elastic graph matching algorithm achieves a high-
er recognition rate, it has a high computational complexity requir-
ing several seconds to analyze a single image. In comparison,
evaluations carried out on our method shows that the average
computation time, including feature extractions, feature analysis
and feature classification, was 60 ms. Performance measures were
performed on a computer with a 2.16 GHz Intel Core 2 CPU.

6.5. Continuous recognition

To illustrate the robustness of our system when classifying
signs from a video stream, we show results of a video based recog-

nition experiment. We utilize a live gesture feedback application,
proposed by Kelly et al. (2008), along with the SVMs, trained on
the Triesch data set using protocol 2, to classify signs from a con-
tinuous video sequence. In the video sequence, an unseen user per-
forms each of the 10 signs one after each other. In the first frame of
the video, the hand position is manually selected and a skin color
histogram of the hand is recorded. For each successive frame, the
mean shift algorithm is used to locate the hand region (Comaniciu
et al., 2000). We then perform Canny edge detection on the hand
region, followed by a dilation operation, and the contour is then
extracted from the edge detected image using a border following
algorithm (Suzuki and Be, 1985) (see Fig. 13). Fig. 14 illustrates
the results of the video based posture classification, where the
graph depicts the probability for each hand posture class for each
image frame. It can be seen from the ground truth labels on the
graph that our system performs well at classifying postures in each
image frame.

7. Conclusion

The main contribution of this work is that we propose a user
independent hand shape feature, a weighted eigenspace Size Func-
tion, which we show to be a strong improvement over the original
Size Function feature. We also show that our method performs
well compared to other user independent hand posture recognition
systems.

Our eigenspace Size Function performed significantly better at
discriminating between different hand postures than the unmodi-
fied Size Function when tested on two different user independent
hand posture data sets. An increase in performance of 7.4% and
6.7% was shown for our weighted eigenspace Size Function when
compared to the unmodified Size Function using a simple Euclidian
distance classifier. We proposed a user independent, SVM based,
recognition framework using a combination of our weight eigen-
space Size Function and Hu moments. Results of a user indepen-
dent evaluation of the recognition framework showed our system
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had a ROC AUC of 0.973 and 0.935 when tested on the ISL data set
and the Treisch data set respectively. Future work will involve inte-
grating our proposed hand posture recognition framework into a
system which can recognize full sign language sentences by incor-
porating spatiotemporal and non-manual information into the rec-
ognition process.
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