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Abstract Interactions between the land surface and the atmosphere play a fundamental role in the weather
and climate system. Here we present a comparison of summertime land-atmosphere coupling strength found
in a subset of the ERA-Interim-driven European domain Coordinated Regional Climate Downscaling Experiment
(EURO-CORDEX) model ensemble (1989–2008). Most of the regional climate models (RCMs) reproduce the
overall soil moisture interannual variability, spatial patterns, and annual cycles of surface exchange fluxes for
the different European climate zones suggested by the observational Global Land Evaporation Amsterdam
Model (GLEAM) and FLUXNET data sets. However, some RCMs differ substantially from FLUXNET observations
for some regions. The coupling strength is quantified by the correlation between the surface sensible and
the latent heat flux, and by the correlation between the latent heat flux and 2m temperature. The first
correlation is compared to its estimate from the few available long-term European high-quality FLUXNET
observations, and the latter to results from gridded GLEAM data. The RCM simulations agree with both
observational datasets in the large-scale pattern characterized by strong coupling in southern Europe andweak
coupling in northern Europe. However, in the transition zone from strong to weak coupling covering large parts
of central Europe many of the RCMs tend to overestimate the coupling strength in comparison to both
FLUXNET and GLEAM. The RCM ensemble spread is caused primarily by the different land surface models
applied, and by the model-specific weather conditions resulting from different atmospheric parameterizations.

1. Introduction

Land-atmospherecoupling is an important componentof theclimate system.Through theexchangeofenergy,
mass, andmomentum at the Earth’s surface, land-atmosphere coupling affects boundary layer evolution, con-
vection, and cloudiness, which in turn affect precipitation generation and the intensity and duration of heat
waves. Theseexchangeprocesses are controlledbothdirectly and indirectlybyatmospheric conditions. Ingen-
eral, land-atmosphere coupling strength can be defined as the degree to which the atmosphere responds to
anomalies in the land surface state [Koster et al., 2006]. Several metrics have been defined for quantifying this
coupling strength depending on the variables involved and the feedback processes addressed, e.g., by
Seneviratne et al. [2006], Dirmeyer [2011], Findell et al. [2011],Miralles et al. [2012], and Decker et al. [2015].
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A key state variable of the land-atmosphere system is soil moisture, which controls the flux partitioning
between sensible and latent heat to a large extent [Seneviratne et al., 2010]. Soil moisture-temperature
feedback is strongest in transition zones between wet and dry climates. In a wet, energy-limited regime,
soil moisture content is always sufficiently high; thus, evapotranspiration is primarily limited by net radia-
tion and the state of the planetary boundary layer. In a dry, moisture-limited regime, the atmospheric
moisture deficit cannot be entirely compensated by moisture supply from the land surface via evapotran-
spiration; i.e., the latent heat flux is constrained by the soil moisture content. The understanding of land-
atmosphere coupling processes and its impacts across spatial and temporal scales has continuously
improved through observations and modeling. Based on multimodel experiments of the Global Land-
Atmosphere Coupling Experiment (GLACE), Koster et al. [2006] have identified so-called “hot spot” regions
of strong coupling on the global scale for boreal summer. On the local scale, land-atmosphere coupling
has been investigated in the context of diurnal boundary layer evolution [Mengelkamp et al., 2006;
Santanello et al., 2009, 2013; Milovac et al., 2016] and cloud formation [Betts et al., 2015], all of them
including observations. Effects of soil moisture-temperature coupling have been investigated on the cli-
matological and daily time scale with positive feedback on the development of heat waves [Fischer
et al., 2007; Miralles et al., 2012; Hirschi et al., 2014]. Soil moisture-precipitation coupling shows positive
and negative feedback mechanisms on global and local scales [Hohenegger et al., 2009; Taylor et al.,
2012; Froidevaux et al., 2014; Rahman et al., 2015]. Guillod et al. [2013] reveal that this feedback not only
depends on the amount of soil moisture but also on its temporal and spatial distribution. This becomes
particularly evident when applying regional climate models (RCMs) at convection permitting and noncon-
vection permitting model resolution; Hohenegger et al. [2009] show that the sign of soil moisture-
precipitation feedback depends also on the convection parameterization.

Land-atmosphere coupling is also important in the context of climate change. With the expected change in
large-scale precipitation regimes as projected by global climate models (GCMs, see Intergovernmental Panel
on Climate Change Fifth Assessment Report [Stocker et al., 2013]), land-atmosphere interactions are also
expected to change and lead to a shift in the transition zones between weak and strong coupling regimes
[Seneviratne et al., 2006; Dirmeyer et al., 2014].

The regional details of such shifts can be assessed with RCMs owing to their more detailed representation of
surface heterogeneities and atmospheric processes [Flato et al., 2013]. In the last decade, community efforts
in RCM modeling have been organized in projects PRUDENCE (Prediction of Regional scenarios and
Uncertainties for Defining EuropeaN Climate change risks and Effects) [Christensen and Christensen, 2007]
and ENSEMBLES (Ensembles-Based Predictions of Climate Changes and Their Impacts) [Van der Linden and
Mitchell, 2009] for the European domain. Due to their common experiment design, the model ensembles
allow for an assessment of uncertainties in both present and projected future climate as well as providing
a basis for model intercomparisons, evaluations, and improvements. The Coordinated Regional Climate
Downscaling Experiment (CORDEX) is the latest of these coordinated RCM experiments and provides an
unprecedented ensemble of state-of-the-art RCMs downscaling the Coupled Model Intercomparison
Project Phase 5 (CMIP5) global model results for different regions worldwide [Giorgi et al., 2009].

For the European domain (EURO-CORDEX) several joint evaluation studies have been performed based on
ERA-Interim reanalysis-driven RCM simulations. Kotlarski et al. [2014] evaluated mean temperature and preci-
pitation in the EURO-CORDEX evaluation ensemble from 1989 to 2008 and reported slight improvements
compared to the ENSEMBLES simulations. In a study by Vautard et al. [2013] EURO-CORDEX participating
RCMs showed an overall satisfying performance in the reproduction of heat waves, albeit accompanied by
a large ensemble spread. Both studies highlighted the strong influence of RCM parameterizations on the
model results. Applying the WRF RCM in Germany, Milovac et al. [2016] showed that the choice of the plane-
tary boundary layer parameterization and the land surface model both impact simulated land-atmosphere
coupling and affect the whole atmospheric boundary layer. Bachner et al. [2008] report a strong impact of
12 different sets of parameterizations in the RCM COSMO-CLM on precipitation over Germany for 11 summer
seasons; the inferred model uncertainty range for extreme precipitation indices ranged between 20 and 50%.
García-Díez [2014] found that amultiphysics ensemble of theWRF RCM can produce a similar spread as a mul-
timodel ensemble within EURO-CORDEX, and García-Díez et al. [2015] confirm that no parameterization com-
bination performs best for all applications. While some causalities for the differences in model results are
shown, e.g., Vautard et al. [2013] point out sensitivity of very high near-surface air temperatures to
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microphysics and convection schemes, these studies recommend extended evaluation efforts for different
model components and variables. For the subset of WRF simulations within the EURO-CORDEX ensemble
Katragkou et al. [2015] evaluated shortwave and longwave radiation and cloud cover and their relation to
temperature and precipitation biases. In an evaluation study on the added value of increased spatial resolu-
tion on the reproduction of precipitation extremes, Prein et al. [2015] provide evidence that the high-
resolution 12 km simulations for the EURO-CORDEX model domain reproduce mean and extreme precipita-
tion better than their coarser (50 km) counterparts. Casanueva et al. [2015] also show the added value of the
high-resolution simulations regarding the spatial precipitation patterns.

Greve et al. [2013] evaluated the root zone soil moisture exemplarily for a WRF simulation on the EURO-
CORDEX domain (see model version WRF-331H in Table 1); they show the capability of WRFs land surface
model (LSM) NOAH to correctly simulate soil water content in croplands and also highlight the necessity of
high-quality vegetation and soil texture maps. They also found that the annual cycle explains approximately
60% of the soil moisture variability. Furthermore, all seasons show an intraseasonal variability being strongest
in summer. The general circulation variability expressed in terms of the North Atlantic Oscillation explains
only some of the intraseasonal variability and highlight the need to study the role of soil water content in
land-atmosphere coupling in climate studies.

As part of the joint EURO-CORDEX analysis efforts, this study investigates the land-atmosphere coupling in a
subset of 16 RCM simulations from the EURO-CORDEX reanalysis-driven ensemble. Many of the RCM simula-
tion differences referred to above can be either directly or indirectly related to the reproduction of the land-
atmosphere coupling in these models. The focus of the present study is on soil moisture-temperature feed-
backs during the summer months of June, July, and August, when the land-atmosphere coupling is
most relevant.

We particularly evaluate the reanalysis-driven simulations with respect to soil moisture, latent and sensible
heat flux, which have not been analyzed in previous EURO-CORDEX evaluation analyses. An adequate repro-
duction of these variables is mandatory for a realistic coupling strength simulation. Two simple coupling
strength metrics are then applied to the simulations, which highlight the differences in the coupling regimes
and transition zones. This information can act as a baseline for the assessment of land-atmosphere coupling
changes in the EURO-CORDEX regional climate change projections. These metrics also help in better under-
standing differences between the RCM results.

The paper is structured as follows: The RCM simulations, observational data sets, and the coupling metric are
introduced in section 2. In section 3, model output for soil moisture and surface fluxes is compared to a
satellite-based root zone soil moisture data set and with turbulent heat fluxes derived from FLUXNET flux
tower measurements. The analysis of land-atmosphere coupling based on the correlation of the simulated
surface sensible and latent heat fluxes as well as latent heat flux and air temperature, and a comparison of
the results with coupling strengths derived from station observations as well as a gridded dataset follow in
section 4. The results are summarized and discussed in section 5.

2. Data and Methods
2.1. EURO-CORDEX RCM Simulations

The land-atmosphere coupling analysis is based on parts of the EURO-CORDEX evaluation ensemble simula-
tions [Kotlarski et al., 2014] which cover the time span from 1989 to 2008. To allow for model spin-up, only
data from 1990 onward were used. The EURO-CORDEX focus domain is shown in Figure 1. The RCMs are dri-
ven by ERA-Interim reanalysis data at 0.75° resolution [Dee et al., 2011]. Thus, the EURO-CORDEX simulations
follow the observed large-scale weather conditions and can be compared with observations also on signifi-
cantly smaller than climatological time scales. Our analysis is performed with the output of 16 RCMs including
8 different WRF simulations as a subset of the EURO-CORDEX evaluation ensemble. Thirteen simulations were
performed with 0.44° (EUR-44) and three with 0.11° (EUR-11) grid spacing. Table 1 contains an overview of the
simulations used in this study; each RCM is identified by a unique abbreviation throughout the study. All WRF
simulations use the land surface model (LSM) NOAH and the boundary layer scheme YSU [Hong et al., 2006],
but different combinations of other atmospheric parametrization schemes. For a detailed description of the
different model setups we refer to Vautard et al. [2013] and Katragkou et al. [2015]. In addition to these main
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settings, the models also differ, e.g., in the configuration of the lateral boundary relaxation zone around the
EURO-CORDEX focus domain, the number of vertical levels, or interpolation settings for initial and static
fields. These configurations can lead to larger ensemble spreads than for pure multiphysics ensembles
[García-Díez et al., 2015]. Thus, the ensemble analyzed is an “ensemble of opportunity,”which merely collects
all simulations providing the required fields for the analysis. This also implies some inevitable restrictions
when not all desirable parameters for this study were stored, such as upper soil moisture.

2.2. Observational Data Sets
2.2.1. Global Land Evaporation Amsterdam Model
For the evaluation of soil moisture and latent heat flux as well as the coupling metric calculated from the cor-
relation of latent heat flux and 2m temperature (introduced in the next subsection) we use the Global Land
Evaporation Amsterdam Model (GLEAM) data set version v3a [Martens et al., 2016]. It provides terrestrial eva-
poration and root zone soil moisture based on satellite-observed soil moisture through data assimilation of
European Space Agency Climate Change Initiative soil moisture (ESA CCI SM) [Liu et al., 2011a; Wagner
et al., 2012], vegetation optical depth [Liu et al., 2011b], and snow water equivalents [Armstrong et al.,
2005], ERA-Interim reanalysis air temperature and radiation, and the Multi-Source Weighted-Ensemble
Precipitation (MSWEP) product [Beck et al., 2016]. The daily data are provided on a global 0.25° × 0.25° grid

Figure 1. EURO-CORDEX EUR-44 and EUR-11 domain. Colors indicate as an example the dominant land use types derived
from the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data classification used in the WRF models,
while gray isolines indicate topography (ENF: evergreen needleleaf forest; EBF: evergreen broadleaf forest; MF: mixed for-
est; WSV: wooded savanna; SAV: savanna; GRA: grasslands; WET: wetlands; CRO: cropland; URB: urban; ICE: snow or ice; BSV:
barely/sparsely vegetated; WAT: water; WT: wooded tundra; MT: mixed tundra). The blue boxes delineate the PRUDENCE
analysis regions with their identifiers, and dots show the locations of the FLUXNET stations (red: all stations used in the
study; blue: stations shown in section 3.2).
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and covers the period from 1980 to 2014. To ease the comparisons between the simulated and GLEAM data
both data are projected on to a rotated 0.22° × 0.22° latitude-longitude grid by nearest neighbor resampling.
This grid has the same rotated pole (198.0; 39.25) as the EURO-CORDEX domain. For comparison with EUR-44
simulation data, the four points of the 0.22° grid fitting into one EUR-44 grid cell are averaged. For the EUR-11
simulation data, a four point RCM average is compared with the 0.22° grid GLEAM data. Only grid points
defined as land points in both the RCM’s and the satellite data’s land masks are considered.
2.2.2. FLUXNET
Simulated latent and sensible heat fluxes are compared with the European FLUXNET observations [Baldocchi
et al., 2001; www.fluxdata.org, and references therein]. This data product contains preprocessed, quality-
checked, and instrument error-corrected observations from eddy covariance flux tower stations operated
over central Europe with a highly variable data coverage from 1996 to 2007. We compare FLUXNET point
observations with RCM time series from the closest grid point. Only days for which all half-hourly values have
a quality flag 0 or 1 (representing original or high-quality gap-filled data) and only months with aminimum of
20 high-quality days are taken into account. In total 42 stations meet these criteria with at least 3 years of
high-quality data each; see Figures 1 and 9 for their geographic location. Since the simulations are driven
by reanalysis data only at the lateral boundaries, the simulated weather conditions inside the RCM model
domain on local and daily scales may differ considerably from the actual weather experienced at the
FLUXNET stations. Hence, mean seasonal cycles are compared similar to, e.g., Jaeger et al. [2009] and shown
for four representative stations from contrasting climate regions and different vegetation types: Cabauw
(Netherlands), Las Majadas (Spain), Hyytiala (Finland), and Roccarespampani (Italy).

For the interpretation of the comparison it is important to note that eddy covariance flux tower measure-
ments can be systematically too low and that the energy balance is often not closed [Stoy et al., 2013;
Wizemann et al., 2015]. In order to assess this systematic error, a comparison of all energy balance compo-
nents including ground heat flux and net radiation is needed. Under the assumption that the radiation mea-
surement errors are much smaller than the turbulent fluxmeasurement errors, the net radiation is considered
as a reference and the systematic underestimation of the observed heat fluxes is estimated to range from 0%
to 40% for each of the 42 stations. For all but one station, the sum of the three surface fluxes is 30% to 35%
lower than the net radiation. Analogous to Jaeger et al. [2009], the residual is assumed to be caused by equally
underestimated turbulent fluxes and thus added to the latent and sensible heat flux following the Bowen
ratio. In reality, however, the residual depends on terrain, surface properties, and the condition of the atmo-
spheric boundary layer, and thus, a correct Bowen ratio is just an assumption [Ingwersen et al., 2011;
Wizemann et al., 2015].

2.3. Land-Atmosphere Coupling Metric

The correlation between two characteristic variables connected to surface exchange processes, such as air
temperature correlated to latent heat flux or net radiation correlated to latent heat flux, is considered as a
useful land-atmosphere coupling metric [Seneviratne et al., 2010]. Such a coupling metric addresses in parti-
cular the soil-moisture-temperature feedback process, the focus of the present study. Other than coupling
metrics that are based on special experiment designs, e.g., the GLACE-type coupling measures [Koster
et al., 2006; Seneviratne et al., 2006], this correlation-basedmetric can be applied to standard RCM output vari-
ables and is thereby also suitable for the intercomparison of an arbitrary RCM ensemble.

Another coupling metric is the correlation between the sensible heat (H) and latent heat flux (LE) as both vari-
ables are the components of the surface energy balance, which compete for the redistribution of net surface
radiation energy into other energy forms. For energy-limited regions soil moisture is available in sufficient
amounts. In this case, land surface temperature also dictates near-surface atmospheric humidity resulting
in concordant near-surface moisture and temperature gradients and a positive correlation between both
fluxes. For water-limited regions, however, soil moisture limits evapotranspiration—and thus also near-
surface atmospheric humidity and its gradient—while temperature gradients and sensible heat fluxes may
still increase in response to increasing radiation. Since latent heat fluxes in turn further reduce soil moisture,
correlations between the two fluxes become smaller or even negative. In this case even small changes in soil
moisture affect the near-surface atmosphere profoundly. Figure 2 shows exemplarily the H-LE correlation
based on daily mean values for the June–August (JJA) summer seasons in 2002 and 2003 for the MIUB-
WRF simulation. Contrasting patterns appear for central and western Europe: In 2003 negative correlations
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indicate strong coupling related to anomalous warm and dry conditions, which culminated in the well-known
western European heat wave in August. In contrast, the summer season of 2002 is characterized by rather wet
conditions giving rise to positive turbulent flux correlations in this region. Regarding the noisy pattern in
Northern Africa, please note that the H-LE (as well as the LE-T) correlation-based metric is only meaningful
in regions where evapotranspiration is reasonably large [Seneviratne et al., 2006].

Within this study, in the coupling analysis in section 4, the intercomparison of the RCM ensemble is first based
on H-LE correlations calculated from 10day mean values over the summer seasons of the full period 1990–
2008. This H-LE correlation is the diagnostic we use to access coupling strengths in comparison to the
FLUXNET station data. Furthermore, the correlation of evaporative fraction (LE/H+ LE) and total soil moisture
is used in section 4 for the RCM intercomparison of the link between soil moisture and flux partitioning. A
further coupling metric we use is the correlation of latent heat flux (LE) and 2m air temperature (T) based
on 10 daily mean summer (JJA) values of the period from 1990 to 2008. For evaluation of the RCM results
the metric is also calculated from the GLEAM evaporation and ERA-Interim 2m air temperature. Using ERA-
Interim air temperatures seems most suitable since these temperature data are also used as forcing data
for GLEAM. While both metrics describe the soil moisture-temperature coupling process, the H-LE correlation
indicates the process of changing flux partitioning at the surface, the LE-T correlation describes the second
step of the feedback pathway into the atmosphere.

It is important to note that there is no unique way to define land-atmosphere coupling strength, and since
different metrics address individual processes in the complex land-atmosphere feedback system, they can
show different results. Also, a direct comparison of different coupling metrics is hampered since the value
ranges and units differ and the definition of “strong” and “weak” may not be consistent. Lorenz et al.
[2015] suggest that specific coupling experiments like GLACE are required to scale the different measures
for each particular climate model.

3. Model Evaluation
3.1. Soil Moisture

The different LSMs in the RCMs analyzed have very different soil characteristics; thus, a direct comparison
of the available total (i.e., vertically integrated) soil moisture is not meaningful. Especially, the differing
depths of the soil layers and the saturation levels related to soil porosity make a grid pointwise comparison
of the total soil moisture amounts of the individual models difficult. Despite exhibiting different mean total
soil moisture amounts, the RCMs are expected to reproduce typical intra-annual as well as interannual varia-
bility for different regions in Europe.

Figure 2. Correlation of daily mean latent and sensible heat flux for summer (JJA) (left) 2002 and (right) 2003 based on the MIUB WRF EUR-44 simulation.
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Figure 3 shows time series of monthly total soil moisture anomalies where the individual RCM’s long-term
mean has been subtracted. Spatial averages for different PRUDENCE regions are plotted for the Iberian
Peninsula, middle Europe, Scandinavia, and eastern Europe. Though the different soil characteristics still
affect the potential maximum dynamic range (minimum minus maximum) of the models, the figure allows
for a comparison of the annual cycle and representation of wet and dry anomalies in individual years. For
all regions all RCMs’ soil moisture time series show a clear annual cycle. The average maximum soil moisture
is reached in March and the minimum in September with overall agreement between the RCMs and slight
interannual variability in timing. In the southern European regions the minimum is reached a few weeks later.
The mean range between yearly minimum and maximum multimodel mean (indicated by the red dashed
lines) is dependent on the soil characteristics and the climate conditions.

With a precipitation maximum during winter and high demand for evapotranspiration during the dry sum-
mer months, the Iberian Peninsula shows the largest mean range with 140 kgm�2, compared to also well-
pronounced amplitudes of 120 kgm�2 and 110 kgm�2 in eastern and central Europe. In Scandinavia the
range is much smaller, the annual cycle is less pronounced, and the individual RCM simulations are less cor-
related to each other when the annual cycle is removed. The weaker annual cycle is related to overall wet
conditions throughout the year and a smaller amount of evapotranspiration in this energy-limited high-

Figure 3. Time series of total (vertically integrated) soil moisture anomalies (individual RCM mean 1990–2008 subtracted) averaged for PRUDENCE regions Iberian
Peninsula, middle Europe, Scandinavia, and eastern Europe. Red dashed lines indicate the ensemble mean annual minimum and maximum values averaged for the
whole time span.
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latitude region. Here the differences in the annual cycle between the RCMs most likely result from effects of
snow cover and frozen soils. For all regions a distinct interannual variability is evident, both for the maxima
and minima as well as for the seasons in between. The variability of the minima is larger than the maxima in
those regions where the winter is wet enough to reach near-saturation conditions frequently, as seen, e.g., in
central Europe (standard deviation of ensemble mean yearly minima is 24.1 kgm�2 versus 14.8 kgm�2 for
the maxima). For the Iberian Peninsula also soil moisture maxima during winter show a larger interannual
variability (here the standard deviation of the minima is 13.9 kgm�2 versus 32.3 kgm�2 of the maxima).
Despite some outliers for some models and years, the RCMs show overall good agreement in simulating
the soil moisture differences between individual years; anomalously wet and dry seasons are captured quite
consistently, e.g., the wet conditions during the summer 2002 in central Europe and the very dry summer in
2003 or the wet year 1996 in the Iberian Peninsula region.

So far the RCMs intra-annual and interannual variations in vertically integrated total soil moisture have been
intercompared among each other. In the following, we investigate the RCMs’ ability to reproduce the GLEAM
soil moisture (with assimilated ESA CCI satellite-based soil moisture) patterns for Europe. We restrict the com-
parison of the RCMs total soil moisture to the GLEAM root zone soil moisture to the correlation of summer-
time monthly means for JJA over the period from 1990 to 2008, which is shown in Figure 4. Since the soil
moisture typically follows an annual cycle that per se leads to a positive correlation, consequently the indivi-
dual RCM’s mean annual cycle is subtracted so that the correlation is based on monthly anomalies from the
individual long-term monthly means. Overall, the RCMs show significant positive correlation with the GLEAM
soil moisture for large parts of Europe. Except for the pluvious Moroccan-Algerian Atlas region, there is no
significant correlation for Northern Africa due to the very dry summer conditions and hence small soil moist-
ure variations. The comparison shows regional differences for the individual RCMs correlation to GLEAM soil
moisture. While in some regions, e.g., the Iberian Peninsula and the British Isles, a positive correlation prevails,
in other regions, e.g., Poland and Ukraine, the RCMs predominantly do not show a significant correlation with
GLEAM. Although RCMs like KNMI-RACMO, HMS-ALADIN, and IPSL-WRF have larger areas of positive correla-
tion with the GLEAM soil moisture, no single RCM is outperforming the others across the domain. Despite the
fact that the WRF RCMs feature the same LSM, there is noWRF-specific soil moisture pattern. For example, the
MIUB-WRF and IDL-WRF simulations show a high correlation in southeastern Europe, while the NIUM-WRF
and AUTH-WRF simulation are not significantly correlated with the GLEAM soil moisture in this region. For
northeastern Europe the KNMI-RACMO simulations show the largest agreement with the GLEAM data.
Comparing both resolutions (EUR-44 and EUR-11), the large-scale pattern is similar; differences remain on
the local scale. When all months of the other seasons are taken into account the patterns are similar whereby
the correlation is generally slightly higher (data not shown).

In general, areas of uncorrelated RCM to GLEAM soil moisture may exist for multiple reasons, both from the
models and data point of view: differences in soil and vegetation parameterization, unrepresented lateral soil
moisture flow and irrigation, and internal variability of weather patterns in the individual RCM runs. The latter
may explain the higher correlations in western parts of Europe, where the weather patterns possibly agree
better and the internal variability is smaller due to the closer distance to the western lateral boundary and
prevailing westerlies. This would need some further investigation.

Unfortunately it is not possible to directly intercompare absolute values of total soil moisture or to determine
biases for the different RCM’s LSMs. In different models (and also for same models but different soil texture
and vegetation type) the same amounts of soil moisture may be an indication of energy-limited conditions in
one and soil moisture-limited conditions in another model. The impact on the flux partitioning, however, is
decisive for the coupling to the atmosphere, which will be investigated in the following sections. To this point
the RCMs have shown a reasonably well reproduction of the 1990–2008 soil moisture interannual and
intraseasonal variability.

3.2. Surface Fluxes

The following section investigates the RCMs representation of both latent and sensible heat flux. Figure 5
compares the mean seasonal cycles of latent and sensible heat flux simulated by the 16-member EURO-
CORDEX ensemble for four FLUXNET stations representative for different climate. Both data sets are averaged
over the subset of years for which high-quality FLUXNET data are available.
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The typical soil moisture-related partitioning between latent and sensible heat as captured by the FLUXNET
observations is reproduced by the RCM ensemble. For example, in the Netherlands, where conditions with
high soil moisture prevail, latent heat fluxes on average exceed sensible heat fluxes, whereas in Spain the sen-
sible heat flux dominates in summer due to soil moisture limitation while latent heat flux is highest in spring.
Individual model simulations, however, may differ substantially from the FLUXNET observations and show lar-
ger differences for some locations (see, e.g., the comparison at station IT-Ro1). Such differences can be related
to different land use types at the station and in the model, which stresses the sensitivity of flux partitioning to
surface characteristics. Model runs at the higher EUR-11 resolution better represent surface heterogeneities,
but the 12 km×12 km grid cells are still much larger than the typical footprint of a flux tower station.
Moreover, even results from individual model runs with exactly the same surface type differ owing to

Figure 4. Correlation of GLEAM volumetric near-root zone soil moisture and vertically integrated total soil moisture in individual RCM simulations (monthly means
subtracted by individual RCM’s long-term monthly means, JJA, 1990 to 2008, dotted where correlation is below 5% significance level).
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differences in atmospheric conditions that may evolve in response to internal model variability, especially in
net radiation and soil moisture, a key variable for flux partitioning. Despite these limitations, the FLUXNET
data product is the only data set that allows for such a direct evaluation of the model fluxes.

While theexpectedseasonal cycle is thedominant feature, both in theobservationsand in theRCMsimulations,
themaxima produced by the individual RCMs differ substantially, e.g., up to 40–80Wm�2 in summer both for
H and LE. Since theWRF RCMs use the same LSM andmostly the same surface type, the variation between the
runs must be attributed to different climate states generated due to the different parameterizations.

The effects of the differences in the simulated net radiation are obvious by comparing the sum of the sum-
mertime (JJA) turbulent surface fluxes for the EURO-CORDEX domain (Figure 6). As already seen for themodel
grid points near FLUXNET stations (Figure 5) also this domain-wide comparison depicts systematic differ-
ences between particular RCMs. For example, the UCAN-WRF underestimates both surface heat fluxes result-
ing from very low net radiation, which mostly result from reduced incoming solar radiation caused by
relatively high cloud cover as shown by Katragkou et al. [2015].

Most RCMs simulate the expected climate-relatedpatterns influxpartitioning expressedby themeanevapora-
tive fraction in Figure 7: dry summer climates show low evaporative fractions, e.g., in the Mediterranean
region, while over wetter central and northeastern Europe latent heat fluxes exceed sensible heat fluxes.

For some regions, however, differences between the ensemble members can be large. For example, HIRHAM,
RCA, and ALADIN simulate very high evaporative fractions (reaching up to 5 times higher latent than sensible
heat flux) for central, northern, and eastern Europe. The different WRF simulations in turn show relatively low
evaporative fractions over Scandinavia especially in the mountainous regions, which can be explained by the
land cover type “barren tundra” in their common NOAH LSM and not by different climate conditions. In the
WRF simulations also the grid points classified as “urban” stick out with almost zero evapotranspiration.
Especially in the Mediterranean the models differ also in the spatial distribution of variability, which is most
probably also a result of different land surface parametrizations. For the eight WRF model simulations the

Figure 5. Mean annual cycles of monthly mean of (top row) sensible and (bottom row) latent heat flux at four representative FLUXNET stations (thick red line) and
derived from the closest model grid points. The red dashed line indicates an estimated correction of the flux tower measurement bias by adding the residual of the
energy balance according to the Bowen ratio (assuming net radiation and ground heat flux to be correct). Only years with high-quality FLUXNET data are included.
Stations from left to right are Hyytiala (Finland) with evergreen needleleaf forest (years 1997–2006), Cabauw (Netherlands) with grassland (years 2003–2006), Las
Majadas (Spain) with savanna (years 2004–2006), and Roccarespampani-1 (Italy) with deciduous broadleaf forest (years 2000–2006).
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differences only result from diverging climate conditions due to the distinctly different sets of atmospheric
parameterizations, dynamics settings, or slightly different initial conditions. For these runs differences in flux
partitioning are consistent with differences in near-surface soil moisture. The relatively dry conditions simu-
lated by AUTH-WRF and NUIM-WRF for southeastern Europe contrast clearly with the wetter UHOH-WRF
simulation. We will expand on the connection between soil moisture and flux partitioning in the next section.

To this point the general differences in soil moisture and surface fluxes have been assessed and linked to
attendant biases in other variables such as temperature, precipitation, and radiation [Vautard et al., 2013;
Kotlarski et al., 2014; Katragkou et al., 2015]. This assessment will help to explain differences among the mod-
els when coupling strength metrics are evaluated.

Figure 6. Spatial distribution of the summer (JJA) mean sum of latent and sensible heat flux, between 1990 and 2008. The averages were computed over the com-
plete time span including nighttime values, which explains the comparatively low maxima.
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4. Land-Atmosphere Coupling Analysis
4.1. EURO-CORDEX Ensemble Comparison to FLUXNET

The distinctly different seasonal cycles of latent versus sensible heat flux for different climate regions
(Figure 5) suggest their correlation as an indication of coupling strength. Figure 8 shows the correlation of
latent and sensible heat, our first coupling strength metric as introduced in section 2.3, for the individual
RCM runs based on nonoverlapping 10 day means over the summer season (JJA) over the years 1990 to 2008.

For all RCMs weak coupling (positive correlation) prevails over northern Europe while strong coupling (nega-
tive correlation) dominates southern and southeastern Europe. This finding roughly coincides with regions
attributed with strong coupling in Seneviratne et al. [2006], Fischer et al. [2007], and Miralles et al. [2012].
For central Europe, the location of the transition zone from one regime to the other differs considerably
between some RCMs. Especially, UCAN-WRF and DMI-HIRHAM locate the transition zone farther to the south
compared to the other RCMs while CLM-CCLM and HMS-ALADIN show strong coupling over a larger area
which even reaches Scandinavia and Russia. For the other seasons (data not shown) coupling is much weaker
than in summer. For Northern Africa the results have to be interpreted with care, since the H-LE correlation is
not meaningful in regions with very low evapotranspiration.

On the regional scale, much of the spatial heterogeneity in coupling strength can be related to orography,
respectively, its influences of more precipitation, more cloud cover and colder temperatures. The
Carpathians, Alps, and Pyrenees display substantially weaker coupling strength compared to the surrounding
flatter terrain.

There are a number of possible reasons for the differences in the RCM runs that cannot be clearly separated
from each other. On the one hand, the different climate model states (e.g., seen in the parameters precipita-
tion and net radiation) evolving in the individual model runs due to different atmospheric parametrizations
and other settings have a major influence on the coupling strength. This influence is clearly seen for the indi-
vidual WRF simulations (same LSM and PBL scheme) that show differences in mean precipitation, radiation,
and temperature [Katragkou et al., 2015]. The relatively weak coupling produced by UCAN-WRF compared to
the other WRF versions is caused by the reduced net radiation compared to the other WRF simulations. On
the other hand, the individual RCM’s LSM characteristics and the parametrization of the land surface (vegeta-
tion type, soil type, etc.) decisively affect the coupling strength, too. The coupling strength is thereby a useful
integrative metric which may help to explain differences we observe in other parameters or phenomena. For
example, if the models fail to correctly represent coupling strength, it is also highly likely that they overesti-
mate or underestimate heat waves [Vautard et al., 2013]. Though this is no complete proof of causality, the
intercomparison of summertime extreme temperatures (90th percentile) shows that those RCMs that show
a stronger (weaker) than average coupling predominantly simulate higher (lower) than average extreme tem-
peratures (data not shown).

We now apply the coupling analysis above to the FLUXNET observations for an evaluation of the RCMs.
Figure 9 displays the correlation of 10 day averages of summertime (JJA) latent and sensible heat fluxes for
several of the 42 FLUXNET stations. Only months with at least 20 days of high-quality data are used and only
stations with at least 3 years of data are shown. Because measurement time periods differ for the displayed
stations, differences between nearby located stations may partly result from different weather conditions
during the different time periods covered. The observations showmainly negative (positive) correlations indi-
cating strong (weak) coupling in southern (northern) parts of Europe and are thus in rough accordance with
the RCM results.

A direct comparison of the 42 FLUXNET stations to the RCMs is provided in Figure 10. Here the same H-LE
correlation values as in Figure 9 are shown, together with derived coupling strength metric from the indivi-
dual RCMs. In contrast to Figure 8 the correlation from the RCMs is based on the time span for which FLUXNET
observations are available. Again, a large diversity within the RCM ensemble is seen for many locations.
Outliers, like the overall stronger coupling in the HMS-ALADIN run and the CLM-CCLM run for northern
Europe are obvious, as well as the weaker coupling in DMI-HIRHAM, UCAN-WRF, and NUIM-WRF for most sta-
tions in central Europe. A comparison with the FLUXNET data shows that the observations are within the
quantile range of the RCMs for 16 out of 42 stations. However, regarding the sign of the correlation reflecting
strong or weak coupling regime, the median of the RCMs and the FLUXNET observations agree for 80% of the
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stations. The number of stations where the observed H-LE correlation is above the 75th percentile of the
RCMs (i.e., RCMs show a stronger coupling than observed) exceeds the number of stations where the
RCM’s coupling strength is weaker than the observed coupling strength (20 compared to 6). Also, regarding
the RCM ensemble means for each station, the observed FLUXNET coupling strength in terms of H-LE corre-
lations appears slightly weaker than for the RCM simulations (26 out of 42 stations).

As the stations are not equally distributed in space, it is possible that they might favor certain conditions with
a similar coupling strength in locations with multiple stations and therefore reduce the representativeness of
the observations. Besides variable local climate conditions, the vegetation types (indicated by the symbols in
Figure 9) impact coupling strength: In the Netherland’s FLUXNET stations, e.g., the correlations are higher

Figure 7. Summer (JJA) mean of the evaporative fraction (latent heat flux divided by the sum of latent and sensible heat flux) for the years 1990 to 2008.
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over grassland (NL-Ca1 and NL-Hor) than over forest (NL-Loo). To corroborate such relations, however, the
number of stations in similar climatic regions is unfortunately too sparse.

4.2. EURO-CORDEX Ensemble Comparison to GLEAM

In addition to the correlation of latent and sensible heat flux, the following section investigates two pro-
cess steps of the soil moisture-temperature coupling; first the connection of soil moisture to flux partition-
ing and second the connection of flux partitioning to atmospheric temperature which is defined as the
second coupling metric that is applied in this study. The connection between soil moisture and flux par-
titioning is indicated by the correlation of the 10 day averaged summertime (JJA) evaporative fraction
(ratio of latent heat to the sum of sensible and latent heat flux) and total (i.e., vertically integrated) soil

Figure 8. Correlation of summer (JJA) 10 day averages of latent and sensible heat flux for the years 1990 to 2008.
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moisture (Figure 11). As decreasing (increasing) soil moisture leads to a decrease (increase) of the eva-
porative fraction, positive correlations are found over most of Europe in all model runs. Exceptions are
the northern parts of Scandinavia and Russia and over the Alps, where the WRF runs, MOHC-HadRM3P
and SMHI-RCA show no or even negative correlations. This behavior can most likely be attributed to a
delayed thawing of frozen soil layers. When only the uppermost soil layer moisture is used (as possible
for the WRF simulations), the correlation with the evaporative fraction is also positive. The noisy pattern
in Northern Africa relates to the very dry conditions in summer with latent heat flux close to zero and soil
moisture at its minimum. While all models show similar results for Europe, the DMI-HIRHAM model differ-
ently shows patterns of uncorrelated or even slightly negative correlations for the British Isles and parts of
central and eastern Europe. Since both evaporative fraction and soil moisture are quite high in these
regions, it is assumed to be an energy-limited regime where a small decrease in soil moisture does not
much affect the flux partitioning.

The correlation of 10 daily averages of latent heat flux and 2m air temperature is shown in Figure 12 for the
16 RCM simulations. The comparison of the individual RCMs gives a similar picture as the H-LE correlation in
Figure 8 in the way that stronger than ensemble average coupling (e.g., HMS-ALADIN, CLM-CCLM, SMHI-RCA,
and MOHC-HadRM3P) as well as weaker coupling (e.g., UCAN-WRF and DMI-HIRHAM) is identified for the
same RCM simulations. Again, all simulations show a clear north-south-pattern with strong coupling in south-
ern Europe and weak coupling in northern Europe. Overall, the LE-T correlation is slightly weaker than the H-
LE correlation signal and the transition zone from positive to negative correlation is located further to the
south. The first can be explained by the fact that LE-T correlation describes one step further in the land-
atmosphere coupling process chain of changing soil moisture leading to changing fluxes leading to changing

Figure 9. Correlations of 10 day mean observed summertime (JJA) latent and sensible heat flux for all available years at the
FLUXNET stations. Only days for which all half-hourly values have a quality flag 0 or 1 (original data or high-quality gap
filled) are taken into account, and only months with a minimum of 20 high-quality days. Symbols indicate the vegetation
type (see Figure 1) at the station. The larger the size of the symbol the more high-quality data are available. Numbers refer
to the individual stations as shown in Figure 10.
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temperature and that local temperature changes are also largely effected by advection. This fact also sug-
gests that different coupling metrics cannot be directly compared in terms of absolute values even if it is a
correlation-based metric ranging from �1 to 1.

With the GLEAM data set for evaporation and the ERA-Interim reanalysis for 2m temperature a gridded
observation-based reference for the LE-T correlation coupling metric is given in Figure 13. The averaged cou-
pling strength of the 16 RCM ensemble is in overall good agreement with the observation-based pattern as
both indicate strong coupling (negative correlations) for the Iberian Peninsula, Italy, southeastern Europe,
and parts of France and weak coupling (positive correlations) for Scandinavia and northeastern Europe.
The related difference plot shows that the ensemble mean coupling strength is stronger for large parts of
central and eastern Europe and slightly weaker for the Iberian Peninsula and northern Scandinavia. Also, grid
point wise counting the number of RCMs that simulate stronger coupling than GLEAM-ERAInt (red (blue) col-
ors indicate more (less) than half of the ensemble) gives a similar picture.

The direct comparison of the individual RCMs and the GLEAM-ERAint LE-T correlation for the individual
PRUDENCE regions is displayed in Figure 14. While a majority of RCMs agree with the GLEAM-ERAint correla-
tion sign for all regions, the ensemble spread as expected from Figure 12 is quite large especially for France,
middle Europe, the Alpine domain, and eastern Europe. For those regions, where coupling is either clearly
weak (Scandinavia) or strong (Iberian Peninsula and Mediterranean) the RCMs differ less. In line with the
maps in Figure 13 more than 75% of RCMs overestimate the observation-based coupling strength for middle
Europe, the Alpine domain, the Mediterranean and eastern Europe. They predominantly show less strong
coupling for the Iberian Peninsula, whereby all RCMs and the observation-based reference indicate negative
LE-T correlation in this region. Compared to the individual station grid points in Figure 10 the RCM spread is
less pronounced which mainly results from spatial averaging. The comparison to the GLEAM data product
leads to more confidence in the FLUXNET based analysis (section 4.1): there is a tendency of the RCMs to
overestimate coupling strength, albeit this does not yield for all regions. Please note that this is also based

Figure 10. Correlations of 10-daily mean observed summertime (JJA) latent and sensible heat flux for all available years at the FLUXNET stations (big red diamonds);
for station locations see Figure 1 (dots) and Figure 9 (the numbers on the x axis correspond to the station labeling in Figure 9). Small colored dots (and squares for
WRF RCMs) indicate the H-LE correlation values of the individual RCMs at the nearest grid point to a FLUXNET station. The calculation is based on the same time spans
for which observation data are available. Boxplots indicate the quantile range (gray), the medians (red line), and the means (purple line) of the RCM ensemble for
each station. Stations are ordered geographically from south to north along the x axis.
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on the assumption that the GLEAM-ERAint is the perfect benchmark. Though both GLEAM and ERA-Interim
are well established and thoroughly evaluated data sets, they are also based on models that may have the
same constraints in the ability of simulating the soil and land surface processes correctly. Still we consider
it as a most fair reference for the purpose of this study.

5. Summary and Conclusions

This study investigates the land-atmosphere coupling in a EURO-CORDEX reanalysis-driven ensemble in a
two-step approach. First, the simulated soil moisture and turbulent surface energy fluxes are compared to
satellite-based soil moisture estimates from the GLEAM data set and measurements from a set of

Figure 11. Correlation between 10 day averages of total soil moisture and the evaporative fraction computed for the summers between 1990 and 2008 (dotted
where correlation is below 5% significance level).
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European FLUXNET sites. Then, based on two coupling strength metrics, coupling regimes and transition
zones are identified, differences in the RCM ensemble are assessed, and simulated coupling strength is com-
pared with results from FLUXNET and GLEAM.

The individual models generally agree on the large-scale patterns corresponding to the European climate
zones, but regionally, the spread of results can be large. The RCMs’ total soil moisture time series averaged
over the PRUDENCE regions show clear annual cycles with largest amplitudes in southern Europe and also
reasonable interannual variability according to the weather conditions in the individual years. For the major-
ity of the RCMs the soil moisture is positively correlated with GLEAM soil moisture for large parts of Europe,
strongest for the Iberian Peninsula and the British Isles, but less correlated for parts of eastern Europe.

Figure 12. Correlation of summer (JJA) 10 day averages of latent heat flux and air temperature (2m) for the years 1990 to 2008.
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The expected flux partitioning following the European climate regions is fairly well reproduced by the RCM
ensemble and also in accordance with representative FLUXNET observations. The partially large ensemble
spread can most probably be attributed on the one hand side to differing LSM parametrizations including
assumptions concerning vegetation and soil-type distributions. A benchmarking intercomparison by Best
et al. [2015] revealed that LSMs still have deficits in the correct representation of the fluxes and do not appro-
priately use the information available in the atmospheric forcing data. While it is not feasible for the ensemble
of opportunity to define a benchmark in the sense of an a priori expectation on the results, we support the
suggestion by Best et al. [2015] that developing benchmark metrics that can assess the whole coupled system
would be an ultimate objective.

For the EURO-CORDEX RCM simulations the diversity in the simulated fluxes partly results from different sets
of atmospheric parametrizations, which impact the simulated regional weather conditions. This influence can
be inferred from a subset of WRF simulations which use the same LSM: some members produce regionally
higher overall surface energy fluxes due to higher solar radiation caused by less cloudiness in response to dif-
ferent convection and microphysics parameterizations. Multiple feedbacks between land surface and atmo-
spheric processes result in differences in, e.g., mean 2m air temperature and total precipitation (as analyzed
in other evaluation studies [Kotlarski et al., 2014; Katragkou et al., 2015]). These differences, however, depend
on many model parameters and cannot be directly or exclusively linked with coupling properties of the
individual RCMs.

The land-atmosphere coupling strength is investigated both in observations and simulations via two integra-
tive metrics based on the correlation between sensible and latent heat fluxes and the correlation of latent
heat flux and 2m air temperature, respectively, which describe the strength of soil moisture-related feedback
processes. A major advantage of these methods is its easy applicability to both standard RCM output, on

Figure 13. (a) Correlation of latent heat flux and air temperature (2m) for GLEAM (LE) and ERA-Interim (T), (b) for the
ensemble mean of Figure 13, and (c) for the difference of Figures 13b minus 13a. (d) Percentage of RCMs that simulate
stronger (red) or weaker (blue) coupling strength than GLEAM-ERAInt.
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which we had to rely in this study, based on an ensemble of opportunity, and to the FLUXNET observations
(for H-LE correlation) as well as to the gridded GLEAM-ERAInt observation-based data (LE-T correlation).

The coupling strength analysis of the EURO-CORDEX simulations based on H-LE correlation for the summer
months (JJA) over the period 1990 to 2008 revealed strong coupling in southern Europe and weak coupling
in northern Europe for all members of a multimodel ensemble in overall agreement with the FLUXNET mea-
surements. In the transition zone over large parts of central Europe between these coupling regimes the
RCMs diverge and show a wide range of coupling strengths. There is a tendency toward a stronger coupling
in the RCMs with reference to the FLUXNET observations, but the relatively small number of sufficiently long
and high-quality observation time series for many regions limits the confidence of that conclusion.

The comparison of the LE-T correlation derived from the RCM results and from the gridded GLEAM-ERAInt
reference, however, corroborates the statement that the majority of RCMs overestimates the coupling
strength for large parts of Europe. This is consistent with evaluation studies on global models that reveal
an overestimation of land-atmosphere coupling in the midlatitudes [Sippel et al., 2016] and parts of the
U.S. [Merrifield and Xie, 2016].

Both metrics agree in attributing stronger and weaker coupling strength than average to individual RCMs.
While both show the typical north-south pattern for Europe, the transition from positive to negative correla-
tion is slightly shifted to the south for the LE-T correlation metric. Overall the detected regions for strong
coupling in southern Europe agree with previous studies based on global models [Koster et al., 2006;
Dirmeyer, 2011], regional models [Seneviratne et al., 2006; Jaeger et al., 2009], and observations [Miralles
et al., 2012] for a similar time span but using different experiment designs and coupling metrics. Our results
also support the suggestion by Lorenz et al. [2015] that the coupling strength derived from different metrics
may provide similar information although they cannot be directly compared in their absolute values unless
appropriately scaled. Consistent, but inevitably computationally expensive GLACE-type experiments like
those by Koster et al. [2006], Seneviratne et al. [2006], or Hirsch et al. [2014] for all RCMs would allow for a
more robust assessment of coupling strength than possibly with the ensemble of opportunity at hand.
Nevertheless, the relatively simple correlation-based coupling metrics are suitable for an intercomparison
of different RCM runs. The coupling metrics provide additional information for the explanation of differences

Figure 14. Correlations of 10-daily mean summertime (JJA) latent heat flux and air temperature for the years 1990–2008
averaged for different PRUDENCE regions. Boxplots indicate the quantile range (gray), themedians (red line), and the
means (purple line) of the RCM ensemble for each region. The big red diamonds show the LE-T correlation of GLEAM-ERAInt.

Journal of Geophysical Research: Atmospheres 10.1002/2016JD025476

KNIST ET AL. LAND-ATMOSPHERE COUPLING IN EURO-CORDEX 99



we see in, e.g., extreme temperatures that show positive biases for the more strongly coupled RCMs. Finer
model resolutions generate additional small-scale heterogeneities in coupling strength, but these seem not
to affect the large-scale coupling patterns. In order to corroborate this statement, however, a larger number
of direct comparisons of EUR-11 and EUR-44 simulations with the same RCM are required.

The strength of land-atmosphere coupling varies across seasons and regions, and it is expected to become
stronger in the context of a warming climate, especially in locations where this feedback plays an important
role [Seneviratne et al., 2006; Dirmeyer et al., 2014]. Therefore, themodels’ ability to properly simulate coupling
strength is highly relevant as it, e.g., influences the representation of heat waves. A follow-up study will ana-
lyze the mechanisms and speed of a possible intensification of the coupling strength and the northward shift
of the transition zone using the EURO-CORDEX ensemble of control simulations and future regional climate
change scenarios.
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