J. Parallel Distrib. Comput. 68 (2008) 1452-1462

Contents lists available at ScienceDirect

J. Parallel Distrib. Comput.

journal homepage: www.elsevier.com/locate/jpdc

Scheduling in a dynamic heterogeneous distributed system using

estimation error

Andrew J. Page **, Thomas M. Keane®, Thomas J. Naughton *¢

2 Department of Computer Science, National University of Ireland, Maynooth, Co.Kildare, Ireland
b pathogen Sequencing Unit, Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1SA Hinxton, UK
¢ University of Oulu, RFMedia Laboratory, Oulu Southern Institute, Vierimaantie 5, 84100 Ylivieska, Finland

ARTICLE INFO

Article history:

Received 22 December 2006
Received in revised form

20 March 2008

Accepted 12 July 2008
Available online 24 July 2008

Keywords:

Scheduling

Error estimation
Heterogeneous
Distributed computing

ABSTRACT

In real-world dynamic heterogeneous distributed systems, allocating tasks to processors can be an
inefficient process, due to the dynamic nature of the resources, and the tasks to be processed. The
information about these tasks and resources is not known a priori, and thus must be estimated online. We
utilize the accuracy of these estimates, and when combined with different objectives, such as minimizing
makespan and evenly distributing load, naturally gives rise to a family of four different scheduling
algorithms. The algorithms have been implemented on a real-world heterogeneous distributed system
with up to 90 processors. A set of real-world problems from the areas of cryptography, bioinformatics, and
biomedical engineering were used as a test-set to measure the effectiveness of the scheduling algorithms.
We have found that considering estimation error when allocating tasks to processors can provide more
efficient solutions, than when estimation error is not considered. We have found that using a simple
heuristic, combined with estimation error, can in some cases provide solutions approaching the efficiency
of complicated well-known evolutionary algorithms.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Modern scientific research has ever-increasing computational
requirements. Many of the large problems being tackled are
ideal candidates for parallelization [6]. Distributed computing can
provide a large amount of computational resources by utilizing the
spare clock cycles of existing personal computers (PCs), without
the cost of expensive dedicated parallel machines. Computers
with different processor speeds and memory sizes can be brought
together to form a virtual supercomputer. Due to the distributed
nature of the underlying resources it is necessary to allocate
tasks to processors in an efficient manner, otherwise the benefits
of using multiple processors is nullified. The multiprocessor
scheduling problem is NP-complete in the general case [13,39].

In real-world heterogeneous distributed systems, the allocation
of tasks to processors can be an inefficient process. In the absence
of an efficient algorithm to find the optimal schedule [13], a
heuristic is required to generate a solution in a feasible amount of
time. Availability of the underlying non-dedicated processing and
communication resources varies continuously during the lifetime
of the computation. For example, using the spare clock cycles of
open access PCs in a university laboratory as part of a distributed
system is highly problematic. PCs can be randomly rebooted, users

* Corresponding author.
E-mail addresses: apage@cs.nuim.ie (A.J. Page), tk2@sanger.ac.uk (T.M. Keane),
tomn@cs.nuim.ie (T.J. Naughton).

0743-7315/$ - see front matter © 2008 Elsevier Inc. All rights reserved.
doi:10.1016/j,jpdc.2008.07.004

can run computationally intensive applications (which leaves
few spare clock cycles) and the network can become congested.
Information about these resources is thus not known a priori. The
tasks to be processed are also not known a priori, because they
arrive dynamically. A scheduler is needed which can manage all
of these variations to get the most out of an unreliable set of
resources.

Many scheduling algorithms (other than the most trivial) utilize
knowledge of the available system resources and the tasks to be
processed when deciding to allocate a task to a processor [3,8,10,
28,33,36,37,42]. How to best generate this knowledge is an open
problem [37], which is dealt with in different ways. However, in
general cases, all information used when deciding to allocate tasks
to processors must be estimated. This, of course, is error-prone,
with the errors in these estimations introducing inefficiency. The
accuracy of these estimations becomes particularly important
in distributed systems, where users must pay for processing,
where demand for computational resources outstrips supply, or
where a problem must be processed as quickly as possible. The
most common form of estimating task execution times is by
benchmarking a task or set of tasks offline in advance [3,8,33,36,
37]. The heterogeneous and non-dedicated nature of the resources
in a loosely-coupled distributed system means that this type of
estimation can introduce a large amount of error, between the
actual execution time and the estimated execution time of a set
of tasks.

http://www.elsevier.com/locate/jpdc
http://www.elsevier.com/locate/jpdc
mailto:apage@cs.nuim.ie
mailto:tk2@sanger.ac.uk
mailto:tomn@cs.nuim.ie
http://dx.doi.org/10.1016/j.jpdc.2008.07.004

AJ. Page et al. /]. Parallel Distrib. Comput. 68 (2008) 1452-1462 1453

The problem of estimating both the execution time of the
tasks to be processed, and the resources of the system has been
tackled in a number of ways [1]. Some distributed systems, such as
SETI@home [22], ignore the resources of the system [22,23,32], or
treat their heterogeneous resources as a homogeneous set [2,9,22,
23,30,32,40] by ignoring variation in the available computational
resources of the processors. Some distributed systems restrict
themselves to homogeneous tasks [22,23,32] which reduces the
complexity of the scheduling problem.

Other algorithms require the user to define the length of time
that a problem is expected to take [3,8,33,36,37]. Many require a
directed acyclic graph with task and communication information,
and precedence constraints given in advance [3,8,24,26,25,33,
36,37]. Communication costs are also not properly considered
by many algorithms, for example all communication links are
assumed to be homogeneous [41], it is assumed communication
and computation can take place simultaneously [8], or it is
assumed that there is instantaneous message passing [43]. The
restrictive assumptions placed on the type of tasks that can be
processed, and the processing and communication resources of
the system simplifies the scheduling problem, but reduces the
generality and usefulness of the solutions.

Some research has been done to address some of these
restrictive assumptions. Sinnen et al. [33] look at a processor’s
involvement in communication and show that considering this
involvement, when scheduling, leads to more efficient resource
utilization in real-world distributed systems. Cohen et al. [5]
focus on scheduling the communication between processors, to
minimize the communication overhead in a distributed system.
Theys et al. [37] generate and store many scheduling solutions
before run-time, then select the most suitable schedules during
run-time, which allows the scheduler to adapt to a variable
task and resource environment. The dynamic level scheduling
algorithm proposed by Dogan and Ozguner [10] addresses the
variability of network and processor resources caused by failures,
and attempts to minimize the probability of these failures
adversely effecting the overall operation of the distributed system.
Ali et al. [1] create a generalized robustness metric for unreliable
parallel and distributed systems, where the system resources may
vary, or the estimated task execution times may be erroneous.

In this paper we present a scheduling algorithm which
addresses these restrictive assumptions. In contrast to the
techniques of the previous paragraph, the scheduler assumes
that no knowledge is available a priori, about the tasks to be
processed, or the communication and computational resources of
the distributed system. This information is dynamically estimated
online.

We utilize the error in these estimates, seeking to schedule
the tasks with the minimum estimated error earliest, or schedule
the tasks with the most estimated error earliest. When this is
combined with different objectives, such as minimizing makespan
(total execution time) and evenly distributing load, it naturally
gives rise to a family of four different scheduling algorithms.

The rest of the paper is organized as follows. In Section 2 we
present a method for estimating the task execution time. Section 3
contains descriptions of the scheduling algorithms. A real-world
distributed system is reviewed in Section 4 and the results of the
experiments are presented in Section 5. We conclude in Section 6
and note directions for future research.

2. Problem statement and execution time estimation

The scheduling problem we address in this paper can be stated
as follows. We wish to schedule a number of problems, where
each problem contains a number of indivisible tasks. The tasks con-
tained within a problem can have different heterogeneous process-
ing requirements (time, memory). The scheduler is required to map

these tasks to processors (which can have different heterogeneous
processing speeds, memory, and interconnection properties) for
processing. The computational requirements of problems and in-
dividual tasks are unknown a priori. Problems arrive dynamically
for scheduling. The properties and availability of the processors can
vary randomly over time, with unknown statistics.

Our distributed computing system consists of a server processor
(that runs the scheduler) and a collection of processors connected
in a star topology. For the remainder of the paper, in our
terminology, a problem is defined as a pair of algorithms that is
required to be run: a task manager algorithm and a task algorithm.
The task manager runs on the server. The task algorithm is sent to
each processor. A task is defined as a set of parameters for the task
algorithm, where task i is characterized by the tuple of parameters
X = (&, .. .,x;) and q is the number of parameters. The
restriction X; € Z4 is placed on the user in order for the scheduling
algorithm to work. This coding is not seen as restrictive. A string
parameter could be coded as an index into a hard-coded look-up
table in the task algorithm, for example. As the degenerate option,
a parameter can be represented by bit strings cast to integers.

The task manager generates tasks and puts them on the
scheduler’s queue. If all tasks can be executed independently, the
task manager puts them all on the queue at once. If the task
manager requires a staged computation (for example, if there
are dependencies between tasks), then the task manager will put
tasks on the queue over time, as the results of previous tasks
become available. The task manager switches between different
functionality in the task algorithm for different stages in the
computation through the parameter list.

The actual processing time t; of task i can be expressed as t; =
ETC(X;, j) + € where ETC(X;, j) is the part of the execution time
(in seconds) estimated with input vector X;, j was the processor
that task i actually ran on, and € is the error in the estimation (in
seconds). It is assumed that the previous n task execution times on
each processor j (where they exist) are stored along with the input
variables as a set of sets of observations denoted by O and defined
as

0= JWL, @, ¢, X)), (1)
J

where ; is communications overhead. A separate O is maintained
for each problem.

Assuming that each previously executed task has a finite
running time; past task execution times can be used to predict
future execution times [35]. We generate an expected time to
compute (ETC) matrix, which gives the expected execution time
of each task on each processor, with each row containing the
estimated time in seconds to compute a particular task on each
processor. The matrix is populated dynamically as needed. There
are many techniques for generating the ETC matrix, ranging from
a simple average of past execution times, to more complicated
methods, such as model-based methods [14], neural networks,
support vector machines, and k-nearest neighbors (k-NN) [18]. The
performance of each of these techniques degrades, with various
degrees of grace, as the statistics of past execution times becomes
more uniform and less stationary.

Taking a simple average of past task execution times, and
using it to predict future task execution times is error prone
when presented with a heterogeneous set of tasks and processors.
An average of past task execution times can only properly
model a uni-modal distribution or a close-to-homogeneous set
of task execution times. Neural networks and support vector
machines can be trained to model complicated task execution
time distributions, but generally require a large set of previously
observed data and training [4]. The k-NN algorithm can model
complicated task execution time distributions, and does not

1454 AJ. Page et al. /]. Parallel Distrib. Comput. 68 (2008) 1452-1462

require training, although it does require more time to generate
a result [18]. The advantage of k-NN is that it can easily adapt to
sparse or dense regions in the distribution.

Two methods are used in this paper to generate estimated
task execution times, a k-NN and a smoothed average combined
with analytical benchmarking. Each time a task is returned the
following steps are performed. On receiving results for task i and
the computational benchmark results P; from processor j:

(1) Pass results to task manager.

(2) Calculate t; based on recorded start time for task i.

(3) Add (t;, ¢;, X;) to U;. (Remove oldest observation if |U;| > n.)

(4) Incorporate t;P; into smoothed task processing requirement for
the problem.

These steps will be explained in the following two subsections.

2.1. k-nearest neighbors

The estimated task execution times are calculated using
selected observations from the set O Eq. (1). To decide which
observations to include, and their weighting, we use the k-NN
algorithm. The k nearest observations (based on Euclidean distance
in the space defined by vector X), out of the set of n observations
are selected. In general, k should grow in proportion to n, such that
both k —> coand £ — 0asn — oo [7]. We use k = [n*/*]
which is shown to perform well in [18]. For example, if n = 100
then k = 40, so 40% of the observations are selected, whilst if
n = 10000 then k = 1585, so 15% of the observations are selected
for use in generating an estimated task execution time. To make
the algorithm more robust to outliers L-smoothing [15] is used to
eliminate a fixed percentage L of the largest and smallest values of
t; from the set of k previously selected observations, which gives

y =k —2|Lk] (2)
observations.

Algorithm 1. Algorithm to estimate the execution time of task i on
processor j. Individual steps are explained in the text.

Input: U; € O - Set of n past observations on processor j
X; - Set of input parameters to task i
k - Number of nearest neighbours to select
L - Percentage of observations to deselect
Output: ETC - estimated execution time in seconds
Begin
For each observation (t, X;) € Uj
Calculate Euclidean distance d, between X; and X,
(see Eq.(3))
Sort observations by distance
Select k observations with smallest distances
Deselect L% of observations with largest and smallest t,
For each selected observation
Calculate its influence in generating the estimated time ETC
(see Eq. (4))
Calculate estimated time ETC from Eq. (5)
Return ETC
end

Given the input parameters of the next task i to be processed
X;, the set U; € O of n previous observations for that problem on
processor j, the number k of nearest observations to select, and a
percentage L for L-smoothing, an estimated execution time ETC(-)
for this task on processor j can be calculated (see Algorithm 1 for
pseudocode of the algorithm).

The algorithm is explained as follows. First we must select
the observations which will be used to generate ETC(-). The k
smallest elements of U; are selected. L percent of the largest
and smallest values of t, from the set of k previously selected
observations, are deselected. The set of y (see Eq. (2)) remaining
selected observations is called Uj’. The Euclidean distance d, from
the input parameters X; and X, is defined as

dXi, Xa) =

q
D = XD, (3)
f=1

where ¢ is the number of parameters in X. U; is then sorted by
distance. For notation reasons, let us order the set of parameters

X : (X € Uj’} arbitrarily as {Xj,Xé,...,Xi}. We define

a weighting for each X£ that determines its influence on the
estimated execution time of task i as

Yy
wj(X) = (Zd(xf,xfo) / d(X;, X3). (4)
b=1

The set of running times {t : (t,X) € Uj/} in identical order is

expressed {r{, tJ2 R tj}. Then the estimated execution time for
task i on processor j is defined
y
ETC(X;.j) = »_ thw)(Xp). (5)
a=1

2.2. Smoothed average

If U; = ¢ for a particular processor j, an alternative estimation
technique must be employed, because the k-NN algorithm requires
a minimum of one observation to generate an estimate. In such
cases, a benchmarking metric is used to produce an estimate,
without considering the input parameters, but by considering
the other observations in O (for other processors). Benchmarks
such as Linpack [11] and HPCC [16] can provide quite accurate
information about system resources, in the context of particular
types of computation. Linpack is used in this paper to measure
the execution rate of each processor in millions of floating
point operations per second (MFLOP/s) [11]. This is a recognized
standard used to benchmark systems for inclusion in the list of Top
500 Supercomputers [38].

This algorithm makes use of each task execution time in
each subset of O and which processor it relates to. Rather than
estimating the task execution time, it estimates the computational
requirement of the task, in MFLOP. The Linpack benchmark [11]
is run periodically by each processor in the system which is used
to calculate an approximate computation rate P; of processor j
in MFLOP/s. This benchmark result is sent to the server by each
processor when requesting a task, and when returning a processed
task. The server calculates a representative value P; = '™ using a
smoothing function I" (defined in the next paragraph) that uses
the b benchmark results received from processor j up to that
point. To avoid privacy issues and proxy problems associated with
using IP addresses as unique identifiers, clients remember their
own allocated unique identification number. The server then need
only keep track of the next unallocated integer. An approximate
computational requirement, in MFLOP, for task i is then calculated
from ¢P;. this value is calculated for each returned task i and
then incorporated into a single smoothed average task processing
requirement T; = I"™* for the problem using a smoothing function
which will be described next.

For simplicity, the smoothing function strategy assumes that
the gross features of the function to be smoothed will vary slowly
over time. A smoothing function finds a single representative
value for a sequence of values. As each new value is added to
the sequence, this representative value is updated. For the first b
values of a sequence of values ay, a,, .. ., this representative value
isdenoted I'}?, and defined recursivelyas I'}} = I'? ;+v(ap,—T}),
where the smoothness of the sequence of representative values is
controlled by v € [0, 1], and where we let I'; = a;. The function
allows one to vary the influence of more recent sequence values on
the representative value, from no influence (v = 0) to complete
dominance (v = 1). This method is less accurate than using k-NN,
but can provide an estimate when less data are available.

AJ. Page et al. /]. Parallel Distrib. Comput. 68 (2008) 1452-1462 1455

Using the smoothed average method ETC is defined as

.. T
ETC(, j) = (6)
Py
where T; is the most recent estimated computational requirement
of task i in MFLOP and P; is the most recent estimated execution
rate of processor j in MFLOP/s.

If there are no observations at all for a particular problem (if
each U; = 0), the scheduling mechanism defaults to round robin.

3. Task scheduling

In a real-world online distributed system, the dynamic nature
of the underlying resources of the system can limit the ability
of traditional scheduling algorithms to function efficiently. We
have created four scheduling algorithms, out of a possible family
of 8 algorithms, which incorporate multiple different objectives
and consider the error in the estimation of system resources and
error in the estimation of task execution time (2 maximizing
the error and 2 minimizing the error). These objectives are (1)
minimizing makespan, (2) minimizing load imbalance and (3)
managing uncertainty.

For the remainder of this paper we will define the percentage
efficiency as

M
efficiency = (]OO Z time processorjhas spent processing) /

j=1
(y x M), (7)

where M is the number of processors, and y is the number of
seconds since the scheduler instantiation.

In this section we will introduce a number of scheduling
algorithms based on these objectives.

3.1. Estimation error

We must estimate the execution time of a task, because it
is undecidable to calculate exactly [34]. Problems consisting of
homogeneous tasks will have the least estimation error, while
problems with complicated task execution time distributions
will have a greater estimation error due to the increased
complexity involved in modeling complicated distributions [4].
The percentage error in the ETC of task i on processor j is

ETC(, j) — t!
¢

1

ET(i,j) = , (8)

where tf is the actual time to compute task i on processor j.
The estimated computation to communication ratio (CCR) is
defined as,
ETC(, j)
(%)
where C(i, j) is calculated from Algorithm 1 by substituting t; for
Ci.

CCR@,j) = (9)

A combined error value for a given task-processor mapping is
defined as
BWG,) =) (10)

CCR(, j)

Eq. (10) produces a small value when the task error (ET) is small
and the CCR is large, were a small value is preferable to a large
value. This allows for processors with the least communication
costs, and least error to be differentiated from processors with
less desirable properties. A large value of EW indicates a mapping
which is possibly more erroneous.

We use two different strategies when handling the estimated
task execution times and the predicted error. The first is to ignore
the predicted estimation error in the estimated task execution
time. We call this the best case scenario. The next strategy is to
assume the worst case and to apply the maximum amount of
predicted estimation error to the estimated task execution time.

3.2. Algorithm structure

Each of the algorithms described in this section can be described
using the scheduling algorithm structure in Algorithm 2, with
different functions X affecting the different scheduling algorithms.
The input to Algorithm 2 is a set of tasks to be processed, the
system’s communication and processing resources, and a function
X which is used to decide the task-processor mappings. This
algorithm uses a greedy strategy and at each iteration selects the
task-processor allocation which minimizes X.

Algorithm 2. The scheduling algorithm template, parametrized
by function X

Input: Set of unscheduled tasks, set of processors, load on each
processor, a function X
Output: Mapping from tasks to processors
Mapping is initialized to @
while unscheduled tasks remaining
foreach Unscheduled task i do
minval := MAX_INT
foreach Processor j do
currval := X(i, j, load)
if currval < minval
a:=i
b:=j
minval := currval
endif
end foreach
end foreach
Add (a, b) to the mapping Q
Update current load on Processor b
Remove Task a from list of unscheduled tasks
end

3.3. Minimizing makespan

In this section we will describe three algorithms which seek to
minimize the makespan, two of which use estimation error.

We wish to allocate tasks to processors whilst minimizing the
overall total execution time. The estimated makespan of a task i
allocated to a processor j is

FA(i, j) = ETC(, j) + C(, j) + ST(Q), (11)

where ST(Q;) is the start time of processor j in seconds since the
arrival of the first task for processing defined as

ST() = Y ETC(Q;.)). (12)

and Q; contains all tasks that have been mapped to or currently
being processed by processor j. FA is a cost function based on the
Max-Min heuristic [17]. When used in Algorithm 2 in place of X it
will allocate a task to the processor which will finish processing it
earliest.

Eq. (11) is combined with the estimation error value from
Eq. (10) to produce two scheduling algorithms. The first is
characterized by the cost function

FE(i, j) = FA(i, HEW(, j)?, (13)

where § controls the proportion of the values of FA and EW
receptively which make up FE and 8 > 0.

1456 AJ. Page et al. /]. Parallel Distrib. Comput. 68 (2008) 1452-1462

Time

A ow e H
2w W
W oW H
P2 m}—{ T3

2 4 6
Time

#TL‘”
1

I
L

Fig. 1. An example of the FE algorithm at time O and 2, with the error bars
illustrating the bounds of the estimation error of the task execution time.

The FE heuristic aims to locally minimize the amount of
estimation error and maximize the CCR. By delaying the processing
of more error-prone tasks, it gives the scheduler time to gather
more observations about past estimations and can possibly be used
to generate less error-prone estimates, which is then used to pre-
emptively reschedule previously allocated tasks. Thus the tasks
that are processed earliest are the tasks with the most accurate
estimates. The effect of EW is controlled by 8, with a proportionally
large B reducing the effect of FA on the value of FE.

Fig. 1 is a simple example of the algorithm in operation with
2 processors and 4 tasks. At time 0, T3 and T4 are scheduled last,
due to the large estimation error, and FE attempts to minimize
the overall makespan. At time 2 more information has become
available, which improves the estimation of the task execution
times for T3 and T4. The tasks are pre-emptively rescheduled and
T3 is reassigned to P2 and T4 is reassigned to P1. The reduction
in task execution time estimation error and the pre-emptive
rescheduling, leads to an overall reduced makespan at time 2,
compared to the initial schedule.

The FZ cost function is defined as

FA(, j)

EW(, j)f

and it schedules tasks with the most estimation error earliest. It is
not efficient at the beginning, but by processing the most error-
prone tasks first, it allows for the tasks with the least amount
of error to be scheduled last. This allows for greater confidence
in the accuracy of the predicted makespan as the computation
progresses, allowing for a more efficient global minimization of the
total makespan.

If B is static a problem can emerge where EW(i,j) drowns out
FE and FZ. For example, if the makespan reduces over time, but
the estimation error stays the same, the EW value increases its
influence over the final scheduling decision over time. Thus in
a system with very little difference in processor makespans, the
scheduling decisions will be primarily influenced by the estimation
error in the system, resulting in an inefficient solution. This can be
rectified by controlling the influence exerted by EW by setting,

FZ(i,j) = (14)

FEq4(i, j) = FAG, HTVPEW(, j)FAGD, (15)

thus as the variation in makespans on processors decreases, so
does the influence exerted by EW over the final total makespan.
Similarly a dynamic version of FZ is defined as follows,

FAG,)™

FZ4(i, j) = W (16)

We tried each combination of EW and FA, where the resulting
value is minimized. FE and FZ aim for low execution times. The
two other combinations were unfeasible because they favour high
execution times.

3.4. Load-balancing

Evenly distributing the load on each processor in the distributed
system is a common goal in a real-world distributed system. This
aims to maximize the utilization (or efficiency) of the processing
resources. A load-balancing weighting,

M
LAG) =) [(max {m"éx[ST(x)], FAG, j)}
x=1

y=1

_ ST(V)) — {ETC(, j) + C(i,j)}]

y -1
x [Z m"ﬁlx{ST(x) - ST(y)}:| , (17)
=1

is given in Eq. (17). It considers the current inefficiency of the
resource utilization, and calculates the effect allocating task i to
processor j will have on the overall efficiency of the system. A low
value of LA corresponds to a well balanced system, whereas a high
value indicates an inefficient utilization of resources.

LA is combined with EW to create two scheduling algorithms,

LE(i,) = LAG, JEW(, j)” (18)
and

A
L2, j) = ﬁ (19)

which consider the estimation error along with the load of
the system. In the LE algorithm the task-processor mappings
which reduce the load imbalance the most, and have the lowest
estimation error, are allocated first. The most error-prone tasks will
have the least effect on the overall load of the system.

The LZ scheduler aims to schedule tasks with the most
estimation error earliest whilst also seeking to minimizing the
load imbalance (see Eq. (19)). Over a number of batches of tasks
LZ allocate the most error-prone tasks first, allowing for the least
error-prone tasks to be load balanced at the end. LE and LZ reduce
to each other (as with FE and FZ), and they also both reduce to LA.

4. Heterogeneous distributed system

A general purpose programmable Java distributed system,
which utilizes the free resources of a heterogeneous set of
computers linked together by a network, has been developed [20].
The system has been successfully deployed on over 350 computers,
which were distributed over a number of locations, and has
been successfully used to process bioinformatics, biomedical
engineering, and cryptography applications.

The distributed system consists of 3 JAR files, a client, a server
and a remote interface. A problem can be created for the system
simply by extending 2 classes. The Algorithmis run on the client,
and specifies the actual computation to be performed. There is
a one-to-one mapping between a processor and a client in this
paper. The DataManager is run on the server and specifies how
the problem is broken up into tasks and how the processed results
are recombined.

The distributed system provides a simple scheduling interface,
which allows the administrator of the system to select a scheduling
algorithm using the remote interface. To create a new scheduler,
a programmer only needs to extend the SchedulerCommon API
and implement a single method called generateSchedule. This
method simply takes in a list of tasks and maps them to processors.
The system defaults to the simplest scheduler, round robin.

AJ. Page et al. /]. Parallel Distrib. Comput. 68 (2008) 1452-1462 1457

Table 1

Client resources of two heterogeneous distributed systems (A and B)

System No. Proc MFLOP/s RAM (MB) Processor

A 45 28-31 256 P3 600 MHz
45 180-200 1024 P4 D820

B 38 28-31 256 P3 600 MHz
36 180-200 1024 P4 D820

Table 2

Comparison of problem properties

Problem Ref. Avg processing (s) Avg comms (s) CCR No. tasks

SLTT [31] 381.1 3.5 108.8 100

MD5 92.0 3.1 29.3 300

DSEARCH [21] 7319 14.0 52.0 612

TSP 215.9 45 479 121

SHA1 244.1 5.1 474 249

ElGamal [12] 3145 4.0 77.2 91

5. Experiments

For the experiments described in this section we used two
distributed system configurations, one with 90 PCs (Table 1.A)
and one with 74 PCs (Table 1.B). The processor speeds varied
by up to 10%, due to slightly differing hardware and software
configurations. All experiments were carried out on system A
with the exception of the experiments in Section 5.5 which were
carried out on system B. All resources were non-dedicated, running
Linux, and were connected by a 100 Mb/s network. The clients are
connected to a dedicated server running Linux on a 3 GHz P4 with
1 GB of RAM. We used a single core on the P4 D820 processors
running a 32-bit version of Linux.

5.1. Set of problems

A representative set of heterogeneous tasks for scheduling
on a heterogeneous distributed system is an open problem [37].
Estimating task execution times using the KNN approach proves
very accurate for standard work load distributions [18], thus we
need a more complex set of tasks to properly test the schedulers
presented in this paper. To test the scheduler presented in this
paper we have created a set of real-world problems from the fields
of bioinformatics, biomedical engineering and cryptography. The
problems are all easily parallelizable. Some problems are staged
computations (DSEARCH and ElGamal) which requires all tasks
from the current stage to be processed before processing can begin
on the next stage, while the rest have only a single stage.

The mean CCR is also different for each problem (see Table 2),
as is the amount of actual input and output data. Fig. 2 shows the
CCR ratio after all tasks have been processed. It forms multiple
Gaussian, which is a non-trivial set of tasks to schedule. The
processing time of the tasks (see Fig. 3) is heterogeneous, with
large outliers, up to over 1000 s. These outliers will cause some
algorithms to perform very inefficiently. The overall latency for
the system between the server and the processors forms an
exponential distribution.

5.2. Estimating system resources

Estimating the system resources and task execution times is
a difficult and error-prone. By accurately predicting the error in
the estimation of these values, we can use this to help make
better mapping decisions. We can also be more confident that the
predicted makespan more accurately reflects the actual makespan.

The estimation of the systems processing resources is prone to
error due to the dynamic nature of these non-dedicated resources.

160 . .

140 |

120 |

100

Frequency
©
o

60

40

20

0 100 200 300 400 500 600 700
CCR

Fig. 2. Histogram of the CCR ratio of the tasks in the test set of problems.

500
450
400
350
300

250

Frequency

200

150

100

50

0 500 1000 1500 2000 2500 3000
Task processing time (s)

Fig. 3. Histogram of the processing time of tasks in the set of problems.

Fig. 4 shows that the predicted estimation error more closely
follows the actual estimation error as time progresses. The actual
estimation error of processing resources is low overall. This is
measured by periodically running the a Linpack benchmark on
a 500 x 500 matrix. The processing resources used for these
experiments do not vary greatly, because the processors are idle
for most of the time. Thus the estimation error for the processing
resources of the system never exceeds 1%. The estimation error for
the communication times is also consistently low, in the region
of 1% due to the homogeneous nature of the communication
resources used in this experimental.

5.3. Estimating task execution times

The estimated task execution time using the smoothed estimate
and a k-NN are compared to the actual task execution time.
Fig. 5 shows that as time progresses the error between the
estimated execution time and actual execution time decreases for
both the smoothed estimate and the k-NN estimate, but the k-
NN estimate is approximately 10 times less error-prone that the
smoothed estimate. As more observations are available to the k-
NN algorithm, the error decreases, as can be seen in Fig. 6, which
explains the continuous decrease in error from Fig. 5. Taking a
simple average of all past task execution times to estimate future
task execution times results in a high estimation error.

1458 AJ. Page et al. /]. Parallel Distrib. Comput. 68 (2008) 1452-1462

x10™
12
N —— Predicted error
W 9 = — = Actual error
10+ X sy
&
& 8+
()]
o
©
c
S 6l
[+}]
o
4 L
2 i i ; ; :
0 500 1000 1500 2000 2500

Time (seconds)

Fig. 4. Predicted computational estimation error and actual computational
estimation error over time.

- — Average
— — — Smoothing estimate
—— KNN estimate 1

Percentage error
=)

0 2000 4000 6000 8000 10000

Time (seconds)

12000

Fig. 5. The absolute percentage error between the actual processing time of a task
and the estimated processing time of a task over time with a log scale, using a simple
average of past task execution times, a smoothing estimate and a KNN estimate.

10%¢
x
1
0% ¥
§ o P
¥ X ¥ox
10° X)
NERREE
o
& 107 x
IERRER
" *®
107 Fox X X x ox
% i X X X x X x
107°F ; ’
x X
—4 1 1 1 1 1 J
10 2 4 6 8 10 12

Number of observations

Fig.6. Absolute percentage error between estimated task execution time and k-NN
estimate versus the number of observations used to generate the estimate.

In Fig. 7 the predicted and actual estimated task execution
time error both approximately linearly decrease over time, with

100

Predicted error
90 - — — Actual error

80
70
60 -
50

40t

Percentage error

30+

20 -

10+

0

0 500 1000 1500 2000 2500
Time (seconds)

Fig. 7. Predicted task estimation error and actual task estimation error over time,
with absolute values shown.

100

90

80

70 [

60 [

50

40

Percentage Efficiency

30

20

10

0 500 1000 1500 2000 2500 3000
Time (seconds)

Fig. 8. The efficiency of 3 load-based schedulers over time.

the prediction improving consistently over time. The error is still
large, in the region of 50%, but this allows us to place a reasonable
bound on the estimation error present in our estimations of
the task execution times. This information aids the scheduling
algorithm, providing an average upper bounds on the accuracy of
the estimated task execution times.

5.4. Scheduler performance

Two different metrics are used to evaluate the performance of
the schedulers given in this paper: (1) makespan, which is the
total execution time, and (2) efficiency, which is defined as the
percentage of time the processing resources are in use. Each set
of algorithms has been grouped together based on their on their
common objective, comparing each algorithm with estimation
error and without estimation error. A trace of the efficiency is given
over time (see Fig. 8-9).

The load-based schedulers (LA, LE, LZ) provide approximately
21%-55% efficiency overall, with LA providing the most efficient
solution, as shown in Fig. 8. Using estimation error along with load
provides poor efficiency and makespan when a static § is used.
The makespan of LE is more than 4 times greater than LA, so using
estimation error with the load-balancing objective results in very
large total execution times.

AJ. Page et al. /]. Parallel Distrib. Comput. 68 (2008) 1452-1462 1459

Table 3
Comparison of schedulers
Scheduler Makespan (s) Sched. time (s) % Efficiency % Comms
FA 3505 28 51 0.6
FE 6202 547 33 0.8
FZ 2408 108 66 1.6
LA 4114 344 55 0.7
LE 17013 1850 21 0.3
Lz 12138 426 33 0.3
100
——FA
- = FE
- - -Fz

>

2

k] g

2 e

b o

@

g

3

4

L1

o

0 L L . . .)
0 500 1000 1500 2000 2500 3000
Time (seconds)
Fig. 9. The efficiency of 3 makespan-based schedulers over time.

Table 4

Comparison of common schedulers which do not use estimation error to FZ, the best
performing scheduler, which uses estimation error

Scheduler Makespan (s) Sched. time (s) % Efficiency % Comms
FZ 2408 108.0 66 1.6
TA 2351 11.1 76 1.1
SA 9252 836.1 35 1.7
LL 3066 0.1 62 0.7
EF 3096 0.1 55 0.7
RR 6176 0.1 38 0.4

The makespan-based schedulers (FA, FE, FZ) provide the best
overall efficiency achieving above 80% at some points, as shown in
Fig. 9. It is interesting to note that FA provides the most efficient
utilization of resources but the makespan of FZ is the lowest of the
schedulers described in this paper at 2408 s. So although FA utilizes
the processing resources for a higher % of time, the heterogeneous
nature of these resources means that the makespan does not follow
suit. Overall FA only achieves an efficiency of 51% compared to
FZ which achieves an overall efficiency of 66% (see Table 3). The
makespan of FA is also 45% higher than that of FZ. FZ achieves
this reduced makespan by utilising estimation error. FA is a simple
heuristic, and with the addition of estimation error, this heuristic
can provide a low makespan, without the added complexity of
other algorithms which achieve similar results.

In nearly all cases (the exception being the load-based
schedulers) the error based schedulers provide better efficiency
than their non-error based counterparts. Thus the addition of
estimation error can improve upon simple heuristics.

Only the schedulers which try to minimize makespan provide
a high level of efficiency. We have compared the most efficient
algorithm FZ to a number of commonly used algorithms (see
Table 4). Tabu search optimization (TA) is an evolutionary based
scheduler based on OpenTS [29].

Table 5
Experiments with 74 processors (see Table 1.B) varying the value of 8, where d is a
dynamic value of g (see Eq. (15))

Strategy S Makespan(s) Sched.time(s) % Efficiency % Comms
FA b - 3203 89 65 1.1
w - 3130 117 66 1.2
b 1.0 9279 587 26 0.5
w 1.0 8142 354 36 0.5
b 0.5 5498 276 48 0.7
FE w 0.5 6029 354 43 0.8
b 0.1 7094 240 42 0.5
w 0.1 6889 257 40 0.6
b d 5602 442 43 1.5
w d 9136 167 34 0.4
b 1.0 3100 2.2 63 1.5
w 1.0 3270 1.2 59 0.8
b 0.5 2968 85 65 1.1
¥z w 0.5 2793 1.1 73 1.0
b 0.1 2510 1.3 83 1.2
w 0.1 2762 35 64 0.8
b d 3026 0.5 67 0.8
w d 2814 2.2 72 1.7

b and w are the best and worst case strategies respectively.

A simulated annealing (SA) based scheduler was created using
Jannealer [19]. These are complicated meta-heuristic algorithms,
which use evolutionary techniques to generate solutions. With
the Tabu and simulated annealing algorithms, the value of the
parameters can have a huge impact on the end result. We fine
tuned the implementations of TA and SA to the data, to ensure
that a good comparison was available. With TA, we recursively
broke down the problem to be solved, into a tree like structure
of depth log N, and optimized each piece. This resulted in a fast
convergence to a solution, but is less useful for a generalized data-
set. The parameters of the SA scheduling algorithm were calculated
using another SA instance.

Two immediate mode schedulers have been implemented,
lightest-loaded (LL) which assigns tasks to the lightest loaded
processors, and earliest first [27] (EF) which assigns tasks to
the processors which will finish processing them earliest. Round
robin (RR), is the simplest and one of the most commonly used
schedulers. All of these schedulers used the same input parameters
such as, estimated task execution times, estimated processor
speeds and estimated communication resources.

It is interesting to note that although FZ does not achieve the
best efficiency overall, it does achieve one of the lowest makespans.
This is because in a heterogeneous distributed system, maximizing
resource utilization does not correspond to minimizing makespan.

As can be seen in Table 4, FZ has a makespan of 2408 s,
which is between 27% and 284% better than the other schedulers
with the exception of TA, which has a makespan of 2351 s. FZ is
based on a very simple heuristic combined with estimation error,
whereas TA is a complicated stochastic evolutionary algorithm,
which has been fine tuned to suit the dataset. By considering
estimation error, a simple heuristic can achieve nearly the same
makespan as a state-of-the-art evolutionary technique which does
not consider estimation error, where both use the same estimated
input parameters.

5.5. Varying the error weight

We varied to change the effect EW has in FE and FZ. We used 1,
0.5,and 0.1 as well as a dynamically (d) varying 8. Each experiment
was performed using 74 heterogeneous processors as described in
Table 1.B. Table 5 describes the results of these experiments. Each
experiment was repeated twice, and the average is given.

1460 AJ. Page et al. /]. Parallel Distrib. Comput. 68 (2008) 1452-1462

100
90
80|

701

60F | ~.
5OF -

40

Percentage Efficiency

207 ——FA
- - —FE

L —-FZ

00 1000 2000 3000 4000 5000 6000
Time (seconds)

Fig. 10. Efficiency of multiple schedulers with best case task execution times.

FA, which does not consider estimation error, is used as a
benchmark. We also investigated using best and worst case values
for task execution times. With the best case (b) we take the mean
estimated task execution times as given by the k-NN algorithm,
when scheduling. With the worst case (w), we add the maximum
amount of estimated error to the estimated task execution times.
The algorithm is however quite robust to using both b and w.

Overall FZ performed best providing a makespan which was
20% lower than FA, when using a best case task execution time
and 8 = 0.1. FE did not perform well when compared to FZ or
FA, consistently producing schedules with large makespans. The
makespan produced by using the worst case task execution times
is variable, whereas the makespan produced when using the best
case is more stable and predictable.

There is very little difference between a 8 value of 0.1 or 0.5
in terms of makespan, but it is interesting to note the difference
in efficiency. A B value of 0.1 achieves an efficiency of only 65%,
whilst a 8 value of 0.5 achieves an efficiency of 73%. This huge
difference is due to the types of processors in the distributed
system, where the slowest processor has only approximately 15%
of the computational resources of the fastest processor. Thus a
schedule which utilizes the faster processors more of the time over
the slower processors, can have a lower makespan, but also a lower
overall efficiency.

Figs. 10 and 11 compare the efficiency of FA, FE, and FZ using
best and worst case task execution times. The best performing 8
value for FE and FZ is used in each figure (see Table 5). FE is clearly
far less efficient than FA or FZ. This is consistent in all experiments
(see Table 5), where FE schedules tasks on the slowest processors
in the system near the end of the overall schedule, resulting in a
large makespan.

Fig. 12 shows the number of idle processors at a given point
in time for FZ, using § = 0.1 and a best case task execution
time. The number of idle processors increase throughout the
computation, as the scheduler decides not to schedule tasks on the
slowest processors, which have a lower computational capacity.
The steep slope at the end of Fig. 12 indicates all processors finished
processing within a short time frame. The large increase in the
number of idle processors at time 1400 is due to the staged nature
of some of the problems in the problem set.

Compare this to the worst performing schedule in Fig. 13, using
FE with 8 = 1.0, using best case task execution times. The slope at
the end is slowly increasing, indicating that tasks where allocated
to the slowest processor in the system, leading to a high number of
idle processors.

100
90
80|

701

60 ~

50r - ~ -

40t |

Percentage Efficiency

301

20t
i ——FA
10(mecmrlFE
- -FZ

O 1 1 1 1 I
0 1000 2000 3000 4000 5000 6000
Time (seconds)

Fig. 11. Efficiency of multiple schedulers with worst case task execution times.

701
60
50

40+

No. of idle clients

10F ‘;(
e el

0 1000 1500 2000 2500
Time (seconds)

Fig. 12. Number of idle processors over time when using FZ with 8 = 0.1 and best
case task execution times.

\ -

No. of idle clients

0 2000 4000 6000 8000
Time (seconds)

Fig. 13. Number of idle processors over time when using FE with 8 = 1.0 and best
case task execution times.

AJ. Page et al. /]. Parallel Distrib. Comput. 68 (2008) 1452-1462 1461

6. Conclusion

Processing problems efficiently and quickly, using a distributed
system which utilizes the spare clock cycles of donated PCs, is
very problematic. The available processing and network resources
can vary without warning, greatly impacting on the makespan of
problems being processed. The problems themselves can contain
vastly different task distributions, adding more complexity to
the scheduling problem. Assumptions generally used about the
resources, and the tasks to be processed, restrict the usefulness
of many schedulers, to the point where they can only perform
well in simulated sterile setups, and are less useful for real-world
distributed systems. These real-world complexities have been
successfully addressed with the use of complicated evolutionary
scheduling heuristics.

We have shown that it is possible to manage these real-world
complexities with a simple scheduler, and achieve nearly the same
makespan and efficiency as a complex evolutionary scheduler. We
focused on managing the uncertainty of the state of the system,
and of the estimation of the tasks computational requirements,
to reduce total execution time and to improve the efficiency of
resource utilization. Accurate property estimation is essential to
producing an accurate schedule. Otherwise, the actual execution
time will overrun the planned processing time. By accepting that
errors will be inherent in these estimations, we can factor this into
scheduling algorithms, thus leading to a more accurate, and lower,
total execution times.

We have developed a simple scheduler, which starts with no ad-
vanced knowledge of the system resources, or the problems to be
processed. It estimates the system resources and the task compu-
tational requirements dynamically at run-time, and adapts to the
constantly changing state of the system. Experiments were per-
formed on a real-world heterogeneous distributed system with
up to 90 processors, with non-dedicated resources, and processed
real-world problems from the areas of computer science, bioin-
formatics, and biomedical engineering. All information about the
tasks and system resources was generated online using analytical
benchmarking and a k-NN algorithm.

The FZ algorithm is shown to be robust to a variety of different
conditions and input parameters, and consistently produces
schedules which have a low makespan. With both the best and
worst task execution times, the FZ scheduler is consistent in the
low makespans produced. It performs nearly as well as a complex
evolutionary heuristic, which has been finely tuned to suit the
input data.

The distributed system software is freely available under an
open source GNU GPL license from the system homepage located
at http://distributed.cs.nuim.ie.

Acknowledgments

This publication has emanated from research conducted with
the financial support of the Irish Research Council for Science
Engineering and Technology under the National Development Plan
and the European Commission through a Marie Curie Fellowship.

References

[1] S. Ali, A.A. Maciejewski, HJ. Siegel,].-K. Kim, Measuring the robustness of a
resource allocation, IEEE Transactions on Parallel and Distributed Systems 15
(7) (2004) 630-641.

[2] D. Anderson, Public computing: Reconnecting people to science, in: Confer-
ence on Shared Knowledge and the Web, Madrid, Spain, 2003.

[3] R. Bajaj, D.P. Agrawal, Improving scheduling of tasks in a heterogeneous
environment, IEEE Transactions on Parallel and Distributed Systems 15 (2)
(2004) 107-118.

[4] RJ.Carroll, D. Ruppert, L.A. Stefanski, Measurement Error in Nonlinear Models,
Chapman & Hall, Boca Raton, 1998.

[5] J. Cohen, E. Jeannot, N. Padoy, F. Wagner, Messages scheduling for parallel data
redistribution between clusters, IEEE Transactions on Parallel and Distributed
Systems 17 (10) (2006) 1163-1175.

[6] F. Dehne (Ed.), Coarse Grained Parallel Algorithms for Scientific Applications,
vol. 45, Springer, New York, 2006 (special issue).

[7] LP. Devroye, The uniform convergence of nearest neighbour regression
function estimators and their application in optimization, IEEE Transactions
on Information Theory 24 (1978) 142-151.

[8] M.K. Dhodhi, I. Ahmad, A. Yatama, I. Ahmad, An integrated technique for task
matching and scheduling onto distributed heterogeneous computing systems,
Journal of Parallel and Distributed Computing 62 (2002) 1338-1361.

[9] Distributed.net, http://www.distributed.net.

[10] A. Dogan, F. Ozguner, Matching and scheduling algorithms for minimizing
execution time and failure probability of applications in heterogeneous
computing, IEEE Transactions on Parallel and Distributed Systems 13 (3)
(2002) 308-323.

[11] J. Dongarra, J. Bunch, C. Moler, G. Stewart, LINPACK Users Guide, SIAM,
Philadelphia, USA, 1979.

[12] T. Elgamal, A public key cryptosystem and a signature scheme based on
discrete logarithms, IEEE Transactions on Information Theory 31 (4) (1985)
469-472.

[13] M.R. Garey, D.S. Johnson, Computers and Intractability: A Guide to the Theory
of NP-Completeness, W. H. Freeman & Co, New York, NY, 1979.

[14] H. Gautama, A. van Gemund, Low-cost static performance prediction of
parallel stochastic task compositions, IEEE Transactions on Parallel and
Distributed Systems 17 (1) (2006) 78-91.

[15] W. Hardle, Applied Nonparametric Regression, Cambridge University Press,
1990.

[16] HPC Challenge. http://icl.cs.utk.edu/hpcc, 2005.

[17] O.H.Ibarra, C.E. Kim, Heuristic algorithms for scheduling independent tasks on
nonidentical processors, Journal of the ACM 24 (2) (1977) 280-289.

[18] M.A. Iverson, F. Ozguner, L. Potter, Statistical prediction of task execution
times through analytic benchmarking for scheduling in a heterogeneous
environment, IEEE Transactions on Computers 48 (12) (1999) 1374-1379.

[19] Jannealer. http://jannealer.sourceforge.net, 2006.

[20] T. Keane, R. Allen, T.J. Naughton, J. McInerney, J. Waldron, Distributed Java
platform with programmable MIMD capabilities, in: N. Guelfi, E. Astesiano,
G. Reggio (Eds.), Scientific Engineering for Distributed Java Applications,
in: Springer Lecture Notes in Computer Science, vol. 2604, 2003.

[21] T.M. Keane, TJ. Naughton, DSEARCH: Sensitive database searching using
distributed computing, Bioinformatics 21 (8) (2005) 1705-1706.

[22] E. Korpela, D. Werthimer, D. Anderson, J. Cobb, M. Lebofsky, SETI@HOME
massively distributed computing for SETI, Computation Science & Engineering
3(1)(2001) 78-83.

[23] E.Krieger, G. Vriend, Models@Home: Distributed computing in bioinformatics
using a screensaver based approach, Bioinformatics 18 (2) (2002) 315-318.

[24] Y.-K. Kwok, I. Ahmad, Dynamic critical-path scheduling: An effective
technique for allocating task graphs to multiprocessors, IEEE Transactions on
Parallel and Distributed Systems 7 (5) (1996) 506-521.

[25] Y.-K. Kwok, I. Ahmad, Benchmarking and comparison of the task graph
scheduling algorithms, Journal of Parallel and Distributed Computing 59 (3)
(1999) 381-422.

[26] Y.-K. Kwok, I. Ahmad, Static scheduling algorithms for allocating directed task
graphs to multiprocessors, ACM Computing Surveys 31 (4) (1999) 406-471.

[27] C.-Y. Lee,].-J. Hwang, Y.-C. Chow, F.D. Anger, Multiprocessor scheduling
with interprocessor communication delays, Operations Research Letters 7 (3)
(1988) 141-147.

[28] M.Maheswaran, S. Ali, HJ. Siegel, D. Hensgen, R.F. Freund, Dynamic mapping of
a class of independent tasks onto heterogeneous computing systems, Journal
of Parallel and Distributed Computing 59 (2) (1999) 107-131.

[29] OpenTS - Java Tabu Search. http://www.coin-or.org/OpenTS, 2006.

[30] A. Page, T. Keane, R. Allen, T.J. Naughton,]. Waldron, Multi-tiered distributed
computing platform, in: 2nd International Conference on the Principles and
Practice of Programming in Java, Kilkenny City, Ireland, 2003.

[31] AlJ. Page,S. Coyle, T.M. Keane, T.J. Naughton, C. Markham, T. Ward, Distributed
monte carlo simulation of light transportation in tissue, in: Proceedings of the
20th IEEE International Parallel and Distributed Processing Symposium, IEEE
Computer Society, Rhodes, Greece, 2006.

[32] T. Silvestre, E. Nugues, G. Perriére, M. Gouy, L. Duret, Phylojava : A generic
client-server tool for phylogenetic tree reconstruction — application to grid
computing, in: M.-F. Sagot, H.-P. Lenhof (Eds.), European Conference on
Computational Biology, Paris, France, 2003.

[33] O.Sinnen, L. Sousa, F. Sandnes, Toward a realistic task scheduling model, IEEE
Transactions on Parallel and Distributed Systems 17 (3) (2006) 263-275.

[34] M. Sipser, Introduction to the Theory of Computation, 2nd ed., Thomson,
Boston, 2006.

[35] A. Stuart, J. Ord, Kendall's Advanced Theory of Statistics, Vol. 1: Distribution
Theory, 6th ed., Edward Arnold, London, 1994.

[36] A. Swiecicka, F. Seredynski, A. Zomaya, Multiprocessor scheduling and
rescheduling with use of cellular automata and artificial immune system
support, IEEE Transactions on Parallel and Distributed Systems 17 (3) (2006)
253-262.

http://distributed.cs.nuim.ie
http://www.distributed.net
http://icl.cs.utk.edu/hpcc
http://jannealer.sourceforge.net
http://www.coin-or.org/OpenTS

1462 AJ. Page et al. /]. Parallel Distrib. Comput. 68 (2008) 1452-1462

[37] M.D. Theys, T.D. Braun, HJ. Siegal, A.A. Maciejewski, Y.-K. Kwok, Mapping
Tasks onto Distributed Heterogeneous Computing Systems Using a Genetic
Algorithm Approach, John Wiley and Sons, New York, USA, 2001, pp. 135-178
(Chapter 6).

[38] Top 500 Super Computers. http://www.top500.0rg, 2005.

[39] J.D. Ullman, NP-complete scheduling problems, Journal of Computing System
Science 10 (1975) 384-393.

[40] United Devices, Grid MP Platform Architecture, white Paper, 2003.

[41] L. Wang, H.J. Siegel, V.P. Roychowdhury, A.A. Maciejewski, Task matching
and scheduling in heterogeneous computing environments using a genetic-
algorithm-based approach, Journal of Parallel and Distributed Computing 47
(1)(1997) 8-22.

[42] M.-Y. Wu, W. Shu, A high-performance mapping algorithm for heterogeneous
computing systems, in: Parallel and Distributed Processing Symposium,
Proceedings 15th International, San Francisco, CA, USA, 2001.

[43] AY.Zomaya, Y.-H. Teh, Observations on using genetic algorithms for dynamic
load-balancing, IEEE Transactions on Parallel and Distributed Systems 12 (9)
(2001) 899-911.

Andrew J. Page received a B.S. degree in Computer Science
and Software Engineering from the National University of
Ireland, Maynooth in 2003. He is currently working toward
" his Ph.D. degree in the same university. His research
interests include scheduling in distributed systems and
digital holography. He is now a postdoctoral researcher at
the National College of Ireland, Dublin.

Thomas M. Keane received a B.Sc. in Computer Science
and Software Engineering in 2002 and an M.Sc. in Com-
puter Science in 2004 from the National University of Ire-
land, Maynooth. For his Ph.D., Thomas moved to work
at the Bioinformatics laboratory at the National Univer-
sity of Ireland, Maynooth, working in the area of phy-
logenetic methods and high-throughput phylogenomics
using distributed computing, completing in 2006. He is
currently a Senior Computer Biologist in the Pathogen Ge-
nomics group at the Wellcome Trust Sanger Institute. He

. now works in the area of new sequencing technologies and
manages the sequence assembly analysis for the several pathogen genome projects.
His research interests include distributed computing and bioinformatics.

Thomas J. Naughton received a B.Sc. degree (double hon-
ours) in computer science and experimental physics from
the National University of Ireland, Maynooth, Ireland. He
has worked at Space Technology (Ireland) Ltd. and has
been a visiting researcher at the Department of Radio-
- electronics, Czech Technical University, Prague, and the
| Department of Electrical and Computer Engineering, Uni-
| versity of Connecticut, Storrs. He is a Senior Lecturer in the
| Department of Computer Science, National University of
Ireland, Maynooth, with a permanent appointment since

: “% 2001. Since 2007 he has been a European Commission
Marie Curie Fellow at Oulu Southern Institute, University of Ouluy, Finland. He leads
the EC FP7 three-year eight-partner collaborative project Real 3D. His research in-
terests include optical information processing, computer theory, and distributed
computing. He has served as a committee member on 12 international IEEE, ICO,
and SPIE conferences. He has co-authored more than 150 publications including 35
journal articles and 20 invited conference papers.

http://www.top500.org

	Scheduling in a dynamic heterogeneous distributed system using estimation error
	Introduction
	Problem statement and execution time estimation
	 k -nearest neighbors
	Smoothed average

	Task scheduling
	Estimation error
	Algorithm structure
	Minimizing makespan
	Load-balancing

	Heterogeneous distributed system
	Experiments
	Set of problems
	Estimating system resources
	Estimating task execution times
	Scheduler performance
	Varying the error weight

	Conclusion
	Acknowledgments
	References

