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Abstract
Incoming university students who have not previously studied computer programming often find

it a challenging subject, leading to high failure rates. Research has suggested that the lack of a

formalised structure for collaborative learning may be one of the factors responsible for students’

negative impressions of computer science. In this study we investigated whether the use of pair

programming in practical laboratories would facilitate peer learning and enhance students’

confidence in their programming ability. Results showed that this intervention was generally well

received, although the weaker programmers (as measured by prior exam grades) perceived it to

be of more benefit than the stronger ones. Students who reported a lower initial level of

enjoyment and confidence in programming were more likely to report learning from the paired

intervention, though this did not necessarily lead to enhanced performance. The most frequently

reported positive feature of pair programming was that it allowed students to meet more people

in the class. Although there was no significant increase in final exam grades for male students,

there was a significant increase for female students, suggesting this teaching strategy may have

asymmetrical gender benefits. 
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1. Introduction.

1.1 Background. 

Following a period of declining enrollment, numbers registering for computer science courses

are slowly beginning to increase again (Zweben, 2011). Yet, despite this initial interest,

students often find introductory computer programming challenging, resulting in a drop-out rate

of approximately 25%, with many other students performing poorly (Williams & Upchurch,

2001). In Ireland, a recent HEA report found that, at 27%, computer science has the highest

drop-out rate of all third level courses in the country (Mooney, Patterson, O’Connor & Chantler,

2010). As well as leading to significant attrition within third level, the perception of computer

science as a “difficult” subject may discourage students from choosing to study it in the first

place (Bennedsen & Caspersen, 2007). 

While there are numerous explanations for such high failure rates, one of the key reasons may

lie with the way in which programming is typically instructed, with limited opportunities for

practice through practical lab based scenarios. For example, in an analysis of students’

perceptions of programming, Hawi (2010) found that although they attributed failures in

programming to many diverse factors, key reasons cited included inappropriate teaching

methods, as well as a lack of opportunity for practice. Furthermore, computing is often viewed

as an isolated endeavor, a factor which may impact negatively on students’ perceptions and

learning strategies, especially for female students (Redmond, Evans & Sahmi, 2013). 

In this paper we outline and evaluate a novel technique for programming instruction which

makes use of collaborative peer learning. Specifically, we apply a technique whereby, rather

than working in isolation, students are required to work in pairs to come up with solutions to

programming problems. While we specifically investigate this strategy within the computing

domain, the technique has applications for other fields of study which support collaborative

problem solving. In the following sections we elaborate on the rationale for this intervention, as

well as outlining the findings of prior research which has employed a similar method.
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1.2 Individual vs. collaborative learning.

It is well established that, like other skills, programming is best learned through practice and

experience (Traynor & Gibson, 2004). Unfortunately, textbooks and lecture material in

computer science are often heavy on declarative knowledge (i.e. facts), with particular

emphasis on the features of programming languages and how to use them (Robins, Rountree

& Rountree, 2003). This mode of instruction is not a sufficient basis for students to learn how to

write a program. While most courses in computing now involve a practical component, the best

means of implementing this component remains a contentious issue (Maguire & Maguire,

2013; Linn & Dalbey, 1989). Changes to teaching methods, such as the use of clearer

textbooks and the introduction of online resources, have done little to improve programming

competence (Miliszewska & Tan, 2007).

One issue which may exacerbate students’ difficulties with programming is the lack of a

formalised environment for collaborative peer learning. In industry, all non-trivial software

projects are necessarily collaborative efforts. Professional programmers frequently avail of the

expertise of their colleagues to help them solve problems and keep up to date with the latest

programming techniques (McDowell, Hanks & Werner, 2003). In stark contrast, a commonly

held belief in academia is that students should write programs in isolation. McDowell, Werner,

Bullock and Fernald (2006) propose that the overreliance on individual programming may be

rooted in the concerns of instructors; specifically, the belief that students working in groups

may not learn as much as they would if they completed the assignment alone. As a result,

student programmers are conditioned to equate communication and sharing with cheating

(Williams & Kessler, 2000). 

Beyond the domain of computer science, a considerable volume of research extols the virtues

of peer learning (e.g. Boud & Lee, 2005; Jackson & Bruegmann, 2009; Hammond et al., 2010;

Kepell et al., 2006; Menzies & Nelson, 2012; Staarman, Krol & Meijden, 2005; Topping, 2005;

Willey & Gardner, 2010). As a result, there has been a gradual shift in education from an

‘instructivist’ to a ‘social constructivist’ approach, whereby the importance of others in learning

is emphasised (Tan, Yeo & Lim, 2005). As Boud (2001) points out, in everyday life, nearly all of
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the information we obtain is provided by peers: we rarely need to consult a teacher or a text

source. A peer can be defined as another person in a similar situation to the learner, who is not

an expert practitioner. This lack of expertise can be a valuable asset, as it means that peers do

not have power over each other by virtue of their position or responsibilities (Boud, 2001).

Communication can therefore occur on an equal level, and information is presented in a format

which more closely matches the learner’s immediate experience, leading to deeper learning

(Assiter, 1995). Peer interactions also allow learners to develop valuable collaborative skills

which facilitate future learning (Boud, 2001). 

The discouragement of collaborative work at third level may be deterring students from taking

up computer science, due to the mistaken impression that software engineering is an isolating

and lonely career. In particular, women may become discouraged by the focus on individual,

socially isolating work. A 2000 survey of over 400,000 freshmen entering 717 colleges and

universities across the US reported the largest gender gap regarding perceived confidence in

computer skills in the 35-year history of the survey (Werner, Hanks and McDowell, 2004). Only

23.2% of women (versus 46.4% of men) rated their computer skills as above average, while

only 1.8% of women (versus 9.3% of men) intended to pursue computer programming careers.

These figures are consistent with recent research carried out by Redmond et al. (2013) who

reported that female computing students have significantly lower confidence than their male

counterparts, and are also less likely to enjoy studying computer science. The perception of

computing as a solitary occupation, and the belief that programming is conducted in a

competitive rather than collaborative environment, were identified as two of the key reasons

why fewer women are majoring in computer science (Werner et al., 2004). In light of these

observations, the current study seeks to investigate whether the implementation of

collaborative peer learning has any resulting gender differences. Specifically, we examine

whether it is perceived more positively by female students, and whether it results in greater

performance differences for one gender over the other. 
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1.3 Pair programming. 

The benefits of collaborative learning are becoming increasingly recognized by educators in

computing (Furberg, Kluge & Ludvigsen, 2013; Kaye, 2012; Hwang,  Shadiev, Huang et al.,

2013; Maguire & Maguire, 2013; O'Donnell, Hmelo-Silver, & Erkens, 2013; Tsai, Li, Elston &

Chen, 2011; Yoon & Brice, 2011). For example, Schäfer et al (2013) found that mathematical

logic skills were enhanced when students worked together in collaborative games, while Tsai et

al. (2011) found collaborative learning enhanced student experience in producing Wiki

websites. In addition, Maguire and Maguire (2013) found that working in teams to answer

clicker questions had positive effects on student engagement and performance within computer

science lectures. As we are interested in investigating how collaborative learning can be used

to enhance competence in programming, the current study employs a collaborative

programming technique referred to as pair programming.

Pair programming is a novel collaborative paradigm which is growing in popularity in the

computer science industry (Braught, Wahls & Eby, 2011; Salleh, Mendes & Grundy, 2011).

The idea is that two programmers work collaboratively on the same program at the same

workstation. One programmer is designated as the ‘driver’ and has control of the input devices.

The other programmer is designated as the ‘navigator’ and has the responsibility of reviewing

the code that has been typed to check for deficiencies, such as erroneous syntax and logic,

misspellings and design issues (McDowell, Werner, Bullock & Fernald, 2006). The navigator

continuously examines the work of the driver, thinking of alternatives and asking questions

(Williams & Kessler, 2003). The driver and the navigator change roles frequently and different

pairs are formed to facilitate the spread of information through an organisation. Research has

shown that programmers working in pairs produce shorter programs with better design and

fewer bugs than those working alone (Alistair & Williams, 2001). 

This collaborative technique has been successfully applied to the teaching of computer

programming (e.g., McDowell, Hanks & Werner, 2003; Salleh et al, 2011; Williams & Upchurch,

2001), and has even been employed in a primary school setting (Denner, Werner, Campe &

Ortiz, 2014; Gallardo-Virgen & DeVillar, 2011). A wide range of benefits have been reported,
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such as improved quality of code, decreased time to complete, improved understanding of the

programming process, enhanced communication skills and enhanced learning (Preston, 2005).

With pair programming students have the camaraderie of another person for support. The

process of analysing and critiquing a program written by another is an excellent way of learning

because it requires students to reflect on the code they are writing (Williams & Upchurch,

2001). In addition, students learn more when working with a partner because they derive the

satisfaction of producing a quality working program as opposed to a non-working program

(McDowell, Hanks & Werner, 2003).

The benefits of this technique over individual programming were initially demonstrated by

Williams and Upchurch (2001), who observed that students working in pairs found the

experience more enjoyable than working alone and repeatedly cited how much they had

learned from each other. Team communication and effectiveness also improved. Students

enjoyed the camaraderie, and felt more confident. Nagappan et al. (2003) found that students

and demonstrators reported labs to be more productive, less frustrating and more conducive to

advanced, active learning than traditional labs. McDowell, Werner, Bullock and Fernald (2006)

found that paired students were significantly more likely to remain in the course through to the

final exam (90.8% versus 80.4%). Paired students were also 18% more likely to attempt the

subsequent course in programming were also more likely to register for a computer science

major. Building on this work, a systematic review by Salleh et al. (2011) concluded that pair

programming consistently leads to improved grades and increased student satisfaction.

1.4 Research Overview and Aims.

Much of the research on pair programming as a pedagogical technique has focused on the

teaching of introductory programming to first year students, with fewer studies investigating its

applicability for more advanced programming modules (Mendes, Al-Fakhri & Luxton-Reilly,

2006). Also, while there is a growing body of research in the area, few studies have focused on

individual differences such as gender (Salleh et al, 2011). In the current study we describe the

outcomes of adopting a collaborative pair based paradigm for the teaching of a second year

computer science course in data structures and algorithms. We compare the use of individual
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programming in the first semester with collaborative programming in the second. The continuity

of the student cohort through the two semesters permits analysis of various outcomes of the

pedagogical intervention, such as perception and performance. The three central aims of the

study are as follows:

1. To establish whether students benefit from a peer programming intervention in terms of

their academic performance in both continuous assessment and examination results, 2. To

identify students perceptions of peer programming (positive and negative) and how these relate

to programming confidence,

3. To ascertain whether gender differences exist in both performance and perceptions of

the pair programming intervention. 

2. Method. 

2.1 Participants.

This study was carried out with a second year computer science class in NUI Maynooth taking

two consecutive modules in Data Structures and Algorithms. These were spread across two

semesters in the same academic year. There were a total number of 121 students enrolled in

semester 1 and 99 in semester 2. 

2.2 Design. 

A quasi-experimental design was employed with programming type (individual or paired) and

gender as the key independent variables. Students’ performance in assessment components

(exam and CA) was the key dependent variable, but measures of attendance, programming

confidence and perceptions of the pair programming intervention were also examined. 
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2.3 Procedure.

2.3.1 Pre-intervention phase (individual programming module).

Computer Science modules in NUI Maynooth are typically assessed with 70% of the marks

awarded based on an end of semester written exam and 30% of the marks awarded for

continuous assessment (CA). For the two modules in question, CA marks were awarded for

each weekly lab session. 

For semester 1 (pre-intervention phase) students were required to carry out weekly

programming exercises in isolation, as would be standard practice on a course such as Data

Structures and Algorithms. The weekly programming exercises involved students sitting at

individual computers and working in isolation to code up a solution to a problem given at the

start of the lab, which related to that week's lecture topic (e.g. writing a Java program to sort

elements in an array). These labs lasted for 2 hours and were assessed at the end by a

demonstrator who asked the student to explain their code and then assigned a grade based on

how close the program was to delivering the required functionality. 

2.3.2 Intervention phase (pair programming).

Pair programming was introduced in the second semester. As in semester 1, 70% of the marks

were awarded based on an end of semester exam, with 30% awarded based on performance

in pair programming labs. Further detail on the implementation is given below.

Preliminary Questionnaire 

Prior to beginning the pair programming intervention, a preliminary questionnaire was handed

out in lectures to obtain background information on students’ perceived programming ability

and confidence. This required students to rate their agreement on a seven-point Likert Scale

regarding issues such as enjoyment of computer programming, self-efficacy at programming,

likelihood of a programming career, and confidence at writing a program to solve a real world

problem. Students were also asked whether they ever requested assistance from others with

their programming and, conversely, whether they ever helped others. In addition, further

demographic information was collected, such as the age at which students started to program,
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Leaving Cert Maths grade, the hours spent playing computer games, and the number of friends

students had who were also studying computer science. 

Pair assignment 

An important consideration was deciding how to pair up the students at the beginning of

semester 2. Various options were considered including letting students choose their own pairs,

assigning students to pairs for the whole semester, or allowing students to change partners

throughout the semester. In the interests of increasing information flow in the class, we decided

to implement a system where partners would be randomly reassigned a different partner each

week. The hope here was that a completely random system would help to smooth out the

disparities in programming skills throughout the class and also not unfairly

advantage/disadvantage students for the whole semester by having them paired up with

students of particularly high or low ability. 

Details of intervention 

Typically, pair programming involves a setup where two students sit at a single workstation and

take turns to type the code (see McDowell, Hanks & Werner, 2003). While this approach may

work well for first year labs, where the problems are quite simple and can typically be solved

using only a small number of lines of code, it may not be as efficient for more complex

assignments. Many of the labs in the second year data structures and algorithms module

involved importing large chunks of pre-written code in multiple classes, making the tracking of

program structure more challenging as a pair. We were particularly concerned that the

considerable disparity in programming skills within the class would mean that weaker students

would not be able to meaningfully contribute as ‘navigators’. In light of these concerns, we

opted for a less extreme form of collaboration whereby students worked together in pairs, but

each at their own workstation. Students initially worked out a structure to the problem together

on paper, discussing and agreeing on the design of the program. Once the design was

approved by a demonstrator, they each implemented it on their own machine, remaining free to
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discuss errors and bugs with each other and compare code, though not to type on each others’

keyboards. 

Assessment of pair programming 

As mentioned above, 30% of the marks for this module were CA based, relating to student

performance in labs. A key concern was how to effectively assess this performance. According

to Preston (2005), a critical feature of successful collaborative learning is positive

interdependence. Students are considered interdependent when they co-ordinate their efforts

with their group mates to successfully complete a task. To enforce positive interdependence,

marks were awarded for how effectively the students worked together. Demonstrators assessed

how well the students communicated with each other, how well they responded to each other’s

contributions and how well they co-ordinated their deconstruction of the problem. 

Another important feature of collaborative learning is individual accountability, whereby all team

members take individual tests and receive individual grades (Preston, 2006). The goal here is

to ensure that every student involved in a collaborative learning activity acquires the skills the

activity is intended to teach. If the emphasis is placed on program completion rather than

acquisition of skills, then there is a higher risk that one member of the pair may develop the

project unilaterally (Preston, 2006). In order to enforce individual accountability, students were

required to individually respond to specific questions posed by demonstrators at the end of the

lab. If they had simply copied code from their partner without understanding it, and were

consequently unable to answer the question, then marks were lost for the individual. It was

hoped that this system, combining both positive interdependence and individual accountability,

would encourage pairs of students to explain the code to each other and foster a collaborative

relationship.

2.3.3 Evaluation.

At the end of the intervention phase (i.e. end of semester 2) a final questionnaire was

circulated to get feedback from students regarding their experiences of pair programming. For

this, students had to rate their agreement with a number of statements on a seven point Likert

scale dealing with overall enjoyment (“I was glad to be working in a pair rather than alone”),
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perceived benefits in terms of learning (“I learned programming skills from being paired”),

social benefits (“It helped me get to know more people in class”, “It helped me to develop my

communication skills”) as well as potential disadvantages of pair programming (“I ended up

doing most of the work”, “Working in pairs made me less motivated to get the lab done”). 

Along with responses from this questionnaire, information on lecture and lab attendance, as

well as CA and examination results, were collated for both the individual and pair programming

modules. 

3. Results.

3.1 Comparisons in attendance and performance.

Table 1 below outlines the overall mean scores for attendance, assessment and failure rate

across the two modules. A series of dependent t-tests revealed no significant differences

between the two groups on any of these measures (p > .05). On the surface it would appear

that the pair programming intervention had no effect on these outcomes, however further

analysis revealed some interesting trends.

Table 1: Comparison Between Two Semesters

Individual (pre- intervention) Pair Programming 

(intervention)

Lecture attendance (mean) 66.7% (SD = 24.7%) 64.4% (SD = 31.7%)

Lab attendance (mean) 79.9% (SD= 24.0%) 76.1% (SD = 30.2%)

Exam result (mean) 52.5% (SD = 18.3%) 58.2% (SD = 20.3%)

Continuous assessment (mean) 69.6% (SD = 24%) 71.1% (SD = 23.6%)

Overall failure rate 18.20% 19.20%
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3.1.1 Gender differences in performance.

Out of the full cohort of students who sat both exams, 19 were female. Interestingly these

students did significantly better on the second exam (pair programming) than on the first

(individual programming), with an average increase of 9.7%. The exam grade for female

students increased from 52.9% to 62.6%, t(18) = 3.072, p = .007. For the male students there

was no significant difference in exam scores (57.4% for individual programming, 57.2% for pair

programming module; p > 0.05). 

To further analyse the difference between male and female students we ran a 2 way mixed

ANOVA with the exams scores (semester 1 and 2) as the repeated measures factor and

gender as the between participants factor. While there was no overall difference between the

main effects of males and females, or (as highlighted above) between overall exam scores

across the two semesters, there was a significant interaction between these variables, F(1,84)

= 6.323, p = .014, indicating that gender affected the change in grade. Female students were

significantly more likely to enhance their exam mark relative to male students following the

introduction of pair programming. This effect may be associated with the perceived benefits of

the pair programming intervention, which are outlined in more detail below. 

3.2 Questionnaire analysis.

In total, 40 students (30 males and 10 females) completed the two questionnaires (pre and

post intervention), attended labs, and completed both the semester 1 and semester 2 exams.

Thus the remainder of the analyses reported below is based only on these 40 students. One

weakness of these data which should be acknowledged is that they are skewed towards

students with higher attendance: the average lecture and lab attendance for these 40 students

was 81% and 91% respectively, as opposed to 52% and 62% for the class as a whole. All

reported Spearman’s rho correlations have significance of p < .05.  
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3.2.1 Preliminary questionnaire.

Table 2 provides descriptive statistics for the key questions on the preliminary questionnaire.

As can be seen, students tended to rate their programming ability quite favorably, leading to

consistently strong correlations between the block of questions relating to programming

confidence. Responses to a number of these questions were also positively correlated with

exam performance and continuous assessment marks in both modules.

Table 2: Mean Scores For Selection Of Questions On Preliminary Questionnaire On A 7
Point Scale.

Question Mean Standard deviation

I enjoy computer programming 5.3 1.42

I think I am good at computer programming 4.45 1.52

I often feel confused when I look at programming code 3.18 1.53

I would consider a career which involves computer
programming

4.88 1.73

I enjoy doing computer programming labs 4.9 1.63

I am confident that I can write a computer program to
solve a real world problem

4.52 1.69

The question of what age students were when they first started to program had no relationship

with any other variable, neither did hours spent playing computer games or the number of

friends students had who were also studying computer science. Leaving Certificate Maths

grade was correlated with whether students liked programming (r = .449). Interestingly, the

number of people a student reported as having helped them with programming was negatively

correlated with how much they enjoyed labs in semester 1 (r = -.462). There was also a strong

negative correlation between this response and exam score in semester 1 (r = -.525),

indicating that those who asked for the most help were less likely to do well in the final exam.
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3.2.2 Perceptions of pair programming.

There were a number of individual differences in the extent to which students felt they

benefitted from pair programming, with the clearest distinction concerning the perceived effort

invested. Specifically, students’ appreciation of the pair programming paradigm was negatively

correlated with whether they reported doing all of the work (r = -.423). Students who felt they

did most of the work were also less likely to report learning from pair programming (r = -.511),

although these students were more likely to enjoy programming as measured in the initial

questionnaire (r = .492) and were also more likely to perform better in the exams (r = .435). 

Conversely, students that indicated they enjoyed learning in pairs were more likely to report

having learned from the experience (r = .476), but less likely to enjoy programming in general (r

= -.496), less likely to enjoy labs (r = -.502) and less likely to report initial confidence in

programming (r = -.415), as established from the preliminary questionnaire data. Taken

together with the above results, these findings suggest that students who enjoyed pair

programming did not necessarily experience a significant positive increase in their exam

scores.

Table 3 displays the key predictors of performance in relation to exam results in both modules.

As can be seen, exam results in both modules were correlated with liking programming in

general, enjoying labs and reporting confidence in programming ability. In semester 2 scores

were negatively correlated with obtaining help and positively correlated with how much effort

was expended in the pair programming labs. Those who did better in the semester 2 exam

were less likely to report learning from pair programming, but, interestingly, were more likely to

report benefits of improved communication skills. 
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Table 3: Relationship Between Key Measures And Exam Results. Correlations
Highlighted Are Significant At The P <.01 Level (**) Or The P <.05 Level (*)

Like
programm
ing

Enjoy
labs

Confiden
ce

Maths
grade

Number
of
people
asked
for help

Do all
the
work

Learned
from PP

Good
Commun
ication

Exam result S1 .514** .513** .506** .494** -.319 .252 -.235 .297
Exam result S2 .488** .546** .483** .298 .525** .435** -.347* .383*

Though not reported in the table above, we observed similar relationships between these

measures and CA scores for semester 1 and 2. 

3.2.3 Gender differences in perceptions.

In addition to gender differences in overall assessment results (see section 3.1.1), a

comparison of male and female responses to questions in the pre and post questionnaires also

revealed some interesting trends. Table 4 summarises differences in perceptions, both from the

preliminary questionnaire and the final evaluation questionnaire. The data reveal that females

were significantly more likely to report poor initial confidence with programming, despite there

being no significant difference in mathematical ability and no significant difference in exam

grades. Based on a series of independent t-tests, female students were significantly more likely

to report that they had learned from pair programming, and significantly less likely to report

doing all the work in the labs. 
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Table 4. Male And Female Responses To Questionnaires. Significant Gender Differences
Based On Independent Sample T-tests (p <0.05) Are Highlighted.

Preliminary questionnaire Male Female

Lecture attendance (%) 78.5 88.0

Lab attendance (%) 91.2 90.0

'I enjoy computer programming' 5.3 4.5

'I think I am good at computer programming' 4.5 3.5

'I often feel confused when I look at programming code' 5.1 3.9

'I would consider a career which involves computer programming' 5.0 4.1

'I enjoy doing computer programming labs' 4.9 3.5

'I am confident that I can write a computer program to solve a real
world problem'

7.7 3.7

Hours spent playing computer games per week 7.7 3.7

Leaving Certificate Maths grade (points)1 53.0 50.4

Final Questionnaire Male Female

'I liked pair programming' 4.3 4.9

'I ended up doing most of the work' 4.3 3.4

'I learned programming skills from being paired' 3.6 4.8

'It helped me get to know more people in the class' 5.6 5.7

'It helped me to develop my communication skills' 4.5 5.1

1 Leaving Cert points are based on the quantised percentage achieved on the exam, with the Higher
Level paper permitting points in the range of  100 to 45 and the Lower Level paper permitting points
in the range of 60 to 5.
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Taken in conjunction with the improvement in exam performance in semester 2, these results

suggest that pair programming was more beneficial for the female students in the class than for

the male students, perhaps because they had lower confidence to start with. 

4. General Discussion.

This study aimed to establish the effect that collaborative learning, operationalised through the

technique of pair programming, would have on performance, attendance and perceptions of

programming among a group of second year computer science students. Results revealed

some interesting findings, which gives a critical insight into the relative advantages and

disadvantages of collaborative programming. While there appeared to be no overall increases

in attendance, assessment and exam performance when pair programming was employed

(compared to individual programming), a more detailed analysis revealed a variety of individual

differences which are important to consider when evaluating this technique. The most

significant of these are discussed in more detail below.

4.1 Gender Differences.

In line with predictions, we observed a number of gender differences in both the perceived

benefits and outcomes of the pair programming intervention. Most notably, the exam results of

female students significantly increased following the pair programming labs, an effect which

was not observed within the male sample. This observation might be explained by differing

perceptions of pair programming between males and females. Although there were no gender

differences in how much students enjoyed pair programming, female students reported that

they learned significantly more from this technique. This finding is consistent with previous

research that has shown significant benefits of pair programming for female students. For

example, McDowell et al. (2006) found that the use of this paradigm resulted in a significant

decrease in the gender gap in programming confidence, narrowing from an average of 11.6%

to only 3.5%. In addition, McDowell et al. (2003) found that significantly more female students
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who worked in pairs went on to declare a computer science-related major than those who

programmed on their own. 

Beyond the differences revealed following the intervention, the fact that the females in our

study reported lower levels of confidence in their programming ability than males raises some

concerns. This gender gap in confidence is consistent with earlier studies (e.g. Redmond et al,

2013; Werner et al, 2004) and is a worrying trend, given that this difference was not associated

with lower ability (as measured both by prior results in the first programming module and

Leaving Cert maths grade). Lower feelings of self-efficacy might explain why females report

greater learning from pair programming. For example, Carver et al. (2007) speculated that pair

programming changes the atmosphere of the class, making it more supportive and less

competitive, which may be more conducive for learning by female students. This has important

implications for educators considering methods and techniques for enticing females into

careers such as computing and other currently male dominated scientific subjects. 

4.2 Differences in ability.

Beyond gender differences, analysis of student feedback revealed that, although weaker

programmers appreciated pair programming, stronger programmers expressed lower levels of

satisfaction by having to ‘carry’ weaker students (i.e. by “doing most of the work”) and were less

likely to report learning from their partners. This may be symptomatic of the way in which pairs

were assigned in labs, raising the question of whether an alternative pairing method may have

been more effective. 

While we implemented a random pairing system in class, a better alternative may be to pair

students by ability so as to encourage more reciprocal relationships. This view is supported by

Braught, MacCormick and Wahls (2010) who found that students have poorer learning

outcomes when paired randomly, rather than by ability. In particular, they found that lowest-

quartile students who were paired by ability performed better than those who were paired

randomly and those who worked alone. This observation, while being somewhat

counterintuitive, refutes the idea that weaker programmers can learn more from stronger
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programmers: rather, weak students perform better when paired with other weak students.

Braught et al. (2010) speculate that the reason for this effect is that students paired by ability

are more likely to be compatible, and more likely to interact collaboratively, leading to deeper

learning. For mismatched pairs, stronger students are likely to take over and simply give

directions, meaning that weaker students are reduced to the role of observers, and do not

experience the process of resolving programming problems. 

One strategy for pairing students in this way would be to ask them to rate their own

programming ability and assign partners based on these ratings (Thomas, Ratcliffe, &

Robertson, 2003). For example, Carver et al. (2007) split the class into three divisions of ability,

and randomly paired students within each division. The system worked well, insofar as

students agreed that their skills were well matched and they got along with their partner

(Carver et al., 2007). 

4.3 Overall evaluation.

Caution should be exercised in interpreting the results of this study, given both the small

sample size (under 50% of the class completed all assessments and both feedback

questionnaires) and also the lack of a control group. It cannot be known for certain that the

observed differences were related to the introduction of pair programming per se. For example,

in relation to gender differences, it might simply be the case that female students preferred the

material covered in the second semester than that from the first semester. Further study is

required to resolve these issues. 

It is also important to note that not all studies involving pair programming have been effective.

For example, Somervell (2006) found that, not only did students dislike extreme pair

programming, it also served to lower program quality and the marks students achieved. In

another controlled study Lewis (2011) observed that, while there were no differences in

performance between students working individually or in pairs, those using pair-programming

actually took longer to complete the problems. These fundamental limitations of the pair

programming technique may explain why our intervention had a negligible overall impact on
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student performance.

Another finding of our study was that students who received the most help were in fact less

likely to enjoy programming and less likely to do well in the exam. It may be the case that the

manner in which help is dispensed in class serves to undermine students’ confidence in

programming. Accordingly, we recommend that, if pair programming is used, clearer instruction

should be given to students and demonstrators regarding how best to advise and assist other

students. Preston (2005) notes that pair programming practitioners rarely provide feedback to

students on co-operative skills. He recommends that students should be shown both positive

and negative examples of co-operative behaviour and that lecturers should observe and

provide feedback on how students interact in labs (Preston, 2006). Salleh et al. (2011) also

note that studies should focus more on issues such as pair compatibility and how this interacts

with pair programming as an effective pedagogical tool.

4.4 Conclusion.

While there is much research to suggest benefits of pair programming (e.g., McDowell et al,

2003; 2006; Preston, 2005; Shalleh et al, 2011; Williams & Upchurch, 2001) the current study

has not provided firm evidence that this technique is universally beneficial. We found no clear

advantage for paired, as opposed to individual, programming in terms of performance or

attendance across the group has a whole. The results do, however, suggest that this technique

may be of greater benefit to female students, as well as increasing perceived gains in learning

for weaker students.

Beyond academic gains one clear positive aspect on which students agreed was that pair

programming helped them to meet more people in the class. Even if pair programming does

not significantly enhance exam grades for all students, the social aspect of meeting others may

be an important factor when it comes to subsequent subject choice. If pair programming is to

be used for this aim, our findings support the use of randomised pairings, but within ability-

matched pools. Furthermore, in order for the full benefits of the paradigm to be realised, pair

programming should be supplemented with instruction on how to collaborate most effectively. 
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