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1. INfRODUCTION 

There has been considerable research interest in 
neural networks for the identification and control of 
non-linear dynamic systems in recent years, (Hunt, 
Irwin and Warwick, 1995) and (Hunt et aI., 1992). 
Although there has been significant progress, 
including industrial applications in the fields of 
aerospace (Morita, 1993), robotics (Pharn et al ., 
1994), power generation (Brown et al. , 1995) and 
chemical (Lightbody et aI., 1994), there remain a 
number of significant disadvantages to be addressed. 
These include a lack of transparency in the identified 
models which are inherently 'black-box' in nature, 
the difficulty in incorporating 'a-priori' plant 
knowledge which is usually available in practice and 
the weakness of theoretical support which is 
particularly evident when neural models are 
employed for control purposes. 

An alternative modelling strategy, which addresses 
many of these limitations, is the Local Model (LM) 
network (Murray-Smith and Johansen, 1997). first 
studied by (Johansen and Foss, 1992, 1993). A LM 
network comprises a set of local models and 
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associated validity functions. The non-linear 
representation can be either discrete- or continuous­
time, depending on the nature of the local model 
employed. Although the majority of the work to date 
has concentrated on the former, (Hunt, Johansen et 
al., 1996) and (Johansen and Foss, 1995), there has 
also been some progress on continuous-time LM 
networks. (Gawthrop, 1995). 

In this paper the capabilities of the continuous-time 
Local Model (LM) network for representing a non­
linear dynamic process is studied by simulation of a 
coupled tank system. The paper shows how 
normalisation of the network weighting functions 
limits the modelling accuracy and proposes a 
solution via the addition of constant bias terms to 
each of the individual local models. 

2. LOCAL MODEL NElWORKS 

Local Model (LM) networks were first described by 
(Johansen and Foss, 1992, 1993). A local model 
network (see Fig. I) is a set of models, each valid for 
a specific regime in the operating space. weighted by 



Fig. I: General Architecture of a LM Network 

some activation function. The same inputs, .!It, are fed 
to all the models and the outputs are weighted 
according to some scheduling variable or variables, 
~. The underlying local models can be either linear or 
nonlinear. The LM network output is given by: 

N 

.9= ~Pi(d(~'Ci,(J,»fi('I') (1) 
i=1 

where p;(d(~,fi.Qi» is the basis function (in this case, 
a Gaussian function) of the ith model, m is a vector of 
scheduling variables, N is the number of models in 
the network and fi(.!It) is the ith local model output. 

The LM network can be viewed as a generalisation 
of the RBF neural network. In the latter case, the 
weights associated with each basis function are 
constant parameters. In the LM network, these 
coefficents have been generalised to include more 
powerful functions of the inputs, .!It. This means that 
a smaller number of local models can cover larger 
operating regimes of the input domain as illustrated 
in Fig. 2. 

Obviously, there is a trade-off between the number 
and size of the operating regimes on the one hand, 
and the complexities of the local models on the other 
(Murray-Smith and Johansen, 1997). For instance, at 
one extreme one can have only one large operating 
regime that covers the full range of operation and, 
therefore, the local model must typically be complex 
since it is actually the global model. In general, a 
decomposition into a few large operating regimes 
will require more complex local models than a 
decomposition into numerous small operating 
regimes, see Fig. 2 (b) and (c). On the other extreme, 
one can partition the inpllt domain into a large 
number of operating regimes, so that the function to 
be approximated can be represented by constant 
values locally, see Fig. 2 (a). The latter function 
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approximation is the principle underlying RBF 
networks. 
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Fig. 2: Function Approximation by Local Models: 
(a) local constant functions, (b) local linear 
functions, (c) local quadratic functions . 

2.1 Weighting Functions 

In the local model network, the weighting of the 
local models is calculated using weighting or 
activation functions. The most commonly used 
weighting functions are the Gaussian basis functions, 
given by: 

p; = d(1.,s.,a,) = ex{ -111.~iS.n for j = 1,2, .. . ,N (2) 

where fi defines the Gaussian centre, Qi defines the 
Gaussian width and Pi is the ilh activation function 
output. The scheduling variables, ~ can be a function 
of a system state, an input, and/or some other system 
parameter. The number of centres and widths 
defining the Gaussian function depends on the 
number of scheduling variables used in the local 
model network. For one scheduling variable the 
Gaussian activation function is simply a 2-D bell­
shaped curve while for two scheduling variables it is 
a 3-D dome-shaped surface. 

It is common practice to use normalised Gaussian 
basis functions, such that every point in the input 
space is covered by the basis functions to the same 
degree, i.e. the basis functions form a panition of 
unity across the input space. The normalised 
Gaussian function output is given by: 

- P. P,=-N-

LP, 
(3) 

/ = 1 



3. THE COUPLED TANK SYSTEM 

The simulated application is a standard one for 
control studies and is a highly complex, nonlinear 
plant. Fig. 3 shows a simplified diagram of the 
coupled tank system. 

Vo 
Valve! Valve 2 

Fig. 3 Coupled Tank System 

Vi, Vo and V 12 represent the input flow rate, the 
output flow rate and the flow rate between the tanks 
respectively. The height of water in tank 1 is given 
by hI, while the height of the water in tank 2 is h2. If 
Al is the cross-sectional area of tank 1 and A2 the 
cross-sectional area of tank 2 then the set of 
equations representing the coupled tank system is as 
follows: 

(4) 

where KI and K2 are functions of the valve positions, 
PI and P2 respectively. 

Fig. 4 shows a graph of the flow characteristics for 
the valves in the coupled tank system, (Heckenthaler 
and Engell, 1994). This graph, along with the square 
roots in equations (4), illustrates the non linearity of 
this system. 
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Fig. 4 Valve Flow Characteristics 

4. LM NElWORK MODELLING OF THE 
TANK SYSTEM 

It was decided to model the response of hI to changes 
in PI and P2, as h2 was not affected by PI in the 
steady-state. The steady-state output of hI is shown 
in Fig. 5. Nine local second order linear state space 
models were developed at various operating points 
throughout the operating range. Normalised Gaussian 
functions were used to interpolate between the 
models with the centres and widths optirnised using 
the BFGS (Broyden, Fletcher, Goldfarb and Shanno) 
Quasi-Newton algorithm, (Gill, Murray and Wright, 
1981). 

4.1 Initial Modelling Results 

Fig. 6 shows the steady-state output of the LM 
network, while the error between the actual steady­
state output of the plant and that of the LM network 
is shown in Fig. 7. It can be seen that the LM 
network output is reasonably inaccurate. This is due 
to the fact that normalisation, defined in (3), limits 
the modelling accuracy of the LM network. 

Normalisation causes the Gaussian functions to sum 
to unity throughout the operating region. In doing so, 
the steady-state output of the LM network is forced 
to lie within the space bounded by the local models 
chosen. Fig.8 illustrates this using a simple example, 
whereby two linear models are used to represent the 
steady-state curve shown. The steady-state output of 
the LM network in this particular case is forced to lie 
within the shaded area. It can be clearly seen that, 
despite any improvement in the weighting functions 
or change in the positioning of the linear models, the 
LM network will not accurately represent the 
nonlinear plant in the region between the operating 
points and, indeed, in the regions outside the 
operating points also. 
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Fig. 8 Effect of Adding Constant Bias to each Model 

Introducing more models will reduce the actual 
steady-state error but there will always exist some 
residual error that cannot be eliminated using this 
approach. 

4.2 Bias Term Modelling 

By adding constant bias terms, b l and ~, to the two 
models in Fig. 8, they can be shifted upwards or 
downwards accordingly. An accurate representation 
may be achieved by optimising these bias terms. It is 
worth noting that, in order to achieve a completely 
accurate representation, the point of intersection 
between the two locally valid models needs to lie on 
the actual steady-state curve of the nonlinear plant. 

This concept was applied to the modelling of the 
coupled tank system, i.e. a constant bias was added 
to each of the nine models . These bias terms, along 
with the centres and widths of the weighting 
functions, were optimised to give a minimal 
modelling error. The steady-state output is shown in 
Fig. 9 with the error displayed in Fig. 10. These 
results clearly show a remarkable improvement in the 
modelling accuracy of the LM network. 

5 RESULTS 

A series of step changes in PI, with P2 held constant, 
was used to test the dynamic response of the LM 
network, see Fig. 11 . The LM network with biased 
local models produces a better response than the 
original LM network. 
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In the latter case, 'jumps' in the response are 
apparent. These 'jumps' occur when the network is 
traversing between local models and the reason for 
this again lies with normalisation. The LM network 
is optimised so as to give a minimum error between 
the LM network output and the plant output. From 
Fig. 8, it is plain to see that the minimum error is 
achieved when the output of the LM network is as 
indicated. The transition between the local models is, 
in this case, not smooth and hence the 'jump' in the 
step response. 

The addition of the bias terms results in a smooth and 
continuous steady-state LM network output and, 
hence, no 'jumps' in the relevant output in Fig. ll. 

6 CONCLUDING DISCUSSION 

The LM network is simply a set of local models, 
based at various operating points throughout the 
operating range, and a set of basis functions that 
interpolates between these models. In this paper local 
linear models were used along with normalised 
Gaussian activation functions to model a Coupled 
Tank System. 

Normalisation of the Gaussian functions has the 
advantage of ensuring that every point in the 
operating region is covered by the basis function to 
the same degree. However, it can limit the modelling 
accuracy of the LM network and can sometimes 
result in undesirable dynamical responses. 



0.5 

0.48 

0.46 

0.44 ,.-,. 

E 
'-" 

.E 0.42 

0.4 

0.38 

; "" .. - .. -
J " f /~ 

/ / , . 
. r : 
t : 

, 
· · · , 
· , 

,t... 11 

,,' , . : ( 

/ , ••••• _----.1 

.......... -_ ......... Plant Output 

---LM network Output with biased models 

------- LM network Output without biased models 

0.36 L..--_---' __ --'-__ ---'-----'::c...--'--__ -'---_--' 

o 1000 2000 3000 4000 5000 6000 

Time (secs) 

Fig. 11 Dynamical Responses of Various Systems 

The steady-state output of the local models needs to 
be changed in order to obtain a LM network with a 
smooth continuous steady-state response. This was 
achieved by adding a constant bias to each of the 
local linear models. With the incorporation of these 
bias terms, it was possible to develop a local model 
network that accurately modelled the example 
system. In doing so, the disadvantages due to 
normalisation were overcome, while the associated 
advantages were maintained. 

In this paper the input operating range was 
decomposed manually and suitable operating points 
chosen accordingly. Future work includes 
investigating operating regime decomposition and 
locating the optimal operating points for a nonlinear 
plant. 
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Fig. 5 Variation in steady-state height hI with 
valve positions PI and P 2 

Fig. 6 LM network Ou1put 

Fig. 9 Output of LM network with biased 
local models 
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