Role of phase key in the double random phase
encoding technique: an error analysis
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We perform a numerical analysis of the double random phase encryption—decryption technique to deter-
mine how, in the case of both amplitude and phase encoding, the two decryption keys (the image- and
Fourier-plane keys) affect the output gray-scale image when they are in error. We perform perfect en-
cryption and imperfect decryption. We introduce errors into the decrypting keys that correspond to the
use of random distributions of incorrect pixel values. We quantify the effects that increasing amounts of
error in the image-plane key, the Fourier-plane key, and both keys simultaneously have on the decrypted
image. Quantization effects are also examined. © 2008 Optical Society of America
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1. Introduction

Optical encryption has the potential to offer high-
speed parallel encryption of 2D image data. Double
random phase encryption [1] (DRPE) is an optical-
image encryption technique that involves the use
of two random phase keys, one placed in the input
domain and one placed in the Fourier domain. If
these random phase keys are generated by using
statistically independent white noise, then the en-
crypted image is also a stationary white noise. Since
its introduction in 1995, DRPE has generated much
interest and has been the focus of many studies [2-7].
One of the major advantages of DRPE is that it has
an optical implementation; see Fig. 1. The physical
implementation of such an optical system gives rise
to many practical issues; however a thorough numer-
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ical analysis of DRPE is extremely important if it is
to be used as an encryption system.

There are two primary modes of operation of the
DRPE technique, which depend on the form of the
data to be encrypted:

1. Amplitude encoding (AE), with a gray-scale in-
put image, and

2. Phase encoding (PE), in which throughout this
paper we assume that only the input field phase is
modulated.

While the optical systems used to encrypt the data in
both cases are very similar, there are significant dif-
ferences in the decryption, analysis, and breaking of
these encoding systems. Figure 2 shows a block dia-
gram explaining the encryption and decryption pro-
cess for both AE and PE and is referred to throughout
this paper.

In a physical implementation of both the AE and
PE optical encryption systems it is necessary to
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Fig. 1. Possible optical implementation of DRPE. OFT, optical
fourier transform. f,(x,y) is the input image, a(x,y) and b(u,v)
are the phase keys, and ¥(x,y) is the encrypted output image.

capture the phase information of the encrypted field.
Since (CCD) cameras can only capture the intensity
of a wave field, digital holographic techniques [8-10]
must be employed to extract the full complex wave
field information. However, when an AE input image
has been encrypted using the DRPE technique,
knowledge of the image-plane phase key, a(x,y), is
not necessary when the decryption process is carried
out . This is because, in this case, only the intensity of
the input image is required, and therefore the phase
in the output decrypted image contains no useful in-
formation and is unnecessary, i.e., [¢/27*¥)|2 = 1,
When a PE input image (phase data) is used, both
the image- and the Fourier-plane keys, a(x,y) and
b(u,v), are required in the decryption process. This
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Fig. 2. Block diagram of the similar encryption processes for AE
and PE and the different decryption processes that lead to an
NRMS value for a decrypted image.

would imply that the attackers job is more difficult,
as in the PE case they have to find two phase keys,
a(x,y) and b(u,v), in order to break the system, as
opposed to needing to find only one, b(u,v), for the
AE case.

Should the attacker have access to a cipher—text
pair, it has already been shown that in the case of
AE heuristic methods [6] can be used to extract
the DRPE Fourier key, b(u,v), with a normalized root
mean square (NRMS) technique error below 10%
within a reasonable amount of time, i.e., within less
than an hour using a personal computer. Other meth-
ods can be used if several cipher—text pairs are avail-
able when the system is attacked, and such
techniques have been found to be very effec-
tive [11,12].

In this paper we exam the sensitivity of the DRPE
technique to errors in the key(s) used for decryption
in both the AE and PE cases. Specifically we wish to
know if both keys are as significant as each other, or
whether the accuracy of one is more important than
the other. If the accuracy of one key were less impor-
tant than the other, then the time required to find an
acceptably good approximation to that key, using a
heuristic approach, would be greatly decreased.
Clearly the informed attacker will apply effort appro-
priately to the key of greater significance. A further
aim in this paper is to examine the type and quantity
of noise in the decrypted outputs that is due to ran-
dom errors in the keys with the hope of developing
strategies for attacking such techniques.

To quantify the relative effects of errors in the
pixel values, which we introduce in the image- and
Fourier-plane keys a(x,y) and b(u,v), we examine
the resulting errors in the decrypted images. We
compare the errors in the decrypted data resulting
from both keys’ having identical error properties
simultaneously as well as the effect of similar error
levels in the two keys individually. The resulting
decrypted images are examined for a range of error
levels.

In all of the results presented here the encryption
process is performed error free, and then errors are
introduced by us into the phase keys during the de-
cryption process. Therefore we numerically examine
the effect on the decrypted image of errors introduced
in the decryption keys. In this study we assume per-
fect encryption in all cases. In this paper, while we
have examined several gray-scale images, the repre-
sentative results were produced exclusively by using
the Lena image [13].

This paper is organized in the following way. In
Section 2 we discuss the error metric we have chosen
to use to evaluate the DRPE technique and indicate
how it is applied in this paper to provide a meaning-
ful comparison between the AE and PE cases. In Sec-
tion 3 we explain the two encoding procedures under
study here, AE and PE. In Section 4 the results for
both the AE and PE cases are given. The effect of de-
grading the quantization of the decryption keys is

20 July 2008 / Vol. 47, No. 21 / APPLIED OPTICS 3809



also discussed, and a brief conclusion is presented in
Section 5.

2. Error Metric

The metric we use to quantify the amount of error in
an incorrectly decrypted image is the normalized
root mean squared (NRMS) error. This compares
an incorrectly decrypted image with the original
input image and is calculated as follows:

In this equation I4(-) and I(-) represent the intensi-
ties of the decrypted and original images, respec-
tively. We note that the NRMS is positive valued
and that when NRMS = 0 perfect (error free) decryp-
tion has taken place.

In all of the examples presented in this paper the
encryption—decryption process is performed numeri-
cally by using a standard fast Fourier transform al-
gorithm [14]. Each data pixel is represented by a
single complex value in a finite 2D array in the com-
puter. Thus we neglect all physical modeling issues,
e.g., spatial light modulator fill factor, polarization,
and diffraction effects [15,16]. Such simplifications
are tolerated only because it is an examination of
the nature of the DRPE technique, which is our pri-
mary consideration here, and not the nonideality
introduced by the physical limitations of the optical
system implementation.

In the case of AE the comparison of the input and
decrypted gray-scale images is straightforward by
using the NRMS, Eq (1). However in the case of PE
the input data is contained in the phase information
(we assume no amplitude variation). To calculate the
NRMS the output phase image is converted to a nor-
malized amplitude image, where the range [0, 27] is
mapped to the range [0, 1]. In this way a comparison
of the AE and PE results can be made.

In both the AE and the PE case we add the error to
the decryption keys in the same manner. We first se-
lect a pixel coordinate in the phase key plane, which
is denoted either (x,y) in the image plane or (u,v) in
the Fourier plane. The value of these coordinates are
assigned by using the Matlab rand function [14]. The
rand function returns a pseudorandom number uni-
formly distributed in the interval (0, 1) and is based
on a 35-element vector that dictates the current state
of the uniform generator. By setting the state of the
random number generator to a starting position that
is based on the current time and date, we can ensure
that it will provide us with a different pseudorandom
sequence for every run. Once the pixel coordinate has
been selected, we assign it a quantized phase value,
using the same random number generator to select
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the quantized value, using a modified, evenly
weighted, roulette algorithm to select a phase value
from the set of all possible quantized phase values for
the phase keys.

It should be noted that other error metrics exist
that can be used to provide estimates of the effects
of noise and key error [4]. The NRMS error metric,
as defined in Eq (1), provides a direct measure of
the Euclidean distances between intensity images.
Since it is the intensity of the decrypted data that
is the quantity of primary interest, and since it is in-
tensity values that are measured during experi-
ments, we believe that the NRMS provides useful
insights. However, it should be emphasized that all
the conclusions presented in this paper regarding
the relative performance of the AE and PE cases
are based on comparison of the two methods by using
the NRMS metric.

3. Encoding Procedure

A. Amplitude Encoding

As stated, Fig. 1 shows a possible optical implemen-
tation of the DRPE technique. In an AE setup we de-
note the input amplitude image by using f(x,y),
where x and y are the spatial coordinates and the
subscript A indicates that the input is a gray-scale
amplitude image. The image is first normalized
and then multiplied by the image-plane phase mask,
R1 ~ exp[+i27a(x,y)], and the resultant wavefront is
Fourier transformed and then multiplied by the sec-
ond phase mask, R2 ~ exp[+i27b(u,v)]. The second
Fourier transform is then performed to give the en-
crypted image, denoted V. Therefore in the AE case a
perfectly encrypted image is given by

T(xny) = g{g{fA(x7y> exp[+i2ﬂa(xvy)}}
x exp[+i2zb(u,v)]}. (2)

The perfect AE decryption process follows from
Eq. (2) and is given by

fale,y) =3 H3H{P(x,y)} exp[-i27b(u,v)]}
x exp[—i2za(x,y)]. (3)

Both processes (encryption and decryption) are illu-
strated in Fig. 2. We analyze the behavior for the AE
case by perturbing the Fourier-plane phase key,
b(u,v), used in the decryption process.

Perturbation studies have been carried out in the
past [17] in which the robustness of the decryption
process is scrutinized to see how a perturbation of
the coded image modifies the resulting decoded im-
age. In this study we assume that the coded image
is produced by following a perfect encryption process,
i.e., without the presence of noise, and we study the
effects on the decoded image arising owing to incor-
rect pixel values in the decrypting phase keys.

In this AE case we move away from a perfect
Fourier-plane phase key, b(u,v), by randomly select-



ing an increasing number of pixel locations in the key
and assigning them, with uniform probability, a
randomly quantized phase value. Using this ap-
proach we examine how this process leads to error ac-
cumulation in the decrypted image. In Fig. 3 we plot
the NRMS errors in the decrypted image on the ver-
tical axis, for the AE case (triangles), and as a function
of the percentage of incorrect pixels on the horizontal
axis. As discussed, for the AE case a(x,y) is unneces-
sary to the decryptlon process; see Fig. 2.

In a brute-force or known plaintext—ciphertext at-
tack, the attacker could use the NRMS as a metric
indicating the quality of the estimated key. The
NRMS curve in Fig. 3 allows us to simulate an at-
tacker who has a priori knowledge of the AE system,
i.e., who knows the number of pixels in the key and
the quantization levels and who applies the NRMS to
search for the decrypting phase key b(u,v) by using
heuristic or other approaches. Thus the AE result
presented in Fig. 3 indicates the robustness of the
DRPE technique to such attacks. So, if a phase
key could be obtained with a known number of cor-
rect pixel values, the graph would indicate what level
of NRMS error it would produce. The opposite, how-
ever, does not hold true, but this, as yet, cannot be
proved. For example, if a phase key that produced
a known NRMS value is obtained, the number of cor-
rect pixels in that key cannot be ascertained from the
graph in Fig. 3. To be certain of this, the entire key
space would need to be mapped, and since the key
space for this case contains 16%5%36 possible keys
(16 quantization levels and 256 x 256 = 65,536 pix-
els), checking each one is not feasible.

B. Phase-Encoding

In this case the input Lena image, /4 (x, ), is encoded
as a phase image where the normalized amplitude in
the range [0, 1] is mapped to the range [0, 27| and is
denoted

fP(xay) = exp[+l2ﬂfA(x7y)]a (4)
1
08+
NRMs 081
ERROR
041
A Amplitude-encoding (AE)
O Phase-encoding (PE)
02+
0 1 1 1 1 1 1 1 1
0 5 10 15 20 25 30 35 40 45
Percentage of Pixels in Error
Fig. 3. (Color online) AE compared with PE. The horizontal axis

shows the percentage of pixels that are in error in the Fourier-
plane key, b(u,v). The vertical axis shows the NRMS error as de-
scribed in Section 2. With NRMS = 0 the decryption is perfect.

where the subscript P indicates that the image is a
phase image. The encryption and decryption pro-
cesses are the same as described above; however
Eqgs. (2) and (3) are rewritten as follows:

W(x,y) = 3{3{exp[+i27f4 (x,y)] exp[+i27a(x,y)]}

x exp[+i27b(u,v)]}, (5)

Fp(x.y) = |Arg(3~H{3{¥(x,y)} exp[-i27b(x,y)]}
X exp[—Zﬂa(u, l))])|, (6)

respectively. As in the AE case, the Fourier-plane
phase key b(u,v) is perturbed by an increasing
amount, and the resulting error is quantified. In this
case a(x,y) is first assumed to be exactly known, i.e.,
to contain no errors, and it is necessary in the decryp-
tion process; see Flg 2. Below the PE case in which
both decrypting keys are perturbed is also examined.

4. Results

A. Amplitude Encoding and Phase-Encoding Results

The standard test image used for all the simulation
presented in this paper is the 256 x 256 pixel gray-
scale Lena image [13]. Figure 3 contains a second
curve plotted for the PE case (circles). The percentage
of pixels that are in error is noted on the horizontal
axis, and the resulting NRMS error is indicated on
the vertical axis. This graph indicates that as the
number of incorrect pixels in the b(u, v) Fourier-plane
phase key starts to increase, the AE case performs
better than the corresponding PE case. This is based
on the observation that a small number of incorrect
pixelsinthe b(u, v) phase key will, in general, produce
a higher NRMS error in the AE case than in the PE
case. Thus the PE case is more robust (less sensitive)
to incorrect pixel valuesin b(u,v), which may simplify
the task of any potential attacker in finding an accep-
table estimate of b(u,v).

As previously noted, in the PE case it is necessary to
know both the image-plane phase key a(x,y) and the
Fourier-plane phase key b(u,v) in order to decrypt
W(x,y), whereas in the AE case a(x,y) is not required
in the decryption process, as only the intensity of the
outputimage contains the encrypted information; see
Fig. 2. Hence in the PE case both encryption keys are
needed for decryption, which increases the complex-
ity of breaking the system. The question therefore
arises as to how errors in the two keys, a(x,y) and
b(u,v), effect the NRMS error values.

What we have found is that errors in the two keys
affect the output image differently. Figure 4 contains
the two previous curves from Fig. 3 but also contains
two additional curves. As indicated, the two curves
reproduced from Fig. 3 assume that the image-plane
phase key a(x,y) is either fully known or not neces-
sary. The two extra curves are formed when (i) the
Fourier-plane phase key b(u, v) is assumed to be fully
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Fig. 4. (Color online) The curve marked by the triangle repre-

sents AE. The other three curves look at PE for the cases when

the phase keys, a(x,y) and b(u,v), are in error separately and

at the same time. The dashed lines refer to Figs. 6-8, which show

examples of output images at these error levels.

known and a(x,y) is randomly perturbed (squares);
and when (ii) both of the phase keys are perturbed,
as described below (stars). From the graph the re-
sults suggest that the Fourier-plane phase key,
a(x,y), is more sensitive to incorrect pixel values
than the image-plane phase key, b(u,v), and gener-
ates a larger NRMS value for weak perturbations,
i.e., low error levels.

To allow a meaningful comparison between the si-
tuations when a single key and when both phase-keys
are perturbed, an equal number of pixels are always
randomized. Thus, when on the graph it indicates
that, for example, 20% of the pixels are incorrect, this
means that either 20% of the pixels in a single key are
in error or that 10% of the pixels in both keys are si-
multaneously incorrect; therefore the total amount of
error is consistently defined in all cases.

Figure 5 provides an enlarged version of Fig. 4
close to the origin; note the scale on the horizontal
axis. As before, this graph indicates that for a lower
number of pixels in error the PE cases are less sen-
sitive than the equivalent AE case to the combined
effects of the same number of incorrect pixel values
equally distributed between the two phase keys. We
can deduce from the three different PE cases exam-
ined that as the percentage of incorrect pixels
increases it is more important to have the Fourier-
plane phase key, b(u,v), as correct as possible. This
is implied, as both of the other cases are less sensi-
tive to incorrect pixel values. In Figure 5 we also
have superimposed an average AE curve. To gener-
ate this curve the simulation was run ten times,
using different random phase keys, and the results
averaged. Examining Fig. 5, we note that averaging
over ten results merely smooths out the curve but
does not alter the slopes or trends observable in
the graph. Similar results were observed for each
of the PE cases but are not shown in the graph to
avoid overcrowding.
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Fig. 5. (Color online) Enlarged graph of a portion of Fig. 4; note
the scale on the axes. Superimposed on the AE case is the curve

that shows the results for ten runs by using different phase keys
and is then averaged (grey dots).

Figures 6—8 show decryptions of Lena for the AE
case and for all three of the PE cases examined.
These images are decrypted at three levels of incor-
rect pixels, 2.5%, 10%, and 30%. In Figure 4 the level
at which these images are taken is indicated by the
vertical dashed lines. In these images it can be seen
that there are two distinct types of noise. One of these
is “salt and pepper” type noise and can be easily
removed with median filtering; see Figs. 6(c), 7(c),
and 8(c). The other is Gaussian noise and is more
difficult to remove [18]; see Figs. 6(a), 7(a), and 8(a).
Both of these types of noise are present in
by strategically postprocessing these images the im-
age quality in the PE cases can be improved. It should
be noted that even when the NRMS error in an output
image is very high, greater than 0.7 NRMS, it is still
clearly possible to recognize, by eye, that the image is
that of a human head.

B. Quantization Effects

Quantization effects are important to understand
from a number of perspectives. In the context of at-
tacks on the DRPE, an attacker may not know the
correct quantization levels being used. Furthermore,
as we have demonstrated, an attacker may deliber-
ately choose a lower quantization level to expedite
the breaking of the encryption technique without
too great an NRMS penalty. If the DRPE becomes
widely used, it will not be possible to guarantee that
all optical encryption users will have access to the
highest-quality equipment, and indeed some users
may choose different equipment to trade-off speed
for reliability. Finally, the resolvability of quantiza-
tion levels will ultimately be related to robustness
against noise and thus to the operational signal-to-
noise ratio within the system.

In this section we proceed by simulating the affect
of quantization on the phase keys for the AE case and
the three PE cases. We perform perfect encryption as
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Fig. 6. (Color online) Results when 2.59% of phase key pixels are in error. (a) AE case with R2 in error and NRMS ~ 0.33. (b)—(d) PE case
with a NRMS of (b) 0.17, (¢) 0.20, and (d) 0.17. In (b) R2 is in error. In (¢) R1 is in error, and in (d) both R1 and R2 are in error.

in the previous cases and introduce errors into the
decrypting phase keys. If we assume that we start
with two 8 bit phase keys, each with 256 quantization
levels, we requantize the decrypting phase keys for
lower quantization levels and then calculate the re-
sultant NRMS error. Figure 9 shows three curves for
the three PE cases. The number of bits used in both
decrypting phase keys is indicated along the horizon-
tal axis, and the NRMS error is given on the vertical
axis. For the two cases in which only one of the phase
keys is in error, the other is assumed to remain un-
changed from the original 8bit key. In the case
where both phase keys are in error the total number
of bits is shared between the two phase keys. In the

first two cases this means that one phase key uses
8 bits and the phase key in error uses only 4. How-
ever, in the third case when both are in error this
means that both of the phase keys are in error
and use an equal number of bits. For example when
the horizontal axis indicates that there are 12bits
being used, the two keys use 6 bits each. In the case
where both keys are being requantized, the NRMS
error values for the odd points (15, 13, 11, etc.) on
the horizontal axis of the graph are estimated by in-
terpolation between the two adjacent even values.
The AE case is also examined in Fig. 9, and
although the image-plane phase key is not necessary
for decryption, it is still assumed to have 8bits. So
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0.41, (b) 0.39, and (c) 0.37.

when the graph indicates that 9 bits are beings used
in the AE case, 8 of the bits are used in the image-
plane key and 1bit is used in the Fourier-plane
key. Comparing the AE and PE cases, it would ap-
pear that the AE case is more resilient, having lower
error for the same number of bits than the equivalent
(circle) PE case.

The results from this simulation suggest that it is
advantageous, when attacking, to use an equal num-
ber of quantization levels in both the image-plane
phase key, a(x,y), and the Fourier-plane phase key,
b(u,v). It also suggests that lower-quality spatial
light modulators, i.e., spatial light modulators with
fewer available phase-quantization levels, may still
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PE, a(x,y) and b(u,v) in
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(Color online) As in Fig. 6 but with 10.07% of the key pixels in error. (a) AE case NRMS of 0.57. (b)—(d) PE case with a NRMS of (a)

be applied to produce decrypted images with low le-
vels of NRMS error.

5. Conclusions

In this paper we have performed a numerical analy-
sis of the double random phase encoding (DRPE)
technique to determine how, in the amplitude en-
coding (AE) and phase encoding (PE) cases, the
two encryption keys, the image-plane key a(x,y)
and Fourier-plane key, b(u,v), used during decryp-
tion affect the output image when they have increas-
ing amounts of error. In all cases we have assume an
error-free encryption process, and then we have in-
troduced errors into the decrypting phase keys.
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Fig.8. (Color online) As in Fig. 6 and 7 but with 30.52% of the key pixels in error. (a) AE case NRMS of 0.71. (b)~(d) PE case with a NRMS

of (a) 0.73, (b) 0.64, and (c) 0.67.

In this study the PE method proved to be less sen-
sitive to incorrect pixel values in the phase keys
than the AE method. However, it should be noted
that in the PE case it is necessary to know both
of the encrypting phase keys in order to carry out
the decryption process, and this significantly in-
creases the complexity of this encoding technique.
The simulation results presented suggest that the
decryption process is more sensitive to incorrect pix-
el values in the Fourier-plane phase key than to an
equivalent number of pixel errors in the image-plane
phase key. Furthermore, it is observed that the re-
sultant noise in the output, decrypted images, pro-
duced due to incorrect pixel values in the two
phase keys, have different properties. It is noted that

errors in the image-plane key, being in the same
plane as the output plane, tend to produce salt
and pepper noise, while errors in the Fourier-plane
result in Gaussian type noise. When the number of
quantization levels that can be used in the phase
keys during decryption is restricted, for example, be-
cause of hardware, storage, or speed requirements,
we have shown that using two phase keys of similar
size, rather than having one very good quality and
one of poorer quality, results in lower errors. We
have also found the AE to be less sensitive to errors,
and thus easier to break, than the equivalent
PE case.

Finally we note that the results presented in this
paper were reproduced for several different gray-
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Fig. 9. (Color online) The AE case and the three PE cases where

the decrypting phase-keys are requantized at increasingly lower
levels, plotted against the resultant NRMS error.

scale input test images. In some of these images the
slopes of the results curves varied, but the general
trends remained consistent throughout.
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