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Abstract--Although the non-linear modelling capability of neural networks is widely accepted there remain 
many issues to be addressed relating to the design of a successful identification experiment. In particular, the 
choices of process excitation signal, data sample time and neural network model structure all contribute to the 
success, or failure, of a neural network's ability to reliably approximate the dynamic behaviour of a process. This 
paper examines the effects of these design considerations in an application of a multi-layered perceptron neural 
network to identifying the non-linear dynamics of a simulated pH process. The importance of identification 
experiment design for obtaining a network capable of both accurate single step and long range predictions is 
illustrated. The use of model parsimony indices, model validation tests and histogram analysis of training data 
for design of a neural network identification experiment are investigated. Copyright © 1996 Elsevier Science 
Ltd 

I. INTRODUCTION 

System identification procedures for parametric models 
frequently assume the process is both linear and time- 
invariant. After specification of a model structure, 
process input/output data is then used to calculate the 

model parameters by solving a least squares or max- 
imum likelihood criterion. The effects of process non- 

linearities and time variations can be compensated by 
periodically updating the model parameters on-line. 
Alternatively, process non-linearities can be represented 
by an array of linear models spanning the operating 

range. While these methodologies can often provide 
acceptable solutions, there remain many real world 
systems where the identified model can be improved or 
where linear representation is even prone to failure. A 
main reason for this is that it is often not possible to 

adequately represent system characteristics such as non- 
linearity, time delay, saturation, and overall complexity 
within this linear modelling framework, as is the case 
with many chemical processes. In these situations a 
single model representation capable of encompassing the 
overall non-linear dynamic process behaviour would be 
preferred. 

Over the past decade, there has been a resurgence of 
interest into the field of artificial neural networks in such 
diverse areas as pattern recognition, financial forecasting 
and signal processing (e.g. Widrow et al., 1988; 
Hopfield, 1985). In control engineering, this interest has 
focused on the modelling and control of  non-linear 
dynamic systems. Neural networks offer the promise of 
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a modelling tool capable of emulating complex systems. 
A neural network can be used to approximate the non- 
linear input/output dynamics of a process based on a 
time history of process data. It is now widely accepted 

that the proven ability of certain neural network 
architectures to represent non-linear mappings, such as 
the multi-layered perceptron (Cybenko, 1989; Hornick 
et al., 1989), enables a non-linear neural network model 
to be incorporated within a control algorithm. Indeed, 
the modelling abilities of neural networks have been 
demonstrated (Bhat and McAvoy, 1990; Bhat et al., 

1990; Chen et al., 1990a, 1990b; Billings et al., 1992J 

and neural networks have been used successfully to 
control non-linear processes, both in simulation (Saint 
Donat et al., 1991; Hemandez and Arkun, 1992; Chen 
and Khalil, 1992) and on-line (Evans et al., 1993). Many 
of the proposed neural control strategies (e.g. Model 
Predictive Control, Internal Model Control and Model 

Reference Control (Hunt et al., 1992)) incorporate a 
neural network model directly into the control system. 
Hence, a valid neural network process model is a 

keystone to the performance of these control systems, 
the quality of control being largely determined by the 
representation accuracy of the model. 

The attractive benefit of the neural network approach 
is that the authentic development of the network enables 
an accurate representation to be obtained by training the 

network using examples of process input/output data. 
Hence, precise understanding and development of a 
rigorous mathematical model is not necessary. However, 
the successful training of a neural network model can 
require a significant amount of experimental data, and 
the resulting models are unreliable outside the operating 
regimes of this training data. Another limitation of this 
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approach is that the input/output relationship of the 
neural network does not contain any physical knowledge 
about the plant which could be useful in some applica- 
tions. 

A system identification experiment, either for linear or 
non-linear modelling, involves the following design 
considerations:- 

(i) Selecting a process excitation signal 
(ii) Choosing a data sample time 
(iii) Selecting the model structure (for a neural network 

this concerns the selection of the input layer 
topology) 

(iv) Validating the resulting model 

These elements of an identification experiment are 
important as they ultimately determine the validity of the 
resulting model. While the non-linear modelling capabil- 
ities of neural networks have been widely demonstrated, 
the difficulties in developing, and the limitations of, such 
models have not been sufficiently addressed. Little has 
been reported concerning the effects of the above 
choices and no established methodology exists for their 
selection. Billings et al. (1992) have made some 
important studies in this area and proposed some 
techniques for (iii) and (iv) but the remaining two 
choices were not investigated. 

This paper describes investigations into the effects of 
the above design issues (i)--(iii) and the use of a range of 
techniques which can aid their selection, with the aim of 
developing guidelines for identification experiment 
design which will consequently improve the validity of 
the resulting neural network model. The selection 
techniques studied include metrics fi'om linear system 
identification theory, histogram analysis and some novel 
metrics. Methods for neural network model validation 
are also examined. The investigations are carried out in 
a study of the development of a multi-layered perceptron 
neural network model ofpH in a continuous stirred tank 
reactor (CSTR). This process is strongly non-linear and 
is therefore well suited to assessing the non-linear 
modelling capabilities of neural networks. 

2. NEURAL NETWORKS FOR NON-LINEAR SYSTEM 

IDENTIFICATION 

This section describes the neural network architecture, 
training algorithm, network model configuration and a 
typical process excitation signal used in these studies. 
The section provides the necessary background to the 
investigations described later in section 4. 

2.1. Multi-layered perceptron neural network and 

training algorithm 

A multi-layered perceptron neural network consisting 
of an input layer, one hidden layer and an output layer, 

with sigmoidal activation functions in the hidden and 
output layer nodes, was used throughout this investiga- 
tion. Only one hidden layer was used because of the 
proven non-linear approximation capabilities of multi- 
layered perceptron networks for this case (Cybenko, 
1989; Homick et al., 1989). The input/output mapping 
for such a network with a single output ~, is of the 
form... 

j=l w)lF i=l wi;xi+woj %1 (1) 

is the weight connecting the t ~h input to thef t  where wlj 

node in the P layer, xi is the t ~h network input, w~oj is the 
bias weight for the j,h node in the P layer, nh is the 
number of neurons in the hidden layer and n~ is the 
number of inputs to the network. The sigmoidal 
activation function, F, is given by... 

1 
F(z) = - -  ( 2 )  

l + e - :  

The multi-layered perceptron neural network is trained 
using a supervised learning procedure and the back- 
propagation algorithm with momentum (Rumelhart et 

al., 1986) was used in these studies. Back-propagation 
minimises a quadratic cost function (3) of the error 
between the neural network output and the target output, 
y, over the entire set of example data vectors... 

J= ~, t ) - ~ ( t  (3) 
i=1 

where N is the number of data vectors. A single data 
vector is selected randomly from the set of training 
examples and presented to the neural network. The 
weight update at iteration t is given by... 

~J l _ i _ - -  +aAwlj(t) (4) wo(t)-wij(t 1 ) -  rl owt( 1) 

where wlj(t) is a weight at iteration t, Awlj(t) is the 
previous weight update, r/ is the learning rate and t~ is 
the momentum. The neural network is said to have been 
trained for one epoch when all the training examples 
have been used once. Often, a multi-layered perceptron 
must be trained for hundreds of epochs before the cost 
function converges. 

Initialisation of the network weights and parameter 
values for the back-propagation algorithm were based on 
conventional practice in implementing the multi-layered 
perceptron and the experience of the authors. Initial 
weights were selected randomly from a uniform distribu- 
tion in the interval [ - 0.1,0.1 ]. The learning rate and the 
momentum are usually chosen in the range [0,1]. The 
learning rate determines the step size of the gradient 
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descent back-propagation algorithm, and the momentum 
adds a proportion of the previous weight update to allow 
the search to escape from local minima which may be 
present in the cost fimction surface. In the initial stages 
of learning, a large learning rate and momentum can be 
used to accelerate the learning process. However, it is 
well known that for back-propagation to fully converge 
the learning rate and momentum should approach zero. 
Hence, in this work the learning rate and momentum 
were exponentially decreased towards zero from large 
initial values (77 =0.9, tr =0.6) using an exponential time 

constant of 200 epochs. 
Input/output data to the multi-layered perceptron was 

conditioned using a widely used technique of scaling 
each network input and output variable to a fixed range. 
A range of slightly less than [0,1 ] is usually used for data 
scaling because the output of the sigmoid activation 
function, eqn. (2), asymptotically approaches zero or one 
hence, a range of [0.1,0.9] was used in these studies. 
Each scaled data value is then assigned to a single input 
or output neuron of the multi-layered perceptron. This 
data conditioning method was used in all of the 
investigations reported, except for those in section 4.4.3 
where an alternative data conditioning method is 
described. During training the back-propagation cost 
function was calculated using scaled target output data, 
and during recall the network output was re-scaled back 
to the original variable range to obtain real world 
prediction values. 

2.2. Network configuration for  non-linear modelling 

The input/output mapping of equation (1) is a static 
function, and hence, if a multi-layered perceptron neural 
network is to be employed as a process model, dynamics 
must be incorporated into the network. A general model 
structure which is suitable for this purpose is the NARX 
(Non-linear Auto-Regressive eXogenous) model (Leon- 
taritis and Billings, 1985) which, for a SISO system, is 
defined as... 

y ( t ) = f ~ ( t - l )  ..... y ( t - n y ) , u ( t - k )  ..... 

u ( t - k - n u + l ) ] + e ( t )  (5) 

where u(t) and y(t) are the process input and output at 
time t,./[] is a non-linear function to be identified, e(t) is 
the equation error, k is the process deadtime (k---l) and 
n, and n~, are the number of delayed process inputs and 
outputs included in the model. 

A neural network is configured in a NARX model 
structure by assigning the network input vector x = [y(t 
- 1) ..... y(t - nv),u(t - k) ..... u(t - k - n~ +1)] and 

training the network to provide a one step ahead 
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prediction of the process output at time t, ~(0. When the 
network has been trained, it can then be used to predict 
~(t+ 1) based on process data available at time t. 

2.3. Random amplitude process excitation signal 

A neural network should be trained with dynamically 
rich data which covers the whole of the required process 
operating region. A random amplitude signal is com- 
monly used as the process excitation signal to generate 
open loop data for network training. This signal consists 
of a uniformly distributed random variable applied to the 
process input at each clock period and is more likely to 
exercise the process over the desired operating range 
than a binary signal (Pottrnann and Seborg, 1992), such 
as a pseudo-random binary sequence (PRBS) which is 
widely employed for linear system identification. A 
random amplitude signal is specified by its clock period, 
which should be a multiple of the sample time so that the 
process input is constant between consecutive samples, 
and by its amplitude range, which may be expressed as 
a percentage maximum deviation from a steady state 
value. 

3. SIMULATED CSTR PROCESS 

In the CSTR investigated, shown in Fig. 1, acetic acid 
(CH3COOH) of concentration CA flows into the tank at 
flow rate FA, and is neutralised by sodium hydroxide 
(NaOH) of concentration CB which flows into the tank at 
rate FB. The process equations and parameter values 
used are given in the appendix. A simulation of the 
process using this first principle model was implemented 
in the Advanced Continuous Simulation Language 
(ACSL). FA was held constant and a random amplitude 
signal was superimposed on a steady state, Fs, to provide 
dynamic input/output data (FB and pH) for neural 
network training and model validation. 

CB= [NaOH] 

FB 

CA= [CH3COOH] 

4 

FA 

F A -~ F B 
I 

pH 
Fig. I. The CSTR process. 
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4. DESIGN ISSUES IN NEURAL NETWORK MODEL 

DEVELOPMENT 

Investigations into the design of a neural network 
system identification experiment are described in this 
section in an application of  a multi-layered perceptron 
neural network to model the simulated pH CSTR 
process. Techniques which may assist the decisions 

required to be made in the development of a neural 
network model and methods for model validation are 
studied. The investigations described are not exhaustive, 
since to undertake a study of all possible combinations 
of the design parameters would be an extremely 
involved task. Therefore, decisions were made, based on 
the results obtained, to confine the studies to a more 
tractable form. The design issues and the techniques 
used are discussed in a more general framework to 
extend their applicability to the identification of other 
processes. 

A starting point for the parameter values of the 
excitation signal and data sample time were taken from 
previous work for neural network identification of the 
pH CSTR process (Bhat and McAvoy, 1990). These 
were a 10% random amplitude signal with a clock period 
of 240 s and a sample time of 24 s. Networks were 
trained with data generated from the CSTR simulation 
with these settings, unless otherwise specified. In order 
to make the training conditions as equitable as possible, 
the data length was fixed at 1000 input/output training 
vectors and neural network training was terminated after 
1000 epochs, since after 1000 epochs the learning rate 
and momentum were decayed to near zero values (see 
section 2.1). In all cases it was observed that this was 
sufficient to obtain convergence of the network weights 
to a minimum of the cost function, equation (3), and that 
further training did not decrease the cost function. 

4.1. M o d e l  s tructure select ion 

It is important to consider the NARX model structure 
for each individual problem because the prediction 
accuracy can be degraded by inappropriate structure 
specification. For the SISO NARX model of equation 
(5), the structure is specified by the values of k, nu and n~, 
If the system deadtime, k, is unknown it can be included 
in the search for a model structure or may be determined 
experimentally (e.g. from step responses). Although, for 
a fixed deadtime the model structure is specified by two 
parameters, n, and n~, to perform an exhaustive search of 
the combinations of n~ and ny is impractical, since to 
evaluate structures of sizes nu = 1,...,Nu, ny = l,...,Nr 
would necessitate the training and testing of 
(2 NU- 1)(2 N,-  I) neural networks (e.g. Ne = N r =5 
gives 225 possible model structures). This effort can be 
greatly curtailed by setting n,, = n~. = n, where n is 
termed the model order, giving n possible model 

structures as is common in linear system identification 
(Isermann, 1980). 

There are two potential pitfalls in the selection of the 
NARX model order. The first is assigning a model order 
which is too low to describe the system dynamics. Since 
the neural network performs a static non-linear expan- 
sion of the NARX model input terms, equation (1), it 
cannot generate any system lags of higher order than the 
model order. In this case, the neural network is deprived 
of important information which it cannot compensate for 
and hence, the resulting model will be deficient. 

If the model order is increased, it should provide an 
improvement in the neural network model accuracy. 
Therefore, the potential problem of under-parameteris- 
ing the NARX input vector could be avoided by 
choosing a large model order. However, this may not be 
the best solution because the performance of a neural 
network can also be adversely affected by over- 
parameterisation of the NARX input vector. For neural 
networks, over-parameterisation often results in inade- 
quate generalisation abilities-the network can perform 
well when tested with the training data, but has a poor 
performance when tested with novel data-because the 
neural network can overfit the training data. This can 
result in a neural network functioning like a look-up 
table of the training data rather than representing the 
underlying system which produced the data. Fur- 
thermore, enlarging a network increases the number of 
local minima in the cost function surface. This means 
that the learning algorithm may have greater difficulty in 
converging to the desired global minimum, and the 
training of the network is more sensitive to the initial 
state of the weights. 

Model parsimony is recognised as an important 
criterion for a dynamic model because, although the 
underlying system may be very complex, from a set of 
candidate models a parsimonious model will contain the 
minimum number of parameters which approximates the 
system performance. The choice of a parsimonious 
model is a well established principle of linear system 
identification and consequently complicated dynamic 
systems are frequently represented by model orders 
lower than the actual physical system. From the above 
discussion on neural network parameterisation, it is 
evident that model parsimony is an important issue and 
a particularly relevant criteria for the selection of a 
neural network model. 

The number of nodes in the neural network hidden 
layer also affects model parsimony. This study did not 
attempt to optimise the number of hidden layer nodes. 
Pollard et al. (1992) reported that, provided a network 
incorporated sufficient nodes in the hidden layer, the 
mapping accuracy of a neural network was relatively 
insensitive to the number of hidden layer nodes over a 
wide range. This observation was also noted in these 
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studies and thus, the size of the hidden layer was fixed 

experimentally at 15 which was sufficient to enable 

convergence of all networks tested. Fixing the size of the 

hidden layer also enables the effects of increasing the 
model order to be more clearly observed, as any 
improvements in the network prediction accuracy will be 
more directly attributed to changes in the input layer 

rather than the hidden layer. 
4.1.1. Comparing neural network performance to 

learn training data. To establish a suitable NARX 
model order for a particular system, neural networks of 

increasing model order can be trained and their perform- 

ance on the training data compared using the loss 
function (or mean squared error), LF... 

1 ~ d(t)  (6) LF= ~ ,=, 

where the one step ahead prediction error, e(t)=y- 

(t) -~(t) and N is the data length. Figure 2a shows the LF 

on the same training data for neural network models with 

different model orders n = l ..... l0 and a delay k = I. A 
delay of one sample between input and output for the 

CSTR process was selected based on knowledge that the 
process was perfectly mixed. This was also confirmed in 
step response tests on the process. The 10th order model 
exhibits the lowest LF, however, this model may not be 

the best choice, because there is a trade off between the 
model complexity (i.e. size) and accuracy. A small 
decrease in the LF may be rejected if it is at the expense 
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of enlarging the model size. Thus, the decision proce- 

dure for selecting a parsimonious model using the LF is 
to decide for each increase in model order whether any 

reductions in the LF are worth the expense of a larger 
model. This decision can be assisted by examining the 
trend in the LF (Fig. 2b). This indicates a second order 
model which causes a large reduction in the LF 

compared to a first order model but subsequent decreases 
in the LF caused by increasing model orders are not 
comparable. 

The difficult trade off between model accuracy and 

complexity can be clarified by using model parsimony 
indices from linear estimation theory, such as Akaike's 
Final Prediction Error (AFPE) and Akaike's Information 
Criterion (AIC) (Akaike, 1974)... 

! + n~ 

N 
AFPE= LF (7) 

n w  
1 -  - -  

N 

AIC=In LF + N (8) 

where nw = number of model parameters (weights in a 
neural network). Hence, both the AIC and AFPE are 

weighted functions of the LF which penalise for 

reductions in the prediction errors at the expense of 
increasing model complexity (i.e. model order and 
number of parameters). Strict application of the AFPE 
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Fig. 2. Comparison of neural networks with different NARX model orders. (a) loss functions, (b) trend in loss functions. 



332 S. K. DoxERa~¢ et al. 

and AIC means that the model structure with the 
minimum AFPE or AIC is selected as a parsimonious 
structure. However, in practice, engineering judgement 
may need to be exercised when using these metrics.The 
corresponding AFPEs and AICs for the LFs in Fig. 2 are 
shown in Fig. 3 where it is observed that up to a 6 th order 

model both indices point to the selection of a 2 "a order 
model as having the minimum AFPE and AIC. However, 
a strict application of the indices would select a l 0  th 

order model because this exhibits the lowest of both 
indices for all the model structures compared. Based on 
engineering judgement, a 10 th order model would be 

considered to be too complex and a 2 ~ order model 
would be preferred without significant loss of accuracy. 

Although, in this case, the AFPE and AIC do not provide 
a clear indication of a particular model, the interpretation 
of the AFPE and AIC results described does provide 
further support for the choice of a 2 "d order model 

indicated by the LF. 
Once the network input topology has been chosen, the 

number of hidden layer nodes could then be improved by 

comparing networks trained with different complements 
of hidden nodes, using the LF, AFPE and AIC to select 

a parsimonious architecture. 
4.1.2. Comparing neural network generalisation 

capabilities. A neural network model which has identi- 
fied the system dynamics should be capable of predicting 
the system response to a range of test signals. Thus, an 

alternative technique for choosing a NARX model order 

is to compare the performance of different neural 

network models on data sets that were not used during 
the training phase. This method can also be used for 
model validation as discussed in section 4.4.1. 

When several models are tested on a range of different 
test signals, it is desirable to derive a single figure of 
merit for each model so that model accuracy can be 
easily and fairly compared. Suppose M neural network 

models are to be compared by testing them using L test 
signals. A single performance index (P/) for each model 
can be defined as the sum of the loss functions for each 
test signal... 

L 

elm = ~ LPm, m = 1 ..... M (9) 
i=l 

where m is the index of the model tested and LPm is the 
loss function of the m ~ model when tested with the P 
signal.However, this simple summation does not take 

into account the relative magnitudes of the loss functions 
compared to other models. An alternative index, which 
enables a comparison of the relative performance of 
different models on the same test signals, can be 

formulated by weighting the loss functions by the sum of 
all the model loss functions for each test signal. This 

gives the normalised performance index (NPI)... 

~ : ,  Z~P." (I0) 

Figure 4 shows the performance and normalised per- 
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Fig. 3. Comparison of neural networks with different NARX model orders. (a) AFPE, (b) AIC. 
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Fig. 4. Comparison of neural networks with different NARX model orders. (a) performance index, (b) normalised performance 
index. 

formance indices for the ten neural network models used 
in the previous section when tested on five test signals 
consisting of different random amplitude signals and 

steady state data. The test signals used were the same as 
those designed for model validation (section 4.4.1). The 
performance index clearly indicates a second order 
model structure as exhibiting the best generalisation 

performance on the test signals used. The choice of a 
second order model is also indicated by the normalised 

performance index. 
Comparing the generalisation capabilities of different 

models, in conjunction with the LF, AFPE and AIC, can 
assist the choice of a neural network model. Based on 
the results presented for the two approaches, a second 
order model would be chosen as a parsimonious neural 
network model structure for representing the pH proc- 
ess. 

4.2. Data sample time 

The choice of data sample time should, by the 

sampling theorem, correspond to a sampling frequency 
of at least twice that of the highest process frequency 
range to be identified. Other than this fundamental 
requirement for the sample time, little is known at 
present of how the sample time affects the performance 
of a neural network model. This section describes 
investigations into the effects of the data sample time on 

neural network model performance for the pH process 
when trained with data generated by a conventional 
random amplitude excitation signal. 

Figure 5 shows the evolution of the training cost 
function for identically structured networks (2 "~ order 
NARX models with 15 hidden layer nodes as chosen in 
section 4.1) which were trained with the same random 

amplitude excitation signal, but sampled at different 
rates. The training cost function is an indicator of how 
well the learning phase is proceeding and it is often 
monitored to determine a suitable point for terminating 

training or to flag any convergence problems. Hence, 
Fig. 5 suggests that the network learns the training data 
more accurately for faster sample times. However, the 
training cost function is akin to the loss function on the 
training data, in that neither give an indication of a 
network's generalisation ability, and therefore the magni- 

tude of the final value to which the cost function 
converges should not be taken as an indication of model 
validity. Figure 6 shows the performance index and the 
normalised performance index for these neural network 

models when tested with the cross-validation signals 
described in section 4.4.1. In calculating the perform- 
ance indices, all models were tested on the same window 
of real time and consequently the number of testing 
vectors for each of the test signals was appropriately 
increased for decreasing sample times. 
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Fig. 5. Training loss functions for 2 nd order neural network models employing different sample times. 

In contrast to the consistent reduction in the training 
cost function for faster sample times shown in Fig. 5, 

both the performance index and its normalised form 
(Fig. 6) illustrate that there is a lower limit on the 
selection of sample time. A sample time of 1 s achieves 
the lowest values of the performance indices for the 

sample times investigated. Figure 6 also shows that 

satisfactory network performance can be achieved with a 

range of sample times, in this case between 0.5 and 

12s. 
Whereas there are no restrictions on sample time 

selection in this simulation exercise, the presence of 
process noise can impose limits on the choice of sample 
time for the modelling of a real plant. Reducing the data 

sample time increases the effect of high frequency 
process noise which can result in a poor model. Another 
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Fig. 6. Comparison of 2 "a order neural network models identified with different sample times. (a) performance index, (b) normalised 
performance index. 
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application specific factor, which may restrict the choice 
of sample time in practice, is computational constraints 
because, if the identified model is to be implemented on- 
line, the calculations must be performed in less time than 
the sample interval. Often it is required that calculations 
are completed in a small fraction of the sample interval, 
such as in a model based control algorithm. These 
practical considerations should be taken into account 
when choosing a sample time, in conjunction with the 
main objective of achieving an accurate process model. 

4.3. Excitation signals 

The objective of process excitation is to generate 
input/output process data which contains sufficient 
information for a neural network to identify the non- 
linear process dynamics over the entire operating range. 
As described in section 2.3, a random amplitude signal is 
commonly employed to achieve this. However, there is 
no reason why this signal should achieve adequate 
excitation of the non-linear dynamics of all processes. 
Additionally, there is no established method for assess- 
ing training data adequacy at present. The effects of 
excitation signal for different data sample times are 
investigated in this section. The use of histogram 
analysis for examining the process output data density is 
proposed as a simple method for assessing the adequacy 
of the training data. 

The strong non-linearity inherent in the pH process is 
characterised by its steady state titration curve (Fig. 7), 
where the gain changes by a factor of 150 between 
operating points A and B. One of the obstacles to 
accurately modelling such a process can be obtaining 
output data in this high gain region for network training. 
When the pH process is excited by a standard random 
amplitude signal, little output data is generated in the 
vicinity of operating point A, where the process gain is 
a maximum. The bowl shaped data distribution of Fig. 8 

Steady State pH 
12 
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illustrates the lack of output data between pH 7 and 10, 
and a neural network model which results from training 
with such data can have large prediction errors in this 
region. 

One practical way of improving the uneven distribu- 
tion of the training data is to force the signal through the 
region of maximum process gain on each clock pulse. 
The resulting 'forced' random amplitude signal, 
depicted in Fig. 9, has a uniformly distributed input in 
the two intervals above and below a threshold level 
which was chosen as the process input at maximum 
steady state gain. While the data distribution still appears 
to be very uneven, there is a threefold increase in the 
data density between pH 7 and 10 when compared to the 
output data density generated by a standard random 
amplitude signal (Fig. 8). 

A further improvement in the output data distribution 
(Fig. 10) can be realised by modifying the forced 
random amplitude signal, by reducing its amplitude for a 
fraction of the identification experiment. Half way 
through the identification experiment the magnitude of 
this 'modified' random amplitude signal was reduced 
from 10% to 0.5%. The central value of the modified 
random amplitude signal was chosen as the input value 
which corresponded to the point of maximum process 
gain, and hence, the reduced amplitude of the input 
signal provides additional output data in this high gain 
region. 

Three identically structured networks (2 ~ order 
NARX models with 15 hidden layer nodes) were trained 
using a standard, a forced and a modified random 
amplitude signal respectively and this was repeated with 
different data sample times. Figure 11 shows the 
performance indices for the trained networks when 
evaluated using the same test signals of section 4.4.1. 
The performance index (Fig. l la) illustrates that net- 
work model accuracy can be improved by training with 

0   iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii 
6 . . . .  i . . . . . . .  i . . . . . . . . .  i . . . . . . . . .  i . . . . . . . . .  i . . . . . . . .  i . . . . . . . .  i . . . . . . .  

24 24.5 25 25.5 26 26.5 27 27.5 28 

Steady State Base Flowrate (cm3/sec) 
Fig. 7. CSTR process titration curve. 
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Fig. 8. Process input, output and output data histogram for a conventional random amplitude excitation signal. 

alternative process excitation signals. The extent of the 
improvement corresponds to the provision of additional 
training data in the pH 7-10 region, where data was 
previously sparse, with the lowest performance index for 
each sample time occurring for networks trained with the 
modified random amplitude signal. This general trend is 

also reflected in the normalised performance index (Fig. 
1 lb), although the forced random amplitude signal for a 
24 s sample time does not show a decrease in the index. 
This case illustrates the difference between the two 
performance indices. While the network trained with the 
forced random amplitude signal had lower loss functions 
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Fig. 9. Process input, output and output data histogram for a forced random amplitude excitation signal. 
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Process input, output and output data histogram for a modified random amplitude excitation signal. 

than the standard excitation signal for four of the five test 

signals, there was a relatively high loss function for the 
steady state test data which is highlighted in the 

normalised performance index. 
Implementing the forced or modified random ampli- 

tude signals on-line would require knowledge of the 
process steady state characteristic. Indeed, the modified 
random amplitude signal may not be implementable on- 
line since the plant actuators may not have the necessary 
rangeability. Nevertheless, some adjustment of the 
excitation signal should be possible to enhance the 
training data distribution in deficient regions indicated 
by the process output data histogram and thus, effect an 

improved neural network model. 

4.4. Model validation 

The purpose of model validity tests is to give an 

indication of the adequacy of a fitted model. A poor 
neural network model may occur for many different 
reasons, such as incorrect model order selection or 
insufficient hidden layer nodes. More fundamentally, the 
identification data may be deficient in some way, which 
may result from coloured process noise, an unsuitable 
data sample time or process excitation signal. This 

section presents three techniques for validating neural 
network models-cross-validation, correlation tests and 
multi-step ahead prediction. Results are presented to 
demonstrate the use of these methods and the improve- 
ments in model performance which can be achieved by 
the design of a good identification experiment. 

4.4.1. Cross-validation. Model accuracy over the 

training data set is not reliable evidence of model 
validity since it gives no indication of a model's 
generalisation ability. Hence, a common method of 
validating a neural network model is to split a data set 
into two, using one part to train the network and the 
other part to validate it. However, if the data set has been 

collected when process operating conditions are compa- 
rable, then the test set may be so similar to the training 
set, with regard to operating range and frequency 
content, that the model's generalisation abilities are not 
properly tested. For instance, the process may often 
operate at or near steady state conditions, but these low 

frequencies may not be present in the testing data. This 
can be avoided by testing the neural network using 
several disparate test signals which test the model over 

different operating and/or frequency ranges. These test 
signals can be realised by adjusting the magnitude range 
and/or clock period of the random amplitude excitation 
signal. This testing of a neural network's generalisation 
capabilities is referred to as cross-validation in the 

system identification field. 
In this work, the test signals used for cross-validation 

of neural network models were generated by three 

different random amplitude signals with clock periods of 
72, 120 and 240 s, a random amplitude signal whose 
amplitude was greatly reduced thus, testing the model 
predictions solely in the region of maximum process 
gain (operating point A in Fig. 7), and steady state data. 
These disparate test signals were selected to compre- 
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hensively test the generalisation capabilities of the 
neural networks, which is a fundamental requirement of 
a useful dynamic model. 

One approach for assessing the generalisation capabil- 

ities of neural networks when tested on a range of test 

data sets is to use the performance and normalised 
performance indices of eqns (7) and (8), respectively. 
This is a flexible method for examining neural network 

performance and its use for selection of model structure, 

sample time and excitation signal has been demonstrated 
in sections 4.1.2, 4.2 and 4.3. The effects of the design 
issues considered in this paper on the generalisation 
capabilities of a neural network model are illustrated in 

Table 1, which shows the performance indices for two 
network models trained with different parameter values 
in the identification experiments. Network model 1 was 
a 5 'h order model trained with the initial settings for 
excitation signal and sample time and network model 2 
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Table 1. Comparison of  two neural network models with different identification 
experiment parameters 

Network Model I 2 

Identification experiment 
parameters 

Performance Index, Pl 
Normalised Performance 
Index, NPI 
Max. prediction error 

Standard random amplitude 
signal, 240 sec clock period 
24 sec sample time 
5 th order 
1.52 
4.7 

3.4 pH units 

Forced random amplitude signal 
240 sec clock period 
1 sec sample time 
2 "d order 
0.014 
0.3 

0.84 pH units 
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was a 2 "d order model trained with a forced random 

amplitude signal and a 1 sec sample time. The design 
parameters for network model 2 were chosen based on 
the results described in sections 4.1, 4.2 and 4.3. It is 
clear that a good choice of the design parameters can 

result in notable improvements in the process representa- 
tion accuracy of a neural network model as shown by the 

significantly lower performance indices of network 
model 2 compared to network model 1. These improve- 

ments may also be achieved with a much smaller 

network as demonstrated in these results. 
A widely used altemative to the performance indices 

is to visually examine the performance of a model in 
plots of the model and process output on test data. 

However, it can be illustrated that this alone is not a 
reliable test. Figure 12a shows the predictions and actual 

process output of network model 1 on a test random 
amplitude signal. From this graph it would appear that 

the model is able to generalise satisfactorily. However, 
an examination of the corresponding prediction errors, 

Fig. 12b, shows that this model is in fact a poor 
representation of the process with large prediction errors 
exceeding 3 pH units in a process output range of 5-12 
pH units. The effects of better choices for the design 
parameters in the identification experiment are apparent 
in Fig. 13 which shows typical predictions of network 

model 2 on an unseen test random amplitude signal. The 
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prediction errors are noticeably smaller than that of the 
larger yh order neural network model (Fig. 12) and 
demonstrate the improved prediction accuracy of this 
model. 

4.4.2. Corre la t ion  tests  

A set of statistical tests have been proposed as an 
alternative method of verifying the adequacy of a model. 

They were introduced by Billings and Voon (1986) for 

non-linear models and extended to neural networks 
(Cben et  al. ,  1990a). For a perfectly unbiased model, its 

prediction errors (e) should be uncorrelated with all 
linear and non-linear combinations of past values of 
themselves and of past model inputs (u). Five tests have 
been proposed as a test of  non-linear model adequacy 

(Billings and Voon, 1986)... 

O,V ¢----~0 
~ ( ¢ ) = E [ e - ( t ) e ( t -  ¢)]= l : ' = 0  

c19, , (¢)=E[u(t)e( t -  ¢)] = 0 , r e  

• ,,.,(r)=E[(u2(O - u~)e( t -  r)] =O,V¢ 

~,,.,:(¢) =E[(u2(t) - u s) o~(t - "r)] = 0Vr 

~ , ~ ) ( ' r ) = E [ e ( t ) e ( t -  1 - ¢ ) u ( t -  1 - ~')] =0V~'->0 
(ll) 

where E[X] is the expected value of X, r is the lag and 
~2(t) is the mean of u~(t). To implement these tests, u and 
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are normalised to give zero mean sequences of unit 

variance. The sampled cross-correlation function 
between two such data sequences v(t) and r(t) is then 

calculated as... 

c ~ ( r )  = 5~u,=-~ "u(t) r ( t+ "r) (12) 

[Y,N=, ~( t)Etu=, r2(t) ] '~" 

where N is the number of data samples. The tests are 
satisfied if they fall within the 95% confidence limits 

from Normal distribution tables of + 1.96/VN. 

Practical results from the application of these correla- 
tion tests suggest that they should not be interpreted 

rigidly (see for example Chen et al., 1990a, 1990b). This 
is because of the assumption of additive white noise in 

the model structure of equation (5) and the fact that the 

tests were derived for a class of analytic non-linear 
systems which is a subset of a wider class of non-linear 

systems that neural networks can approximate. Never- 
theless, the tests can be usefully applied to NARX 
structured neural networks to give an indication of the 

validity of the model. In addition it has been demon- 
strated that the tests may also provide an indication of 
any deficient terms in the network input structure 

341 

signalled by test failures at a particular lag (Billings et 
al., 1992). 

These correlation tests are intended for model valida- 

tion of systems subject to random disturbances. There- 

fore, to implement these tests in the simulation studies 
and to make the simulation more realistic, a zero mean 
Gaussian distributed random sequence, representing pH 

measurement error, was added to the output of the 
process. The variance of the noise sequence was set to 
give an output signal-to-noise ratio of 10%, which was 
considered to be in the region of a typical value that may 
occur in practice. Initially, neural network models of 1 't 
to 5 'h order were trained with the same noisy data set 

collected from the simulation using the initial values for 
the design parameters. Results from applying the 
correlation tests to the trained networks were incon- 

clusive with four of the five cross-correlation functions 

exceeding the confidence limits at seemingly random 
values of lag. Figure 14 shows the correlation tests for 
the 5 th order model structure, and is typical of the test 

results observed for the other model orders. For clarity, 
only four of the five test results are shown. These results 

confirm the poor validity of these networks which was 
caused by the inappropriate selection of the experiment 
design parameters for training data excitation signal and 
data sample time. 

11 

9 

pH 

7, 

5 
0 

Process : dashed line 
I I I I 

lO0 

Network : solid line 
I I I I I I 

200 300 400 500 600 700 800 900 1000 
Sample Number 

LU 
C 
O 

n 

4 

3 

2 

1 

0 

-1  

- 2 '  

- 3 '  

-4 
0 

I I I I I I I ; ; ; 

100 200 300 400 500 600 700 800 900 I000 

Sample Number 

Fig. 13. Predictions of neural network model 2 on test data. (a) process and neural network output, (b) prediction errors. 



342 S. K. DOHERTY et al. 

CORRELATION INDEX 
0 .15  

0.05 

-0 .05  

95% 

-0.1 - - ~ ) u .  . . . .  ~u'.' 
........ (~u'. . . . .  (~.lEul 

-0 ,15  J ~ , , , r i 
-20  -15 -10 -5 0 5 10 15 20  

LAG 
Fig. 14. Correlation test results for a 5 'h order neural network model identified with initial design parameter settings. 

Figure 15 depicts four of the five correlation test 

results for a network trained with the experiment design 
parameters set based on the results described in previous 
sections. The network was configured as a 2 "a order 

NARX model and the training data was generated by a 
forced random amplitude excitation signal sampled at 1 

sec intervals. While one of the tests does exceed a 95% 
confidence limit, these results further substantiate that 
this neural network model is more representative of the 
process dynamics than the earlier correlation tests for the 

5 th order neural network (Fig. 14). Additionally, the 
correlation test results for this 2 "a order model were 
better than those for other Pt--5th order neural network 

models which were also trained with same data. Hence, 
these statistical tests reinforce confidence in the validity 
of this neural network model. 

4.4.3. Multi-step ahead prediction. Throughout this 
paper, neural network models have been assessed on 

their capability to predict the current value of the process 
output based on past values of the process input and 
output. The networks were trained in this one step ahead 

configuration and it is therefore natural to validate them 
accordingly. In some circumstances, however, it may be 
necessary for the model to predict more than one sample 
interval into the future. For instance, it may be desirable 
to use the model independently from the process so that 
a controller could be tuned in simulation. Multi-step 
ahead prediction is also necessary to implement neural 

predictive control schemes (Hunt et al., 1992), which 
minimise a cost function over a moving horizon of 
several steps ahead. In these situations it is beneficial to 
also validate a neural network model by examining its 
multi-step ahead prediction performance. 

Long range neural network predictions are made by 

feeding back the delayed neural network output, ~,, to the 
network input. Thus, from equation (5), to predict P 
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network input. Thus, from equation (5), to predict P 

steps ahead at time t, the neural network makes P 
separate one step ahead predictions, where the t~h 

prediction would be of the form... 

~(t+ i) =flS~(t + i - 1) ..... ~(t+ i - ny), 

u( t+i  - k) . . . . .  u ( t+ i  - k - n,,+ 1)) 

(13) 

For a P step ahead prediction, the neural network is 

recurred P -  1 times. This feedback operation can cause 

an accumulation of prediction errors and a consequent 
deterioration of prediction accuracy. It is possible for the 

multi-step ahead prediction errors to become so large as 
to render the model unusable for any practical purpose. 

The accumulation of prediction errors when operating 
a neural network model recursively can be reduced by 

using an alternative data conditioning method of spread 
encoding (Gomm et al., 1994). In contrast to the scaling 
technique used throughout the investigations described 
above, each data value is represented as the mean value 

of a sliding Gaussian pattern of excitations, in the range 
[0.1,0.9], over several nodes at the network input and 

output. To spread encode a continuous valued variable 
rE [rm~,,rr~x] tO N s network nodes, each node is assigned 
a value, al, linearly spaced by a distance, 8, within the 

range of r. The excitation of each node, x~ i = 1 .... N,, is 
found by integrating a Gaussian probability density 
function, ~ a  - r), over each class interval... 

1 
xi(r)= r,,,+ ~ ,, , - j o _ ~ . q ~ a -  r) da (14) 

ai 

The algorithm is formulated so that decoding of the 
network output back to the original variable range is 

achieved as a normalised weighted summation of the 

output node activations... 

~,~'=,a~xi(r) 
9= y~ ,x i ( r )  (15) 
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To demonstrate the multi-step ahead prediction perform- 

ante of neural networks trained with different sample 
times, three neural networks were trained in a 2 "a order 

NARX configuration; one with each input/output data 

value distributed over six nodes using the spread 
encoding technique (this resulted in a network with 24 
input nodes and six output nodes); the other neural 

networks with the input/output data conditioned using 
the conventional scaling method. The training data for 
the spread encoded neural network was generated by a 

forced random amplitude signal sampled at 1 sec 

intervals and the training data for the conventional 
neural networks was the same signal sampled at 1 sec 

and 24 s intervals respectively. All training data records 
contained the same number of training vectors to enable 
a fair comparison of the networks. The real time length 

of the training data for the conventional neural network 
with a 24 s sample time was therefore 24 times that for 
the other two networks. 

Figure 16 illustrates the improvements in multi-step 

ahead performance which can be achieved using the 
spread encoding technique. The loss functions on a test 
data set for the neural network models trained with a 1 s 
sample time are shown for different prediction horizons. 
Both networks achieve a similar prediction accuracy for 

one step ahead predictions. However, as the prediction 
horizon is increased, the neural network using conven- 
tional scaled data exhibits continual deterioration in its 
prediction accuracy. In contrast, the prediction accuracy 
of the spread encoded network shows a significantly 
lower increase in the loss function for increasing 
prediction horizon and saturates for large prediction 
horizons. 

The predictions for the same test signal of the 
conventional network, trained with a sample time of 24 
sees., and the spread encoded network are compared in 
Figs 17 and 18. The conventionally trained neural 
network is predicting one step ahead, whereas the spread 
encoded neural network is predicting 24 steps ahead 
(and is therefore operating recursively 23 times for each 
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Fig. 16. Multi-step ahead prediction performance for neural network models using conventional scaled data and spread encoded 
data. 
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one step ahead. (a) process and neural network output, (b) prediction errors. 

the spread encoded neural network so that the two model 

predictions are compared at the same instants in time. 

The L F  for the spread encoded neural network 

(LF=0.062, maximum prediction error = 1.6 pH units) 

was 6 times smaller than the one step ahead neural 

network (LF =0.386, maximum prediction error=2.7 

pH units). The improved performance of the spread 

encoded neural network further illustrates the effects of 

sample time on a neural network model. The use of a 

faster sample time for this model enables the network to 

provide significantly better predictions at 24 s intervals 

than the one step ahead network trained with data 

sampled at this rate, despite its recursive mode of 

operation. 

S. CONCLUSIONS 

Experiment design considerations for neural network 

identification of non-linear processes have been pre- 

sented. It is stressed that although neural networks are 

commonly regarded as black-box models, this does not 

preclude the engineer from exerting considerable influ- 

ence over the outcome of an identification experiment. 

The choices for data sample time, excitation signal and 
model structure all influence the performance of an 

identified neural network model. These design issues 
were discussed and their effects illustrated through 

simulation studies. The use of a range of techniques to 

assist in the design of a neural network identification 

experiment and for validation of a neural network model 

were demonstrated. 
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6. APPENDIX 

The simulated pH CSTR process equations (McAvoy 

et al., 1972) and parameter values are given below. 

pHA - LOG,o[H* ] 

a= [CH3COOH] + [AC- ] 

f l=[Na ÷] 

Acetate  balance... 

dol 
F,G  - (F~ + FseO= V-~  
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Sodium balance... 

G c a  - (FA + Fs)#= v d.~ 
{It 

Acetic acid equilibrium... 

[AC- ] [H + ] = KA[CH3COOH] 

Water equilibrium... 

[H+ ][OH - ] =Kw 

S. K. Dowery et al. 

Electroneutrality... 

fl+ [H + ] = [OH - ] + [AC- ] 

[X], concentration of X 

KA, dissociation constant of CH3COOH (1.8 x I0-s) 

K s, dissociation constant of NaOH (I .0) 
K)~ dissociation constant of water (I.0 x I0-J4) 
V, CSTR volume (3000 I) 

F A, flow rate of CH3COOH (4.05 I/s) 

F a, flow rate of NaOH (5.75 I/s at steady state) 
CA, concentration of CH3COOH (0.3178 M) 
CB, concentration of NaOH (0.05 M) 
pH, effluent pH (9.18 at steady state) 


