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By use of matrix-based techniques it is shown how the space—bandwidth product (SBP) of a signal, as indicated
by the location of the signal energy in the Wigner distribution function, can be tracked through any quadratic-
phase optical system whose operation is described by the linear canonical transform. Then, applying the regu-
lar uniform sampling criteria imposed by the SBP and linking the criteria explicitly to a decomposition of the
optical matrix of the system, it is shown how numerical algorithms (employing interpolation and decimation),
which exhibit both invertibility and additivity, can be implemented. Algorithms appearing in the literature for
a variety of transforms (Fresnel, fractional Fourier) are shown to be special cases of our general approach. The
method is shown to allow the existing algorithms to be optimized and is also shown to permit the invention of
many new algorithms. © 2005 Optical Society of America
OCIS codes: 080.2730, 100.2000, 070.4560, 200.2610, 200.3050, 200.4560, 200.4740.

1. INTRODUCTION

As part of this paper we explicitly discuss more than ten
numerical algorithmsk11 known in the literature that de-
scribe different methods of calculating the output of opti-
cal systems (including free-space propagation) given some
input wave field. We begin our introduction by highlight-
ing this fact because it illustrates (a) the practical impor-
tance of these algorithms and (b) what appears to be the
complexity of a problem that requires the derivation of so
many different numerical techniques. Clearly, the avail-
ability of stable fast numerical methods to carry out such
calculations are critically important and of general inter-
est.

Here we show that a relatively simple procedure can be
used to derive all the previous algorithms. We also show
how the existing algorithms can be interpreted and opti-
mized with our approach. Finally, we show that intimate
links exist among the following three entities:

1. The optical system, its matrix representation, and
the corresponding linear integral transformation.

2. The Wigner distribution function (WDF) of the sig-
nal and the signal’s space-Bandwidth product (SBP) as it
passes through the optical system.

3. The optimum numerical algorithm with which to
calculate the effect of such systems.

In overview the paper is organized as follows. In Sec-
tion 2 we briefly discuss the WDF and its relationship to
the SBP and the Nyquist sampling criteria. In Section 3
we discuss the linear canonical transform (LCT) and its
integral and matrix definitions. We show how the SBP
varies following application of the LCT and how this
variation can be determined automatically. In Section 4
we explicitly discuss the matrices and the variations of
the SBP for five common optical transforms, the Fourier
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transform (FT), the fractional Fourier transform (FRT),
the Fresnel transform (FST), the chirp modulation trans-
form (CMT), and scaling. In Section 5 we give an overview
of the numerical algorithms available, and we represent
these as matrices. We then discuss matrix decompositions
so that each of the matrices presented in Section 4 can be
decomposed into a set of matrices that can be related di-
rectly to the numerical algorithms. In Section 6 we show
how this methodology can be used to derive some well-
known numerical algorithms that have previously ap-
peared in the recent literature. In total ten algorithms are
examined, primarily for the calculation of the FRT and
FST. We show that all of these algorithms are special
cases of our general procedure for deriving LCT algo-
rithms. In Section 7 we invent a number of new algo-
rithms and discuss the possibility of future invention. In
Section 8 we offer a conclusion.

2. WIGNER DISTRIBUTION FUNCTIONS
AND SPACE-BANDWIDTH PRODUCTS

The WDF of a complex optical amplitude distribution (or
Wigner distribution chart) provides a graphical means of
simultaneously viewing the signal’s spatial and spatial-
frequency distributions and is particularly useful for visu-
alizing localized signalls.m_16 W,(x,k), the WDF of a sig-
nal u(x), is defined in terms of this spatial distribution as

W, (x,k) = Y{u(x)}(x,k) = f u(x — g2)u"(x — g2)

Xexp(—j2mkE)dE, (1)

where & represents spatial frequency, * denotes complex
conjugation, and y{u(x)}(x,k) denotes the WDF operator.
The real-valued WDF has double the number of dimen-
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sions; i.e., a complex one-dimensional signal has a two-
dimensional WDF, while two-dimensional signals have
four-dimensional WDFs. The WDF is entirely
reversible’®!” with the exception of a constant phase fac-
tor as shown in

u(x)u*(O)zf W, (x/2,k)exp(j2mkx)dk, (2a)

()2 = f W, (0,k)dE. (2b)

An exactly equivalent definition of the WDF can be given
by using the FT of u(x), which we denote as U(k), as fol-
lows:

W, (x,k) = J U(k - S) U*(k - ;)epr’wag)dg. (3)

In many practical problems it is assumed that a signal is
bounded within some finite region in both the spatial and
spatial-frequency domains. The spatial extent W, and the
frequency extent B, are defined!” such that

u(x) =0, |x|>Wy2, (4a)

Uk) = f u(x)exp(-j2mkx)dx = 0, |k|> By/2, (4b)

and therefore the signal energy is negligible outside these
spatial and spatial-frequency regions. For all signals dis-

cussed here W, and B, may also be defined as follows'":
Wy/2
f |u(x)[dx = 7E, (5a)
~Wy/2
By/2
f |U(k)dk = 7E, (5b)
-By/2

where 7=<1, and E represents the total signal energy:
E =j () Pdx =j [U(k)[*dk. (6)

The dual equality in Egs. (5) follows from Rayleigh’s theo-
rem. In Fig. 1(a) we show the WDF of a signal u(x) in
which the signal energy lies within a rectangular area.
The four corner coordinates that define the shape are
shown on the diagram. The signal u(x) is completely de-
termined if it is sampled equidistantly in x with sample
space dx such that the Nyquist criterion is satisfied:

& < 1/B,. (7)

Therefore the number of samples N required to describe
u(x) completely is

N= Wo/&XfZWOBo. (8)

Clearly, for the most efficient uniform sampling &x=1/B,,
and N=WB,, the SBP of the signal. In general signals
may have an irregularly shaped WDF, and one such case
is shown in Fig. 1(d). This shape is the result of applying
a FST to the signal with regular WDF shown in Fig. 1(a).
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Fig. 1. WDF of a signal before and after different types of LCT
are applied to the signal: (a) WDF of the original signal, (b) WDF
of the signal after it has been Fourier transformed, (¢) WDF of
the signal after it has been fractional Fourier transformed, (d)
WDF of the Fresnel transformed signal, (e) WDF of the signal af-
ter it has been chirp multiplied, (f) WDF of the magnified signal.

Such a signal can be fully described with a number of
samples less than the SBP,'” but this requires nonuni-
form sampling in the space domain.

3. LINEAR CANONICAL TRANSFORMS,
MATRICES, AND SPACE-BANDWIDTH
PRODUCT

The LCT!1618 is a three-parameter class of linear inte-
gral transform and is defined as follows

U ') = Lo fu(0)}x') = exp(-jm/4)\ B J u(x)

X exp[jm(ax? — 2Bxx" + yx'?)]dx, 9)

where «a, B, and y are real transform parameters that are
independent of the x and x’ domain coordinates. This can
be further generalized to a five-parameter transform
known as the special affine Fourier transform!%%°
(SAFT), in which the additional two parameters are shifts
in the spatial and spatial-frequency domain and have no
effect on the numerics. The LCT is a unitary transform
and includes as special cases the FT, the FST, the FFT,
and the operations of scaling (magnification) and chirp
multiplication (thin lenses). Optical systems implemented
by using an arbitrary number of thin lenses and propaga-
tion through free space in the Fresnel approximation, or
through sections of graded-index media, belong to the
class of systems known as quadratic-phase sys‘cems9
(QPSs). All QPSs can be described mathematically by us-
ing the LCT. In our formulation the wavelength factor has
been included as a part of a, 8, and y. However, in most
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cases in the literature the wavelength is explicitly given
as a parameter in the definition of the QPS, since it is
common to all three parameters. The effect of the opera-
tor L, g, on the WDF of the signal is

Wi(x,k) — W(ax + bk,cx + dk), (10)
where ad-bc=1, a=vy/B, b=1/B, c=—-B+ay/B, and d

=a/ . This is equivalent to the following matrix transfor-
mation acting in phase space:

M N [ﬂ@

These matrices are unit determinant, implying a conser-
vation of area (energy) on the WDF chart. The matrices
are useful because the product of the composition matri-
ces of two or more successive optical systems is the matrix
of the overall optical system.

We will show that these matrices can be used to derive
efficient algorithms for the numerical calculation of LCTs,
but first we develop a formalism to calculate automati-
cally the SBP by using matrix algebra. In Fig. 2 we show
the WDF's of a signal and of its LCT. We have assumed
that the signal’s energy lies within some arbitrary (asym-
metrical in x—£) four-sided shape that is defined by the
corner coordinates (xi, k1), (xg, kg), (x3, k3), and (x4, ky).
We can, in fact, take any number of such points and sides
to define the bounded area in which most of the signal’s
energy lies. The spatial extent of the signal is W, its
spatial-frequency bandwidth is By, and the number of
samples required, with uniform equidistant sampling, to
describe the signal fully is Ng=WyB,. After applying the
LCT the shape changes. However, the bounded area, the
bounded energy, and the number of sides remains the

W,
E-=
{Bo

= Max|SD| = Max{

where we have introduced the notation Max[-] to denote
the maximum element on each row. On the right-hand
side of Eq. (14) we find the distance between each possible
pair of coordinates in the x (top row) and the % (bottom
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(x2,k2) A(x k") (x,k"2)
?(x:,k: (k) X & E -
TN e
‘i’ (xa,ks) v CA) (x'3,k'5)
D it > <------ >
w, W,
(@) (b)

Fig. 2. 'WDF of a signal with bounded signal energy (a) before
and (b) after application of an arbitrary LCT.
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same as a result of the affine nature of the LCT. The num-
ber of samples now required to determine the trans-
formed signal, with uniform equidistant sampling, is
given by N,=W,B,. With matrix algebra the change in
position of each of the four coordinates defining the WDF,
and thus W, and B,, and subsequently N,,, can be found
simply as follows. Given

X1 Xg X3 X4
S-= 12
{kl ky ks kj’ (122)

the new corner coordinates are given by
xX] xy x5 x4
s'=Ls=|, .
ky kg k3 ky
|:ax1+bk1 ax2+bk2 (l.’)C3+bk3 ax4+bk4]

cx1+dk1 C.XI2+dk2 C‘.’)C3+dk3 CSC4+dk4

(12b)

where S and S’ are the corner coordinate matrices (CCM)
before and after application of the LCT. The spatial extent
is clearly the maximum distance between any two of the x
coordinates, while similarly the spatial-frequency band-
width is the maximum distance between any two of the &
coordinates. The spatial extent and the spatial frequency
can be automatically obtained from the CCM by using the
distances matrix D:

1 1 1 0 0 O
-1 0 0 1 1 o0
D=9 210 -1 0 1] (13)
O 0 -1 0 -1 -1
To illustrate this we find W, and B, of the original signal
and define the extent vector E,

‘xl_x2| |x1—x3| |x1—x4| |x2—x3| |x2—x4| |x3—x4|
by —ko| |ky—ks| |ky—Fal |ko—ks| |ky—Fyl |ks—F4l]

(14)

row). The absolute value of each element is then calcu-
lated, giving a 2X6 matrix of positive elements. The
maximum value appearing in each of the two rows is de-
termined, giving a 2X 1 vector. On the left-hand side of
Eq. (14) the element in the top row is W and in the bot-
tom row is By. To calculate N, we find the product of the
transpose and the rotated extent vector as shown in Eq.
(14), where R is the rotation matrix:

Wo

N, 1ETRE 1WB o1
o= ;E"RE = _[W; By] i

Lo =WoB,. (15)

0

After application of the LCT the transformed signal has a
new extent vector E':
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W,
E'=| " |=MaxS'D|

n

a [|a(x1 —XQ) + b(kl - k2)| \a(xl —JC3) + b(kl - k3)| |a(x1 —.X'4) + b(kl - k4)‘ |a(x2 —.'Xf3) + b(k2 - k3)|
= Max
\c(xl —.’)CQ) + d(kl - k2)| |C‘(.’)C1 —x3) + d(kl - k3)| \c(xl —JC4) + d(kl - k4)| |C(.’)C2 —x3) + d(k2 - k3)|
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(16)

la(xg —x4) + bRy = ky)| ales —x4) + blks — ky)|
|C(3C2—I)C4)+d(k2—k4)| |c(x3—x4) +d(k3—k4)‘ -

Earlier we noted that we can take any number of coordi-
nates and sides to define the bounded area in which most
of the signal’s energy lies. In relation to this, when the
WDF is bounded by n sides (with n coordinates) the CCM
S will be of dimension 2 Xn, and the distances matrix D
will be of dimension n X (2/7'i). Extension to more than
four coordinates is straightforward.

In many cases the original sampled signal (whose LCT
we wish to generate numerically) will occupy a regular
rectangular shape on the WDF such as that shown in Fig.
1(a). This assumption is used in all of the algorithms ™!
in the literature. In this case the input CCM is

[xl Xy X3 x4] [—W0/2 Wy2 Wy2 -Wy2

ky by ks ky| | By2 By2 -By2 -By2|
(17)

Clearly, however, this may not always be the case. An ex-
ample would be if the original signal were a Fresnel-
transformed image for which uniform sampling was used
in the recording process. Such a signal would have a WDF
resembling that shown in Fig. 1(d). In this case we should
not automatically assume the CCM given in Eq. (17) and
should use whatever a priori knowledge is available to de-
fine the correct initial elements of the CCM. In Section 5
we will optimize the existing algorithmsuf21 to allow for a
nonrectangular initial WDF.

We note that if we do assume an initial rectangle with
the CCM defined in Eq. (17) and with the extent vector
E =[gg], the extent vector of the signal resulting from the
LCT would be

[|‘1W0| 6By —aW,| [bB,| [6By+aW,
= ax .
leWol [dBo—cWo| [dBo| [dBg+cWy

(18)

The largest elements of the two rows in the matrix are
clearly dependent on the values of a, b, ¢, and d (and
therefore on the parameters, «, 8, and vy of the LCT in
question). Once these maximum values are determined it
is then possible to calculate the number of equidistant
samples required to describe the signals fully.

4. COMMON TRANSFORMS AND CHANGES
IN SPACE-BANDWIDTH PRODUCT

In this section we will look at some of the most common
forms of LCT and their effect on the shape of the WDF of
a signal. This will allow us to determine the change in the
number of equidistant samples required to describe the
signal after these transforms have been applied. The re-
sulting information will later be applied to derive various
numerical algorithms with matrix algebra. We review five
transforms, each of which describes an optical system.
First, we examine the FT, which can be implemented with
a single lens and two sections of free space.'* Second, we
examine the FRT'®161920 which has numerous applica-
tions and optical implementations. Next, we discuss the
FST,'* which corresponds to free-space propagation and is
referred to as chirp convolution. Then we review chirp
multiplication, which is realized optically by a thin lens.
Fifth and finally, we discuss simple scaling or magnifica-
tion. Many QPSs can be implemented from combinations
of these systems (e.g., the first two can be composed from
the last three). We will not discuss the applications or op-
tical implementations of these transforms further but
proceed to present mathematical definitions and apply
the theory outlined in Section 3 to describe the resulting
changes in the WDF and SBP.
The optical FT has the integral representation

* 2
F{u(x)}(k):f u(x)exp(—j)\—jjxk)dx, (19)

where \ is the wavelength of light and f is the focal length
of the Fourier transforming lens. Application of the FT
causes a rotation of the WDF by /2 rad. This is illus-
trated in Fig. 1(b), where we show the WDF of the Fourier
transform of the original signal whose (rectangular sym-
metric) WDF, with spatial extent W, and spatial-
frequency bandwidth By, is shown in Fig. 1(a). Defining
the FT in terms of the LCT parameters gives a=y=0, 8
=1/)\f, and this gives

a b 0 N
c d| |=1nf ol 20

The normalized FT matrix is given by the same matrix
setting Af=1. Let us apply the optical FT to a signal with
spatial extent W,, a bandwidth B, and Ny=W,B,. The
new extent vector is
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- W, NBo 91
B, | W 1)
which is true for any input CCM. The new SBP is

W,
Ny=W,B, =\By = Welo=No. (22)
Despite the change in the WDF there has been no change
in the SBP. The same number of samples can be used to
represent the signal before and after application of the op-
tical or normalized FT regardless of the initial CCM.
The optical FRT has the integral representation

w K x2 2xx,
Fp{u(x)}(xp)=f u(x)exp Jg tan(pm/2) B sin(p 7/2)

. ] }
+——— | (dx, (23)
tan(p 7/2)

where g is called the standard focal length'® and is depen-
dent on the physical parameters of the optical FRT sys-
tem, and p is the order of the FRT and defines the domain
x, into which it transforms. The FRT is defined separately
for p equal to integer multiples of 2. When p=1 the FRT
reduces to the FT, which is simply a special case. Applica-
tion of the FRT of a given order causes a rotation of the
WDF by pn/2 radians.'® Such a rotation is illustrated in
Fig. 1(c). We define the FRT in terms of the LCT in Eq. (9)
with a=y=1/[\g tan(pw/2)] and B=1/[\q sin(pw/2)].
Thus the matrix for the FRT is

a b cos(pm/2) \q sin(p7/2) 04

¢ d| | -sin(pa/2)/\g cos(pm/2) | 24
The extent vector after application of the FRT can now be
calculated for any initial CCM [with the most general cor-
ner coordinates (x1, k1), (xg, ky), (x3, k3) and (x4, ky)] by
substituting the known values into Eq. (15). The new SBP
can then be calculated with Eq. (14). For the general case
E’ is algebraically cumbersome, so we do not define it ex-

plicitly here. However, in the case of the initial CCM de-
fined by Eq. (16),

- [Wn] [BO)\q|sin(p'rr/2)+W0|cos(p'n'/2)|

B, By|cos(pm/2)| + Wo|sin (p/2)|/\g |’
(25)
and the new SBP is given by
N, =W,B, = Ny + (1/2)|sin(pm)|(A\gB,? + W?/\q).
(26)

From Eq. (26) we can deduce that any rotation (when p is
not an integer) of the WDF shown in Fig. 1(a) produces an
increase in the SBP and therefore an increase in the num-
ber of samples needed to represent the signal after appli-
cation of the FRT. This is caused by changes in the spatial
extent and spatial-frequency bandwidth. We note that the
values of W,, B,,, and N,, are periodic in p of period 1. For
an initial signal with a general CCM we find the new SBP
by using Eqgs. (15), (16), and (24), and it is possible that
the number of samples we require will decrease.

Vol. 22, No. 5/May 2005/J. Opt. Soc. Am. A 921

The third transform we deal with is the FST, which has
the integral representation

w

FST {u(x)}x,) = f u(x)exp [jx_(xZ - 2xx, + xzz)} dx,

z

(27)

where z is the distance of propagation and x, is the output
Fresnel domain. Application of the FST of a given dis-
tance causes a horizontal shearing of the WDF in the
space dimension (the amount of shearing dependent on
the value of z). This effect is illustrated in Fig. 1(d). De-
fining the FST in terms of the LCT gives a=y=8=1/\z
and this gives the (upper triangular) matrix for the FST:

a b 1 Az
cd| o 1] (28)

The extent vector after application of the FST for the
most general initial CCM is calculated by substituting the
known values into Eq. (16). In the case of the signal
shown in Fig. 1(a) the new extent vector is

, Wn )\ZBO"'W()
P R A (29)

The spatial extent increases as z increases, while the
bandwidth is unchanged. The new SBP is

N, =Ny +\zB,%. (30)

The horizontal shearing of the WDF has increased the
SBP and therefore increased the number of samples
needed to represent the signal after application of the
FST. For the most general CCM the bandwidth will al-
ways remain constant at B, but the spatial extent can in-
crease or decrease depending on the elements of the CCM.

The fourth transform is the chirp modulation trans-
form (CMT), which describes the physical process of pass-
ing through a thin lens in the paraxial approximation. It
has the integral form

CM{u(x)}x) = f u(x’)exp(—j%ch) Slx —x")dx'

T
= u(x)exp(—jﬁﬂ), (31)

where [ is the focal length of the lens and & denotes the
Dirac delta function. Positive and negative values of f cor-
respond to positive and negative lenses, respectively. Ap-
plication of the CMT causes a vertical shearing of the
WDF along the frequency axis. This effect is illustrated in
Fig. 1(e). The effect of the CMT on the WDF is a direct
result of the following property of the WDF!316:

I#{u(x)g(x)}(x,k)=fWu(x,k—k’)Wg(x,k’)dk'. (32)

From this we can derive a lower triangular matrix for the
CMT on the WDF (for a positive lens) as
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a b 1 0
c d|T|-nf 1) (33)

The extent vector after application of the CMT for the
most general initial CCM is calculated by substituting the

(1 — x5)] |(x1 — x5)]

E’:Max{

|(ocp = x4)|

(g = x1)/Nf+ (k1 = ko)| (x5 —x1)/Nf+ (Ry = k3)| (g —x0)/Nf+ (Ry = k)| (x5 — 22)/Nf+ (kg — k3)]
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known values into Eq. (15). This is given explicitly in Eq.
(34a) below since it is used often in deriving the later al-
gorithms. In the case of the signal shown in Fig. 1(a) the
new extent vector is presented in Eq. (34b).

(x3—x4)|]
|(x4—x2)/)\f+ (kz—k4)||(x4—x3)/)\f+ (k3—k4)‘ ’

E' Wn WO
T B, | | Bo+ WA

In the general case of Eq. (34a) the spatial extent remains
constant while the bandwidth changes. In the case of Eq.
(34b) the bandwidth increases and the shorter the focal
length, the greater the increase in bandwidth. The new
SBP will therefore increase and is given by

N, =Ny + W2\ (35)

The vertical shearing of the WDF has brought about an
increase in the SBP. This is entirely caused by a change in
the bandwidth and not in the spatial extent. As we de-
crease f, we increase the number of samples required to
describe the CMT signal. For the most general CCM and
the extent vector of Eq. (34a), the spatial width will al-
ways remain the same. However, the bandwidth can
increase—decrease depending on the elements of the
CCM, and there will be a corresponding increase—
decrease in the number of samples required for the signal.

The final transform we consider in overview is scaling,
which is also called magnification (demagnification) or
squeezing and is typically realized in imaging
:sys‘cems.l?”lzl’16 The scaling operation has the integral rep-
resentation

Myfu(o)hx) = UM f u(x")8x — x'IM)dx’ = \1Mu(x/M),
(36)

where M is the magnifying factor of the imaging system
in question. M >1 corresponds to magnification and M
<1 to demagnification. Scaling causes an elongation of
the WDF. The effect of demagnification is illustrated in
Fig. 1(f). The matrix is derived by use of the following
definition of the Dirac delta function'®16:

2 1
Sx)=lim |y Y exp| jm| — - — , 37
Yoo y 4

and is given by

(1 —2x4) (9 — x3)
[ESREN] |(2g — )] (348)
(34b)

[

a b M 0

cd| |0 UM]| (38)
The extent vector (regardless of the initial CCM) after
scaling is

B w, MW,
| B, | |Bo/M]| (39)

The spatial extent scales by a factor of M as does the
bandwidth. The new SBP therefore does not change, and
the same number of samples is needed to describe the sig-
nal.

N, = (MWo)(By/M) =N,. (40)

In this section we have examined the effect of the FT,
FRT, FST, CMT and scaling on the WDF. The resulting
changes in the WDF change the SBP and therefore the
number of uniform samples necessary to represent the
signal satisfactorily. Applying this technique, we can now
systematically sample in the input and output domains in
a way that is intimately linked to the optical system. For
the FT and scaling we have deduced that there will be no
change in the number of samples required in the input
and output domains. This result is true for any initial
shape (CCM) of the WDF. However, for the FRT, FST, and
CMT the initial CCM shape determines whether we need
to increase or decrease the number of samples required to
describe the output signal.

5. NUMERICAL PROCESSES AND THEIR
ASSOCIATED MATRICES

In this section we discuss the numerical processes avail-
able in the literature. In particular we discuss the FFT,
scaling, and numerical chirp multiplication. We assign a
matrix representation to each of these three numerical
processes. These three tools are the only tools to simulate
the LCT. In Section 6 we will proceed to examine the sub-
ject of matrix decompositions, which will allow us to de-
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compose the LCT matrices discussed in previous sections
into products of these three matrices, each of which cor-
responds to the numerical processes that we can use.
The most widely used computational algorithm in opti-
cal transform simulation is the FFT.>! The FFT has been
used to calculate the FT,'* FRT,"* and FST.>! The FFT
is an efficient means of determining the discrete Fourier
transform with N log N calculations instead of the N? cal-
culations that would otherwise be required. The savings
in the number of calculations is large if N is large. The
FFT takes N input samples and outputs N samples that
are approximations to the sample values of the continu-
ous FT of the original function. The matrix for the nor-

malized FT, [ can be numerically implemented

1

-1 0/
with the FFT. Since the continuous FT has no effect on
the SBP, Eq. (22)—the FFT algorithm—efficiently maps
N input samples (with sampling interval &x) to N output
samples (with sampling interval sk=1/Ndx). In each in-
stance in this paper where the FFT is used, we assume
that a discrete function in the range -N/2<n<N/2-1is
mapped to a discrete function in the range -N/2<m
<N/2-1. In general, for ease of computation the FFT
maps from the range 0s=sn<N-1to 0sm=<N-1. If such
an FFT algorithm is used, then we must wrap the output
function around such that the last N/2 samples become
the first N/2 and vice versa, and we must also multiply
every odd sample by 1.

The scaling operation also has no effect on the SBP and
involves no additional computational cost. Therefore, it
affects only the sampling intervals & and &k in the x and
k domains, i.e.,

& — Méx, (41)

6k — OkIM. (42)

These changes in sampling intervals correspond to the
changes in spatial extent and bandwidth shown in Eq.
(38).

Numerical implementation of chirp multiplication is
somewhat more difficult. The matrix shown in Eq. (33) is
numerically implemented by multiplying each sample of
the discrete function by complex values as shown in rela-
tion (43), where —-N/2<n<N/2-1:

21
finsx) — fin ax)exp{—‘]h—f(n axﬂ} , (43)

where dx=Wy/N. The CMT brings about a change in the
bandwidth of the signal it operates on while it leaves the
spatial extent unchanged. This results in a corresponding
change in the number of samples required to describe the
signals, which in turn depends on the elements of the
CCM of the discrete function being operated on. In the
case where CMT causes an increase in bandwidth (and
therefore a subsequent increase in the SBP and the num-
ber of samples required to represent the signal), we ac-
commodate by interpolating the input samples. If the
CMT gives B,,=kB, (and N,,=kN), where £ >1, we must
interpolate or upsample by a factor of £. Interpolation can
be carried out with numerous methods,? e.g., by using
two FFT algorithms of size N,. In the case where the
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CMT causes a decrease in bandwidth (and therefore a de-
crease in the number of samples required to represent the
signal), we accommodate by decimating the input
samples. If the CMT gives B,,=kB, (and N,,=kN,), where
k<1, we must decimate or downsample by a factor of k.22
In the case where the new SBP is not an integer value we
should round to the nearest integer so that interpolation—
decimation may be applied.

In Section 6 we will show that algorithms to generate
LCTs can be derived by using matrix decomposition in
which we decompose the LCT matrix into a product of
scaling, FT, and CMT matrices, each of which has numeri-
cal implementations. To account for the changes in SBP
we must track the changes in the CCM, finding the new
extent vector at each stage. This means that we must
track the CCM as it passes through each component ma-
trix in the algorithm so that we know exactly what hap-
pens as it passes through the CMT matrix of interest. We
note that in some cases it is possible that the CMT may
actually reduce the SBP, for example when the CMT re-
verses the effect of an earlier CMT operation.

Thus far we have examined the numerical implemen-
tation of three types of matrices, corresponding to the FT,
scaling, and chirp multiplication. We now apply the
theory of matrix decomposition to other types of matrices
that match other types of LCT, such as the FRT and FST
and finally the most general form of the LCT with arbi-
trary parameters. The goal is to decompose these more
complicated matrices into products of the matrices exam-
ined in this section and then use their numerical imple-
mentations.

6. SYSTEMATIC GENERALIZATIONS AND
OPTIMIZATIONS OF EXISTING
ALGORITHMS

In this section we show that the existing algorithms used
for simulation of the FST, FRT, and LCT*™ can be de-
rived efficiently by using our technique of matrix decom-
position and tracking of the CCM and the extent vector
(and therefore the SBP) as the signal passes through the
decomposed matrices.

In the literature, there are restrictive conditions placed
on the accurate use of each of these algorithms. For ex-
ample, the direct method®® for implementing the FST is
accurate for large distances z, and conversely the spectral
method®® for implementing the FST is accurate for small
distances. These conditions will not be listed here since,
in all cases, we show these conditions can be removed by
employing interpolation and extrapolation. We show that
the various algorithms for implementation of the FST all
give identical outputs if they are used correctly. The dif-
ference between them is the number of calculations used
and the degree of interpolation and extrapolation re-
quired to obtain these results. The same conclusions ap-
ply to the various algorithms for calculation of the FRT.*™
We also show that all the FRT algorithms can be made in-
dex additive.

The subject of matrix decomposition has been investi-
gated extensively in the literature.?>?® In the case of the
optical FT the following decomposition is well known:
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o | [a o [o 1
~Inf o o nfll-1 o) (44)

Therefore the optical FT can be numerically implemented
with a single FFT algorithm followed by a scaling of the
output-sampling interval; the number of calculations for a
discrete input function of N samples is N log N.

The FST has a number of different numerical imple-
mentations. The direct method®® can be derived by use of
the following matrix decomposition for the FST:

1 Az 1 0f|lx O 0 1 1 0
0 1| |1z 1[0 IAz||-1 0|1z 1
= M4M3M2M1 . (45)

M, corresponds to a CMT and will induce a change in the
number of samples required to describe the input function
ug(ndx) with Ny samples and a CCM S;, where &
=Wy/Ny. The new number of samples N; is found by us-
ing the new extent vector E;=Max|M;S,D| [see Eqgs. (12a)
and (13)] and multiplying the elements of E{,(W; and B;)
together. We interpolate or decimate u, depending on the
value of N;. Next we multiply by the quadratic chirp fac-
tor as shown in relation (43), where o&x=Wy/N;, N{/2
<n<N;/2-1, and f=-z. Next appears the matrix product
M;3M,, which corresponds to an optical FT whose imple-
mentation has previously been discussed; the required
number of samples remains N;. My is a second CMT, and
the number of samples changes to N, which is calculated
from the last extent vector E,=Max|MM;M,M,;S,D]|,
and we apply interpolation or decimation as required [E,4
is equivalent to that given in Eqgs. (34)]. We multiply by
the quadratic chirp factor as shown in relation (43), where
&x=W3/Ny, NyJ/2<n<N,/2-1, f=-z, and Wj is the first
element of E3=Max|M3M,M;S,D|, the extent vector after
application of the third matrix. We note that if only the
amplitude of the FST is required, we can neglect M, since
it affects only the phase.

The next algorithm we deal with is the spectral method
for the calculation of the FST.>® The matrix decomposi-
tion is as follows:

1 x| Jo -1l 1 o][o 1
0 1|71 olloxe 1][21 o MMMy
(46)

M, is calculated with a single FFT algorithm, and the
number of samples remains the same. M, is a CMT, and
the number of samples changes to Ny, which is calculated
from the Eo=Max|M,M;S;D|; we apply interpolation or
decimation as required. We multiply by the quadratic
chirp factor as shown in relation (43), where dx=W;/N,,
Ngy/2<n=<Ny/2-1, \f=1/\z, and W, is the first element
of E;=Max|M;S;D|, the extent vector after application of
the second matrix. Finally we apply a second FFT algo-
rithm to implement M. If correct interpolation and deci-
mation are applied when implementing the direct and
spectral methods, both methods give identical results,
outputting the same number of samples with the same
values. For small values of z, the direct method is numeri-
cally intensive because of the rapid oscillation of the chirp
factor and the subsequent need for large interpolation,

B. M. Hennelly and J. T. Sheridan

which can be seen on the WDF as a large vertical shear-
ing. In this case the last chirp factor causes decimation
and reduces the number of samples. The spectral method
does not undergo such dramatic interpolation—decimation
stages and is preferable for small z. For large z the re-
verse is true and the direct method becomes the preferred
method particularly in the case where we require only the
amplitude of the FST.

The Rhodes light tube method®1° requires only a single
algorithm for all z when implementing the FST. The ma-
trix decomposition is

1 Az M 0 1 0|1 xzp|| 1 0
0 1| |0 UM||INf 1[[0 1 [|1Inf 1
= M4M3M2M1, (47)

where we have the conditions zp=fi+fo, M=1-z7/f5, z
=Mz, with f; and f5 chosen arbitrarily. M; is a CMT,
which changes the number of samples. Taking S, to be
the input CCM, the new number of samples N; is found
by using the new extent vector E;=Max|M;S,D|. We in-
terpolate or decimate depending on the value of N;. Next
we multiply by the quadratic chirp factor as shown in re-
lation (43), where o&x=Wy/N,, Ni/2<n<N;/2-1, and f
=f1. Then we implement M, using the spectral method al-
gorithm, Eq. (46). M3 is a second CMT and the number of
samples changes to N3, which is calculated from Eg
=Max|M3MsM;S)D|, and we apply interpolation or deci-
mation as required. We multiply by the quadratic chirp
factor as shown in relation (43), where dx=W3/N3, N3/2
<n<N3/2-1, f=f5, and W3 is the first element of Ej
=Max|M;M,M;S,D|, the extent vector after application of
the third matrix. The fourth matrix M, simply scales the
sampling interval. In Refs. 18 and 20 the initial CCM is
taken to be the rectangular one defined by Eq. (17) and f;
is taken to be Wy/\B. The result is that the spatial width
of the signal does not change through My, i.e., Wy=W,,
and thus the wave field remains inside the spatial “light
tube.” This method can be viewed as a numerical exten-
sion of the idea of superresolution.%_28 Once again, if cor-
rect interpolation and decimation are applied when
implementing the FST by the direct, spectral, or light
tube method, all methods give identical results, output-
ting the same number of samples with the same values.

We have examined three algorithms for implementing
the FST. Now we deal with the FRT. A method for fast
implementation of the optical FRT was presented in Ref.
4. The corresponding matrix decomposition is

1 0
cos ¢ \q sin ¢ 1
—sing/\g cos¢p | | ——
A\q tan ¢

\q sin ¢ 0
X
0 1/\q sin ¢

1
0 1
X 1
-1 0f[—— 1
A\q tan ¢
= M4M3M2M1 5 (48)
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where ¢p=pm/2 and p is the fractional order. We note the
similarity between this and the decomposition for the di-
rect method for the FST in Eq. (45). The discussion re-
garding the numerical implementation is identical in both
cases and will not be repeated. However, we note that for
small orders, even though the FRT matrix will bring
about only a small change in space bandwidth product,
M, will require a large interpolation, which is later offset
by My, which in turn gives rise to a closely equivalent
amount of decimation. We note that if only the amplitude
of the FRT is required we can ignore the presence of M,
since it affects only the phase.

A similar algorithm is derived in Ref. 1 for implemen-
tation of the normalized FRT. The matrix decomposition
is the same as Eq. (48), setting A\g=1. To derive this algo-
rithm we apply the same argument as in the previous
case.

In Ref. 2 an FRT algorithm is derived by substituting
Shannon’s interpolation formula into the integral defini-
tion for the FRT, thus obtaining a convolution summation
that can be calculated by the FFT. The matrix decompo-
sition for this algorithm is

cos ¢ sin ¢ 1 0(({0 -1 1 O
—sing cosp| |T-S 1]|1 o ||-1s 1

0 1 1 0
X
-1 0(|T-S 1
= M;M,M:;M,M,, (49)

where S=1/sin(p7/2) and T'=1/tan(p7/2). The algorithm
derived in Ref. 2 is limited to the case where the input
function is scaled such that the function occupies a circle
on the WDF. However, the matrix decomposition above of-
fers a novel interpretation of this algorithm and allows us
to extend its use to the more general case. M; is a CMT
that changes the number of samples. Once again we take
Sy to be the input CCM, and we find the new number of
samples N; by finding the new extent vector E;
=Max|M;S,D|. We interpolate or decimate ©, depending
on the value of N; compared with N,. Then we multiply
by the quadratic chirp factor as shown in relation (43),
with &x=Wy/N;, Ni/2<n<N;/2-1, and f=1/\(S-T).
Next we implement M, with an FFT algorithm. M3 is a
second CMT, and the number of samples changes to N3,
which is calculated from E;=Max|M;M,M;S,D|, where
we apply interpolation or decimation as required. We
multiply by the quadratic chirp factor as shown in rela-
tion (43), where x=W3/N3, N3/2<n<N3/2-1, f=-S/\,
and Wj is the first element of E3=Max|M;M,M;S,D|, the
extent vector after application of the third matrix. The
fourth matrix My is implemented with an FFT algorithm.
M; is a third CMT identical to the first. The number of
samples becomes N5, which is calculated from the last ex-
tent vector E5=Max|M;MM;M;M;S,D|, and we apply
interpolation or decimation as required. We multiply by
the quadratic chirp factor as shown in relation (43), where
x=W4/Ns, N5s/2<n<N5/2-1, f=1/\(S-T), and W, is
the first element of E,=Max|M,M;M,;M;S;D|. For small
orders M; will require a large interpolation, which is later
offset by M5. If only the amplitude of the FRT is required
we can Mjz. Although it is not explicitly stated in Ref. 2,
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this algorithm can also be used to implement the optical
FRT in an identical manner with the same matrix decom-
position setting S=1/\q sin(p7/2) and T
=1/\q tan(pw/2).

In Ref. 3 an algorithm is derived based on the Lohmann
Type II optical implementation of the FRT,'® which con-
sists of a lens of focal length f followed by free-space
propagation of a distance z followed by a second lens of
focal length f. For fractional order p, standard focal length
g, and wavelength N\ we set f=q/tan(pw/4) and z
=q sin(p7/2). The matrix decomposition is

cos ¢ \q sin ¢ 1 0|0 -1 1 0
—sin ¢/N\q  cos ¢ - -1/\f 1[|1 O |-\ 1

0 1 1 0
X
“10||-1nf 1
= M5M4M3M2M1 (50)

It can be shown that Eqs. (49) and (50) are identical. This
leads us to an interesting conclusion: The algorithms
presented in Refs. 2 and 3 are essentially the same even
though they are derived in very different ways, and the
numerical implementation of Eq. (50) is the same as that
for Eq. (49).

We conclude our discussion of FRT algorithms by mak-
ing three important points that concern all FRT algo-
rithms:

1. As stated in Refs. 2-4 FRTs of small order p will
lead to large amounts of interpolation and decimation in
each of the algorithms, which can be avoided by carrying
out the FRT algorithm for an order (p+1) and then apply-
ing an inverse FFT algorithm. The matrix decomposition
is

cos(pm/2) \q sin(p7/2) 0 -\g
—sin(p@/2)/N\g  cos(pm/2) | |[1Mg 0O

cos[(p + 1)7/2] \q sin[(p + 1)7/2]
—sin[(p + 1)@/2)/\qg  cos[(p + 1)7/2] |
(61)

Eq. (51) applies to the normalized (setting A\g=1) and the
optical FRT.

2. A desirable property of any FRT algorithm is that it
be invertible, i.e., applying the algorithm for order p and
then applying it for order-p should recover the original
discrete function. If the CCM is tracked through the ma-
trix decomposition such that we apply sufficient interpo-
lation and decimation, then the original discrete function
can always be completely recovered by carrying out the
inverse algorithm. However, it is important to retain the
CCM at the end of the forward transform and use it as the
input CCM for the second algorithm.

3. Another desirable property of any FRT algorithm is
that it be index additive, i.e., applying the algorithm of or-
der p; and then applying a second of order py should give
the same output as if we had applied a single algorithm of
order (p;+py). If the CCM is tracked through the matrix
decomposition of the first algorithm for order p; and used
as the input CCM for the second algorithm of order p,



926 J. Opt. Soc. Am. A/Vol. 22, No. 5/May 2005

and—what is important—if appropriate interpolation and
decimation are applied, then this property will exist.
Before proceeding we return briefly to our discussion of
FST algorithms. In Ref. 5 an algorithm for implementing
the FST for all distances z is derived that uses the FRT
algorithm presented in Ref. 3. The matrix decomposition

1S
1 Az l/cos¢p O 1 0
0 1| | 0 cosgl|tanging 1

[ cos ¢ \q sin ¢
X

=M;M,M 52
—sin ¢/\q cosq’>} MMy, (52)

where g tan ¢=z. My is calculated with the algorithm de-
fined by Eq. (50). We note that if we were to calculate M;
with the algorithm defined by Eq. (48), then Eq. (52)
would be reduced to the direct method defined by Eq. (45).
After implementing M; the number of samples is N;. M,
is a CMT that again changes the number of samples. The
new number of samples Ny is found by use of the extent
vector Eq=Max|M;M;S)D|. We interpolate or decimate
depending on the values of N; and N,. Next we multiply
by the quadratic chirp factor as shown in relation (43),
where x=W;{/Ny, Ny/2<n<N,/2-1, and f=-q/tan ¢.
The presence of M3 means that we change the sampling
interval. If only the amplitude of the FST is required we
can ignore the presence of My, since it affects only the
phase.

In Ref. 7 three algorithms are discussed for the numeri-
cal calculation of FST when convergent illumination is
used. The algorithm is represented by the decomposition

1 Az 1 0 MM ;
0 1||-1mz, 1| 27 (53)

M, is a CMT and we find the new number of samples NV;
using the extent vector E;=Max|M;S,D|. We interpolate
or decimate appropriately. Next we multiply by the qua-
dratic chirp factor as shown in relation (43), where &
=Wy/N;, Ni/2<n<N;/2-1, and f=z,, My is imple-
mented with M;S, as the input CCM for one of the three
FST algorithms already defined in Eqgs. (45), (46), and
(52). Depending on the initial CCM the presence of the
convergent illumination (i.e., M;) will lead to additional
interpolation or decimation than when the FST algo-
rithms are used on their own.

We note that initially we may oversample the input
data so that interpolation steps may be avoided at stages
throughout the algorithm. This procedure has been used
in many of the existing algorithms. If this is used we
should use two input CCMs—the CCM of the original
function and the CCM of the oversampled function. The
two CCMs may be compared at the different stages of the
algorithm to see if further interpolation is required or if
decimation may be applied at later stages in the algo-
rithm to reduce the number of calculations required.

7. INVENTING NUMERICAL ALGORITHMS
FOR THE LINEAR CANONICAL
TRANSFORM

In this section we list two matrix decompositions for the
general LCT that lead to numerous algorithms based on
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the methods discussed in Section 6. The first LCT decom-
position is

a b 1 O|la O 1 bla MMM
¢ d| |ea 1|0 Vallo 1 [T 73200

M, represents a FST that can be implemented with any of
the FST algorithms previously discussed, and we note
that it produces a change in the number of samples. We
note that in general b will be modulated by A, and the
FST matrix will have the same form as those encountered
earlier. The presence of M, means that we scale the sam-
pling interval. M3 is a CMT that again changes the num-
ber of samples. The new number of samples N3 is found
with the extent vector E3=Max|MsM,M;S,D|. We inter-
polate or decimate depending on the values of Ny and Nj.
Next we multiply by the quadratic chirp factor as shown
in relation (43), where &x=Wy/N3, N3/2<n<N3/2-1,
and f=-a/Ac. M3 can be ignored if we require only the
amplitude of the output.
The second LCT decomposition is

(54)

a b 1 O0|lm O cos ¢ \q sin ¢
c d| |INf 1|0 1Um||-sind/Ng cos ¢
=M;M,M,, (55)

where we set m cos ¢=a, mg\ sin p=>b, and we choose [
such that a/\f-sin ¢/mgh=c. M; represents an optical
FRT and can be implemented with any of the FRT algo-
rithms previously discussed; again, there will be a change
in the number of samples. The presence of My means that
we scale the sampling interval. M3 is a CMT that changes
the number of samples. The new number of samples N3 is
found with the extent vector E3=Max|M;M;M;S,D|. We
interpolate or decimate depending on the values of Ny and
Nj. Next, we multiply by the quadratic chirp factor of re-
lation (43), where ox=Wy/N3, N3/2<n<N3/2-1, and f=
—a/\c. M3 can be ignored if we require only the amplitude
of the output. Many other possible matrix decompositions
exist, and all can be applied in a similar way.

8. CONCLUSIONS

A relatively simple and easily automated method is intro-
duced to track the space-bandwidth product (SPB) of a
signal as it passes through an arbitrary quadratic-phase
system (QPS) and undergoes deformations of its Wigner
distribution function (WDF). Once the SBP can be auto-
matically tracked, the optimum uniform sampling neces-
sary to simulate the signal numerically at every stage in
the system can be found. Detailed knowledge of the SBP
evolution allows the appropriate up (interpolation) or
down (decimation) sampling necessary to be easily identi-
fied.

We apply this method to examine and organize numeri-
cal implementations of linear canonical transforms (LCT)
in the literature, in particular those for the Fresnel (FST),
Fourier (FT) and fractional Fourier transforms (FRTs).
We clarify the relationships between the numerical algo-
rithms based on the decomposition of the total system
matrix in terms of the product of three types of matrices.
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Each of the three matrices represents a particular optical
process and each appearance of a matrix results in a spe-
cific numerical operation in the resulting numerical algo-
rithms. The matrices correspond to Fourier transforma-
tion, magnification and chirp multiplication. In the
resulting numerical implementations they correspond to
the use of the fast Fourier transform (FFT), a change in
sampling spacing, and decimation—interpolation opera-
tions, respectively.

By applying this technique, we have shown how nu-
merical algorithms to simulate optical systems can be
used most efficiently for any given input function, i.e.,
WDF shape. We have demonstrated the ability to gener-
ate numerical algorithms exhibiting additive and unitary
properties. Finally, having clarified the link between the
matrix decompositions and numerical algorithms for
LCTs, we provide a framework for the derivation of new
numerical algorithms.

We believe the results presented here provide a com-
plete description of numerical algorithms for QPSs. Fur-
thermore, the presented synthesis of optical system, sig-
nal processing, and numerical algorithm concepts
provides many potential benefits and insights.

Note added in proof: Recently an N log N algorithm
based purely on the shifting properties of the LCT has
been proposed.29 This algorithm is independent of the
FFT algorithm, and the matrix that represents it numeri-
cally is simply the ABCD matrix for the continuous LCT.
We are currently comparing this algorithm with those
listed in this paper.
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