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Compression of Optically Encrypted Digital
Holograms Using Artificial Neural Networks

Alison E. Shortt, Thomas J. Naughton, and Bahram Javidi, Fellow, IEEE

Abstract—Compression and encryption/decryption are neces-
sary for secure and efficient storage and transmission of image
data. Optical encryption, as a promising application of display
devices, takes advantage of both the massive parallelism inherent
in optical systems and the flexibility offered by digital electronics.
We encrypt real-world three-dimensional (3D) objects, captured
using phase-shift interferometry, by combining a phase mask and
Fresnel propagation. Compression is achieved by nonuniformly
quantizing the complex-valued encrypted digital holograms using
an artificial neural network. Decryption is performed by dis-
playing the encrypted hologram and phase mask in an identical
configuration. We achieved good quality decryption and recon-
struction of 3D objects with as few as 2 bits in each real and
imaginary value of the encrypted data.

Index Terms—Artificial neural network (ANN), digital holog-
raphy, image compression, optical encryption, three-dimensional
(3D) image processing.

I. INTRODUCTION

N IMPORTANT aspect of security and defense is infor-

mation gathering, dissemination, processing, and analysis.
Central to this is the encryption and decryption of messages for
storage and transmission. Although public key cryptosystems
are currently the state of the art, there is a place for private key
systems in cases where hardware implementation permits very
high throughputs. Optical implementation [1]-[14] is one such
private key candidate that promises huge throughputs and is a
promising application of display devices. Optics has some very
promising scalability advantages over purely electronic systems
as, in principle, the size of the key can be increased without in-
creasing the encryption or decryption time.

Whereas conventional digital encryption algorithms trans-
form a bit stream into a bit stream, almost all optical encryption
systems transform an image into an image. When one is
dealing with images, it is natural to consider compression. In
fact, images rarely, if ever, are stored or transmitted without
compression. This is because images, unlike text, often contain
significant redundancy (motivating lossless compression) and
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contain minute details that might not be perceived by the
human eye (motivating lossy compression). Analog optical im-
plementations are also inherently error prone (nonlinear device
responses, quantization, and finite-aperture optical elements)
and are often designed to be robust to a certain amount of
defects. We claim, therefore, that there is sufficient motivation
to study compression, and quantization compression errors, in
the context of optical image encryption. We only consider the
application of compression after encryption (rather than the
other way around) as the gross properties of optically encrypted
images would seem to be similar regardless of the quantization
levels or spatial distributions of the inputs.

Digital holography [15]-[21], and particularly phase-shift in-
terferometry (PSI) [19]-[21], can record high quality represen-
tations of both the amplitude and phase of complex-valued op-
tical wavefronts, and has been proposed for 3D object recog-
nition and 3D display applications [22]-[25]. Recently, digital
holography has been used in the encryption of two-dimensional
(2D) images [6]-[8] and 3D objects [12]-[14].

In this paper, the complex-valued encrypted holographic
pixels are quantized nonuniformly using an unsupervised
artificial neural network (unsupervised ANN) to achieve lossy
data compression. Two important differences between digital
hologram compression and conventional image compression
are that our holograms store 3D information in complex-valued
pixels, and their inherent speckle content which gives the
holograms a white-noise appearance. Holographic speckle is
difficult to remove since it actually carries 3D information.
Its presence causes lossless data compression techniques to
perform badly, therefore lossy compression techniques are
necessary for effective compression of 3D digital holograms
[24].

Quantization in holograms [26], [27], and compression of
real-valued [28] and complex-valued [13], [24], [25], [29]-[33],
[35]-[37] digital holograms has received some attention to date.
Some studies have also been performed on the decrypted-do-
main effects of perturbations, including quantization, in the
encrypted domain [38], [39]. This introduces a third reason
why compression of digital holograms differs to compression
of digital images; a change locally in a digital hologram will,
in theory, effect the whole reconstructed object. Furthermore,
when gauging the errors introduced by lossy compression, we
are not directly interested in the defects in the hologram itself,
only how compression noise effects the quality of reconstruc-
tions of the compressed 3D object.

We used PSI to create our in-line digital holograms [22],
[23]. These holograms were encrypted by perturbing the Fresnel
diffraction of the 3D objects with a random phase mask. We sim-
ulated this encryption step in software [14]. The dimensions of
each encrypted hologram are 1024 x 1024 pixels. Encrypted
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digital holograms have been successfully quantized previously.
We extend these results [13] by choosing nonuniform distri-
butions of quantization values. We describe these nonuniform
quantization techniques and present experimental results to jus-
tify our final choice of a Kohonen competitive neural network.
We consider each complex-value as a vector of length two and
use the unsupervised ANN to locate the most suitable clusters in
the encrypted digital hologram data. We then quantize our en-
crypted holograms with the centers of these clusters. We use a
reconstructed-object-plane rms metric to quantify the quality of
our decompressed and decrypted holograms.

In Section II, we outline how we perform encryption of the
Fresnel propagation of 3D objects using a random phase mask,
and how the complex wavefront is subsequently captured using
PSI. The decryption and reconstruction steps are explained in
Section III. We examine the amenability of encrypted digital
holograms to lossless compression using four well-known tech-
niques in Section IV. We discuss two types of Kohonen ANN
that we used to quantize our 3D digital hologram data in Sec-
tion V. We assess the performance of the nonuniform quanti-
zation techniques in Section VI and find one that best suits our
hologram data. We then apply this lossy technique of quanti-
zation to the real and imaginary encrypted components of each
holographic pixel in Section VII. In this section too, we quantify
quantization error by measuring deformation in the decrypted
and reconstructed 3D object intensities, and finally conclude in
Section VIIL

II. DIGITAL HOLOGRAM ENCRYPTION

The encrypted complex-valued holograms can be cap-
tured using an optical setup (shown in Fig. 1) based on a
Mach-Zehnder interferometer architecture [22], [23]. A lin-
early polarized Argon ion (514.5 nm) laser beam is divided into
object and reference beams, both of which are spatially filtered
and expanded. The first beam illuminates the 3D object placed
at an approximate distance dy + da = 350 mm from a 10-bit
2028 x 2044 pixel Kodak Megaplus CCD camera. A random
phase mask is placed a distance d; from the 3D object. Due to
free-space propagation, and under the Fresnel approximation
[40], [41], the signal at the detector plane Hg(x,y) is given by
the superposition integral

Hg(z,y) = /\_—dlexp <1277rd2> / / exp [i®(z', )]
X AM(xlv y/) €xXp [i¢1\'1 (xl> yl)]
X exp {1/%2 [(z—2")*+ (y—¢)?] } da’dy’
ey

where Ay and ¢y are the amplitude and phase, respectively, of
the signal in the plane of, but immediately before, the random
phase mask ®. Hg(xz, y) will have both its amplitude and phase
modulated by the mask and will have a dynamic range suit-
able for capture by a CCD camera. The reference beam passes
through half-wave plate RP; and quarter-wave plate RP5. This
linearly polarized beam can be phase-modulated by rotating the
two retardation plates. Through permutation of the fast and slow
axes of the plates we can achieve phase shifts of 0, —7/2, —,
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Fig. 1. Experimental setup for 3D object encryption using phase-shift digital
holography: BE, beam expander; BS, beam splitter; M, mirror; RP, retardation
plate; P, phase mask. (Color version available online at http://ieeexplore.ieee.
org.)

and —3m /2. The reference beam combines with the light dif-
fracted from the object and forms an interference pattern in the
plane of the camera. At each of the four phase shifts we record
an interferogram. Using these four real-valued images, the com-
plex camera-plane wavefront can be approximated to good ac-
curacy using PSI [22], [23].

In this system, the encryption key is
(®,2,y,da, A, ex, ey,dy), consisting of the random
phase mask, its position in 3D space, the wavelength of the
illumination, the dimensions of the detector elements (for a
pixilated device), and the distance between the mask and
the notional center of the object, respectively. This key is
also exactly the decryption key: a means of decrypting and
reconstructing an arbitrary view of the 3D object encoded
in the hologram.

III. DECRYPTION AND RECONSTRUCTION

The decryption and reconstruction of the digital hologram can
be carried out optically or digitally. The hologram is propagated
a distance dj to plane Pand decrypted by multiplying it with the
phase mask. It is reconstructed through further Fresnel propaga-
tion to focus in any chosen plane in the range d; + D.

A decrypted digital hologram contains sufficient ampli-
tude and phase information to reconstruct the complex field
U(z,y, z) in a plane in the object beam at any distance z from
the camera. Like traditional holography [41], different angles
of view of the object can be reconstructed using different
windowed subsets of the hologram. These views are obtained
by multiplying the decrypted and reconstructed object by a
suitable linear phase factor [22] within the angular range of the
hologram. The number of possible viewing angles is dependent
on the ratio of the window size to the full charge-coupled device
(CCD) sensor dimensions. Our CCD sensor is approximately
18.5 mm x 18.5 mm and so a 1024 x 1024 pixel window has
a maximum lateral shift of 9 mm across the face of the CCD
sensor [23]. So the range of viewing angles that are possible
with an object placed d = 350 mm from the camera is +0.74
deg. Smaller windows will permit a larger range of viewing
angles at the expense of image quality at each viewpoint.

The intensity images of two of the objects used in our ex-
periments are shown in Fig. 2(a) and (b). These images were
reconstructed from digital holograms that were created using a
similar setup to that shown in Fig. 1, without the phase mask
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(b)

Fig. 2. Objects used in the study. (a) Die. (b) Bolt. (c) Example of a random
phase mask.

(© (d)

Fig. 3. Boltbefore and after encryption. (a) Amplitude and (b) phase of original
hologram. (c) Amplitude and (d) phase of encrypted hologram.

positioned in plane P[22], [23]. Both objects are approximately
5 mm X 5 mm X 5 mm in size and were positioned 323 mm (for
the die) and 390 mm (for the bolt) from the camera.

By digitally encrypting the holograms that were captured
without a random phase mask [14], we achieve added flexibility
and security [14], while still accommodating the possibility
for a real-time optical reconstruction [9], [25]. Fig. 2(c) shows
the 1024 x 1024 pixel phase mask used in our experiments. It
contains values chosen with uniform probability from the range
[0, 27) using a pseudorandom number generator. The position
of the phase mask is illustrated in Fig. 1 and the ratio of the
distances d; : do is 35:65. In Fig. 3 we show the amplitude
and phase of the bolt hologram before encryption, and after
encryption as described by (1). In Fig. 4 we show the results of
reconstructing an encrypted digital hologram with and without
the phase mask used in the encryption step.

IV. LOSSLESS COMPRESSION OF ENCRYPTED DIGITAL
HOLOGRAMS

In order to motivate the need for lossy compression tech-
niques, the digital holograms were treated as binary data

(b)

(© (d)

Fig. 4. Reconstruction of die (a) without and (b) with phase mask. Reconstruc-
tion of bolt (c) without and (d) with phase mask.

streams and compressed using the lossless data compres-
sion techniques of Huffman [42], Lempel-Ziv (LZ77) [43],
Lempel-Ziv-Welch (LZW) [44], and Burrows-Wheeler (BW)
[45]. Huffman coding, an entropy-based technique, is one
of the oldest and most widely used compression methods.
Each symbol in the input is replaced by a codeword, with
more frequent symbols assigned shorter codewords. The LZ77
algorithm takes advantage of repeated substrings in the input
data and replaces variable length strings with a pointer to the
previous occurrence of that string. LZW improves upon LZ77
by maintaining a lookup table of variable sized codewords and
is also less biased towards local redundancy. Finally, the BW
technique uses a sorting operation to transform its input into a
format that can be compressed very effectively using standard
techniques (in our particular implementation, Huffman coding).
The two digital holograms used in the experiments have di-
mensions of 1024 x 1024 pixels, and in their native MATLAB
format each complex-valued pixel is represented as two §-byte
floating point values. In a previous study of unencrypted digital
holograms [24], lossless techniques have been shown to achieve
compression ratios in the range [1.0,6.66] where compression
ratio is calculated by dividing a hologram’s uncompressed size
by its compressed size.

The two holograms were encrypted with the phase mask
shown in Fig. 2(c). For these experiments, unencrypted holo-
grams of the 3D objects were captured optically [22], [23]
and the encryption steps described in (1) were simulated in
software [14]. The four lossless compression techniques were
applied to each hologram and the results are shown in Table I.
The poor compression ratios testify to the lack of redundancy
and structure in the encrypted hologram data, even compared
to unencrypted digital holograms. The random phase mask,
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TABLE I
LOSSLESS COMPRESSION OF ENCRYPTED HOLOGRAMS;
C.R., COMPRESSION RATIO

Size LZ77 LZW Hufft BW LZ77 LZW Huff. BW
Hologram (kB) (kB) (kB) (kB) (kB) cr C.I. CrI. C.I.
die 4097 3918 5296 3914 4003 1.05 100 1.05 1.02
bolt 4097 3918 5297 3915 4003 1.05 1.00 1.05 1.02
Averages: 1.05 1.00 1.05 1.02

combined with Fresnel propagation, is very effective at re-
moving apparent structure from the hologram data. These
results illustrate the urgent need to explore lossy compression
techniques suitable for encrypted digital holograms. One such
lossy technique that has been successfully applied to encrypted
digital holograms is uniform quantization of individual complex
amplitudes [13], motivated by the lack of correlation between
neighboring pixels. However, there is some structure in that
there is correlation between the real and imaginary components
in each pixel [35] and this structure is not exploited with a
uniform quantization technique. This is the motivation for a
nonuniform quantization approach.

V. ANNs SUITABLE FOR NONUNIFORM QUANTIZATION

ANN clustering algorithms have been successfully used for
vector quantization, image compression, and speech compres-
sion [46]-[53] in the past. We previously found that there was
correlation between the real and imaginary components of the
complex-valued pixels in our digital holograms [35]. In order to
exploit this natural correlation, each complex-valued pixel can
be regarded as a vector of length two and vector quantization
techniques can be applied to our encrypted data. We use the Ko-
honen competitive network [54] (also known as a vector quan-
tization network) and the self-organizing map (SOM) [54] for
quantizing our digital holograms.

The Kohonen competitive neural network [54] consists of
two-layers: an input layer and a competitive layer. Weight vec-
tors, connecting the input neurons to the output neurons, are ini-
tially set to the midpoint of the range of input values. An unsu-
pervised learning strategy is used to update the weights, W, at
time ¢ + 1, as [55]

W(t+1) = W(t) + at) [z(t) - W(L)]) )

where « is the learning rate, and x is the input vector. This al-
lows these weight vectors to learn to cluster the input data nat-
urally without any a priori information. An input vector is ran-
domly chosen and presented to the network. The neuron whose
weight vector is closest to the input vector wins the competition
and has its weight vectors updated in order to draw it closer to
the input vector and the weight vectors of all other neurons are
unchanged. This is known as hard competition.

Kohonen desired a characteristic known as equiprobability
for his competitive network, whereby an input vector chosen
at random from the training set would have equal probability
of being close to any of the weight vectors. It was Desieno
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who proposed a conscience mechanism that not only enforced
equiprobability but also fixed the over-clustering problem (the
problem of combining a number of diverse clusters into one
large cluster) and alleviated the dead neuron problem (where
neurons that are positioned far away from the input data may
never influence clustering) that were present in the original com-
petitive network. By monitoring the success of all neurons, con-
science creates a fatigue effect [54] on neurons that are winning
a lot in order to give others a chance. This encourages neurons
to spread out into undersampled areas of the input space. This
network also has a learning rate associated with it that controls
the amount by which the winning weight vectors are updated
during learning. Training ceases when the maximum number of
epochs is reached, performance has minimized the goal, or the
maximum amount of time has been exceeded.

The SOM [54], differs from the Kohonen competitive net-
work in that it updates both the winning neurons weights and the
weights of neurons located in the neighborhood of the winner.
This is known as soft competition and the weights, W, at time
t + 1 are updated as [55]

W(t+1) = W(t)+ h(t) [z(t) — W ()] 3)

where z(t) is the input neuron, and h(t) is calculated as [55]

2

h = a(t) exp % )
where « is the learning rate, r; and 7; are the positions of neu-
rons ¢ and j, and o is decreased slowly over time. The neigh-
boring weight vectors are updated to a lesser degree depending
on how far away from the winning neuron they are. Experi-
mentation has shown that the best results are obtained when
the neighborhood is large initially and shrinks monotonically
over time [54]. This results in a rough global ordering of the
input data initially and as the neighborhood shrinks this ordering
becomes finely tuned. The SOM network also has a two-layer
structure. The competitive layer consists of a grid, usually two-
dimensional, of connected neurons. This grid stretches and mu-
tates its shape to arrange its neurons to successfully represent
the patterns in the input data. The number of neurons in the grid
affects quality of results and training time; more neurons give
improved accuracy but increase training time.

During the ordering learning phase of the SOM, the neigh-
borhoods are defined, i.e. neurons arrange themselves so that
neurons that are sensitive to similar inputs will be located close
together. The learning rate is initially high to allow self-organ-
ization. In the tuning phase, the weight vectors are expected to
spread out relatively evenly over the input space, while retaining
their topological ordering that was found during the ordering
phase. This tuning phase generally performs between 10 to 100
times as many steps as the ordering phase [54]. The learning rate
should be kept small as the neighborhood will also be small at
this stage. The distance function most often used for the SOM
is Euclidean distance.

Both the Kohonen competitive and the SOM neural networks
are given an initial number of cluster centers and will use as
many as required to successfully cluster the input data. A max-
imum number of epochs is also allocated. Both networks learn
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Fig. 5. Scatter plots of data in die: (a) before quantization, (b) uniformly quantized with 49 clusters, (c) k-means quantization with 49 clusters.
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Fig. 6. Results of experiments (a) using a 32 X 32 pixel window of die to determine required number of epochs and (b) using a 128 x 128 pixel window of die

to determine required learning rates. Both for Kohonen competitive.

the distribution of the input data. In addition to this, SOM learns
and preserves the structure of the input space; neighboring neu-
rons represent similar input data and densely populated regions
are mapped to larger regions in the output space. In the next sec-
tion we discuss the results we obtained from evaluating these
neural network quantization techniques with our digital holo-
gram data.

VI. EVALUATION OF NONUNIFORM QUANTIZATION
TECHNIQUES

Uniform quantization is the optimal choice when the data
values are uniformly distributed. Since our hologram data con-
sists of unevenly distributed complex values [see Fig. 5(a)],
nonuniform quantization techniques are more suitable.

Initially we looked at the popular k-means clustering algo-
rithm [56], which is suitable for clustering large amounts of
data. This algorithm clusters the data by observing similarity.
It is an iterative process operating on a fixed number of £ clus-
ters (codebook vectors) that attempts to minimize some distance
metric between the input vectors (unquantized data) and code-
book vectors. Fig. 5(c) shows the distribution of clusters rel-
ative to the hologram data, compared to uniform quantization
Fig. 5(b). One advantage of k-means nonuniform quantization
over uniform is that no codebook vectors are wasted on unpop-
ulated regions. This is quite visible in Fig. 5(b) where only 29
of the 49 uniform clusters are actually used.

Our subsequent experiments involved the use of unsupervised
ANN techniques (Kohonen competitive and SOM) to quantize
hologram data, with k-means used to compare performance.
The ANNs were given an initial number of centers before
training. Training was then performed for a fixed number of
epochs, during which time each network used as many centers
as it needed to cluster the input data. Generally, only a subset
of the centers would be used, in contrast to k-means where all
of the centers are utilized. For the initial codebook all initial
cluster centroid positions are set to the midpoint of the input
data and these continue to spread out over the input data as
training proceeds. The distance that the codebook vector is
moved depends on the learning rate. As explained in Section V,
the Kohonen competitive network has both a learning rate and
a conscience learning rate, while the SOM has an ordering
learning rate and a tuning learning rate.

We performed extensive tests in order to determine the most
appropriate ANN parameters for our data. The first set of exper-
iments sought to determine how many training epochs would be
required. A 32 x 32 pixel window of the die hologram was used.
For training durations from 2 epochs through 2000 epochs, and
for numbers of clusters from 9 through 81, the networks were
trained with the hologram window. The trained networks were
then used to quantize the full 1024 x 1024 pixel hologram and
the resulting reconstructions U’ by numerical propagation were
compared with reconstructions Uy from original (unquantized)
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Fig. 7. Scatter plots of die complex-valued data, quantized with (a) Kohonen competitive and (b) SOM, both with 49 clusters.
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Fig. 8. NRMS difference in the reconstructed objects plotted against number of clusters: (a) die and (b) bolt.

versions of the holograms in terms of normalized rms (NRMS)
difference between their intensities, defined as

N,—1Ny-1

D=3 Y {Iwstm )~ 0"}

m=0 n=0

_111/2
N,—1N,-1 1

(Y {wotm.mP) 5)

m=0 n=0

where (m,n) are discrete spatial coordinates in the reconstruc-
tion plane, and N, and IV, are the height and width of the recon-
structions, respectively. In order to lessen the effects of speckle
noise, we examine only intensity in the reconstruction plane and
apply a 5 x 5 pixel mean filtering operation prior to calcula-
tion of NRMS difference. The results for the Kohonen compet-
itive network can be seen in Fig. 6(a). Since, for both types of
network, in the order of 10* epochs produced only marginally
better performance than 10% epochs, we chose 200 epochs as
our default training duration.

Experiments were performed to determine an appropriate
value for the conscience parameter of the Kohonen competitive
network. It was found that all nonzero conscience learning
rates were unsuitable for our white-noise-like digital hologram
data. In these experiments, the number of neurons was set to be
equal to the required number of clusters.

Appropriate learning rates had to be chosen for the ANNS.
For these experiments, 128 x 128 pixel windows from each of
the two holograms were used. For several learning rates, and
for several numbers of clusters, the networks were trained on the
hologram windows. After each training cycle of 200 epochs, the
hologram was quantized using the network and the error in the
hologram reconstruction measured. The results for the Kohonen
competitive network and the die hologram are shown in Fig.
6(b). For the Kohonen competitive network, the learning rate of
0.1 was deemed the most appropriate. For the SOM, the com-
bination of an ordering phase learning rate of 0.9 and a tuning
phase learning rate of 0.1 was favored. For the SOM, the fol-
lowing additional parameter settings were chosen. A topology
was chosen that creates a set of neurons that form a hexagonal
pattern. We used (1/n X \/n) as the dimensions of the i*" layer,
where n was the number of clusters. We employed 1000 or-
dering phase steps, and set a tuning phase neighborhood dis-
tance equal to 1.

Having determined the appropriate parameters to get the best
possible performance out of the two neural networks for our par-
ticular holographic data, we applied both networks to the com-
pression of larger, 256 x 256 pixel, windows of both digital
holograms. Fig. 7 shows the distribution of clusters for both the
Kohonen competitive network and the SOM, for the die holo-
gram and with 49 clusters. The Kohonen competitive network
seems to allocate its clusters for greater coverage of the holo-
gram data [recall Fig. 5(a)] than the SOM.
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The resulting NRMS reconstruction errors [calculated using
(5)] for various numbers of clusters are compared in Fig. 8.
Fewer numbers of clusters corresponds to a higher compression
ratio. For comparison purposes, Fig. 8 also includes the NRMS
error for uniform quantization and nonuniform k-means quan-
tization. For both holograms, k-means clearly performs better
than the SOM, which itself is only slightly better than uniform
quantization. The Kohonen competitive network consistently
beat the other techniques over all trials. Having identified the
Kohonen competitive network as being the more appropriate
unsupervised ANN for digital hologram compression, we next
apply it to larger encrypted digital holograms.

VII. QUANTIZATION OF ENCRYPTED DIGITAL HOLOGRAMS

A uniform quantization technique was used to investigate the
loss in reconstruction quality due to quantization in encrypted
holograms, and to comparatively evaluate the quality of the re-
sults obtained using the Kohonen competitive neural network.
The uniform quantization technique linearly rescaled the en-
crypted holograms to the square in the complex plane [—1 —
i, 144 without changing their aspect ratio in the complex plane.
The real and imaginary components of each holographic pixel
were then quantized. The combined rescale and quantization op-
eration is defined for individual pixels as

H'(z,y) = round [H(x./y) x o1 x ,B] x g7t (6)
and was applied to each pixel (x,y) in the encrypted hologram
H, where

o = max {|min [Im(H)]|, |max [Im(H)]|,

|min [Re(H)]|, |max [Re(H)]|} (7)

and where # = 2(*~1) — 1. Here, b represents the number of
bits per real and imaginary value, max(-) returns the maximum
scalar in its argument(s), and round(«) is defined as |« + 0.5].
After quantization, each real and imaginary value will be in the
range [—1, 1].

Nonuniform quantization was then employed to quantize the
encrypted hologram data. The Kohonen competitive neural net-
work was trained on a 128 x 128 pixel window of encrypted
digital hologram data. We used the resulting centers to quantize
the full 1024 x 1024 pixel encrypted digital hologram. Fig. 9(a)
shows a scatter plot of the unquantized 128 x 128 pixel window
of the die hologram that was used to train the ANN. Fig. 9(b)
shows the cluster positions found by the ANN (equivalently,
this is a scatter plot of the quantized encrypted data). Fig. 9(c)
shows a scatter plot of the full 1024 x 1024 pixel hologram that
the clusters from Fig. 9(b) were applied to. Figs. 9(d)—(f) show
equivalent scatter plots for the bolt hologram.

Fig. 10 shows plots of NRMS difference against number of
bits of encrypted holographic data for both uniform quantiza-
tion and Kohonen competitive quantization. Fig. 10 illustrates
the consistently lower NRMS error achieved by Kohonen
competitive quantization over uniform quantization on our
encrypted digital holograms. Further evidence of this perfor-
mance gain achieved with nonuniform quantization is shown in
Fig. 11 where we see the improved quality in the reconstructed
objects using nonuniform quantization compared with uniform
quantization. Reductions from 8 bytes to 4 bits, 3 bits, and
2 bits correspond to compression ratios of 16, 21, and 32,
respectively.

Ideally, the cluster centers from one hologram could be stored
in a lookup table and applied with reasonable results to the quan-
tization of subsequent holograms. (The JPEG algorithm uses a
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Fig. 10. NRMS intensity difference in decrypted and reconstructed 3D object images plotted against quantization level: (a) die and (b) bolt.
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Fig. 11. Reconstructions from encrypted digital hologram data with uniform quantization (upper row) and Kohonen competitive quantization (lower row): (a),
(b), (e), () 2 bits per real and imaginary value, and (c), (d), (g), (h) 3 bits per real and imaginary value. Mean filtering (5 X 5 pixel) applied in each case.

hard-coded lookup table of cosine-domain quantization values
arrived at through performance evaluation over a database of
sample input images.) We have found that the set of cluster cen-
ters we obtained from the Kohonen competitive neural network
is very effective when applied in the quantization of a different
hologram. This is illustrated in Fig. 12, where it can be seen
that quantizing the die hologram using the centers obtained by
applying Kohonen to the bolt hologram results in comparably
low NRMS errors compared to those obtained when applying
the centers produced specifically for the die hologram. By using
the centers obtained from the Kohonen competitive network to
quantize other encrypted holograms, we have the improved per-
formance of nonuniform quantization combined with the speed
advantage of uniform quantization.

VIII. CONCLUSION

This paper outlines an optical encryption technique, based on
phase-shift digital holography, that is suitable for secure 3D ob-
ject storage and transmission applications. This technique takes
advantage of both the massive parallelism inherent in optical

systems and the flexibility offered by digital electronics/soft-
ware. Both the amplitude and phase of the hologram is en-
crypted by a phase-only perturbation of the Fresnel diffraction
from the 3D object. Therefore, a phase mask is only required
for this encryption scheme. Decryption and reconstruction of
particular views of the 3D object can be performed optically or
electronically. If the incorrect phase mask result is used, the re-
construction will be an unintelligible wavefront. Following en-
cryption the hologram data is in a form suitable for digital elec-
tronic storage, transmission, or manipulation.

Lossless and lossy compression techniques were applied to
the digital hologram data. Lossless techniques, such as LZ77,
LZW, Huffman, and BW, perform very poorly on digital holo-
gram data due to its white noise characteristics. We find that
the encrypted digital holograms are compressed even less ef-
fectively. We evaluated two ANN-based nonuniform quantiza-
tion techniques and found that the Kohonen competitive neural
network performed best with our digital hologram data. We
achieved reduced NRMS error and increased compression ra-
tios using this technique. The Kohonen network was also shown
to outperform the popular k-means clustering algorithm. We
found that as few as 2 bits in each real and imaginary value
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Fig. 12. NRMS intensity difference in the decrypted and reconstructed 3D objects plotted against quantization level, with uniform quantization and Kohonen
competitive quantization: for (a) die and (b) bolt, where nonoptimized means using the Kohonen centers from the other hologram.

(corresponding to a compression ratio of 32) results in good
quality decompressed and decrypted 3D object reconstructions.
We have characterized the increase in quality as the number of
bits is increased. This curve represents the upper bound on the
resolution required of display devices in an optical decryption
apparatus. If the nonuniform distributions of the pixel values can
be determined then there may be more efficient ways to apply
nonuniform quantization [32], [34]. Nonuniform quantization
not only performs significant compression itself, it will also re-
duce the number of symbols (for Huffman) and introduce struc-
ture into the bit stream (for LZ77 and LZW) to allow them to
perform further compression.
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