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Abstract 
We analyze the result of allowing a risk averse trader to split his order among 
risk averse market makers. We find that the market makers’ aggregate ex-
pected utility of profit can increase with the number of market markers and 
that the aggregate liquidity always increases with it. Despite this latter finding, 
we show that the cost of trading for the traders increases with the number of 
market makers as measured by their aggregate expected utility of profit. The 
larger the market makers’ risk aversion, the bigger that cost is. We also find 
that when the number of market makers tends to infinity, their aggregate ex-
pected utility of profit tends to zero. We also obtain that the market makers’ 
individual and aggregate expected utility of profit can increase with their risk 
aversion and that the trader’s expected utility of profit can increase or de-
crease with the market makers’ risk aversion. We offer a potential answer to 
the ongoing debate concerning the dealers’ competitiveness. Indeed, risk 
aversion reduces competition between market makers as it acts as a commit-
ment for market makers to set higher prices. This commitment is higher the 
higher the risk aversion. 
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1. Introduction 

The competition between markets and the result of that competition has re-
ceived much attention in Finance. Indeed, traders have the possibility to ex-
change assets in multiple venues. In addition, companies have a tendency to 
cross-list more to avail of a greater exposure reducing their cost of capital. In 
turn, this leads to more markets where traders can trade the same asset. Paral-
lely, after the recent crashes, market participants’ attitude toward risk has 
changed, this has implied an increase in both market participants’ risk aversion 
as well as market volatility. As a consequence, some natural questions arise: How 
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is the cost of trading affected by the level of the market makers’ risk aversion1? 
How is that same cost influenced by the number of market makers with whom 
the traders can exchange? How is the overall liquidity of an asset affected by 
both the number of market makers and their risk aversion? How is the degree of 
competition between market makers influenced by the number of traders com-
peting for the exchange of an asset? How is the trading behaviour of risk averse 
traders affected by the possibility to trade the same asset on different markets or 
with multiple dealers? These questions need to be answered in order to shed 
some light on the facts observed in financial markets such as wider bid-ask 
spreads (high transaction costs), for instance. 

In that paper we study the impact of the competition of risk averse market 
makers on financial markets. 

A large body of papers analyzes the formation and properties of price and li-
quidity in financial markets2. In order to study both, three assumptions are 
commonly made. First, market makers behave competitively. Second, traders 
cannot split their orders among market makers3. Third, market makers are risk 
neutral. As a result of the first and second assumptions, risk neutral market 
makers set a price equal to the expected value of the asset given the market mak-
er’s information and aggregate order flow. This implies that market makers earn 
zero expected profit. Both the second and the third assumptions are more sim-
plifying assumptions than realistic ones. Indeed, traders have now a wide range 
of possibilities to trade a given asset. In addition, [7] proves that, in FX markets, 
dealers closely control their inventory position showing the fact they are risk 
averse. It is likely to be also true for equity and bond markets. 

In the present model we remove the three aforementioned assumptions. This 
enables us to combine the assumptions of imperfect competition and risk aver-
sion for the market makers. We then analyze the effects of these assumptions on 
prices, liquidity and the level of expected profit market makers achieve in a situ-
ation where one trader splits his order among market makers. 

We propose to answer these questions in a setting close to [2]. The price 
schedule of a market maker is contingent to the aggregate order flow for that 
particular market maker only and not contingent to the order flow received by 
the other market makers. Each market maker determines the price maximizing 
her expected utility taking as given the price set by her competitors and taking 
into account its impact on the market order submitted by the trader4. Prior to 
knowing the price schedule, the trader receives (1) a private signal concerning 
the fundamental value of the asset and (2) an endowment of both the risky asset 
and the riskless asset. When deciding the size of his order for each market mak-
er, the trader knows the different market makers’ price schedule. The trader de-
termines the size of each order submitted to the different markets by maximiz-

 

 

1[1] raises the fact that too few models study the situation where market makers are risk averse. 
2Liquidity is defined as the volume necessary to move the price by one unit. See [2]. 
3See [2] [3] [4] [5] [6] among others. 
4In our context as the price is a linear function of the aggregate order flow it is equivalent to find the 
level of liquidity maximizing her expected utility. 



H. Boco et al. 
 

146 

ing his conditional expected utility taking into account the impact of his order 
on the price for each market. We find a counter-intuitive result that increasing 
the number of market makers, N, with whom the trader exchanges, can adverse-
ly affect the trader’s welfare and this despite the fact that the aggregate liquidity 
increases with N. The interpretation of this result is as follows. Firstly, increasing 
N has the following effects: (1) it increases the aggregate risk tolerance of the 
market makers and increases risk sharing, (2) it reduces the individual liquidity 
in each market, and finally (3) it reduces the volume handled by market makers. 
The first and the second effect clearly increase aggregate expected utility of prof-
it. However, the reduction in volume has two opposite effects on aggregate ex-
pected utility of profit. Secondly, increasing mρ , the market maker’s risk aver-
sion, has the following implications: (1) it decreases the aggregate risk tolerance 
of the market makers, (2) it reduces the individual liquidity in each market, and 
finally (3) it reduces the volume received by market makers. Effect (1) decreases 
aggregate expected utility of profit whereas effect (2) increases it. The reduction 
in volume has again two opposite effects. In fact we show that when 0mρ > , the 
positive effects (those which increase the aggregate expected utility of profit) 
dominate for a small number of market makers while the negative effect domi-
nates for a large number of market makers. As a result risk aversion can magnify 
the transaction costs paid by investors. To the best of our knowledge this is the 
first time this result has been found, as our model looks at the most general situ-
ation where both the trader and market makers are strategic and risk averse. 
This finding has important implications for the regulation of financial markets. 

Our result can be regarded as an answer to the ongoing debate about the im-
plications of market fragmentation on traders’ welfare. We find that increasing 
market fragmentation seen as increasing the number of market makers can 
damage the traders’ welfare. Having more market makers or markets is not al-
ways desirable from the point of view of investors’ trading costs. 

Other results include that, for a finite number of market makers, the level of 
aggregate liquidity is below its competitive level implying that market makers 
earn positive expected profits5. The explanation of that result is as follows: by 
increasing her price, a market maker reduces the volume received without mod-
ifying the proportion of the trader’s market order due to hedging needs6. How-
ever, the increase in price may still compensate for the effect of the decrease in 
volume on the market maker’s expected utility of profit. In fact, despite a higher 
price, the trader is willing to exchange on that market, as by splitting his order 
he reduces its overall impact on the price. This implies that, due to their risk 
aversion, all market makers have an incentive to set less competitive price sche-
dules. Nevertheless, when the number of market makers tends to infinity, both 
the market makers’ expected utility of profit and the aggregate liquidity tend to 
their competitive level. 

 

 

5The competitive level is computed in a situation where traders cannot split their orders and market 
makers face competition. 
6Due the traders’ CARA utility framework, an increase in price only alters the size of the market or-
der without changing the proportion of hedging motives within the order. 
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Our work is linked to research focusing on dealers’ competition. There are 
strong evidences that dealers behave strategically and earn monopoly rents. [8] 
and [9] show that market makers on the NASDAQ may exhibit a non-competitive 
behaviour. This is also confirmed by studies such as [10] and [11]. In an experi-
mental study, [12] find similar results. They compare the size of the bid-ask 
spread and of the dealers’ profit for two scenarios: (1) three competing dealers in 
a single asset (i.e. direct competition) and (2) three assets with a monopolistic 
dealer in each (indirect competition). They find that bid-ask spreads are wider 
and that per-trade dealer profits are larger for the first scenario7. 

Theoretical papers have looked at the effect of the competition among market 
makers on their expected profits and their price schedule8. [16] and [17] study 
competition in limit orders. [17] find that when the number of market makers is 
finite, market makers earn positive expected profits. They also show that as the 
number of market makers tends to infinity, market makers earn zero expected 
profits and the price schedule converges to the competitive one obtained in [16]. 
[18] and [19] consider risk averse market makers. The former compares the cost 
of trading across markets organized differently, i.e. floors, dealer markets and 
limit orders. The latter looks at dealership markets, limit order markets and a 
hybrid market mixing the two preceding structures. They do not provide an 
analysis of the model we study here. In addition, they look at the case where a 
unique liquidity trader is present in the market. [20] and [21] look at risk averse 
market makers, however, their main focus is on an inter-dealer markets. Finally, 
[22] are closer to our analysis. They study the competition between market 
makers for the duopoly case. Their setting is similar to [2] with market makers 
setting price schedules as a function of the aggregate order flow before traders 
submit their orders. They show that in equilibrium market makers cannot earn 
zero expected profits. For the duopoly case, the existence and the form of the 
equilibrium is shown. However, for the oligopolistic case they show that an equi-
librium cannot be such that market makers earn zero expected profit but do not 
prove its existence. We depart from their analysis as we consider the case of risk 
averse market makers. 

The contribution of our paper is twofold. Firstly, on a purely theoretical basis, 
we generalize [17] and [22] to the cases where there are N > 2 risk averse market 
makers. To the best of our knowledge, the dealers’ risk aversion has not been 
incorporated in any analysis for the type of model we are dealing with, i.e. mod-
els with asymmetry of information and splitting orders. [4] and [23] analyze the 
case where market makers are potentially risk averse but traders cannot split 
their order. Secondly, we offer a potential answer to the ongoing debate con-
cerning the dealers’ competitiveness. Indeed, risk aversion reduces competition 
between market makers as it acts as a commitment for market makers to set 

 

 

7An important difference between the two scenarios lies in the fact that in the three asset case, li-
quidity traders as well as having the possibility to time their trade have the choice of which asset to 
trade. This is the main driving force for their result. 
8Less recent papers [13] [14] [15] focus on the extreme case where the market maker or specialist has 
a monopolistic position over a particular asset. 
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higher prices. This commitment is higher the higher the risk aversion. 
An outline of the paper is as follows. In Section 2, we present the general 

model allowing traders to split their orders. In Section 3, we solve the model for 
the linear symmetric equilibrium. We look at the properties of the liquidity and 
the market makers’ aggregate expected profit in section 4. Section 5 presents our 
conclusions and summarizes our results. Finally all proofs are gathered in the 
Appendix. 

2. The Model 

Consider a market where a risky asset and a riskless asset are traded among one 
trader and N market makers. For convenience, the riskless asset has its interest 
rate normalized to zero. The liquidation value of the risky asset, v , is normally  

distributed with mean 0 and variance 2
vσ  (precision 2

1
v

v

τ
σ

= ). 

All agents, i.e. the trader and market makers, are risk averse and have prefe-
rences described by a CARA utility function of the following form 

( ) ( )exp , for the trader,U W Wρ= − −  
( ) ( )exp , for each market maker 1, , ,n m nU W W n Nρ= − − =   

where ρ  and mρ  represent the parameter of risk aversion and W and nW  
represent the final wealth. 

Before trading the trader receives both an heterogeneous signal about the fu-
ture value of the risky asset and an heterogeneous endowment of both the risky 
and the riskless assets. The trader’s signal, s, is a realization of a normally distri-
buted random variable s v ε= +    where ε  is normally distributed with mean 
0 and variance 2

εσ  (precision ετ ). The trader’s endowment of the risky asset, 
w, is a realization of a normally distributed random variable, w  with zero 
mean and variance 2

wσ . If w is positive (negative), the trader holds a long 
(short) position in the risky asset. The trader’s endowment of the riskless asset is 
denoted by c. The trader exchanges for two reasons: hedging motives and in-
formational reasons. Indeed, on the one hand, he trades for pure risk-sharing 
reasons as he receives an endowment shock of the risky asset. On the other 
hand, as he receives private information he exploits his informational advantage 
by trading on that private information, he is then an informed speculator. In the 
present model, we do not require noise traders as part of the orders submitted to 
the market makers are due to risk sharing motives. 

All random variables v , ε , w  are independent. 
The timing unfolds as follows: 
1) The trader observes his private signal s as well as his endowments, w and c 

for the risky and the riskless asset, respectively; 
2) Each market maker 1, ,n N=  , simultaneously, posts a price schedule 

depending, solely, on her own order flow. The price schedule is not contingent 
on the order flow received by the other market makers as it is not observed; 

3) Given the market makers’ price schedules, the trader determines how much 
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to trade with each market maker; 
4) Each market maker observes her own aggregate order flow and then clears 

it at the price previously posted; 
5) The value of the asset is revealed and payoffs are realized. 
It is assumed that the trader submits market orders in each market. 

3. Characterization of the Equilibrium 

As in [2], the model is solved for linear symmetric equilibria. 
We assume that the market order submitted by the trader to market maker n 

is linear in both the signal and the endowment of the risky asset, i.e., 

, 1, , .n n nx a s b w n N= − ∀ =                     (1) 

The price schedule set by market maker n is linear in the anticipated order 
flow, nx , in her own market, 

, 1, , .n n np x n Nλ= ∀ =                       (2) 

Definition (Equilibrium) ( )1, , N
Nλ λ ∈ℜ  and 2

NX L∗ ∈  with 

( )1 , , , ,n NX X X X∗ ∗ ∗ ∗=    is an equilibrium if, given the liquidity set by each 
market maker, the market orders submitted by the trader, X ∗ , to the different 
market makers are such that 

arg max , ,
2nx

X E W s w var W s wρ∗

∈ℜ
∈   −                   (3) 

with 
1 1

,
N N

n n n
n n

W wv x v p x c
= =

= + − +∑ ∑   and given the market order submitted to 

market n and the liquidity set by the other market makers, the liquidity set by 
market maker n, nλ , is such that 

( )( ) ( )( )arg max .
2
m

n n n n n n nE p x v x var p x v xρλ ∗ ∗ ∗ ∗   ∈ − − −   
 

 

The trader determines the size of each market orders, nx∗ , submitted to the 
different markets by maximizing his conditional expected utility taking into ac-
count the impact of his orders on the price for each market. Each market maker 
determines the level of liquidity maximizing her expected utility taking as given 
the liquidity set by her competitors and taking into account its impact on the 
market order submitted by the trader. 

Given the linearity assumption of the price schedule, computing the price lev-
el maximizing the market maker’s expected profit is equivalent to computing the 
liquidity parameter, λ , maximizing the expected profit. This is used in order to 
write the above definition. 

The model is solved by backward induction: we first solve the traders’ pro-
gram and then solve the market makers’ program. 

The Equilibrium 

We look at the trader’s program first. 
Lemma 1. The trader’s program, see (3), admits a unique solution given by 
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The quantity submitted to any other market, j n≠ , is such that n n j ja aλ λ= . 
Proof. See Appendix. 
Given that solution, the market makers maximize the expected utility of profit 

as defined above. The next proposition gives us the existence and when estab-
lished the unicity of the solution to the market makers’ program. 

Proposition 1 If ( )2 1 11w vε ερ τ τ τ τ− −> + , a linear symmetric equilibrium exists. 
The form of the linear equilibrium is given by 
• The price set by each market maker 1, ,n N=   is 

( ) , 1, , ,n np N x n Nλ= ∀ =   
• The trader submits to the different market makers a market order of the fol-

lowing form 

( ) ( ) ( )1, ,x s w a N s wερτ −= −
 

where ( )a N  and ( )Nλ  are defined in the Appendix. Upon having the possi-
bility to trade in N markets, it is always optimal for the trader to trade in all 
markets. 

The unicity of the equilibrium can be formally established for some parameter 
configurations. Whenever, it cannot be formally established, we prove it numer-
ically (see Appendix). 

Proof. See Appendix. 
The model studied here is very general. A drawback of such a general model is 

that closed form solutions cannot be found. The model is then solved by using 
numerical procedures. 

The sufficient condition for the existence of the equilibrium can be inter-
preted as follows. It states that the hedging motives must outweigh the informa-
tional motives for the existence of a linear equilibrium price schedule. Indeed the 
hedging motives must be large enough to induce, with a linear price schedule, a 
non-negative expected profit for the market makers9. 

The trader’s risk aversion as well as the precision of the private information 
affect both the size of the market order and its composition. Intuitively, by 
keeping constant the size of the market order, an increase in the trader’s risk 
aversion has a direct effect of increasing the proportion of the market order due 
to hedging motives whereas an increase of the precision ετ  increases the pro-
portion of the market order due to private information. All other parameters af-
fect the size of the order, without changing its composition. 

We look at some of the important properties of both the liquidity and the ex-
pected utility of profits of the market makers and the trader. 

 

 

9That condition is similar to the one obtained in [14]. [23] also obtains a sufficient condition for the 
existence of a linear equilibrium. 
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4. Properties of the Equilibrium 
4.1. Liquidity 

We look at some of the properties of both the individual liquidity, or market 
depth, i.e. the liquidity set by each market maker, and aggregate liquidity defined  

as being the sum of all liquidities. In our case, aggregate liquidity is 
1

1N

n nλ=
∑ . 

Result 1 (Liquidity) 
1) The individual liquidity can either be increasing with the number of market 

makers (N) or be a non-monotonic function (first increasing and then decreas-
ing) of N. It decreases with the market maker’s risk aversion. 

2) The aggregate liquidity increases with N whereas it decreases with the 
market maker’s risk aversion. 

Proof. See Appendix. 
The result is proved using numerical procedures. 
The reaction of the individual liquidity to the number of market makers de-

pends on the trader’s risk aversion. It firstly increases with N and then decreases 
with it when the trader’s risk aversion is relatively large whereas it increases with 
N when the trader’s risk aversion is relatively small. 

As stated in Proposition 1, the trader splits his order across markets in such a 
way that the marginal trading cost is equalized across markets. As a conse-
quence, the trader submits a smaller quantity to markets with lower liquidity. By 
setting a higher price, the market maker does not modify the ratio of hedging to 
informed trading. Indeed the trader reduces the size of his order without altering 
its composition10. Hence, by increasing her price, a market maker reduces the 
volume received, however, the increase in price may still compensate for the de-
crease in volume implying higher expected payoff. This gives the intuition for 
the slope of the individual price schedule. However, we find that the aggregate 
price schedule faced by the traders has a smaller slope (as defined by the aggre-
gate liquidity) leading to a more competitive aggregate price schedule. This re-
sult is also found in [22]. 

Figure 1 and Figure 2 show the individual liquidity for different values of the 
market makers’ risk aversion as well as for different number of market makers. 
For an initial low number of market makers, the decrease in individual liquidity 
(see Figure 1) or the increase (see Figure 2) is sharper for risk neutral than for 
risk averse market makers. In addition, as the risk aversion increases, the impact 
of increasing the number of market makers decreases. The decrease in individual 
liquidity for a large number of market makers is true for risk neutral as well as 
for risk averse market makers. 

The following simulations (Figure 3 and Figure 4) show the levels of aggre-
gate liquidity for risk neutral as well as risk averse market makers. 

 

 

10This property is implied by the CARA setting used here. In a different setting, increasing the price 
(due to a high level of risk aversion of the market makers, for instance) may induce traders to reduce 
the hedging to information trading ratio implying a closure of the market. In the present setting, this 
does not happen. 
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Figure 1. Individual liquidity (liquidity in each market) as a function of the number of market makers 
(N) and their risk aversion ( mρ ). The figure assumes 1v w ετ τ τ= = =  and 1.5ρ = . 

 

 
Figure 2. Individual liquidity (liquidity in each market) as a function of the number of market makers 
(N) and their risk aversion ( mρ ). The figure assumes 1v w ετ τ τ= = =  and 10ρ = . 
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Figure 3. Aggregate liquidity as a function of the number of market makers (N) and their risk aversion 
( mρ ). The figure assumes 1v w ετ τ τ= = =  and 1.5ρ = . 

 

 
Figure 4. Aggregate liquidity as a function of the number of market makers (N) and their risk aversion 
( mρ ). The figure assumes 1v w ετ τ τ= = =  and 10ρ = . 
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From the figures obtained, the aggregate liquidity increases with the number 
of market makers and converges to the competitive level11. The effective price 
schedule faced by the trader decreases due to more competition. It is also the 
case, that the aggregate liquidity decreases with the market makers’ risk aversion. 
This comparative static is very intuitive. Indeed, as the market maker’s risk aver-
sion increases, the cost of handling a given size of the order flow increases. The 
market maker then requires more compensation which decreases liquidity and, 
in turn, reduces the positive impact of competition on the aggregate liquidity 
level. This can be understood as follows. Risk aversion acts as a commitment de-
vice for market makers to set high prices. As their risk aversion increases, their 
commitment is even stronger reducing the positive impact of competition. The 
aggregate liquidity increases with the trader’s risk aversion. This is explained by 
the fact that as the trader becomes more risk averse he hedges relatively more 
than he speculates. 

Our model displays some properties consistent with BMR and BH regarding 
aggregate liquidity and volume traded. They both increase with the number of 
market makers. It should be pointed out that in BMR the measure of liquidity is 
the bid-ask spread, they show that it decreases with the number of market mak-
ers. 

4.2. Aggregate Expected Utility of Profit 

We now look at the properties concerning the market makers’ aggregate ex-
pected utility of profit. 

Result 2 (Market Maker’s Expected Utility of Profit) 
1) In equilibrium, the market makers’ individual expected utility of profit de-

creases with N, whereas it is a non-monotonic function of mρ . 
2) In equilibrium, the market makers’ aggregate expected utility of profit can 

be a non-monotonic function of both mρ , and N. 
Proof. See Appendix. 
The result is proved using numerical procedures. 
Figure 5 and Figure 6 show the individual expected utility of profit for the 

market makers as a function of N, the number of market makers, and mρ  
The market maker’s individual expected utility of profit decreases with the 

number of market makers and tends to zero when the number of market makers 
is infinite12. This clearly results from competition. It can be seen that when the 
number of market makers is low the individual market makers’ expected utility 
of profit decreases with their level of risk aversion whereas it increases with it 
when the number of market makers is large enough. This leads to the following 
result that when the number of market makers is large, it is beneficial for them 
to be risk averse and the more they are the more beneficial. As explained before, 
risk aversion acts as a commitment device for market makers to set high prices. 
As their risk aversion increases, their commitment is even stronger reducing the  

 

 

11This result can be proved analytically for the case of one trader splitting his orders among N risk 
neutral market makers. 
12This result is the same as [22]. 



H. Boco et al. 
 

155 

 
Figure 5. Market maker’s expected utility of profit as a function of the number of market makers and 
their risk aversion. The figure assumes 1v w ετ τ τ= = =  and 1.5ρ = . 

 

 
Figure 6. Market maker’s expected utility of profit as a function of the number of market makers and 
their risk aversion. The figure assumes 1v w ετ τ τ= = =  and 10ρ = . 
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positive impact of competition and therefore leading to increasing expected util-
ity with mρ . When the number of market makers is high (very competitive 
market), risk aversion is beneficial to them as it reduces competition. 

Figure 7 and Figure 8 show the aggregate expected utility of profit for the 
market makers as a function of their number and their risk aversion. The aggre-
gate expected utility of profit for the market makers represents how market 
makers fare as a group. 

As for the individual market maker’s expected utility of profit, the aggregate 
expected utility of profit decreases with mρ  for a low number of market makers 
and increases with mρ  when the number of market makers is large. The two 
figures above (7 and 8) show a relationship between the optimal number of 
market makers (number of market makers maximizing the market makers’ ag-
gregate expected utility) and their risk aversion. As the level of risk aversion in-
creases, the optimal number of market makers increases. 

In order to understand the above results we need to understand all the basic 
effects on the market makers’ aggregate expected utility of profit of changing N 
and mρ . Firstly, increasing N has the following effects: (1) it increases the ag-
gregate risk tolerance of the market makers and increases risk sharing, (2) it re-
duces the individual liquidity in each market, and finally (3) it reduces the vo-
lume handled by market makers. The first and the second effect clearly increase 
the market makers’ aggregate expected utility of profit. However, the reduction 
in volume has two opposite effects on aggregate expected utility of profit. In-
deed, the reduction in volume has an obvious effect of reducing it but at the  

 

 
Figure 7. Aggregate market makers’ expected utility of profit as a function of the number of market mak-
ers and their risk aversion. The figure assumes 1v w ετ τ τ= = =  and 1.5ρ = . 
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Figure 8. Aggregate market makers’ expected utility of profit as a function of the number of market mak-
ers and their risk aversion. The figure assumes 1v w ετ τ τ= = =  and 10ρ = . 

 
same time it reduces the uncertainty faced by market makers increasing it. Se-
condly, increasing mρ  has the following implications: (1) it decreases the ag-
gregate risk tolerance of the market makers, (2) it reduces the individual liquidi-
ty in each market, and finally (3) it reduces the volume received by market mak-
ers. Effect (1) decreases aggregate expected utility of profit whereas effect (2) in-
creases it. The reduction in volume has again two opposite effects described ear-
lier. 

We now turn to the expected utility of profit for the trader. This provides us 
with a measure of the overall and true cost of trading for the investor. 

Result 3 (Trader’s Expected Utility of Profit) In equilibrium, the trader’s 
expected utility of profit is a non-monotonic function of N, mρ  and ρ . 

Proof. See Appendix. 
The result is proved using numerical procedures. 
The following Figure 9 and Figure 10 show the trader’s expected utility of 

profit as a function of both the number of market makers and their risk aversion 
for different level of traders’ risk aversion. As there is only one trader, it is also 
representing the aggregate expected utility. 

Increasing the number of market makers adversely affects the cost of trading. 
Paradoxically, from the point of view of the traders it is not always desirable to 
increase the number of market makers providing liquidity in the market. 

The above result implies that the widely used measure of traders’ welfare, i.e. 
market depth or liquidity, is an inappropriate measure. Indeed, the traders’ wel-
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fare can decrease with the number of market makers despite the fact that aggre-
gate liquidity increases. 

 

 
Figure 9. Expected utility of profit of the trader as a function of the number of market makers and their 
risk aversion. The figure assumes 1v w ετ τ τ= = =  and 1.5ρ = . 

 

 
Figure 10. Expected utility of profit of the trader as a function of the number of market makers and 
their risk aversion. The figure assumes 1v w ετ τ τ= = =  and 10ρ = . 
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In BMR, the mark-ups above the competitive or efficient price schedule are 
shown to decrease with the number of market markers. As market makers are 
risk neutral this results in a decrease of their expected profit when their number 
increases. Their result is identical to BH. 

4.3. Volatility and Price Efficiency 

We now analyze the impact of having more than one market or market maker 
onto both the volatility and price efficiency. 

Result 4 

1) The price volatility measured as an aggregate of volatility, 
1

N

n
n

var p
=

 
 
 
∑  in 

all markets can either be increasing with N or be a non-monotonic function of 
N. It increases with the market maker’s risk aversion and is non-monotonic with 
the trader’s risk aversion. 

2) The inverse of the price efficiency is given by 
2

2 2 2
2

1 2
2 2 2

2

.
v w

v w

ε
ε

ε
ε

ρσ σ σ
τ
ρσ σ σ
τ

 
+ 

 Σ =
+ +

 

It can be shown that it is such that 

2 2
1

1 .
2 v vσ σ< Σ <

 

It is unaffected by the number of market makers and their risk aversion, whe-
reas it increases with the trader’s risk aversion. 

Proof. See Appendix. 
The next two figures (Figure 11, Figure 12) illustrate the effect of both the 

number of market makers, N, and their risk aversion on price volatility as well as 
the effect of the trader’s risk aversion. 

The results on price efficiency follow intuition. As said before, both the num-
ber of market makers and their risk aversion have no effect on the composition 
of the market order (hedging versus speculative motives) leading to the price ef-
ficiency being not affected by N and mρ . The trader’s risk aversion affects both 
the size and the composition of the market order. When the trader’s risk aver-
sion increases, ceteris paribus the trader increases his hedging motives reducing 
the price efficiency. 

5. Conclusions 

This paper looks at the case where traders can split their orders among different 
market makers. Our model combines the assumptions of imperfect competition 
with risk aversion for the market makers. This study is conducted for a financial 
market organized as a batch auction. Each market maker commits to a level of 
liquidity and to a price form, in our case the price is a linear function of the or-
der flow. At that price, each market maker clears the market, i.e., takes a position  
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Figure 11. Overall volatility as a function of the number of market makers and their risk aversion. The figure as-
sumes 1v w ετ τ τ= = =  and 10ρ = . 

 

 
Figure 12. Overall volatility as a function of the number of market makers and their risk aversion. The figure as-
sumes 1v w ετ τ τ= = =  and 3ρ = . 
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that balances supply and demand. The risk averse trader receives both heteroge-
neous private information of the liquidation value of the traded risky asset and 
heterogeneous endowment of the same asset. As a consequence, the trader trades 
for informational as well as hedging motives. 

The main findings of the paper are the following. We prove the existence of a 
linear symmetric equilibrium. We obtain that the aggregate liquidity increases 
with the number of market makers. For a finite number of market makers, they 
earn positive expected utility of profit. We show that the market makers’ aggre-
gate expected utility of profit can increase with the number of market makers. 
We also show that the traders’ aggregate expected utility of profit can decrease 
with the number of market makers. This implies that the investors’ cost of trad-
ing can increase with the number of market makers. As a result the traders’ wel-
fare is adversely affected by increasing the number of market makers. A direct 
implication of that finding is that market liquidity or market depth is an inap-
propriate measure of investors’ trading costs. As in various other papers, it is al-
so shown that market makers’ aggregate expected profit tends to zero whenever 
the number of market makers is infinite. 

Empirical studies such as [8] [9] [10] find that market makers on the 
NASDAQ exhibit a non-competitive behaviour. Our paper brings a new pers-
pective to this non-competitive behaviour. We find that their non-competitive 
behaviour is exacerbated by their risk aversion. The more risk averse the market 
makers, the more market makers it takes for the aggregate liquidity to converge 
to its competitive level. In other words, risk aversion decreases the benefits of 
competition on the level of aggregate liquidity. 

Our results could be regarded as an answer to the ongoing debate about the 
implications of market fragmentation on traders’ welfare. We find that increas-
ing market fragmentation, seen as increasing the number of market makers, can 
damage traders’ welfare. Having more market makers or markets is not desirable 
from the point of view of investors’ trading costs. 
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Appendix 
Proof of Lemma 1 

Proof. Given the different prices set by each market maker 1, ,n N=  , 

n n np xλ= , the investor submits a quantity n n nx a s b w= −  to each market. That 
quantity maximizes the expected profit for the trader taking into account its ef-
fect on the price, 

1, ,
max

2Nx x
E W var Wρ   Φ − Φ   



 

 

with 
1 1

.
N N

n n n
n n

W wv x v p x c
= =

= + − +∑ ∑

   

This leads to 

1

2

, , 1 1 1
max .

2N

N N N

n n n nx x n n n
wE v x E v p x c w x var vρ

= = =

  Φ +  Φ − + − +  Φ       
∑ ∑ ∑



  

 
Differentiating the above expression with respect to nx , we get 1, ,n N∀ =   

1
2 0.

N

n n j
jn

E v x w x var v
x

λ ρ
=

 ∂
=  Φ − − +  Φ =    ∂  

∑           (4) 

The entire system of first order conditions is given by 

( )
1

2

1
1

1

N

N

x
x

D E v wvar v

x

ρ

   
   
   =  Φ −  Φ      
   

  

 

              (5) 

with 

1

2 ,N

N

C D D
D C D

D

D D C

 
 
 =
 
 
 





   

  

,D var vρ=  Φ   
2 .i iC Dλ= +  

We first prove that the above system admits a unique solution as a maximum 
using a sequence of steps. 

In step 1, we prove a useful property of the above system, i.e. the trader 
chooses his quantity such that the marginal cost of trading is equal across mar-
kets. In step 2, we prove that ND  can be inverted, i.e. its determinant is differ-
ent from zero. In step 3, we prove the existence and unicity of a positive solu-
tion. In step 4, we show that the solution is indeed a maximum. 

Step 1: 
Lemma 2. ( ) [ ] [ ], 1, 1,n j N N∀ ∈ ×  and n j≠ , we have that n n j ja aλ λ=  

and n n j jb bλ λ= . 
Proof. Using the expressions of the market orders as well as  
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v

s
E v ε

ε

τ
τ τ

 Φ =  +
 and 1

v

var v
ετ τ

 Φ =  +
, the above system (5) can be re-

written as 

1 1 1 1

.

1
v

N N N

C D a s b w
s w

D D
D C a s b w

ε

ε

τ ρ
τ τ

−    
     −    =       +     

−    



    

  



            (6) 

Looking at the jth line of the above system and identifying the multiplicative 
parameters for s and w respectively, we get 

1
2 ,

N

i j j
i v

a D a ε

ε

τλ
τ τ=

+ =
+∑

 

1
2 .

N

i j j
i v

b D b
ε

ρλ
τ τ=

+ =
+∑

 
Factorizing all terms with j jaλ  and j jbλ  for both equations we have 

1
2 ,

N

j j i
iv v

a aε

ε ε

τ ρλ
τ τ τ τ =

= −
+ + ∑                    (7) 

1
2 .

N

j j i
iv v

b b
ε ε

ρ ρλ
τ τ τ τ =

= −
+ + ∑

 
From there we can conclude that j jaλ  for 1, ,j n=   is equal to a constant 

and that we have j j n na aλ λ=  for n j≠ , and similarly that n n j jb bλ λ=  for 
n j≠ . 

Step 2: We now prove that ND  can be inverted. 
The matrix ND  is given by 

1

2

2
2

.

2

N

N

D D D
D D D

D

D D D

λ
λ

λ

+ 
 + =
 
 

+ 





   

  

Lemma 3. 1

1 1
1

det 2 2
N NN

N N
N j j

j ii j
j

D D λ λ−

≠= =
=

 
 = +  
 
∑∏ ∏ . 

Proof. The proof is done by iteration. 
For N = 1 and N = 2, the determinants are given by 

1 1det 2 ,D D λ= +  
( )2 1 2 1 2det 2 4 .D D λ λ λ λ= + +  

It is straightforward to show that both determinants verify the form set in the 
lemma. 

We now show that the form is also true for N, assuming that it is true for N − 
2 and N − 1. We rewrite DN as 

1

2

1 1

1 1

2 0
2 0

2 2
0 0 2 2

N
N N

N N N

D D
D D

D
D

λ
λ

λ λ
λ λ λ
− −

− −

+ 
 + =
 + −
 

− + 





 
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where the last column of DN was replaced by the last column minus the 
( )1N th−  column. The same change was performed for the last row. 

The determinant by developing from the last line and then from the last col-
umn gives 

( ) 2
1 1 1 2det 2 det 4 det .N N N N N ND D Dλ λ λ− − − −= + −  

Using the form of 1det ND −  and 2det ND − , and reorganizing the resulting 
expression we get 

( )

( )

1 21 2
1 2

1 1
1 1

1 1

1 2
2

1 1
1 1

det 2

2 .

N NN N
N

N j N N j N
j i j ii i
j j

N N
N

j N N j N
j j

D D λ λ λ λ λ

λ λ λ λ λ

− −− −
−

− −
≠ ≠= =
= =

− −

− −
= =

 
 = + −  
 
 

+ + − 
 

∑ ∑∏ ∏

∏ ∏
 

After some algebra on both the first and the second term in brackets respec-
tively, we can rewrite them as follows 

( )
1 21 2

2
1 1

1 1 1
1 1 1

,
N N NN N N

j N N j N j
j i j i j ii i i
j j j

λ λ λ λ λ λ
− −− −

− −
≠ ≠ ≠= = =
= = =
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1 2

2
1 1

1 1 1
.

N N N

j N N j N j
j j j
λ λ λ λ λ λ

− −

− −
= = =

+ − =∏ ∏ ∏
 

Using the latter expressions, the determinant of ND  is equal to 

1

1 1
1

det 2 2 ,
N NN

N N
N j j

j ii j
j

D D λ λ−

≠= =
=

= +∑∏ ∏
 

which is the form we were looking for. Moreover the determinant is strictly pos-
itive as the λ’s are positive. We can then conclude that the matrix can be in-
verted. 

Step 3: Existence and Unicity. 

Given step 1 and step 2, it is straightforward to show that n na bετ
ρ

=  for 

1, ,n N=  . 
Moreover given step 1, step 2 and the above, the first order condition (4) can 

be written as 

,
2nk

n

Ax
λ

=
 

with 

( )( )
1

1 1 .
N

k jk j j k
j

A E v w x a K var vρ λ
=

 
=  Φ − + − −  Φ     

 
∑ 

 
Given step 1, A independent of n and is therefore a constant. In the expression 

defining A, we replace all xi 1, ,i N∀ =   by 
2 i

A
λ

 and all bn by na
ε

ρ
τ

 and put 

in factor the term A and simplify 
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( )
1

11 .
2

N

j j

A var v E v var v wρ ρ
λ=
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∑           (8) 

The term multiplied by A, henceforth called H, can be simplified as follows. 

We multiply that term by 
1

N

i
i
λ

=
∏ . We then have 

11 1 1

1 .
2

N N N N

i i i
ji i i j

H var vλ λ ρ λ
λ== = =

= +  Φ  ∑∏ ∏ ∏

 
The last term on the RHS can be simplified as follows using some basic alge-

bra 
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Using the above and the expression of var v Φ  , we can rewrite 
1

N

i
i

Hλ
=
∏  as 

( )11 1
.
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N NN

i i
ij iv
i j

ε

ρλ λ
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≠

 
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It is straightforward to see that H is positive. 
Using all the simplifications, Equation (8) leads to 

( )

( )
1
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2 ,

N

i
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n n N
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i

s w
x

H
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−
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Given the expression of nx , by identification we obtain the unique solution 
for na  given by 

( )

1

11 1

0.
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N

i
i
i n

n N NN

i v i
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i j
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ε
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Step 4: In order to prove that the solution is a maximum we prove that ND−  
is negative semidefinite. That matrix is given by 

1

2

2
2

.

2

N

N

D D D
D D D

D

D D D

λ
λ

λ

− − − − 
 − − − − =
 
 

− − − − 





   

  

It can be seen that ( ) ( )det 1 detN
N ND D− = − . From the Lemma proved in step 

2, we know that det 0ND > , which implies for uneven N that  
( )det 0ND− < , where as for even N ( )det 0ND− > . This proves that the matrix 
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ND−  is negative semidefinite which in turn proves that the solution is a maxi-
mum. 

The two following Lemmas give the expression of the expected utility of profit 
for market maker n and the expression of the expected utility for trader n re-
spectively. These expressions are used in the numerical procedures. 

Lemma 4. Given the linearity of both the market orders and the price sche-
dule, given by (1) and (2) respectively, the expected utility of profit for market 
maker n is given by 

( ) ( )

( )

2
22 2 2 2 2 4

2 2
22 2 2 2 2 2 2

1 2 1
2

2 1 2 .

m
n n v n n n n w n v n n

w v n n n n w

a a a a a

a a

ε
ε

ε ε
ε ε

ρρσ λ λ σ σ σ λ
τ

ρ ρσ σ σ λ λ σ σ
τ τ

    Π = − + + − −     
            + + − + +               

   (9) 

Proof: In the price schedule (2) replace nx  by its expression given in (1) and 
after some rearranging, the price schedule can be written as 

.n n n n n n n n np x a v a b wλ λ λ ε λ= = + −   

Replace the above expression into the market maker’s expected utility, we get 

( )( ) ( )

( )( ) ( )

1

1 .
2

n n n n n n n n n n

m
n n n n n n n n n

E v a a b w a v a b w

var v a a b w a v a b w

λ λ ε λ ε

ρ λ λ ε λ ε

 Π = − + − + − 

 − − + − + − 

    

    

 

Developing and using the fact that all random variables are independent and 
have zero mean leads to 

( ) ( ) ( )( )

( ) ( ) [ ] [ ]( )
( ) [ ] ( )

22 2 2 2 2 2

222 4 2 2

2 22 4

1 1
2

2 1

4 .

m
n n n n v n n n w n n n

n n n n n n

n n n n n

a a a b a a var v

b var w a a var v b var vw

a b var w a var

ε
ρ

λ σ λ σ σ λ

λ λ ε

λ ε λ ε

  Π = − + + − −  

 + + − + 
 + +  



   

 

  (10) 

We need to compute all individual variances, using some basic statistics tech-
niques, we have 

2 4 2 2 42 ,vvar v E v E v σ     = − =       

 

[ ] 2 2 ,vvar v εε σ σ=  

[ ] 2 2 ,v wvar vw σ σ=   

[ ] 2 2 ,wvar w εε σ σ=   

( )2 42 ,var εε σ  = 

 

( )2 42 .wvar w σ  = 

 
Replace all the individual variances into the expression of the expected utility 
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of profit (10), use the fact that n na bετ
ρ

=  after some simplifications the desired 

result is obtained. 

Lemma 5. Given the linearity of both the market orders and the price sche-
dule, given by (1) and (2) respectively, and given proposition 1, the expected 
utility of the trader is given by 

[ ] [ ]

( )

2
2 2 2 2

2
=1

2 2 2
2 4 4 2 2 2 2 2 2

2 2
=1

2
2 2 2 2 2

2

2

2 2 2 2
2

1 4 .

N

n v v w
n

N

n v v w v w
n

v v w v

E W var W

a

a

ε
ε

ε ε ε
ε ε

ε
ε

ρ

ρσ δ σ σ σ
τ

ρ ρ ρδ σ σ σ σ σ σ σ σ
τ τ

ρσ δ σ σ σ σ
τ

Π = −

  
= − + +  

   
    − + + + + +    

      
  

+ − + + +      

∑

∑

 

Proof: The trader’s expected utility is such that 

[ ] [ ]
2

E W var Wρ
Π = −

 

with 

( )
1

.
N

n n
n

W x v p
=

= −∑
 

Using the expression of n n np xλ=  and the linearity of the market orders, the 
first term [ ]E W  is equal to 

[ ] ( ) ( )2 2 2 2 2

1
1 .

N

n v n n n n n w
n

E W a a a bεσ λ λ σ σ
=

 = − − + ∑
 

We now turn to the computation of [ ]var W . This variance can be rewritten 
as 

[ ] [ ],var W var C A B= − +  
with 

( )
1

,
N

n n n n
n

A a a s b w sλ
=

= −∑
 

( )
1

,
N

n n n n
n

B b a s b w wλ
=

= −∑
 

( )
1

.
N

n n
n

C a s b w v
=

= −∑
 

The variance is then 

[ ] ( ) ( ) ( ) ( ) ( ) ( )2 , 2 , 2 , .var W var A var B var C cov A B cov A C cov B C= + + − − +  
The first term ( )var A  is equal to 

( ) 2 2

1 1
.

N N

n n n n n
n n

var A var a s a b wsλ λ
= =

 = −  
∑ ∑
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Simplifying and noting that 

2 2

1 1
, 0,

N N

n n n n n
n n

cov a s a b wsλ λ
= =

  = 
 
∑ ∑

 

we get 

( ) ( ) ( )2 2 2

1 1
2 .

N N

n n n n n
n n

var A var a v v var a b wv wλ ε ε λ ε
= =

   = + + + +      
∑ ∑

 

Finally we obtain 

( )
2 2

2 4 4 2 2 2 2 2

1 1
2 2 4 .

N N

n n v v n n n w v
n n

var A a a bε ε ελ σ σ σ σ λ σ σ σ
= =

      = + + + +         
∑ ∑

 

The second term ( )var B  is equal to 

( ) ( )
1

.
N

n n n n
n

var B var b a s b w wλ
=

 = −  
∑

 

Simplifying and as all random variables are independent and have zero expec-
tation, we get 

( ) ( )
2 2

2 2 2 2 4

1 1
2 .

N N

n n n w v n n w
n n

var B a b bελ σ σ σ λ σ
= =

   = + +   
   
∑ ∑

 

The third term, ( )var C  is equal to 

( ) ( )
1

.
N

n n
n

var C var a s b w v
=

 = − 
 
∑

 

This term can be simplified to 

( ) ( )
2 2

4 2 2 2 2

1 1
2 .

N N

n v v n v w
n n

var C a bεσ σ σ σ σ
= =

   = + +   
   
∑ ∑

 

We now compute all covariance terms. 
The first covariance ( ),cov A B  is equal to 

2 2 2 2

1 1 1 1
, .

N N N N

n n n n n n n n n n
n n n n

cov a s a b ws b a ws b wλ λ λ λ
= = = =

 − − 
 
∑ ∑ ∑ ∑

 

As all other covariance terms are equal to zero, we get that 

( ) ( )
2

1
, , ,

N

n n n
n

cov A B b a cov ws wsλ
=

 = − 
 
∑

 

( ) ( )
2

2 2 2

1
, .

N

n n n w v
n

cov A B b a ελ σ σ σ
=

 = − + 
 
∑

 

The second term ( ),cov A C  is given by 

( )2 2

1 1 1 1
, .

N N N N

n n n n n n n
n n n n

cov a s a b ws a v v b wvλ λ ε
= = = =

 − + − 
 
∑ ∑ ∑ ∑

 

This simplifies to 
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( ) ( )2 4 2 2 2 2

1 1 1 1
, 2 2 .

N N N N

n n n v v n n n n v w
n n n n

cov A C a a a b bελ σ σ σ λ σ σ
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     = + +     
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The last term ( ),cov B C  is given by 

( )2 2

1 1 1 1
, .

N N N N

n n n n n n n
n n n n

cov b a sw b w a v v b wvλ λ ε
= = = =
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 
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Ultimately, this leads to 

( ) 2 2

1 1
, .

N N

n n n n v w
n n

cov B C b a bλ σ σ
= =

  = −  
  
∑ ∑

 

This leads to the expected profit equal to 

[ ] [ ]
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∑ ∑ ∑ ( )
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This can be simplified to 
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Using the fact that n nb a
ε

ρ
τ

= , the expected profit can be rewritten as 
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Simplifying further 
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Given the fact that n n j ja aλ λ=  j n∀ ≠ . Let us assume that n naλ δ= , we 
can further simplify the expression to 
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This leads to 
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 

Proof of Proposition 1 

Proof. Given her order flow and given the trader’s market order, each market 
marker n maximizes her expected utility with respect to nλ  such that 
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with .n na bετ
ρ

=  

Provided that 0nλ ≠ , the FOC of the above program can be simplified after 
some tedious computations to 
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N N

N N

ε

ε

ε ε

ε ε ε

α τ τ
ρ τ ρ τ τ τ τ ρ

ρ

τ τ τ τ ρ ρ

τ τ τ τ τ ρ

τ τ τ τ ρ τ τ

= − + + + −

+ + − +

+ + − +

+ + − + +
 

( ) ( ) ( )( )

( )( )

( ) ( )( )

2
2 3 21

2

2 2 2 2

2 2 3 2 1

4 7

2 2 3 3 7 4

v w
v v m v

v w v

m w v v v v

N N N N
N

N N

N

ε

ε ε

ε ε ε ε ε

α τ τ
τ ρ τ ρ τ τ ρ

ρ

τ τ τ τ τ ρ

ρ τ τ τ τ τ τ τ τ τ τ

= − + − + +

+ + − +

+ − + + + + +
 

The SOC is strictly negative and therefore the solution, if any, to the above 
FOC is a maximum. 

We now analyze the above expression (11). In order to determine whether it 
has a solution and as it is a polynomial of degree 4, we analyze the sign of the 
coefficient of that equation. 

First of all it can be seen that the coefficient 0α  is always positive if N > 1. It 
can also be shown that if ( )2 1 11w vε ερ τ τ τ τ− −≤ + , the coefficient 4α  is 
non-negative. Using some basic algebra, it can be proved that it implies that all 
other coefficients of the above polynomial are non-negative. In that case the 
FOC condition has no solution. 

When ( )2 1 11w vε ερ τ τ τ τ− −> +  and N > 1, the coefficient 4α  is strictly nega-
tive and as the coefficient 0α  is positive this guarantees the existence of a posi-
tive root for the FOC. When N = 1, 4α  is still strictly negative, whereas as 

0 0α =  and 1 0α > , this also leads to the existence of a solution. 
In order to determine the unicity of the root, we have to analyze the sign of 

the remaining coefficients: 3α , 2α , 1α . We start with the coefficient 3α . 
• Coefficient 3α . 

The parameter 3α  can be written as follows 

( )
2 2

4 3 23
4 3 2 1 0 ,

4
v w

v

c c c c cα τ τ ρ ρ ρ ρ
τ τ

= + + + +
+   

with 
2

4 m vc ρ τ= , ( ) ( )2
3 2 3 v w vc N τ τ τ τ= − +  , ( ) 2

2 2 v v w mc τ τ τ τ ρ= +  , 

( )2 2
1 5 v v wc Nτ τ τ τ τ= +    and ( ) ( )2 2

0 2v v w mc τ τ τ τ τ τ ρ= + +   . 

As we want to find the sign of the RHS, we consider it as a function of ρ  
and we denote it ( )3f ρ . 

The sign of these coefficients can easily be determined: 4 0c > , 2 0c > , 

1 0c > , 0 0c > , 3 0c < . 
The first and second derivatives of that function with respect ρ  are given by 

( ) 3 2
3 4 3 2 14 3 2 ,f c c c cρ ρ ρ ρ′ = + + +  

( ) 2
3 4 3 212 6 2 .f c c cρ ρ ρ′′ = + +  
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We are looking for the sign of 3f ′′  and compute the discriminant of 3f ′′  

( )2
3 3 4 212 3 8 .c c c∆ = −

 
Plugging in the expressions of 4c , 3c  and 2c  and after some computations, 

the discriminant is given by 

( ) ( ) ( )( )24 2
3 12 3 2 3 16 .v w v w v mNτ τ τ τ τ τ τ ρ∆ = + + − + − 

 
The sign of 3∆  changes with mρ . We first determine the value of mρ  for 

which the discriminant is equal to zero 

( )
3

2 3 3 .
4m w v

Nρ τ τ τ− +
= + 

 
when 

3m mρ ρ> , the discriminant is always negative and 3f ′′  is always of the 
sign of 4 0c > . This implies that 3f ′  is always increasing and moreover 

( )3 10 0f c′ = > . As a result 3f ′  is strictly positive implying that ( )3f ρ  is an 
increasing function. As ( )3 00 0f c= > , the coefficient 3α  is always positive. 

When 
3m mρ ρ< , the discriminant is positive and 3f ′′  admits two positive 

roots given by 

( ) ( ) ( ) ( ) ( )( )2 2

3

3 2 3 3 3 2 3 16
,

12
w v w v w v m

m

N Nτ τ τ τ τ τ τ τ τ ρ
ρ

ρ
∗

+ − + − + + − + −
=

  

 

( ) ( ) ( ) ( ) ( )( )2 2

3

3 2 3 3 3 2 3 16
.

12
w v w v w v m

m

N Nτ τ τ τ τ τ τ τ τ ρ
ρ

ρ
∗∗

+ − + + + + − + −
=

  

 
The following table can be given in order to find the sign of 3a  

 

 
 

That table implies that for 3ρ ρ∗≤  the coefficient 3α  is strictly positive as 
well as for ρ large. For intermediate ρ and by continuity we can say that when ρ 
is close to 3ρ

∗  but larger we still have that 3α  is positive. However as ρ gets 
closer to 3ρ

∗∗ , ( )3f ρ′  decreases and can potentially become negative as it be-
comes negative that means that ( )3f ρ  would decrease with ρ and could also 
become negative. For 3ρ ρ∗> , the function ( )3f ρ  admits a minimum at 3ρ

∗∗ . 
This leaves the possibility to obtain two roots, if the function admits a negative 
value at 3ρ

∗∗ . 
• Coefficient 2α . 

We proceed as for 3α . 
Provided 0ρ ≠ , the sign of 2α  is equivalent to the sign of the expression in 

between brackets. Let us define that expression as being a function of ρ and let 
us denote it ( )2f ρ . This function is given by 

( ) 4 3 2
2 4 3 2 1 0 ,f d d d d dρ ρ ρ ρ ρ= + + + +  

with 
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( ) 2
4 2 m vd N ρ τ= − + , 

( ) ( )2
3 4 3v v wd n Nτ τ τ τ= + − , 

( ) ( )2
2 2 1 3v w v md Nτ τ τ τ ρ= + − + , 

( ) ( )2 2
1 2 9v v wd N Nτ τ τ τ τ= + − +   

and finally 

( ) ( )( )2 2
0 2 6 5v w m vd N Nτ τ τ τ ρ τ τ= + − + +   . 

First of all the sign of 2d , 1d , and 0d  can be established as being positive 
for any values of n. 

It can be seen that for 2N ≤ , 3d  can change sign. However, we can estab-
lish that there is only one change in the sign of the coefficients for the polynomi-
al ( )2f ρ . This implies one positive root for the polynomial (we call it 2ρ̂ ). For 

2ˆρ ρ≥  ( 2ˆρ ρ< ), we obtain that 2 0α ≤  ( 2 0α > ). 
When 3N ≥ , the analysis is more complex. Let us compute the first and 

second derivative of that function with respect to ρ 

( ) 3 2
2 4 3 2 14 3 2f d d d dρ ρ ρ ρ′ = + + +  

( ) 2
2 4 3 212 6 2 ,f d d dρ ρ ρ′′ = + +  

As we are looking for the sign of ( )f ρ′′  we compute its discriminant 

( )2
2 3 4 212 3 8 .d d d∆ = −

 
Plugging in the values of 4c , 3c  and 2c  and after some simplifications the 

following expression is obtained 

( ) ( ) ( ) ( ) ( )24 2 2
2 12 3 4 3 16 2 1 3 .v v w v w mN N N Nτ τ τ τ τ τ τ ρ ∆ = + + − − − + − +  

 
Given that expression we can define 

2mρ  as the value of mρ  such that the 
discriminant is equal to 0: 

( ) ( )
( ) ( )2

3 4 3
.

4 2 1 3
w v

m

N N

N N

τ τ τ
ρ

− +
=

− + − +


 
For any values of 

2m mρ ρ>  the discriminant is negative and 2f ′′  is always 
positive. In that case 2f ′  is always increasing with ( ) 10 0f d′ = > . This implies 
that ( )f ρ′  is always positive which in turns imply that, as ( ) 00 0f d= > , the 
coefficient α2 is always positive. 

When 
2m mρ ρ<  2∆  is positive and 2f ′′  admits two positive roots 

( ) ( ) ( ) ( ) ( ) ( )( )
( )

2

22 23 3 4 3 3 4 3 16 2 1 3
,

12 2
v w v v w m

m

N N N N N N

N

ρ

τ τ τ τ τ τ τ τ ρ

ρ

∗ =

 + − − + + − − − + − + 
− +

  

 

( ) ( ) ( ) ( ) ( ) ( )( )
( )

2

22 23 3 4 3 3 4 3 16 2 1 3
.

12 2
v w v v w m

m

N N N N N N

N

ρ

τ τ τ τ τ τ τ τ ρ

ρ

∗∗ =

 + − + + + − − − + − + 
− +

  
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The following table can be used in order to determine the sign of α2 

 

 
 

That table implies that for 2ρ ρ∗≤  the coefficient α2 is strictly positive as well 
as for ρ large. For intermediate ρ and by continuity we can say that when ρ is 
close to 2ρ

∗  but larger we still have that α2 is positive. However as ρ gets closer 
to 2ρ

∗∗ , ( )2f ρ′  decreases and could potentially become negative as it becomes 
negative that means that ( )2f ρ  would decrease with ρ and could also become 
negative. For 2ρ ρ∗> , the function ( )2f ρ  admits a minimum at 2ρ

∗∗ . This 
leaves the possibility to obtain two roots, if the function admits a negative value 
at 2ρ

∗∗ . 
• Coefficient α1. 

We rewrite α1 as 

( )
2 2

2 3 21
2 1 02 2v w

v N N e e eα τ τ τ ρ ρ ρ
ρ

= − + + +
 

with 

( ) ( )( )2 2 3 2 1v m ve N Nτ ρ τ τ= − + + , 

( ) ( )1 4 7v w ve N Nτ τ τ τ τ= + − +   
and finally 

( ) ( )( )2 2 2 2
0 2 2 3 3 7 4m w v v v ve Nερ τ τ τ τ τ τ τ τ τ τ= − + + + + +     

It can be seen that e1 and e0 are always positive independently of the value of 
N. 

For N = 1, the coefficient in front of 3ρ  is strictly positive as well as e2. 
Leading to the fact α1 is strictly positive in that case. 

For N > 1, the sign of α1 is not straightforward. 
When N = 2, the expression above is a second degree polynomial where e2 can 

either be positive or negative. When 3 0v ετ τ− + > , α1 is still positive. When 
3 0v ετ τ− + < , the polynomial admits two roots (one positive and one negative 

leading to the fact that α1 is non-negative for values of 10,ρ ρ∗∗ ∈    and posi-
tive for 1ρ ρ∗∗>  if 1ρ

∗∗  is that positive root. 
When N ≥ 3, we consider as before the RHS as a function of ρ and we denote 

it ( )1f ρ . The only coefficient that might change its sign is 2e . When 
( )3 2v Nτ − ( )1 0Nτ+ + <  it is negative and positive otherwise. However it can 

be seen from the expression of 1α  that we have only one change in sign for the 
coefficients of the polynomial. This implies that 1α  admits only one positive 
root, called 1ρ̂ . When 1ˆρ ρ≥ , we have that 1 0α ≤  and when 1ˆρ ρ< , we ob-
tain that 1 0α > . 
• Comparison of thresholds for N ≥ 3 

( )
3

2 33
4m w v

Nρ τ τ τ − +
= + 
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( )
( ) ( )

( )
2

3 3 4
2 1 3 4

w v
m

N N
N N

τ τ τ
ρ

+ −
=

− + − +


 
After some algebra and setting wτ  = vτ  = τ   = 1, it can be proved that 

finding the sign 18N4 − 75N3 + 98N2 – 52N + 8 is equivalent to find how 
3mρ  

compares to 
2mρ . When 18N4 − 75N3 + 98N2 – 52N + 8 > 0, it is equivalent to 

2 3m mρ ρ< . 
The above inequality is correct for N ≥ 3 and therefore leads to the fact that 

for N ≥ 3 we have 
3 2m mρ ρ> . 

• Comparison of 3α  and 2α  
It can be shown that when N ≥ 3 2 3α α> . This leads to the fact that when 

both expressions, 3α  and 2α , admit two positive roots, the positive roots for 

2α  are in between the two positive roots of 3α . When N < 2, such a compari-
son cannot be established. 
• Summary of our proof 

It can be established that for some parameters value the FOC admits only one 
solution. This happens when there is only change of sign for the parameters (αs) 
of the polynomial. This establishes the unicity of the solution. For all other cases, 
where the unicity cannot be formally established, this happens when we have 
more than one change in sign for the αs of the expression (11). We use numeri-
cal simulations and always find that it is the case that the solution is unique. 

The following three graphs (displayed as Figure 13) show possible configura-
tions for different number of market makers. Each graph presents the cases 
where the unicity can be formally established (Unicity established) and where it 
cannot be formally established (Unicity not established) as a function of ρ and 
ρm. The three graphs are not giving an exhaustive list of the different cases. For a 
given number of market makers, N, we have several cases describing all cases 
would be very long and not interesting per se, we have then chosen not to show 
them here. However an exhaustive list of all possible configurations is available 
upon request from the authors. 
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Figure 13. The figures show the cases for which the unicity can be established formally 
and cases for which it can not be as a function of ρm and ρ. The figures correspond to the 
case where N = 1, N = 2 and N = 3. 
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