Magnitude and direction of motion with speckle
correlation and the optical fractional Fourier transform
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The optical fractional Fourier transform (OFRT) in combination with speckle photography has previously
been used to measure the magnitude of surface tilting and translation. Previous OFRT techniques used
to determine motion have not been able to discern the direction of the tilt and translation. A simple new
approach involving use of correlation is presented to overcome this limitation. Controlled variation of the
minimum resolution and dynamical range of measurement is demonstrated. It is then experimentally
confirmed that if a rigid body’s motion is captured by two OFRT systems of different orders, the direction
and magnitude of both the tilting and the in-plane translation motion of the body can be independently
determined without a priori knowledge. The experimental results confirm the validity of previous
theoretical predictions. © 2005 Optical Society of America
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1. Introduction

Speckle photography is a practical means of measur-
ing in-plane translation (displacement) and tilting
(rotation) motion.-4 Tilt, for example, can be mea-
sured by capturing the optical Fourier transform
(OFT) of the reflected surface field.? Adding or sub-
tracting two such sequential images and numerically
calculating the Fourier transform (FT) of the result
produces a set of fringes whose period is inversely
proportional to the constant shift in field spatial fre-
quency, and thus the surface tilt angle can be found.
A distinct disadvantage to this approach is that it
does not allow the user to determine in which direc-
tion the object has been tilted. To overcome the lim-
itation of this OFT system, we now propose to
correlate the two captured sequential images, allow-
ing both the motion direction and the magnitude to be
estimated. We note that such correlation techniques
have previously been used with speckle fields to dis-
cern translation motion magnitude and direction.3
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The optical fractional Fourier transform (OFRT)
was introduced in optics to describe wave propaga-
tion in gradient-index media; however, methods to
implement the OFRT with bulk optics also exist.5-11
The fractional Fourier transform (FRT) order indi-
cates the domain into which it transforms, and an
order of ¢ = 1 is simply the FT. The FRT angle 6 is
related to the FRT order by 6 = a(w/2). Several ways
of applying the OFRT in speckle-based metrology sys-
tems have been proposed.2-16 However, none of these
systems predict the direction of the motion. In this
paper we combine the extra flexibility associated with
the OFRT with a correlation-based approach and ex-
perimentally examine the resolution and detectable
dynamical range of the resulting metrology system.

It has been shown theoretically!2 that it is possi-
ble to completely determine the magnitudes of both
the in-plane translation and the tilting motion of a
rigid body, if this motion is captured simulta-
neously in two different fractional Fourier domains
[a,(8;) and ay(0,)]. With the correlation technique
it is now possible to build up a much more complete
picture of the motion of a rigid body, without a priori
knowledge. Experimental results are presented
confirming the validity of the theory. The experi-
mental setup was demonstrated to be capable of mea-
suring translation motion over the range 10 < x
< 1000 pm and tilting motion over the range
0.0005 < o < 0.0087 rad between individually cap-
tured frames. The system, as demonstrated, is both
flexible and was implemented for a cost of approxi-
mately $10,000.
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Fig. 1. Relating the tilt angle a to the reflected speckle field.

2. Optical Fractional Fourier Transform-Based
Correlation Technique

It is necessary to clearly determine how the reflected
speckle field before rotation u(x) is related to the
speckle field after rotation (tilt). In Fig. 1 the rigid
body before rotation is depicted as the dashed rect-
angle and after rotation as a solid rectangle. Let us
consider how light reflected from point A(x) in Fig. 1
effects point A'(x’). Let x = x’, so that the distance
between the two points is /, which is perpendicular to
both the x and x’ axes. Before rotation the incident
plane wave strikes A(x) and is reflected along the z
axis, a distance /, where it contributes to the intensity
and phase of the point A’(x"). After rotation, the plane
wave again strikes A(x). This time, however, the
plane wave must travel an extra distance approxi-
mately equal to & to reach the same point A(x). If this
plane wave contributes to the point A’(x’), it must be
reflected along the dotted line g. However, if « is
small it follows that ~ << [ and that alsog = [ + h. So
the plane wave after rotation will have to travel a
total further distance approximately equal to 2h. A
plane wave can be described as exp(j2mz/\) where A
is the wavelength and z is the distance along the axis.
Thus, after traveling a further distance 2A, the extra
phase accumulated is given by exp(j4wh/\). It can be
shown that if the angle o is small, ~ = x sin ()
=~ xa. Thus the reflected speckle field u(x) after rota-
tion can be approximated by wu(x)exp[j(2m/N)kx],
where k = 2a.

The rotation of a rigid body can be determined by
an OFT system.? Once again let the reflected
speckle field from an object before rotation be de-
scribed by u(x). After it is tilted it becomes as
u(x)exp[ =j(2m/N)kx] where the sign depends on the
direction of the rotation. The reflected speckle field is
passed through a bulk optical system, which per-
forms an OFT on the field. Thus the field captured by
the camera is the intensity of the FT of the original
reflected speckle field, which before tilting is given by
I(k) = |FT{u(x)}|*(k) and after tilting by I( & * fi),
where f is the focal length of the lens used in the
optical system. Correlating these two images gives

Corr(k) = Ik ¥ k) QI(k). (1)
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Fig. 2. Bulk optical system for implementing OFRT.1!

For simplicity let us assume at first that the intensi-

ties I(k) and I(k * fk) are identical apart from the
shift of ¥fk. The function Corr(k) will have a peak
when the images I(k) and I(k * fk) overlap, which
occurs when £ = TFfk. Thus, if the peak occurs
when £ = +fk, the object has been tilted in the neg-
ative direction whereas if the peak occurs when
k = —fx the object has been tilted in the positive
direction. It should be noted that the detectable res-
olution and dynamical range are fixed and depend on
the reflected speckle field size (roughness of the sur-
face) and the sensitivity of the measurement system,
e.g., numerical aperture, camera area, and pixel size.

Now let us consider the situation in which the re-
flected speckle field from an object is passed through
an OFRT system. The reflected speckle field from an
object after it is tilted is again modeled as u(x)exp
(#jkx2m/N). However, this time the reflected speckle
field is passed through the bulk optical system shown
in Fig. 2 and described by Cai and Wang.!! The frac-
tional order a (fractional angle 6) and the distances d
and d, are given by

2y (2 ~d(2f - d) )
a = e(ﬂ_) = (Tr)aI‘CCOS|:H)2+f2:|, ( a)

dd—p+f?

Fdre )

d2:2f

where f is the focal distance of both lenses. The
reader should not confuse the OFRT angle 6 with the
physical angle a through which the rigid body ro-
tates.

Using the two-dimensional optical definition of the
FRT of angle 6, we can give the intensity information
captured at the output of the OFRT system by

J u(x)

—o0

| Fylu(x)} | *(k) =

[\ sin(0) | 1"/

i
X exp[)\f x* cot(0)
2

2jmxk
- csc(@)]dx . 3)

N

Following tilting the image (OFRT) plane intensity is
given by
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This integral can be rewritten as

Ik ¥ kfsin(0)] = | Fylu(x)} | 2k = sin()fk]
1 ) JT o,
= —[)\f| TG f_w u(x)exp{)\fx
J2mx
X cot(0) — Y2 csc(0)

2

X [k ¥ sin(e)fK]}dx . (5)

Comparing this with Eq. (3) we can see that the frac-
tional domain parameter has been shifted by an
amount «f sin(0). Correlating the two images corre-
sponds to

Corr(k) = ITk T «f sin(0)] @ I(k). (6)

The direction and size of the tilting can be determined
in the same manner as outlined above. The magni-
tude of the shift in the fractional domain % is now
given by F«kf sin(0). Furthermore it should be clear
that by changing 6, the fractional order, the resolu-
tion and dynamical range associated with the metrol-
ogy system can also be varied. This result is discussed
further and confirmed experimentally in Section 3.

We want to simultaneously measure tilt and in-plane
translation motion using two fractional orders. To do so,
we assume that two OFRT systems are available, system
1 and system 2 (see the schematic diagram in Fig. 3)
corresponding to two different fractional angles 6, and 6,
(corresponding to orders a; and a,, respectively).1?
After the field passes through optical system 1, the
field incident on camera 1 is given by

I,,(k) = | Fy fuo} | %)
B 1
] sin(o,) |12

w jr
f u(x)exp[)\fx cot(6,)

. 2
2jmxk
- Tf csc(ﬂl)]dx
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Fig. 3. Optical arrangement used to determine tilt and in-plane
translation motion.

The object is now translated by an amount { and
tilted by an amount k. The reflected field can now be
described as u(x = {)exp[*j(2m/Nkx] and the OFRT
is given by

fel{k ¥ [L cos(8;) + kf sin(0,)]}

2

2
= Fel[u(x + §)exp< +j N Kx)] (k)

1
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~ TN SOk T Ql)]dx , 8)

where @, = { cos(0;) + «f sin (0,).

Comparing Egs. (7) and (8) we can see that the
fractional domain parameter & has been shifted by an
amount @; = { cos(8;) + kfsin (8;). Correlating the
two images yields

Corr(k) =Ik 7 Q) X 1(k), 9)

from which we can determine a value for ;. A sim-
ilar analysis is carried out for system 2, and a value
for @, = { cos(6,) + kf sin (8,) can be measured. Geo-
metrically we have projected the same motion onto
two nonorthogonal axes.* We note that we now have
two simultaneous equations with unknowns k and ¢,
which can be solved to yield

{ = csc(B; — 0,)[Q sin(6;) — @, sin(B,)], (10a)

k = csce(0; — 0,)[Q; cos(0,) — @, cos(0,)]/f. (10b)

Recalling that k = 2a, Eq. (10b) can be written as

a=csc(0; — 0,)[Q; cos(6y) — @ COS(el)]/zf- (10c)



It is desirable at this point to define explicitly what
we mean by the term system range. For correlation to
occur there must be an imaged surface area of
speckle, i.e., a part of the field, that is common to both
captured images. The area common to both images
will decrease as the body is moved. In the extreme
case there will be no area of speckle common to both
images, total decorrelation will occur, and it will not
be possible to measure any motion. The point at
which a correlation peak can no longer be unambig-
uously identified can be used to define the absolute
limiting range of the metrology system, i.e., the larg-
est motion measurable.

Examination of Eq. (6) reveals that if a body is
tilted by an amount k, the relevant fractional domain
parameter is shifted by an amount «kfsin(aw/2).
Thus, if a is large (0.7 < a < 1), then sin(aw/2) is
closer to unity and the fractional parameter is more
sensitive to changes in k (it can be used to measure
fine rotations). However, this also means that the
range of the system will be reduced because a small
motion of the rigid body results in a large motion in
the output plane of the system, reducing the amount
of speckle common to both images and thus reducing
the correlation between the images. If, on the other
hand, one wishes to measure a large tilting motion, a
lower order (0.1 < a < 0.5) is more suitable. By
choosing a lower value of @ one has to rotate the rigid
body through a larger angle to achieve the same shift
in the fractional domain. Thus the range of the sys-
tem has been increased but the sensitivity has been
reduced.

Similarly, when we are measuring translation it
can be shown that if a body is translated by ¢, the
relevant fractional domain parameter is shifted by an
amount { cos(aw/2). Thus if a is small (close to zero)
then cos(aw/2) is close to unity and the fractional
parameter is more sensitive to { variations. Con-
versely, for a low fractional order, ie., 0.1 < a
< 0.5, translational motion can be measured more
sensitively; however, the range of the system is re-
duced.

Therefore there is a trade-off when we are choosing
a fractional order between being able to measure a
very small motion accurately over a small range or
being able to measure less accurately but over a
larger range. This trade-off depends on whether tilt
or translation are of primary concern and should be
borne in mind when one is deciding what fractional
order would be most suitable for a given application.
For example, to produce a metrology system that is
able to measure large translational motion, or a small
rotational motion, a high fractional order (@ = 0.7)
would be most suitable.

3. Experimental Results

We now discuss the implementation of the OFRT-
based correlation system.

A. Experimental Setup

The rigid body in this experiment is an optically
rough 1.5 cm by 1.5 cm square piece of metal. It was

illuminated at an angle of 35° by a collimated plane
wave from a 488-nm argon laser. The focal length f of
the lenses used was 10 cm. Since the lengths in the
system could only be imperfectly positioned with an
accuracy of approximately *1 mm, it was estimated
that a FRT angle 6 implementation accuracy of ap-
proximately *1.2° could be achieved (see Section 4).
It must also be noted that positioning errors also lead
to variations in system magnification. In an attempt
to ensure consistency, averaging of the tilt results
was carried out over many independent measure-
ments. The camera used was a Sony XC-ES50CE,
and the translation and rotation stages were driven
with Oriel Encoder Mike actuators controlled with
the 18113 Oriel Encoder Mike Control System. From
the technical specifications for the Oriel Encoder
Mike, driving the rotation stage a distance of 161 pm
causes a rotation of 1° or 0.0174 rads. Both motion
stages (rotation and translation) are rated to have a
position resolution of 0.1 wum. However, we found
that, because of the weight of the rig (including the
rigid body), the increased hysteresis, and the dead-
zone effects (see Section 4), only a motion of ~5 pum
could be reliably achieved. National Instruments
LabVIEW was used to grab and process the captured
images.

B. Determining the Tilting Direction

An OFT system a = 1.0 (6 = w/2,d = 200 mm, d,
= 300 mm) was implemented. The first image was
grabbed, and then the rotational stage was turned
through an angle «. Then a second image was
grabbed. Processing (correlating) produced the result
shown in Fig. 4(a). The correlation peak in the center
results from the normalized (with respect to the max-
imum autocorrelation peak size) autocorrelation of
the first image. It thus has the maximum value of
unity and its position indicates the origin, i.e., the
initial location of the plate.

The second correlation peak is the normalized cor-
relation of the first and second images. It is in a
different location (to the right of the origin indicating
that motion in a particular direction has occurred),
and the height of the peak is less than unity, which
means that the images are not identical, i.e., some
decorrelation has occurred. By determining the dif-
ference between the location of the first (origin) and
second peaks, we can determine the angle through
which the body has been rotated. The rigid body
was rotated through an angle of a« = 0.00055
rad (0.032°) and the angle measured was 0.00047
(0.027°).

The decreasing height of the second correlation
peak determines the maximum measured amount
the body can be rotated through. In the extreme case,
the rigid body is rotated through such a large angle
that total decorrelation between the two images oc-
curs. In this case there will be no measurable second
correlation peak, and the amount of rotation can no
longer be determined. In this paper a correlation
peak of less than 0.2 is considered to be the limiting
range of the system. It should be noted that this
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Fig. 4. (a)Clockwise rotation of angle o = 0.0005 rad in an OFRT

system of order @ = 1 (OFT). (b) Anticlockwise rotation of angle
a = 0.0011 rad in an OFRT system of order a = 1 (OFT).

choice was imposed by us only for reasons of simplic-
ity and that no postprocessing of the data to improve
the signal-to-noise ratio was carried out.

The rotational stage was then returned to its orig-
inal position. Again a first image was grabbed, and
the rotational stage was turned through an angle
of —2a [see Fig. 4(b)] and a second image was
grabbed. The images were processed in the same
manner as above. It is clear that the correlation peak
is now to the left of the origin. It is also twice as far
from the origin as in the previous case indicating that
the body has been rotated through an angle twice the
size and in the opposite direction. The height of the
correlation peak is also less than in Fig. 4(a) indicat-
ing that the correlation between the two images de-
creases as the body is rotated through larger angles.
In this case the rigid body was rotated through an
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angle of —2a = 0.0011 rad (0.063°) and the angle
measured was 0.0011 rad (0.063°).

C. Varying the Dynamical Range of the Metrology
System

1. Tilting Measurement

An OFRT system of fractional order of ¢ = 1.2 (d
= 172.6 mm, d, = 295.1 mm) was implemented. The
theoretical analysis indicates that the metrology sys-
tem will now have a larger dynamical range for mea-
suring tilting angles; however, it will not be able to
measure tilting motion as sensitively. In Figs. 5(a)
and 5(b) positive tilting of the rigid body through
an angle of o« = 0.0011 rad (0.063°) was captured
for orders a = 1.2 and 1.6 (d = 1325 mm,d, =
258.8 mm). The angle a[a = 0.0011 rad (0.063°)]
through which the body was turned was measured
accurately [ = 0.0011 rad (measured value)] for
both orders. It can be seen that the correlation peak
in Fig. 5(a) is farther from the origin than in Fig. 5(b)
(even though the rigid body has been turned through
the same angle) indicating that the OFRT of order
a = 1.6 measures the tilting angle less sensitively
that an OFRT order of a = 1.2. However, it also
means that larger angles between captured frames
can be measured. Using the chosen correlation peak
threshold of 0.2 as the limiting range of the metrology
system, the largest angle that we can determine with
an OFRT of order a = 1.2 is 0.0027 rad (0.154°). The
largest angle that can be determined for OFRT order
a = 1.6 is 0.0087 rad (0.498°). This represents a
threefold increase in the range but is accompanied by
a threefold decrease in the minimum angle measur-
able, i.e., a corresponding loss in sensitivity.

2. Translation Measurement
For an OFRT system the distance of the second cor-
relation peak from the origin is given by @
= [ cos(0) + «ksin(0). It follows that for an OFRT
system of order a = 1 ( 0 = w/2,d = 200 mm, d,
= 300 mm, an OFT system), it is not possible to mea-
sure translation motion { because the { term is
multiplied by cos(6 = w/2). However, for an OFRT
systems of orders ¢ = 1.4(d = 150.9 mm,d, =
280.9 mm) and for ¢ = 1.6 (d = 132.5 mm, d, =
258.7 mm), translation motion can be measured with
different sensitivities over different ranges. This can
be seen in Figs. 5(c) and 5(d). In Figs. 5(c) and 5(d) the
body is translated at a distance of 150 pwm; however,
it is plain that for the order a = 1.6 the correlation
peak is farther from the origin that it is for the order
a =14

Measurements of translations of sizes 300 and
150 pm were made for OFRT systems of different
fractional orders. For a system of order a = 1.4, the
body was translated by 300 wm but the actual motion
measured was 283 pm representing an error of ~5%.
The rigid body was then moved by 150 pm; however,
the measured motion was only 141 pum representing
an error of ~6%.

When the order is changed to a = 1.6, an improve-
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translation of 150 pm in an OFRT system of order a = 1.6.

ment in the accuracy of the measurement was ob-
served. The rigid body was translated again by
300 pm; however, the measured result was 298 pm
representing an error of ~1%. When the rigid body
was translated by 150 pm, the measured result was
145 pm representing an error of ~3%.

When the order is changed to a = 1.8, a further
improvement in the accuracy of the measurement
was noted. The rigid body was translated again by
300 pm, and the measured result was 298 pm repre-
senting an error of ~1%. When the rigid body was
translated by 150 um, the measured result was
149 pm representing an error of ~1%.

Therefore, as the fractional order is changed from
a = 1.4 to ¢ = 1.8, an improvement of the system
ability to measure smaller motions more accurately is
thus noted.

D. Simultaneous Tilting and Translation Measurement

To determine both tilting and translational motion it
is necessary to have two simultaneous equations [see
Eqgs. 10(a)-10(c)]. This can be achieved as described
in Section 2 by capturing the motion of the rigid body
in two different fractional domains. In Fig. 6(a) the
speckle fields corresponding to a translational motion
of 150 pm followed by a rotation of 0.0011
rad (0.063°) were captured and processed after hav-
ing passed through an OFRT system of order a,
= 1.4. The same motion was also captured in an
OFRT system of order a, = 1.6. Following the
analysis it was found that the tilting motion was
estimated to be 0.0011 rad (0.063°) and the transla-
tional motion was estimated to be 147 pm. It is clear
from Fig. 6(a) that the location of the cross-
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= 1.6. (b) Positive translation of 300 pm followed by a positive

rotation of 0.0022 rad for OFRT systems of order a = 1.5 and «a
= 1.8.

correlation peaks for orders a; = 1.4 and a, = 1.6 are
very close. In fact Fig. 6(a) has purposely been plotted
from a different viewpoint to allow the reader to dis-
tinguish the two cross-correlation peaks more easily.

We repeated the experiment for a translation
motion of 300 pm followed by a rotation of
0.0022 rad (0.126°) using fractional orders of a =
15d = 1414mm,d, = 270.7mm) and a =
1.8 (d = 115.6 mm, d, = 230.9 mm). The tilting and
translational motion was found to be
0.0021 rad (0.120°) and 317 pwm, respectively. From
Fig. 6(b) it can be seen that the resulting cross-
correlation peaks are further apart than in Fig. 6(a).

4. Conclusion

We have presented an optical signal processing—
based technique to determine the direction and mag-
nitude of a rigid body’s motion using correlation. An
optical fractional Fourier transform (OFRT) system
is proposed in which the dynamical range and sensi-
tivity of the system can be varied as the user desires.
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This new system can be used to simultaneously esti-
mate both the tiling and the in-plane translation of a
rigid body. Results have been presented illustrating
the validity of the models and the effectiveness of the
technique. The experimental results demonstrate the
sensitivity, range, and accuracy with which tilting
and translation motions can be measured.

There are several potential sources of experimental
error in the data produced in the metrology system.

(1) Imperfectly positioned lenses. An error anal-
ysis was carried out to estimate the effect of imper-
fectly positioned lenses on the output from the
OFRT. The analysis indicated that the effect of
imperfectly positioned lenses (=1 mm) was depen-
dent on the fractional order of the optical system.
OFRT orders became increasingly sensitive to error
as a is decreased from ¢ = 1.8(d = 115.6 mm,
d, = 230.9 mm) (error ~0.8°) to a = 1.0(d =
200 mm, d, = 300 mm) (error ~1.2°). It should also
be noted that misalignment of optical elements will
also lead to changes in the system magnification that
can adversely effect the measurements. We note from
our results (Subsection 3.B.2) that, with an order a
= 1.4, translation motion was not measured as accu-
rately as it was for an order of a = 1.8.

(2) Motion stages: hysterisis, integrator windup,
and dead zone. The Oriel Motor positioning controller
system is a standard proportional, integral, deriva-
tive controller. When attempting to move the actua-
tor a small distance (~1-5 um), the effects of the
dead zone and integrator windup, which typically
cause the motor to overshoot its position before repo-
sitioning, were observed. We found that the rig (in-
cluding rigid body) was slightly too heavy for the
positioning actuators and so they were not able to
perform to the standard of the listed specifications.
This effect is more pronounced when the distance to
be moved is small. There are some hysterisis effects
associated with the motor that also lead to an impre-
cision in positioning.

From the experimental results it appears that
translational motion cannot be measured accurately
(error =6%) for low fractional orders. This is not in-
consistent with the theory allowing for the positional
errors above; however, it does seem that rotational
measurements can be measured more accurately
over a wider range of OFRT orders. It was also noted
during the course of these experiments that the ac-
curacy of rotational measurements (even for higher
fractional orders, i.e., @ > 1.5) could be reproduced
more consistently than those of the translational mo-
tion.

Our model predicted that if motion is captured si-
multaneously in two different fractional Fourier do-
mains, a complete picture of the motion of a rigid
body can be determined. Two results (Fig. 6) are pre-
sented here that prove that this is possible. However,
two points should be noted based on our experimental
results:

(1) Owur initial results seem to indicate that it is



more difficult to measure translation motion accu-
rately (particularly for a < 1.4), so it would seem
sensible that fractional Fourier orders of a > 1.5 be
used for any metrology system that needs to measure
both tilting and translation with high accuracy.

(2) When applying this technique one should not
use two fractional orders that are close to each other
[see Fig. 6(a)l. Motion captured with an OFRT system
causes a shift in the relevant fractional domain pa-
rameter. If these fractional orders are close to each
other they will produce very similar shifts in their
respective fractional domain parameters. In Fig. 6(b)
one can see that, although the translation and rota-
tion motions are larger than in Fig. 6(a), the correla-
tion peaks are further apart, due in part to the larger
difference between the fractional orders (¢ = 1.5 and
a = 1.8) used.
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