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Abstract

We present a design for a novel computing machine composed of an

artificial arrangement of DNA and proteins. We characterise the compu-

tational power of this construction by proving that its prediction problem

is P-Complete.
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The natural world has always been an inspiration for computer scientists
but biology in particular has been a very fertile source of new ideas. Examples
of such are von Neumann’s self reproducing automata [14], neural networks [9],
evolutionary algorithms [7] and membrane computing [12].

Thomas Head was inspired by DNA and was among the first to explore the
potential of DNA for computing [6]. However, it was Adleman who performed
the first successful in vitro DNA computation [1]. Since then most DNA com-
puters have utilised Watson-Crick complementarity to direct self assembling
DNA molecules which encode both the input and the program. Sections of
DNA are designed to clip together like a jigsaw which develops into a structure
representing the progression or the result of a computation.

Although there is much exciting work being done [2, 3, 13] with biological
computers, the move from the test-tube to a usable, practical system has yet
to happen. We believe that the techniques of synthetic biology [4] will help in
achieving the goal of a practical bio-computer. The method of synthetic biology
is to apply the principles of engineering to the study of life. By engineering
and reverse engineering living systems, synthetic biologists aim to learn about
how biological systems and gene circuits operate. Synthetic biologists also aim
to create custom new life for specific tasks by treating understood systems as
components. By using this spirit and assembling our own machinery from cell
parts we could possibly build a practical and useful bio-computer.

A Holliday junction arises when two homologous DNA double helices are
aligned side by side [11]. Two strands of each helix partially unzip and are
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exchanged. The two joined DNA double helices then rotate to form a cross shape
and proteins attach to separate and recombine the strands as shown in Figure 1.
A Holliday junction will not form if the homologous DNA double helices meet
perpendicularly. While each Holliday junction as an individual entity can be
considered a computing device, we outline how it could be possible to artificially
connect together individual junctions to construct a biological computer. The
resulting chain of junctions would most likely never arise in nature. However, if
proteins chosen for their function were arranged correctly it would be possible
to artificially implement a Holliday junction computer. We call this computer
a Holliday Framework.
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Figure 1: The Holliday junction illustrated with Escherichia coli proteins RuvA
and RuvB. Arrows indicate the movement of the strands.

To join Holliday junctions together we design an artificial framework con-
structed of regular proteins and chemicals. The environment of the framework
is balanced to produce optimal Holliday junction formation and consistent DNA
movement. The framework consists of pairs of microtubule tracks arranged to
construct a grid pattern. It is on these tracks that homologous DNA strands
will be pulled by dynein motor proteins. Each pair of tracks acts like road where
each track allows DNA traffic in one direction only. When two DNA double he-
lices approach from opposite directions they will form a Holliday junction and
will produce two double helices moving perpendicularly away from the junction
site. These will then be able to form new junctions with any other homologous
double helices they come across. We characterise the computational complex-
ity of the Holliday Framework by showing that instances of Circuit Value

Problem (CVP) [8] can be converted to instances of Holliday Framework

Prediction by a logspace Turing Machine.

Definition 1 (Holliday Framework Prediction Problem). Given: A
string x, a description H of a Holliday Framework H , and an integer t coded in
unary. (more precisely, the input is the string x#H#t, where # is a delimiter
character not otherwise present in the string.) Problem: Does M accept x

within t timesteps?

Our proof is similar to that used by Moore and Nordahl for lattice gases [10].
In our framework, the presence of a DNA double helix will represent a logical
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Figure 2: The widgets needed to make circuits. Solid arrows carry logic true,
double lined arrows are logic false, dashed arrows are part of the widget, and
dotted arrows are waste. The two NOT gates represent both possibilities for
input, the second gate can be better understood as the next timestep of the first
NOT gate, with a false input.

true and absence will indicate false. To represent logic gates we provide wid-
gets, groups of several Holliday junctions that rely on the presence of truth
signals which will only serve to provide a junction and produce waste signals.
The waste signals are prevented from interfering with other junctions by stag-
gering the computation so that there is only one junction in a row or column.
The widgets for AND and NOT gates are shown in Figure 2, with these we can
construct the universal NAND gates. We can connect our gate widgets together
using the utility widgets; split, delay, and shift shown in Figure 2.

A logspace bounded Turing machine takes the CVP input and replaces all
OR gates with AND and NOT gates via de Morgan’s Laws. Then for each
gate DNA strands are placed in position to create a Holliday junction at the
correct time step and location. The resulting Holliday Framework has size and
depth (in junctions) that is a constant times the respective size and depth of
the circuit. So, since the instance of CVP has polynomial depth, the Holli-
day framework result of the reduction will also have polynomial depth. Thus
Holliday Framework prediction is P-complete.

The task of deciding if a Turing Machine M will accept input x within t time-
steps is known as the Generic Machine Simulation Problem (GMSP) [5]
and is also P-complete. P-Complete problems are, by definition [5], logspace
reductable to each other and so it is possible to encode an instance of GMSP
as an instance of Holliday Framework Prediction using a logspace Tur-
ing Machine. Thus the Holliday framework is an efficient simulator of Turing
Machines.

We have proposed a novel method for computing using the mechanical pro-
cess of genetic combination then show that this method of computing is an
efficient simulator of Turing Machines. The purpose of this paper is to inspire
researchers to explore the possibilities of constructing artificial biological sys-
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tems custom built to serve as biological computers and provide a simple tool,
P-completeness, to prove that such a system is an efficient and useful computa-
tional device.
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