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ABSTRACT

Our model of computation (theoretical machine) was designed for the analysis of analog Fourier optical processors,
its basic data unit being a continuous image of unbounded resolution. In this paper, we demonstrate the universality
of our machine by presenting a framework for arbitrary Turing machine simulation. Computational complexity
bene�ts are also demonstrated by providing a O(log2n) algorithm for a search problem that has a lower bound of
n� 1 on a Turing machine.
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1. INTRODUCTION

As optical information processing architectures and algorithms become more widespread and sophisticated, the need
for formal mathematical tools to compare them will increase. The ability of Fourier processors to take constant-time
Fourier transforms and constant-time image multiplication (but little else) requires us to construct a specialized
model of computation. We recently presented a novel and simple theoretical model of computation1 that captures
what we believe are the most important characteristics of an optical Fourier transform processor. Our theoretical
machine was shown to be suitable for the representation (and subsequent analysis) of a range of Fourier optical
information processing algorithms (including matched �ltering2 and joint transform correlation3).

In our idealistic model (summarized in Sect. 2), the basic data unit is a continuous image of unbounded reso-
lution. The model has image copying functionality, constant-time Fourier transformation/multiplication/complex
conjugation, and minimal 
ow control in the form of unconditional branching (goto). Since this very restricted
instruction language has neither conditional branching (if) nor iteration (for, while) we have been able to argue
that algorithms describable with this model should have optical implementations that do not require a digital
electronic computer to act as a master unit.

We now use this abstract model to reason about the computational properties of the physical systems it describes.
In Sect. 3 we present our framework for simulation of an arbitrary Turing machine4,5 (TM). The TM is a universal
model of computation; its computational power (in terms of the set of functions it can realize) is no less than
that of any instruction-based processor (including modern digital electronic computers). In Sect. 4, we look at the
computational complexity gains that are achievable with our model for one well known searching problem.

2. SUMMARY OF THE MODEL

Before it became obvious that we needed a new model of computation to analyze the algorithms of our Fourier
optical processors,6,7 we looked at existing models from computer theory8 and optical information processing
literature.9{12 All were found unsuitable, in the main due to their discrete nature and use of �xed-resolution
space.1

Each instance of our machine1 consists of a memory, a program (an ordered list of operations), and an input.
The memory structure is in the form of a 2-D grid of rectangular elements, as shown in Fig. 1(a). The grid has
�nite size and a scheme to address each element uniquely. Each grid element is a 2-D continuous complex image.
Three of the images are known to the machine by the identi�ers a, b, and sta (two global storage locations and a
program start location, respectively). The program is stored in memory with the input. The most basic operations
available to the programmer, ld and st (both parameterized by two column addresses and two row addresses), copy
rectangular m�n subsets of the grid (m;n 2 N, m;n � 1) into and out of image a, respectively. Upon such loading
and storing the image information is rescaled to the full extent of the target location (as depicted in Fig. 1(b)). Two
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Figure 1. Schematics of (a) the grid memory structure of our theoretical machine, showing possible locations for the `well
known' addresses a, b and sta, and (b) loading (and automatically rescaling) a subset of the grid into grid element a. The
program ld 2 3 1 3 . . . hlt instructs the machine to load into default location a the portion of the grid addressed by
columns 2 through 3 and rows 1 through 3.

additional real-valued parameters zlower and zupper, specifying upper and lower cut-o� values, �lter the rectangle's
contents by amplitude before rescaling,

f(i; j) =

8<
:

zlower : Re [f(i; j)] < zlower
zupper : Re [f(i; j)] > zupper :
f(i; j) : otherwise

Other atomic operations perform horizontal and vertical 1-D FTs (h and v, respectively) on the 2-D image a,
multiply (�) a by b (point by point), perform a complex addition (+) of a and b, and produce the complex
conjugate (�) of the image in a. By default, the result of any such operation will be found in a. Finally, there are
two control 
ow commands br and hlt, which unconditionally branch to another part of the program, and halt
execution, respectively.

As might be expected for an analog processor, its programming language does not support comparison of
arbitrary image values; correlation cannot be used to de�nitively compare two arbitrary analog values in a �nite
number of steps. Fortunately, not having such a comparison operator will not impede us from simulating a branching
operation (see Sect. 3). In addition, correlation can be used for address resolution since (i) our set of possible images
is �nite (each memory grid has a �xed size), and (ii) we anticipate no false positives (we will never seek an address
not from this �nite set).

2.1. Grammar for the machine's programming language

There is a restriction on the possible sequences of programming symbols that can appear in any instance of our
theoretical machine. Each syntactically-correct program must form a word in the language accepted by whatever
compiler or interpreter is employed for an implementation. This language is generated from the following context-
free grammar5 in Backus normal form notation,

S !MS j FS jM j F

M ! ldA j stA j brN ;N ; j hlt j �

F ! h j v j � j � j +

A! N ;N ;N ;N ;Q;Q;

N ! ND j D

Q! N=N

D ! 0 j 1 j 2 j 3 j 4 j 5 j 6 j 7 j 8 j 9 ;

where we use capital letters for nonterminals and lowercase letters for terminals. Some explanation of the symbols
follows. S, by convention, is the �rst nonterminal. Memory and control operations, M , and processing operations,
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F , can be combined sequentially. Load and store operations address a portion of the memory using two column,
two row, and the two real-valued numbers that are expressed here as quotients. Branching requires row and column
coordinates. F operations require no parameters; they act on images a and b by default. The symbol � represents
an empty or unde�ned image. Although not part of the programmer's set of operations, empty or unde�ned grid
elements can appear in the absence of a programming symbol and so may be encountered by the preprocessor.
The symbol N denotes an image that encodes a natural number and is used to specify a row or column of the
memory grid. Such an encoding scheme would have to be determined by the designer of any physical realization
of the theoretical machine. The symbol = is used to separate the numerator and denominator when specifying the
amplitude �lter (zlower; zupper) with rational numbers. The symbol ; may be required to separate naturals under
some encoding schemes.

3. UNIVERSALITY OF THE THEORETICAL MACHINE

We often use a technique called simulation to measure computational power. If we can show that machine B can
simulate every operation that A performs, we can say that B is at least as powerful as A, without ever having
to explicitly compare functionality. We have already investigated the general-purpose properties of our machine1

by simulating a standard (albeit non-universal) model of computation from computer theory: the push-down
automaton5 (PDA). A 2-stack PDA (2PDA) is no less powerful than a TM. A 2PDA can simulate any k-tape TM
in the following manner. First, convert the k-tape TM into a 1-tape TM. Then, to simulate the movement of the
tape head in one direction we pop the top item o� one stack and push it onto the other stack. To simulate the
movement of the head in the opposite direction we reverse the procedure.

The arithmetization of TMs (representing a TM in terms of quadruples of integers) has been shown by Minsky.13

Our simulation follows Minsky's approach. We use four images to represent Minsky's four registers, s, m, n, and
z. Image s is the symbol under the TM tape head, image m encodes a stack holding all symbols on the tape to
the left of the tape head, n encodes a stack holding all symbols on the tape to the right of the tape head, and z is
used for temporary storage.

In order to simulate a stack we needed to e�ect indirect addressing. In a previous paper1 we showed how to
simulate indirect addressing with a combination of self-modi�cation and direct addressing. We were also able to
simulate conditional branching by combining indirect addressing and unconditional branching. This was based on
a technique by Rojas14 that relied on the fact that our set of symbols is �nite. Without loss of generality, we will
restrict ourselves to only two possible symbols, 0 and 1. Then, the conditional branching instruction \if (�=1)
then jump to address X, else jump to Y" is written as unconditional branching instruction \jump to address �".
We are only required to ensure that the code corresponding to addresses X and Y is always at addresses 1 and 0,
respectively. In a 2-D memory, multiple such branching instructions are possible. The data in the stack can then
be encoded in an image as a sequence of sub-images, compressed recursively into a single grid element.

3.1. Push and pop routines

For the push and pop routines, we require a third register c. When the pop routine is called the column number
of the intended stack will have already been copied to a,

Pop:
st(&�) // overwrite the four blanks (�) in code below with column number stored at a
ld(� � Y Y 0 1)
st(ab) // rescale contents of a over both registers a, b
st(c)
ld(b)
st(� � Y Y 0 1)
ld(c)

(All stacks will be located on a \well-known" row. Therefore, the row number, depicted by `Y' in the routine,
can be hardcoded into the machine.) In the �rst three statements, we use self-modi�cation to load the contents
of the stack into a and rescale it over both a and b. Image a now contains the top element and b contains the
remaining contents of the stack. The top element is temporarily stored in c, the contents of the stack stored back
in its original location, and the top element returned to a before the routine ends.
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z := 0
C0: case pop(m)

`0': br(C1)
`1': push(z,`1')

push(z,`1')
br(C0)

C1: m := z + s
z := 0
s := 0

C2: case pop(n)
`0': br(C3)
`1': s := 1

case pop(n)
`0': br(C3)
`1': s := 0

push(z,`1')
br(C2)

C3: n := z

function Search(input, location)
// input and location are two images
if input contains only one sub-image
return location

else
rescale input over a and b

if FT of a has a peak at the origin
append symbol '0' to location
Search(a, location)

else
append symbol '1' to location
Search(b, location)

end
end

end Search

(a) (b)

Table 1. Examples of pseudocode for the machine. (a) An algorithm to simulate a move to the right by the TM tape
head. Labels C1,C2,C3 are used by the branch (br) instructions. The case commands also branch to one of two possible
instructions (labeled `0' and `1') based on the results of a pop operation. (b) A recursive algorithm that performs a O(log

2
n)

search on an unsorted list of Boolean values.

The following push routine,

Psh:
st(&�)
ld(� � Y Y 0 1)
st(b)
ld(c)
ld(ab)
st(� � Y Y 0 1)

is called with the address of the intended stack in a and the new element in c. The contents of the stack are copied
into b and the new element moved to a. Then both a and b are rescaled into one image, pushing the new element
onto the top of the stack, and the contents stored back in the stack's original location. We use the push and
pop routines to simulate the movement of the TM tape head. Table 1(a) contains the algorithm for a rightwards
movement of the tape head, showing the required symbol updates to m and n. A movement to the left follows
much the same procedure. Both are encoded in rows 2 through 5 of our machine in Fig. 2.

3.2. Shorthand conventions

To facilitate persons reading and writing programs, a shorthand notation is used. This is summarized in Fig. 3.
Note that in this shorthand, instead of having to specify exact addresses, we give images a temporary name (such
as `t1') and refer to the address of that image with the ampersand (`&') character. Expansion from this shorthand
to the long-form programming language is a mechanical procedure that could be performed as a `tidying-up' phase
by the programmer or by a preprocessor. Unless otherwise stated, we assume that the bounds on image values
for theoretical machines are zMIN = 0 and zMAX = 1. The load and store commands contain 0=1 (=0) and 1=1
(=1) for their zlower and zupper parameters, respectively, indicating that the complete image is to be accessed. As a
convention we use boldface and underlining in program grid elements whose images can be modi�ed by the machine
and italics to highlight points of machine termination within the grid.
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Figure 2. Theoretical machine simulating a Turing machine. The majority of rows 0 and 1 appear below the main body of
the simulator (rather than to the right of it) for formatting reasons.
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(a) Pop t1 t2 ! ld t1 t2 br pop
Psh z `1' ! ld `1' st c ld z br psh

(b) ld t1 t2 ! ld t1 t2 99 99 0 / 1 1 / 1
st t1 t2 ! st t1 t2 99 99 0 / 1 1 / 1
ld z ! ld 4 4 99 99 0 / 1 1 / 1
st c ! st 23 23 99 99 0 / 1 1 / 1
st ab ! st 21 22 99 99 0 / 1 1 / 1
ld `1' ! ld 8 8 99 99 0 / 1 1 / 1

(c) st &y1 ! st &y1 &y1 0 0 0 / 1 1 / 1
! st 27 27 0 0 0 / 1 1 / 1

br C0 1 ! br 0 1
br C1 y1 ! br 29 y1

(d) br pop ! br 0 31
br psh ! br 0 30
br rej ! br 18 99

(e) = s `0' ! ld `0' st s
:= z `0' ! ld z st &r1 st &r2 ld `0' st r1 r2

:== t1 t2 z ! ld z st &r1 st &r2 ld r1 r2 st t1 t2

(f) R `0' q1 ! = s `0' br mvr br q1 *s
L `0' q1 ! = s `0' br mvl br q1 *s

(g) br mvr ! br 0 5
br mvl ! br 0 3

(h) br q1 *s ! ld s st &y1 br q1 y1

Figure 3. Shorthand conventions when programming the theoretical machine. (a) Push and pop shorthand. (b) Loading
from and storing to locations speci�ed at runtime, and \well-known" locations on row 99. (c) All constant references are
eventually given absolute addresses by the preprocessor. After the �rst pass of the preprocessor (expanding the shorthand)
the modi�able references are updated with hardcoded addresses. (d) Branching to subroutines. (e) Three types of assignment:
direct assignment to an image (=),assignment to the address of an image (:=), and assignment from the address of an image
(:==). (f) Calling the tape head movement routines. (g) Hardcoding the addresses of these routines at \well-known" rows
5 and 3. (h) Branching to an address speci�ed by the symbol currently scanned by the tape head.
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3.3. Simulation

An arbitrary TM is incorporated into our simulation as follows. First convert the TM into a TM that operates on
binary symbols. Then renumber the set of states such that for each row of the table of behavior hq; s; s0; q0; di an
ordered triple hd; s0; q0i can be placed at the location addressed by (q; s). As an example, the following transducer
TM to add two unary numbers is simulated by the machine,

q s s0 q0 d
0 1 1 0 R
0 # 1 1 R
1 1 1 1 R
1 # # 2 L
2 1 # 3 L
3 1 1 3 L
3 # # 4 R

where q is the current state, s is read symbol, s0 is the written symbol, q0 is the new state, and d is the direction
of tape head movement. State 0 is the initial state and state 4 is the �nal state. Computation begins with the
tape head at the leftmost digit of the �rst number and the numbers are separated by a single blank. For our
simulation we use symbol 0 for the TM's blank symbol #. The simulation is shown in Fig. 2 with the encoding of
this particular TM illustrated in lower section of rows 0 and 1.

4. COMPUTATIONAL COMPLEXITY

We demonstrate the computational complexity bene�ts of our machine through the example of a common search
problem. Given a list L and an element X 2 L, where in L is X positioned? The list has n elements, but we can be
sure of nothing more about L (i.e. we must assume it is unsorted). With a comparison based model of computation
(where we may only get ordering information about L and X through comparison) the lower bound on the worst
cost is n � 1 comparisons. This is the cost associated with solving the problem on a modern (sequential) digital
electronic computer. A more restricted form of this problem searches for the position of a 1 in a list otherwise
populated with 0s. This restricted problem is generalizable. The Boolean values could represent keys C(li) = 1 or
C(li) = 0 indicating whether list element li satis�ed property C or not, respectively. The problem then becomes a
search for the one element that satis�es that property or condition. It also has a lower bound on the worst cost of
n� 1 comparisons for a digital computer.

We encode Boolean values in our machine by letting a Æ-function at the origin of an image denote a 1 and
an empty image (or image with low background noise) denote a 0. A list of Boolean valued images could be
concatenated together in the one image without loss of information (by de�nition, images in our machine have
in�nite spatial resolution). Table 1(b) contains the algorithm. The image containing the remainder of the list is
rescaled over the two adjacent images a and b. Searching continues with the image that contains the peak, and the
other image is discarded. An o�-center peak can be centered for easy detection through Fourier transformation.
This uses the fact that the term at the origin of a FT, the dc term, has a value proportional to the energy over the
entire image. When the algorithm terminates, the location image will encode the address of the sought element.
This address could then be used to locate the original object in the list that this list of Boolean keys was derived
from. Analysis of this algorithm shows that it has a time complexity of O(log2n) (measured in list accesses).
The address image can also be used to locate the original object in O(log2n) timesteps. We observe that our
machine seems to swap time complexity for resolution complexity1 (this algorithm requires O(n) resolution
complexity).

The algorithm requires a little polishing. For example, a method to determine that there is only one sub-image
in the list, and functionality to take care of situations where there are an odd number of elements in the list. These
problems can be overcome since the magnitude of n is known in advance.

Finding a simulation of our machine on a TM (eÆciently or otherwise) appears problematic. Since our machine
works with continuous images, it is possible that an input could have in�nite resolution. Consider the following
decision problem. Given a possibly in�nite list of Boolean values, is there are least one `1' in the list? By de�nition,
this problem is undecidable on a TM (the halting problem can be reduced to it). In theory, our machine could FT
the continuous input image and measure the dc value in unit time. A peak would indicate that there was some
energy (and therefore a 1) in the list.
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5. CONCLUSION

We have presented a general framework for simulating TMs on our Fourier optical model of computation. Such
a result is important for several reasons: (i) it shows that analog optical processors are not restricted to being
co-processors to digital master units { they are as powerful in terms of the set of functions they compute. (ii)
a suitable universal model of computation will allow us to analyze, compare, and develop eÆcient analog optical
algorithms. (iii) the machine's functionality has been restricted to operations routinely demonstrated optically
(image multiplication/convolution/transformation, but no equality testing). This means that, in principle, our
machine could be realized physically with optoelectronic hardware. (iv) the model admits solutions with inter-
esting complexity and computability gains to problems other than those routinely associated with analog optical
information processing.

In proving universality for our theoretical analog optical processor, we investigate if analog optics has anything
to o�er the mainly digital approach to general-purpose optical computer design. As such, we hope to illuminate
another avenue of research in the investigation of whether a primarily-optical general-purpose computer can be
built or not.
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