
Software Switching for High
Throughput Data Acquisition

Networks

A dissertation submitted for the degree of
Doctor of Philosophy

By:

Grzegorz Jereczek

Under the supervision of:
Dr. David Malone

Dr. Giovanna Lehmann Miotto (CERN)

Head of Department:
Prof. Ken Duffy

Hamilton Institute
Maynooth University

June 19, 2017

Grzegorz Jereczek: Software Switching for High Throughput Data Ac-
quisition Networks, © June 19, 2017
email: grzegorz.jereczek@gmail.com
Hamilton Institute, Maynooth University, Maynooth

mailto:grzegorz.jereczek@gmail.com

CONTENTS

Glossary xvii
1 introduction 1

1.1 Background information 1
1.1.1 CERN and the LHC 1
1.1.2 Trigger and Data Acquisition Systems 2
1.1.3 The ATLAS detector 4
1.1.4 Networking on general-purpose computers 6
1.1.5 Summary 8

1.2 Motivation 8
1.3 Thesis overview and research objectives 10
1.4 Publications 11
1.5 Additional material 12

2 literature review 13
2.1 Data acquisition networks 13

2.1.1 The ATLAS DAQ network 13
2.1.2 The LHCb DAQ network 14
2.1.3 The CMS DAQ network 15
2.1.4 The ALICE DAQ network 16
2.1.5 Summary 17

2.2 Solutions for many-to-one communication 17
2.2.1 Ethernet versus InfiniBand 18
2.2.2 Ethernet and TCP/IP technologies 19
2.2.3 Summary 22

2.3 Software packet processing 23
2.4 Network topologies 26
2.5 Software-Defined Networking 28
2.6 Summary 31

3 performance in data acquisition networks 32
3.1 Introduction 32
3.2 Definitions 32
3.3 Requirements on DAQ networks 34

3.3.1 Reliability 35
3.3.2 Data bandwidth 35
3.3.3 Data collection latency 36
3.3.4 Scalability 38
3.3.5 Fault tolerance 38
3.3.6 Costs 38

3.4 Throughput versus latency optimisation 38
3.5 Performance evaluation methodology 39

3.5.1 The ATLAS TDAQ system 40
3.5.2 Evaluation procedure 41

3.6 Conclusion 43

iii

4 many-to-one patterns in data acquisition 44
4.1 Introduction 44
4.2 TCP performance in DAQ networks 44
4.3 The analogies and differences to DCN 48
4.4 General approaches for many-to-one communication 51

4.4.1 The bandwidth-delay product 52
4.4.2 The onset of incast congestion 52
4.4.3 Incast avoidance 53

4.5 Example solutions for TCP incast 54
4.5.1 Application layer solutions 55
4.5.2 Alternative TCP congestion control algorithms 56
4.5.3 Link layer solutions 64
4.5.4 Comparison 66
4.5.5 Summary 70

4.6 Conclusion 70
5 extending buffers with software switches 73

5.1 Introduction 73
5.2 Software packet processing 74

5.2.1 Theoretical performance 75
5.2.2 Potential bottlenecks 76
5.2.3 The DPDK packet processing framework 78

5.3 The context of data acquisition 79
5.3.1 Evaluation setup 80

5.4 A dedicated software switch for DAQ networks 81
5.4.1 Design 82
5.4.2 Evaluation results 87
5.4.3 Summary 93

5.5 Open vSwitch optimisation for DAQ networks 94
5.5.1 Design 95
5.5.2 Implementation 96
5.5.3 Evaluation 97
5.5.4 Detailed performance characteristics 98

5.6 Other aspects 100
5.6.1 Comparison with traditional switches 101
5.6.2 Energy consumption 102
5.6.3 The use of the remaining cores 103

5.7 Conclusion 105
6 software-defined data acquisition networks 106

6.1 Introduction 106
6.2 The leaf-spine topology for DAQ networks 107

6.2.1 Design 107
6.2.2 Flow optimisation and bandwidth scaling 109
6.2.3 Flow assignment and packet routing 113
6.2.4 Resilience 114
6.2.5 Cost comparison 116
6.2.6 Physical space requirements 119

iv

6.3 A prototype of an SDN-based DAQ network 120
6.3.1 Evaluation setup 120
6.3.2 Evaluation results 122

6.4 Conclusion 126
7 multi-host ethernet controllers 128

7.1 Introduction 128
7.2 Advantages in incast-avoidance 129

7.2.1 Towards higher port density 129
7.2.2 Overcoming QPI limitations 130
7.2.3 Open vSwitch acceleration 130
7.2.4 Application in datacenter networks 131

7.3 Performance evaluation 131
7.3.1 Device under test 132
7.3.2 Test configuration A 133
7.3.3 Test configuration B 136

7.4 Conclusion 140
8 conclusions and outlook 142

8.1 Introduction 142
8.2 Review of the research 142
8.3 Future directions 144

a formulas 147
a.1 A simple model for bandwidth 147
a.2 Theoretical goodput 148
a.3 Mean and jitter 151

bibliography 152

v

L I ST OF F IGURES

Figure 1.1 Overall view of the LHC and the 4 LHC detec-
tors: ALICE, ATLAS, CMS and LHCb [53]. 2

Figure 1.2 Many-to-one communication in a data acqui-
sition network. Data originating from the ex-
periment’s instruments are sent over a network
to data collectors in the event building/filtering
farm for further processing. Only one collector
is drawn for clarity. Depending on the size of an
experiment, hundreds or thousands of indepen-
dent collectors are used. 4

Figure 1.3 The ATLAS detector [163]. 5
Figure 1.4 The DAQ/HLT system of the ATLAS detector

for Run 2 (2015-2018) [39]. 6
Figure 1.5 Network architecture of the ATLAS DAQ/HLT

system for Run 2 (2015-2018) [39]. 7
Figure 1.6 In an SDN network control logic is decoupled

from the forwarding hardware in a centralised
controller in contrast to traditional networks, in
which devices implement both and the control
is distributed across them. 8

Figure 2.1 Architecture of the CMS DAQ system for Run
2 of the LHC [19]. 16

Figure 3.1 Overview of nodes connected to a data acquisi-
tion network. Functions of particular nodes can
vary. In some configurations readout nodes (R)
can also perform event building and/or filter-
ing. Also, distinct networks for both tasks can
be used. 33

Figure 3.2 Generalised evaluation setup. Both readout sys-
tem (R) and filtering farm (H) are emulated
with the ATLAS TDAQ software. Each box rep-
resents a distinct node running either emulated
readout applications, emulated rack of data col-
lectors of the HLT farm, or both. 42

Figure 4.1 Test setup with one data collector and up to 200
ROS nodes (9-12 per rack) with twelve event
data fragments on each. 45

Figure 4.2 Link utilisation of a data collector over longer
period of time. It remains idle for at least 200ms
after a TCP timeout, which suspends data col-
lection. 46

vi

Figure 4.3 Goodput (a) and event data collection latency
(b) when increasing event size by increasing the
number of readout nodes, and the exact distri-
butions of latency for four different event sizes
(c). Event rate at the input is kept constant
(L1r = 50Hz). 47

Figure 4.4 Goodput (a) and event data collection latency
(b) when changing the queue size in the core
router, and the exact distributions of latency for
three different cases (c). Event rate at the input
is kept constant (L1r = 50Hz) and the number
of ROS is NR = 40 in order not to overflow the
ToR switch at the data collector. 49

Figure 4.5 Goodput (a) and event data collection latency
(b) when changing the quota of traffic shaping
credits per data collector, and the exact distri-
butions of latency for three different cases (c).
Event rate at the input is kept constant (L1r =
50Hz) and the number of ROS is NR = 200
in order not to overflow the ToR switch at the
data collector. Each ROS provides twelve event
fragments of 1 kB 56

Figure 4.6 IO graphs for the data collection process of a
single event. The last ROS response (a) arrives
after 16.766ms for static cwnd of two packets
and after 16.84ms for traffic shaping (396 cred-
its quota). 59

Figure 4.7 Maximum VOQ size of three different blades
during event data collection. One blade, which
connects more ROS racks, experiences higher
load. 60

Figure 4.8 Event data collection latency with one data col-
lector. Offered load is 83%. Static TCP and
traffic shaping eliminate TCP timeouts with the
former having slightly higher latency. 60

Figure 4.9 Setup for evaluation of DIATCP. 160 readout
nodes are emulated on four nodes (eight virtual
machines) with twelve 1.1 kB event data frag-
ments on each. 62

Figure 4.10 IO graphs for the data collection process of a
single event. The last ROS response (a) arrives
after 18.94ms in case of DIATCP with gwnd

of 160 packets, 22.19ms for static cwnd of two
packets and after 18.48ms for traffic shaping
(421 credits quota). 63

vii

Figure 4.11 Event data collection latency with one data col-
lector. Offered load is 83%. Static TCP and
traffic shaping eliminate TCP timeouts with the
former having slightly higher latency. 64

Figure 4.12 Setup for evaluation of the Ethernet pause frame
mechanism (IEEE 802.3x). Twelve ROS nodes
and twelve filtering racks are emulated on the
same hosts. Each emulated rack contains twelve
independent data collectors. A separate network
is used for communication with the HLT super-
visor (1GbE). 65

Figure 4.13 Evaluation results of the Ethernet IEEE 802.3x
pause frame mechanism with the simple test
setup from Figure 4.12. Sustained load (a) and
event data collection latency (b) as a function
of the offered load, and the exact distributions
of latency for three different cases (c). 67

Figure 4.14 Test setup with 30 data collectors and up to
12 ROS nodes with 24 event data fragments on
each. 68

Figure 4.15 Goodput (a) and data collection time (b) when
tuning traffic shaping credits for the setup de-
picted in Figure 4.14. 68

Figure 4.16 Goodput (a) and data collection time (b) when
tuning TCP congestion window cwnd for the
setup depicted in Figure 4.14. 69

Figure 4.17 Comparison of application-layer traffic shaping,
static TCP congestion window, and Ethernet
IEEE 802.3x pause frame mechanism in the con-
figuration from Figure 4.14. Sustained load (a)
and event data collection latency (b) in function
of the offered load, and the exact distributions
of latency for three different cases (c). 71

Figure 5.1 Block diagram of one of Intel’s platforms (code
name Romley) for the Intel E5-2600 processor
series. 76

Figure 5.2 Maximum packet processing latency to saturate
a 10Gbps link as a function of the Ethernet
frame size (assuming serial processing). 77

Figure 5.3 Test setup (a) for evaluation of software switch-
ing. The switch under test (b) is a COTS server
with twelve 10GbE ports running a switching
application (DPDK). 81

viii

Figure 5.4 Three differing queueing strategies for evalua-
tion of the DPDK-based switching application.
Output queueing (OQ) using hardware queues
of a NIC in (a), virtual output queueing (VOQ)
using hardware queues of a NIC in (b), and
DAQ-dedicated queueing using software queues
(DPDK rings — daqrings) in (c). 83

Figure 5.5 Comparison of the three queueing strategies of
a dedicated switching application in the config-
uration depicted in Figure 5.3. Goodput (a) and
event data collection latency (b) in function of
the number of CPU cores used by the applica-
tion for switching packets, and the exact distri-
butions of latency for three cases (c). 89

Figure 5.6 Simplified test setup to investigate the effects of
excessive polling. 90

Figure 5.7 Goodput in the function of the CPU frequency
(a) and polling interval (b) in a small setup com-
paring the performance of SandyBridge and Ivy-
Bridge platforms with the VOQ design in the
software switching application. 91

Figure 5.8 Goodput (a) and data collection time (b) when
tuning the daqring size, when a rate limit of
0.8Gbps is applied to each daqring. 92

Figure 5.9 The special data taking configuration for a sce-
nario with one data collector and 110 ROS ap-
plications. The latter are emulated on eleven
physical hosts. 93

Figure 5.10 Data collection latency when tuning the daqring
size for a setup with one data collector and 110
readout applications (see Figure 5.9). 93

Figure 5.11 Saturation goodput (a) and latency distribution
(b) in all-to-all incast scenario with modified
Open vSwitch. 99

Figure 5.12 Saturation goodput (a) and latency distribution
(b), (c) in all-to-all incast scenario with modi-
fied Open vSwitch when changing the number
of CPU cores, their frequency and the number
of receive queues on the NICs. 101

Figure 5.13 Performance of OVS with daqrings and regu-
lar ToR switches with enabled Ethernet IEEE
802.3x pause frame mechanism. Sustained load
(a) and data collection latency (b) as a function
of the offered load, and the exact distributions
of latency for three different cases (c). 102

ix

Figure 5.14 Average per port power consumption in all-to-
all incast scenario with DAQ-optimised Open
vSwitch for various CPU frequencies. In all cases
goodput is at least 95% of the theoretical max-
imum. 103

Figure 5.15 Goodput (a) and data collection latency (b) in
all-to-all incast scenario, if some of the CPU
cores that are not allocated to OVS are used
to run the STREAM benchmark. 104

Figure 6.1 Architecture of a DAQ network in the leaf-spine
topology. Note that leaf switches are not con-
nected with each other. 108

Figure 6.2 Architecture of a DAQ network in the parallel
leaf-spine topology. 109

Figure 6.3 The method for load balancing by assigning a
particular plane and spine switch for all flows
belonging to a DCM. Two examples are pre-
sented: a DCM in the second HLT rack in pod
3 is assigned to spine switch 1 in plane 4 and a
DCM in the first HLT rack in pod 4 is assigned
to spine switch 3 in plane 2. 111

Figure 6.4 An example for bandwidth scaling for a DAQ
network (as defined in Section 3.2) in the par-
allel leaf-spine topology. 112

Figure 6.5 Costs comparison for building a DAQ network
with the traditional approach (large routers in
the core) and the parallel leaf-spine topology
(software switches) with different oversubscrip-
tion factors at the leaf switches. The cost of ca-
bling is not included. 119

Figure 6.6 Comparison of the physical space required (to-
tal area) for building a DAQ network with the
traditional approach (large routers in the core)
and the parallel leaf-spine topology (software
switches) with different oversubscription factors
at the leaf switches. 120

Figure 6.7 The prototype of the parallel leaf-spine topol-
ogy (a) and its theoretical performance for DAQ
traffic pattern (b). 121

Figure 6.8 Tuning traffic shaping at the daqring queues
for the setup depicted in Figure 6.7a, using one
plane with one spine switch (a) and (b), using
one plane with two spine switches (c) and (d),
and using two planes with two spine switches
(e) and (f). Optimum settings for each configu-
ration are summarised in (g). 123

x

Figure 6.9 Comparison of three different approaches to in-
cast congestion in the parallel leaf-spine topol-
ogy (see Figure 6.7a). Saturation goodput (a)
and the distribution of the event data collection
latency (b) in function of the number of parallel
planes and spine switches. The values for good-
put in the table are relative to the theoretical
limit of the given network configuration (not the
PCIe limit). 125

Figure 6.10 Simple failover scenario. A link in the topology
from Figure 6.7a is broken around 120 s, and
comes up again around 240 s. 126

Figure 7.1 Comparison of the physical space usage (total
area) for building a DAQ network based on soft-
ware switches using traditional NICs or multi-
host controllers for various oversubscription fac-
tors at the leaf switches. 130

Figure 7.2 Block diagram of the device under test (DuT)
that consists of a COTS server (Supermicro Su-
perserver 7048R-TR) connected over four PCIe
x8 links with the reference platform of the Intel
FM10840 chip. It offers 24 10GbE ports. 132

Figure 7.3 Goodput (a), data collection latency (b), and
the total number of TCP retransmissions (c)
when tuning rate limits at daqrings for the setup
depicted in Figure 4.14. 134

Figure 7.4 Comparison of application-layer traffic shaping,
static TCP congestion window, Ethernet IEEE
802.3x pause frame mechanism, and daqrings in
the configuration depicted in Figure 4.14. Sus-
tained load (a) and data collection latency (b)
in function of the offered load, and the exact dis-
tributions of latency for three cases (c). 135

Figure 7.5 Second test configuration for evaluation of the
FM10840 reference platform. Six nodes are used
to emulate ROSes, each providing single event
data fragment of 96KiB. Eleven DCMs are emu-
lated on each of the remaining six nodes. 136

Figure 7.6 Goodput (a), data collection latency (b), and
the total number of TCP retransmissions (c)
when tuning daqrings for the setup depicted in
Figure 7.5. 138

Figure 7.7 Goodput (a) and the total number of TCP re-
transmissions (b) when changing the number of
the rx-queues and CPU cores used by OVS for
the setup depicted in Figure 7.5. 138

xi

Figure 7.8 Comparison of TCP Cubic, static TCP conges-
tion window, Ethernet IEEE 802.3x pause frame
mechanism, and daqrings in the configuration
depicted in Figure 7.5. Sustained load (a) and
event data collection latency (b) in function of
the offered load, and the exact distributions of
latency for three different cases (c). 140

L I ST OF ALGORITHMS

Algorithm 6.1 General algorithm to distribute DAQ flows across
the parallel leaf-spine fabrics. 110

Algorithm 6.2 Example algorithm to redistribute data acqui-
sition flows across the parallel leaf-spine fabrics
after link failure. 115

xii

DECLARATION

I hereby declare that I have produced this manuscript without the
prohibited assistance of any third parties and without making use of
aids other than those specified.

The thesis work was conducted from October 1, 2013 to June 19, 2017
under the supervision of Dr. David Malone and Dr. Giovanna Lehmann
Miotto (CERN) in Hamilton Institute, Maynooth University. This re-
search project has been supported by a Marie Curie Early European
Industrial Doctorates Fellowship of the European Community’s Sev-
enth Framework Programme under contract number PITN-GA-2012-
316596-ICE-DIP.

Geneva, Switzerland, June 19, 2017

Grzegorz Jereczek

ACKNOWLEDGEMENTS

First of all, I would like to thank my two supervisors, Dr. Giovanna
Lehmann Miotto at CERN and Dr. David Malone at Maynooth Uni-
versity, for their continuous support, guidance, encouragement, and mo-
tivation, but also friendliness. Giovanna led me into the field of data
acquisition networks and offered her great technical expertise at every
step. David has assisted me with the academic aspect of this work and
shared his thorough knowledge of networks. My work would have been
impossible without their great help. They also carried out the proof-
reading work and provided constant feedback to improve the research
papers and this manuscript. I am very thankful that I had the chance
to meet them.
I would also like to express deepest gratitude to Mr. Mirosław Walu-

kiewicz from Intel Poland. His invaluable technical advice in the field
of networks and software packet processing as well as numerous discus-
sions with him were essential for me to focus on the right direction. I
also appreciate all the support and feedback that I received during my
secondment at Intel. Without the genuine commitment of Mr. Krzysztof
Krzywdziński and continuous support of Mr. Mariusz Linda it would be
impossible to conduct the crucial experiments for this thesis. I cannot
forget about Mr. Andrzej Jaszcza, who first trusted me when starting
my journey through computer networks.
I am grateful to the members of the ATLAS TDAQ group at CERN

for their support in preparation of the experiments, technical discus-
sions, and valuable reviews of the research papers, with special men-
tions for Mr. Mikel Eukeni Pozo Astigarraga, Dr. Wainer Vandelli,
Dr. Tommaso Colombo, and Dr. Silvia-Maria Fressard-Batraneanu. I
would like to thank the ICE-DIP team, especially Mr. Andrzej Nowak,
Dr. Bob Jones, and Dr. Seamus Hegarty, for the continuous support.
Special thanks to the European Commission for this opportunity that

changed my life in so many, often unpredictable, ways. This research
project has been supported by a Marie Curie Early European Industrial
Doctorates Fellowship of the European Community’s Seventh Frame-
work Programme under contract number PITN-GA-2012-316596-ICE-
DIP.

At this point, I am obliged to give thanks to Prof. Thomas Zwick
from Karlsruhe Institute of Technology, who helped me to build my
self-confidence and who inspired me for the career in research.
Last, but not least, I would like to thank my family, for supporting

me in everything I have done in my life. My thanks are addressed in
particular to my parents for their unconditional support and sacrifices
throughout my education that started in Poland and went on to Ger-
many, Switzerland, and Ireland. Thank you, sister, for always making

xiv

sure I am safe and sound. And to my wife, Anna, and daughter, Maja,
which came to my life in the last year of my PhD programme, for
putting up with my terrible working hours and still continuing to sup-
port me. Anna, you have never missed the opportunity to tell me well
done and you have made me feel pride in my achievements. A warm
thank you goes also to all my friends, including the ICE-DIP fellows,
who are there for me all the time.

xv

ABSTRACT

The bursty many-to-one communication pattern, typical for data ac-
quisition systems, is particularly demanding for commodity TCP/IP
and Ethernet technologies. The problem arising from this pattern is
widely known in the literature as incast and can be observed as TCP
throughput collapse. It is a result of overloading the switch buffers,
when a specific node in a network requests data from multiple sources.
This will become even more demanding for future upgrades of the ex-
periments at the Large Hadron Collider at CERN. It is questionable
whether commodity TCP/IP and Ethernet technologies in their cur-
rent form will be still able to effectively adapt to bursty traffic without
losing packets due to the scarcity of buffers in the networking hardware.
This thesis provides an analysis of TCP/IP performance in data acqui-
sition networks and presents a novel approach to incast congestion in
these networks based on software-based packet forwarding.
Our first contribution lies in confirming the strong analogies between

the TCP behaviour in data acquisition and datacenter networks. We
also provide experimental evaluation of different proposals from the
datacenter environment for application in data acquisition to improve
performance and reduce buffer requirements.
The second contribution lies in the design and experimental evalua-

tion of a data acquisition network that is based on software switches.
Performance has traditionally been the challenge of this approach, but
this situation changes with modern server platforms. High performance
load balancers, proxies, virtual switches and other network functions
can be now implemented in software and not limited to specialised
commercial hardware, thus reducing cost and increasing the flexibility.
We first design and optimise a software-based switch with a dedi-

cated, throughput-oriented buffering mechanism for data acquisition.
Our experimental results indicate that it performs significantly bet-
ter than some typical Ethernet switches under heavy congestion. The
optimised software switch with large packet buffer reaches maximum
bandwidth and completely avoids throughput degradation typical for
hardware switches that suffer from high packet drop counts.
Furthermore, we evaluate the scalability of the system when build-

ing a larger topology of interconnected software switches. We highlight
aspects such as management, costs, port density, load balancing, and
failover. In this context, we discuss the usability of software-defined
networking technologies, Open vSwitch Database and OpenFlow, to
centrally manage and optimise a data acquisition network. We have
built an IP-only parallel leaf-spine network consisting of eight software
switches running on separate physical servers as a demonstrator.

xvi

GLOSSARY

Term Meaning

ALICE A Large Ion Collider Experiment
API Application Programming Interface
ARP Address Resolution Protocol
ASIC Application Specific Integrated Circuit
ATLAS A Toroidal LHC ApparatuS
BDP Bandwidth-Delay Product
bps bits per second
CERN The European Organisation for Nuclear Research
CMS The Compact Muon Solenoid
COTS Commercial Off-The-Shelf
CPU Central Processing Unit
DAQ Data Acquisition
DCB Datacenter Bridging
DCM Data Collection Manager
DCN Datacenter Network
DCTCP Datacenter TCP
DDR Double Data Rate
DIATCP Deadline and Incast Aware TCP
DMA Direct Memory Access
DMI Direct Media Interface
DPDK Data Plane Development Kit
DRAM Dynamic Random Access Memory
ECMP Equal Cost Multipath
ETS Enhanced Transmission Selection
FIFO First-In-First-Out
FSB Front-Side Bus
GbE Gigabit Ethernet
HLT High Level Trigger
HLTSV HLT Supervisor
HoL Head-of-Line (blocking)
HPC High Performance Computing

xvii

ICE-DIP The Intel-CERN European Doctorate Industrial
Program

ICT Information and Communication Technologies
ICTCP Incast Congestion Control for TCP
IETF Internet Engineering Task Force
IIO Integrated I/O
IMC Integrated Memory Controller
IoT Internet of Things
IP Internet Protocol
L1r Level-1 rate (events)
LAG Link Aggregation Group
LAN Local Area Network
LHC The Large Hadron Collider
LHCb The Large Hadron Collider beauty experiment
MAC Media Access Control
MSS Maximum Segment Size
MTU Maximum Transmission Unit
NFV Network Functions Virtualisation
NIC Network Interface Controller
NUMA Non-Uniform Memory Access
OF OpenFlow
OVS Open vSwitch
OVSDB Open vSwitch Database
PC Personal Computer
PCH Platform Controller Hub
PCI Peripheral Component Interconnect
PCIe Peripheral Component Interconnect Express
PFC Priority-based Flow Control
pps packets per second
QCN Quantized Congestion Notification
QoS Quality-of-Service
QPI QuickPath Interconnect
ROS Readout System
RSS Receive Side Scaling
RTT Round-Trip Time
SDN Software-Defined Networking
SRAM Static Random Access Memory
SSH Secure Shell

xviii

STP Spanning Tree Protocol
TCP Transmission Control Protocol
TCP RTO TCP Retransmission Timeout
TCP SACK TCP Selective Acknowledgement
TDAQ Trigger and Data Acquisition
TLB Translation Lookaside Buffer
ToR Top of Rack (switch)
UDP User Datagram Protocol
VLAN Virtual LAN
VM Virtual Machine
VOQ Virtual Output Queueing

xix

1
INTRODUCTION

This thesis is about the optimisation of data acquisition networks for large
experiments based on commodity TCP/IP and Ethernet technologies. In this
chapter, we present background information and some basic concepts for the
topics to be discussed in the thesis with the review of the related literature. We
also give the motivations behind our work highlighting the research objectives
and contributions with an overview of the material presented in the following
chapters.

1.1 background information

1.1.1 CERN and the LHC

Over the centuries humanity has been exploring the laws of nature. A
significant role in this exploration is played nowadays by scientists at
CERN [32], the European Organisation for Nuclear Research, where the
basic constituents of matter, the elementary particles [22], are studied.
The particles approach speeds close to the speed of light in accelera-
tors and then are made to collide. The effects of these collisions are
observed by detectors, recorded by high throughput data acquisition
systems, and finally analysed by physicists around the world seeking
answers for questions about our universe. CERN provides the necessary
instruments for this research like particle accelerators, detectors, data
acquisition systems, or computing infrastructure.
On 10 September 2008 the world’s largest and most powerful particle

accelerator to date, the Large Hadron Collider (LHC) [53], started its
operation at CERN. It consists of a 27-kilometre ring and four particle
detectors, where particle beams travelling in opposite directions collide:

• ALICE - A Large Ion Collider Experiment [161],

• ATLAS - A Toroidal LHC ApparatuS [163],

• CMS - The Compact Muon Solenoid [164],

• LHCb - The Large Hadron Collider beauty experiment [166].

The overall view of the LHC and the experiment’s detectors is illus-
trated in Figure 1.1.

1

1.1 background information 2

So
ur

ce
:C

ER
N

Figure 1.1: Overall view of the LHC and the 4 LHC detectors: ALICE, AT-
LAS, CMS and LHCb [53].

During the LHC’s first run the existence of the so called Higgs bo-
son was confirmed by the ATLAS and CMS experiments. As a result,
Francois Englert and Peter W. Higgs were awarded the Nobel Prize in
Physics in 2013 for their theoretical work and prediction of the exis-
tence of such a particle. The second run of the LHC started in 2015,
after it had been upgraded to operate at higher energies and collision
rates. This run will continue until 2018, when another increase in rates
and energies is going to be pursued. All scheduled LHC upgrades rang-
ing beyond 2020 require significant technological advances in the entire
LHC infrastructure. Higher energies and rates are, however, essential
in the search for new discoveries.
In 2013 the Intel-CERN European Doctorate Industrial Program

(ICE-DIP) [165] was started by the CERN openlab [33] to research
and develop new technologies in the domain of high throughput on-
line data acquisition facing the future upgrades of the LHC facilities —
the significant increases in the data rates produced by the experiments
in particular. The public-private partnership of the ICE-DIP project
makes it possible to evaluate the most innovative concepts available in
the ICT industry in the demanding context of the LHC data acquisition
systems. This Ph.D. is the result of my work within one of the ICE-DIP
work packages, the objective of which was to assemble a cost effective,
high bandwidth data acquisition network capable of multi-terabit lossless
throughput using commodity components.

1.1.2 Trigger and Data Acquisition Systems

Data Acquisition (DAQ) is the process of sampling and recording data
representing real-world physical signals [105]. The source of these data
can be a wide variety of instruments like sensors, detectors, antennas,
or telescopes. Large-scale experiments, like the four LHC detectors,
produce increasingly high volumes of data. For example, in the first

1.1 background information 3

run of the LHC (called Run 1, 2009-2013) its nominal collision rate
was 40MHz, which means that particles collided in the detectors ev-
ery 25 ns. In case of the ATLAS experiment, the nominal size of a
snapshot of a collision event1 produced by the detector was 1.5MB
on average, which results in roughly 500Tbit of data produced by the
detector every second [117]. It is obvious that not all the data can
be acquired and saved to permanent storage, from where they can be
later retrieved for the off-line analysis. Moreover, these numbers con-
tinuously increase with the upgrades of the LHC. On the other hand,
many collision events are not very interesting from the physics point
of view. Therefore on-line selection procedures, triggers, are used to
select only the interesting collisions for further analysis, reducing the
total number of events recorded permanently. Trigger systems consist
of a combination of dedicated high-speed electronics and software [22,
118]. Data acquisition and trigger systems are often jointly referred to
as Trigger and Data Acquisition (TDAQ). An overview of the TDAQ
systems of the four LHC experiments in the LHC’s first run with the
outlook for the future upgrades is available in [118].
Many functions of the LHC’s TDAQ systems are realised by dedi-

cated high-speed electronics, which is designed to sustain the amounts
and rates of data produced by the experiments. There exists, however, a
general desire to build the TDAQ systems with commercial off-the-shelf
(COTS) equipment. It simplifies development, configuration, and main-
tenance, but also significantly reduces costs. Custom electronics are re-
placed with high-performance commodity processors, efficient software,
and commodity networks whenever possible [118]. Furthermore, the
ever-increasing usage of the Internet, and the advent of data-intensive
services (Big Data) have started generating and moving quantities of
data in the order of hundreds of PB each month. In [67] the LHC along
with Internet search and content distribution or business data collec-
tion were given as an example of data-intensive computing, in which
massive amounts of data must be processed to facilitate understanding
of complex problems. The technologies developed and used by the IT
industry to process these amounts of data are becoming commodity
components, and therefore could be considered as viable competitors
to purpose-built electronics in experiments like the LHC [48]. The same
conclusions have been made in the context of the LHCb experiment by
[148].

1.1.2.1 Data acquisition networks

One of the key components of TDAQ systems in distributed large-scale
experiments is a network, called the data acquisition network. It col-
lects the outputs from all the instruments to allow reconstruction and
analysis of a physical process (Figure 1.2) [40]. At the LHC, depend-

1 Events in the LHC nomenclature are particle collisions inside of the LHC and their
physical “fingerprints” are recorded by a detector.

1.1 background information 4

Readout System (ROS) of an experiment

Data Collection Manager
(DCM)

DAQ network

Figure 1.2: Many-to-one communication in a data acquisition network. Data
originating from the experiment’s instruments are sent over a net-
work to data collectors in the event building/filtering farm for fur-
ther processing. Only one collector is drawn for clarity. Depending
on the size of an experiment, hundreds or thousands of indepen-
dent collectors are used.

ing on the experiment, a DAQ network can also be referred to as an
event building network. Depending on the size of an experiment a DAQ
network must provide required levels of data bandwidth, latency, and
reliability. Any data loss implies incomplete reconstruction of the phys-
ical process, and, in effect, oversight or disqualification of potential
discoveries.
These requirements are often difficult to achieve because of the traffic

pattern specific to data acquisition. As can be already inferred from Fig-
ure 1.2, many-to-one communication is associated with TDAQ systems,
often accompanied by high burstiness of data coming from the readout
system [118]. These conditions lead to so called incast [114] congestion
— a problem that is present also in the IT industry, especially in dat-
acenter networks (DCNs) [87]. It occurs when multiple nodes respond
with data synchronously to a single requester. It has been observed
that these responses, although not very large on average, suffer from
a large packet loss rate [170]. The scale of the problem increases with
the number of the responders, i.e. the size of the readout system in the
case of DAQ networks. The details of the DAQ networks of the four
LHC experiments will be reviewed in Section 2.1.

1.1.3 The ATLAS detector

ATLAS [163] is one of the two general-purpose detectors at the LHC,
which investigate a wide range of physics. The scientific goals of ATLAS
are the same as the ones of the second detector, CMS [164], but they use
different technical solutions to achieve them. Following the discovery
of the Higgs boson (see Section 1.1.1), in-depth investigation of its
properties will be possible with further data. The experiment can also
shed more light on theories like the extra dimensions of space, dark
matter, or register completely new, unpredicted phenomena.

1.1 background information 5

AT
LA

S
Ex

pe
rim

en
t©

20
16

CE
RN

Figure 1.3: The ATLAS detector [163].

The ATLAS detector is presented in Figure 1.3. The particle beams
accelerated in the LHC collide at the centre of the detector. New par-
ticles resulting from these collisions fly out in all directions. ATLAS
records a set of their properties like paths through the detector, ener-
gies, or momenta. Different detecting subsystems measure specific sets
of these properties.
As already described in Section 1.1.2, the ATLAS detector creates an

enormous dataflow. An advanced TDAQ system is required to identify
only interesting collision events and record them permanently. The out-
line of the system for the the 2015–2018 data-taking period is presented
in Figure 1.4. The ATLAS multi-level triggers [162] are implemented
both in dedicated hardware and on a commodity computer farm. The
latter applies the most complex event selection algorithms in software,
which are generically named as High Level Trigger (HLT). On the other
hand, the the first-level hardware triggers use the simplest criteria to
reject obviously uninteresting events as fast as possible, before they
reach the experiment’s readout system (ROS). The decision is often
made independently in various parts of the detector.
HLT is a PC-based, large distributed system, interconnected through

a data acquisition network based on Ethernet and TCP/IP technologies.
Most of the events are already discarded based only on partial event
data retrieved from ROS (event filtering), but in order to finally accept
an event as interesting, all data belonging to a particular event must be
delivered to an HLT node (event building). In general, event filtering
and building functions can take place on different nodes, but in the LHC
Run 2 (2015-2018) the same nodes are used in the case of ATLAS. The
DAQ network was designed to sustain a throughput of several 10GB/s

1.1 background information 6

AT
LA

S
Ex

pe
rim

en
t©

20
16

CE
RN

.

Figure 1.4: The DAQ/HLT system of the ATLAS detector for Run 2 (2015-
2018) [39].

for the LHC’s second run, and transport data from 100 readout nodes
to approximately 30000 CPU cores executing HLT algorithms [130].
The bandwidth requirement will further increase in Run 3 (2020-2023)
of the LHC [17], and beyond.
Because of the scale of the experiment and the resulting requirements

on the network system, the ATLAS DAQ network (see Figure 1.5) is
used throughout this work as a case study to research new solutions
optimising commodity networks for use in data acquisition systems.
The conclusions are, however, not limited to ATLAS but are applica-
ble to many other networks susceptible to the problems arising from the
many-to-one communication pattern as well as other TDAQ systems.
The ATLAS DAQ network, having very demanding traffic characteris-
tics, is a good environment to evaluate candidate technologies.

1.1.4 Networking on general-purpose computers

One avenue that could be explored to enhance the DAQ capabilities
in ATLAS and other large experiments is software packet processing
on general purpose servers. This approach has recently become a real
alternative for specialised commercial networking products thanks to
new capabilities of commodity hardware and user space networking
frameworks like the Intel Data Plane Development Kit (DPDK) [80].
High performance load balancers, proxies, virtual switches and other
network functions can be now implemented in software and not limited
to specialised commercial hardware, thus reducing cost and increasing

1.1 background information 7

AT
LA

S
Ex

pe
rim

en
t©

20
16

CE
RN

.

Figure 1.5: Network architecture of the ATLAS DAQ/HLT system for Run 2
(2015-2018) [39].

flexibility. The presence of software-based commercial networking prod-
ucts like Brocade Vyatta Virtual Router [173] or offerings of 6WIND
[2] prove the viability of this approach. With a combination of higher
flexibility and features for a target application, a solution tuned for a
particular network could be pursued.
Together with the Software-Defined Networking (SDN) paradigm

[124], a completely new perspective to build, manage, and optimise net-
works opens up. In SDN, the networking control and forwarding planes
(also called data plane) are physically decoupled and the network in-
telligence is logically centralised in an SDN controller as depicted in
Figure 1.6. This controller has a global view of the entire network and
is responsible for maintaining all of the network paths and programming
each of the devices in the network [113]. The OpenFlow protocol [126],
originally proposed in [108], is used for communication between the
controller and the devices. This concept also contrasts with traditional
networks with a distributed control plane, in which network devices
are comprised of both: a data plane, being switch fabric connecting
ports, and a control plane that is the brain of a device, implementing
various protocols [113]. SDN significantly improves flexibility because
dedicated algorithms can be easily integrated in software within the
controller framework.

1.2 motivation 8

Switch

Data plane

Switch

Data plane

Switch

Data plane

Control plane

Software-Defined Network

Switch

Data plane
Control plane

Switch

Data plane
Control plane

Switch

Data plane
Control plane

Traditional Network

Figure 1.6: In an SDN network control logic is decoupled from the forward-
ing hardware in a centralised controller in contrast to traditional
networks, in which devices implement both and the control is dis-
tributed across them.

1.1.5 Summary

Data acquisition systems of large scale experiments, like those of the
LHC, require high bandwidth and reliable networks. Many-to-one com-
munication is the typical pattern for these systems and it is at the
source of a network congestion problem. The latter will become more se-
vere for future upgrades of the detectors at the LHC. There are reasons
to evaluate software switching on COTS servers and SDN technologies
to provide reliable transport in congested conditions. The flexibility of
design in software and performance of modern computer platforms are
a strong basis on which to build a DAQ-dedicated network.

1.2 motivation

This work presents methods for optimisation of DAQ networks for high
throughput based on commodity TCP/IP and Ethernet technologies.
They were chosen as underlying networking technologies due to the
general desire to use commodity technologies in TDAQ systems, as we
explained already in the previous section. The cheap, flexible and easy
to maintain switched Ethernet has become the world’s most ubiquitous
wired computer network. It also interplays easily with the TCP/IP pro-
tocol stack, which is dominant in the Internet [157]. Ethernet constantly
evolves and the speeds continue to climb. 4x10GbE (10 Gigabit Ether-
net) ports are now becoming standard in the servers available on the
market. 40GbE/100GbE is already standardised in IEEE 802.3ba [76]
with products already available on the market and 400GbE is under
development [74]. These trends show that Ethernet will remain capa-
ble of sustaining the data rates required by the upgrades of the LHC
experiments, which were highlighted on the example of ATLAS in Sec-
tion 1.1.3.
The incast pattern is, however, particularly demanding for Ethernet

switches and TCP flows. The ports connected to receiving data col-
lectors are overcommitted by the data sent from many readout units.

1.2 motivation 9

Switches with insufficient buffers drop some or most of the packets.
Since the problem is systematic, built-in TCP retransmission mecha-
nisms are not a solution [118]. In an ideal situation, the network should
adapt to the traffic and avoid congestion before it happens. One way of
achieving this is to include enough buffering space within the network,
to accommodate traffic spikes and bursts without the need for discard-
ing data [139]. For large experiments, like the ones of the LHC, it means
particularly large packet buffers. Only expensive, high-end switches or
routers can be taken into consideration [118], but they cannot be re-
garded as commodity equipment due to their cost. Furthermore, the
widely used rule-of-thumb for large gigabyte buffers in routers has been
challenged [63, 172], so a new trend to decrease the amount of buffering
in the networks is now more likely. On the other hand, the challenge
of congestion control in high speed Ethernet, especially in case of data
acquisition, will become even more critical with the ever increasing link
speeds.
It becomes compelling to consider the possibility of designing a data

acquisition network mixing switches with servers that act themselves
as networking devices — software switches. This concept reaches back
to the first generation of network bridges in 1980s, when some of them
were built using general-purpose computers with standard network in-
terface controllers (NICs) [150]. The switch designs then started to
progress through increasing levels of integration — a process that never
stops. More and more functions can be integrated into a single silicon
chip. Performance, among other things, is improved with higher levels
of integration. Still, the internal design of modern switches and routers
resembles typical computer architectures. Both network devices and
general purpose computers are built with components such as CPUs,
memories, buses, and network interfaces [107, 122, 150]. Furthermore,
commonly used memory types are also the same [122, 128]:

• fast and expensive Static Random Access Memory (SRAM),

• slower and cheaper Dynamic Random Access Memory (DRAM).

The reasons to reach back to the original generations of switches
are twofold. First, flexibility when using commercial devices is limited.
As we described in the previous paragraph, there exist some rules-of-
thumb for the sizes of memories in commercial networking devices. Even
the rare large-buffer switches have a fixed size of this memory and the
queueing mechanisms can be adjusted only within the limits allowed by
the vendors. Furthermore, many features available on the commercial
networking devices are not required in DAQ networks, unnecessarily
increasing their cost. Second, the specifications of modern server boards
promise nowadays adequate levels of performance and buffering. A high
performance switching application on a modern server with multiple
NICs connected over the PCI Express (PCIe) bus gives the opportunity
to substantially extend the buffering capabilities (constrained solely by

1.3 thesis overview and research objectives 10

the amount of DRAM memory) to accommodate the many-to-one data
bursts and to perform flexible optimisations tailored to the DAQ traffic
patterns. The evolution of the performance of the switches built with
commodity servers is presented in Section 2.3.
In this work we study whether such a specialised switch could operate

without packet losses in DAQ systems while maintaining high through-
put, avoiding incast congestion without any controls on the injected
traffic, beyond that arising naturally in a DAQ application.
Depending on the size of a DAQ system, a number of interconnected

software switches is necessary to provide full connectivity. Today, the
classical architecture with two deep-buffered large routers at the core
of the network interconnects approximately 2000 nodes in the ATLAS
experiment [39]. It is of interest to study a topology based on specialised
software switches and possibly traditional top of rack (ToR) switches
with small buffers as an alternative for the classical architecture, if
the required port density is guaranteed. No less important are aspects
as administration, configuration, fault tolerance and load balancing.
SDN gives the opportunity to integrate a network controller of a DAQ
network with an already existing run controller of an experiment thanks
to the protocols like OpenFlow. Motivated by the recent developments
in the SDN domain we consider what advantages it provides in the
context of data acquisition networks. It is also of interest to explore
how the entire solution based on SDN, TCP/IP protocol stack, and
packet processing in software can be optimised as a whole to provide
the maximum performance of a DAQ network.

1.3 thesis overview and research objectives

This thesis is organised as follows. In Chapter 2 we present the literature
review with a focus on current state of networking in large TDAQ
systems. We discuss typical aspects and problems, but special attention
is given to the generic approaches to incast avoidance in many-to-one
communication applications. We also present current topics in software
packet processing and SDN, which form the basis building blocks for
our study.
In Chapter 3 we discuss the most relevant properties of typical data

acquisition networks for large experiments and extend the description
of the ATLAS DAQ system from this chapter. We define basic require-
ments, metrics to quantify the performance and evaluation methodol-
ogy that are used throughout this thesis. At this point, it is worth
noting that our research is mostly experimentally driven.
Chapter 4 aims to provide understanding of the TCP/IP performance

in data acquisition networks and analysis of the general approaches to
solve the incast pathology. We consider potential analogies between
DAQ and datacenter networks and discuss the applicability of the ex-

1.4 publications 11

isting solutions to incast by evaluating their performance on real hard-
ware.

One avenue to solve the incast pathology receives special considera-
tion in Chapter 5. Here, we try to answer our main research question.
We discuss whether incast congestion in DAQ networks can be avoided
by using software switches with large packet buffers in the main memory
of a server-class computer. This discussion is supported by evaluation of
a prototype software switch using various designs. Our main objective
in this chapter is to prove performance advantage of a single software
switch under strong incast congestion.
In Chapter 6 we continue this study and discuss how large-scale net-

works based on software switches could be built and managed. We ex-
plain the advantages in taking the software-defined approach with cen-
tralised control plane for building a larger topology of interconnected
software switches. Our main objective though is to show how the popu-
lar leaf-spine topology could be implemented and optimised specifically
for data acquisition. We focus on such aspects as bandwidth scalability,
packet routing, load balancing, resilience, costs, and space constraints.
Here, the discussion is supported with a prototype leaf-spine data acqui-
sition network consisting of eight software switches running on distinct
physical servers.
Chapter 7 contains an additional evaluation of a new class of Ethernet

devices — multi-host Ethernet controllers. These devices combine a tra-
ditional network interface controller used on servers with an advanced
Ethernet switch. This can have some advantage when considering phys-
ical space usage of the proposed network design. However, since their
performance characteristics are slightly different, we recheck in this
chapter that performance is still adequate. Also, we discuss whether
these new type of devices could overcome the known shortcomings of
software switching in datacenter networks.
Concluding remarks and possible future lines of work are given in

Chapter 8.

1.4 publications

The following conference papers have been submitted/published dur-
ing the course of my PhD:

Grzegorz Jereczek, Giovanna Lehmann Miotto and David Malone.
Analogues between tuning TCP for Data Acquisition and datacenter
networks.
2015 IEEE International Conference on Communications (ICC), Lon-
don, UK, June 2015.

Grzegorz Jereczek, Giovanna Lehmann Miotto, David Malone and
Miroslaw Walukiewicz.
A lossless switch for data acquisition networks.

1.5 additional material 12

2015 IEEE 40th Conference on Local Computer Networks (LCN),
Clearwater Beach, FL, USA, October 2015.

Grzegorz Jereczek, Giovanna Lehmann Miotto, David Malone and
Miroslaw Walukiewicz.
A lossless network for data acquisition.
20th IEEE-NPSS Real Time Conference, Padova, Italy, June 2016.
IEEE Transactions on Nuclear Science, 2017.

Grzegorz Jereczek, Giovanna Lehmann Miotto, David Malone and
Miroslaw Walukiewicz.
Approaching incast congestion with multi-host Ethernet controllers.
(submitted)
2017 IEEE Conference on Network Function Virtualization and Soft-
ware Defined Networks, Berlin, Germany, November 2017.

Due to the industrial nature of the funding a number of technical
talks were given during the course of this Ph D:

Data Acquisition Networks for Large Experiments.
Intel Labs, Gdansk, Poland, February 2014.

Analogues between tuning TCP for Data Acquisition and Datacenter
Networks.
Intel Labs, Gdansk, Poland, October 2015.

Data Acquisition Networks for Large Experiments.
RIPE 69 Meeting, London, UK, November 2014.

Lossless Software Switching for Data Acquisition Networks.
Intel Labs, Gdansk, Poland, and Leixlip, Ireland, July 2015.

Open vSwitch Training.
Intel Labs, Gdansk, Poland, October 2015.

A Lossless Network for Data Acquisition.
Intel Labs, Gdansk, Poland, December 2015.

Software Switching for the LHC Experiments at CERN.
Keynote at the Software Professionals Conference.
Intel Labs, Gdansk, Poland, October 2016.

1.5 additional material

The following weblink contains software repository used in this thesis:
https://github.com/gjerecze/daq-software-switching.

https://github.com/gjerecze/daq-software-switching

2
L ITERATURE REVIEW

In this chapter we present the current state of networking in large TDAQ
systems, focusing on typical aspects and problems. Specifically, we gather
important conclusions on the generic approaches to incast avoidance in many-
to-one communication applications, not limited to data acquisition. We discuss
how the work presented in this thesis advances the state of the art. Finally,
we present current topics in software packet processing and SDN, which form
the basic building blocks for our study.

2.1 data acquisition networks

The challenge of data acquisition networks is the bursty many-to-one
traffic pattern of DAQ data flows, which cause incast congestion as
we highlighted in Section 1.1.2.1. Synchronous transfer of event data
from multiple sources to a single compute node places a burden on
the congestion control mechanism of a protocol and the network hard-
ware itself. The default congestion control mechanism of TCP/IP has
been found to be not capable of dealing with multiple relatively small
flows in parallel [114]. Provided that the network does not have enough
bandwidth to handle the burst rates or enough buffers to absorb these
bursts, costly packet losses and retransmissions will occur. The DAQ
networks of the four LHC experiments are particularly prone to incast
because of their size and data rates. A number of solutions have al-
ready been implemented for the first and the second run of the LHC.
Further research, including this work, is ongoing to provide alternative
approaches for the future. Neufeld gave an introduction to the many-
to-one challenge in DAQ in [118]. He also provides an overview of the
TDAQ systems of the four LHC experiments in its first run and the
outlook for the future upgrades.

2.1.1 The ATLAS DAQ network

The ATLAS DAQ/HLT system (see Figure 1.3) continuously evolves
with subsequent runs of the LHC. The data rates in the ATLAS DAQ
network (Figure 1.5) continue to increase, from approximately 80Gbps
in Run 1 to 400Gbps in Run 2 [130], with plans to increase further in
Runs 3 and 4. Today, as we already noted in Section 1.1.3, the ATLAS

13

2.1 data acquisition networks 14

DAQ/HLT system is based on 10Gbps Ethernet (10GbE) network with
TCP as the transport layer protocol. The core of the network is built
around two large routers. Single event data of ∼1.7MB is spread across
around 100 readout nodes that are connected directly to the routers,
while ~2000 filtering nodes are organised in racks of at most 40 servers
that connect to the core via ToR switches [39]. Ethernet was identified
as the most suitable technology for the ATLAS DAQ network when it
was first designed [146] and has been used ever since.

Stancu described in [152] the network congestion problem typical for
the ATLAS DAQ and proposed an application-layer solution — traffic
shaping. Its performance in the present system was further analysed
in [39]. Traffic shaping is a simple credit-based system allowing the
reduction of the impact of the DAQ traffic burstiness. It is employed
on the aggregation side, Data Collection Managers (DCMs). Each of
them is assigned a fixed number of credits. One credit permits a request
for one event fragment. A DCM does not request more fragments than
its currently available quota. The quota is reduced when requests to the
ROS are sent and increased upon receiving the response with event data.
This algorithm limits the burstiness of the data flow by spreading the
DCM requests over time, thus taking down the instantaneous pressure
at the switch queues.
Despite the successful implementation of the traffic shaping algo-

rithm in the large DAQ network of the ATLAS experiment, it was
shown in [39] that the buffering space available in a network plays a cru-
cial role. Also, large buffers are still provided by telecom-class routers
to avoid congestion in the network core. Optimising the system perfor-
mance is, however, a trade-off between the cost of a better performing
network, the cost of developing better traffic shaping techniques, and
the cost of the inefficiencies introduced by network congestion. In this
work we aim at removing the network congestion and reducing the net-
work cost by using switches with expandable buffers in the cheaper
DRAM memory of a commodity server.

2.1.2 The LHCb DAQ network

The LHCb’s data acquisition network in Run 1 was based on Ethernet
as described in [101, 119]. The filtering farm is of the same size as in the
ATLAS experiment, whereas the number of event data sources (300) is
significantly larger. Nevertheless, the single event size is only 35 kB with
maximum rate of 1MHz resulting in 280Gbps of average bandwidth.
Neufeld et al. indicated that only one very large core router was capable
of sustaining the 300 to 1 overcommitment providing 256MB of shared
buffer space for a set of 48 ports [119]. The authors also mentioned
the sources of packet loss that they had observed. Among them were
the internal algorithms in the routers, which in practice cannot be
substantially adjusted, like the buffer distribution or the distribution

2.1 data acquisition networks 15

of packets across link aggregation groups (LAG, IEEE 802.3ad [76]). A
special workaround for the LAG hash-based algorithm was proposed to
ensure that the same link of a LAG is used for packets belonging to a
particular event, so that the many-to-one overcommitment is avoided
in the subsequent network stage. In our research we propose a DAQ
network based on software packet processing and SDN, in which packet
routing can be easily optimised for a specific application as we will show
in Chapter 5 and Chapter 6. Antichi et al. demonstrated in [8] the
requirement for large packet buffers in DAQ networks by performing
live traffic capture and time analysis in the LHCb DAQ.
The outlook for the LHCb Runs 2 and 3 can be found in [101, 102].

The event size will increase to 100 kB across 500 sources and the event
rate will increase to 40MHz. This will require a 32Tbps bandwidth
DAQ network, for which InfiniBand [11] and Ethernet technologies are
considered. In [101] the author analysed a topology based on pizza-box
switches to reduce the cost of the network based on high-end switches.
It requires, however, up to 2.6MB of buffering per port. He proposed
a schedule of fixed time slots to send the event data to reduce the per
port buffer requirement. This is mandatory because most of the ToR
switches use so called cut-through1 switching method with small buffers.
The per port buffer requirement drops to 65 kB but only at the input
load of 70%. In our work we propose a solution that gives the means
to provide the required buffering levels and operate at full available
network load for a wide range of the system parameters, like the event
size or the number of readout units.

2.1.3 The CMS DAQ network

Bawej et al. gave the summary of the evolution of the CMS DAQ from
Run 1 to Run 2 in [19]. The average event size is comparable to that of
the ATLAS experiment. It increased from 1MB in Run 1 to 2MB in
Run 2 with the rate of 100 kHz at the output of the dedicated hardware
trigger. The overview of the CMS DAQ system for Run 2 is depicted
in Figure 2.1. The CMS DAQ network has evolved from a combination
of Myrinet [112] and Ethernet to a combination of Ethernet and In-
finiBand technologies to take the advantage of high data transmission
speeds of the latter [18]. Instead of increasing the number of nodes in
the network, the link speeds have been increased and the event build-
ing nodes (64) have been optimised to provide the required bandwidth
under the increased load. The InfiniBand architecture fits better in
this concept than Ethernet, because of the available data rates and the
so called zero-copy mechanism, which reduces the overhead of the soft-
ware protocol stacks in the operating system of the end hosts, as in case

1 Cut-through switches can begin transmitting a frame before it has even been fully
received at the input. In contrast, store-and-forward switches receive (store) a frame
completely before any decisions regarding forwarding are made[150].

2.1 data acquisition networks 16

So
ur

ce
:C

ER
N

Figure 2.1: Architecture of the CMS DAQ system for Run 2 of the LHC [19].

of the TCP/IP stack. InfiniBand connects event building nodes with
the readout system (84 nodes). The many-to-one overcommitment is
handled by the built-in flow control mechanism of InfiniBand. Event fil-
tering is performed by separate nodes that communicate with the event
builders over an Ethernet network. We will return to the discussion on
InfiniBand and Ethernet in Section 2.2.1.

2.1.4 The ALICE DAQ network

The characteristics of the DAQ system belonging to the ALICE exper-
iment is different from the other experiments. The rate of the events is
low and their size is large. Two separate networks were used for event
building and event filtering (HLT) like at CMS. A 160Gbps Ethernet
network was used during Run 1 with 175 local collectors pushing data to
83 global collectors as outlined in [31], whereas an InfiniBand network
served the HLT farm of 225 nodes [95]. According to [31], only software
adaptation and replacement of the obsolete computing hardware was
conducted in preparation for Run 2. The requirements will significantly
increase first for Run 3 [30]. There will be a single shared computer farm
for both event building and filtering, which will require a network in-
terconnecting 2000 nodes and providing 5Tbps aggregate bandwidth
during the peak data taking periods. Ethernet and InfiniBand in var-
ious topologies are considered. Rybalchenko et al. gave further details
on the challenges facing the ALICE DAQ network [145]. 11GB of event

2.2 solutions for many-to-one communication 17

data distributed across approximately 250 nodes will need to be deliv-
ered to one of 1500 processing nodes. The authors identified that incast
congestion will become an issue in this case and analysed an application
layer solution: staggering of the data transfers, originally proposed by
[175]. The staggering approach tries to mitigate incast by delaying the
transmission of data on each source by a unique offset, still maintaining
high network throughput. The solution requires manual adjustment of
the delay value for the given scenario and is normally recommended
to be close to the transmission time of one data unit. Precise timing
is required to reach full performance, for smaller event fragment sizes
in particular. The presented results confirm the effectiveness of the
method in the context of the requirements of the ALICE experiments
with large event fragments.

2.1.5 Summary

Data acquisition networks of the four LHC experiments share a com-
mon challenge. This challenge is providing performance and reliability
at the same time under heavy many-to-one congestion in terabit net-
works. Each of the experiments incorporates its own mechanisms for
congestion control on top of the Ethernet and/or InfiniBand technolo-
gies to accommodate for the insufficient packet buffers in the network
devices. In the following section we will extend the review of the avail-
able solutions to the same problem, but originating from different types
of networks.

2.2 solutions for many-to-one communication

Many-to-one communication has been widely studied in the literature.
As it turns out, this traffic pattern is found to be challenging not only
in data acquisition networks, but also in datacenters as we highlighted
in [87], which increases the number of potential solutions to the prob-
lem. In the following we will extend the experiment-specific solutions
presented in the previous section with a general review of the work
on the many-to-one congestion and promising networking technologies
in the context of data acquisition. A number of proposals for incast
mitigation ranging from the link through the transport up to the appli-
cation layer can be found in the literature. A broad review of available
solutions was presented in [139, 142, 144, 177]. We will review the most
relevant of these in Section 2.2.2.
Although our research concentrates on commodity Ethernet as we

explained in Chapter 1, we will start with a short discussion on Ether-
net and InfiniBand technologies, which are the dominant interconnect
technologies in the high performance computing (HPC) world and also
the two technologies used to built the DAQ networks at the LHC nowa-
days. According to the November 2015 Top 500 Supercomputers list

2.2 solutions for many-to-one communication 18

[168] 47.4% of the supercomputers deploy InfiniBand and 36.2% Eth-
ernet. Myrinet is no longer used by any of the LHC experiments and
also its share in the Top 500 Supercomputers list dropped from 20.2%
in June 2005 to only 0.2% in June 2014.

2.2.1 Ethernet versus InfiniBand

Ethernet [76] and InfiniBand [11] are the dominant interconnect tech-
nologies as explained in the previous section. One of InfiniBand’s pri-
mary focuses is low latency, which is an important factor in HPC ap-
plications [100], but in data acquisition the high, long-term through-
put under heavy congestion is more relevant. Nevertheless, InfiniBand
has built-in capabilities for hardware-level flow control and congestion
control [68, 137]. Therefore, InfiniBand switches are relatively cheap,
because they can operate with limited buffer memories and provide
means to operate in many-to-one communication scenarios with very
low latency. It requires, however, overprovisioning as explained in the
previous section. The analysis in [148] showed that a DAQ network
based on InfiniBand technology can be significantly cheaper because of
the high cost of the telecom level routers with enough buffering space
in the case of Ethernet. This is the obstacle which we address in this
work. Liu showed in [101] an extensive comparison of InfiniBand and
Ethernet in the context of DAQ networks and gave a slight preference
to the latter in the conclusion. Ethernet was originally evaluated for
application in the ATLAS experiment by [146] and the reasons for this
choice are still valid today.
Despite InfiniBand’s strong position in the HPC and deployments in

DAQ (CMS [18] and ALICE [95] experiments), it is not a technology
that is as widely spread in various domains as Ethernet. The latter is
the most ubiquitous kind of computer network to date and not lim-
ited to HPC [100, 141, 157]. It will now also have to compete with
the InfiniBand-related Intel Omni-Path Architecture, which has been
announced recently [24] as a next generation fabric for the HPC. Fur-
thermore, the InfiniBand programming model [11] is complicated and
differs significantly from the well-established Berkely socket API [154].
Ethernet is, however, a best-effort interconnect technology with no

guarantee of delivery. Packets can be dropped in response to a variety
of conditions, including congestion. Reliability is normally provided by
high-level protocols like TCP, but it becomes more and more challeng-
ing with the ever increasing data rates of the LHC experiments. In
the recent years, a number of enhancements to the Ethernet standard
have been proposed to provide so called lossless Ethernet. Ethernet
flow control (IEEE 802.3x [76]), Priority-based Flow Control (PFC,
IEEE 802.1Qbb [75]), Enhanced Transmission Selection (ETS, IEEE
802.1Qaz [75]), and Congestion Notification (IEEE 802.1Qau [75]) are
enhancements to the Ethernet standard, which define mechanisms for

2.2 solutions for many-to-one communication 19

congestion control at the link level. The last three are defined under
the Datacenter Bridging (DCB) [44] umbrella that adapts Ethernet to
high-performance networking and closes the gap with InfiniBand [141].
An overview of these technologies is available in [100, 180]. We will dis-
cuss them briefly and also other means, including upper-layer solutions,
to improve the performance of Ethernet-based networks in the context
of data acquisition in the following sections.

2.2.2 Ethernet and TCP/IP technologies

2.2.2.1 Enhancements to the Ethernet standard

The basic Ethernet flow control mechanism is the IEEE 802.3x pause
frame. If the packet buffer of a network node starts to fill up, it can
send a pause frame to the neighbouring node to temporarily stop all
traffic. Although this mechanism can guarantee lossless operation, it
cannot achieve full throughput in incast scenarios [139] and also intro-
duces Head-of-Line (HoL) blocking, which further reduces the band-
width utilisation [59, 69, 100, 180]. In our evaluation in Section 4.5.3
we analysed a simple setup with a single switch. Although the per-
formance is significantly improved, theoretical bandwidth cannot be
reached. Stancu et al. evaluated this technology in [153] for the appli-
cation in the ATLAS experiment in Run 1 of the LHC and concluded
that HoL blocking can be avoided with switches that employ separate
input buffers for each outgoing port, but the system can be affected by
the congestion spreading effect. The pause frame mechanism evolved
to the IEEE 802.1Qbb Priority-based Flow Control, in which not all
traffic, but frames belonging to a particular traffic class, can be paused,
so that the non-congested traffic remains unaffected. The HoL blocking
is now limited to the particular traffic class, but only up to eight traffic
classes are supported. Since there is only one type of traffic in DAQ net-
works requiring careful flow control, the one transporting event data,
PFC brings no advantages over the regular pause frame mechanism.
Flow-based, instead of class-based, congestion control is required, if
more flows of the same class suffer from the limitations of pause frames
[180].
Quantized Congestion Notification, defined in IEEE 802.1Qau, can

be used to further optimise the traffic flow. It provides flow-based con-
gestion control. A frame with feedback based on the congestion level is
sent from a QCN congestion point (e.g. a switch) back to a QCN reac-
tion point (e.g. a server), which limits the sending rate. As explained
in [100], QCN works well only for long lived data flows and requires a
lot of fine tuning based on the network topology. Furthermore, since
frames are sampled randomly at the congestion point, it may happen
that the source that is throttled may not be the main source of conges-
tion [100]. These factors can make QCN application in DAQ even more
complicated, because the traffic is composed of hundreds of relatively

2.2 solutions for many-to-one communication 20

small data flows, which do not cause congestion on their own, but first
when summed up, as we will show in Chapter 3. It was confirmed in
[47, 178] that QCN does not perform well under incast congestion. Al-
though the proposed modifications improve its performance, full link
utilisation is still not reached. Tanisawa and Yamamoto came to similar
conclusions in [158] — optimisations are required when large number
of flows traverse a bottleneck link.

2.2.2.2 Solutions at higher layers

transport layer Transmission Control Protocol (TCP) [55] is
the most widely spread transport layer protocol, and as such has been
thoroughly analysed in terms of congestion control, which is built into
the protocol. Many alternative TCP flavours have been proposed and
implemented to diminish or eliminate the issues arising from congested
links. A broad set of alternatives deal specifically with many-to-one
communication patterns. First indications of poor TCP performance
with many flows were already presented by Morris in [111], who stated
that “one way to work around the problem is to make sure routers have
not just one round-trip time [RTT] of buffering, but buffering propor-
tional to the total number of active flows”. Incast was first documented
by Nagle, Serenyi, and Matthews in their paper on cluster storage [114].
More recent analytic models of TCP incast behaviour can be found in
[36, 98].
Datacenter TCP (DCTCP) is the well-known TCP variant for data-

centers proposed by Alizadeh et al. in [6]. DCTCP is now an active In-
ternet draft at the IETF [20]. It leverages the Explicit Congestion Noti-
fication (ECN) [55] mechanism at the IP layer to keep the switch queues
small while maintaining high throughput. An ECN-capable switch un-
der congestion marks packets with a special ECN-flag: Congestion Ex-
perienced. The TCP receiver upon observing this flag sends the feed-
back about congestion back to the TCP sender, which adjusts its send-
ing rate according to an algorithm defined by DCTCP. The authors
show that DCTCP achieves similar performance to the one of deep
buffered switches. It is argued, however, that the short-message traf-
fic is penalised due to the queue buildup phenomenon. This drawback
is avoided with our design thanks to the dedicated queues for incast-
sensitive flows. Furthermore, DCTCP fails to avoid incast, if there are
so many senders that the packets sent in the first RTT overflow the
buffers, as already indicated by the authors in [6]. This situation is
not uncommon for high-bandwidth low-latency DAQ networks under
severe all-to-all incast congestion.
Bai et al. in [13] further explained the limitation of the proposals that

control the TCP windows to reach the optimal aggregate throughput
(window-based solutions), like DCTCP [6] or Incast Congestion Control
for TCP (ICTCP) [174]. In very large systems with synchronised flows
even a minimal TCP window that is of the size of a single packet is

2.2 solutions for many-to-one communication 21

sufficient to overwhelm the switch buffer. This situation is not uncom-
mon for high-bandwidth low-latency DAQ networks like the one of the
LHC DAQ systems as we will show in Section 4.4. The authors pro-
pose therefore a “delay-based” mechanism of proactive regulation of
TCP acknowledgements (TCP ACKs), PAC, to regulate the traffic so
that links are fully utilised without incast congestion. The difficulty of
this approach lies in controlling the TCP ACK rate such that no band-
width is wasted and incast is avoided. The results presented indeed
demonstrate better scalability of the PAC algorithm in the number of
concurrent flows than that of DCTCP and ICTCP. In their tests the
authors used only a single receiver though. It can be suspected that
under more stringent conditions (all-to-all incast) the ACK regulation
can become even more challenging.
Conversely, Hwang, Yoo, and Choi proposed a window-based algo-

rithm, Deadline and Incast Aware TCP (DIATCP) [73], which over-
comes the limitation of single packet TCP window. Some senders can
be temporarily paused by sending an advertised TCP receive window
(awnd) equal to zero in the TCP ACK from the receiver. We will eval-
uate DIATCP in Section 4.5.2.2.
A third group of solutions for TCP incast mitigation, after window-

and delay-based solutions, is recovery-based [13], which reduces the im-
pact of incast after it has occurred. The most obvious way to reduce the
throughput degradation is to minimise the time between a packet drop
and its retransmission. In case of TCP incast this time is determined by
the TCP Retransmission Timeout (TCP RTO) parameter that is of an
order of hundreds of milliseconds compared to microsecond RTTs in typ-
ical datacenter or data acquisition networks (see Section 4.2). The fine-
grained TCP RTO was proposed by Vasudevan et al. in [171]. Although
the goodput is significantly improved, the recovery-based solutions can-
not be regarded as valid solutions for DAQ networks in general. Incast
congestion is permanent, not occasional, so systematic retransmissions
would lead to overall underutilisation of the available bandwidth.

User Datagram Protocol (UDP) [55] is a simple alternative to TCP.
It does not provide reliability, sequencing, flow control, or congestion
control, so these have to be implemented in the application layer, if
required. On the other hand, if a DAQ network is lossless and deliv-
ers the packet in-order, a simple push-architecture for data acquisition
based on UDP can be used. We will give some examples of application
layer solutions to incast congestion in the paragraph devoted to the
application layer.
Perry et al. proposed in [132] an alternative datacenter network ar-

chitecture, which minimises switch queues and packet retransmissions
in datacenter networks — Fastpass. It introduces a standalone arbiter
that schedules precisely each packet in the network and determines
its path. Fastpass is implemented as transport layer protocol in Linux,
beneath TCP or UDP and can be used transparently by applications.

2.2 solutions for many-to-one communication 22

No modifications to the networking hardware are required. The authors
demonstrated that a single arbiter has the ability to schedule 2.21Tbps
of traffic in software on eight CPU cores, which make this architecture
a promising candidate for data acquisition, although no results in an
incast scenario have been presented yet.

application layer The literature is also rich in proposals that
deal with the many-to-one communication pattern at the application
layer. The advantage is that the application has better view of the
parallel communication, like the total number of flows. This knowledge
can be used to reduce the impact of incast. The authors in [97] provided
a review of some of the proposals. Among them are client- and server-
side staggering, which we mentioned already in the work related to
ATLAS and ALICE experiments in Section 2.1, or global scheduling of
data transfers.
An analogous approach to the ATLAS traffic shaping algorithm is

used also in Facebook’s [54] datacenters in their memory caching solu-
tion, which is also prone to incast congestion [121]. A sliding window
mechanism is used at the client’s side to limit the number of outstand-
ing requests to various servers. The size of this sliding window corre-
sponds to the number of traffic shaping credits in the ATLAS DAQ
network.
The advantage of pursuing an application-level solution to incast is

clear — the number of data packets traversing a network in parallel can
be tuned more easily than at the lower network levels. In our work we
extend this approach even more. One of the key characteristics of data
acquisition networks is their configuration and traffic characteristics re-
main constant over long period of times, as we will describe in more
detail in Chapter 3. Furthermore, this is known a priori. It does not
usually change after an experiment has started and continues its oper-
ation in that state for months or even years. We will show how to take
advantage of this global knowledge about the network in Chapter 6.

2.2.3 Summary

The majority of the approaches to incast congestion focus on the con-
trol of the packet injection rate into the network so as not to overwhelm
its buffers. All of them have means to improve, to some extent at least,
the performance of DAQ and other incast-sensitive networks. It was
claimed in [118], however, that these mechanisms, flow control in par-
ticular, do not work well in DAQ with constant instantaneous overload,
unless the network is significantly overprovisioned, because they are de-
signed to absorb fluctuations only. Our approach differs in that there
is no rate control required on the sender side and enough buffering is
provided in a cost-effective and flexible way, which simplifies the entire
system. As it is pointed out in [39, 118, 148], very expensive buffers in

2.3 software packet processing 23

the read-out network are the main obstacle in the use of a simple push
architecture2 in data acquisition. Also, in datacenters, large buffers
have been proposed as a solution for the incast congestion problem,
but again the high cost of such network devices prevent it from being
considered as a valid option [142]. Furthermore, every switch configu-
ration will have some maximum capacity, so the scalability is seriously
limited as noted by [139].
In this work we argue that this alternative approach for many-to-one

communication networks, large network buffers, can be still considered
as a cost-effective, flexible, and scalable solution. We also evaluate this
approach in the demanding all-to-all incast scenario as opposed to all-
to-one scenario used in most of the available literature. Our approach
differs also in the use of the global view of a DAQ network to optimise
flow distribution across available paths, perform rate adaptation, and
allocate buffers. The main building blocks of our proposal are software
packet processing and Software-Defined Networking. In the following
sections we will review the key aspects of these technologies.

2.3 software packet processing

Software switches and routers3 are not a new concept as already shown
in Section 1.2. The first network devices built with general-purpose
computers and NICs were, however, consequently replaced by dedicated
hardware for performance reasons. In the 2000s attempts to use con-
ventional PCs as software routers were made again in order to facilitate
flexibility in opposition to closed and inflexible designs of the commer-
cial devices [23, 25, 26, 35, 94]. Both the forwarding code in the Linux
kernel and specialised projects, like the Click software router [94], were
used. Click has remained a popular framework for network experiments
until today.
Data plane performance was, however, the key limitation of software-

based packet forwarding. It was rather difficult to reach high packet
processing rates4. In 2007 a rate of 700 kpps (pps — packets per sec-
ond) was reported by [25] when forwarding Ethernet frames between
two 1GbE ports. It translated into the throughput value of 0.47Gbps,
when forwarding minimum-sized frames (64B). Saturation could be
reached with frames of size 160B and longer. The maximum achieved

2 Push architecture means that sources send the data whenever they are ready. In
contrast, in the pull architecture the destinations request data from the readout
units [118].

3 In the literature both terms are used to describe applications that can actually
provide the same functionality — packet forwarding and manipulation. Traditionally,
switches forward packets based on layer 2 addresses (MAC), whereas routers use
layer 3 (IP).

4 Packet processing rate, given in packets per second (pps), is one of the main per-
formance indicators for devices that forward packets. For software switches, the
available CPU cycles set the upper limit on the number of packets that can be
processed in a unit of time, independent of their size.

2.3 software packet processing 24

throughput in a scenario with multiple NICs was 2.5Gbps and could
not reach too far beyond the half of the theoretical value. The main
limiting factors were the computational capacity and the bandwidth/la-
tency of I/O buses [26].
But the performance kept improving over the years with technologi-

cal advances in commodity computers. I/O improved with the introduc-
tion of the PCIe buses. The available computational cycles increased
with the architectures supporting multiple multi-core CPUs, across
which packet processing could be distributed with multiqueue NICs5
[26]. In 2008 a rate of 5.9Mpps was reached with eight CPU cores by
Bolla and Bruschi [26], 7.1Mpps with five cores by Egi et al. [50], and
8.2Mpps with eight cores by Argyraki et al. [10]. Additionally, it was
stated in [50] that a single core in their evaluation setup could process
2.5Mpps.

The performance did not scale ideally when increasing the number
of cores, reaching saturation at some point. It was shown in [10, 50]
that the fundamental limit on the performance of a single software
router was the memory latency (not bandwidth) and the NUMA (Non-
Uniform Memory Access) architectures were pointed to as a poten-
tial improvement. With the new Intel Nehalem microarchitecture [120]
the performance indeed improved, reaching 3.87Mpps with one and
23.2Mpps with eight CPU cores (2.8GHz) and two 10GbE ports [103].
This family of processors introduced for the first time the Intel Quick-
Path Architecture that is still used by the latest Intel processors. It
replaced the front-side bus (FSB), which was used before for commu-
nication between CPUs and a chipset that contained the memory con-
troller and connections to other buses. In this new architecture each
CPU has an integrated memory controller (IMC). The CPUs are con-
nected with each other and with the I/O hub6 by a new high-speed,
point-to-point link — QPI (QuickPath Interconnect). Han et al. opti-
mised the packet processing software and reached 40Gbps throughput
for small packets forwarding on multiple cores (59.5Mpps). Memory
bandwidth and available CPU cycles were named as the limiting fac-
tors for reaching 100Gbps.
Dobrescu et al. took into account the full IP routing functionality

when performing their performance evaluation in [49]. It turned out
that the performance degrades from 19Mpps to 12Mpps on their eval-
uation setup. Extra CPU cycles were required to perform tasks like
packet header manipulations or IP table lookups. They proposed the

5 Multiqueue NICs have multiple hardware transmit and receive queues, also called
tx- and rx-rings [26, 49]. These rings are used by the DMA (Direct Memory Access)
engine to transmit and receive packets to and from the NIC. The packets arriving
at a NIC are classified internally into the queues and each core can then process a
subset of packets from its assigned queues.

6 The PCIe controller was integrated into CPU first with the Intel SandyBridge mi-
croarchitecture [78].

2.3 software packet processing 25

RouteBricks architecture — the idea of scaling the software router by
parallelising its functionality across multiple PC’s.
Early 2010s gave raise to software packet processing frameworks,

which were to be used instead of the standard network stack of the
Linux kernel in order to improve performance. These frameworks can
be used to build custom applications to process packets. The perfor-
mance of the software switch/router projects was also improved thanks
to them. The most popular frameworks include: netmap [143], DPDK
[80], PF_RING [138], and Snabb Switch [151]. The technical aspects
behind them, their comparison as well as key advances in the commod-
ity computers were discussed in [16, 51, 61, 110]. The latter provides
also a model describing packet processing software in general. Although
the architectures of those projects differ, they all provide comparable,
very high performance in packet processing on x86 servers.

DPDK was even seen by Zhou et al. in [179] as a successor of Route-
Bricks and showed that saturating 80Gbps for packets of 192 bytes or
larger is practical. Rizzo demonstrated that simple packet forwarding
in the netmap framework saturates a 10GbE link with 14.88Mpps for
64B packets on a single CPU core running at 1.7333GHz only [143].
It means that a single core could forward 183Gbps of maximum sized
Ethernet frames. This is the type of frames that is mostly carried by
the DAQ network of the ATLAS experiment, as we will show in Chap-
ter 3. The bandwidth of 183Gbps lies in the same order of magnitude
as the requirements of the experiment in Run 1. These facts show that
the performance of software switching is already enough for it to be
considered as viable option for data acquisition networks.
In 2009 as a response to the challenges in networking in the vir-

tualised environments, which gained increasing popularity, the Open
vSwitch (OVS) project was presented [135]. This open source virtual
switch7 was purpose-built for these environments and was meant to
replace the Linux Ethernet bridge that was used by many hypervisors
and has been present in the Linux kernel since 2002. Nevertheless, OVS
is a software switch that can be used also as a switch (router) intercon-
necting physical ports on a general-purpose server. It supports typical
network management interfaces and protocols and can be considered
as a fully-fledged switch. Performance in this scenario was evaluated
in [52]. Although 1.88Mpps is far from the values reported in the pre-
vious paragraph, the DPDK-accelerated version of OVS reached good
performance of 11.31Mpps. The official support for DPDK was added
in the OVS release 2.2 [125]. Open vSwitch provided now both: per-
formance and support for protocols that are typically required from
network devices. OVS has already become the default virtual switch
in all important cloud frameworks [51]. Its design and implementation
details are available in [136]. In this thesis we will evaluate OVS in the

7 Virtual switches provide network access for virtual machines (VMs) by linking vir-
tual and physical network interfaces (hence called virtual).

2.4 network topologies 26

context of data acquisition and extend it with optimisations tailored
for this type of systems.
To summarise, performance has traditionally been the challenge of

packet processing in software. This situation changes, however, with
modern server platforms. High performance load balancers, proxies, vir-
tual switches and other network functions can be now implemented in
software and not limited to specialised commercial hardware, thus re-
ducing cost and increasing the flexibility. Software switches, like OVS,
have already become an important part of cloud networking architec-
tures. In our work we build on the lessons learnt over the last years
and try to exploit the flexibility of the design in software to provide a
dedicated network for data acquisition. Our study will differ from the
previous ones in that we will take into account the key factors from
the viewpoint of data acquisition, like high throughput for large data
transfers and reliability under many-to-one congestion.

2.4 network topologies

Scalability is an important aspect of data acquisition networks as they
need to provide the required port density and aggregate bandwidth for
a particular system. For the experiments like the detectors at LHC it
means designing and building networks that interconnect thousands of
readout and filtering nodes.
Traditionally, DAQ networks have used large core-router style devices

[39, 48, 148], which could offer not only the adequate number of ports
and bandwidth, but also large buffers to diminish packet drops result-
ing from incast congestion. An example is the ATLAS DAQ network,
presented in Figure 1.5. We discussed the drawbacks to this approach in
Section 1.2. Similarly in datacenters, traditional network architectures
consist of two- or three-level trees of switches or routers with large
devices of higher bandwidth in the core level to increase the overall
bandwidth of the network, but still remain oversubscribed to reduce
the costs as described by Al-Fares, Loukissas, and Vahdat in [56]. Just
like Charles Clos for telephone switches [38], the authors noticed, how-
ever, that large-scale networks can be built from many small commod-
ity switches organised in a topology rather than fewer larger and more
expensive ones.
A variety of topologies, like torus, mesh, butterfly or Clos networks,

and routing algorithms can be found in the literature on interconnection
networks (sometimes called fabrics) [42]. Traditionally, the research fo-
cused on fabrics for on-chip networks to deliver data between compo-
nents in a CPU, building supercomputers, or connecting input to out-
put ports in network routers internally. These topologies have already
become popular in building datacenter fabrics [177]. It was pointed out
in [5] that the datacenter networks evolve to a simple Clos-based ar-

2.4 network topologies 27

chitecture [38], often called leaf-spine or fat-tree topology8, that aim
to approximate a large non-blocking switch. This approach can be also
interesting for data acquisition. Carena et al. evaluated the bandwidth
scalability of the Clos network [38] for the future runs of the ALICE
experiment [30]. It was shown that this architecture can easily scale
to multi-terabit networks, but the aspect of congestion control was not
discussed. The CMS DAQ in Run 2 is built around an InfiniBand Clos
network of 18 individual 36-port switches and relies on the InfiniBand’s
internal flow control mechanism for congestion avoidance [19].
The obstacle for adoption of topologies based on small commodity

switches in data acquisition is their performance under incast conges-
tion, which we will explain in more detail in Chapter 3. Alizadeh and
Edsall indicated in [5] that larger buffers both in leaf and spine switches
of the leaf-spine topology are needed for incast patterns. A similar
conclusion was made in the evaluation of a topology based on com-
modity switches for the LHCb experiment [101], highlighted already
in Section 2.1. We address this issue with the use of software switches
in this work. Software switches with extended buffering capabilities
open up the possibility of using these topologies and optimising their
queueing algorithms for data acquisition. This is possible without the
need for the expensive core routers while holding on to the commod-
ity TCP/IP and Ethernet networks. In Chapter 6 we will propose and
analyse the performance and management of a network, which design
is based on optimised software switches and a modified leaf-spine topol-
ogy for multi-terabit DAQ networks.
An important aspect to consider is the forwarding algorithm used to

move packets across these topologies. There are multiple paths between
all pairs of hosts, so an efficient algorithm to balance the load across
these paths is needed to optimise the performance. This task is diffi-
cult for datacenters, supercomputers or lower-level interconnection net-
works, where the traffic patterns change dynamically. Many proposals
from the literature address proper load balancing in these dynamic sce-
narios [42, 56, 144, 177]. In datacenter environments the current state of
the art is equal-cost multi-path (ECMP, IEEE 802.1Qbp [75]), which
statically assigns flows to paths using hashing. Static load-balancing
cannot guarantee the best performance for networks without uniform
or predefined workloads [57, 144]. It should be possible though to op-
timise the performance in networks with workloads that are known a
priori. This is the case in many DAQ networks. It should be feasible
to assign flows to paths in such a way that maximises throughput. In
Section 6.2.2 we will propose a method to perform this assignment in
order to maximise the offered bandwidth for DAQ-specific data flows.
Instead of using ECMP hashing, we will program the network explicitly

8 Originally, in the fat-tree topology the link capacities increase towards the top of the
tree. In the present designs multiple switches are used to emulate this architecture.
In the end fat-trees resemble the Clos topology.

2.5 software-defined networking 28

with SDN technologies, which allows for straightforward implementa-
tion of both: optimum load balancing strategy and incast avoidance for
the topology based on software switches.

2.5 software-defined networking

SDN has gained popularity both in research and industry. Open vSwitch
as well as many commercial hardware switches support now the Open-
Flow protocol [108], which is the most prominent API between the
control and data plane in SDN networks. These planes are meant to
be decoupled as we described in Section 1.1.4. Switches, being data-
path element, are programmed by an external controller (often called
network operating system) using OpenFlow (see Figure 1.6). Program-
ming means in this context that a set of rules is installed on a switch.
Each rule consists of a pattern to match specific packets and actions
to be performed on those packets (e. g. dropping, packer header ma-
nipulation, forwarding to a port, etc.). Example applications, like load
balancers, dynamic access control, routers, and many others, can be
easily created in software using one of the different network controller
platforms. The literature offers a variety of network designs based on
SDN. An overview of these projects as well as a broad introduction to
the topic of programmable networks and SDN is available in [58, 66,
96, 113, 123].
Network programmability can also offer advantages in DAQ net-

works. It was also noticed by Cui, Yu, and Yan, who pointed out in
[41] that the SDN features can greatly facilitate big data applications.
Programmability and flexibility can become the means to improve net-
work performance for complex traffic patterns. In our work we concen-
trate on data acquisition and evaluate dedicated algorithms to forward
packets across the network in such a way that minimises congestion
and optimises data collection latency in DAQ systems. It resembles
to some extent the proposal for Quality-of-Service (QoS) control in a
converged network presented in [93]. The proposed network controller
assigns flows to rate limiters and priority queues to enforce aggregate
bandwidth usage. However, in order to enforce the rate limits, packets
are dropped. Mohan, Divakaran, and Gurusamy showed in [109] that
providing QoS guarantees with OpenFlow QoS API leads actually to
batches of packets being dropped periodically, which deteriorates the
performance. Dropping packets is not an option for DAQ as we already
explained in Section 1.1.2.1. Instead, we provide large enough queues
in the software switch, so that the packets are not lost and can still be
rate-limited. The network controller assigns the flows to these queues
in such a way that the overall performance of the DAQ system is opti-
mised. An overview of network resource management using OpenFlow
was given in [181]. The authors indicated that rate control for individ-
ual flows is challenging because maintaining a queue for each individual

2.5 software-defined networking 29

flow in hardware is needed. In our approach we overcome this with soft-
ware switches, in which large numbers of software queues can be used.

Network programmability can also include the end-hosts, not only
switches. With OVS being already part of Linux it is straight-forward
to include them in the common network control plane, particularly
if multiple network ports are available. A single protocol, OpenFlow
for example, can be then used to implement optimal load balancing
for the entire network. This idea was first evaluated in the context of
datacenter and wide-area networks in [116] with a positive result. In
Chapter 6 we will show how it could be implemented for DAQ.
The same authors analysed also the question of ARP (Address Res-

olution Protocol) handling. This protocol is used for address transla-
tion between IP and hardware MAC (Media Access Control) addresses
used by various networking technologies [55]. Traditionally, so-called
ARP requests packets are broadcast on the local network to retrieve
the MAC address for the specified destination IP address. In order to
avoid loops, the Spanning Tree Protocol (STP, IEEE 802.1d [75]) is
normally used to create loop-free topology, but redundant ports are
blocked, so available network bandwidth is significantly reduced. Alter-
natively the network can be segmented into virtual networks (VLANs)
and the ECMP protocol [71] can be used to distribute traffic across mul-
tiple paths or links can be grouped into LAGs [76]. A recent protocol
enabling multipath without the need to segment the network is TRILL
(Transparent Interconnection of Lots of Links) [169]. An overview of
these technologies is available in [46]. In case of SDN networks, how-
ever, ARP handling must be implemented differently. The network con-
troller needs to define and install appropriate rules on the switches for
ARP packets. In [37, 116] the authors used the so-called proxy-ARP
mechanism, in which ARP packets are intercepted by the switches and
redirected to the network controller, instead of being broadcast. The
controller in turn instructs the switches to send an ARP reply message
with the appropriate MAC address. In Chapter 6 we will present a way
to remove ARP packets altogether for DAQ-like, isolated networks. In
an SDN network the entire packet forwarding can be based solely on IP
addresses without the need to use hardware MAC addresses, required
in traditional networks. In this way network configuration is simplified
and ARP traffic can be eliminated, which in large networks can reduce
the bandwidth utilisation for normal traffic [37].
One of the main points against SDN is the flow installation latency,

which is the time it takes a controller to add or modify a rule on a
switch. SDN can operate in two control models [123]:

• reactive, and

• proactive.

In the former, for every first packet of a new flow that arrives at a
switch this packet is sent to the controller to make a decision about

2.5 software-defined networking 30

an action for this flow. A corresponding rule is then installed on the
switch and subsequent packets can be forwarded by the switch at once.
This model incurs additional delay that for large number of short-lived
flows can significantly reduce the performance. Scalability can be also
of concern, if the controller must handle a large volume of new flows.
Alternatively, in the proactive mode the controller makes an attempt to
install rules on the switches without waiting for the first packet of new
flows. In this case, the switches rarely need to consult the controller
about new flows. As we already mentioned, all flows in a DAQ network
are known in advance, so the proactive mode can be used and the flow
installation latency is not an issue.
In this configuration, the flow installation latency can have more in-

fluence on the efficiency of the failover mechanism. In case of a link
or interface failure, the controller has to detect it, recompute alterna-
tive paths and install them on the switches. A network operates with
degraded performance for the time it takes to perform these tasks. It
is therefore important to optimise the process. Different approaches to
provide resiliency exist. An overview of the techniques can be found
in [12]. We will discuss failover in more detail in the context of DAQ
networks in Section 6.2.4.
In SDN reliability of the control plane is critically important. A single

controller introduces single point of failure that can bring down the
entire network. The main mechanism to recover from these failures is to
use backup controllers that can take over the network control when the
primary controller fails. This problem is also well-known and solutions
exist. More details are available in [4, 12]. Multiple controllers can
also be used to improve the scalability of flow management for larger
networks. Review of the work in this area is available in [12].
Another widely criticised aspect of SDN is the flow table capacity [96].

The forwarding rules are stored in the so-called flow tables, defined in
the OpenFlow specification [126], inside network devices, which have
limited capacity. This is even more challenging, if multiple OpenFlow
tables are to be used. Considering, however, the type and number of
rules that would be required in a DAQ network (see Chapter 6), this is
not a real issue. Especially that the OpenFlow tables’ capacities can be
easily extended with software switches [179] that we intend to evaluate
jointly with SDN.
Summarising, programmable networks, like SDN, offer promising fea-

tures for data acquisition networks. Among others, the software mecha-
nism for implementing custom algorithms for routing and load balanc-
ing across a network can bring compelling advantages. Optimising the
data flow in a DAQ network can become much simpler and more effi-
cient than in case of traditional networks, in which flexibility is limited
by the network hardware vendors. Possible limitations of SDN either
do not appear in DAQ or working solutions are already provided.

2.6 summary 31

2.6 summary

In this chapter we reviewed the relevant literature on the topics to be
discussed in the thesis.
We started by looking at the data acquisitions networks of the four

large experiments of the LHC. In particular we reviewed what solu-
tions were used in the past and where are the challenges for handling
the bursty many-to-one traffic pattern in the future. There are some
obstacles in the adoption of the commodity Ethernet and TCP/IP net-
works. The main one is the lack of buffering in the network. Although
solutions improving the performance of these networks for many-to-one
communication exist both in data acquisition and in datacenters, all of
them require careful tuning and sender-side buffering. Furthermore, it
is difficult to reach full performance.
Packet processing in software with flexible and extensible buffering

can be an alternative avenue. We presented the evolution of software
switches and routers. Nowadays, the performance is sufficient to build
a switch on a commodity server that is capable of forwarding hundreds
of gigabits of traffic. A high performance, production-quality software
switch, OVS, is already available and has become an important part
of modern datacenters. Nevertheless, assessment and possibly optimi-
sation for data acquisition are required.
When combined with the Clos-based network architectures, a topol-

ogy based on software switches that could scale to terabits without
incast congestion seems feasible. Particularly if proper load balanc-
ing across multipath is employed, very high network utilisation can
be reached. The work on software-defined networks is promising for
DAQ, particularly in respect of resource management. QoS guarantees
are often based on packet drops to enforce proper rate control though.
However, drops would not be required if an adequate number of large-
enough queues is guaranteed on the switches. We will evaluate this in
the following chapters by exploring software switching in the context
of data acquisition.

3
PERFORMANCE IN DATA ACQUIS IT ION
NETWORKS

In this chapter we discuss the most relevant properties of typical data acqui-
sition networks for large experiments. First, we give the necessary definitions
to quantify the performance. Then we define basic requirements, which can
be regarded as common for many DAQ networks, and consider what are the
important aspects when optimising them. We also present in more detail the
ATLAS DAQ system, which is used as the use case throughout this thesis. In
the end, we describe our performance evaluation methodology.

3.1 introduction

As we have already described in Section 1.1.2.1, the data acquisition
network is one of the key components in distributed large-scale exper-
iments. It is required for collecting the experiment’s data from all of
its instruments. This process is illustrated in a lightweight fashion in
Figure 1.2, and with more details in Figure 3.1. Data that are read
by some readout electronics from an experiment are usually buffered
on multiple readout units. They constitute the readout system. Data
that belongs to the same physical process (e. g. the same collision event
in LHC), must be then merged together and saved to disk. If there is
not enough bandwidth to this storage, filtering takes place. In order
to accomplish these tasks a network is required, which interconnects
all the nodes that are used for readout, merging (called event building
in the LHC experiments), filtering, and permanent storage. Sometimes
some of them can be even performed on the same nodes [102]. In other
configurations distinct networks for event building and event filtering
can be used. Nevertheless, in all cases a demanding bursty, many-to-
one communication pattern develops, because data enter the network
synchronously from many readout nodes and have to be routed to a
single data collector for further processing as depicted in Figure 1.2.

3.2 definitions

Before specifying the requirements on DAQ networks, we explain the
necessary terms used throughout this thesis to quantify their perfor-
mance. We follow the terminology given in [128] and put it in the con-

32

3.2 definitions 33

R R R R R R R R R

R R R R R R R R

Readout
nodes

Experiment’s electronics

DAQ network

Nin

Nout

Server rack Server rack Server rack Server rack

Server rack Server rack Server rack Server rack

Server rack Server rack Server rack Server rack

Event building/filtering farm

Storage
D
at
a
flo

w

Figure 3.1: Overview of nodes connected to a data acquisition network. Func-
tions of particular nodes can vary. In some configurations readout
nodes (R) can also perform event building and/or filtering. Also,
distinct networks for both tasks can be used.

text of data acquisition. The definitions are provided in the following
list:

• Bandwidth (capacity) B: The data-carrying capability of a net-
work, measured in bits per second (bps). Here, for a particular
DAQ network we define it as the maximum aggregate raw bit rate
(measured below the network layer and above the physical layer)
from the readout nodes to the data collectors. It does not include
protocol overheads of the upper layers. In the LHC nomenclature
in turn, data bandwidth often refers to pure event data rate of an
entire DAQ system.

• Throughput T (utilisation U): The quantity of raw bits success-
fully transferred per unit of time (fraction of bandwidth). Maxi-
mum achievable throughput is equal to the bandwidth.

• Goodput G: The quantity of pure event bytes successfully trans-
ferred to the data collectors per unit of time. It can be also called

3.3 requirements on daq networks 34

application layer throughput, as it takes into account protocol
overheads between the physical and application layers. The good-
put of a DAQ network corresponds to the actual data bandwidth
of a DAQ system.

• Theoretical goodput Gtheory: The theoretically calculated maxi-
mum goodput of a network.

• Offered load Goff : The sum of all the event data that the readout
nodes have ready to send at a particular time (absolute value or
percent of the theoretical goodput).

• Sustained load Gsust: The actual goodput (in the function of the
offered load) expressed as the fraction of theoretical value.

• Saturation goodput Gsat: Usually it is not possible to reach the
theoretical value (even without limits on the offered load) and
the goodput saturates at a lower value.

• Maximum loss-free goodput Gmlf : The maximum goodput for
which no losses occur in the network (where packet retransmis-
sions or other recovery mechanisms are not needed).

• Event size: The total size in bytes of a single snapshot in an
experiment. These data are usually distributed across multiple
readout nodes (Nin).

• Data collection latency l: The time it takes to transfer all data
belonging to a particular event from the readout nodes to a collec-
tor. In the pull architecture it spans from the moment of sending
the request to the readout system for the first fragment to the
moment of receiving the last fragment. In the push architecture
it is the time between sending the first fragment and receiving
the last one.

• Mean lm and jitter σl: The mean of the data collection latency
and its variations during some data-taking period.

The formulas used in this thesis to calculate the above parameters can
be found in Appendix A.

3.3 requirements on daq networks

In this section we will discuss high-level requirements for DAQ net-
works, which we will use later to assess the proposals defined in the
thesis. These requirements were already discussed in the context of the
LHC experiments in [101, 146]. In general, a data acquisition network
as part of a larger data acquisition system must reliably transport in
a timely way an experiment’s data sustaining some predefined load,
which cannot be limited by the specific traffic pattern. Therefore, the
key requirements are focused around the following aspects:

3.3 requirements on daq networks 35

• reliability,

• data bandwidth,

• data collection latency,

• scalability,

• fault tolerance, and

• costs.

3.3.1 Reliability

Reliability is, next to performance, one of the two most important re-
quirements on DAQ networks. In most experiments full event/process
data are required in order to provide scientifically valid results. If a
packet is lost in the DAQ network, all data belonging to the same
physical process have to be discarded. Therefore, a lossless network is
desired for data acquisition. This requirement can be fulfilled by ensur-
ing that the network does not drop any packets and/or by providing a
recovery mechanism in case of losses, like the TCP retransmission mech-
anism. These recovery mechanisms can usually introduce performance
degradation as they are used to recover from occasional drops only
(e. g. temporal traffic spike in the network or congestion control). They
should not be used to provide lossless operation, if systematic packet
drops are present. In this case alternative solutions are preferred.

3.3.2 Data bandwidth

The required event data bandwidth (as opposed to the network band-
width) at the input to a DAQ network (i. e. readout system) is usually
specified in the requirements of a particular TDAQ system. In the case
of the LHC experiments, it is usually given as the event rate, L1r (level-
1 rate). With this rate events arrive at the readout system and are sent
over the network to the data collectors. Together with the average event
size1, eavg, the required goodput, Greq, can be calculated as

Greq = L1r · eavg .

This is the aggregate goodput that a DAQ network must provide to the
application layer in order to move event data from the total of Nin ports
of the readout nodes to the Nout output ports in the filtering farm (see
Figure 3.1). Apart from that, each of Nin nodes in the readout system
requires sufficient input bandwidth to the network. For simplicity, in

1 In some DAQ systems an event can be dropped by the filtering algorithms even
before all the data was fetched, like in the ATLAS experiment (see Section 3.5.1).
In this case the required data bandwidth is less and can estimated by using an
equivalent event size instead.

3.3 requirements on daq networks 36

this work we assume a homogeneous readout system with the same
input bandwidth and event fragment size at each node. Also, we set
zero processing time at the event building/filtering nodes in order to
treat the DAQ network in isolation (see Section 3.5 for more details).
In general, the same network can be also used for the traffic from

the event building/filtering farm to storage as well as control traffic of
the experiment. In this case, the required data bandwidth is increased.
Nevertheless, in this work we neglect these types of traffic as their
bandwidth requirements, in many cases, are orders of magnitude lower.
The performance of a DAQ network is then primarily determined by
the data flow from the readout to the farm.

3.3.3 Data collection latency

The mean value and variance (or, in other words, jitter) of the data
collection latency are factors important to the performance of an entire
DAQ system. Both are correlated with data bandwidth and should
be analysed together. Blocking the nodes in the farm from processing
because of an increased collection time translates into lost CPU time.
It can lead to underutilisation of the entire farm and reduced overall
system bandwidth, if the latency increases too much and there is not
enough CPUs available in the farm.
For example, in the pull architecture, a node requesting data from the

readout system is idled, if the response time exceeds an expected value.
Hence, a large jitter prevents us from designing an efficient system,
in which data are fetched in advance while still processing previous
chunks2. Although the mean value should be minimised as well, it is
not as critical as the jitter as long as the overall data bandwidth is
not impacted [146]. Similarly, in the push architecture, if saturation
goodput exceeds the requirements, the mean latency is not critical for
the performance. All events are eventually delivered to the farm.
The data collection time of a DAQ network depends on the following

components [128]:

1. Serialisation delay: The time required to put the bits to be trans-
mitted onto a transmission line with given speed.

2. Propagation delay: This delay results from the finite speed of
light/signal in the transmission medium (the time required to
move the bits along the cables).

3. Packet-switching delay: The amount of time that a router or
switch needs to move a packet between the input and output
ports (without queueing).

2 This can be seen as pipelining and can improve the performance, if data collection
latency is comparable with event processing time [146].

3.3 requirements on daq networks 37

4. Network stack delay: The delay introduced in the network stacks
of the sending and receiving hosts.

5. Queueing delay: The amount of time a packet waits in the queue
of a network device before being switched to the output port. It
increases with utilisation.

6. Recovery delay: The time it takes to recover a lost packet.

The first four components sum up to the zero-load network latency,
which gives the time it takes for a packet to be moved from a source
to some destination in a network without any other traffic. The serial-
isation delay of the event data traversing the network is the dominant
factor, if there is neither contention nor packet losses in the network.
As an example, it takes 800µs to transmit 1MB (this is the order of the
event sizes in the LHC experiments, see Section 2.1) over a 10GbE inter-
face. For typical cable lengths in DAQ networks the propagation delay
is counted in nanoseconds, whereas packet-switching delay in modern
network devices is just a few microseconds [128]. The delay introduced
by the network stacks is dependent on the performance of the servers
and by the type of the stack in use. In this work we assume, that this
time is also significantly lower than the serialisation delay. The latter
gives therefore an estimate of the ideal data collection latency.
This estimate ignores, however, additional delay due to contention

with any other collection process running in parallel over shared links
in a network. This is the usual scenario in DAQ networks, where event
data is moved to hundreds or thousands of independent collectors. In
this case the data collection time becomes a function of the offered
load [42] and depends also on the queueing algorithms used in switches
and routers as well as recovery mechanisms, if there are packet losses.
Normally, data collection time increases with offered load for the these
collectors that use at least one common link in the network as the flows
compete for the access to the same link, as explained in [42]. Eventually,
a vertical asymptote is reached for some value of the offered load when
saturation goodput of a network is reached. The exact shape of this
curve for an entire system depends on various factors, like traffic pat-
tern, queueing algorithms, or topology. This increase in collection time
is expected and not problematic, as long as jitter is low and saturation
goodput is close to theoretical value.
In general, data collection time is therefore determined by seriali-

sation and queueing delays. The former cannot be influenced without
changing the interface speeds. The latter can be minimised by optimis-
ing routing across the network, traffic shaping, or adjusting the config-
uration of the network devices to the extent allowed by their vendors.
These optimisations translate directly into increased overall goodput.

Nevertheless, mean latency and jitter can increase substantially, if
systematic packet losses occur. In order to guarantee lossless opera-
tion, retransmission mechanisms are required. They introduce though

3.4 throughput versus latency optimisation 38

additional delays and waste some of the bandwidth to transmit the
same packet again. For this reason, this source of the delay should be
eliminated in the first place.

3.3.4 Scalability

The evolving requirements of an experiment affect its data acquisition
network. It may be required to increase the number of nodes in the read-
out system, extend the event building/filtering farm and/or increase the
goodput. Therefore, when designing a network, its scalability must be
also taken into account.

3.3.5 Fault tolerance

In case link or switch failures occur somewhere in the network, they
should be detected and alternative paths through the network should be
established. In this way the performance degradation can be minimised
for the time of repair. In the ideal case, path monitoring and rerouting
should be done automatically by the network.

3.3.6 Costs

It has been already explained in the introduction to trigger and data
acquisition systems in Section 1.1.2 that there is a general desire to
build TDAQ systems with COTS equipment. It is also another factor
to be taken into account when designing a DAQ network. If a commod-
ity network fulfils all the requirements, it is preferred over specialist
technologies. In this case savings can be made on the equipment itself
and/or on the costs of hiring experts or providing training on these
technologies. The risk that they will disappear from the market in the
future can be minimised.
Beyond that, it is also important is to choose solutions based on

widely used and supported standards whenever possible, such that not
only the dependence on home made solutions is avoided, but also the
dependence on single vendors (e. g. InfiniBand). The costs of hiring
experts or providing training can be minimised in this case as well.
Not less important are the costs related to power consumption. A

commodity solution requiring inadequately large amounts of energy
can prove to be more expensive than specialist technologies in the end.

3.4 throughput versus latency optimisation

In the previous section we defined network latency under zero-load,
which depends on link speeds, network size and packet processing delays
in switches and at end-hosts. It is clear that this latency is dominated by

3.5 performance evaluation methodology 39

serialisation delay for the type of traffic in data acquisition, where large
amounts of traffic are moved by the network. Therefore, optimisation of
network latency does not significantly improve the overall performance
as long as serialisation delay dominates other components. Furthermore,
if the pipelining or push architecture is used, network latency does not
affect the goodput of the system at all.
In many other systems, however, it is usually important to minimise

network latency. For example in HPC applications, the overall perfor-
mance of a supercomputer depends on how fast its processors can com-
municate with each other [100]. This is the reason for the popularity
of InfiniBand networks in the HPC. Low-latency InfiniBand networks
provide in general better performance than commodity Ethernet in this
respect.
However, network latency under zero-load ignores the delay due to

contention with other packets that leads to queueing and/or packet
losses. Once this effect is included, latency becomes a function of of-
fered traffic. Therefore, optimising the network under load leads to
improving both the latency under-load (in our case, the data collection
time) and the throughput (and goodput in consequence) of this network.
This is the major area for improvement in case of DAQ because of the
demanding communication pattern. In order to avoid ambiguity with
zero-load network latency, we use the term throughput optimisation
throughout this work3. We concentrate on designing DAQ networks on
software-based components, which can be jointly optimised for high
throughput in many-to-one communication scenarios.

3.5 performance evaluation methodology

In the previous sections we showed that reliability and performance are
equally important in DAQ. Therefore, in order to evaluate solutions for
data acquisition networks, we focus on both these aspects. We measure
the saturation goodput and compare it with the theoretical value. Then,
we analyse latency distributions under different loads. In every case we
verify whether systematic packet losses are present in the network.

As most of the work in this thesis is experimental, test equipment was
required to apply the desired traffic pattern to devices, and measure
their response (i. e. goodput, data collection latency, losses). For the
generation of traffic we used the ATLAS TDAQ software in emulation
mode. It allowed us to create arbitrary data-taking configurations on
a set of computers, generate traffic with many-to-one communication
pattern, and record metrics relevant for data acquisition. In the next
section we will describe the ATLAS TDAQ system in more detail and
give the ATLAS-specific nomenclature for its components. Nevertheless,

3 We use the term throughput optimisation instead of goodput optimisation as we
concentrate on the optimisations on the network, not the application, layer.

3.5 performance evaluation methodology 40

the conclusions from these evaluations are not limited to ATLAS as long
as similar network traffic characteristics apply.

3.5.1 The ATLAS TDAQ system

In this section we will extend the description of the ATLAS TDAQ
system given in the introduction (see Section 1.1.3) in order to explain
the basic nomenclature and configurations used to evaluate the perfor-
mance of the solutions proposed in this thesis.
The outline of the ATLAS TDAQ system, called ATLAS DAQ/HLT,

for the 2015-2018 data-taking period is presented in Figure 1.4. It con-
forms to the generalised diagram of a DAQ system presented in Fig-
ure 3.1. The process of filtering the data, which come from various
ATLAS subdetectors, has multiple stages. The first stage, Level-1 trig-
ger, is a dedicated, hardware-based system with very low latency. The
events are either accepted or rejected using coarse-grained data from
a subset of ATLAS detectors with a frequency of 40MHz [39]. Then,
if an event is accepted by Level-1, its data fragments are distributed
(using custom links) to hardware buffers in the readout nodes that are
commodity servers. In ATLAS they are called Readout System (ROS)
nodes. The total event size is ∼1.7MB and these data are spread across
approximately 100 ROS servers. The ROS can be seen as an interface
between the ATLAS-specific data acquisition components and commod-
ity equipment.
The next stage is performed by the event building/filtering farm,

which is called the High Level Trigger (HLT). Events are assigned to
Processing Units (PUs) by an HLT supervisor (HLTSV). Each PU is
a worker process on a commodity server performing event reconstruc-
tion and analysis. There are multiple PUs on each server of the HLT
farm (working on independent events), but only one Data Collection
Manager (DCM) that requests event fragments from ROS on the behalf
of the PUs. The DAQ network transports the requests for fragments
from HLT to ROS and the requested data from ROS to HLT. The PUs
incrementally retrieve and analyse event fragments from ROS until an
accept or reject decision can be made. An event can be rejected without
analysing all of its fragments. Thus, the required network bandwidth
can be reduced. All accepted events are transferred to permanent stor-
age via Data Logger nodes. As of 2014, the HLT was built with ~30000
PUs on ~2000 filtering nodes, but the farm is continuously evolving.
For further details please refer to [39, 130].
The architecture of the ATLAS DAQ network is presented in Fig-

ure 1.5. It is a 10GbE Ethernet network and a custom, ATLAS-specific
application layer protocol implemented on top of TCP/IP is used for
event data transport. ROS nodes are connected directly with four
10GbE links to the core of the network, which is built around two
large routers with big buffers. Therefore, the maximum theoretical in-

3.5 performance evaluation methodology 41

put bandwidth to the DAQ network cannot exceed 4Tbps. The required
average for Run 2 is 400Gbps [130] though. The four links are used in
order to accommodate the redundancy requirement. In the HLT farm,
the nodes are organised in racks of at most 40 servers that connect to
the core via ToR switches (two 10GbE uplinks to the core, and single
1GbE link to every HLT node). Synchronous requests for event frag-
ments from multiple ROS nodes turn into many-to-one communication
pattern. Traffic shaping at the application layer and large buffers in
the network core are currently used to avoid incast congestion, as we
described in Section 2.1.1. On average, there is 1.7MB/100 = 17 kB
of data belonging to a particular event on a single ROS node, but the
spread is large. Each ROS node accommodates up to 24 input links
from the detector electronics running at 160Mbps to 200Mbps. There
are ROSes with as little as a single input link and ROSes hosting 24
links running at almost full speed. It can be also noted that the major-
ity of frames traversing the ATLAS DAQ network carry the maximum
allowed number of bytes, which for Ethernet is specified by its MTU
(Maximum Transmission Unit) of 1500B.

Overall, the entire system is operated by a distributed ATLAS TDAQ
software. It can be also configured to work in an emulation mode, in
which ATLAS specific electronics is not required and events are re-
placed either by preloaded or dummy data.

3.5.2 Evaluation procedure

In the following we will describe the evaluation procedures used for
investigating how DAQ networks conform to the requirements defined
in Section 3.3. Results of these evaluations for different network config-
urations, which are the subject of this thesis, will be presented in the
following chapters.
The generalised evaluation setup used throughout this thesis is pre-

sented in Figure 3.2. It consists of two main parts:

1. Traffic generation,

2. Network under test.

ATLAS TDAQ software in emulation mode is used for traffic gen-
eration. Readout applications (also called ROS applications) deliver
dummy event data that are requested by DCMs in an emulated HLT
farm. Each node is a commodity server and runs readout applications,
data collectors (emulated HLT rack of DCMs), or both in parallel to
imitate a larger data collection configuration. Dummy events are as-
signed to DCMs by the HLTSV with controllable rate, which defines
the offered load. DCMs request event data fragments from ROS, but a
single DCM does not request another event before it receives all frag-
ments of the previous one from all available ROSes (in all our tests
a single DCM requests data on behalf of one dummy PU only, unless

3.5 performance evaluation methodology 42

R R R H H H R/H R/H R/H

Emulated DAQ system

Network under test

Nin Nout

HLTSV

Data flow

Figure 3.2: Generalised evaluation setup. Both readout system (R) and filter-
ing farm (H) are emulated with the ATLAS TDAQ software. Each
box represents a distinct node running either emulated readout ap-
plications, emulated rack of data collectors of the HLT farm, or
both.

otherwise stated). Only full event building is performed, and all events
are rejected without any processing. In this way the DAQ network can
be analysed in isolation from other factors. As a result, there are many
interleaved all-to-one communication patterns or a single, fully meshed
all-to-all traffic.
All tests are performed with event sizes that are large enough to

assume that most frames will be of maximum size allowed for Ethernet
(MTU of 1500B). But the exact size of event fragments can vary in
different tests. As explained in the previous section, large frames can
be considered typical in data acquisition. The general performance of
software switches for small packets is broadly studied in the literature
(see Section 2.3).

If we need to run the network so that congestion control is not the
limiting factor, we disable dynamic TCP congestion control in all ROS
nodes and instead use a static sender congestion window (see Sec-
tion 4.5.2.1). This window can be set to a very large value so that
each ROS response is not rate-limited by TCP, further increasing the
incast effect. It also allows us to evaluate the performance of our pro-
totype networks without the influence of the congestion control and
test in the best scenario from the viewpoint of data acquisition simply
pushing all the available data on to the wire. We further simplify the
system by disabling TCP selective acknowledgements (TCP SACKs)
for most of the tests, so that it resembles a simple, UDP-like, push sce-
nario. Normally, this mechanism improves the performance by limiting
the number of retransmitted segments in case only some of them are
lost in the network [55].
For our evaluations the following metrics are calculated or measured

(following the definitions in Section 3.2):

3.6 conclusion 43

1. The theoretical bandwidth and goodput for a given network con-
figuration (see Appendix A for exact calculations). As the un-
derlying protocols remain the same in every test, the considered
protocol overheads come from Ethernet, IP, TCP and ATLAS
data flow protocols.

2. Saturation goodput and, for some tests, maximum loss-free good-
put (when HLTSV does not limit event rate).

3. Sustained load and distribution of data collection latency as a
function of offered load as set in HLTSV.

4. For some tests, TCP retransmissions as an indication of packet
losses in the network. In most cases though, systematic packet
losses result in degradation of the sustained load and increased
data collection latency and jitter.

Goodput is calculated from the average sustained event rate as re-
ported by the HLTSV, whereas histograms for data collection latency
are recorded by the ATLAS TDAQ software. Histogram granularity is
1ms. For a single event, data collections latency is the timespan be-
tween sending the first request to the ROS and receiving the last data
fragment from the ROS. TCP retransmissions are summed over all ROS
nodes from the numbers reported in Linux network statistics during the
measurement. All these metrics are measured in the so called steady-
state [42, 131], when a network has reached equilibrium. In each test
iteration stabilisation time is 360 s and the measurement time is 120 s.

3.6 conclusion

In this chapter we have defined and discussed basic definitions, metrics
and performance evaluation methodology for data acquisition networks,
which will be used in the following chapters of this work. In data acqui-
sition, reliability and performance are equally important. On one hand,
losses in event data imply incomplete reconstruction of the physical pro-
cess, and, in effect, oversight or disqualification of potential discoveries.
On the other hand, the systems need to perform well at very high rates.
These two requirements are often difficult to achieve in parallel because
of the many-to-one communication traffic pattern, often accompanied
by high burstiness, as we will show in the next chapter.

4
MANY-TO -ONE PATTERNS IN DATA
ACQUIS IT ION

With this chapter, the original contributions of this thesis begin. We first focus
on the TCP/IP performance in data acquisition networks and discuss some
analogies and differences between them and datacenter networks. Then, we
give a high-level analysis of the problem and, based on a simple estimate,
we introduce what are the general approaches to solve incast pathology. We
present evaluation and comparison for some of the related techniques, which
are used in datacenter or in data acquisition networks. We also include a short
discussion on the state of the art TCP variant for datacenters, DCTCP, and
its potential use in data acquisition. This chapter contains results published
in [87].

4.1 introduction

In the previous chapter we presented in more detail typical configura-
tions of DAQ systems. In all those cases, a demanding bursty, many-to-
one communication pattern develops, because data enter the network
synchronously from many readout nodes and have to be routed to a sin-
gle data collector for further processing, as was depicted in Figure 1.2.
This pattern can have catastrophic consequence on performance, par-
ticularly for TCP-based communication. It leads to so-called incast con-
gestion, if traffic bursts are too large to fit into the buffers of switches
and routers.

4.2 tcp performance in daq networks

Designing a DAQ network with hundreds of overlapping many-to-one
communication patterns is challenging. We indicated this already in
the introduction to this thesis, particularly in Section 1.1.2.1. But the
consequences of incast congestion in this scenario are already visible
when only one communication process of this type is present.

In order to illustrate them we use an emulated data-taking session
with a single data collector that requests data from a controllable num-
ber of readout nodes (maximum of 200 nodes). The experiment uses
the real ATLAS DAQ network, see Figure 1.5. The readout system is
emulated though on the HLT farm (Tdaq PU in Figure 1.5) in order

44

4.2 tcp performance in daq networks 45

Emulated ROS (up to 200 nodes)

DCM

HLTSV
Brocade MLXe32

HP6600

10Gbps

1Gbps

1Gbps

1Gbps

Figure 4.1: Test setup with one data collector and up to 200 ROS nodes (9-12
per rack) with twelve event data fragments on each.

to have better control on the total number of nodes. The actual config-
uration for this test is presented in Figure 4.1. HP6600 ToR switches
[72] are used to aggregate machines within the same rack. The core
of the network is made with the Brocade MLXe32 router [28] using
the Virtual Output Queueing (VOQ) architecture [99]. ToR switches
and the core router are connected via 10Gbps uplinks. All connections
within the rack are 1Gbps. ROS PCs are physically located in different
racks (9-12 nodes in each) so as not to limit the system’s bandwidth by
the speed of the links from the ToR switches connecting ROSes to the
core router. There is 12 kB of data (twelve distinct fragments of 1 kB
each) for a single event on each emulated ROS and the total event size
is increasing with the number of nodes used in a given iteration up to
2.4MB. The offered load is set in such a way that the event data rate
does not exceed the 1Gbps link to the only data collector, even for the
largest set of ROS nodes (L1r = 50Hz). This test is performed with
a traditional, unreliable Ethernet network and with TCP as the trans-
port layer protocol with the default, TCP cubic, congestion control
algorithm.
What can be seen in Figure 4.2 is the link utilisation of this single

data collector over a longer period of time. A single event is built out
of data fragments distributed across 200 ROS nodes in this case. There
are multiple long periods of time when the link remains idle for at
least 200ms. This is typical observation for TCP-based applications
that generate many-to-one traffic bursts in a network. When a data
collector requests full event data from all the ROS nodes simultaneously,
it causes a large traffic burst. Switches without sufficient buffer capacity
drop some portion of the packets.
In this particular case it happens at the ToR switch connecting the

data collector to the DAQ network, see Figure 4.1. Although the speed
of this link is 1Gbps, which is enough to sustain the requested load,

4.2 tcp performance in daq networks 46

0.0 0.5 1.0 1.5 2.0

Time [s]

0%

20%

40%

60%

80%

100%

L
in

k
ut

ili
sa

tio
n

200 ms 200 ms 240 ms 200 ms 200 ms 240 ms

ATLAS TDAQ

200 ms 200 ms 240 ms 200 ms 200 ms 240 ms

ATLAS TDAQ

Figure 4.2: Link utilisation of a data collector over longer period of time. It re-
mains idle for at least 200ms after a TCP timeout, which suspends
data collection.

there is a 10Gbps uplink to the DAQ network, over which requested
event data are fetched. Some of the packets are dropped because of
this oversubscription and the fact that frames carrying requested event
fragments from various ROSes cannot fit into the memory of the ToR
switch. In this case Ethernet, as a best-effort protocol, is allowed to
drop packets. These losses trigger standard TCP recovery mechanisms.
Because particular ROS-to-DCM TCP flows are relatively small (ap-
proximately nine frames are required to move event fragments from a
single ROS), most of the lost packets are recovered using TCP time-
out mechanism, and not the so called fast recovery [55]. If a packet is
lost and there are no more packets of the same flow arriving at a TCP
receiver, a TCP sender must wait for a TCP timeout before retrans-
mitting a lost segment. These timeouts introduce delays of hundreds
of milliseconds, compared to three orders of magnitude lower 200 µs
RTT of the DAQ network or to one order of magnitude lower serialisa-
tion delay (200·12 kB

1Gbps = 19.2ms for sending event data, without protocol
overheads, over 1Gbps link). The typical value for the minimum TCP
retransmission timeout (RTO) in TCP stack implementations of com-
mon Linux distributions is 200ms [171] (including Scientific Linux 6,
SLC6 [149], used at CERN). While the actual value changes during the
lifetime of a TCP connections based on the measurement of the expe-
rienced RTT, a minimum value is usually set by the operating system
[55]. This is the reason for the large jitter of data collection latency.
Figure 4.3 shows the goodput and latency characteristics when in-

creasing event size by increasing the number of ROS nodes that are
used to build an entire event. Goodput increases first linearly with the
size of the event. This is expected as the event rate is kept constant
and only the event size changes. Data collection latency also matches
expectations as it is close to the serialisation delay of the entire event
and protocol headers over a 1Gbps link. But for more than 50 ROSes
goodput suddenly collapses. At this point the burst of packets coming

4.2 tcp performance in daq networks 47

0 50 100 150 200

No. of ROS nodes NR

0

200

400

600

800

1000

G
oo

dp
ut

G
[M

bp
s]

Theoretical maximum

ATLAS TDAQ

(a)

0 50 100 150 200

No. of ROS nodes NR

1

10

100

1000

D
at

a
co

lle
ct

io
n

la
te

nc
y

l[
m

s]

ATLAS TDAQ

10th percentile
Median
99th percentile
Serialisation delay

(b)

0% 20% 40% 60% 80% 100%

Percentile

1

10

100

1000

D
at

a
co

lle
ct

io
n

la
te

nc
y

l[
m

s]

ATLAS TDAQ

NR = 200
NR = 50
NR = 45
NR = 20
Serialisation
delays

(c)

NR lm [ms] σl [ms]

240 2.5 0.0
540 5.5 0.0
720 164.4 146.0
2400 487.4 155.3

Figure 4.3: Goodput (a) and event data collection latency (b) when increasing
event size by increasing the number of readout nodes, and the ex-
act distributions of latency for four different event sizes (c). Event
rate at the input is kept constant (L1r = 50Hz).

from ROS exceeds the size of the buffer at the ToR switch connect-
ing the DCM to the network. From this it can be estimated that the
HP6600 ToR switch has about 50 · 12 kB = 600 kB buffer per 1Gbps
output port.
The latency distribution shows that an increasingly large amount of

events suffer from data collection latency of more than 200ms, which
is caused by TCP timeouts as explained in the previous paragraph on
the example of NR = 200. As a consequence, the mean value and jitter
are significantly elevated. Because of the latter the network becomes
highly unpredictable, so efficient data acquisition process cannot be
established.
As can be seen from Figure 4.1, a large oversubscription happens

already at the core layer of the network, where multiple ROS racks

4.3 the analogies and differences to dcn 48

are connected to a single router. Packets from many 10Gbps links are
switched to a single 10Gbps link towards the DCM. This router has,
however, large enough buffer to accommodate the entire burst from
ROS, so packet losses occur first at the ToR switch connected to the
DCM. If a commodity router or switch was used instead, congestion
would have happened already at the core layer. This behaviour can be
emulated by changing the size of the queues at the router, which is
presented in Figure 4.4. Event rate at the input is kept constant and
the number of ROS is set to 40 in order not to overflow the ToR switch
at the data collector. When the buffer size in the core router is not
sufficient, packets are lost again, even though the system should oper-
ate in steady state as shown in the previous paragraph with NR = 40.
Similarly as with drops in the ToR switch, large data-collection mean
latency and jitter are observed. When the queue size is large enough,
requested load is sustained and latency is close to the serialisation de-
lay. It is akin to an observation about the amount of buffering in the
networks that was made in 1997 by Morris in [111], who claimed that
it should be proportional to the total number of active TCP flows1.
But the problem is even more complex, when the entire filtering

farm becomes active. In this case, hundreds of overlapping many-to-
one patterns emerge. The exact system behaviour and the severity of
the problem depend on many factors like the DAQ system configuration
and its size, event data distribution, network topology and protocols,
amount of buffering available in the network, or queueing mechanism in
switches and routers. In any case, many-to-one communication patterns
are prone to systematic packet losses. A deterministic retransmission
process could be achieved with fine-grained TCP RTO as proposed by
Vasudevan et al. in [171]. But network bandwidth would be systemati-
cally wasted for these retransmissions, reducing its overall efficiency. If
possible, packet drops should be therefore eliminated in this first place.
General approaches to incast mitigation will be discussed in Section 4.4.
Summarising, many-to-one communication is a significant challenge

in data acquisition networks. It is particularly demanding for Ethernet
networks, where packets can be dropped as a response to congestion.
The problem can also occur when other technologies are used, but the
symptoms may be different. Furthermore, many-to-one patterns are a
challenge not only in data acquisition, which we will show in the next
section on the example of datacenter networks.

4.3 the analogies and differences to dcn

As it turns out, there are strong analogies between DAQ and datacenter
networks in the context of many-to-one communication. Synchronous

1 This observation stands in contrast to the current trend to reduce the amount of
buffering in the backbone routers when increasing the number of competing flows
[9].

4.3 the analogies and differences to dcn 49

1 10 100 1000 10000

VOQ size [kB]

20

40

60

80

100

120

140

160

180

200

G
oo

dp
ut

G
[M

bp
s]

Requested load

ATLAS TDAQ

(a)

1 10 100 1000 10000

VOQ size [kB]

1

10

100

1000

D
at

a
co

lle
ct

io
n

la
te

nc
y

l[
m

s]

ATLAS TDAQ

10th percentile
Median
99th percentile
Serialisation delay

(b)

0% 20% 40% 60% 80% 100%

Percentile

1

10

100

1000

D
at

a
co

lle
ct

io
n

la
te

nc
y

l[
m

s]

ATLAS TDAQ

VOQ size: 8 kB
VOQ size: 16 kB
VOQ size: 128 kB
Serialisation delay

(c)

VOQ size lm [ms] σl [ms]

8 kB 163.8 154.6
16 kB 44.8 115.3
128 kB 4.5 0.0

Figure 4.4: Goodput (a) and event data collection latency (b) when changing
the queue size in the core router, and the exact distributions of
latency for three different cases (c). Event rate at the input is kept
constant (L1r = 50Hz) and the number of ROS is NR = 40 in
order not to overflow the ToR switch at the data collector.

requests for event data fragments from a single data collector to a large
number of readout nodes closely resemble the behaviour of some appli-
cations in datacenters, which are also affected by the incast pathology
[36]. The typical examples of datacenter applications that are suscepti-
ble to incast are [177]:

• Cluster storage, in which servers concurrently respond to a re-
quest from some client for a block of data that is striped across
multiple nodes [64]. It was in a paper on cluster storage [114]
where incast was first reported by Nagle, Serenyi, and Matthews.

• Web search, where search queries are returned near simultane-
ously by many workers.

4.3 the analogies and differences to dcn 50

• Batch processing (e .g. MapReduce [45]), where intermediate re-
sults from many mappers are transferred to reducers.

Similarly as in data acquisition networks, high-speed links and low
RTTs are typical for DCNs [142], so similar observations regarding TCP
performance are made. Solutions from datacenters could be therefore
tested in DAQ systems and, if successful, would help in increasing their
level of commoditisation. We reviewed the literature on the techniques
proposed for datacenters to solve or reduce the impact of TCP incast
in Section 2.2. We will also analyse some of them in Section 4.5.
Nevertheless, there are also many differences between datacenter and

DAQ, which can make the adoption of some of the solutions easier in
one domain than the other. This is the case with the attempt to provide
large network buffers with software switches, which is the core of this
thesis. These differences justify our choices with regard to the specific
design of the software switch (see Chapter 5) and, in the first place,
the use of extremely large buffers. We also show that the potential
bottlenecks of software switching [52] are insignificant in the case of
traffic patterns typical for DAQ.

farm size: The DAQ farm of the ATLAS experiment consists of
~2000 servers filtering the LHC data and 100 servers in the ROS, com-
pared to typical DCNs containing hundreds of thousands of servers
[177]. The forwarding tables (containing entries to find the proper out-
put interface for a packet) in the network are therefore relatively small.
In software switches it costs some CPU cycles to perform lookups in
those tables. Thus, evaluation of software switches should normally con-
tain the analysis of performance dependency on the table size. In case
of DAQ networks this effect is negligible.

workload: DAQ networks are active during data collection pe-
riod, which for the LHC experiments is counted in months and years.
They are exclusively dedicated to deliver the event data from the read-
out system to the event building/filtering farm and they are isolated
from any other flows, including the control traffic. The consequences
are twofold. First, there are no flows in the DAQ whose latency could
suffer from the large network buffers. Thus, the bufferbloat problem
[63] is not an issue. Second, the network can operate in a nearly static
configuration for a very long time. This configuration can be set at the
beginning of the run and tailored for the current data taking period. In
contrast, network usage in DCNs changes dynamically. Typical traffic
in DCNs is traditionally classified into short-lived mice and large, long-
lived elephant flows [157]. Any solution to the incast-vulnerable traffic
flows must not disturb the fairness of all other traffic in the network,
which may make the design more complicated.

4.4 general approaches for many-to-one communication 51

packet sizes: In Section 3.5.1, it was shown on the example of the
ATLAS experiment that event data traversing the network are generally
large in relation to the Ethernet’s minimum frame length of 64B. The
performance analysis of a network can be therefore limited to large
packets, which makes the adoption of software switches significantly
easier than in datacenters, where maximum forwarding performance for
small packets is also required because of the variety of traffic patterns.
In case of software switching, the forwarding performance is mostly
limited by the maximum packet rate and not the packet size. It is
therefore easier to saturate a link with large packets. It is also worth
noting that, in general, DAQ networks do not send or receive packets
from untrusted sources, and so attacks on the network are less likely.
For example, no one will ever generate requests resulting in many small
packets to perform a denial-of-service attack.

switching latency: One of the important performance indica-
tors of a network switch or router is its latency. It is particularly critical
in high frequency trading or high performance computing. In data ac-
quisition, due to the large event sizes, the total data collection latency
is dominated by the serialisation delay (see Section 3.4). Minimising
the switching latency is therefore not critical in DAQ as long as it is
kept within a reasonable range. This is another factor simplifying the
adoption of software switches in DAQ.

4.4 general approaches for many-to-one communi-
cation

The many-to-one communication pattern leads to incast congestion
in high-bandwidth and low-latency networks, when the senders collec-
tively send enough data to surpass the buffering abilities of a network.
Incast is studied mostly in the context of TCP protocol, when its conse-
quences are catastrophic, as we showed in Section 4.2. Detailed analytic
models to predict incast behaviour and the impact on the application
performance are available in the literature (see Section 2.2.2). In this
work, we concentrate on eliminating the consequences of incast con-
gestion in the first place, not reducing or analysing its exact impact.
As it was explained in Section 2.2.2, incast congestion is persistent in
data acquisition. A solution to provide lossless operation is therefore
needed to provide the highest utilisation of the resources. In order to
derive an estimate showing when lossless operation in a network is pos-
sible we will use the typical term describing network capacity — the
bandwidth-delay product.

4.4 general approaches for many-to-one communication 52

4.4.1 The bandwidth-delay product

The bandwidth-delay product (BDP) of a network path determines
the amount of data that can be stored in the network in transit to the
receiver [55]. It is often considered as an important quantity when esti-
mating the buffering required for TCP. BDP is calculated as a product
of the network delay and the speed of the bottleneck link on the path
from sender to receiver:

BDP = Bbottleneck · delay . (4.1)

Depending on the context, delay means usually the RTT or one-way
latency of a network. The former is used when the receiver signals
to the sender that the data is arriving (e. g. TCP) [133]. In general,
the network utilisation is maximised when a sender transmits data,
once per delay period, at least as large as the BDP. If the value is
exceeded, these additional bytes need to be buffered in the network and
queueing delay occurs. Otherwise, the network remains underutilised.
This corresponds to the general recommendation for capacity planning
for each link’s buffer in a router [14], being 2 · T · C. T is the single
direction latency and C is the transmission capacity of the link.
As an example, the BDP of the ATLAS DAQ network (see Sec-

tion 4.2) is

BDP = 1Gbps · 200 µs = 25 kB ≈ 16Packets

with a single Ethernet frame requiring 1538B on the wire for maximum
sized TCP segments (see Appendix A.2) and considering the 1Gbps
link from a ToR switch to a DCM as the bottleneck. This means that
100 ROS nodes sharing this link, when sending a single TCP segment
to one data collector, would exceed the network’s BDP by a factor
of six. This excess must be buffered in the switches, otherwise packet
drops are observed.
If we now consider the 10Gbps uplink from a ToR to the core router

to be the bottleneck, the BDP raises to

BDP = 10Gbps · 200 µs = 250 kB ≈ 162Packets ,

but there are now 4000 independent flows using this link (40 data col-
lectors connecting to 100 ROSes). With one packet on each flow the
BDP is exceeded by a factor of 25, so even more buffering is required
in the core of the network.

4.4.2 The onset of incast congestion

The calculations in the previous section can be generalised and used
as an estimate on when the onset of incast can occur in some network.
Let’s analyse a network with overlapping many-to-one communication

4.4 general approaches for many-to-one communication 53

patterns, as presented in Figure 3.2. A single sender does not inject into
the network more than the sender window Wij of bytes on a single flow
from the i-th readout node to the j-th data collector. Subsequent bytes
can be sent after the first set has been successfully received by the data
collector or the window was not fully used. The sender window can be
subject to some congestion control algorithm and can vary over time.
In the worst case, when all data transmission occurs synchronously on
all flows sharing some bottleneck link in parallel, the total number of
bytes in transit over this path is

Wglobal =
NR∑
i=1

ND∑
j=1

Wij , (4.2)

which we refer to as global window. This path is optimally utilised, if
this global window is at least of its BDP2. On the other hand, if BDP is
exceeded beyond the available buffering capacities of the network, pack-
ets are dropped and incast congestion can occur. In order to guarantee
lossless operation and optimal utilisation the condition

BDP ≤Wglobal < BDP +Qbottleneck (4.3)

has to be fulfilled, where Q denotes the total buffer space available
in the queues of a network for those flows at the bottleneck link. De-
pending on the network topology this condition should be normally
analysed taking into account different bottleneck links, like we did in
the previous section.
We assumed here that there are no other flows in the network, which

is valid, in general, in data acquisition (see Section 3.3), but not in
datacenters.

4.4.3 Incast avoidance

Combining the inequity (4.3) with (4.1) we obtain

Bbottleneck · delay ≤Wglobal < Bbottleneck · delay +Qbottleneck , (4.4)

which points to three general approaches to prevent incast congestion
and provide lossless operation:

1. Increasing bottleneck link speeds Bbottleneck.

2. Increasing buffering capabilities of a network Qbottleneck.

3. Controlling the amount of packets entering a network Wglobal.

2 The meaning of delay in equation (4.1) depends on the protocol in use. For TCP it
should be the RTT of the network, but for a simple, UDP-like push design it should
be the latency from senders to the bottleneck link.

4.5 example solutions for tcp incast 54

The first solution is neither efficient nor scalable, since high speed
links are expensive and network would not be fully utilised on aver-
age. With more bandwidth on the bottleneck link less pressure can be
indeed put on the switch buffers, as data bursts could be drained to
the output faster. But on the other hand, this additional bandwidth
is used to accommodate temporal overcommitments only, so the aver-
age network bandwidth is not improved (left-hand side of equation (4.4)
would be violated on average). Furthermore, any excess of the available
bandwidth could be used for increasing the overall system throughput
(i. e. increasing the event rate and/or size) instead, if another solution
is available. This point is particularly important when facing the re-
quirements of the LHC upgrades as explained in Section 2.1.
Although effective, extending buffer sizes in switches is also the least

scalable approach as networking hardware with larger memory costs
significantly more and cannot be regarded as commodity. No less im-
portant, the queueing mechanisms employed in routers are specific to
their manufacturers and have limited reconfigurability. We explained
those aspects already in the motivation of this thesis in Section 1.2. In
the following chapter we will present an alternative, which can signifi-
cantly reduce costs and tailor the queueing algorithms to the needs of
data acquisition.
The third path includes all technologies that provide congestion and

flow control mechanisms, which control the data injection rate into a
network to avoid congestion while keeping it fully utilised. Promising
alternatives range from the link layer trough the transport layer up to
a dedicated application layer solution. A detailed review of the alterna-
tives is provided in Section 2.2. It should be noted, however, that even
with a perfect solution for incast congestion, the buffer pressure would
move back to the source hosts, where more data would await trans-
mission over the network. As a consequence, buffering in the readout
system has to include additional memory to handle network conges-
tion. Computational complexity could also increase, if this congestion
control is performed at the senders. This prevents the use of push archi-
tectures with simplest readout nodes. Despite those limitations, many
mechanism exist and can be used improve the performance and reduce
buffer requirements of a DAQ network. In the following section we will
evaluate example solutions for TCP-based applications.

4.5 example solutions for tcp incast

In this section we focus our attention on some solutions that prevent
or mitigate TCP incast by limiting the number of packets that are
transmitted over a network and maintain high network utilisation at
the same time. This can be achieved by means offered by different
network layers.

4.5 example solutions for tcp incast 55

4.5.1 Application layer solutions

One of the ways to control the global send window in order to keep opti-
mum network utilisation, as defined by the condition (4.4), is to provide
appropriate means directly in the application. A successful implemen-
tation is the traffic shaping algorithm used at the ATLAS experiment
[39, 152]. References to other examples were provided in Chapter 2.
In ATLAS’s traffic shaping, each of the data collectors in the HLT

farm is assigned a fixed amount of credits. One credit permits a request
for one event fragment. A DCM does not request more fragments than
its currently available quota. The quota is reduced when requests to
the ROS are sent and increased upon receiving the response with event
data. Here, we provide sample results for the traffic shaping algorithm.
A detailed analysis is provided in [39].

evaluation setup We use the same configuration as in Sec-
tion 4.2, which was depicted in Figure 4.1. A fixed number of 200
ROS nodes is used in this case. Each of them provides twelve event
fragments of 1 kB. The theoretical bandwidth (see equation (A.7)) is

Binout = min (NRnRb,NHnHb)

= min (200 · 1 · 1Gbps, 1 · 1 · 1Gbps)
= 1Gbps .

On the other hand, the theoretical goodput, calculated with equation
(A.12), is Gtheory = 943.8Mbps. The offered event rate is set to 50Hz,
slightly above the theoretical value (102%).

evaluation results The capability of traffic shaping to miti-
gate TCP incast is demonstrated in Figure 4.5. In the optimum operat-
ing range, between 100 and 550 credits, the mean latency of event data
collection stays near its minimum of 21.7ms. It is close to the seriali-
sation delay of the entire event size, including protocol overheads, on
a 1Gbps link of 20.3ms, thus proving the efficiency of the algorithm.
Below 100 credits the network is not fully utilised as we stay on the left-
hand side of the inequity (4.4). Mean latency is increased, but there
are no signs of TCP retransmissions. On the other hand, the switch
buffers are overstressed and start to drop packets above 550 credits
quota (right-hand side of the inequity (4.4)). For example, for 960 cred-
its, every event data collection process suffers from at least one TCP
timeout as there are no events with latency lower than 200ms (see
Figure 4.5c).
Analogous plots can be established for different configurations. In

this way, the traffic shaping algorithm can be tuned to provide best
results. The algorithm is particularly efficient in avoiding incast in the
last hop before data collectors because traffic is controlled on per DCM
basis. Large buffers are still required in the core of the network (as in the

4.5 example solutions for tcp incast 56

0 500 1000 1500 2000 2500

Traffic shaping credits

0

200

400

600

800

1000

G
oo

dp
ut

G
[M

bp
s]

Theoretical maximum

ATLAS TDAQ

(a)

0 500 1000 1500 2000 2500

Traffic shaping credits

1

10

100

1000

D
at

a
co

lle
ct

io
n

la
te

nc
y

l[
m

s]

ATLAS TDAQ

10th percentile
Median
99th percentile
Serialisation delay

(b)

0% 20% 40% 60% 80% 100%

Percentile

1

10

100

1000

D
at

a
co

lle
ct

io
n

la
te

nc
y

l[
m

s]

ATLAS TDAQ

24 credits
480 credits
960 credits
Serialisation delay

(c)

Credits lm [ms] σl [ms]

24 59.7 8.3
480 21.7 5.0
960 439.8 179.6

Figure 4.5: Goodput (a) and event data collection latency (b) when changing
the quota of traffic shaping credits per data collector, and the
exact distributions of latency for three different cases (c). Event
rate at the input is kept constant (L1r = 50Hz) and the number
of ROS is NR = 200 in order not to overflow the ToR switch at
the data collector. Each ROS provides twelve event fragments of
1 kB

ATLAS DAQ network, see Section 3.5.1), which has to sustain traffic
flows to multiple HLT racks. The credit quota cannot be decreased
beyond one, so if the number of DCMs requesting a single fragment in
parallel is already enough to overflow the buffers in the network core
(it is actually also possible in the last hop for ToR switches with tiny
memories), the algorithm will fail.

4.5.2 Alternative TCP congestion control algorithms

TCP congestion control mechanisms are used to control the amount of
packets that are injected into a network. This is realised by controlling

4.5 example solutions for tcp incast 57

the evolution of the so called send window, which limits the packets
that can be simultaneously injected into the network on a single TCP
flow. In Linux, different congestion control algorithms can be used for
each connection. The user can choose from a number of alternatives.
In the distribution popular at CERN (SLC6 [149]) the default is TCP
cubic [55]. It is also possible to implement custom modules that can be
easily loaded into the kernel without its recompilation. Many solutions
for incast-avoidance were therefore proposed in the form of customised
TCP congestion control modules, which we reviewed briefly in Sec-
tion 2.2.2. Here, we discuss the possibilities offered by TCP congestion
control in the context of data acquisition.
A single TCP sender is allowed to send no more than the send window

W of unacknowledged bytes, which is the minimum of sender’s conges-
tion window (cwnd) and the receiver’s advertised window (awnd) [55]:

W = min(cwnd, awnd) .

The optimal window is about the size of a network’s BDP . It ensures
that enough bytes are in-flight to keep its links busy as described in
Section 4.4.
For TCP-based DAQ networks, the condition (4.3) together with

equation (4.2) can be therefore rewritten as

BDP ≤
NR∑
i=1

ND∑
j=1

min(cwndij , awndij) < BDP +Qbottleneck , (4.5)

where min(cwndij , awndij) is the send window of the flow from i-th
ROS to j-th data collector.

4.5.2.1 Static congestion window

A simple static configuration of the send window (static TCP) in ROS,
cwndij = cwnd, can be a potential solution to TCP incast. The cwnd
can be easily configured with a trivial Linux kernel module (available at
[43]). Assuming a large advertised receiver’s window, awndij > cwndij ,
on all HLT hosts, the global send window simplifies to

Wglobal =
NR∑
i=1

ND∑
j=1

min(cwndij , awndij)

=
NR∑
i=1

ND∑
j=1

cwndij

=
NR∑
i=1

ND∑
j=1

cwnd

= NRND cwnd .

and the condition (4.5) for cwnd of a single flow becomes:
BDP

NRND
≤ cwnd < BDP +Qbottleneck

NRND

4.5 example solutions for tcp incast 58

This inequity can be used to approximate the required amount of buffer-
ing. With fixed cwnd we guarantee that there will be no more than
NRND cwnd packets3 in-flight in a DAQ network.

evaluation setup The setup that is used to evaluate this ap-
proach is a similar configuration as in Section 4.2 (see Figure 4.1). Here,
we extend the study and provide results and comparison with traffic
shaping. We analyse a single event collection process and the perfor-
mance of a single data collector. A fixed number of 147 ROS nodes
is used in this case. Each of them provides twelve event fragments of
1.1 kB. The total event size is therefore 1.9MB. The theoretical good-
put is now Gtheory = 943.4Mbps, but we keep the offered event rate at
50Hz, which for this configuration is 82% of the theoretical maximum.
In this evaluation we focus on latency characteristics at high load, just
below saturation.

evaluation results The congestion window cwnd is fixed at
each ROS to two packets to provide optimum performance. With 147
ROSes there are no more than 147 · 2 = 294 packets (or 441 kB for
packets with an MTU of 1500B) traversing the network in parallel. It
is enough to provide full network utilisation (BDP is approximately
16 packets, see Section 4.4). On the other side, it is not enough to
overrun the ToR switch buffers, which we estimated to about 600 kB
in Section 4.2. In Section 4.5.4, using a different setup, we will provide
a comparison between different technologies. There, we will also show
how the performance changes for different congestion windows.

The collection process of a single event Figure 4.6 shows the IO
behaviour of traffic shaping and static TCP configuration when col-
lecting a single event. These data were generated from packet dumps
on a DCM. In case of both schemes the last response with data from
ROS arrives at the DCM at almost the same time (17ms). There is a
major difference when comparing traffic in the opposite direction, from
DCM to ROS. With static TCP, the DCM sends requests for all event
fragments at once (see higher slope in the beginning in Figure 4.6b),
whereas with traffic shaping the requests are distributed in time depend-
ing on the instantaneously available credits. This can have significant
implications on the switch buffers depending on their architecture and
configuration, as the traffic is not restricted on a single ROS to DCM
flow. In our setup the ROS racks are connected to different blades of the
core router (Figure 1.5) with independent virtual queues (VOQs). The
instantaneous size of a single VOQ is stable over the time with lower
maximum in case of static configuration (Figure 4.7). We can explain
that by the fact that a particular ROS node responds with a burst of
event data for a single request, if traffic shaping is used. Static TCP

3 The send window is usually given as the number of maximum-sized packets (MSS).

4.5 example solutions for tcp incast 59

0 5 10 15 20

Time [ms]

0

500

1000

1500

2000

C
um

ul
at

iv
e

by
te

s
[k

B
]

Ev
en

tc
om

pl
et

e

ATLAS TDAQ

Traffic shaping
Static TCP

(a) ROS to DCM

0 5 10 15 20

Time [ms]

0

10

20

30

40

50

60

C
um

ul
at

iv
e

by
te

s
[k

B
]

Ev
en

tc
om

pl
et

e

ATLAS TDAQ

Traffic shaping
Static TCP

(b) DCM to ROS

Figure 4.6: IO graphs for the data collection process of a single event. The last
ROS response (a) arrives after 16.766ms for static cwnd of two
packets and after 16.84ms for traffic shaping (396 credits quota).

limits that on each ROS to DCM flow, but they are all transporting
data simultaneously, so the load is spread evenly across VOQs.
The total number of bytes sent from DCM to ROS (Figure 4.6b) is

20 kB higher for the static configuration due to the increased number
of TCP ACK packets. With cwnd of two packets an ACK is sent for
every second packet coming from ROS. With the traffic shaping ap-
proach their rate is lower, especially if TCP segmentation offloads are
enabled on the DCM side. This effect has minor impact on the overall
performance, since the main data flow is in the other direction. Another
observation is the fact that DCM keeps sending TCP ACKs for another
1.3ms after having received the last DCM response. This is true only
for static TCP. In the next paragraph we will see that this will be the
cause for slightly increased mean latency of data collection seen by the
application layer.

Performance of a single DCM The distribution of event collection
latency is presented in Figure 4.8. Event rate is kept constant at 50Hz,
which keeps the 1Gbps link from ToR switch to DCM close to satu-
ration. It appears that static TCP mitigates incast as well as traffic
shaping. There are no TCP timeouts in both cases. The mean latency
is slightly higher for static configuration, which is contrary to the time
it takes to collect a single event (Figure 4.6) as seen from a TCP dump.
The explanation lies in the fact that the mean latency in Figure 4.8
is observed by the application layer DAQ software. The increase is
therefore caused by an additional overhead of handling all ROS con-
nections in parallel. It is also visible in the increased TCP ACK traffic
in Figure 4.6b for the static TCP after having received the last data

4.5 example solutions for tcp incast 60

0 10 20 30 40 50 60

Time [s]

0

5

10

15

20

25

30

35

V
O

Q
si

ze
[k

B
]

ATLAS TDAQ
Traffic shaping
Static TCP

Figure 4.7: Maximum VOQ size of three different blades during event data
collection. One blade, which connects more ROS racks, experiences
higher load.

0% 20% 40% 60% 80% 100%

Percentile

1

10

100

1000

D
at

a
co

lle
ct

io
n

la
te

nc
y

l[
m

s]

ATLAS TDAQ

Traffic shaping
396 credits quota
Static TCP
2 packets cwnd
Serialisation delay

Algorithm lm [ms] σl [ms] Gsust

Traffic shaping 17.5 1.19 81%
Static TCP 18.5 1.11 81%

Figure 4.8: Event data collection latency with one data collector. Offered load
is 83%. Static TCP and traffic shaping eliminate TCP timeouts
with the former having slightly higher latency.

response from ROS. The difference in mean latency is minor and does
not significantly affect the entire system’s performance.

4.5.2.2 DIATCP

Deadline and Incast Aware TCP (DIATCP) is a TCP variant proposed
for datacenters [73]. From variants proposed in the literature we chose
DIATCP for evaluation in DAQ networks. The decision was dictated
by the availability of the code, the fact no changes are required to the
networking hardware, and straightforward integration with the ATLAS
DAQ software.

algorithm DIATCP is deployed only at the aggregator (the DCM
in our case). In DIATCP, the peers’ (ROS) sending rates are controlled
to avoid incast and application deadlines. For a detailed description re-

4.5 example solutions for tcp incast 61

fer to [73]. In the DAQ world the events must be delivered reliably with
minimum delay for the duration of the experiment. There is no concept
of strict deadlines, so we only analyse DIATCP’s incast-avoidance fea-
ture.
In contrast to the static cwnd, where the congestion window of the

sender is used to control the packets injected into a network, DIATCP
utilises the advertisement field in the TCP ACKs to allocate a specific
window size to each ROS peer. It is the awnd (see Section 4.5.2) that
is controlled by DIATCP and the condition defined by equation (4.5)
takes the following form:

BDP ≤
NR∑
i=1

ND∑
j=1

awndij < BDP +Qbottleneck , (4.6)

where awndij is the advertised window to the ROS on the i-th ROS to
j-th data collector flow. We have the knowledge of all incoming flows
at the aggregator, so we can jointly regulate their advertised windows,
as opposed to controlling cwnd (single ROS peer maintains a single
connection to a particular DCM). The sum of all the advertised window
sizes at the j-th DCM is DIATCP’s global window as defined in [73]:

gwndj =
NROS∑
i=1

awndij .

With the same global window at each DCM, gwndj = gwnd, the con-
dition defined by equation (4.6) becomes

BDP ≤
NR∑
i=1

ND∑
j=1

awndij < BDP +Qbottleneck

BDP ≤
ND∑
j=1

NR∑
i=1

awndij < BDP +Qbottleneck

BDP ≤
ND∑
j=1

gwndj < BDP +Qbottleneck

BDP ≤
ND∑
j=1

gwnd < BDP +Qbottleneck

BDP ≤ ND gwnd < BDP +Qbottleneck .

Hwang, Yoo, and Choi in [73] gave guidance on tuning gwnd depend-
ing on the network’s RTT. We limit ourselves for gwnd fulfilling the
requirement given by equation (4.6) and being comparable with cwnd
and traffic shaping quota in terms of total in-flight bytes in the network.
One can see analogy between traffic shaping and DIATCP. The global

window resembles the credits quota assigned to a DCM. The first one
is calculated in packets, whereas the second is calculated in event frag-
ment units. We can therefore treat DIATCP as traffic shaping imple-
mented at the transport layer.

4.5 example solutions for tcp incast 62

20xR 20xR 20xR 20xR 20xR 20xR 20xR 20xR DCM

Emulated DAQ system

Software router

Nin = 8 Nout = 1

HLTSV

10Gbps 1Gbps 1Gbps

Data flow

Figure 4.9: Setup for evaluation of DIATCP. 160 readout nodes are emulated
on four nodes (eight virtual machines) with twelve 1.1 kB event
data fragments on each.

evaluation setup DIATCP cannot be implemented in the form
of a TCP congestion control module, as the static TCP variant. It
requires changes to the TCP stack in the receiving path and, as a re-
sult, kernel recompilation. For this reason, it could not be deployed in
the ATLAS DAQ system, which we used in the previous evaluations.
Instead, we use an experimental testbed, see Figure 4.9. It consists
of 160 ROS applications emulated on four server class PCs equipped
with dual-port Intel 82599 10Gbps Ethernet controllers. Each of them
hosts two virtual machines. Thus, a single 10Gbps link is shared by 20
readout applications. There is also a separate node running one data
collector with 1Gbps controller. Each ROS and DCM is connected via
a server that is equipped with the same Intel adapters. It is configured
as a software router using the Linux IP forwarding capabilities. With
the help of different Linux queueing parameters, it is possible to em-
ulate the behaviour of a real DAQ network. Each ROS application is
configured with twelve event fragments of 1.1 kB. Using equation (A.7),
the theoretical bandwidth is

Binout = min (NRnRb,NHnHb)

= min (8 · 1 · 10Gbps, 1 · 1 · 1Gbps)
= 1Gbps .

which can be used in equation (A.12) to calculate a theoretical goodput
of Gtheory = 943.4Mbps. The offered event rate is kept at 40Hz, which
for this configuration is 72% of the theoretical maximum. This value
was chosen in order to focus on the performance of the collection process
of a single event, with the offered load just below saturation to avoid
potential limitations of the testbed.

The collection process of a single event The IO graphs in Figure 4.10
indicate comparable latencies for DIATCP and traffic shaping. Static

4.5 example solutions for tcp incast 63

0 5 10 15 20

Time [ms]

0

500

1000

1500

2000

2500

C
um

ul
at

iv
e

by
te

s
[k

B
]

Traffic shaping
Static TCP
DIATCP

(a) ROS to DCM

0 5 10 15 20

Time [ms]

0

10

20

30

40

50

60

70

80

C
um

ul
at

iv
e

by
te

s
[k

B
]

Traffic shaping
Static TCP
DIATCP

(b) DCM to ROS

Figure 4.10: IO graphs for the data collection process of a single event. The
last ROS response (a) arrives after 18.94ms in case of DIATCP
with gwnd of 160 packets, 22.19ms for static cwnd of two packets
and after 18.48ms for traffic shaping (421 credits quota).

TCP performs measurably worse with the last ROS response arriving
3ms later.

We believe this is because of the use of a server-based router instead
of a real switch: the traffic is spread among different Ethernet cards
and CPU sockets on the server. The BDP of this network (0.5ms RTT)
is already exceeded with a cwnd of two packets, but the complexity of
this configuration has more implications on the results when serving
all TCP flows in parallel compared to a standard router.
On the other hand, higher TCP traffic in the direction to ROS with

DIATCP (Figure 4.10b) is caused by frequent TCP advertised window
(awnd) updates.

Performance of a single DCM Figure 4.11 confirms that DIATCP
can be also a valid candidate for DAQ. TCP timeouts are gone from the
system in case of all three solutions. The mean latencies of DIATCP,
static TCP and traffic shaping are comparable.

4.5.2.3 DCTCP

The well-known Data Center TCP (DCTCP) protocol is considered
the state of the art TCP flavour for low-latency datacenter networks.
It leverages the Explicit Congestion Notification (ECN) mechanism to
keep the queues small while maintaining high throughput. The ECN
support is required in the network switches though. Because of the lack
of such devices, we rely on the conclusions provided by Alizadeh et al. in
[6]. Although DCTCP provides comparable latencies as deep buffered
switches under incast congestion and ensures good performance for typ-
ical traffic patterns in datacenters, it fails to avoid incast if there are so

4.5 example solutions for tcp incast 64

0% 20% 40% 60% 80% 100%

Percentile

1

10

100

1000

D
at

a
co

lle
ct

io
n

la
te

nc
y

l[
m

s]

Default SLC6 TCP
Traffic shaping
421 credits quota
Static TCP
2 packets cwnd
DIATCP
320 packets gwnd
Serialisation delay

Algorithm lm [ms] σl [ms] Gsust

Default SLC6 106.5 114.20 16.3%
Traffic shaping 20.2 1.67 70.5%
Static TCP 21.4 1.61 70.5%
DIATCP 20.5 1.03 70.5%

Figure 4.11: Event data collection latency with one data collector. Offered
load is 83%. Static TCP and traffic shaping eliminate TCP time-
outs with the former having slightly higher latency.

many senders that the packets sent in the first RTT overflow the buffers.
This situation is not uncommon for high-bandwidth low-latency DAQ
networks like the one of the ATLAS DAQ/HLT system. For this rea-
son, DCTCP can be regarded as a potential solution for DAQ networks,
but within this limitation. Similar observation can be made for static
TCP configuration, where the congestion window cannot be decreased
below one packet per TCP flow. In case of DIATCP or traffic shaping,
which we evaluated in the previous sections, this limitation is overcome
by the receiver-side congestion control. The receivers can temporarily
suspend the traffic on some or most of TCP flows depending on the
quotas assigned to them. These quotas are assigned a priori, so the
network is not overflown in the first RTT. This approach can fail first
when just a single packet towards each single data collector in the entire
farm is enough to overload the network. Furthermore, DCTCP remains
dependent on the active queue management schemes offered by switch
vendors.

4.5.3 Link layer solutions

As we described in Section 2.2.2, Ethernet standards provide now some
mechanisms that can provide lossless operation, thus eliminating incast
congestion, even across multiple hops. It has been shown in the litera-
ture that although they improve the performance and eliminate packet
losses, highest throughput is difficult to achieve. We came to similar
conclusions while evaluating the basic Ethernet flow control mecha-
nism — IEEE 802.3x pause frame. If the packet buffer of a network
node starts to fill up, it can send a pause frame to the neighbouring
node to temporarily stop all traffic.

4.5 example solutions for tcp incast 65

R/H R/H R/H R/H R/H R/H

R/H R/H R/H R/H R/H R/H

Emulated DAQ system

Switch under test

Nin = 12 Nout = 12

HLTSV

Data flow10Gbps

1Gbps

Figure 4.12: Setup for evaluation of the Ethernet pause frame mechanism
(IEEE 802.3x). Twelve ROS nodes and twelve filtering racks are
emulated on the same hosts. Each emulated rack contains twelve
independent data collectors. A separate network is used for com-
munication with the HLT supervisor (1GbE).

evaluation setup We use a simple setup with twelve nodes host-
ing both readout and data collector applications. This is a testbed setup,
because pause frames were not supported on the real ATLAS hardware.
Each of the nodes is connected with a single 10Gbps link to the DAQ
network that is built with a single ToR switch. Two different models,
which we call ToR_A and ToR_B, are used and both of them support
Ethernet pause frames. The setup is depicted in Figure 4.12. On a sin-
gle node there is one readout application and twelve data collectors,
which emulate an HLT rack. Each readout node provides 128KiB of
dummy data for a single event, so the total event size is 1.5MiB, but
only eleven fragments traverse the physical network links, because of
sharing the nodes between ROSes and DCMs. Using equation (A.7),
the theoretical bandwidth is

Binout = min (NRnRb,NHnHb)

= min (12 · 1 · 10Gbps, 12 · 1 · 10Gbps)
= 120Gbps ,

which can be used in equation (A.12) to calculate a theoretical goodput
of Gtheory = 113.9Gbps.

evaluation results The results of this evaluation are presented
in Figure 4.13. The following configurations are tested:

1. ToR_A+TCP_cubic: ToR switch A with TCP cubic congestion
control.

2. ToR_B+TCP_cubic: ToR switch B with TCP cubic congestion
control.

3. ToR_A+Pause-CC: ToR switch A with pause frames. TCP con-
gestion control disabled.

4.5 example solutions for tcp incast 66

4. ToR_B+Pause-CC: ToR switch B with pause frames. TCP cubic
congestion control disabled.

The ToR switches with the default TCP Cubic congestion control al-
gorithm reach less than 20% of the theoretical goodput. We do not
provide results without congestion control in this case because the sys-
tem became unstable4.

TCP timeouts are clearly visible in the latency distribution in Fig-
ure 4.13b and 4.13c with substantial numbers of event collection laten-
cies exceeding 200ms. Enabling Ethernet pause frames (and disabling
TCP congestion control again) significantly improves performance, but
they still reach only 64% and 85%. We see timeouts are avoided and
jitter is small, but the latencies are high. We will later look at the per-
formance of an OVS-based switch using the same evaluation setup in
Section 5.6.1.
This evaluation with just a single switch already proves some limi-

tations of the IEEE 802.3x pause frame mechanism. Although packet
losses are avoided and jitter is minimised, the full theoretical bandwidth
remains unreachable. Furthermore, the results on different switches
vary, which suggests that performance is dependent on the vendor im-
plementations. These limitations can have even greater implications for
larger DAQ configurations due to head-of-line blocking, which has been
already demonstrated in other works as we indicated in Section 2.2.2.

4.5.4 Comparison

In this section we provide results for a different configuration and com-
pare the evaluated solutions from three different layers:

1. The application layer — traffic shaping,

2. The transport layer — static TCP configuration,

3. The link layer — pause frames.

Because of the more complex implementation of DIATCP and the fact
that the algorithm is analogous to traffic shaping, we did not include
it in this comparison.

evaluation setup A larger, experimental testbed with twelve
readout nodes and a rack of 30 data collectors is used to emulate a
subset of a real DAQ system. Each ROS is connected with a single
10Gbps link to the DAQ network that is built with two ToR switches.
The setup is depicted in Figure 4.14. Each readout node provides 24 kB
of dummy data for a single event, so the total event size is 288 kB.
Here, in order to better emulate a real DAQ system, we configure each

4 The data collection latency exceeded the default timeouts configured in the DCMs,
so collection processes were being aborted.

4.5 example solutions for tcp incast 67

20% 40% 60% 80% 100%

Offered load Go f f

0%

20%

40%

60%

80%

100%
Su

st
ai

en
d

lo
ad

G
su

st
ToR A+TCP cubic
ToR B+TCP cubic
ToR A+Pause-CC
ToR B+Pause-CC

(a)

40% 80%
1

10

100

1000

D
at

a
co

lle
ct

io
n

la
te

nc
y

l[
m

s]

To
R

A
+T

C
P

cu
bi

c

40% 80%

To
R

A
+P

au
se

-C
C

40% 80%

To
R

B
+T

C
P

cu
bi

c

40% 80%

To
R

B
+P

au
se

-C
C

10th percentile Median 99th percentile

Offered load Go f f

(b)

0% 40% 80%
1

10

100

1000

D
at

a
co

lle
ct

io
n

la
te

nc
y

l[
m

s] Go f f = 10%

0% 40% 80%

Go f f = 70%

0% 40% 80%

Go f f = 99%

Percentile

(c)

Configuration Goff lm [ms] σl [ms]

ToR_A+TCP_cubic 10% 46.3 114.5
70% 49.1 119.6
99% 48.5 119.5

ToR_A+Pause-CC 10% 2.4 0.99
70% 22.1 2.2
99% 22.3 2.3

ToR_B+TCP_cubic 10% 14.8 57.8
70% 16.0 61.6
99% 16.0 62.1

ToR_B+Pause-CC 10% 1.6 0.7
70% 14.5 1.8
99% 16.6 1.7

Figure 4.13: Evaluation results of the Ethernet IEEE 802.3x pause frame mechanism with the
simple test setup from Figure 4.12. Sustained load (a) and event data collection
latency (b) as a function of the offered load, and the exact distributions of latency
for three different cases (c).

data collector node with twelve processing units (see Section 3.5.1),
which request independent events in parallel. Using equation (A.7), the
theoretical bandwidth is

Binout = min (NRnRb,NHnHb)

= min (12 · 1 · 10Gbps, 1 · 1 · 10Gbps)
= 10Gbps .

which can be used in equation (A.12) to calculate a theoretical goodput
of Gtheory = 9.47Gbps. Event rate remains unlimited, except for the
load tests. Before we move on to the comparison, we will first tune
both the traffic shaping algorithm and static TCP congestion window
to find their optimum configurations.

4.5 example solutions for tcp incast 68

Emulated ROS
(12 nodes)

HLT rack
(30 nodes)

HLTSV

10Gbps

10Gbps

1Gbps

1Gbps

Figure 4.14: Test setup with 30 data collectors and up to 12 ROS nodes with
24 event data fragments on each.

10 100 1000 10000

Traffic shaping credits

0

2

4

6

8

10

G
oo

dp
ut

G
[G

bp
s]

Theoretical maximum

(a)

10 100 1000 10000

Traffic shaping credits

10

100

1000

D
at

a
co

lle
ct

io
n

la
te

nc
y

l[
m

s]

10th percentile
Median
99th percentile

(b)

Figure 4.15: Goodput (a) and data collection time (b) when tuning traffic
shaping credits for the setup depicted in Figure 4.14.

traffic shaping tuning Figure 4.15 shows that the traffic
shaping algorithm performs best below a 100 credits quota. Both good-
put and data collection latency are optimum with the former achieving
the theoretical maximum. Although the median latency decreases at
first above 100 credits, the 99-th percentile approaches 1000ms, indi-
cating TCP timeouts and packet losses. The sustained load is thus
lower, so those events that are not penalised by losses can be collected
faster. For even larger quotas, every single data collection process suf-
fers from at least one TCP timeout. We will use quota of 100 for the
comparison with other technologies.

4.5 example solutions for tcp incast 69

1 10 100 1000 10000

Congestion window [packets]

0

2

4

6

8

10

G
oo

dp
ut

G
[G

bp
s]

Theoretical maximum

TotalR
O

S
response

size

(a)

1 10 100 1000 10000

Congestion window [packets]

10

100

1000

D
at

a
co

lle
ct

io
n

la
te

nc
y

l[
m

s]

10th percentile
Median
99th percentile

(b)

Figure 4.16: Goodput (a) and data collection time (b) when tuning TCP con-
gestion window cwnd for the setup depicted in Figure 4.14.

static tcp tuning Analogous tuning is performed for the static
congestion window cwnd. The results are presented in Figure 4.16. The
maximum theoretical goodput is achieved with congestion windows less
than ten, but the data collection latency is optimum for the values
between three and seven. If cwnd is two, the network remains under-
utilised, operating below its BDP. For the values between eight and ten,
similarly as with traffic shaping, packet drops start to occur, so the over-
all load is lower and some events can be actually collected with lower
latency. For even larger congestion windows, all events are collected
with significantly larger latencies because of numerous TCP timeouts.
We will continue to use cwnd = 7 for the following comparison.

results Detailed comparison of traffic shaping, static TCP config-
uration, and pause frames is presented in Figure 4.17. As can be seen
from Figure 4.17a, all three approaches sustain the requested load in
the entire range, up to 100%. Different from the performance with the
previous testbed, see Section 4.5.3, Ethernet pause frame mechanism
is also capable of providing full performance. In our previous pause
frame tests, it was not. The difference now is that the current evalua-
tion setup is less demanding than it was in Figure 4.12, where all-to-all
incast congestion with twelve 10Gbps ports was invoked. In the current
setup, twelve-to-one overcommitment at 10Gbps occurs at the switch
connecting ROS nodes and additional congestion can appear at the
switch connecting data collectors with 1Gbps links to the ROS switch
over the 10Gbps uplink.
But signs of worse capabilities of the pause frame mechanism are

visible in the latency characteristics (Figure 4.17b and 4.17c.) Data col-
lection latency and jitter are substantially higher than in case of traffic
shaping and static TCP. Thanks to the large number of independent

4.6 conclusion 70

processing units in data collectors, full goodput can be achieved despite
the higher latency.
Traffic shaping and static TCP achieve the same performance in

terms of goodput and latency. Interestingly, data collection time does
not increase with the load as expected (see Section 3.3). On the con-
trary, it decreases slightly. The reason is that both algorithms are tuned
for the 1Gbps links, so the bandwidth in the 10Gbps uplink to the ROS
nodes can be shared fairly across multiple data collectors. Furthermore,
there are twelve independent processing units on each collector. For
lower loads it can happen that the HLTSV assigns most of the events
to the processing units on the same collector. This results in higher
data collection latency because those units share the same 1Gbps link
to the network. For higher loads, there is a higher probability that the
load is better spread across available collectors.
The results confirm again that all three approaches have means to

improve the performance under incast congestion. Particularly, traffic
shaping and static TCP offer full goodput and low latency. The pause
frame mechanism, although achieving theoretical goodput, experiences
higher latency and jitter.

4.5.5 Summary

Even a simple static configuration of TCP congestion control, which
does not require any additional programming overhead, can already ef-
fectively improve the performance under incast congestion. Advanced
TCP incast avoidance algorithms proposed for datacenter can be also
successfully applied in DAQ networks, which we demonstrated on the
example of DIATCP. These, however, require at least Linux kernel re-
compilation and often modifications to the networking hardware. If
used, they can save the programming effort of implementing applica-
tion layer solutions. Software traffic shaping obtains results that match
or exceed the alternative proposals, but it is specific to the ATLAS
DAQ and not transparently transferable to other environments. On
the other hand, the pause frame mechanism guarantees lossless opera-
tion even in complex environments, but at the cost of higher latency
and, in some configurations, lower sustained load.

4.6 conclusion

Using the example of the TCP/IP-based ATLAS DAQ network we
showed the consequences of many-to-one congestion. The throughput
of a system can be seriously limited, even to a few percent of the avail-
able bandwidth, if the network does not provide enough capacity to
accommodate many-to-one data bursts. It is therefore important to
understand the problem and provide solutions for many-to-one com-
munication patterns.

4.6 conclusion 71

20% 40% 60% 80% 100%

Offered load Go f f

0%

20%

40%

60%

80%

100%
Su

st
ai

en
d

lo
ad

G
su

st
Traffic shaping
Static TCP
Pause frames

(a)

40% 80%
1

10

100

D
at

a
co

lle
ct

io
n

la
te

nc
y

l[
m

s]

Tr
af

fic
sh

ap
in

g

40% 80%

St
at

ic
T

C
P

40% 80%

Pa
us

e
fr

am
es

10th percentile Median 99th percentile

Offered load Go f f

(b)

0% 40% 80%
1

10

100

D
at

a
co

lle
ct

io
n

la
te

nc
y

l[
m

s] Go f f = 10%

0% 40% 80%

Go f f = 70%

0% 40% 80%

Go f f = 99%

Percentile

(c)

Configuration Goff lm [ms] σl [ms]

Traffic shaping 10% 3.1 0.53
70% 2.5 0.13
99% 2.6 0.28

Static TCP 10% 3.3 0.41
70% 2.6 0.29
99% 2.6 0.35

Pause frames 10% 2.8 0.47
70% 7.6 1.73
99% 85.5 6.08

Figure 4.17: Comparison of application-layer traffic shaping, static TCP congestion window, and
Ethernet IEEE 802.3x pause frame mechanism in the configuration from Figure 4.14.
Sustained load (a) and event data collection latency (b) in function of the offered
load, and the exact distributions of latency for three different cases (c).

Our original contribution is the identification of the analogous prob-
lem in datacenter networks, where it is referred to as TCP incast pathol-
ogy. On one hand, solutions provided for one can be also tested in the
other. But the key characteristics of DAQ networks allow for some sim-
plifications that make it easier to pursue a different strategy. This is
the case with software switches, which will be discussed in Chapter 5.
Nevertheless, many proposals for incast congestion in datacenters can

be effective also in DAQ. Most of them focus on limiting the packet in-
jection rate into the network. We evaluated some example solutions, at
the different protocol layers, and proved that they can be applied in
data acquisition, for some configurations at least. We also showed that
a similar effect can be achieved with a simple TCP static congestion
window. All these approaches, including the ATLAS traffic shaping al-
gorithm, are most effective in avoiding incast congestion in the last hop
of a network. Congestion control becomes more complex in the network

4.6 conclusion 72

core, where flows towards hundreds of DCMs overlap. But even with an
effective algorithm, more event data have to be eventually buffered at
ROS, which prevents from using simple devices in the readout system.

5
EXTENDING BUFFERS WITH SOFTWARE
SWITCHES

In this chapter the core contribution of this thesis is discussed. We evaluate
whether incast congestion in DAQ networks can be avoided by using software
switches with large packet buffers in the main memory of a server-class com-
puter. We show that potential bottlenecks, that are normally identified for this
approach, have less significance in DAQ networks. Next, we present the design
and evaluation of a prototype software switch that can be configured to guar-
antee lossless operation under heavy incast congestion. In the end, we show
that software switching can be also used in production systems already and
provide good performance. We extend a popular virtual switch, Open vSwitch,
with a mechanism allowing programmable buffering of incast-sensitive flows
in large, dedicated queues. This chapter contains results published in [88, 89].

5.1 introduction

In the previous chapter we showed general avenues to approach the
incast congestion problem. Many solutions exist that can significantly
delay the onset of incast or even completely avoid it, but at the cost of
lower saturation load, like in case of the pause frame mechanism. Most
of the proposals focus on controlling the amount of packets that are
simultaneously sent over a network. There are two main drawbacks of
this approach. Firstly, complexity increases with the size of the network,
link speeds, and the number of parallel data collection processes. Sec-
ondly, data that are deferred from transmission over a network have to
be buffered on the sending nodes — the readout system in DAQ. This
implies higher complexity of the readout nodes and prevents the use of
simple push architectures.
An alternative way to solve the problem is to use large-enough packet

buffers, see Section 4.4.3. Unfortunately, this approach is claimed to be
costly. Network switches with large memories are rare and expensive,
so even more expensive telecom-class routers are sometimes the only
choice. In our work we intend to fill this gap by proposing software
switching that can provide cheaper and extensible buffers in the DRAM
memory of COTS servers. Buffering capabilities would be then limited
only by the amount of DRAM memory that can fit into a single server.
Nowadays, this amount is counted in terabytes. Furthermore, the use

73

5.2 software packet processing 74

of software for control makes it easy to adapt the switch to a target
application, so it can be tuned in order to improve the performance.
The performance of software switches has traditionally stood in the

way of following this strategy. But the situation has changed, which we
showed when presenting the evolution of software switches and their
performance as well as the key advances in modern computer architec-
tures over the recent years in Section 2.3. It has now become possible
to process hundreds of gigabits of packets on commodity servers, which
removes the barrier of performance of software switches for incast avoid-
ance in high-speed data acquisition networks.
This chapter is structured as follows. Section 5.2 gives an overview of

packet processing in software with the focus on theoretical performance
and potential limitations. This discussion is put into context of data
acquisition in Section 5.3, where we also describe our evaluation setup.
We present our design and evaluation of the lossless software switch for
data acquisition in Section 5.4. Then, in Section 5.5, we analyse whether
the same goal can be achieved by adapting the popular virtual switch
— Open vSwitch (OVS). In the end, we compare the performance with
traditional switches and discuss some other aspects in Section 5.6. We
conclude this chapter in Section 5.7.

5.2 software packet processing

As we demonstrated in Section 2.3, history is coming full circle. Switches
and routers are being implemented in software running on commodity
PCs again and can provide good enough performance. This trend has
risen from the popularity of virtualised environments used in datacen-
ters, in which software switches provide connectivity between virtual
machines running on the same host and to the outside world as well
[51]. But it is not only switching and routing that have become popular
network functionalities being implemented in software. Various network
appliances, like proxies, firewalls, or load balancers, are now often re-
placed by their software-based counterparts. This whole new trend is
called Network Functions Virtualisation (NFV) and means implement-
ing a generalised component of a network in software [66].
The main advantage of packet processing in software is high flexibility.

Modules can be combined according to user’s needs without paying for
unnecessary features. Furthermore, free and open source projects can be
used and optimised for a given application. It is even more compelling
for data acquisition. Not only the flexibility of the design in software
could improve the performance, but, above all, buffering capabilities
could become highly scalable, when using the DRAM memory of a
commodity server instead of expensive high-end switches and routers.

5.2 software packet processing 75

5.2.1 Theoretical performance

Thanks to the architecture of modern computers and progress in the
speeds of buses, it is now possible to consider software switches as a
replacement for typical hardware devices. Discussions on key techno-
logical advances are available in the references provided in Section 2.3.
A high-level diagram of one of the modern server platforms that we

will later use to build a prototype of a software switch is presented in
Figure 5.1. It consists of two Intel Xeon EP-2600 processors with in-
tegrated memory controller (IMC) and integrated I/O (IIO) controller
for PCIe and DMI (Direct Media Interface) [78]. The CPUs are con-
nected over two QPI links. Each CPU offers 40 PCIe 3.0 lanes, which
can be used to connect multiple NICs providing Ethernet ports (up to
100GbE interfaces) to build a switch. Each lane offers 8.0GT/s (giga-
transfers per second1). The total bandwidth that is offered over the
PCIe interfaces is therefore

BPCIe = 2 · 40 · 8.0GT/s · 128/130 bit/symbol = 630.2Gbps

independently in each direction (128/130 encoding). NICs use PCIe
and Direct Memory Access (DMA) to move the received packets and
pull those be transmitted to/from the main memory. The DMA engine
allows those operations to be performed without the involvement of the
CPU. The maximum data rate of a single channel to the memory is set
by the limits of the Double Data Rate type three (DDR3) DRAM. This
platform supports modules up to DDR3-1600, which offers 1600MT/s.
Thus, the total theoretical bandwidth to or from the memory for a
platform with two CPUs and four channels each (a single channel is 64
bits wide) is

Bmem = 2 · 4 · 64 bit/symbol · 1600.0MT/s = 819.2Gbps

The last bandwidth-limiting bus is the QPI interconnecting CPUs. If
a NIC is connected with PCIe lanes of one CPU and has to access
packets residing in the memory of the other CPU, QPI bus is used. It
offers 8.0GT/s data rate, which for the bus width of 16 data bits and
two QPI links results in the total bandwidth (independently in each
direction) of

BQPI = 2 · 16 bit/symbol · 8.0GT/s = 256Gbps .

Platform Controller Hub (PCH) is a next generation chipset, connected
over DMI with the CPU. It provides centralised platform capabilities,
like the main I/O interfaces, display connectivity, storage features or
power management [85].

1 Transfers per second is the number of operations transferring data per second in
some channel.

5.2 software packet processing 76

Intel Xeon
E5-2400/2600
processor series

Intel Xeon
E5-2400/2600
processor series

2 QPI
links

8GT/s

4 memory channels
up to DDR3-1600

4 memory channels
up to DDR3-1600

PCIe 3.0
40 lanes

PCIe 3.0
40 lanes

PCH

Other interfaces

DMI

Figure 5.1: Block diagram of one of Intel’s platforms (code name Romley) for
the Intel E5-2600 processor series.

The data rates provided by the buses of just a single presented plat-
form suffice, bandwidth-wise, the requirements of the ATLAS exper-
iment in Run 2 (approximately 400Gbps, see Section 3.5.1). This is
a good premise to consider a solution based on software switches for
future data acquisition networks. Even 384GB of DRAM memory can
be installed for each CPU [83], most of which can serve as a packet
buffer. Furthermore, the capabilities of COTS server platforms con-
tinuously evolve and, thus, it is highly probable that they will keep
providing enough I/O performance for new or subsequent generations
of the experiments. For example, with DDR4 DRAMs supported in the
last two generations of Intel Xeon processors (code names Haswell and
Broadwell) the memory bandwidth increases up to 544Gbps for a sin-
gle CPU (with maximum memory size of 1.5TB), so an aggregate for
a dual-CPU platform exceeds 1Tbps [83].

5.2.2 Potential bottlenecks

Although the data rates offered by the components of modern plat-
forms seem enough to build an Ethernet switch with a bandwidth of
several hundreds of gigabits, it is important to understand potential
bottlenecks in this application. In case of Ethernet, one must take into
account that data is chunked into Ethernet frames, each of which can
carry typically between 46B to 1500B of payload (basic frames) [76]2.
This means that data flow into and from the memory not as a continu-
ous byte-stream, but as a stream of packets representing separate trans-
actions (if there are no optimisations like processing packets in bunches)
with certain latency. Each of the packets has to be also processed by
the software switch independently spending a certain amount of CPU
cycles. Thus, in order to take advantage of the available bandwidths

2 An exception are the so called Jumbo frames, which are longer (typically 9 kB) than
the maximum frame length set by the Ethernet standard [150]. In this work we focus
on the lengths allowed by the standard.

5.2 software packet processing 77

0 200 400 600 800 1000 1200 1400 1600

Frame size [bytes]

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

M
ax

.p
ro

ce
ss

in
g

la
te

nc
y

[u
s]

Figure 5.2: Maximum packet processing latency to saturate a 10Gbps link as
a function of the Ethernet frame size (assuming serial processing).

from the previous section, per-packet latency has to be considered. This
is why the performance of software switches is normally evaluated in
terms of packets per second (pps) and not in gigabits per second.

Figure 5.2 is a simple illustration of this fact. It shows what is the
maximum per packet processing latency, so that it is still possible to
saturate a single 10Gbps link. A serial, packet-by-packet processing is
assumed. An obvious conclusion is that it is easier to saturate network
links with large packets. Large packets are more frequent in data acqui-
sition than small ones, as we explained in Chapter 3. Typical bottle-
necks of software packet processing are therefore less critical and there
is more headroom to build a software switch using the available I/O
bandwidth of modern platforms. Furthermore, the capabilities of mod-
ern server platforms to perform packet processing have been already
proved and thoroughly analysed in the literature (see Section 2.3). For
these reasons, as we noted already in Section 3.5, we conduct evalua-
tions in this thesis, including software switching, using large packets.
We focus our attention on key aspects from the viewpoint of data ac-
quisition, i. e. the application of software switches to avoid incast con-
gestion in large DAQ networks. Nevertheless, we still discuss some of
the aspects that could potentially limit the performance of software
switches in this context. Our analysis includes the dependencies on the
number of the available CPU cores and their frequency in order to re-
duce power consumption, see Section 5.6.2. We also check the influence
of the number of receive queues used by the NICs in Section 5.5.4. Since
we propose using all available PCIe slots of a platform across all CPUs,
we check whether there are any bottlenecks when using the QPI bus
between the processors in Section 5.4.2.1.
In order to avoid the well-known bottlenecks, we follow the recom-

mendations provided by a given packet processing framework (in our
case DPDK [80], see the next section for more details). This especially
concerns NUMA-aware (Non-Uniform Memory Access) object alloca-

5.2 software packet processing 78

tion in memory and use of huge page tables. The packet send and
receive operations are performed by multiple CPU cores on different
NUMA nodes. The affinity of the CPU cores is set, where possible, to
match the NUMA-node of the corresponding network interface. The
kernel is also configured to isolate those CPU cores used by the soft-
ware switch (the isolcpus flag) and further reduce the impact of the
kernel with the nohz_full and rcu_nocb_poll flags [92]. The two lat-
ter parameters are used to reduce the periodic timer interrupts on the
CPUs and improve their real-time response. Also, we disable the Hyper-
Threading technology3 in order to avoid any dependencies on sharing
any physical resources by the sibling cores. The size of the receive and
transmit queues on the NICs is set to their maximum allowed values.

5.2.3 The DPDK packet processing framework

A boost to the performance of software switches, routers, and other
network applications has been given by specialised packet processing
frameworks, which we summarised in Section 2.3. The Data Plane De-
velopment Kit (DPDK) [80], Netmap [143], PF_RING [138], or Snabb
Switch [151] are popular frameworks for software-based packet process-
ing on standard x86 servers. The common goal of these frameworks
is to optimise performance, which is achieved by providing their own
drivers and libraries, not relying on the standard network stack of the
kernel. As shown in [52] on the example of DPDK, those modern frame-
works show significant performance improvements when compared to
the default Linux kernel implementations.
In this work, we use the DPDK framework to build a dedicated

software switch for data acquisition. The decision to use DPDK is mo-
tivated by its exhaustive documentation, support for NICs of different
vendors, large community, and a broad set of examples. The sample
forwarding application provided by the framework (L3FWD), in par-
ticular, delivers full forwarding performance without any difficulty and
has become a basis for us to design our own switching application.
DPDK is a set of libraries and optimised NIC drivers that replace

the default Linux network stack. Those drivers are not placed in ker-
nel, but in user-space and allow direct access to the NICs and the
so-called zero-copy packet processing. The libraries provide, among oth-
ers, NUMA-aware memory allocation, lockless first-in-first-out (FIFO)
queues, means for manipulation of packet buffers carrying network data,
timer facilities, and a network library with a collection of convenience
macros and structures for protocol processing (IP, TCP, UDP and
others). They build a complete and simple programming framework
for constructing extremely high-performance packet processing appli-

3 Intel’s Hyper-Threading technology allows a single CPU core to handle two separate
sets of instructions simultaneously. To the operating system, it makes the system
appear as if the number of cores is doubled [147].

5.3 the context of data acquisition 79

cations. Originally, DPDK drivers have operated in polling mode in
order to eliminate the overhead of interrupts. Support for the interrupt
mode was added in DPDK release 2.1.
Zhou et al. in [179] named three critical aspects of the DPDK that

are particularly relevant to the performance of a DPDK-based packet
forwarding application:

1. Memory management: NUMA-aware object allocation in memory
using processor huge page table support in order to reduce TLB
(Translation Lookaside Buffer4) misses. Objects are also aligned
properly, so that access to them is spread across all memory chan-
nels (see Figure 5.1), which is required to take advantage of the
available bandwidth to memory.

2. Polling mode: Polling mode speeds up processing, because the
overhead of interrupt handling is eliminated. The drawback is
the increased CPU consumption, which can interfere with other
tasks on the same machine. In our case, we devote CPU cores
entirely for packet processing, so this is not an issue.

3. Batching: Packets in DPDK are delivered in large batches for
efficiency. With this technique the overhead associated with ac-
cessing NICs (e. g. locks, system calls) occurs once for several
packets and not for each single one [16].

More details on DPDK can be found on the project’s website [80]
and in the literature [16, 110, 179].

5.3 the context of data acquisition

Some aspects of data acquisition simplify the adoption of packet pro-
cessing in software, as already noted in the previous section. The typical
bottlenecks of software switches, in particular, are not critical in the
context of DAQ.
In Section 3.3 we discussed the typical requirements that are put on

data acquisition networks. We continued this discussion in Section 3.4
focusing on throughput versus latency optimisation. We explained that
our attention is not directed towards minimisation of the zero-load net-
work latency. In DAQ, it is important to optimise the network at high
loads, where throughput and latency are correlated. For this reason,
while evaluating software switching, we focus on maximising the sat-
uration goodput and minimising the jitter of data collection time. In
other applications, like in HPC or in datacenters, zero-load latency can
be of high importance, so the overheads of software packet processing
could become relevant.

4 TLB speeds up the page table lookup in the virtual memory system of a computer
operating system by storing the most recent page lookup values in a page table
cache [122].

5.3 the context of data acquisition 80

We discussed in more detail the key analogies and differences between
the typical traffic patterns found in data acquisition and datacenter
networks in Section 4.3. Relatively small network size, the dominance
of large packets, static and well-known traffic pattern are other aspects
that make the typical bottlenecks of software switches less critical in
DAQ.
Furthermore, the fact that the traffic pattern is known in advance

and the configuration of the system usually does not change for long
periods of time brings advantages while considering software switching.
Since queueing is implemented purely in software, it can be optimised
to the given configuration in advance, before the start of an experiment.
Also, the required amount of buffering can be estimated before the start
of the run, so the packet buffers can be easily extended with additional
DRAM memory modules, if required.
In Chapter 6 we will also show how those aspects help in building

and managing a large topology of interconnected software switches to
maximise the throughput, if the configuration and the traffic pattern
are known in advance.

5.3.1 Evaluation setup

All evaluations presented in this chapter are performed using the same
emulated DAQ configuration, unless otherwise stated. The setup, de-
picted in Figure 5.3, is the same as the one used to evaluate the pause
frame mechanism in Section 4.5.3 (see Figure 4.12), but the switch un-
der test is now a COTS server with multiple Ethernet ports running a
DPDK-based switching application.
We use one of the server boards based on the Intel C602 chipset (code

name Romley), S2600GZ [84], with two Intel Xeon EP-2680 eight-core
CPUs, which correspond to two NUMA nodes. We equip the board
with six dual-port 10GbE cards (Intel 82599 Ethernet controller [79])
providing a total bandwidth of 120Gbps. Each of them is connected
over eight PCIe lanes (gen2) directly to the CPUs. There is enough
bandwidth on the PCIe buses to provide bidirectional data transfer at
10Gbps between each port and the memory. The first four ports are con-
nected to the first NUMA node, whereas the latter eight to the second
NUMA node. This four/eight split results from the physical routing of
PCIe lanes on the board. There is also a total of 128GiB DDR3 mem-
ory installed (64GiB per CPU socket). The operating system is 64-bit
Fedora 20, kernel version 3.18.7-100. We configure the system to avoid
the well-known bottlenecks, as described in Section 5.2.2. The architec-
ture details and theoretical performance of the Intel Romley platform
were described in Section 5.2.1.

Since the emulated DAQ configuration has not changed, the theoreti-
cal performance is also the same. With twelve readout nodes providing

5.4 a dedicated software switch for daq networks 81

R/H R/H R/H R/H R/H R/H

R/H R/H R/H R/H R/H R/H

Emulated DAQ system

Switch under test

Nin = 12 Nout = 12

HLTSV

Data flow10Gbps

1Gbps

(a)

Switch under test

Intel Xeon
EP-2680
8 cores
2.7GHz

Intel Xeon
EP-2680
8 cores
2.7GHz

QPI x16
8GT/s

QPI x16
8GT/s

8GiB 8GiB 8GiB8GiB
8GiB 8GiB 8GiB8GiB

D
D
R
3

D
D
R
3

D
D
R
3

D
D
R
3

8 GiB 8GiB 8GiB8GiB
8GiB 8GiB 8GiB8GiB

D
D
R
3

D
D
R
3

D
D
R
3

D
D
R
3

N
IC

Port
2

N
IC

Port
1

Intel82599

N
IC

Port
4

N
IC

Port
3

Intel82599

N
IC

Port
6

N
IC

Port
5

Intel82599

N
IC

Port
8

N
IC

Port
7

Intel82599

N
IC

Port
10

N
IC

Port
9

Intel82599

N
IC

Port
12

N
IC

Port
11

Intel82599

P
C
Ie

x8
gen3

P
C
Ie

x8
gen3

P
C
Ie

x8
gen3

P
C
Ie

x8
gen3

P
C
Ie

x8
gen3

P
C
Ie

x8
gen3

10GbE ports

PCH

Other interfaces

DMI

(b)

Figure 5.3: Test setup (a) for evaluation of software switching. The switch
under test (b) is a COTS server with twelve 10GbE ports running
a switching application (DPDK).

128KiB event fragments, the total event size is 1.5MiB and theoretical
goodput equals to 113.9Gbps.

5.4 a dedicated software switch for daq networks

In order to estimate the performance of software switching in the con-
text of data acquisition we first design, implement and evaluate a ba-
sic switching application in the DPDK framework. In our designs, we
consider different buffering strategies. Traditionally, in typical switches
and routers, they are implemented in hardware and their adjustment
is impractical after the product is released. With software switching,
implementation of those strategies is often easier than in hardware and

5.4 a dedicated software switch for daq networks 82

solely requires changes to the software and re-compilation of the appli-
cation. Therefore, we can evaluate different concepts in buffer designs
and reach back to some ideas from late 1980s analysed by Nagle [115]
or Tamir and Frazier [156] and also from 1997 by Morris [111]. We will
analyse two classical designs and propose a new one that is dedicated
for data acquisition.

5.4.1 Design

The main rationale behind our design of a software switch for data ac-
quisition networks is to eliminate packet drops caused by incast while
maintaining high throughput. Because of the large event size, less ef-
fort can be put into minimising processing time of a single packet. The
DPDK sample application, L3FWD, which is a layer 3 switch5, forms a
basis for us to design our own switching application. We consider three
different queueing strategies, which are depicted in Figure 5.4. Lcore
refers to a logical execution unit of a processor (also called a hardware
thread) [80]. In our case, the Hyper-Threading technology is disabled
(see Section 5.2.2), so there is always a single hardware thread associ-
ated with a single physical CPU core. There is always a single master
lcore, which runs a default thread of our switching application and is
responsible for initialisation of various objects. Other lcores are respon-
sible for polling packet descriptors from NIC receive queues, packet
processing, and/or placing descriptors in transmit queues in order to
send those packets back into the network on an appropriate port.
In typical software switches, as Open vSwitch or DPDK example ap-

plications, packets are dropped when the available transmit queues fill
up. We take a different approach as our goal is to reach lossless opera-
tion. In order to achieve this we use the backpressure mechanism [42].
Whenever an lcore tries to place a packet descriptor in a full transmit
queue, it will keep retrying until it succeeds. In this way, queues preced-
ing the transmit ones (receive queues or any software queues available
in the software switch) have to buffer any excess packets. This back-
pressure moves eventually to the receive queues of the NICs. Thus,
this is the single point where packets can be dropped, if not enough
buffers are provided by all queueing stages. Without the backpressure,
we experienced occasional packet drops on the transmit side, when the
transmit queues filled up because of some fluctuations on the switch
itself or even on the end-nodes (if configured to send pause frames). In
all our designs we set the size of the receive and transmit queues to the
maximum allowed by the NICs.

5 Layer 3 switches select the output port based on the destination IP address of an
Ethernet frame.

5.4 a dedicated software switch for daq networks 83

RxQ-1
NIC Port 1

TxQ-1
TxQ-2

TxQ-M

RxQ-1
NIC Port 2

TxQ-1
TxQ-2

TxQ-M

RxQ-1
NIC Port K

TxQ-1
TxQ-2

TxQ-M

Master lcore

lcore 1

lcore 2

lcore M

(a)

RxQ-1
NIC Port 1

TxQ-1
RxQ-2

RxQ-N

RxQ-1
NIC Port 2

TxQ-1
RxQ-2

RxQ-N

RxQ-1
NIC Port N

TxQ-1
RxQ-2

RxQ-N

Master lcore

lcore 1

lcore 2

lcore M

(b)

RxQ-1
NIC Port 1

TxQ-1
RxQ-2

RxQ-N
TxQ-2
TxQ-3

RxQ-1
NIC Port 2

TxQ-1
RxQ-2

RxQ-N
TxQ-2
TxQ-3

RxQ-1
NIC Port N

TxQ-1
RxQ-2

RxQ-N
TxQ-2
TxQ-3

Master lcore lcore 1: Default + Flow Detection

lcore 2: Data Rx

lcore 3: Data Tx

lcore 4: Data Tx

lcore M: Data Rx

daqrings

(c)

Figure 5.4: Three differing queueing strategies for evaluation of the DPDK-
based switching application. Output queueing (OQ) using hard-
ware queues of a NIC in (a), virtual output queueing (VOQ) us-
ing hardware queues of a NIC in (b), and DAQ-dedicated queueing
using software queues (DPDK rings — daqrings) in (c).

5.4 a dedicated software switch for daq networks 84

5.4.1.1 Output queueing in hardware (OQ)

In this queueing regime (Figure 5.4a) only a single receive queue (RxQ)
is used on every NIC. These queues are distributed equally across the
available lcores, which poll the descriptors of incoming packets. Every
lcore is also associated with a dedicated transmit queue (TxQ) on ev-
ery NIC. After consulting the forwarding table (based on destination IP
addresses) the lcores enqueue the descriptors to appropriate transmit
queue. This strategy resembles the output-queued switches [99]. Buffer-
ing is realised with the receive and transmit queues only. If the NICs
do not provide long enough queues, packets can be dropped.

5.4.1.2 Virtual output queueing in hardware (VOQ)

Next strategy follows the well-known Virtual Output Queueing (VOQ)
scheme, in which each input maintains a separate queue for each out-
put [99]. Therefore, in contrast to the previous strategy, only a single
transmit queue is maintained on every NIC and all transmit queues are
distributed equally across the available lcores (Figure 5.4b). On the re-
ceive side, there is as many queues on a single NIC as there are NICs
in total. The internal hardware filters of the NICs are programmed in
such a way that the incoming packets are enqueued to those queues
based on the destination IP address. For example, the Intel 82599 con-
troller allows the configuration of up to 8194 so-called perfect match
filters [79]. This cannot be considered a bottleneck as we can use ap-
propriate masking to share the filters across common flows. If it is still
not enough, additional classification in software is required. A similar
approach was used by Cerrato, Annarumma, and Risso in [34] or by
Tanyingyong, Hidell, and Sjödin in [159, 160]. The ordinal number of
the particular receive queue gives directly the appropriate output port,
so it is not required for the lcores to consult the software forwarding
table. Receive queues associated with a specific output port are bound
to this lcore that is assigned to the transmit queue of this specific port.
The same as with the previous scheme, buffering is provided only by
the receive and transmit queues of the NICs.

5.4.1.3 Dedicated queueing in software (daqrings)

We designed this scheme (Figure 5.4c) as a dedicated mechanism for
data acquisition. Its core lies in the idea of implementing dedicated
buffers to each DCM in the system. It closely resembles the strategy
analysed by Nagle in [115] in 1987. He showed that even with infinite
buffers in switches a network can drop packets due to increasing delays6.
In order to avoid this problem the author introduced the term fairness
— each source host should obtain an equal fraction of the resources at
each switch. This could be achieved by maintaining a separate queue

6 The problem of the increasing network delay with larger buffers is known as
bufferbloat, which we referred to in Section 1.2.

5.4 a dedicated software switch for daq networks 85

for each source for each outgoing link in each network node. Similar
conclusions were made by Morris in [111], who analysed the decreasing
TCP performance with the increasing number of competing flows. He
proposed a short-term solution, in which routers would be provisioned
with buffer space proportional to the maximum number of active flows
(even ten times as many buffers as flows). In order to avoid queue
buildup, per flow limits on buffer use would be required though.
The complexity of switches with this amount of queues is, however,

considerably increased. But with software switches this approach be-
comes feasible. Particularly in DAQ networks, where packets could be
queued on a per data collector basis. Nagle used originally per source
queues, because the sources have the control over the generation of
packets. In the case of data acquisition networks, generation of packets
is associated with a particular destination data collector, so per DCM
queueing is more natural. In our design, event data sent from different
ROSes, but targeting the same DCM, are put into a single software
queue. With this approach buffers can be sized precisely, traffic can be
shaped on a per DCM basis, and fairness across all DCMs can be guar-
anteed. In contrast to the previous schemes, buffering is provided by
the receive and transmit queues in the NICs as well as those software
queues. The total number and the size of the latter is limited solely by
the amount of the available DRAM memory. Thus, lossless operation
should be possible even under heavy incast congestion.
We use the hardware filters of each NIC again to assign the incom-

ing packets into different hardware receive queues. All packets which
have not been identified as packets carrying event data are placed into
the RxQ 0 (the default RxQ), whereas other queues (data RxQs) are
dedicated to packets carrying event data. A set of lcores poll packets
from the assigned receive queues as in the two previous schemes. But
instead of switching the data packets into one of the output transmit
queues, they are temporarily buffered in dedicated queues. This buffer-
ing of event data packets takes place in the DPDK lockless ring buffers
[80], which we refer to as daqrings. A single daqring corresponds to a
single destination DCM. This binding can be either set statically or
configured on-the-fly by the default thread, which implements flow de-
tection logic. Three hardware queues are used on the transmit side for
outgoing packets: TxQ 0 (the default TxQ) for the non-data flows and
the other two (data TxQ) for the data flows.

We define four types of user-level threads executed by the available
lcores:

1. management (master lcore),

2. default,

3. data receive,

4. data transmit.

5.4 a dedicated software switch for daq networks 86

There is always one management and one default thread, and a config-
urable number of data threads.

the default thread This thread polls the default RxQ of all
the NICs that are bound to the software switch. It is implemented
with the use of the DPDK packet processing pipeline [80]. First, the
destination IP address is extracted from the received packet and looked
up in the Longest Prefix Match (LPM) table [80] for the output port.
Then, from the TCP payload, it determines whether the flow is a new
event data flow of the ATLAS DAQ/HLT system. If so a new ring buffer
is activated and corresponding rules are created in the hardware filters
of the NICs, so that all subsequent packets will be filtered to the data
RxQs and handled by the data threads. Finally, the default thread puts
the packet directly into the default TxQ (TxQ-1) of the output NIC.

rx filtering Each receive data queue is bound to a single out-
put port. The LPM lookup mechanism of the default thread is thus
offloaded to the hardware. Within a single receive data queue, a spe-
cific ID is assigned to the packet based on the destination DCM by the
hardware filter, which is then accessed by the data threads to enqueue
the packet on the appropriate daqring. A 1:1 queue-to-DCM mapping
would not be scalable because of the hardware limited number of the
supported receive queues.
There is no risk of out-of-order packets since packets belonging to a

single TCP flow are always filtered to the same hardware queue by the
flow director, then handled by a single lcore, and finally enqueued on
the same software ring. In theory it limits the data rate of a single flow
to what can be processed by one CPU core, which is then the natural
performance limit of the proposed architecture. Due to the fact that
DAQ networks carry a large number of relatively small TCP flows, it is
practically impossible to reach the performance limit of a thread with
just a single flow. Furthermore, high forwarding performance of a single
CPU core has been already confirmed in [52].
Normally, a DCM is uniquely identifiable by its destination IP in the

DAQ network, so the hardware filters can be configured solely with the
destination IP field of the packet header.

the data threads and ring buffers Packet descriptors
from the receive data queues of the NICs are polled by the data receive
threads. Based on the queue number and the filter ID of the packet,
they enqueue the packets on the appropriate ring. Since all packets
belonging to the flows coming from all the ROSes to one DCM will
be queued in the same DPDK ring, the rings are of multi-producer
single-consumer type.
On the transmit side, the data transmit threads dequeue packets

from the rings and place them into the transmit data queues. Each data

5.4 a dedicated software switch for daq networks 87

transmit thread serves the transmit data queues of one or more NICs. In
our prototype we use two transmit queues for data flows: one for packets
with the actual event data directed to DCMs, the second for requests
and TCP ACK packets directed to the ROSes. The transmit threads
also perform traffic shaping, which is particularly important, if the
next hops in a network have limited buffering/bandwidth capabilities.
Since the event data targeted to a particular DCM is queued in a
dedicated buffer, traffic shaping can be performed very effectively on a
per destination DCM basis. For each daqring we can set a specific rate
limit by defining the maximum number of packets that can be polled
from this queue within some polling interval, which is also controllable
by the user. The excess packets are not dropped, but buffered in this
daqring, unless its length is exceeded. This algorithm is referred to in
the literature as buffered leaky bucket [99].
If a particular DCM ring remains empty for a predefined period of

time it can be deactivated. In this case, it can be reused by the default
thread for any newly detected data flows.

5.4.2 Evaluation results

The results of our evaluation for the designs presented in the previous
section are gathered in Figure 5.5. In order to verify that the software
switch can operate at its full bidirectional bandwidth (resulting from
the number and speed of the NICs) we emulated twelve ROSes and
144 DCMs on all available hosts attached to the switch, which results
in an all-to-all communication scenario with heavy incast congestion.
The details of the evaluation setup were presented in Section 5.3.1. For
this comparison the event rate remains unlimited, which means that
we measure the saturation goodput. We analyse how the performance
is affected when changing the number of CPU cores that are used by
the software switch for processing packets carrying event data7. In each
iteration we increase the number of cores by two, one on each NUMA
node.

goodput Figure 5.5a confirms that dedicated queueing, daqrings,
reaches the best performance. We achieved about 98.5% of the the-
oretical throughput, which corresponds to an average bandwidth of
118Gbps at the software switch. Highest performance is already achiev-
able with only six CPU cores devoted to data threads (three transmit
and three receive threads). With the total of 144 DCMs in this config-
uration 144 ring queues are active in the software switch.

7 For OQ and VOQ there is additionally one master lcore and for daqrings there is
one master lcore and one default lcore (see Figure 5.4). These lcores are not taken
into consideration because they are not directly involved in switching packets that
carry event data.

5.4 a dedicated software switch for daq networks 88

Output queueing reaches highest performance already with four CPU
cores. This is expected as there are fewer operations required by the
software switch when compared to daqrings, which requires, for exam-
ple, additional enqueue-dequeue operations for the dedicated queues.
The goodput saturates for OQ at lower value though, reaching 96.1%.
Here, we can also observe an unexpected effect — the performance first
improves with the number of CPU cores, but at some point starts to
degrade slightly. This effect is even stronger for VOQ, which reaches
92.8% in the best case, but only 65.5% when the maximum number of
cores is used. The reason for this behaviour is not entirely clear, but it
appears to be related to the fact that the NIC queues are continuously
polled by the CPUs, even across the QPI links. If a delay of 100µs
is added between consecutive polls at each receive queue, the effect is
avoided. We analyse this problem in more detail in Section 5.4.2.1.
At first glance, the results for VOQ seem wrong. In this design the

maximum number of receive queues is equal to the total number of
ports connected to the software switch, which is dictated by the design.
It means that increasing the number of CPU cores beyond the num-
ber of ports should not affect the performance as these cores are not
used. It contradicts, however, the plot presented in Figure 5.5a. The
performance should not change if there is more than twelve cores. The
reason is as follows. We increase the number of cores by two in each
iteration, one core on each NUMA node. Each port is assigned to this
lcore that belongs to the same NUMA node. In our configuration (see
Figure 5.3b), there are eight ports connected to NUMA node 2. First
with seven cores on NUMA node 1 (eighth core is the master lcore)
and eight on NUMA node 2, ports are fully distributed across distinct
processing threads. This emphasises the importance of considering the
NUMA architecture when designing these schemes.

latency The distributions of the data collection time per event
are presented in Figure 5.5b and Figure 5.5c. Daqrings provide lowest
latency and jitter. Even at lower core counts there are no packet drops
as there is always enough buffers. Latency is increased only because
there are fewer CPU cycles available. At the optimum operating point,
there is a tail present (see 99th percentile). This is caused by the many-
to-many communication and the fact that we did not apply any traffic
shaping on the daqrings, which can lead to small queue buildup. The
average latency with six data threads and more for all CPU frequencies
equals approximately to 13.8ms, which is comparable to the serialisa-
tion delay of twelve events on a 10Gbps link (14.6ms). Since twelve
DCMs are emulated on a single host and the ROS responds to their
requests on a first-come-first-served basis, some events are collected
with a minimum latency approaching the serialisation delay of a single
event on a 10Gbps link (1.2ms). There are also events that suffer from
the fact that each ROS responds to all 144 DCMs in the system, so

5.4 a dedicated software switch for daq networks 89

0 2 4 6 8 10 12 14 16

No. of CPU cores

50

60

70

80

90

100

110

120

G
oo

dp
ut

G
[G

bp
s]

Theoretical maximum

OQ
VOQ
VOQ (poll 100us)
daqrings

(a)

0 5 10 15
1

10

100

1000

D
at

a
co

lle
ct

io
n

la
te

nc
y

l[
m

s] O
Q

0 5 10 15

V
O

Q

0 5 10 15

V
O

Q
(p

ol
l1

00
us

)

10th percentile Median 99th percentile

0 5 10 15

da
qr

in
gs

No. of CPU cores

(b)

0% 40% 80%
1

10

100

1000

D
at

a
co

lle
ct

io
n

la
te

nc
y

l[
m

s] CPU cores: 2

0% 40% 80%

CPU cores: 10

0% 40% 80%

CPU cores: 14

Percentile

(c)

Queueing CPUcores lm [ms] σl [ms]

OQ 2 17.0 39.62
10 13.9 2.65
14 14.2 3.11

VOQ 2 15.8 3.20
10 14.9 14.03
14 16.3 31.30

VOQ (100 µs) 2 15.8 3.18
10 14.8 2.91
14 14.8 2.84

daqrings 2 31.7 4.24
10 13.9 2.14
14 13.9 2.10

Figure 5.5: Comparison of the three queueing strategies of a dedicated switching application in the
configuration depicted in Figure 5.3. Goodput (a) and event data collection latency (b)
in function of the number of CPU cores used by the application for switching packets,
and the exact distributions of latency for three cases (c).

their collection latency can increase even above the serialisation delay
of data belonging to twelve events.
TCP timeouts are observed for OQ at lower core counts, which mani-

fests itself by the fact that some events suffer from collections latencies
exceeding 200ms. On the contrary, packet drops are first observed with
higher core counts in case of VOQ, which is related to the issue indi-
cated earlier in this section. In the optimum operating points, the la-
tencies in both cases are comparable with daqrings. The latter reaches,
however, slightly higher load.

5.4.2.1 Effects of excessive polling

In the previous section we observed an unexpected behaviour in case
of OQ and VOQ designs. Performance degrades when we increase the
number of CPU cores that are used to perform packet switching. This

5.4 a dedicated software switch for daq networks 90

R H

Emulated
DAQ system

Switch under test

Nin = 1 Nout = 1

HLTSV

Data flow

10Gbps

10Gbps

1Gbps

Figure 5.6: Simplified test setup to investigate the effects of excessive polling.

effect is particularly strong in case of VOQ. The reason is not entirely
clear, but it appears to be related to the fact that the NIC queues are
continuously polled by the CPUs. This is particularly critical, when
polling for the received packets across the QPI links. With an increased
number of CPU cores there are more threads polling in parallel. If some
of the receive queues are empty, there are cores that continuously poll
the NICs as there is no other processing required. In parallel, there can
be threads that perform packet receive/send operations. If they share
the QPI links, the performance can be affected by the cores polling
empty receive queues. This effect is particularly visible with the VOQ
strategy, as there are always some receive queues that are polled by
remote NUMA nodes. This is not the case for OQ and daqrings, where
receive queues are always polled by the local NUMA node from the per-
spective of the particular NIC. CPU caches and direct PCIe lanes to the
NICs provide optimum performance even with continuous polling. This
theory is supported by the experiment with increased polling interval
in the VOQ case, see Figure 5.5a. The performance does not degrade
any more. Similar observations were made by Emmerich et al. in [52].
We perform one more experiment to confirm this observation and in-

vestigate whether the issue still appears with newer server generations.
For this purpose we build a simpler version of the setup from Figure 5.3,
as presented in Figure 5.6. Only a single ROS application and a single
data collector on separate physical nodes are used (theoretical goodput
is 9.49Gbps). At the software switch, we use two 10GbE ports on two
different NUMA nodes. First, we use the same platform as before, with
two EP-2600 (code name Sandy Bridge [85]) series processors (see Sec-
tion 5.3.1), and then we change to Intel Server System R2208LT2HKC4
[83] with the next generation EP-4600 v2 (code name Ivy Bridge [86])
processors (there are four Intel Xeon E5-4657L v2 processors, but only
two are used in our evaluation).
As can be seen in Figure 5.7, the software switch based on the newer

generation server achieves the theoretical performance. In case of the
older generation, the performance degradation is significant. First when

5.4 a dedicated software switch for daq networks 91

1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8

CPU frequency [GHz]

3

4

5

6

7

8

9

10

G
oo

dp
ut

G
[G

bp
s]

Theoretical maximum

Sandy Bridge
Ivy Bridge

(a)

0 2 4 6 8 10

Polling interval [us]

4

5

6

7

8

9

10

G
oo

dp
ut

G
[G

bp
s]

Theoretical maximum

Sandy Bridge
Ivy Bridge

(b)

Figure 5.7: Goodput in the function of the CPU frequency (a) and polling
interval (b) in a small setup comparing the performance of Sandy-
Bridge and IvyBridge platforms with the VOQ design in the soft-
ware switching application.

the polling interval is introduced, see Figure 5.7b, the performance
reaches the theoretical maximum.
This experiment confirms that excessive polling of the receive queues

over the QPI bus can negatively impact the performance of a software
switch. In general, special attention is therefore required when the QPI
links are involved. Performance degradation can be mitigated or com-
pletely avoided with newer generation processors and/or designs with
receive-side polling with proper CPU-affinity.

5.4.2.2 Traffic shaping in daqrings

We come back to our original evaluation setup from Section 5.3.1 and
evaluate traffic shaping capabilities of daqrings, which we explained in
Section 5.4.1.3. We restrict the transmit data threads to put no more
than 32 packets from a single ring buffer into a single transmit queue
every 500µs, which limits each DCM to approximately 0.78Gbps at
the software switch. The data receive threads are configured to drop
packets, if there is no space available in the ring of the corresponding
destination DCM. We still expect no drops if the buffering is large
enough for a single event. This approach shows how incast could be
avoided in a situation when DCMs are connected with slow links to a
ToR switch. By limiting the rate we ensure that the ToR switch buffers
are not overrun and the packets are buffered at the software switch
instead.
Goodput and latency characteristics as a function of the daqring size

are shown in Figure 5.8. A single event requires approximately 990 TCP
segments over eleven TCP flows towards a single DCM. Maintaining
small packet buffers (i.e. 128 or 512 packets per DCM) triggers incast

5.4 a dedicated software switch for daq networks 92

0 1000 2000 3000 4000

Daqring size [packets]

0

20

40

60

80

100

120

G
oo

dp
ut

G
[G

bp
s]

Theoretical maximum

(a)

0 1000 2000 3000 4000

Daqring size [packets]

10

100

1000

D
at

a
co

lle
ct

io
n

la
te

nc
y

l[
m

s]

Serialisation delay

10th percentile
Median
99th percentile

(b)

Figure 5.8: Goodput (a) and data collection time (b) when tuning the daqring
size, when a rate limit of 0.8Gbps is applied to each daqring.

and results in a very high mean data collection latency because of
high TCP timeout rate. In the optimum operating range, the latency
remains at its minimum value of 17.2ms with low jitter, and no packets
are dropped. The serialisation delay of the entire event data on a link
limited to 0.78Gbps, including protocol overheads, equals to 15.6ms
and gives the lower limit on the minimum data collection time.
The direct effect of the collection latency is the maximum achiev-

able event rate of the system. In the optimum switch configuration
the DAQ throughput achieves 80% of the theoretical maximum. The
performance from Section 5.4.2 is not reached because of the traffic
shaping we have applied and the performance limitations of the traffic
generation setup.
With the total of 144 DCMs in this configuration, 144 ring queues

are active in the software switch. For the single ring size of 4096 packets
and 2048B of maximum packet size configured at the switch, the total
packet buffer space equals to 1.12GiB.

5.4.2.3 Increased burstiness with a single DCM

We now increase the burstiness of the traffic by increasing the number
of emulated ROSes to 110. This special configuration is depicted in
Figure 5.9. We emulate ten independent ROS applications on a single
physical host and there are eleven nodes in total for ROS emulation.
Only a single DCM is used in this test and it is rate-limited to 0.78Gbps
at the daqring. The total event size is now 13.75MiB and the serialisa-
tion delay of the entire event, with protocol overheads, is 156ms. The
event size corresponds to approximately 9790 TCP segments over 110
TCP flows.

5.4 a dedicated software switch for daq networks 93

R R R R R R

R R R R R H

Emulated DAQ system

Switch under test

Nin = 11 Nout = 1

HLTSV

Data flow

10Gbps

10Gbps

1Gbps

Figure 5.9: The special data taking configuration for a scenario with one data
collector and 110 ROS applications. The latter are emulated on
eleven physical hosts.

2000 4000 6000 8000 10000 12000 14000

Daqring size [packets]

1

10

100

1000

D
at

a
co

lle
ct

io
n

la
te

nc
y

l[
m

s]

Serialisation
delay

10th percentile
Median
99th percentile

Figure 5.10: Data collection latency when tuning the daqring size for a setup
with one data collector and 110 readout applications (see Fig-
ure 5.9).

The latency characteristics are presented in Figure 5.10, again as a
function of the ring buffer size. Starting with a length of 9000 pack-
ets (nearly the number of packets required to carry the entire event)
there is no jitter and the mean latency remains at 159ms, very close
to the serialisation delay. Reducing the ring size below 9000 triggers
incast with high jitter and mean latency, which are caused by the high
number of TCP retransmissions. Because of the large bursts, the DCM
queue fills up and packets are dropped by the switch. For queues below
5000 every collected event suffers from at least one TCP timeout of a
minimum value of 200ms.

5.4.3 Summary

Our results show that the proposed design of the software switch with
dedicated queueing mechanism can be configured to match the specifics
of a DAQ system and operate at full available bandwidth with low

5.5 open vswitch optimisation for daq networks 94

jitter and without packet drops, thus eliminating incast. This is also
true under heavy congestion and for packets arriving in extremely large
bursts. These results are possible thanks to the available amount of sys-
tem memory that can be used for packet buffers, and the architecture
of modern CPUs, which provide the necessary performance. Equally
important is the presence of packet processing frameworks, which al-
low the design of dedicated network applications tailored for a specific
configuration, like our lossless software switch for the ATLAS DAQ
network.
This application, being a proof-of-concept, lacks typical functionali-

ties required from networking devices, like MAC learning, IP routing,
or support for typical management interfaces and protocols. Also, the
dedicated data flow detection logic is implemented for the specific ap-
plication layer protocol — the ATLAS data-flow protocol. These draw-
backs make the approach less generic and less likely to be adopted in
production networks. In the next section we will evaluate whether a
similar queueing system could be implemented in one of the popular,
production quality virtual switches.

5.5 open vswitch optimisation for daq networks

In the previous sections, we demonstrated that a DPDK switching ap-
plication with dedicated queueing mechanisms running on a commodity
server is a viable option in data acquisition for providing lossless op-
eration under heavy incast congestion. Our next step is to evaluate
whether the same can be achieved with the popular virtual switch —
Open vSwitch (OVS). As we explained already in Section 2.3, OVS is
a production quality, open source virtual switch with built-in support
for DPDK. It can be used not only in virtual environments, but also
as a software switch/router interconnecting physical ports on a general-
purpose server. It supports typical network management interfaces and
protocols. In summary, OVS can be considered as fully-fledged switch
and, on the other hand, it can be optimised for data acquisition, being
an open source software project.
Furthermore, OVS supports also the OpenFlow (OF) [126] protocol

and the Open vSwitch Database (OVSDB) [134] protocol. This enables
the SDN approach to building networks, which we introduced in Sec-
tion 2.5. In SDN the networking control and forwarding planes are
physically decoupled and the network intelligence is centralised in an
SDN controller, which has a global view of the entire network. This
controller is responsible for maintaining all of the network paths and
programming each device in the network [113]. This is particularly in-
teresting in the context of DAQ, where the global view of the network
could be used to optimally distribute data flows across available paths
and queues. The logic to assign packets to appropriate daqrings would
not need to be integrated within the switch itself. This can be seen

5.5 open vswitch optimisation for daq networks 95

as a drawback of our design presented in Section 5.4.1.3, where we
implemented the ATLAS-dedicated mechanism to detect data flows.
Therefore, by implementing our daqrings approach in OVS with a cen-
tralised management, a more generic solution for large DAQ networks
becomes feasible.
We will discuss some aspects of building larger networks topologies

with our proposals in Chapter 6. Here, we will focus on the single-
switch performance of OVS in data acquisition and adapt our proposed
queueing mechanism. We will analyse if there are any performance
penalties when compared with the dedicated switching application that
we evaluated in the previous sections of this chapter.

5.5.1 Design

The core of the idea behind the design of the lossless software switch
for DAQ, which we described in Section 5.4.1.3, can be summarised in
three points:

• The use of the DRAM memory as a large packet buffer.

• A queueing mechanism, in which a dedicated, large-enough queue
is allocated in the switch to every single data collector (see Fig-
ure 5.4c).

• A mechanism that maps the packets destined to a particular data
collector into its queue.

In the original design all of these items were implemented in a dedicated
switching application using the DPDK framework.

5.5.1.1 Traffic distribution

Our extension to OVS differs in that the DCM-to-queue mapping mech-
anism is moved to an external network controller. To achieve this we
added a new port type to the virtual switch — a daqring port, which
represents a single queue, which is implemented as a DPDK ring, sim-
ilar as in Section 5.4.1.3. Because each of these queues is visible as a
logical port in OVS, the network controller can decide which packets
should be moved to the daqrings, where they are temporarily buffered,
instead of directly switching them to the standard egress ports.
The controller uses OVSDB to instruct the switches to create a single

daqring device for every DCM that is identified in the system. Then it
installs a set of OpenFlow rules on the switches, so that they are pro-
grammed to move specific packets from the ingress ports to appropriate
daqrings and later to dequeue them to the egress ports. In the simplest
case, if a single DCM is identifiable by its IP address, two OpenFlow
rules for every DCM are enough on every switch:

• If the packet’s destination IP address matches the one of the
DCM, output the packet to the corresponding daqring port.

5.5 open vswitch optimisation for daq networks 96

• If the packet is received from a daqring port, output the packet
to the egress port.

The second rule must have a higher priority than the first one to
avoid trapping the packets in a loop. These rules can be adjusted at
the controller to match the architecture of the given DAQ system. For
example, for our evaluation in the following section we are emulating
multiple DCMs on a single host, so the destination IP address is not
the unique ID of a DCM any more. We are using therefore a set of
rules based on the 4-tuple (source/destination IP, source/destination
TCP port) for every ROS-to-DCM flow. We will explain the algorithm
that is used by the controller to assign the egress port for our proposed
topology with multipath in Chapter 6.

5.5.1.2 Fairness

Fairness across the DCMs is guaranteed by polling the daqrings in a
round-robin fashion. Rate limitation on the daqrings can be enabled
by limiting the number of packets that are polled in a single polling
cycle (controllable with OVSDB) using the same buffered leaky bucket
algorithm as in Section 5.4.1.3.

5.5.1.3 Alternative approach

OpenFlow version 1.0.0 [126] already allows the creation of Quality-of-
Service (QoS) queues and their assignment to ports in the switch. Po-
tentially our daqrings could be implemented using those QoS queues,
so there would be no need to create separate logical ports. However,
we decided not to use this approach at this time because of the spe-
cific design of the DPDK devices in OVS. The implementation of the
new daqring port did not require any significant modifications to the
OVS architecture. We would not expect any significant difference in
performance, because the underlying mechanisms to move the packets
between the internal queues would remain the same.

5.5.2 Implementation

We added 791 and removed 11 lines of code in seven files, including
the build files and the manual, of the OVS release 2.4.0 (with DPDK
2.0.0) to implement the daqring device and optimise the switch for high
throughput. For the SDN controller, we used the OpenDaylight project
release Lithium [167]. We used the REST API [60] and Python [140]
to automate the installation of the ROS-DCM flows on the switch. For
testing purposes or for small deployments, the ovs-ofctl tool provided
with OVS can be used instead to install the OpenFlow rules.

Some optimisations to the OVS code were required to reach the full
performance in our DAQ scenario (for details on OVS’s design see [136]).
The critical modifications included:

5.5 open vswitch optimisation for daq networks 97

1. Increased number of hardware packet descriptors per network
port and larger memory pool to buffer packets.

2. GCC optimisation level increased from O2 to O3.

3. Modification to the OVS flow caching mechanism — Exact Match
Cache (EMC). By default, any change in the TCP flags of the
packets in a particular ROS-DCM flow was causing a modification
of the entry in the EMC. In the case of ATLAS DAQ, each last
packet from a ROS response is marked with the TCP PUSH flag,
causing systematic EMC updates. Since there were no OpenFlow
rules using TCP flags, we removed the flag from the cache key as
such rules are not normally needed in DAQ networks.

4. Removal of an intermediate OVS software transmit queue in the
DPDK device. Instead the packet descriptors are put directly into
the hardware queues of the network cards. Since the software
queues were all allocated on a single CPU, costly copy operations
were needed to move packet descriptors between these queues and
the port hardware queues connected with PCIe to other CPU
sockets.

Although optimisation level 2 can be seen as generally applicable,
the other modifications are specific to a narrower set of throughput-
oriented applications. Therefore, we decided not to send the patches to
the maintainers. The source code is available in [43].
In order to achieve the highest performance of our switch, we con-

tinue to follow the general recommendations, which we discussed in
Section 5.2.2.

5.5.3 Evaluation

We evaluate our implementation of the lossless OVS-based software
switch using the basis configuration used throughout this chapter (see
Section 5.3.1). Figure 5.11 gives the comparison of the performance
between the DPDK DAQ-dedicated application that was introduced
and evaluated in Section 5.4.2 and OVS with our various optimisations:

• OVS+sw_tx_queue. OVS without daqrings, and with the default
OVS software tx-queue. Reaches only 30.6%.

• OVS+daqrings-EMC_fix. OVS with daqrings and all optimisa-
tions, except the one for the Exact Match Cache. Reaches 98.3%
with ten or more CPU cores.

• OVS+daqrings+Pause+gcc_02. OVS with daqrings and all opti-
misations, but also with IEEE 802.3x pause frame [76] and the de-
fault GCC optimisation level. Reaches 98.8% but requires twelve
CPU cores. Pause frames eliminate packet drops for lower core

5.5 open vswitch optimisation for daq networks 98

counts, but increase the mean latency (see the plot on the left-
hand side in Figure 5.11b).

• OVS. OVS with all optimisations, but without daqrings. Reaches
97.6% of the theoretical goodput. No performance degradation
even with only four CPU cores.

• OVS+daqrings.OVS with daqrings and all optimisations. Reaches
98.6% of the theoretical goodput. There is significant perfor-
mance degradation for fewer than eight CPU cores.

• Ded. DPDK app. (daqrings). Reaches 98.5% of the theoretical
goodput. There is significant performance degradation when us-
ing fewer than six CPU cores.

In OVS+sw_tx_queue and OVS+daqrings-EMC_fix a significant
number of data transfers suffer from TCP timeouts with collection
latency exceeding 200ms (for four CPU cores), which indicates packet
drops. For all other cases no timeouts are observed and the latency
distribution does not exhibit significant jitter. In case of fourteen CPU
cores the median latency is similar for all configurations, but not for
OVS+sw_tx_queue. When using only four CPU cores the median in-
creases forOVS+daqrings, and forOVS+daqrings+Pause+gcc_02 even
more so.
The results show that the optimised OVS delivers near maximum

performance because of the large buffering capabilities. Using daqrings,
performance increases slightly even further. We predict that this differ-
ence will increase for larger topologies, which we will discuss in Chap-
ter 6. OVS with daqrings, similar to the dedicated application from Sec-
tion 5.4.1.3, offer the users better flexibility to provide fairness across
data collectors and exploit rate/burst control to eliminate packet drops,
if, for example, subsequent network stages do not provide enough ca-
pacity (e.g. see Section 6.3 and Section 7.3). OVS+daqrings requires,
however, more CPU cores than pure optimised OVS because of the ad-
ditional port send/receive operations associated with the extra daqring
devices. Note, there is only a small performance penalty for lower core
counts, when compared to the dedicated DPDK software switch. For
optimal core counts the performance remains similar. This confirms
that OVS with our extensions is a valid candidate and there is no need
to design and implement fully custom, dedicated switching application
in order to achieve the same effect. Furthermore, this approach offers
even more advantages as discussed already in Section 5.5.

5.5.4 Detailed performance characteristics

In our initial design of the dedicated switching application (see Sec-
tion 5.4.1.3) the exact number of the receive queues configured on the
NICs was determined by the queueing strategy in use. In the case of

5.5 open vswitch optimisation for daq networks 99

4 6 8 10 12 14

No. of CPU cores

0

20

40

60

80

100

120

G
oo

dp
ut

G
[G

bp
s]

Theoretical maximum

OVS+daqrings
OVS
OVS+daqrings+Pause+gcc 02
OVS+daqrings-EMC fix
OVS+sw tx queue
Ded. DPDK app. (daqrings)

(a)

0% 20% 40% 60% 80% 100%
1

10

100

1000

D
at

a
co

lle
ct

io
n

la
te

nc
y

l[
m

s] CPU cores in use: 4

0% 20% 40% 60% 80% 100%

CPU cores in use: 14

Percentile

(b)

Figure 5.11: Saturation goodput (a) and latency distribution (b) in all-to-all
incast scenario with modified Open vSwitch.

OVS, this number is freely configurable by the user. As these are the
first queues on the ingress side of the software switch, we analyse how it
affects the overall performance. Internally, OVS uses the Receive Side
Scaling (RSS) feature available on the NICs to distribute the incoming
packets across available receive queues using hashes [79]. These queues
are then assigned to the available lcores for polling and packet process-
ing. On the other end, egress, the number of transmit queues per NIC
is not directly configurable in any of these cases, but it is often linked
with the number of configured lcores. In order to make this analysis
exhaustive, we consider here the total number of lcores used by OVS
and also different CPU frequencies. The size of the transmit and re-
ceive queues remains the same as throughout this chapter, being the
maximum allowed by the NICs.
Intuitively, with higher CPU frequencies fewer cores and fewer receive

queues should be required to reach the theoretical performance. This is
confirmed by Figure 5.12a, which shows the saturation goodput of our

5.6 other aspects 100

DAQ-optimised OVS for various combinations of the aforementioned
parameters. At 2.7GHz performance close to maximum is reached al-
ready with eight CPU cores and three receive queues on each NIC port.
At 2.0GHz the same amount of cores with ten queues or twelve cores
and two queues guarantees similar performance. The combination of
twelve cores and four receive queues is required for 1.2GHz. These
queues are mainly used to distribute packet processing across available
lcores, but also provide some buffering for short bursts, when the lcores
are not polling packets fast enough.
Distributions of data collection latency, presented in Figure 5.12b

and Figure 5.12c, lead to similar conclusions. Lower goodput values
are correlated with increased latencies and in extreme cases TCP time-
outs with collection times exceeding 200ms. In the optimum operating
ranges, there are no packet drops, but slightly higher latencies are ob-
served when fewer CPU cores are used to reach the same saturation
goodput. This is expected as each packet has to wait longer before be-
ing processed, when fewer CPU cycles are available to process the same
amount of traffic. The same observation can be made when lowering
the CPU speed, but only for lower total core counts. With 15 lcores
differences in the latencies are negligible in the optimum range. This
may be caused, however, by the fact that the total processing power
is increased by a factor of four and when changing the CPU frequency
this factor is approximately two.
Summarising, in order to reach full theoretical performance of our

evaluation setup only a fraction of the available CPU power is required.
This leaves a significant headroom to build software switches providing
even higher capacities.

5.6 other aspects

Until now we have focused on the most important aspect when evaluat-
ing the feasibility of building data acquisition networks with software
switches, mainly the performance. We showed, on the example of a
single-switch network, that this approach is indeed feasible. Here, we
will also show that it offers good performance advantage when compar-
ing with traditional switches. Nevertheless, there are also other factors
that need to be taken into account. First of all, all aspects of build-
ing and managing large network topologies need to be considered. This
will be discussed in Chapter 6. In this section a short study on energy
consumption will be given. Power is an important factor as it affects
the costs of running a network for a long period of time. On the other
hand, we will also describe how the unused CPU cycles on the software
switch nodes can be utilised in order to improve the overall efficiency
of a system.

5.6 other aspects 101

0 4 8 12 16
40

50

60

70

80

90

100

110

120

G
oo

dp
ut

G
[G

bp
s]

CPU freq.
2.7 GHz

No. of CPU cores: 4 8 12 15

0 4 8 12 16

CPU freq.
2.0 GHz

0 4 8 12 16

CPU freq.
1.2 GHz

Theoretical max.

No. of RxQs

(a)

0 4 8 12 16
1

10

100

1000

D
at

a
co

lle
ct

io
n

la
te

nc
y

l[
m

s]

CPU freq.
2.7 GHz

0 4 8 12 16

CPU freq.
2.0 GHz

0 4 8 12 16

CPU freq.
1.2 GHz

N
o.ofC

PU
cores:4

10th percentile Median 99th percentile

No. of RxQs

(b)

0 4 8 12 16
1

10

100

1000

D
at

a
co

lle
ct

io
n

la
te

nc
y

l[
m

s]

CPU freq.
2.7 GHz

0 4 8 12 16

CPU freq.
2.0 GHz

0 4 8 12 16

CPU freq.
1.2 GHz

N
o.ofC

PU
cores:15

10th percentile Median 99th percentile

No. of RxQs

(c)

Figure 5.12: Saturation goodput (a) and latency distribution (b), (c) in all-to-all incast scenario
with modified Open vSwitch when changing the number of CPU cores, their frequency
and the number of receive queues on the NICs.

5.6.1 Comparison with traditional switches

We continue our evaluation of software switching for DAQ and extend
the study that we performed in Section 4.5.3. We compare the DAQ-
optimised OVS with two 10GbE ToR switches from different vendors in
the same all-to-all incast scenario (the switch under test in Figure 5.3a
acts as one of the ToRs). We enable transmission and reception of pause
frames on those ToRs. As it was shown in Section 4.5.3, without this
mechanism the performance does not exceed 20%. In case of OVS, as
we noted in Section 5.5.3, only the reception of pause frames is enabled
in order to avoid temporal fluctuations at the data collector nodes.
The results in Figure 5.13a show the sustained versus offered load

(because of time limitations only values starting from 70% are tested).
The ToR switches reach only 64% and 85% compared to nearly 100%
achieved by OVS. Latency characteristics are plotted in Figure 5.13b
and Figure 5.13c. Timeouts are avoided in each configuration, but the
latencies achieved with ToRs are significantly higher than those of the

5.6 other aspects 102

70% 80% 90% 100%

Offered load Go f f

0%

20%

40%

60%

80%

100%
Su

st
ai

en
d

lo
ad

G
su

st

OVS+daqrings
ToR A+Pause
ToR B+Pause

(a)

70% 80% 90% 99%
1

10

100

D
at

a
co

lle
ct

io
n

la
te

nc
y

l[
m

s]

O
V

S+
da

qr
in

gs

70% 80% 90% 99%

To
R

A
+P

au
se

70% 80% 90% 99%

To
R

B
+P

au
se

10th percentile Median 99th percentile

Offered load Go f f

(b)

0% 40% 80%
1

10

100

1000

D
at

a
co

lle
ct

io
n

la
te

nc
y

l[
m

s] Go f f = 70%

0% 40% 80%

Go f f = 90%

0% 40% 80%

Go f f = 99%

Percentile

(c)

Configuration Goff lm [ms] σl [ms]

OVS+daqrings 70% 4.9 2.0
90% 6.6 2.6
99% 11.8 3.5

ToR_A+Pause 70% 22.1 2.2
90% 22.2 2.2
99% 22.3 2.3

ToR_B+Pause 70% 14.5 1.8
90% 16.5 1.7
99% 16.6 1.7

Figure 5.13: Performance of OVS with daqrings and regular ToR switches with enabled Ethernet
IEEE 802.3x pause frame mechanism. Sustained load (a) and data collection latency
(b) as a function of the offered load, and the exact distributions of latency for three
different cases (c).

OVS. The increased latency for OVS at the higher load of 99% is
expected and caused by the volume of data flowing through the switch.
It is not seen for the ToRs, since they do not offer the same load and
saturate at lower values.

5.6.2 Energy consumption

Figure 5.14 gives an estimate for power consumption of the server used
as a replacement for the conventional switch. We compared the maxi-
mum power per port. The values for the ToRs were taken from their
data sheets, whereas the ones for OVS are plotted for different CPU fre-
quencies as well as CPU core counts and correspond to full achievable
load (at least 95% in all cases). Although the server running OVS pro-
vides better performance, the power consumption is higher, especially
when compared with ToR B. The situation can be improved in two

5.6 other aspects 103

8 10 12 14

No. of CPU cores

0

5

10

15

20

25

30

35

40

M
ax

.p
ow

er
pe

rp
or

t[
W

]

ToR A

ToR B

CPU freq. 2.7 GHz
CPU freq. 2.0 GHz
CPU freq. 1.2 GHz

Figure 5.14: Average per port power consumption in all-to-all incast scenario
with DAQ-optimised Open vSwitch for various CPU frequencies.
In all cases goodput is at least 95% of the theoretical maximum.

ways. First, we use continuous polling of all the OVS ports for incom-
ing packets. This could be improved by reducing the number of empty
polling cycles, and, in effect, reducing the power consumption. Second,
remaining unused CPU cores could be used to perform different tasks,
e.g. event filtering or experiment readout, optimising the utilisation
of the entire system. We provide an initial evaluation in the following
section.

5.6.3 The use of the remaining cores

Our results from the previous sections indicate that there is always a
specific number of CPU cores that can guarantee a desired load that
our switch sustains. Hence, there is the possibility to use the remaining
cores to perform other jobs, provided that they do not degrade the
switching performance.
The obvious resource, which could be the source of this negative

interaction, is the memory. In order to emulate a situation in which
this interference occurs we ran the STREAM benchmark [104] on some
of the unused cores. This benchmark measures sustainable memory
bandwidth, thus stressing the memory subsystem. We did not focus on
the results of the benchmark themselves, but we observed the impact
on the goodput and the data collection latency of our evaluation setup.
The results are presented in Figure 5.15. It is clear that switching

performance is affected, particularly if the STREAM array size (used
to perform operations defined in the benchmark) exceeds the thresh-
old of a few megabytes. The degree of the degradation depends on the
number of cores and their CPU-socket allocation. Although no TCP
timeouts are observed, see Figure 5.15b, data collection latency is in-
creased when the STREAM array size exceeds the threshold. In this

5.6 other aspects 104

1 10 100 1000

STREAM array size [MB]

40

60

80

100

120

G
oo

dp
ut

G
[G

bp
s]

Theoretical maximum

STREAM on cores: 2/CPU0, 0/CPU1
STREAM on cores: 1/CPU0, 1/CPU1
STREAM on cores: 5/CPU0, 1/CPU1
STREAM on cores: 3/CPU0, 3/CPU1

(a)

10 1000
1

10

100

1000

D
at

a
co

lle
ct

io
n

la
te

nc
y

l[
m

s]

2/
C

PU
0

0/
C

PU
1

10 1000

1/
C

PU
0

1/
C

PU
1

10 1000

5/
C

PU
0

1/
C

PU
1

10th percentile Median 99th percentile

10 1000

3/
C

PU
0

3/
C

PU
1

STREAM array size [MB]

(b)

Figure 5.15: Goodput (a) and data collection latency (b) in all-to-all incast
scenario, if some of the CPU cores that are not allocated to OVS
are used to run the STREAM benchmark.

case, the more negative impact is evident when more cores are assigned
to the STREAM benchmark on NUMA node 1. Similarly as in Sec-
tion 5.4.2, it can be explained by the fact that more NICs are bound
to this NUMA node, so they need to share the memory bandwidth
with more STREAM threads. For the case of three cores devoted to
STREAM on each NUMA node, lowest goodput and highest latency
are observed. There are also packet drops, but all of them are resolved
with fast TCP retransmissions. For a real application, careful analysis
and tuning would be required to guarantee the desired level of perfor-
mance.

5.7 conclusion 105

5.7 conclusion

In this chapter we analysed and proposed different designs of a loss-
less software-based switch targeting high bandwidth data acquisition
networks with the aim of preventing TCP throughput collapse due to
incast congestion. Our prototypes proved that saturation and lossless
operation can be reached on real hardware providing the total band-
width of 120Gbps in the all-to-all incast scenario, where traditional
ToR switches perform poorly. And, importantly, controls on the in-
jected traffic are not required. Furthermore, our performance analysis
as well as results reported by other researchers show that higher band-
widths are achievable.

First, we characterised DAQ networks and showed that the potential
impediments of software switching, like latency or the offered band-
width for small packets, are not critical to the performance of data
acquisition systems. Instead, the nearly limitless memory and the flex-
ibility of a software switch allows us to design a dedicated software
switch with enormous packet buffers that could be considered as a po-
tential replacement for the expensive feature-rich core routers, typical
for large DAQ networks. We verified the correctness of this hypoth-
esis on real hardware providing 120Gbps bandwidth. We effectively
prevented incast maintaining the system bandwidth with 144 data col-
lectors receiving data on a total of 1584 TCP flows through a single
software switch.
Second, we optimised the production quality Open vSwitch for DAQ

traffic characteristics and implemented analogous queueing mechanism
as in the design of the dedicated software switch. We reached satura-
tion and lossless operation also in this case. Although slightly more
CPU power is required, we gain the benefits of using a fully-fledged
switch supporting standard protocols, which is an important factor in
production systems.
We also showed that there is significant headroom in terms of avail-

able CPU power. This can be used either to increase switching capacity,
reduce power consumption or perform different tasks. It is possible to
combine the functions of a software switch and, for example, readout or
filtering node, on a single server. Special attention and tuning is, how-
ever, required for shared access to the resources, memory in particular.
The small prototypes already reached, bandwidth-wise, figures com-

parable to the requirements of the ATLAS DAQ network in Run 2.
We have not demonstrated yet that such an architecture will scale by
two or more orders of magnitude for the future upgrades of the LHC
experiments, which we will discuss in the following chapter along with
other aspects such as administration, port density or costs of building
a network based on software switches.

6
SOFTWARE -DEF INED DATA ACQUIS IT ION
NETWORKS

In the previous chapters we focused our attention on small-scale prototypes
in order to evaluate potential approaches to improve the performance of data
acquisition networks under heavy incast congestion. We demonstrated that
optimised software switches are good candidates. We have not showed yet,
how large-scale networks could be built and managed. This is discussed in
this chapter. First, we remind our motivations behind taking the software-
defined approach with a centralised control plane for building a larger topology
of interconnected software switches. Next, we propose to use the leaf-spine
topology, which is already a popular solution in datacenters. We show how it
could be implemented and optimised specifically for data acquisition, focusing
on aspects as bandwidth scalability, packet routing, load balancing, resilience,
costs, and space constraints. In the end, we present a prototype leaf-spine data
acquisition network consisting of eight software switches running on separate
physical servers. This chapter contains results published in [89].

6.1 introduction

In Chapter 5 we demonstrated that software switches with large buffers
perform significantly better than typical switches under heavy conges-
tion. A server with twelve 10Gbps Ethernet interfaces acting as a proto-
type switch reached its maximum bandwidth of 120Gbps. It completely
avoided throughput degradation, while hardware switches reached no
more than 85% of the requested load under similar conditions.
Here, we intend to show that a number of software switches can

be interconnected to build terabit networks. In this context, it is im-
portant not to focus on the performance only, but consider aspects
related to building and operating a large DAQ network. Among them
are bandwidth scaling, routing, management, or load balancing. No less
important is to discuss the costs. In the end, they are among the de-
cisive factors when choosing one networking technology over the other
for the next data acquisition network.
The fundamental aspect is the choice of a topology that could scale

to terabits under the specific traffic pattern of data acquisition. It is
useful to take advantage of the lessons learnt in datacenters. The leaf-
spine (Clos-based) network architecture has become a popular, cost-

106

6.2 the leaf-spine topology for daq networks 107

effective, and efficient alternative for traditional network designs with
large routers in the core of the network, which we discussed in Sec-
tion 2.4. It is interesting to analyse the bandwidth scaling aspect of
the leaf-spine network with the assumption of predefined communica-
tion pattern, characteristic of data acquisition. Although the leaf-spine
topology has been already discussed and applied in data acquisition
(see Section 2.4), the literature misses more detailed studies on DAQ-
oriented load balancing to maximise the offered event bandwidth. In
this context, it is straightforward to discuss the usability of Software-
Defined Networking (SDN) technologies to centrally manage and opti-
mise a data acquisition network. SDN, together with software switches
and with our mechanism for DAQ-oriented buffering, can potentially
provide an entire solution that can become an alternative for the future
data acquisition networks.
We gave a brief introduction to SDN in Section 1.1.4 and we extended

it with literature review in Section 2.5, taking into account the context
of data acquisition. The most attractive feature is the ease of program-
ming flows across a network and utilising its global view in order to
optimise the performance of a DAQ system. Although this approach is
also possible with traditional networks, it is highly dependent on the
hardware vendors. Nevertheless, there are also some aspects of SDN
that are widely disputed. Among them are the single point of failure
with central network controller, flow installation latency, or the size of
OpenFlow tables in switches. These, however, are not critical in the
context of data acquisition, as it was shown in Section 2.5.

6.2 the leaf-spine topology for daq networks

Instead of combining hundreds of ports in a single core device, we
evaluate the concept of the leaf-spine topology, which has become a
popular choice in datacenters to build non-blocking fabrics. It is made
with a large number of devices, but of a lower port density. In this
architecture the core of the network is distributed over several spine
switches. It is possible to use the same ToR switches both in spine
and leaf layers. In our case, we focus on building the topology with
the loss-limited software switches, proposed in the previous chapter, or
a combination of software and ToR switches to overcome the incast
congestion problem. We follow a similar approach as in the datacenter
fabric designed by Facebook [7, 21], but adapt the topology and analyse
its performance specifically for data acquisition.

6.2.1 Design

An example of how a DAQ network could be built using the leaf-spine
topology is depicted in Figure 6.1. The basic network unit, a pod, is in
our case a subset of ROS nodes (R) and filtering racks (H). A single

6.2 the leaf-spine topology for daq networks 108

R R R R R R H H H Pod 1

R R R R R R H H H Pod 2

R R R R R R H H H Pod 3

R R R R R R H H H Pod 4

1

2

3

4

1

2

3

4

Pl
an

e
1

Figure 6.1: Architecture of a DAQ network in the leaf-spine topology. Note
that leaf switches are not connected with each other.

filtering rack is a ToR switch that connects multiple servers. Each server
runs a data collector and multiple event filtering processes, like in the
normal DAQ system. The nodes in each pod are connected to the first
stage of the network – the leaf stage. Typically, in DCNs, these nodes
are the end-hosts only. In our case, however, we treat an HLT rack as
a single entity, so the links within each rack are not considered (there
is no traffic between data collectors). The leaf switches are used to
connect the nodes in each pod and to load balance the traffic across
the links of the spine stage. The spine switches provide connectivity
between the pods. ECMP [75] (equal-cost multi-path) is often used in
datacenters to provide hash-based load balancing. In Section 6.2.2 we
will propose a method to optimally distribute all flows across available
paths in a given DAQ scenario.
When designing the topology for DAQ, we need to consider though

that, in general, the readout nodes can have multiple links to the net-
work1. This becomes critical for providing resilience to link failures and
increasing the overall DAQ bandwidth. Here, we introduce the term of
an independent plane — sometimes called a leaf-spine plane. The leaf
and spine switches in Figure 6.1 form a single plane. The ROS nodes
and HLT ToRs can connect to a number of independent planes, depend-
ing on the number of available uplinks and bandwidth requirements. An
example of this topology with four pods, six ROSes and three filtering
racks in a pod, and four planes is depicted in Figure 6.2. The pods
are interconnected in every plane by an independent leaf-spine plane.

1 In the present ATLAS DAQ network ROS PC’s are directly connected to the core
with four 10GbE links [39].

6.2 the leaf-spine topology for daq networks 109

R R R R R R H H H Pod 1

R R R R R R H H H Pod 2

R R R R R R H H H Pod 3

R R R R R R H H H Pod 4

1

2

3

4

1

2

3

4

Pl
an

e
1

1

2

3

4

1

2

3

4

Pl
an

e
2

1

2

3

4

1

2

3

4

Pl
an

e
3

1

2

3

4

1

2

3

4

Pl
an

e
4

Figure 6.2: Architecture of a DAQ network in the parallel leaf-spine topology.

We call this topology a parallel leaf-spine topology because the planes
provide independent connectivity.

6.2.2 Flow optimisation and bandwidth scaling

From the viewpoint of a DAQ system, it is important to estimate what
is the offered bandwidth of the proposed topology. Normally, the bisec-
tion bandwidth2 of a given network is given as an indicator, but in our
case we can calculate the maximum bandwidth of this topology for the
traffic pattern typical for DAQ. For this purpose we need to exploit the
multiple network paths that are available between ROSes and DCMs.
We can profit from the fact that we possess the knowledge about the
entire network and the specific traffic pattern.
The most obvious approach to maximise the network’s performance

is to assign all flows of a particular DCM to use a single plane and a
single spine switch in that plane. Two examples are given in Figure 6.3:

1. One of the DCMs of the HLT rack 2 in pod 3 is assigned to
spine switch 1 in plane 4. All flows from ROS to this DCM are
programmed in such a way that all packets go first to the leaf
switches in plane 4 and then to spine switch 1 in the same plane.
They finally reach the destination pod 3 and HLT rack 2, where
this DCM is located.

2. One of the DCMs of the HLT rack 1 in pod 4 is assigned to
spine switch 3 in plane 2. All flows from ROS to this DCM are

2 Bisection bandwidth is defined as the maximum capacity between any two servers
[170].

6.2 the leaf-spine topology for daq networks 110

programmed in such a way that all packets go first to the leaf
switches in plane 2 and then to spine switch 3 in the same plane.
They finally reach the destination pod 4 and HLT rack 1, where
this DCM is located.

All DCMs can be then spread across available planes and spine switches,
so that the traffic is equally distributed. This is under the assumption
that all the links have the same bandwidth, and all the nodes are sym-
metrically connected to every plane. The pseudo-code is presented in
Algorithm 6.1. This approach can be considered as an example of the
waterfilling algorithm, well-known in communication [129], as it allo-
cates new flows to the least loaded spine switch. In the next section
we will show how this can be achieved in real network using the Open-
Flow protocol. An example implementation is available in [43]. In more
complex situations the round-robin allocation of spine switches can be
replaced with a full waterfilling-based solution.

Algorithm 6.1 General algorithm to distribute DAQ flows across the
parallel leaf-spine fabrics.
spines← list of spine switches in the topology
nspines← number of spine switches in the topology
dcm← the first data collector in the topology
i← 0
while dcm exists do . iterate over all data collectors

spine← spines [i mod nspines] . use one spine switch for each
install_flows(dcm,spine)
i← i+ 1
dcm← the next data collector in the topology

end while

In the following we will derive the theoretical bandwidth of such a
DAQ network under these assumptions. The DAQ bandwidth can be
optimised by assigning flows to particular paths depending on the avail-
able capacity. As we will see, for a particular DAQ configuration, the
topology can be easily adapted to reach the maximum performance that
is defined solely by the available bandwidth at the input and output of
a DAQ network, and not the network itself (see equation (A.7)).
For full event building, the total bandwidth available for DAQ data

flows can be calculated with

B = NP ·NH ·NR · bRH ,

where NP is the number of planes, NH is the total number of HLT racks,
NR is the total number of readout nodes, and bRH is the bandwidth of a
single ROS-to-HLT flow. Bandwidth of this single flow is limited either
by the bandwidth of the leaf-to-HLT, ROS-to-leaf, or leaf-to-spine link,
which can be expressed with

bRH = min
(
b

NR
, b

NH
, bRHinterpod

)
. (6.1)

6.2 the leaf-spine topology for daq networks 111

R R R R R R H H H Pod 1

R R R R R R H H H Pod 2

R R R R R R H H H Pod 3

R R R R R R H H H Pod 4

1

2

3

4

1

2

3

4

Pl
an

e
1

1

2

3

4

1

2

3

4

Pl
an

e
2

1

2

3

4

1

2

3

4

Pl
an

e
3

1

2

3

4

1

2

3

4

Pl
an

e
4

R R R R R R H H H Pod 1

R R R R R R H H H Pod 2

R R R R R R H H H Pod 3

R R R R R R H H H Pod 4

1

2

3

4

1

2

3

4

Pl
an

e
1

1

2

3

4

1

2

3

4

Pl
an

e
2

1

2

3

4

1

2

3

4

Pl
an

e
3

1

2

3

4

1

2

3

4

Pl
an

e
4

Figure 6.3: The method for load balancing by assigning a particular plane and
spine switch for all flows belonging to a DCM. Two examples are
presented: a DCM in the second HLT rack in pod 3 is assigned to
spine switch 1 in plane 4 and a DCM in the first HLT rack in pod
4 is assigned to spine switch 3 in plane 2.

The base bandwidth of a single link is denoted with b. For the flows
traversing the spine layer, the bandwidth is limited by the total number
of flows that use the same plane. Note that flows from ROSes in the
same pod as a DCM do not traverse the spine layer:

bRHinterpod
=

b ·NS

NRpod
·NHpod

· (Npod − 1) . (6.2)

The numerator is the total bandwidth in/out of a pod through the
spine layer, with NS as the number of spine switches in a plane. The
denominator is the number of inter-pod flows that traverse the spine
layer. NRpod

as the number of readout nodes in a pod, NHpod
as the

number of HLT racks in a pod, and Npod denoting the total number of
pods. The total number of ROSes and HLTs is given by

NR = NRpod
·Npod

NH = NHpod
·Npod .

(6.3)

These simple equations can give a quick estimate of the offered DAQ
bandwidth for various configurations. They can be also used to derive
the minimum number of spine switches in order to guarantee the re-
quested DAQ bandwidth in a given configuration.

6.2 the leaf-spine topology for daq networks 112

1 2 3 4 5 6 7 8

No. of spine switches in a plane NS

0.0

0.2

0.4

0.6

0.8

1.0

1.2

B
an

dw
id

th
B

[T
bp

s]

Planes: 1

Planes: 2

Planes: 3

Planes: 4Pods: 4
ROSes in a pod: 25
HLTs in a pod: 7

Figure 6.4: An example for bandwidth scaling for a DAQ network (as defined
in Section 3.2) in the parallel leaf-spine topology.

An example for a DAQ system with 100 readout nodes, 28 HLT racks,
and 10Gbps of base link bandwidth is given in Figure 6.4. This design
allows for flexible adjustment of the network to the requirements by
changing the number of spine switches, planes or even the number of
nodes in a pod.
In order to ensure that the only limiting factors are the input or

output links, not the network itself, bRHinterpod
from equation (6.1) has

to fulfil the condition

bRHinterpod
≥ b

NR
, bRHinterpod

≥ b

NH
. (6.4)

Using equation (6.2) and (6.3), bRHinterpod
can be written as

bRHinterpod
=

b ·NS
NR
Npod

· NH
Npod

· (Npod − 1)

=
b ·NS ·Npod

2

NR ·NH · (Npod − 1) .

so condition (6.4) becomes

b ·NS ·Npod
2

NR ·NH · (Npod − 1) ≥
b

NR

NS ·Npod
2

(Npod − 1) ≥ NH

NS ≥ NH
Npod − 1
Npod

2

b ·NS ·Npod
2

NR ·NH · (Npod − 1) ≥
b

NH

NS ·Npod
2

(Npod − 1) ≥ NR

NS ≥ NR
Npod − 1
Npod

2

or

NS ≥ NHpod

Npod − 1
Npod

, NS ≥ NRpod

Npod − 1
Npod

, (6.5)

when taking into account per pod counts again, as in equation (6.3).
Equation (6.5) can be used to calculate the required number of switches

6.2 the leaf-spine topology for daq networks 113

in each spine plane in order to achieve the maximum network band-
width as results from the available bandwidth at the ROS and DCM
sides. What is also interesting, network utilisation is independent of
the number of parallel leaf-spine planes (assuming that all ROS nodes
and HLT racks are connected to each plane).
This is also confirmed in Figure 6.4. Independently of the number of

planes used, all plots saturate for six spine switches per plane. In this
configuration the network reaches its maximum performance, defined
by the available input and output bandwidth. If fewer switches in the
spine stage are used, the ROS and HLT links remain underutilised as
there is not enough bandwidth available in the leaf-spine fabrics. On
the contrary, when more than five spine switches are used, the fabrics is
underutilised because the HLT racks do not provide enough bandwidth:

NHpod

Npod − 1
Npod

= 74− 1
4 = 5.25 .

In all cases the ROS links are underutilised:

NRpod

Npod − 1
Npod

= 254− 1
4 = 18.75 ,

which require at least 19 spine switches in each plane in this config-
uration. This can be seen, however, as means to provide resilience to
link failures, if fewer switches are used. We will discuss the failover
mechanism in Section 6.2.4.

6.2.3 Flow assignment and packet routing

In the previous section we showed how the bandwidth of a DAQ net-
work, which is based on the proposed parallel leaf-spine architecture,
can be maximised. In our derivations, it was assumed that all paths
throughout the network are statically assigned to particular ROS-DCM
flows.
This stands in contrast to the popular load balancing methods. Tradi-

tional approaches include LAGs (IEEE 802.3ad [76]) and ECMP (IEEE
802.1Qbp [75]) that use hashing to distribute packets across available
links. These algorithms cannot guarantee though that the traffic is
equally distributed across available paths. This depends on the hash
functions used and the flows to be hashed. It can provide the best
performance when the traffic is not known a priori or it is highly dy-
namic, as in datacenters. In DAQ, the workloads are known a priori, so
deterministic load balancing is possible in DAQ networks and we can
understand its performance as shown in the previous section. A similar
approach was taken in [29, 116]. Furthermore, each single flow is always
assigned to the same path, so packet reordering is not possible, which
otherwise could decrease the performance of the end-nodes.
The OpenFlow protocol is the perfect means to achieve this static

flow assignment. We use this protocol to monitor and optimally dis-
tribute the traffic across available paths. OpenFlow is used between a

6.2 the leaf-spine topology for daq networks 114

centralised network controller and the switching nodes in the software-
defined network. We described SDN and OpenFlow in Section 2.5 in
more detail. The controller uses OpenFlow to install packet-handling
rules on OpenFlow-enabled switches. Specific actions, like forwarding
to some egress port, are applied to packets belonging to particular flows.
The flows can be defined by a number of different protocol fields, like
source/destination MAC addresses, IP addresses, TCP ports, etc.
In our design, a set of default rules is first installed throughout the

leaf-spine fabric to provide basic connectivity through the network. The
controller then uses the OVSDB protocol to instruct the switches to
create a single daqring device (see Section 5.5) for every DCM that is
identified in the system. Then it installs a set of OpenFlow rules on
the switches, so that they are programmed to move specific packets
from the ingress ports to appropriate daqrings and later to dequeue
them to the egress ports, the same way as we described already in
Section 5.5.1.1. For our evaluation in Section 6.3, we are emulating
multiple DCMs on a single host, so we are using therefore a set of rules
based on the 4-tuple (source/destination IP, source/destination TCP
port) for every ROS-to-DCM flow. The controller uses the algorithm
presented in Section 6.2.2 and assigns the optimum egress port for the
parallel leaf-spine topology. In a typical DAQ network though, it is
enough to base all flows solely on destination IP addresses. Moreover,
the switches do not need to use layer 2 MAC addresses to forward
packets.
Furthermore, the end-nodes that connect to the network with multi-

ple interfaces, like the ROSes, can be also treated as switching nodes.
An instance of OVS is, therefore, run on these nodes as well. The SDN
controller can then assign the flows outgoing from some ROS to the
appropriate plane. In this way, the entire network is programmed by
the controller and the OVSDB and OF protocols are the only protocols
in use. The Address Resolution Protocol (ARP) is not needed as ev-
ery host is configured to represent a distinct network (/32 addressing).
This approach differentiates us from the original design in [7], using
traditional network protocols with ECMP routing and flow-based hash-
ing. OVS at the end-nodes was also used by Al-Najjar, Layeghy, and
Portmann in [116], but with additional means for ARP handling. This
concept is expanded by Ballani et al. in [15], who proposed a general
framework to implement network functions at the end-hosts.

6.2.4 Resilience

Constant monitoring of path status throughout the network can be im-
plemented at the SDN controller to provide fault tolerance. As can be
seen from Figure 6.2 and Figure 6.4 failure of a single switching node
or a link does not have a significant impact on the overall system per-
formance because of the large number of independent paths available

6.2 the leaf-spine topology for daq networks 115

between the ROS and DCM nodes. Furthermore, as it was indicated in
Section 6.2.2, multiple links from the ROS to the parallel planes of the
DAQ network can be used to increase the system’s redundancy.
Path status has to be monitored, though, in order to trigger redistri-

bution of the flows according to the algorithm presented in Section 6.2.2.
The entire process at the controller is given by Algorithm 6.2 and can
be summarised in three steps:

1. Detection of link or interface failure.

2. Recalculation of the flow assignment throughout the network.

3. Installation of the new flows at the switching nodes.

Algorithm 6.2 Example algorithm to redistribute data acquisition
flows across the parallel leaf-spine fabrics after link failure.
spines← list of spine switches in the topology
nspines← number of spine switches in the topology
link_state_changed← true

while true do
if link_state_changed then . recalculate flow assignment

i← −1
dcm← the first data collector in the topology
while dcm exists do

repeat
i← i+ 1
spine← spines [i mod nspines]

until is_path_up(dcm,spine)
install_flows(dcm,spine) . install new flow
dcm← the next data collector in the topology

end while
reinstall← false

end if
link_state_changed← check_links . detect link changes

end while

For the time it takes to perform these steps, the data packets can be still
being sent over faulty paths, which degrades the performance. For this
reason, it is important to optimise the entire process. The reallocation
process will be faster, if there are fewer flows, so one of the most effective
means is to reduce the overall number of flows that are installed in the
network. In the typical case, as it was described in the previous section,
it is enough to use flows based on the IP address of each DCM only. In
this case, it becomes straightforward to reinstall the flows belonging to
the affected DCMs. In Section 2.5 we pointed to the literature on the
techniques of providing resilience in SDN networks. In Section 6.3, in
turn, we will perform initial evaluation in a prototype DAQ network.
An example implementation is available in [43].

6.2 the leaf-spine topology for daq networks 116

In SDN one more aspect has to be taken into account. As we ex-
plained already in Section 2.5, reliability of the control plane is criti-
cally important. A single controller is a single point of failure and can
bring down the entire network, if a default behaviour of the switching
nodes is not defined. Backup controllers can be used to recover from
these failures. Section 2.5 also contains references to the relevant work
in this area.

6.2.5 Cost comparison

In the introduction to this chapter (see Section 6.1) it was remarked
that the total cost of building a DAQ network is one of the key fac-
tors when considering a technology. As a matter of fact, this cost also
includes the cost of developing better traffic shaping techniques in the
given configuration, the cost of the inefficiencies introduced by the net-
work congestion, and the cost of operating a network. The latter in-
cludes also the cost of hiring or training experts for the technology of
choice. These aspects were discussed in Section 2.1.1 and Section 3.3.
In this section we focus on the cost advantage when using the parallel

leaf-spine topology with software switches instead of the traditional
approach with expensive telecom-class routers in the core of a network
(see Section 4.2). Since both solutions are based on Ethernet, it can
be assumed that the total cost of the network hardware is the main
differentiator.

6.2.5.1 Cost estimation

In case of the parallel leaf-spine topology, subsequent leaf and planes
are added incrementally (starting with a single plane with one leaf
switch) in order to provide the required port count. The number of
spine switches is predefined and determines the oversubscription3 factor
at the leafs. In this case, it is the ratio of the number of end-nodes to
the number of spine switches connected to a single leaf switch.
The oversubscription value of 1:1 is not required in order to provide

full performance for the specific traffic pattern. For example, in Sec-
tion 6.2.2, we showed that only six spine switches are needed, if there
are seven HLT racks and 25 ROS nodes in each pod. It means that
even an oversubscription of approximately 5:1 ((7+25):6) is not going
to reduce the performance of data acquisition.
The overall cost of the parallel leaf-spine network based on software

switches is determined by the total number of servers used to build

3 Oversubscription can be explained as the ratio of the worst-case achievable aggre-
gate bandwidth among the end-hosts to the total bisection bandwidth of a particular
network. For example, an oversubscription of 1:1 indicates that all hosts may poten-
tially communicate with arbitrary other hosts at the full bandwidth of their network
interface, whereas a factor of 5:1 means that only 20% of available host bandwidth
is available for some communication patterns [56].

6.2 the leaf-spine topology for daq networks 117

this network. We assume here that the same server is used for all the
switches, which is the Supermicro SuperServer 6037R-TXRF system
with ten PCIe 3.0 slots [155]. This server can be equipped, for example,
with two E5-2697 v2 Intel Twelve-Core Xeon 2.7GHz processors and
ten quad-port 10GbE network adapters [81]. In this configuration it
should be possible to provide a total of 40 10GbE ports and a band-
width of 400Gbps with a single software switch. The prices are cata-
logue prices from [27, 77]. The total cost of a single server-switch is
approximately £11 000.
The required number of servers Nservers to provide Nports ports to

connect to the network is given by the total number of leaf switches
NLtotal

and spine switches NStotal
. The number of servers is therefore

given by

Nservers = NLtotal
+NStotal

. (6.6)

The number of spine switchesNS in each plane is predetermined and de-
fines the oversubscription factor. Another predefined value is the num-
ber of network ports available on every server-switch Nportsserver .
In order to fulfil the requirement a number of parallel leaf-spine

planes is required. Each plane can offer no more than

NportsP = Npods ·Nportspod

ports to connect the end-nodes. Npods is the maximum number of pods
per plane and Nportspod

is the number of available ports in each pod.
Since each leaf switch in a plane is connected to every spine switch in
this plane (see Figure 6.2), it is given by

Nportspod
= Nportsserver −NS .

A single leaf switch connects also to a single pod, which allows us
to calculate the oversubscription factor at the leafs, Nportspod

: NS , as
(Nportsserver −NS) : NS . Also, the maximum number of pods in a plane
is therefore equal to the maximum number of leaf switches in a plane
NL. Since each spine switch has to be connected to every leaf switch
in a plane, the maximum number of leaf switches in a plane NL is
determined by the number of ports available on a single switch. The
maximum number of pods in a plane can be therefore expressed as

Npods = NL = Nportsserver .

The number of fully filled leaf-spine planes is then calculated with

NPfull
=

⌊
Nports

NportsP

⌋

=

⌊
Nports

Npods ·Nportspod

⌋

=

⌊
Nports

Nportsserver · (Nportsserver −NS)

⌋
.

(6.7)

6.2 the leaf-spine topology for daq networks 118

Another plane provides the remaining ports. They are provided by a
subset of NLrem leaf switches in this plane, but the number of spine
switches remains the same as the predefined value NS . The number of
leaf switches is equal to the number of pods required to provide the
remaining ports NPrem and can be calculated with

NLrem =

⌈
Nportsrem

Nportspod

⌉

=

⌈
Nportsrem

Nportsserver −NS

⌉
,

(6.8)

where the number of remaining ports is given by

Nportsrem = Nports −NPfull
·NportsP

= Nports −NPfull
·Nportsserver · (Nportsserver −NS) .

(6.9)

Equation (6.6) can be now expressed as

Nservers = NLtotal
+NStotal

= NLrem +NS +NPfull (NL +NS)

= NLrem +NS +NPfull (Nportsserver +NS)

= NLrem +NS

(
NPfull

+ 1
)
+Nportsserver ,

(6.10)

considering the servers used to build the planes with maximum num-
ber of pods and the plane providing the remaining pods. In the end,
equations (6.7) to (6.10) are sufficient to calculate the total number
of servers required to build a parallel leaf-spine fabrics offering Nports

ports with NS spine switches in each plane and Nportsserver ports on
each server-switch.

6.2.5.2 The reference solution

The current ATLAS DAQ network architecture (see Section 3.5.1) is
used as a reference solution. We assume that at least one Brocade
MLXe 32 [28] chassis is used. Subsequent chassis and 10GbE modules
(24-port) are added incrementally when increasing the total number
of available network ports. The ROSes and HLT racks are connected
directly to the router, so the oversubscription cannot be altered and
equals 1:1. The prices are catalogue prices from [106]. The cost of the
chassis is £98 698, the single 24-port module is £51 948, and the single
switch fabric module is £7399 (seven modules are included in the cost
of chassis). The maximum number of ports in a single chassis is 768.
The required number of chassis Nchassis, modules Nmodules, and fabric
modules Nfmodules can be calculated with

Nchassis =

⌈
Nports

768

⌉
Nmodules =

⌈
Nports

24

⌉
Nfmodules = Nmodules .

6.2 the leaf-spine topology for daq networks 119

0 100 200 300 400 500 600 700 800

Total no. of 10GbE ports

0

1

10

100

Pr
ic

e
ra

tio
[t

ra
di

tio
na

l/l
ea

f-
sp

in
e]

Oversubscription 1:1
Oversubscription 3:1
Oversubscription 4:1

Figure 6.5: Costs comparison for building a DAQ network with the traditional
approach (large routers in the core) and the parallel leaf-spine
topology (software switches) with different oversubscription fac-
tors at the leaf switches. The cost of cabling is not included.

6.2.5.3 Comparison

Figure 6.5 shows that a DAQ network of the size of the ATLAS ex-
periment using software switches is generally few times cheaper than
the current solution. The advantage grows when increasing the over-
subscription factor, which can be followed to some extent without any
performance degradation in the DAQ use case, as explained in Sec-
tion 6.2.2. For lower port counts, the ratio is significantly larger due to
the high cost of the router chassis.
The only exception to this rule is for the oversubscription of 1:1 and

lower port counts. In few configurations, the traditional approach can
be cheaper. This is caused by the fact that a lot of spine switches are
used to interconnect a small number of pods. This is not, however, a re-
alistic configuration as the network would remain highly underutilised.

6.2.6 Physical space requirements

The physical space required to fit the entire networking hardware can
be also an important factor when designing a DAQ network. This is
particularly important in space-constrained environments, example of
which are the LHC experiments. For this reason, we provide an esti-
mate on the physical dimensions of a DAQ network based on software
switches.
In Section 6.2.5 we compared the costs of building a network based on

the parallel leaf-spine topology based on server-switches to the costs of a
reference solution, following the current ATLAS DAQ network. Similar
methodology can be used to compare the space requirements of both
solutions. Figure 6.6 shows the ratio of the physical area required by the
reference solution with the Brocade core routers to the area required
by the parallel leaf-spine topology based on server-switches. For the

6.3 a prototype of an sdn-based daq network 120

0 100 200 300 400 500 600 700 800

Total no. of 10GbE ports

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

A
re

a
ra

tio
[t

ra
di

tio
na

l/l
ea

f-
sp

in
e]

Oversubscription 1:1
Oversubscription 3:1
Oversubscription 4:1

Figure 6.6: Comparison of the physical space required (total area) for building
a DAQ network with the traditional approach (large routers in the
core) and the parallel leaf-spine topology (software switches) with
different oversubscription factors at the leaf switches.

former, the area is given by the dimensions of the Brocade MLXe 32
chassis [28]. For the latter, the dimensions of racks required to fit all
the server-switches determine the total physical area needed. We use a
reference rack from [1].
In this case, the traditional approach has the advantage. For higher

oversubscription factors, server-switches in the leaf-spine fabrics require
two to four times more physical area. Although the ratio remains in
single-digit range, this aspect has to be considered when designing the
entire TDAQ system. In Chapter 7 we will propose a solution to im-
prove this metric.

6.3 a prototype of an sdn-based daq network

In order to evaluate the potential usage of the proposed design in
building a centrally managed DAQ network with DAQ-optimised Open
vSwitches we prepared an IP-only parallel leaf-spine network. Figure 6.7
gives an overview of this prototype.

6.3.1 Evaluation setup

switching nodes This network consists of eight software switches
(see Figure 6.7a) running on separate physical servers. The servers act-
ing as switches follow the same specification as in Section 5.3.1. We
continue to use OVS optimisations described in Section 5.5. Pause
frame mechanism remains disabled for all the following tests. The Open-
Daylight’s [167] REST API [60] is used to distribute the flows across
available paths with the algorithms presented in Section 6.2.2 and Sec-
tion 6.2.3. The only difference is that we need to use both IP addresses
and TCP port numbers in order to distinguish the DCMs. This comes
from the fact that we emulate small HLT racks on each physical edge

6.3 a prototype of an sdn-based daq network 121

R R R H H H Pod 1

R R R H H H Pod 2

1

2

1

2

Pl
an

e
1

1

2

1

2

Pl
an

e
2

(a)

1 2 3 4

No. of spine switches in a plane NS

0

20

40

60

80

100

120

B
an

dw
id

th
B

/G
oo

dp
ut

G
[G

bp
s]

Planes: 1 (theory)

Planes: 2 (theory)

PCIe Gen1 limit

Pods: 2
ROSes in a pod: 3
HLTs in a pod: 3

Bandwidth
Goodput

(b)

Figure 6.7: The prototype of the parallel leaf-spine topology (a) and its theo-
retical performance for DAQ traffic pattern (b).

host, so the DCMs running on the same host share the IP address.
All flows are therefore based on IP addresses and TCP port numbers.
Layer 2 MAC addresses are not used to forward packets at any switch-
ing node.

edge hosts Six ROSes and six HLT nodes run on separate phys-
ical hosts (twelve total). Eight DCMs run on each host to emulate a
small HLT rack. Each host connects to two planes, and an OVS in-
stance is run on every host, so that the network controller can assign
the flows to the appropriate plane. Each ROS provides a single event
fragment of 128KiB, so the total event size is 768KiB. The theoreti-
cal bandwidth for the DAQ-specific traffic pattern, calculated with the
formulas derived in Section 6.2.2, is given in Figure 6.7b. This plot
also includes the values converted to the theoretical goodput, using the
equations from Appendix A.2. Note, our edge hosts in this testbed use
PCIe gen1. Consequently, we know in advance that we will not be able
to reach the network capacity. However, we will be able to use this as
an opportunity to show the advantage of daqrings to shape traffic to
suit limited edge devices (see Section 5.4.1.3 for details). The estimated
upper limit that can be reached is also drawn in Figure 6.7b. This is
estimated as the sum of the theoretical effective data rate available
on the PCIe gen1 interfaces connecting the 10GbE network ports on
the edge hosts [65]. It is then recalculated into the DAQ theoretical
goodput with equation (A.12).

network The entire network, including switching nodes and edge
hosts, is programmed by the OpenDaylight controller. The OVSDB
and OF protocols are the only protocols in use. ARP is not needed as
every host is configured to represent a distinct network (/32 addressing).
This follows our generalised design that was presented in more detail
in Section 6.2.3.

6.3 a prototype of an sdn-based daq network 122

6.3.2 Evaluation results

As throughout the thesis, the goal of our designs and optimisations is
a lossless network for DAQ that provides optimum throughput for the
specified traffic pattern. The event rate remains unlimited for the follow-
ing evaluation, which means that we measure the saturation goodput.

6.3.2.1 Daqrings tuning

As we noted already in Section 6.3.1, it is not possible to reach the
theoretical performance with our prototype DAQ topology because of
the edge hosts. The bandwidth is limited by PCIe gen1 bus used in
the hosts emulating ROS and HLT racks, which is not enough for the
dual-port 10GbE network interfaces. Furthermore, their on-chip buffers
are small, so they are easily overflown with bursty many-to-one traffic.
This situation resembles, to some extent, the real-world ATLAS config-
uration. The ToR switches have 10GbE uplinks to the core, but only
1GbE to the edge hosts (see Section 3.5.1). This allows us to evaluate
the use of per-daqring traffic shaping.
For every daqring device we use the OVSDB protocol to limit the

number of packets (burst size) than can be dequeued from this ring
in a single polling cycle as already explained in Section 5.4.1.3 and
Section 5.5.1. Both the burst size and the polling cycle can be tuned
for every configuration of the parallel leaf-spine fabrics, as illustrated
in Figure 6.8. Careful fine-tuning gives us the best combination of
those values, which eliminates packet drops (lossless operation) and
maximises the goodput by adapting to the particular limitations of the
PCIe/NIC combination. The larger the maximum burst size, the longer
polling interval is required. This is natural as the ratio of burst size and
polling interval translates directly into a specific rate limit.
Specifically, every combination of the maximum burst daqringburst

within a polling cycle daqringpolling can be also expressed as shaping
the outgoing packet streams towards each DCM as not to exceed a spe-
cific rate limit daqringlimit. For the largest Ethernet frames of 1518B
(including the 4B for the checksum and 14B for the Ethernet header)
[55], it can be estimated as

daqringlimit =
daqringburst · 1518B

daqringpolling
.

For our configurations, the optimum settings are summarised in Fig-
ure 6.8g. This table contains also the maximum total rate towards an
HLT node, considering that there are eight DCMs emulated on a single
host.
For the full topology with two planes and two spine switches in each

of them, this total limit is 11.8Gbps. This matches the theoretical ef-
fective data rate of PCIe gen1 (that is shared by two 10GbE ports on
each host) of 12.19Gbps [65]. What can be seen in Figure 6.8e and

6.3 a prototype of an sdn-based daq network 123

0 40 80 120 160 200 240 280

Polling interval [us]

0

10

20

30

40

50

60

70

G
oo

dp
ut

G
[G

bp
s]

PCIe Gen1 limit (total)

Network limit

Max. daqring-rx-burst = 1
Max. daqring-rx-burst = 3
Max. daqring-rx-burst = 4

(a)

0 50 100 150 200
1

10

100

1000

D
at

a
co

lle
ct

io
n

la
te

nc
y

l[
m

s]

Max.
daqring-rx-burst = 1

0 50 100 150 200

Max.
daqring-rx-burst = 3

0 50 100 150 200

Max.
daqring-rx-burst = 4

10th percentile Median 99th percentile

Polling interval [us]

(b)

0 40 80 120 160 200 240 280

Polling interval [us]

0

10

20

30

40

50

60

70

G
oo

dp
ut

G
[G

bp
s]

PCIe Gen1 limit (total)

Network limit
Max. daqring-rx-burst = 1
Max. daqring-rx-burst = 3
Max. daqring-rx-burst = 4

(c)

0 50 100 150 200
1

10

100

1000

D
at

a
co

lle
ct

io
n

la
te

nc
y

l[
m

s]
Max.
daqring-rx-burst = 1

0 50 100 150 200

Max.
daqring-rx-burst = 3

0 50 100 150 200

Max.
daqring-rx-burst = 4

10th percentile Median 99th percentile

Polling interval [us]

(d)

0 40 80 120 160 200 240 280

Polling interval [us]

0

20

40

60

80

100

120

G
oo

dp
ut

G
[G

bp
s]

PCIe Gen1 limit (total)

Network limit

Max. daqring-rx-burst = 1
Max. daqring-rx-burst = 3
Max. daqring-rx-burst = 4

(e)

0 50 100 150 200
1

10

100

1000

D
at

a
co

lle
ct

io
n

la
te

nc
y

l[
m

s]

Max.
daqring-rx-burst = 1

0 50 100 150 200

Max.
daqring-rx-burst = 3

0 50 100 150 200

Max.
daqring-rx-burst = 4

10th percentile Median 99th percentile

Polling interval [us]

(f)

Configuration Burst Polling [µs] Limit [Gbps] Towards an HLT node [Gbps]

1-plane-1-spine 3 40 0.91 7.3
1-plane-2-spines 3 35 1.04 8.3
2-planes-2-spines 4 33 1.47 11.8

(g)

Figure 6.8: Tuning traffic shaping at the daqring queues for the setup depicted
in Figure 6.7a, using one plane with one spine switch (a) and (b),
using one plane with two spine switches (c) and (d), and using two
planes with two spine switches (e) and (f). Optimum settings for
each configuration are summarised in (g).

6.3 a prototype of an sdn-based daq network 124

Figure 6.8f, for the optimum traffic shaping configurations, the good-
put is maximised and the data collection latency is minimal without
indications of packet drops. All percentiles are below 6ms, while the se-
rialisation delay of the entire event and protocol headers at 1.472Gbps
is 4.5ms.
Similar observations can be made for the incomplete configurations

(one plane with two spines in Figure 6.8c and Figure 6.8d or one plane
with one spine in Figure 6.8a and Figure 6.8b). Data collection latencies
are slightly higher, because a lower rate is used.

6.3.2.2 Goodput and latency

Using the optimal settings for each configuration, we focus now on the
goodput and latency characteristics in more detail. They are presented
in Figure 6.9 (OVS+rate_limited_daqrings). As a reference, results for
the cases with non-limited daqrings (OVS+daqrings-CC) and using
TCP Cubic instead of daqrings (OVS+TCP_Cubic) are also plotted.

1-plane-1-spine OVS with rate-limited daqrings reaches the the-
oretical goodput without any signs of TCP timeouts in the latency dis-
tribution. Without rate-limitation, timeouts occur and goodput is sig-
nificantly lower. The same occurs for the configuration without daqrings,
but with default TCP Cubic congestion control.

2-planes-1-spine Goodput for rate-limited daqrings increases
slightly, but remains lower than the theoretical value in this case. The
other configurations perform similarly to one plane. The reason is that
we are still using only a single port of the dual-port interface on every
host, which is the bottleneck in this configuration.

2-planes-2-spines Goodput of all configurations improves. All
possible paths through the parallel leaf-spine network are used. OVS
with rate limitation gives the best goodput (about 46% of the theo-
retical limit of the fabric and 75% of the theoretical PCIe gen1 limit).
No packet drops are observed. Also the data collection latency is lower
than with 1-plane-1-spine because the DCMs of the same HLT node
are now distributed across independent paths.

6.3.2.3 Failover

To conclude our evaluation of the prototype parallel-leaf spine fabric,
we conduct an initial study on the failover mechanism. We analyse a
case when just a single HLT node with eight DCMs is active and all
fabric switches are enabled. Figure 6.10 shows how the goodput and
the number of retransmitted TCP segments change over time, when a
link between the leaf switch (connecting this particular HLT node) and
a single spine switch breaks.

6.3 a prototype of an sdn-based daq network 125

1 2 3

No. of spine switches in a plane NS

0

20

40

60

80

100

120

G
oo

dp
ut

G
[G

bp
s]

Planes: 1 (theory)

Planes: 2 (theory)

PCIe Gen1 limit (total)

OVS+daqrings-CC
OVS+rate limited daqrings
OVS+TCP Cubic

(a)

0% 40% 80%
1

10

100

1000

D
at

a
co

lle
ct

io
n

la
te

nc
y

l[
m

s] 1 plane
1 spine

0% 40% 80%

1 plane
2 spines

0% 40% 80%

2 planes
2 spines

OVS+daqrings-CC OVS+rate limited daqrings OVS+TCP Cubic

Percentile

(b)

Configuration Gsat lm [ms] σl [ms]

1-plane-1-spine
OVS+daqrings-CC 46.7% 13.0 62.93
OVS+rate_limited_daqrings 95.7% 7.6 0.59
OVS+TCP_Cubic 57.3% 5.6 38.84
2-planes-1-spine
OVS+daqrings-CC 22.3% 13.1 63.99
OVS+rate_limited_daqrings 51.7% 7.5 0.79
OVS+TCP_Cubic 29.4% 5.4 38.06
2-planes-2-spines
OVS+daqrings-CC 22.7% 9.0 42.60
OVS+rate_limited_daqrings 45.8% 5.5 0.19
OVS+TCP_Cubic 24.8% 4.63 30.36

Figure 6.9: Comparison of three different approaches to incast congestion in the parallel leaf-spine
topology (see Figure 6.7a). Saturation goodput (a) and the distribution of the event
data collection latency (b) in function of the number of parallel planes and spine
switches. The values for goodput in the table are relative to the theoretical limit of
the given network configuration (not the PCIe limit).

At first, this HLT node performs near its theoretical performance,
without any packet drops. Then, after around 120 s, a link to one of
the spine switches breaks. It triggers the SDN controller to disable all
flows related to daqrings in the fabric, so just the default path, using
just one spine switch, is used. This results in low performance.
The SDN controller rescans now all the edge-hosts in order to iden-

tify all ROS-to-DCM flows with changed state. This is required as the
DCMs may reinstate their TCP connections if no data are received
for some period of time. The TCP port numbers change, so new flows
have to be installed on the switches (we need to use both IP addresses
and TCP number to distinguish individual DCMs, as described in Sec-
tion 6.3.1). We did not optimise this process and the controller simply
uses the SSH protocol to log into each HLT node and retrieve the ROS-
DCM connections. With the updated list of connections, the controller

6.4 conclusion 126

0 50 100 150 200 250 300 350

Time [s]

2

3

4

5

6

7

8

9

10

G
oo

dp
ut

G
[G

bp
s]

0

500

1000

1500

2000

2500

3000

R
et

ra
ns

m
itt

ed
T

C
P

se
gm

en
ts

Figure 6.10: Simple failover scenario. A link in the topology from Figure 6.7a
is broken around 120 s, and comes up again around 240 s.

can now distribute the flows across available paths using the same al-
gorithm as before (see Section 6.2.2), excluding the broken path. Since
only a single HLT is active all flows can be moved to other paths and
operate at the same goodput again.
Unfortunately, the time it takes to rescan and reinstall the flows

coincides with the time when the broken links becomes available again.
Because of that we cannot distinguish these two events in Figure 6.10.
After around 250 s from the start of the test, the HLT node operates
at its full theoretical bandwidth again.
Although this evaluation cannot prove the effectiveness of the failover

mechanism, we show basic principles how to achieve resilience and indi-
cate important aspects that must be considered. First of all, scanning
the entire system for ROS-DCM connections for each change in the net-
work cannot be effective. In real world, it would be enough to use just
the IP addresses of the data collectors for all flows, including redirec-
tions to daqrings. In this situation, there is no need to scan the DCMs
at all, so the failover can be performed faster. Second, upon link failure
detection, it is enough to redistribute the flows impacted by the failed
link, so the performance degradation will be significantly lower. Fur-
ther optimisation is possible, if backup flows are installed on each node
in the network. In case of link failure, packets could be immediately
redirected to the backup paths.
A general discussion on providing resilience in software-defined net-

works is available in [12].

6.4 conclusion

In this chapter we showed how software switches, which we optimised
for data acquisition in the previous chapter, can be connected together
to build larger network topologies. Taking advantage of the optimised
parallel leaf-spine topology these software switches prove to be a viable

6.4 conclusion 127

alternative for the expensive feature-rich core routers in the future up-
grades of the experiments at the LHC and other DAQ systems.
First, we presented how the leaf-spine topology, already popular in

datacenters, can be adapted to the specifics of data acquisition. In
particular, we concentrated on optimising the flow distribution across
the fabric for the specific traffic pattern. We showed that it is feasi-
ble to build terabit data acquisition networks using dedicated software
switches. This approach can offer cost and performance advantage over
the traditional network designs, where expensive telecom-class devices
are required. This comes, however, at the cost of slightly larger physical
space required to accommodate the hardware. In the following chapter
we will discuss, whether this could be alleviated with a new type of
Ethernet devices.
Second, we proposed and evaluated on real hardware a method to

manage and optimise the network using software-defined technologies,
OpenFlow and OVSDB. We showed that the network can be centrally
programmed using solely IP and TCP addressing. Using traffic shaping
at the daqring ports, we demonstrated how the network can be tuned, in
various configurations, to maximise the system’s performance and reach
lossless operation with high throughput and low latency. We concluded
our evaluation with a preliminary discussion on providing resiliency.
Thus, we have shown that this design, including the optimised soft-

ware switches, the adapted leaf-spine topology and the software-defined
control plane, can be a viable solution for future data acquisition net-
works.

7
MULTI -HOST ETHERNET CONTROLLERS

Software switches were presented in the previous chapters as an alternative
to the existing approaches to handle incast congestion in data acquisition. We
have already shown performance of software switching is good with the pos-
sibility to scale to terabit networks. There is significant cost advantage over
traditional solutions at the same time. However, we also see space can be an
issue, as discussed in the previous chapter. Space usage can be reduced using a
new class of Ethernet devices — multi-host Ethernet controllers. These devices
combine a traditional network interface controller used on servers with an ad-
vanced Ethernet switch. However, since their performance characteristics are
slightly different, we recheck in this chapter that performance is still sufficient.
Furthermore, we explain how the shortcomings of software switching, which
can prevent this approach from application in datacenter networks, could be
overcome with multi-host Ethernet controllers. These devices provide advan-
tages of both: flexible software switches with extreme buffering capabilities
and high-performance traditional switch ASICs. This chapter contains results
published in [90].

7.1 introduction

An interesting alternative to using multiple network interfaces on com-
modity servers as software switches is replacing the former with a new
class of Ethernet devices — multi-host Ethernet controllers. An exam-
ple is Intel’s FM10000 chip family [82], which offers up to 36 10GbE
and four PCIe gen3 interfaces. As such it provides the features of both a
traditional hardware switch, with a fast ASIC offering high bandwidth
for packet forwarding, and a flexible software switch, with large, but
slower memory, that can be run in parallel.
The advantages in approaching incast congestion in this way are

twofold. First, better port density can be reached. As we have seen
in Section 6.2.5, an example server can be equipped with 40 10GbE
ports and requires three rack units. In contrast, a device based on
the FM10000 chip can fit 72 10GbE interfaces with four servers in
four rack units [3]. Second, the possibility to offload only some of the
packet processing tasks to the dedicated switching ASIC can make our
approach to incast congestion more suitable for datacenter networks.
In Section 5.2.2 we pointed to the potential limitations of software

128

7.2 advantages in incast-avoidance 129

switches for general workloads, which normally do not apply to DAQ.
If incast-sensitive flows were the only ones redirected to the software
switch for buffering and traffic shaping, other flows would not be suscep-
tible to increased latency, bufferbloat, or worse performance for small
packets.

7.2 advantages in incast-avoidance

In the following we will discuss in more detail what are the poten-
tial advantages in incast-avoidance when using multi-host Ethernet
controllers. We consider the potential improvements in port density,
NUMA-tuning, and new possibilities for hardware acceleration.

7.2.1 Towards higher port density

In Section 6.2.6 we compared the physical space required when building
a traditional DAQ network with large routers in the core and the pro-
posed parallel leaf-spine topology based on optimised software switches.
The former had an advantage, requiring two to four times less physical
area.
In the following evaluation we consider the CSA-7400 computing

platform for building software switches. This platform combines four
compute nodes with dual Intel Xeon processors and two switch modules,
the latter being the FM10840 multi-host Ethernet controllers [3]. Each
compute node connects to every switching node with a PCIe (gen3)
link. In the end, 72 10GbE interfaces with four servers require four
rack units, whereas server-switches from Figure 7.1 occupy three rack
units and provide 40 10GbE ports. Unfortunately, we do not consider
how the costs change when using the CSA-7400 computing platform
because the prices are not known at the moment.
Figure 7.1 shows that improvement in port density can be achieved,

if server-switches with traditional NICs are replaced with devices using
multi-host Ethernet controllers. Up to two times more ports can fit
the same physical space. Although the density offered by traditional
network designs (see Section 6.2.6) is still not reached, space utilisation
is improved.
Furthermore, four dual Xeon processors, eight total, exceed by far

the computational requirements for 72 10GbE ports. In Section 5.5.4,
we showed that eight CPU cores are enough to provide full performance
in a DAQ scenario with twelve 10GbE ports. Using a simple extrapo-
lation, 48 cores would be required for two FM10840 devices. Assuming
twelve-core processors, four Xeon CPUs out of eight available on the
CSA-7400 platform should provide enough processing power. The re-
maining CPUs can be used for other tasks without limitations. This
would not be constrained by resource sharing with the software switch,
which we explained in Section 5.6.3, because they are physically sepa-

7.2 advantages in incast-avoidance 130

0 100 200 300 400 500 600 700 800

Total no. of 10GbE ports

0.0

0.2

0.4

0.6

0.8

1.0

1.2

A
re

a
ra

tio
[F

M
10

00
0/

N
IC

s]

Oversubscription 1:1
Oversubscription 3:1
Oversubscription 4:1

Figure 7.1: Comparison of the physical space usage (total area) for building a
DAQ network based on software switches using traditional NICs
or multi-host controllers for various oversubscription factors at the
leaf switches.

rate processors. Thus, the area occupied by the network based on multi-
host Ethernet controllers provides also significant computing resources
for event data processing and filtering. As we will see in the following
sections, they can be even increased, if hardware acceleration offered
by these multi-host devices is used to further reduce the computational
requirements of the software switch.

7.2.2 Overcoming QPI limitations

In Section 5.2.1 and Section 5.4.2.1 it was indicated that the QPI bus in-
terconnecting CPUs on the same server platform can negatively impact
the performance of a software switch. For this reason it is important
to consider appropriate, NUMA-aware, allocation of NICs in the slots
available on the server platform and affinity control of the CPU cores
executing packet processing threads (see Section 5.2.2).
This considerations can be avoided with multi-host Ethernet con-

trollers. When comparing the architecture presented in Figure 5.3b
(using NICs) and Figure 7.2 (using multi-host controllers), it becomes
clear that in case of the former each CPU has direct access over PCIe
to a subset of network ports only. The remaining ports have to be ac-
cessed using the QPI bus, which requires careful performance tuning.
For multi-host Ethernet controllers, there is no need to use QPI. Each
CPU has direct access to the entire switching ASIC over its own PCIe
lanes and, thus, can forward packets to every output port of this switch
without the need to use QPI.

7.2.3 Open vSwitch acceleration

Multi-host controllers, being both a NIC and an Ethernet switch, open
the possibility to offload some of the packet processing to the switching

7.3 performance evaluation 131

ASIC. This can include, among others, applications like ARP handling
or flow caching. The switching ASIC has the capabilities to define for-
warding rules based on layer 2, layer 3, or layer 4 protocol headers
[82]. Furthermore, in case of the DAQ-optimised software switch, only
those packets that need to be buffered in dedicated queues, could be
redirected to the software switch. Thus, the remaining traffic would not
need to be processed by the CPUs and, in effect, reduce the number of
the required processing CPU cycles.
In case of the CSA-7400 computing platform [3], hardware accelera-

tion for Open vSwitch and OpenFlow is declared as a built-in feature,
so the advantages are available for use without additional programming
efforts.

7.2.4 Application in datacenter networks

As we already mentioned in the introduction to this chapter, the pos-
sibility to offload only some of the packet processing tasks to the dedi-
cated switching ASIC can make our approach to incast congestion more
suitable for datacenter networks. The generic performance of software
switches can prevent them from application in many networks. In Sec-
tion 5.2.2 we indicated that latency and throughput for small packets
is often not enough to consider software switches with large buffers
as a valid option for incast-avoidance in datacenters. Normally, those
limitations do not apply to DAQ.
Multi-host controllers can adapt this solution to incast for the ap-

plication in datacenter networks. The incast-sensitive flows should be
the only ones redirected to the software switch for buffering and traffic
shaping. All other flows can be then handled by the switching ASIC
and, as a result, they would not be susceptible to increased latency,
bufferbloat, or worse performance for small packets.

7.3 performance evaluation

In the previous section we showed that the physical space usage can be
optimised when multi-host controllers are used instead of traditional
NICs to build software switches. This advantage is particularly impor-
tant in applications with constraints on the physical area. An example
here are DAQ systems, like those at the LHC at CERN, where physical
space is often limited on the experiment’s site. This is not the only ad-
vantage of using multi-host controllers. As we explained in Section 7.2.4,
the limitations of software switches could be largely avoided by offload-
ing solely the incast-sensitive flows to the software switches for traffic
shaping and buffering. The remaining packets can be switched by the
traditional high-performance ASIC. In this section we evaluate the per-
formance and discuss whether these devices are indeed suitable as a so-
lution for incast-avoidance. We continue to use the ATLAS DAQ/HLT

7.3 performance evaluation 132

Device under Test

Intel Xeon
E5-2660 V3
10 cores
2.6GHz

Intel Xeon
E5-2660 V3
10 cores
2.6GHz

QPI x16
9.6GT/s

QPI x16
9.6GT/s

4 memory channels
DDR3-2133
32GB total

4 memory channels
DDR3-2133
32GB total

PCIe 3.0
40 lanes

PCIe 3.0
40 lanes

PCH

Other interfaces

DMI

FM10840
reference platform
24 x 10GbE ports

4 x PCIe x8 ports

P
C
Ie

x8
ge
n3

P
E
P
0

P
C
Ie

x8
ge
n3

P
E
P
1

P
C
Ie

x8
ge
n3

P
E
P
2

P
C
Ie

x8
ge
n3

P
E
P
3

Figure 7.2: Block diagram of the device under test (DuT) that consists of
a COTS server (Supermicro Superserver 7048R-TR) connected
over four PCIe x8 links with the reference platform of the Intel
FM10840 chip. It offers 24 10GbE ports.

software in emulation mode for the following evaluations. As a mat-
ter of fact, we consider the same or similar configurations, that were
already evaluated in Chapter 4 and Chapter 5.

7.3.1 Device under test

In this chapter we evaluate a reference platform of the Intel FM10840
multi-host controller, see Figure 7.2. This platform offers 24 10GbE
ports and four PCIe ports — PEPs. PEPs are connected with PCIe
cables to four PCIe x8 gen3 slots of a COTS server. The maximum
bandwidth on each PEP is 50Gbps. The server is a Supermicro Super-
Server 7048R-TR [155] with two Intel Xeon EP-2660 v3 (code name
Haswell) ten-core CPUs. There is also a total of 32GiB DDR3 mem-
ory installed (16GiB per CPU socket). The operating system is 64-bit
Fedora 20, kernel version 3.19.8-100. We configure the system to avoid
the well-known bottlenecks, as described already in Section 5.2.2. This
arrangement is used in the following configurations.

traditional ethernet switch (peps:0) Ethernet ports are
the only ports used and switching is performed by the FM10840 chip.
PEP ports are not used. This configuration is used as baseline (typi-
cal Ethernet switch). Congestion avoidance is realised with static TCP

7.3 performance evaluation 133

congestion window (see Section 4.5.2.1), the pause frame mechanism
of the switch and NICs (see Section 4.5.3), or with application layer
traffic shaping, which limits the number of parallel data requests (see
Section 4.5.1).

traditional ethernet switch with extra software
queues (peps:1|2|3|4) Those queues, being the same daqrings
introduced in Chapter 5, are used to accommodate many-to-one traffic
bursts. In this configuration packets incoming on Ethernet ports that
match some predefined rules are redirected to the PEP ports (one, two,
three or four PCIe ports can be used) and handled by a software switch
running on the COTS server. This is the same Open vSwitch 2.4.0 with
custom patches as in Section 5.5, but with DPDK 2.2.0 that provides
the user-space drivers for the FM10000 devices. This software switch is
configured to enqueue the packets in those daqrings in order to avoid
incast congestion. This approach provides large buffering capabilities
in the DRAM memory of the host and rate limitation on a per daqring
basis, so that a DAQ network is optimised and can provide lossless
operation.
Our goal is to evaluate the performance of the second configuration,

compare it to the performance of traditional switches under heavy in-
cast congestion (first configuration), and demonstrate a new potential
application of multi-host Ethernet controllers.

7.3.2 Test configuration A

This is the same configuration that was used to tune and evaluate the
traffic shaping mechanism, static TCP congestion window, and pause
frames in Section 4.5.4, where the details on this evaluation setup can be
found. The left-hand side switch in Figure 4.14 was the DuT configured
to operate as a traditional ToR switch (PEPs:0). Here, we extend this
comparison and enable the offload of the incast-sensitive flows to the
software switch over the PCIe ports (PEPs:3). There are twelve ROS
nodes connected with 10GbE links to the DuT (120Gbps total), so
three PEPs are required (150Gbps total) in order to guarantee that all
traffic from ROS can be redirected to the software switch.
The approaches to incast that require tuning, namely application-

layer traffic shaping and static TCP congestion window, were tuned
already in Section 4.5.4. Before extending the comparison, we will also
optimise the configuration of daqrings for the case when the optimised
software switch is used for incast-avoidance.

daqrings tuning Figure 7.3 is used to tune the dedicated queues
of the software switch running on the host connected to the DuT with
three PCIe ports (PEPs:3). There is a single daqring for each of the 30
DCMs and each of these daqrings is rate-limited in order to maximise

7.3 performance evaluation 134

320 330 340 350 360 370

Rate limit [Mbps]

0

2

4

6

8

10

G
oo

dp
ut

G
[G

bp
s]

Theoretical
maximum

ATLAS TDAQ

320 330 340 350 360 370

Rate limit [Mbps]

10

100

1000

D
at

a
co

lle
ct

io
n

la
te

nc
y

l[
m

s]

ATLAS TDAQ

10th percentile
Median
99th percentile

320 330 340 350 360 370

Rate limit [Mbps]

0
100

101

102

103

104

105

106

107

R
et

ra
ns

m
itt

ed
T

C
P

se
gm

en
ts

ATLAS TDAQ

Figure 7.3: Goodput (a), data collection latency (b), and the total number of
TCP retransmissions (c) when tuning rate limits at daqrings for
the setup depicted in Figure 4.14.

7.3 performance evaluation 135

20% 40% 60% 80% 100%

Offered load Go f f

0%

20%

40%

60%

80%

100%
Su

st
ai

en
d

lo
ad

G
su

st

ATLAS TDAQ

PEPs:3; daqrings:344Mbps
PEPs:3; daqrings:1.38Gbps
PEPs:0; traffic shaping (app)
PEPs:0; static TCP
PEPs:0; PAUSE (rx/tx)

(a)

40% 80%
1

10

100

1000

D
at

a
co

lle
ct

io
n

la
te

nc
y

l[
m

s]

PE
Ps

:0
;

tra
ffi

c
sh

ap
in

g
(a

pp
)

40% 80%

PE
Ps

:0
;

st
at

ic
T

C
P

40% 80%

PE
Ps

:0
;

PA
U

SE
(r

x/
tx

)

40% 80%

PE
Ps

:3
;

da
qr

in
gs

:3
44

M
bp

s

10th percentile Median 99th percentile

40% 80%

PE
Ps

:3
;

da
qr

in
gs

:1
.3

8G
bp

s

Offered load Go f fATLAS TDAQ

(b)

0% 40% 80%
1

10

100

D
at

a
co

lle
ct

io
n

la
te

nc
y

l[
m

s]

Go f f = 10%

0% 40% 80%

Go f f = 70%

0% 40% 80%

Go f f = 99%

PercentileATLAS TDAQ

(c)

Configuration Goff lm [ms] σl [ms]

Traffic shaping 10% 3.06 0.53
70% 2.51 0.13
99% 2.55 0.27

Static TCP 10% 3.29 0.41
70% 2.59 0.29
99% 2.64 0.35

Pause frames 10% 2.83 0.47
70% 7.63 1.73
99% 85.5 6.09

daqrings (344Mbps) 10% 6.99 0.53
70% 9.27 0.73
99% 9.59 1.67

daqrings (1.38Gbps) 10% 2.85 0.48
70% 2.5 0.08
99% 115.01 163.06

Figure 7.4: Comparison of application-layer traffic shaping, static TCP congestion window, Ether-
net IEEE 802.3x pause frame mechanism, and daqrings in the configuration depicted
in Figure 4.14. Sustained load (a) and data collection latency (b) in function of the
offered load, and the exact distributions of latency for three cases (c).

the performance under full load. Maximum performance is guaranteed
with a rate limit of 344Mbps, for which the goodput reaches the max-
imum value, data collection is at its minimum, and no TCP retrans-
missions are observed, which confirms lossless operation. For different
loads, the process needs to be repeated.

results As already discussed in Section 4.5.4, all solutions provide
similar performance in incast-avoidance, which can be explained by
a less demanding configuration in terms of incast congestion. More
detailed study in different configurations is required to show larger
potential differences. In the following section we will present another
evaluation, emulating stronger incast congestion.

7.3 performance evaluation 136

R R R H H H

R R R H H H

Emulated DAQ system

Device under test

Nin = 12 Nout = 12

HLTSV

Data flow10Gbps

1Gbps

Figure 7.5: Second test configuration for evaluation of the FM10840 reference
platform. Six nodes are used to emulate ROSes, each providing
single event data fragment of 96KiB. Eleven DCMs are emulated
on each of the remaining six nodes.

The comparison including the proposed approach is presented in Fig-
ure 7.4. We consider application-layer traffic shaping (PEPs:0), static
TCP (PEPs:0, here the sender congestion windows is tuned to max-
imise the performance), pause frames (PEPs:0), and daqrings with traf-
fic shaping (PEPs:3) in their optimum configurations. All approaches
mitigate incast congestion and sustain the requested load (Figure 7.4a).
For daqrings, a rate limit of 344Mbps is optimal to reach full load.
Latency and jitter (Figure 7.4b and Figure 7.4c) are significantly

increased for pause frames. Higher latency is also true for daqrings, but
with low jitter (flatter curve). Furthermore, at lower loads daqrings can
be tuned and the rate limit can be increased to minimise latency. With
the rate limit of 1.38Gbps the lowest latency and jitter is achieved at
the load of 70%. In this configuration, daqrings provide lowest latency
and jitter. At full load, a rate limit of 344Mbps is required to sustain
the load, but here the latency is higher than in case of traffic shaping
and static TCP. As we will see in the following section, significant
performance improvement can be first achieved with daqrings in a more
demanding configuration in terms of incast congestion.

7.3.3 Test configuration B

The second test configuration is depicted in Figure 7.5. It is analogue,
in terms of the available bandwidth, to the setups used to evaluate the
pause frame mechanism in Section 4.5.3 (see Figure 4.12) and software
switching in Chapter 5 (see Figure 5.3a). Here, the servers used to em-
ulate the DAQ system are less performant and their configuration is
adjusted to reach their maximum performance. It would be more desir-
able to test with exactly the same setup, but for practical reasons we
have had to resort to this setup. The DuT remains the same reference
platform as in the previous evaluation in this chapter.

7.3 performance evaluation 137

This configuration is significantly more demanding than the previous
one, see Section 7.3.2, in terms of incast congestion. Here, we try to em-
ulate a larger data taking configuration with heavy incast congestion.
There is a total of twelve nodes connected with two 10Gbps links to the
DuT. Traffic is distributed equally between those links with static rout-
ing. Six nodes run ROS applications and the other six nodes are used
to emulate HLT racks with eleven independent data collectors on each
of them. Each of the DCMs is connected with a single processing unit.
Otherwise, the end-nodes tend to operate at lower performance, which
is caused by the increased incoming traffic volume over the two 10Gbps
links. Each ROS provides a single event data fragment of 96KiB, which
again maximises the performance of the end-nodes. The total event size
is therefore 576KiB. Using equation (A.12), the theoretical goodput is
Gtheory = 113.84Gbps.
In this configuration there are two bottlenecks. The first one is the

buffer size of the DuT, if operated as a normal switch (PEPs:0). This
is a typical bottleneck under heavy incast congestion, similar as in
evaluations in Section 4.5.3 and Chapter 5. The second bottleneck is the
performance of the end-nodes, which need to handle the incoming traffic
on two 10Gbps links. This limitation did not affect the performance
of the entire setup in the previous evaluations in this chapter because
each DCM was connected with a single 1Gbps link to the network.
Traffic shaping is not tested in this configuration as there is only six

event fragments, which limits tuning capabilities. For static TCP, there
is only a single value (cwnd = 2) that provides stable operation with
low packet loss rate.

daqrings tuning Figure 7.6 is used to tune traffic shaping at the
daqrings level. Because of the special configuration with multiple data
collectors emulated on a single node, we do not set a single daqring for
a single DCM. We choose to configure a single daqring dedicated to a
single 10Gbps output port on the DuT (static routing). Fine-tuning
for a smaller number of daqrings with higher rate limits is easier, so
it also easier to achieve higher utilisation of the 50Gbps PCIe links
between the switching ASIC and the software switch on the DuT (see
Section 7.3.1).
Also, because of the low performance of the end-nodes, we enable

transmission of pause frames from the end-nodes to the DuT only, sim-
ilarly as in Section 5.5.3. Otherwise, they can drop packets because of
temporal fluctuations in the available CPU power and negatively affect
the throughput of the entire setup. The transmission of pause frames
from the DuT is disabled as we aim to mitigate incast congestion with
daqrings. This combined approach provides the best performance and
avoids overflowing the end-nodes because of any temporary fluctuations
in performance-limited data collectors.

7.3 performance evaluation 138

8 12 16 20
0

20

40

60

80

100

120

G
oo

dp
ut

G
[G

bp
s]

Burst:32

8 12 16 20

Burst:16

PEPs:3
PEPs:3;PAUSE:rx

PEPs:4
PEPs:4;PAUSE:rx

8 12 16 20

Burst:1

Theor. max.

Rate limit [Gbps]ATLAS TDAQ

5 10 15 20
0

1

10

100

1000

D
at

a
co

lle
ct

io
n

la
te

nc
y

l[
m

s]

PE
Ps

:3

Burst:32

5 10 15 20

PE
Ps

:3
;

PA
U

SE
:rx

5 10 15 20

PE
Ps

:4

5 10 15 20

PE
Ps

:4
;

PA
U

SE
:rx

10th percentile Median 99th percentile

Rate limit [Gbps]ATLAS TDAQ

6 8 10 12 14 16 18 20

Rate limit [Gbps]

0
100

101

102

103

104

105

106

107

R
et

ra
ns

m
itt

ed
T

C
P

se
gm

en
ts

Burst:32

ATLAS TDAQ

PEPs:3
PEPs:3;PAUSE:rx
PEPs:4
PEPs:4;PAUSE:rx

Figure 7.6: Goodput (a), data collection latency (b), and the total number
of TCP retransmissions (c) when tuning daqrings for the setup
depicted in Figure 7.5.

2 4 6 8 10 12 14 16 18 20

No. of CPU cores

0

20

40

60

80

100

G
oo

dp
ut

G
[G

bp
s]

Theoretical maximum

ATLAS TDAQ

No. of rxq:1
No. of rxq:2
No. of rxq:4
No. of rxq:8
No. of rxq:16
No. of rxq:32

2 4 6 8 10 12 14 16 18 20

No. of CPU cores

0

2

4

6

8

10

12

R
et

ra
ns

m
itt

ed
TC

P
se

gm
en

ts

ATLAS TDAQ

Figure 7.7: Goodput (a) and the total number of TCP retransmissions (b)
when changing the number of the rx-queues and CPU cores used
by OVS for the setup depicted in Figure 7.5.

7.3 performance evaluation 139

Here, we also extended the diagrams with different burst sizes for
the same value of the rate limit (it is defined as a maximum number
of packets, burst size, that can be received from a daqring in a given
poll interval). Burst sizes of 32 and 16 provide the best performance
under the rate limit of 10Gbps, with enabled reception of pause frames.
There is a spike in the TCP retransmissions diagram for the rate-limit
of approximately 9Gbps. A probable reason is a temporal high degra-
dation of the performance at the end-nodes due to some CPU-intensive
task.
Additionally, in Figure 7.7, we present the performance for the opti-

mum rate limit, but for different configurations of the software switch.
We check what is the effect of the number of the hardware receive
queues of the DuT and the number of the CPU cores used by the soft-
ware switch. It is clear that it is enough to use ten CPU cores to reach
full goodput. The number of receive queues has only a minimal effect in
this setup. This demonstrates that there is a high performance margin
at the software switch.

results The comparison of the various incast-avoidance techniques
with this evaluation setup is presented Figure 7.8. In this demanding
scenario, the advantage of using daqrings in combination with partial
pause frame mechanism is clearly visible. For the optimum rate limit of
10Gbps at full load, goodput saturates at 94% of the theoretical max-
imum, whereas the second best, full pause frame configuration (trans-
mit and receive), reaches only 79%. The mean data collection latency
is slightly higher for daqrings, but this is expected because of higher
sustained load. Jitter remains minimal in both cases. At lower loads
daqrings can be tuned again, just as in Section 7.3.2, in order to min-
imise the latency.
Static TCP congestion window saturates just above 40% of the the-

oretical goodput. For this evaluation setup, tuning capabilities are lim-
ited too much. Congestion window of two packets on each TCP con-
nection is too low to optimise the goodput, whereas a value of three
already triggers incast.
The effects of incast congestion without avoidance techniques can be

observed for the default congestion control, TCP cubic. In this case,
the load does not exceed 20% and some events need more than 200ms
to be collected, which indicates packet losses and TCP timeouts.
The optimum performance is slightly worse than in the similar eval-

uations performed with traditional NICs in Chapter 5. The reason is,
however, the limited performance of the emulated DAQ configuration.
The difference is minimal, which confirms that multi-host Ethernet con-
trollers can be indeed considered as a valid replacement for traditional
NICs when building software switches.

7.4 conclusion 140

20% 40% 60% 80% 100%

Offered load Go f f

0%

20%

40%

60%

80%

100%
Su

st
ai

en
d

lo
ad

G
su

st

ATLAS TDAQ

PEPs:4; PAUSE:rx; daqrings:6.4Gbps
PEPs:4; PAUSE:rx; daqrings:10Gbps
PEPs:0; PAUSE:rxtx
PEPs:0; cwnd:2
PEPs:0; TCP cubic

(a)

40% 80%
1

10

100

1000

D
at

a
co

lle
ct

io
n

la
te

nc
y

l[
m

s]

PE
Ps

:0
;

T
C

P
cu

bi
c

40% 80%

PE
Ps

:0
;c

w
nd

:2

40% 80%

PE
Ps

:0
;P

A
U

SE
:rx

tx

40% 80%

PE
Ps

:4
;P

A
U

SE
:rx

;
da

qr
in

gs
:1

0G
bp

s

10th percentile Median 99th percentile

40% 80%

PE
Ps

:4
;P

A
U

SE
:rx

;
da

qr
in

gs
:6

.4
G

bp
s

Offered load Go f fATLAS TDAQ

(b)

0% 40% 80%
1

10

100

D
at

a
co

lle
ct

io
n

la
te

nc
y

l[
m

s]

Go f f = 10%

0% 40% 80%

Go f f = 70%

0% 40% 80%

Go f f = 99%

PercentileATLAS TDAQ

(c)

Configuration Goff lm [ms] σl [ms]

TCP Cubic 10% 8.15 57.57
70% 6.32 45.69
99% 6.19 44.4

Static TCP 10% 5.91 17.44
70% 6.08 0.84
99% 6.08 0.87

Pause frames 10% 1.46 0.34
70% 2.22 0.69
99% 3.16 0.93

daqrings (10Gbps) 10% 1.47 0.24
70% 1.98 7.76
99% 2.6 0.68

daqrings (6.4Gbps) 10% 1.47 0.23
70% 4.12 0.67
99% 4.17 0.64

Figure 7.8: Comparison of TCP Cubic, static TCP congestion window, Ethernet IEEE 802.3x
pause frame mechanism, and daqrings in the configuration depicted in Figure 7.5.
Sustained load (a) and event data collection latency (b) in function of the offered load,
and the exact distributions of latency for three different cases (c).

7.4 conclusion

In this chapter we evaluated whether traditional network interfaces
can be replaced with multi-host Ethernet controllers when building
software switches. We indicated what advantages they offer, including
better space utilisation. We also pointed out that these devices can
be potentially used as an alternative to other incast-avoidance tech-
niques in datacenters, where limitations of typical software switches
have stronger consequences than in data acquisition.
Finally, we performed an initial evaluation of a multi-host controller,

using a reference platform. We confirmed that similar or better per-
formance to other incast-avoidance techniques can be achieved. Also,

7.4 conclusion 141

we did not observe any drawbacks when using this device instead of
multiple traditional network interfaces to construct a software switch.
Thus, our evaluation showed that this method for incast-avoidance is
valid and can be a new application area for the multi-host Ethernet
devices, both in data acquisition and datacenter networks.

8
CONCLUS IONS AND OUTLOOK

This chapter concludes this Ph.D. and highlights the personal contributions
to the area of network design and optimisation in data acquisition systems as
well as alternative approaches to incast congestion. Finally, we give directions
for future research in the area.

8.1 introduction

The data acquisition networks of the LHC experiments at CERN have
unusually demanding requirements in terms of bandwidth and loss rate.
They are particularly challenging because of the bursty many-to-one
communication pattern. The ports connected to receiving data collec-
tors are temporarily overcommitted by the data sent from the readout
nodes. Switches with insufficient buffers drop some or most of the pack-
ets, which degrades the performance or prevents normal operation of
an entire data acquisition system. This will become even more critical,
as the planned upgrades of the LHC experiments will require higher
bandwidth networks for their DAQ systems. The network congestion
will become even more demanding.

Such unusually demanding environment provided the motivation for
the work presented in this Ph.D. We studied whether a leaf-spine topol-
ogy of software switches running on commercial-off-the-shelf servers
could replace expensive, telecom-class devices in data acquisition sys-
tems, using the ATLAS experiment as a case study. We demonstrated
that this approach offers the flexibility of design in software, enough per-
formance in packet forwarding, and buffering capabilities constrained
solely by the amount of DRAM memory. The latter is the key aspect
in incast-avoidance. We also showed how a lossless, high-throughput
network based on commodity software switches can be designed and
optimised for a target application.

8.2 review of the research

In this thesis we discussed our original contributions to the understand-
ing of incast congestion in data acquisition, performance and optimisa-
tion of software switches for incast-avoidance as well as their applica-
bility in designing high-bandwidth networks.

142

8.2 review of the research 143

First, we have established that there is an analogous problem in Chapter 4
datacenter networks. This problem results from the similar many-to-one
traffic pattern. It is particularly critical for TCP communication and
therefore referred to as the TCP incast pathology. With this analogy,
we derived simple equations to estimate the onset of incast congestion
for DAQ networks. Also, we showed that advanced solutions proposed
for DCN at different layers, like DIATCP or IEEE 802.3x pause frame,
can be also considered in DAQ. On the other hand, we also proposed
a simple congestion control mechanism for DAQ. The total amount of
packets injected into a network can be controlled by a static congestion
window of each TCP flow. This can be a simple and effective solution
in some configurations. Nevertheless, all of these approaches have their
limitations, and, in case of data acquisition in particular, still require
large packet buffers in the core of the network. Also, even with an
effective algorithm, more event data have to be eventually buffered at
the sender side. This prevents the use of simple devices in the readout
system.
These conclusions turned our attention to one of the most effective Chapter 5

ways of incast-avoidance in data acquisition — large packet buffers. The
key characteristics of DAQ networks allow for some simplifications that
make it easier to pursue this strategy. Particularly, we have identified
that software-based switches optimised for a target application can be
a valid alternative to expensive, telecom-class routers. The former pro-
vide almost limitless memory for packet buffers. We designed a mech-
anism for application-dedicated queueing, which can be programmed
in software and which provides a number of queues that is not limited
by hardware resources, as in traditional switches and routers. Our pro-
totypes proved that saturation and lossless operation can be reached
on real hardware providing the total bandwidth of 120Gbps in the all-
to-all incast scenario, where traditional ToR switches perform poorly.
And, importantly, controls on the injected traffic are not required. Our
extension for incast-avoidance in DAQ for the popular software switch,
Open vSwitch, has been made available and is ready for use for other
researchers or network engineers.
Although these small prototypes have already reached bandwidths Chapter 6

comparable to those of ATLAS DAQ network in Run 1 and Run 2, we
continued the study and focused on building a larger topology of inter-
connected software switches. This is required to provide full connectiv-
ity within a DAQ system and scale by two or more orders of magnitude
for the future upgrades of the LHC experiments. We took advantage
of the parallel leaf-spine topology and we optimised flow distribution
across available paths through the fabrics for the specific traffic pattern.
We showed that it is feasible to build terabit data acquisition networks
using dedicated software switches. This approach, together with sepa-
rate queues for every data collector for incast-avoidance, can offer cost
and performance advantage over the traditional network designs, where

8.3 future directions 144

expensive telecom-class devices are required. In order to strengthen the
arguments, we proposed and evaluated, on real hardware, a method to
manage and optimise such a network using software-defined technolo-
gies, OpenFlow and OVSDB. We showed that the network can be cen-
trally programmed using solely IP and TCP addressing. Using traffic
shaping at the dedicated queues, we demonstrated how the network
can be tuned, in various configurations, to maximise the system’s per-
formance and reach lossless operation with high throughput and low
latency. Thus, we have shown that this design, including optimised soft-
ware switches, adapted leaf-spine topology and software-defined control
plane, can be a viable solution for future data acquisition networks.
Finally, we considered replacing traditional network interfaces with a Chapter 7

new class of devices, multi-host Ethernet controllers, to build software
switches. We demonstrated that not only the physical space utilisa-
tion can be improved, but also that these devices can be potentially
used as an alternative to other incast-avoidance techniques in data-
centers. Limitations of typical software switches have more significant
consequences there than in data acquisition. Our initial evaluation of
a reference platform confirmed that similar or better performance to
other incast-avoidance techniques can be achieved.

8.3 future directions

The work described in this thesis has covered most aspects of using soft-
ware switching for building lossless networks for data acquisition sys-
tems with strong incast congestion. Nevertheless, further refinements
in some areas can be achieved. Our work can also provide a basis for
new research studies.
First, further investigation on the queueing algorithms could be ben-

eficial. In our work on software switches with dedicated queues we
have already demonstrated that throughput is maximised. The study
could be extended with more focus on the data collection latency.
One avenue is to explore service disciplines for daqrings. The question
here is whether and at which network stages it would be profitable to
serve daqrings on per-event basis. More specifically, the software switch
would give preference to those daqrings where some event is already be-
ing transported, rather than daqrings which have just started to buffer
a new event (e. g. earliest deadline first).
In this work we focused solely on event data flows. This is, how-

ever, not the only type of traffic that occurs in DAQ networks. The
straightforward examples of others are control and storage traffic. The
former is often handled by a separate network. With the Priority-based
Flow Control (IEEE 802.1Qbb [75]) it could be possible to use a single
network for all types of traffic. Separate hardware queues can be the
assigned to different traffic classes and event data flows would addition-
ally use software queues — daqrings.

8.3 future directions 145

In Chapter 5 we gave estimates on power consumption of a soft-
ware switch. The comparison gave advantage to the traditional ToR
switches. There is, however, room for improvement. First of all, it would
be worth considering interrupts instead of continuous polling when re-
ceiving packets on the software switch. This should significantly reduce
CPU utilisation, and, thus, also the power consumption. The effects
on the overall switch performance should be carefully analysed though
as the packet reception mechanism would be changed considerably. A
less invasive approach is to automatically regulate the polling interval.
When the network load decreases, the software switch should increase
the polling interval and it should be reduced when the load increases.
Also better insight into the failover mechanism in the proposed par-

allel leaf-spine topology with optimised software switches is of high
relevance. Our initial study from Chapter 6 could be extended with
different link failure scenarios. Furthermore, the performance could be
improved by implementing a dedicated service for flow distribution and
failover in the controller framework instead of using the REST API.
This approach could reduce the time it takes to detect link failures and
redistribute the flows. The failover study could also include a scenario
when the network controller becomes unavailable. Here, it would be of
interest to study controller redundancy or flow caching at the switching
nodes.
It would be also beneficial to consider a generic network controller

for data acquisition networks. Instead of time-consuming scanning of
the entire network for data flows, this generic service could implement
logic to detect and distribute the flows automatically. Moreover, this
could become independent of the specifics of an experiment, if a proper
abstraction of a DAQ network is also defined. It is also of importance
to study non-heterogeneous networks, in which slower and faster nodes
are present or topology is not consistent. In this case, it would be worth
to consider dynamic, instead of our proposed static, flow assignment,
like the Hedera flow scheduler [57]. With this generic network controller,
feedback on link utilisation in the farm could be also used to optimise
the process of event assignment to processing nodes. In the longer term,
it could be the network, not the readout node or the supervisor, that
takes decision which processing node to use for a particular event.
While considering possible integration with the network controller

framework, it would be also of interest to study even higher level of sys-
tem integration. Open vSwitch is already heavily used in the cloud com-
puting frameworks like OpenStack [127], which are gradually replacing
traditional datacenters [51]. OpenStack software controls large pools of
compute, storage, and networking resources throughout a datacenter,
which can be managed through a dashboard or an API. OpenStack
could be considered to control a data acquisition system, including the
readout nodes, the event building and filtering farm, the storage as well
as the network.

8.3 future directions 146

This approach could also make it easier to potentially integrate net-
working and event data processing on the same physical nodes. Our
studies in Chapter 5 showed that this approach is feasible, although
there are limitations that need to be considered. Particularly, the shared
access to memory could be avoided when using different NUMA nodes
for different processes. This is feasible with devices like the CSA-7400
computing platform that we described in Chapter 7. Another alterna-
tive is to consider a mechanism to allocate different limits on memory
bandwidth usage to different processes. One example is the MemGuard
memory bandwidth reservation system proposed by Yun et al. in [176].
Finally, software switches with high buffering capabilities and flexi-

ble queueing options can be considered as a valid option not only in
data acquisition systems, but other networks suffering from many-to-
one communication as well. In Chapter 7 we have already shown that
they could be considered for incast-avoidance in datacenters. Another
application area is potentially the emerging Internet of Things (IoT),
which is a network of interconnected objects that senses information
from the environment, interacts with the physical world, and provides
services for information transfer, analytics, applications and communi-
cations [91]. IoT can be seen, to some extent, as an unstructured data
acquisition network, and as such can be vulnerable to incast conges-
tion. This observation was also made by Jin et al. in [91], who stated
that the most common operation of an IoT network is to collect data
from hundreds of thousands of nodes and congestion can occur near
the data sinks. The methods proposed in this thesis could be therefore
also effective in the IoT area.

A
FORMULAS

This appendix gives formulas and some of their derivations that are
used to evaluate the performance of DAQ networks in this thesis.

a.1 a simple model for bandwidth

Bandwidth of a DAQ network under test (Figure 3.2), as defined in
Section 3.2, gives the theoretical raw bit rate that can be achieved for
data flows from the readout to the filtering farm. Traffic to storage and
control traffic are neglected as explained in Section 3.3.
We assume that event data are evenly distributed across NR readout

nodes (denoted as R in Figure 3.2), which in turn are connected with
Nin Ethernet links to the DAQ network. Node i has nRi links. The
total number of input links is therefore

Nin =
NR∑
i=1

nRi .

DCMs request all fragments of an assigned event from all ROSes
(event building). DCMs are organised in racks of the HLT farm (denoted
as H in Figure 3.2), which are connected over a ToR switch to the DAQ
network. It is assumed that internal configuration of each HLT rack is
not limiting the overall theoretical bandwidth1. An HLT rack can be
also emulated on a single node. In each case, there are NH HLT racks.
Rack j is connected with nHj Ethernet links to the network. The total
number of output links from the DAQ network to HLT is

Nout =
NH∑
j=1

nHj .

For full event building, the total bandwidth available for DAQ data
flows can be calculated with

B =
NH∑
j=1

NR min
i

(bij) , (A.1)

where each data collection process is limited by the bandwidth bij of the
slowest ROS-to-HLT flow. It is explained by the fact that every collec-
tor waits to collect all fragments before proceeding with new requests,
which effectively means that data collection throughput is determined
by the slowest flow. Speed of this single flow is limited here either by

1 The saturation goodput though is often limited by the ToR switches. This is one of
the subjects to optimisation in this thesis.

147

A.2 theoretical goodput 148

the speed of the ROS-to-network, network-to-HLT, or some other link
inside the network:

bij = min
(
bijR, bijH , bijnet

)
. (A.2)

On the ROS-to-network side the limitation is set by the number of
parallel transfers to HLT:

bijR =
nRib

NH
, (A.3)

whereas on the network-to-HLT side by the number of parallel transfers
from ROS:

bijH =
nHjb

NR
, (A.4)

where b is the speed of a single input or output link to the network.
In equations (A.3) and (A.4) we assume perfect load balancing across
flows. Combining equations (A.1), (A.2), (A.3), and (A.4), the band-
width can be expressed as:

B =
NH∑
j=1

NR min
i

(
nRib

NH
,
nHjb

NR
, bijnet

)
. (A.5)

If the system is homogeneous, i. e. the number of links to the network
per ROS or HLT rack is the same across all nodes (nRi = nR, nHj =

nH) and the network is perfectly fair (bijnet = bnet) it simplifies to

B =
NH∑
j=1

NR min
i

(
nRb

NH
, nHb
NR

, bnet
)

= NHNR min
(
nRb

NH
, nHb
NR

, bnet
)

= min (NRnRb,NHnHb, bnet) .

(A.6)

If the only limiting factors are the input or output links, the theoretical
maximum bandwidth is given by

Binout = min (NRnRb,NHnHb) . (A.7)

a.2 theoretical goodput

The network bandwidth defined in the previous section gives the raw
bit rate available for data acquisition between ROS and HLT. It ne-
glects, however, the overheads of the upper layer protocols. In order to
estimate the theoretical event data bandwidth we use the theoretical
goodput, which takes those overheads into account. Using the ATLAS
TDAQ software with Ethernet, TCP/IP, and ATLAS data flow as un-
derlying protocols, it can be calculated as follows.

A.2 theoretical goodput 149

Let the total average event size be eavg. Event data is spread equally
across all ROS nodes and there is eR = eavg

NR
of event data bytes on

each node2, like in the previous section. The bandwidth, as defined by
equations (A.5), (A.6), or (A.7), is used to carry bits of event data and
protocol headers. Let the total number of bytes r that are required to
transport all bytes of an event from all ROS nodes be

r = eavg + o , (A.8)

where o is the total number of overhead bytes. The maximum theoret-
ical event rate is then given by

L1r = B

r
.

Goodput, as defined in Section 3.2, refers though to pure event bytes
transferred to the data collectors. The theoretical goodput is therefore

Gtheory = L1r · eavg = B
eavg
r

, (A.9)

where eavg

r is called protocol efficiency.
For TCP/IP-based ATLAS DAQ network, the overhead can be cal-

culated with

o = nframes (oEthernet + oIP + oTCP) +NR · oATLAS .

Ethernet, IP, and TCP overheads appear in every Ethernet frame,
whereas additional bytes of the ATLAS data flow protocol are added
for just a single ROS response. Particular overheads, including the Eth-
ernet frame format as defined originally in the IEEE 802.3 Standard
for Ethernet [76], are as follows [62]:

oEthernet = InterFrame Gap+ Preamble
+ Start Frame Delimiter
+ Ethernet header+ padding
= 12B+ 7B+ 1B+ 18B+ padding

oIP = IP header = 20B
oTCP = TCP header without options = 20B

oATLAS = ROS response header = 12B .

Padding is required, if TCP payload in a single frame is smaller than
6B. The total overhead is now given by

o = nframes · 78B+NR · 12B+ padding .

2 If ROS and HLT nodes are emulated on the same nodes, the total event bytes
traversing the physical network links are less, because one ROS is using the loopback
link to the HLT running on the same host. This correction should be applied in the
calculations.

A.2 theoretical goodput 150

The maximum TCP segment size (MSS) for a single Ethernet frame
with an MTU of 1500B (see Section 3.5.1) is

MSS = 1500B− IP header−TCP header = 1460B .

Single response from ROS requires therefore

nframesR =

⌈
eR + 12B
MSS

⌉
=

⌈ eavg

NR
+ 12B

1460B

⌉

frames. Total overhead can be written as

o = nframes · 78B+NR · 12B+ padding

= NR · nframesR · 78B+NR · 12B+ padding

= NR

(⌈ eavg

NR
+ 12B

1460B

⌉
· 78B+ 12B

)
+ padding .

(A.10)

Frames with less than minimum 64B for Ethernet are padded to 64B.
Therefore padding can be calculated as

padding =

0, if eR mod MSS ≥ 6B

NR (6B− eR mod MSS) , otherwise

=

0, if eavg

NR
mod 1460B ≥ 6B

NR

(
6B− eavg

NR
mod 1460B

)
, otherwise .

(A.11)

Combining equations (A.8), (A.9), (A.10), and (A.11), the theoretical
goodput is given by

Gtheory = B
eavg

eavg +NR

(⌈ eavg
NR

+12B
1460B

⌉
· 78B+ 12B

)
+ padding

,

padding =

0, if eavg

NR
mod 1460B ≥ 6B

NR

(
6B− eavg

NR
mod 1460B

)
, otherwise .

(A.12)

In case that traffic from HLT to ROS (TCP ACKs and requests for
event data) and from ROS to HLT (event data flow) traverses some
link in the network in the same direction, additional overhead caused
by the former traffic should be normally considered. Since TCP ACKs
and requests from HLT to ROS are small compared to actual event
data flow, we neglect this type of overhead.

A.3 mean and jitter 151

a.3 mean and jitter

Mean of the data collection latency, as defined in Section 3.2, is a simple
arithmetic mean of a set of sample taken during data-taking period:

lm =
1
N

N∑
i=1

li .

Jitter of the data collection latency can be estimated using standard
deviation:

σl =

√√√√ 1
N

N∑
i=1

(li − lm)2

In this thesis also we use percentile plots to analyse the distribution
and jitter of the data collection latency.

BIBL IOGRAPHY

[1] 42U Rack Dimensions, Cabinet Size, and Specifications. On-
line; accessed 2016-11-18. url: http://www.42u.com/42U-
cabinets.htm.

[2] 6WIND. Online; accessed 2016-03-01. url: http://www.6wind.
com.

[3] Adlink CSA-7400. Online; accessed 2016-12-17. url: http://
www . adlinktech . com / PD / web / PD _ detail . php ? cKind =
&pid = 1624 & seq = &id = &sid = &category = Server _ Network -
Appliance&utm_source=#.

[4] I. F. Akyildiz et al. “Research Challenges for Traffic Engineering
in Software Defined Networks.” In: IEEE Network 30.3 (2016),
pp. 52–58. doi: 10.1109/MNET.2016.7474344.

[5] M. Alizadeh and T. Edsall. “On the Data Path Performance
of Leaf-Spine Datacenter Fabrics.” In: 2013 IEEE 21st Annual
Symposium on High-Performance Interconnects. 2013, pp. 71–
74. doi: 10.1109/HOTI.2013.23.

[6] Mohammad Alizadeh et al. “Data Center TCP (DCTCP).” In:
SIGCOMM Comput. Commun. Rev. 40.4 (2010). doi: 10.1145/
1851275.1851192.

[7] A. Andreyev. Introducing Data Center Fabric, the Next-Genera-
tion Facebook Data Center Network. Online; accessed 2016-11-07.
url: https://code.facebook.com/posts/360346274145943/
introducing-data-center-fabric-the-next-generation-
facebook-data-center-network/.

[8] Gianni Antichi et al. “Time Structure Analysis of the LHCb
DAQ Network.” In: Journal of Physics: Conference Series 513.6
(2014), p. 062009.

[9] Guido Appenzeller, Isaac Keslassy, and Nick McKeown. “Sizing
Router Buffers.” In: SIGCOMM Comput. Commun. Rev. 34.4
(2004), pp. 281–292. doi: 10.1145/1030194.1015499.

[10] Katerina Argyraki et al. “Can Software Routers Scale?” In: Pro-
ceedings of the ACM Workshop on Programmable Routers for
Extensible Services of Tomorrow. PRESTO ’08. ACM, 2008,
pp. 21–26. doi: 10.1145/1397718.1397724.

[11] InfiniBand Trade Association et al. InfiniBand Architecture Spec-
ification 1.2.1. Online; accessed 2016-06-27. url: http://www.
infinibandta.org/.

152

http://www.42u.com/42U-cabinets.htm
http://www.42u.com/42U-cabinets.htm
http://www.6wind.com
http://www.6wind.com
http://www.adlinktech.com/PD/web/PD_detail.php?cKind=&pid=1624&seq=&id=&sid=&category=Server_Network-Appliance&utm_source=#
http://www.adlinktech.com/PD/web/PD_detail.php?cKind=&pid=1624&seq=&id=&sid=&category=Server_Network-Appliance&utm_source=#
http://www.adlinktech.com/PD/web/PD_detail.php?cKind=&pid=1624&seq=&id=&sid=&category=Server_Network-Appliance&utm_source=#
http://www.adlinktech.com/PD/web/PD_detail.php?cKind=&pid=1624&seq=&id=&sid=&category=Server_Network-Appliance&utm_source=#
http://dx.doi.org/10.1109/MNET.2016.7474344
http://dx.doi.org/10.1109/HOTI.2013.23
http://dx.doi.org/10.1145/1851275.1851192
http://dx.doi.org/10.1145/1851275.1851192
https://code.facebook.com/posts/360346274145943/introducing-data-center-fabric-the-next-generation-facebook-data-center-network/
https://code.facebook.com/posts/360346274145943/introducing-data-center-fabric-the-next-generation-facebook-data-center-network/
https://code.facebook.com/posts/360346274145943/introducing-data-center-fabric-the-next-generation-facebook-data-center-network/
http://dx.doi.org/10.1145/1030194.1015499
http://dx.doi.org/10.1145/1397718.1397724
http://www.infinibandta.org/
http://www.infinibandta.org/

Bibliography 153

[12] Benjamin J van Asten, Niels L. M. van Adrichem, and Fernando
A Kuipers. “Scalability and Resilience of Software-Defined Net-
working: An Overview.” In: CoRR abs/1408.6760 (2014).

[13] Wei Bai et al. “PAC: Taming TCP Incast Congestion Using
Proactive ACK Control.” In: Proceedings of the 2014 IEEE 22nd
International Conference on Network Protocols (ICNP). IEEE.
2014, pp. 385–396. doi: 10.1109/ICNP.2014.62.

[14] F. Baker. Requirements for IP Version 4 Routers. RFC 1812.
RFC Editor, 1995.

[15] Hitesh Ballani et al. “Enabling End-Host Network Functions.”
In: SIGCOMM Comput. Commun. Rev. 45.4 (2015). doi: 10.
1145/2829988.2787493.

[16] Tom Barbette, Cyril Soldani, and Laurent Mathy. “Fast User-
space Packet Processing.” In: Proceedings of the Eleventh ACM-
/IEEE Symposium on Architectures for Networking and Com-
munications Systems. ANCS ’15. IEEE Computer Society, 2015,
pp. 5–16.

[17] Rainer Bartoldus et al. Technical Design Report for the Phase-
I Upgrade of the ATLAS TDAQ System. Tech. rep. Geneva:
CERN, 2013. url: https://cds.cern.ch/record/1602235.

[18] Tomasz Bawej et al. “Boosting Event Building Performance Us-
ing Infiniband FDR for the CMS Upgrade.” In: Proceedings of
the 3rd International Conference on Technology and Instrumen-
tation in Particle Physics (TIPP 2014). Vol. TIPP2014. 2014,
p. 190.

[19] Tomasz Bawej et al. “The New CMS DAQ System for Run-2
of the LHC.” In: Proceedings of the 2014 19th IEEE-NPSS Real
Time Conference (RT). 2014, pp. 1–1. doi: 10.1109/RTC.2014.
7097437.

[20] Stephen Bensley et al. Datacenter TCP (DCTCP): TCP Con-
gestion Control for Datacenters. Internet-Draft draft-ietf-tcpm-
dctcp-01. IETF Secretariat, 2015. url: http://www.ietf.org/
internet-drafts/draft-ietf-tcpm-dctcp-01.txt.

[21] Gary Berger. Facebook Fabric Networking Deconstructed. On-
line; accessed 2016-11-07. url: http://firstclassfunc.com/
facebook-fabric-networking.

[22] Alessandro Bettini. Introduction to Elementary Particle Physics;
2nd ed. Cambridge University Press, 2014. url: http://cds.
cern.ch/record/1611164.

[23] Andrea Bianco et al. “Click vs. Linux: Two Efficient Open-Source
IP Network Stacks for Software Routers.” In: Proceedings of the
2005 Workshop on High Performance Switching and Routing
(HPSR). IEEE. 2005, pp. 18–23.

http://dx.doi.org/10.1109/ICNP.2014.62
http://dx.doi.org/10.1145/2829988.2787493
http://dx.doi.org/10.1145/2829988.2787493
https://cds.cern.ch/record/1602235
http://dx.doi.org/10.1109/RTC.2014.7097437
http://dx.doi.org/10.1109/RTC.2014.7097437
http://www.ietf.org/internet-drafts/draft-ietf-tcpm-dctcp-01.txt
http://www.ietf.org/internet-drafts/draft-ietf-tcpm-dctcp-01.txt
http://firstclassfunc.com/facebook-fabric-networking
http://firstclassfunc.com/facebook-fabric-networking
http://cds.cern.ch/record/1611164
http://cds.cern.ch/record/1611164

Bibliography 154

[24] Mark S Birrittella et al. “Intel® Omni-Path Architecture: En-
abling Scalable, High Performance Fabrics.” In: Proceedings of
the IEEE 23rd Annual Symposium on High-Performance Inter-
connects (HOTI 2015). IEEE. 2015, pp. 1–9.

[25] Raffaele Bolla and Roberto Bruschi. “Linux Software Router:
Data Plane Optimization and Performance Evaluation.” In: Jour-
nal of Networks 2.3 (2007), pp. 6–17.

[26] Raffaele Bolla and Roberto Bruschi. “PC-based Software Routers:
High Performance and Application Service Support.” In: Pro-
ceedings of the ACM Workshop on Programmable Routers for
Extensible Services of Tomorrow. PRESTO ’08. ACM, 2008,
pp. 27–32. doi: 10.1145/1397718.1397725.

[27] Broadberry. Online; accessed 2016-11-14. url: https://www.
broadberry.co.uk.

[28] Brocade MLX Series. Online; accessed 2016-07-21. url: http:
//www.brocade.com/.

[29] Daniel Campora, Niko Neufeld, and Rainer Schwemmer. “Im-
provements in the LHCb DAQ.” In: Proceedings of the 19th
IEEE-NPSS Real Time Conference (RT 2014). IEEE. 2014. doi:
10.1109/RTC.2014.7097512.

[30] F Carena et al. “Preparing the ALICE DAQ Upgrade.” In: Jour-
nal of Physics: Conference Series 396.1 (2012), p. 012050.

[31] F Carena et al. “The ALICE Data Acquisition System.” In:
Nuclear Instruments and Methods in Physics Research Section
A: Accelerators, Spectrometers, Detectors and Associated Equip-
ment 741 (2014), pp. 130–162. doi: http://dx.doi.org/10.
1016/j.nima.2013.12.015.

[32] CERN - European Organization for Nuclear Research. Online;
accessed 2016-02-10. url: home.cern.

[33] CERN openlab. Online; accessed 2017-01-28. url: openlab.cern.
[34] Ivano Cerrato, Mauro Annarumma, and Fulvio Risso. “Support-

ing Fine-Grained Network Functions Through Intel DPDK.” In:
Proceedings of the 2014 Third European Workshop on Software
Defined Networks. EWSDN ’14. IEEE Computer Society, 2014.
doi: 10.1109/EWSDN.2014.33.

[35] Benjie Chen and Robert Morris. “Flexible Control of Parallelism
in a Multiprocessor PC Router.” In: USENIX Annual Technical
Conference, General Track. 2001, pp. 333–346.

[36] Yanpei Chen et al. Understanding TCP Incast and Its Implica-
tions for Big Data Workloads. Tech. rep. UCB/EECS-2012-40.
EECS Department, University of California, Berkeley, 2012.

http://dx.doi.org/10.1145/1397718.1397725
https://www.broadberry.co.uk
https://www.broadberry.co.uk
http://www.brocade.com/
http://www.brocade.com/
http://dx.doi.org/10.1109/RTC.2014.7097512
http://dx.doi.org/http://dx.doi.org/10.1016/j.nima.2013.12.015
http://dx.doi.org/http://dx.doi.org/10.1016/j.nima.2013.12.015
home.cern
openlab.cern
http://dx.doi.org/10.1109/EWSDN.2014.33

Bibliography 155

[37] Hyunjeong Cho, Saehoon Kang, and Younghee Lee. “Central-
ized ARP Proxy Server over SDN Controller to Cut Down ARP
Broadcast in Large-Scale Data Center Networks.” In: 2015 Inter-
national Conference on Information Networking (ICOIN). 2015,
pp. 301–306. doi: 10.1109/ICOIN.2015.7057900.

[38] C. Clos. “A Study of Non-Blocking Switching Networks.” In: The
Bell System Technical Journal 32.2 (1953), pp. 406–424. doi:
10.1002/j.1538-7305.1953.tb01433.x.

[39] Tommaso Colombo and ATLAS Collaboration. “Data-flow Per-
formance Optimisation on Unreliable Networks: the ATLAS Da-
ta-Acquisition Case.” In: Journal of Physics: Conference Series
608.1 (2015), p. 012005.

[40] Robert M Crovella. “Sensor Networks and Communication.” In:
Measurement, Instrumentation, and Sensors Handbook; 2nd ed.
Ed. by John G Webster and Halit Eren. CRC Press, 2014. isbn:
978-1-4398-4891-3. doi: 10.1201/b15664-17. url: http://dx.
doi.org/10.1201/b15664-17.

[41] L. Cui, F. R. Yu, and Q. Yan. “When Big Data Meets Software-
Defined Networking: SDN for Big Data and Big Data for SDN.”
In: IEEE Network 30.1 (2016), pp. 58–65. doi: 10.1109/MNET.
2016.7389832.

[42] William James Dally and Brian Patrick Towles. Principles and
Practices of Interconnection Networks. Elsevier, 2004.

[43] daq-software-switching. GitHub repository. url: github.com/
gjerecze/daq-software-switching.

[44] Data Center Bridging Task Group. Online; accessed 2016-03-15.
url: http://www.ieee802.org/1/pages/dcbridges.html.

[45] Jeffrey Dean and Sanjay Ghemawat. “MapReduce: Simplified
Data Processing on Large Clusters.” In: Commun. ACM 51.1
(2008), pp. 107–113. doi: 10.1145/1327452.1327492.

[46] C. J. Sher Decusatis, A. Carranza, and C. M. Decusatis. “Com-
munication Within Clouds: Open Standards and Proprietary
Protocols for Data Center Networking.” In: IEEE Communi-
cations Magazine 50.9 (2012), pp. 26–33. doi: 10.1109/MCOM.
2012.6295708.

[47] Prajjwal Devkota and AL Narasimha Reddy. “Performance of
Quantized Congestion Notification in TCP Incast Scenarios of
Data Centers.” In: Proceedings of the 2010 IEEE International
Symposium on Modelling, Analysis & Simulation of Computer
and Telecommunication Systems (MASCOTS). IEEE. 2010. doi:
10.1109/MASCOTS.2010.32.

[48] Alberto Di Meglio, Melissa Gaillard, and Andrew Purcell. CERN
openlab Whitepaper on Future IT Challenges in Scientific Re-
search. 2014. doi: 10.5281/zenodo.8765.

http://dx.doi.org/10.1109/ICOIN.2015.7057900
http://dx.doi.org/10.1002/j.1538-7305.1953.tb01433.x
http://dx.doi.org/10.1201/b15664-17
http://dx.doi.org/10.1201/b15664-17
http://dx.doi.org/10.1201/b15664-17
http://dx.doi.org/10.1109/MNET.2016.7389832
http://dx.doi.org/10.1109/MNET.2016.7389832
github.com/gjerecze/daq-software-switching
github.com/gjerecze/daq-software-switching
http://www.ieee802.org/1/pages/dcbridges.html
http://dx.doi.org/10.1145/1327452.1327492
http://dx.doi.org/10.1109/MCOM.2012.6295708
http://dx.doi.org/10.1109/MCOM.2012.6295708
http://dx.doi.org/10.1109/MASCOTS.2010.32
http://dx.doi.org/10.5281/zenodo.8765

Bibliography 156

[49] Mihai Dobrescu et al. “RouteBricks: Exploiting Parallelism to
Scale Software Routers.” In: Proceedings of the ACM SIGOPS
22Nd Symposium on Operating Systems Principles. SOSP ’09.
ACM, 2009, pp. 15–28. doi: 10.1145/1629575.1629578.

[50] Norbert Egi et al. “Towards High Performance Virtual Routers
on Commodity Hardware.” In: Proceedings of the 2008 ACM
CoNEXT Conference. CoNEXT ’08. ACM, 2008, 20:1–20:12. doi:
10.1145/1544012.1544032.

[51] Paul Emmerich et al. “Performance Characteristics of Virtual
Switching.” In: Proceedings of the 2014 IEEE 3rd International
Conference on Cloud Networking (CloudNet). 2014, pp. 120–125.
doi: 10.1109/CloudNet.2014.6968979.

[52] Paul Emmerich et al. “Assessing Soft-and Hardware Bottlenecks
in PC-based Packet Forwarding Systems.” In: Fourteenth Inter-
national Conference on Networks (ICN 2015). 2015.

[53] Lyndon Evans and Philip Bryant. “LHC Machine.” In: Journal
of Instrumentation 3.08 (2008), S08001. url: http://stacks.
iop.org/1748-0221/3/i=08/a=S08001.

[54] Facebook. Online; accessed 2016-04-12. url: facebook.com.
[55] Kevin R Fall and W Richard Stevens. TCP/IP Illustrated, Vol-

ume 1: The Protocols. Addison-Wesley, 2011.
[56] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat.

“A Scalable, Commodity Data Center Network Architecture.”
In: SIGCOMM Comput. Commun. Rev. 38.4 (2008), pp. 63–74.
doi: 10.1145/1402946.1402967.

[57] Mohammad Al-Fares et al. “Hedera: Dynamic Flow Scheduling
for Data Center Networks.” In: NSDI. Vol. 10. 2010, pp. 19–19.

[58] Nick Feamster, Jennifer Rexford, and Ellen Zegura. “The Road
to SDN: An Intellectual History of Programmable Networks.”
In: SIGCOMM Comput. Commun. Rev. 44.2 (2014), pp. 87–98.
doi: 10.1145/2602204.2602219.

[59] Oliver Feuser and Andre Wenzel. “On the Effects of the IEEE
802.3x Flow Control in Full-Duplex Ethernet LANs.” In: Pro-
ceedings of the 1999 Conference on Local Computer Networks
(LCN). IEEE. 1999, pp. 160–161.

[60] Roy Thomas Fielding. “Architectural Styles and the Design of
Network-Based Software Architectures.” PhD thesis. University
of California, Irvine, 2000.

[61] Sebastian Gallenmüller et al. “Comparison of Frameworks for
High-Performance Packet IO.” In: Proceedings of the Eleventh
ACM/IEEE Symposium on Architectures for Networking and
Communications Systems. ANCS ’15. IEEE Computer Society,
2015.

http://dx.doi.org/10.1145/1629575.1629578
http://dx.doi.org/10.1145/1544012.1544032
http://dx.doi.org/10.1109/CloudNet.2014.6968979
http://stacks.iop.org/1748-0221/3/i=08/a=S08001
http://stacks.iop.org/1748-0221/3/i=08/a=S08001
facebook.com
http://dx.doi.org/10.1145/1402946.1402967
http://dx.doi.org/10.1145/2602204.2602219

Bibliography 157

[62] Eric Gamess and Neudith Morales. “Peak Performance of TCP
and UDP in IPv4 and IPv6 over Ethernet Networks.” In: Inter-
national Journal of Digital Content Technology and its Applica-
tions 7.9 (2013), p. 519.

[63] Jim Gettys and Kathleen Nichols. “Bufferbloat: Dark Buffers in
the Internet.” In: Queue 9.11 (2011), 40:40–40:54. doi: 10.1145/
2063166.2071893.

[64] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. “The
Google File System.” In: SIGOPS Oper. Syst. Rev. 37.5 (2003),
pp. 29–43. doi: 10.1145/1165389.945450.

[65] Alex Goldhammer and John Ayer Jr. “Understanding Perfor-
mance of PCI Express Systems.” In:Xilinx WP350, Sept 4 (2008).

[66] Paul Goransson and Chuck Black. Software Defined Networks:
A Comprehensive Approach. Elsevier, 2014.

[67] Ian Gorton and Deborah K Gracio. Data-Intensive Computing:
Architectures, Algorithms, and Applications. Cambridge Univer-
sity Press, 2012.

[68] Ernst Gunnar Gran et al. “First Experiences with Congestion
Control in InfiniBand Hardware.” In: Proceedings of the 2010
IEEE International Parallel & Distributed Processing Sympo-
sium (IPDPS). IEEE. 2010, pp. 1–12.

[69] Mikkel Hagen and Ryan Zarick. “Performance Evaluation of
DCB’s Priority-Based Flow Control.” In: Proceedings of the 10th
IEEE International Symposium on Network Computing and Ap-
plications (NCA 2011). IEEE. 2011, pp. 328–333.

[70] S. Han et al. “Building a Single-Box 100 Gbps Software Router.”
In: Proceedings of the 2010 17th IEEE Workshop on Local and
Metropolitan Area Networks (LANMAN). 2010, pp. 1–4. doi:
10.1109/LANMAN.2010.5507157.

[71] C. Hopps. Analysis of an Equal-Cost Multi-Path Algorithm. RFC
2992. RFC Editor, 2000.

[72] HP 6600 Switch Series. Online; accessed 2016-07-21. url: http:
//www.hp.com/.

[73] Jaehyun Hwang, Joon Yoo, and Nakjung Choi. “Deadline and
Incast Aware TCP for Cloud Data Center Networks.” In: Com-
puter Networks 68 (2014). Communications and Networking in
the Cloud, pp. 20–34. doi: http://dx.doi.org/10.1016/j.
comnet.2013.12.002.

[74] IEEE P802.3bs 400 Gb/s Ethernet Task Force. Online; accessed
2016-06-27. url: http://www.ieee802.org/3/bs/index.html.

[75] “IEEE Standard for Bridging & Management.” In: IEEE Std
802.1Q (2014).

http://dx.doi.org/10.1145/2063166.2071893
http://dx.doi.org/10.1145/2063166.2071893
http://dx.doi.org/10.1145/1165389.945450
http://dx.doi.org/10.1109/LANMAN.2010.5507157
http://www.hp.com/
http://www.hp.com/
http://dx.doi.org/http://dx.doi.org/10.1016/j.comnet.2013.12.002
http://dx.doi.org/http://dx.doi.org/10.1016/j.comnet.2013.12.002
http://www.ieee802.org/3/bs/index.html

Bibliography 158

[76] “IEEE Standard for Ethernet.” In: IEEE Std 802.3 (2012).
[77] Insight Direct UK Limited. Online; accessed 2016-11-14. url:

http://www.uk.insight.com/.
[78] Intel 64 and IA-32 Architectures Optimization Reference Man-

ual. Online; accessed 2016-06-16. url: http : / / www . intel .
com/content/dam/doc/manual/64-ia-32-architectures-
optimization-manual.pdf.

[79] Intel 82599 10 GbE Controller Datasheet. Revision 3.1. Intel.
2015.

[80] Intel DPDK: Data Plane Development Kit. Online; accessed
2016-03-01. url: http://dpdk.org/.

[81] Intel Ethernet Converged Network Adapters XL710 10/40 GbE.
Online; accessed 2016-11-14. url: intel.com/content/www/
us/en/ethernet-products/converged-network-adapters/
ethernet-xl710.html.

[82] Intel Ethernet Multi-host Controller FM10000 Family. Online;
accessed 2016-12-17. url: http://www.intel.com/content/
www / us / en / embedded / products / networking / ethernet -
multi-host-controller-fm10000-family-overview.html.

[83] Intel Product Specifications. Online; accessed 2016-08-31. url:
http://ark.intel.com/.

[84] Intel Server Board S2600GZ/GL Technical Product Specifica-
tion. Revision 1.1. Intel. 2012.

[85] Intel Xeon Processor E5-1600/2600/4600 Product Families: Da-
tasheet Vol. 1. Online; accessed 2016-08-30. url: http://www.
intel.com/content/www/us/en/processors/xeon/xeon-e5-
1600-2600-vol-1-datasheet.html.

[86] Intel Xeon Processor E5-1600/2600/4600 v2 Product Families:
Datasheet Vol. 1. Online; accessed 2016-10-13. url: http://
www.intel.com/content/www/us/en/processors/xeon/xeon-
e5-1600-2600-vol-2-datasheet.html.

[87] Grzegorz Jereczek, Giovanna Lehmann Miotto, and David Mal-
one. “Analogues Between Tuning TCP for Data Acquisition and
Datacenter Networks.” In: Proceedings of the 2015 IEEE Inter-
national Conference on Communications (ICC). 2015, pp. 6062–
6067. doi: 10.1109/ICC.2015.7249288.

[88] Grzegorz Jereczek et al. “A Lossless Switch for Data Acquisition
Networks.” In: Proceedings of the 2015 IEEE 40th Conference
on Local Computer Networks (LCN). 2015. doi: 10.1109/LCN.
2015.7366370.

[89] Grzegorz Jereczek et al. “A Lossless Network for Data Acqui-
sition.” In: IEEE Transactions on Nuclear Science 64.6 (2017).
doi: 10.1109/TNS.2017.2682182.

http://www.uk.insight.com/
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
http://www.intel.com/content/dam/doc/manual/64-ia-32-architectures-optimization-manual.pdf
http://dpdk.org/
intel.com/content/www/us/en/ethernet-products/converged-network-adapters/ethernet-xl710.html
intel.com/content/www/us/en/ethernet-products/converged-network-adapters/ethernet-xl710.html
intel.com/content/www/us/en/ethernet-products/converged-network-adapters/ethernet-xl710.html
http://www.intel.com/content/www/us/en/embedded/products/networking/ethernet-multi-host-controller-fm10000-family-overview.html
http://www.intel.com/content/www/us/en/embedded/products/networking/ethernet-multi-host-controller-fm10000-family-overview.html
http://www.intel.com/content/www/us/en/embedded/products/networking/ethernet-multi-host-controller-fm10000-family-overview.html
http://ark.intel.com/
http://www.intel.com/content/www/us/en/processors/xeon/xeon-e5-1600-2600-vol-1-datasheet.html
http://www.intel.com/content/www/us/en/processors/xeon/xeon-e5-1600-2600-vol-1-datasheet.html
http://www.intel.com/content/www/us/en/processors/xeon/xeon-e5-1600-2600-vol-1-datasheet.html
http://www.intel.com/content/www/us/en/processors/xeon/xeon-e5-1600-2600-vol-2-datasheet.html
http://www.intel.com/content/www/us/en/processors/xeon/xeon-e5-1600-2600-vol-2-datasheet.html
http://www.intel.com/content/www/us/en/processors/xeon/xeon-e5-1600-2600-vol-2-datasheet.html
http://dx.doi.org/10.1109/ICC.2015.7249288
http://dx.doi.org/10.1109/LCN.2015.7366370
http://dx.doi.org/10.1109/LCN.2015.7366370
http://dx.doi.org/10.1109/TNS.2017.2682182

Bibliography 159

[90] Grzegorz Jereczek et al. “Approaching Incast Congestion with
Multi-host Ethernet Controllers.” In: IEEE Conference on Net-
work Function Virtualization and Software Defined Networks
(IEEE NFV-SDN). Under review. 2017.

[91] J. Jin et al. “Network Architecture and QoS Issues in the Inter-
net of Things for a Smart City.” In: Proceedings of the 2012 Inter-
national Symposium on Communications and Information Tech-
nologies (ISCIT). 2012. doi: 10.1109/ISCIT.2012.6381043.

[92] Kernel Parameters. Online; accessed 2016-11-28. url: https:
//www.kernel.org/doc/Documentation/kernel-parameters.
txt.

[93] Wonho Kim et al. “Automated and Scalable QoS Control for
Network Convergence.” In: Proceedings of the 2010 Internet Net-
work Management Conference on Research on Enterprise Net-
working. Vol. 10. USENIX Association, 2010, pp. 1–1.

[94] Eddie Kohler et al. “The Click Modular Router.” In: ACM Trans.
Comput. Syst. 18.3 (2000), pp. 263–297. doi: 10.1145/354871.
354874.

[95] Thorsten Kollegger. “The ALICE High Level Trigger: The 2011
Run Experience.” In: Proceedings of the 18th IEEE-NPSS Real
Time Conference (RT 2012). IEEE. 2012, pp. 1–4.

[96] D. Kreutz et al. “Software-Defined Networking: A Comprehen-
sive Survey.” In: Proceedings of the IEEE 103.1 (2015), pp. 14–
76. doi: 10.1109/JPROC.2014.2371999.

[97] Elie Krevat et al. “On Application-level Approaches to Avoiding
TCP Throughput Collapse in Cluster-based Storage Systems.”
In: Proceedings of the 2nd International Workshop on Petas-
cale Data Storage: Held in Conjunction with Supercomputing
’07. PDSW ’07. ACM, 2007, pp. 1–4. doi: 10.1145/1374596.
1374598.

[98] Santosh Kulkarni, Prathima Agrawal, et al. Analysis of TCP
Performance in Data Center Networks. Springer, 2014.

[99] Anurag Kumar, D Manjunath, and Joy Kuri. Communication
Networking. Elsevier, 2004.

[100] Gary Lee. Cloud Networking: Understanding Cloud-based Data
Center Networks. Morgan Kaufmann, 2014.

[101] Guoming Liu. “Management, Optimization and Evolution of the
LHCb Online Network.” PhD thesis. Università degli Studi di
Ferrara, 2010.

[102] Guoming Liu and Niko Neufeld. “DAQ Architecture for the
LHCb Upgrade.” In: Journal of Physics: Conference Series 513.1
(2014), p. 012027.

http://dx.doi.org/10.1109/ISCIT.2012.6381043
https://www.kernel.org/doc/Documentation/kernel-parameters.txt
https://www.kernel.org/doc/Documentation/kernel-parameters.txt
https://www.kernel.org/doc/Documentation/kernel-parameters.txt
http://dx.doi.org/10.1145/354871.354874
http://dx.doi.org/10.1145/354871.354874
http://dx.doi.org/10.1109/JPROC.2014.2371999
http://dx.doi.org/10.1145/1374596.1374598
http://dx.doi.org/10.1145/1374596.1374598

Bibliography 160

[103] Maziar Manesh et al. “Evaluating the Suitability of Server Net-
work Cards for Software Routers.” In: Proceedings of the Work-
shop on Programmable Routers for Extensible Services of Tomor-
row. PRESTO ’10. ACM, 2010, 7:1–7:6. doi: 10.1145/1921151.
1921161.

[104] John D McCalpin. “Sustainable Memory Bandwidth in Current
High Performance Computers.” In: Silicon Graphics Inc (1995).

[105] Edward McConnell. “Data Acquisition Systems.” In: Measure-
ment, Instrumentation, and Sensors Handbook; 2nd ed. Ed. by
John G Webster and Halit Eren. CRC Press, 2014. isbn: 978-1-
4398-4891-3. doi: 10.1201/b15664-102. url: http://dx.doi.
org/10.1201/b15664-102.

[106] MCi Online. Online; accessed 2016-11-14. url: http://shop.
mcidiventi.co.uk/.

[107] N. McKeown. “A Fast Switched Backplane for a Gigabit Switched
Router.” In: Business Communications Review 27.12 (1997).

[108] Nick McKeown et al. “OpenFlow: Enabling Innovation in Cam-
pus Networks.” In: ACM SIGCOMM Computer Communication
Review 38.2 (2008), pp. 69–74.

[109] P. M. Mohan, D. M. Divakaran, and M. Gurusamy. “Perfor-
mance Study of TCP Flows with QoS-supported OpenFlow in
Data Center Networks.” In: 2013 19th IEEE International Con-
ference on Networks (ICON). 2013, pp. 1–6. doi: 10.1109/ICON.
2013.6781936.

[110] V. Moreno et al. “Commodity Packet Capture Engines: Tuto-
rial, Cookbook and Applicability.” In: IEEE Communications
Surveys Tutorials 17.3 (2015), pp. 1364–1390. doi: 10.1109/
COMST.2015.2424887.

[111] R. Morris. “TCP Behavior with Many Flows.” In: Proceedings
oo the 1997 International Conference on the Network Protocols.
1997, pp. 205–211. doi: 10.1109/ICNP.1997.643715.

[112] Myricom. Online; accessed 2016-04-05. url: www.myricom.com.
[113] Thomas D Nadeau and Ken Gray. SDN: Software Defined Net-

works. "O’Reilly Media, Inc.", 2013.
[114] David Nagle, Denis Serenyi, and Abbie Matthews. “The Panasas

ActiveScale Storage Cluster: Delivering Scalable High Bandwidth
Storage.” In: Proceedings of the 2004 ACM/IEEE Conference on
Supercomputing. SC ’04. IEEE Computer Society, 2004, pp. 53–.
doi: 10.1109/SC.2004.57.

[115] J. Nagle. “On Packet Switches with Infinite Storage.” In: IEEE
Transactions on Communications 35.4 (1987). doi: 10.1109/
TCOM.1987.1096782.

http://dx.doi.org/10.1145/1921151.1921161
http://dx.doi.org/10.1145/1921151.1921161
http://dx.doi.org/10.1201/b15664-102
http://dx.doi.org/10.1201/b15664-102
http://dx.doi.org/10.1201/b15664-102
http://shop.mcidiventi.co.uk/
http://shop.mcidiventi.co.uk/
http://dx.doi.org/10.1109/ICON.2013.6781936
http://dx.doi.org/10.1109/ICON.2013.6781936
http://dx.doi.org/10.1109/COMST.2015.2424887
http://dx.doi.org/10.1109/COMST.2015.2424887
http://dx.doi.org/10.1109/ICNP.1997.643715
www.myricom.com
http://dx.doi.org/10.1109/SC.2004.57
http://dx.doi.org/10.1109/TCOM.1987.1096782
http://dx.doi.org/10.1109/TCOM.1987.1096782

Bibliography 161

[116] A. Al-Najjar, S. Layeghy, and M. Portmann. “Pushing SDN
to the End-Host, Network Load Balancing Using OpenFlow.”
In: 2016 IEEE International Conference on Pervasive Comput-
ing and Communication Workshops (PerCom Workshops). 2016,
pp. 1–6. doi: 10.1109/PERCOMW.2016.7457129.

[117] Andrea Negri. “Evolution of the Trigger and Data Acquisition
System for the ATLAS experiment.” In: Journal of Physics: Con-
ference Series 396.1 (2012), p. 012033.

[118] N. Neufeld. “LHC trigger & DAQ - An Introductory Overview.”
In: Proceedings of the 18th IEEE-NPSS Real Time Conference
(RT 2012). IEEE. 2012, pp. 1–4.

[119] Niko Neufeld et al. “The LHCb Eventbuilder: Design, Implemen-
tation and Operational Experience.” In: IEEE Transactions on
Nuclear Science 58.4 (2011), pp. 1877–1884.

[120] Next Generation Intel Microarchitecture (Nehalem). Online; ac-
cessed 2016-06-14. url: http://www.intel.com/pressroom/
archive/reference/whitepaper_Nehalem.pdf.

[121] Rajesh Nishtala et al. “Scaling Memcache at Facebook.” In: Pro-
ceedings of the 10th USENIX Conference on Networked Sys-
tems Design and Implementation. NSDI’13. USENIX Associa-
tion, 2013, pp. 385–398.

[122] Linda Null, Julia Lobur, et al. The Essentials of Computer Or-
ganization and Architecture. Jones & Bartlett Publishers, 2014.

[123] B. A. A. Nunes et al. “A Survey of Software-Defined Networking:
Past, Present, and Future of Programmable Networks.” In: IEEE
Communications Surveys Tutorials 16.3 (2014), pp. 1617–1634.
doi: 10.1109/SURV.2014.012214.00180.

[124] Open Networking Foundation. Online; accessed 2016-03-01. url:
http://www.opennetworking.org/.

[125] Open vSwitch. Online; accessed 2016-06-14. url: openvswitch.
org.

[126] OpenFlow Switch Specification. Online; accessed 2016-06-01. url:
opennetworking.org/sdn-resources/technical-library.

[127] OpenStack Open Source Cloud Computing Software. Online; ac-
cessed 2017-01-10. url: https://www.openstack.org/.

[128] Priscilla Oppenheimer. Top-Down Network Design. Cisco Press,
2010.

[129] D. P. Palomar and J. R. Fonollosa. “Practical Algorithms for
a Family of Waterfilling Solutions.” In: IEEE Transactions on
Signal Processing 53.2 (2005). doi: 10.1109/TSP.2004.840816.

[130] J G Panduro Vazquez. “The ATLAS Data Acquisition System:
from Run 1 to Run 2.” In: Nuclear Physics B - Proceedings Sup-
plements (2015).

http://dx.doi.org/10.1109/PERCOMW.2016.7457129
http://www.intel.com/pressroom/archive/reference/whitepaper_Nehalem.pdf
http://www.intel.com/pressroom/archive/reference/whitepaper_Nehalem.pdf
http://dx.doi.org/10.1109/SURV.2014.012214.00180
http://www.opennetworking.org/
openvswitch.org
openvswitch.org
opennetworking.org/sdn-resources/technical-library
https://www.openstack.org/
http://dx.doi.org/10.1109/TSP.2004.840816

Bibliography 162

[131] Krzysztof Pawlikowski. “Steady-state Simulation of Queueing
Processes: Survey of Problems and Solutions.” In: ACM Comput.
Surv. 22.2 (1990), pp. 123–170. doi: 10.1145/78919.78921.

[132] Jonathan Perry et al. “Fastpass: A Centralized Zero-Queue Dat-
acenter Network.” In: ACM SIGCOMM Computer Communica-
tion Review 44.4 (2015), pp. 307–318.

[133] Larry L Peterson and Bruce S Davie. Computer Networks: a
Systems Approach. Morgan Kaufmann, 2011.

[134] Ben Pfaff and Bruce Davie. The Open vSwitch Database Man-
agement Protocol. RFC 7047. RFC Editor, 2013.

[135] Ben Pfaff et al. “Extending Networking into the Virtualization
Layer.” In: 8th ACM Workshop on Hot Topics in Networks (Hot-
Nets-VIII). 2009.

[136] B. Pfaff et al. “The Design and Implementation of Open vSwitch.”
In: Proceedings of the 12th USENIX Conference on Networked
Systems Design and Implementation. NSDI’15. USENIX Associ-
ation, 2015, pp. 117–130.

[137] G. Pfister et al. “Solving Hot Spot Contention Using InfiniBand
Architecture Congestion Control.” In: Proceedings of the HP-
IPC 2005 Conference. 2005.

[138] PF_RING. Online; accessed 2016-06-14. url: http : / / www .
ntop.org/products/pf_ring/.

[139] Amar Phanishayee et al. “Measurement and Analysis of TCP
Throughput Collapse in Cluster-Based Storage Systems.” In: Pro-
ceedings of the 6th USENIX Conference on File and Storage
Technologies. FAST’08. USENIX Association, 2008, 12:1–12:14.

[140] Python. Online; accessed 2016-10-20. url: https://www.python.
org/.

[141] Sven-Arne Reinemo, Tor Skeie, and Manoj K. Wadekar. “Eth-
ernet for High-Performance Data Centers: On the New IEEE
Datacenter Bridging Standards.” In: IEEE Micro 30.4 (2010),
pp. 42–51. doi: http://doi.ieeecomputersociety.org/10.
1109/MM.2010.65.

[142] Yongmao Ren et al. “A Survey on TCP Incast in Data Center
Networks.” In: International Journal of Communication Systems
(2012).

[143] Luigi Rizzo. “Netmap: a Novel Framework for Fast Packet I/O.”
In: Proceedings of the 2012 USENIX Conference on Annual
Technical Conference. USENIX ATC’12. USENIX Association,
2012.

[144] Roberto Rojas-Cessa, Yagiz Kaymak, and Ziqian Dong. “Schemes
for Fast Transmission of Flows in Data Center Networks.” In:
IEEE Communications Surveys & Tutorials 17.3 (2015).

http://dx.doi.org/10.1145/78919.78921
http://www.ntop.org/products/pf_ring/
http://www.ntop.org/products/pf_ring/
https://www.python.org/
https://www.python.org/
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/MM.2010.65
http://dx.doi.org/http://doi.ieeecomputersociety.org/10.1109/MM.2010.65

Bibliography 163

[145] Alexey Rybalchenko et al. “Efficient Time Frame Building for
Online Data Reconstruction in ALICE Experiment.” In: Journal
of Physics: Conference Series. Vol. 664. 8. IOP Publishing. 2015,
p. 082048.

[146] Franklin Saka. “Ethernet for the ATLAS Second Level Trigger.”
PhD thesis. University of London, 2001.

[147] Cheryl A Schmidt. Complete CompTIA A+ Guide to IT Hard-
ware and Software. Pearson IT Certification, 2016.

[148] Rainer Schwemmer and Niko Neufeld. “A 32 Terabit/s Data
Acquisition from Mostly COTS Components.” In: IEEE Trans-
actions on Nuclear Science 62.4 (2015), pp. 1747–1751.

[149] Scientific Linux. Online; accessed 2016-07-19. url: https://
www.scientificlinux.org/.

[150] Rich Seifert and Jim Edwards. The All-New Switch Book: The
Complete Guide to LAN Switching Technology. John Wiley &
Sons, 2008.

[151] Snabb Switch. Online; accessed 2016-06-14. url: http://www.
snabb.co.

[152] Stefan-Nicolae Stancu. “Networks for the ATLAS LHC Detector:
Requirements, Design and Validation.” PhD thesis. Bucharest,
Polytechnic Inst., 2005.

[153] Stefan Stancu et al. “The Use of Ethernet in the Dataflow of the
ATLAS Trigger and DAQ.” In: Proceedings of 13th International
Conference on Computing in High-Energy and Nuclear Physics
(CHEP 2003). 2003.

[154] W Richard Stevens, Bill Fenner, and Andrew Rudoff. UNIX Net-
work Programming. Vol. 1. Addison-Wesley Professional, 2004.

[155] Supermicro. Online; accessed 2016-11-14. url: https://www.
supermicro.com.

[156] Y. Tamir and G. L. Frazier. “High-Performance Multi-Queue
Buffers for VLSI Communications Switches.” In: Proceedings of
the 15th Annual International Symposium on Computer Archi-
tecture. ISCA ’88. IEEE Computer Society Press, 1988, pp. 343–
354.

[157] Andrew S. Tanenbaum and David J. Wetherall. Computer Net-
works. 5th. Prentice Hall, 2011. isbn: 978-0-13-212695-3.

[158] Yuki Tanisawa and Miki Yamamoto. “QCN with Delay-Based
Congestion Detection for Limited Queue Fluctuation in Data
Center Networks.” In: Proceedings of the IEEE 2nd International
Conference on Cloud Networking (CloudNet 2013). IEEE. 2013,
pp. 42–49.

https://www.scientificlinux.org/
https://www.scientificlinux.org/
http://www.snabb.co
http://www.snabb.co
https://www.supermicro.com
https://www.supermicro.com

Bibliography 164

[159] V. Tanyingyong, M. Hidell, and P. Sjödin. “Using Hardware
Classification to Improve PC-Based OpenFlow Switching.” In:
Proceedings of the 2011 IEEE 12th International Conference on
High Performance Switching and Routing. 2011. doi: 10.1109/
HPSR.2011.5986029.

[160] V. Tanyingyong, M. Hidell, and P. Sjödin. “Improving Perfor-
mance in a Combined Router/Server.” In: 2012 IEEE 13th Inter-
national Conference on High Performance Switching and Rout-
ing. 2012. doi: 10.1109/HPSR.2012.6260827.

[161] The ALICE Collaboration. “The ALICE Experiment at the
CERN LHC.” In: Journal of Instrumentation 3.08 (2008). url:
http://stacks.iop.org/1748-0221/3/i=08/a=S08002.

[162] The ATLAS Collaboration. ATLAS High-Level Trigger, Data-
Acquisition and Controls: Technical Design Report. Tech. rep.
Geneva, 2003. url: https://cds.cern.ch/record/616089.

[163] The ATLAS Collaboration. “The ATLAS Experiment at the
CERN Large Hadron Collider.” In: Journal of Instrumentation
3.08 (2008), S08003. url: http : / / stacks . iop . org / 1748 -
0221/3/i=08/a=S08003.

[164] The CMS Collaboration. “The CMS Experiment at the CERN
LHC.” In: Journal of Instrumentation 3.08 (2008), p. 08004. url:
http://stacks.iop.org/1748-0221/3/i=08/a=S08004.

[165] The Intel-CERN European Doctorate Industrial Program. On-
line; accessed 2016-02-11. url: http://openlab.web.cern.ch/
ice-dip.

[166] The LHCb Collaboration. “The LHCb Detector at the LHC.”
In: Journal of Instrumentation 3.08 (2008), S08005. url: http:
//stacks.iop.org/1748-0221/3/i=08/a=S08005.

[167] The OpenDaylight Platform. Online; accessed 2016-10-20. url:
https://www.opendaylight.org/.

[168] TOP500 Supercomputing Sites. Online; accessed 2016-03-14. url:
http://top500.org.

[169] J. Touch and R. Perlman. Transparent Interconnection of Lots
of Links (TRILL): Problem and Applicability Statement. RFC
5556. RFC Editor, 2009.

[170] Subir Varma. Internet Congestion Control. Morgan Kaufmann,
2015.

[171] Vijay Vasudevan et al. “Safe and Effective Fine-grained TCP Re-
transmissions for Datacenter Communication.” In: SIGCOMM
Comput. Commun. Rev. 39.4 (2009), pp. 303–314. doi: 10.1145/
1594977.1592604.

http://dx.doi.org/10.1109/HPSR.2011.5986029
http://dx.doi.org/10.1109/HPSR.2011.5986029
http://dx.doi.org/10.1109/HPSR.2012.6260827
http://stacks.iop.org/1748-0221/3/i=08/a=S08002
https://cds.cern.ch/record/616089
http://stacks.iop.org/1748-0221/3/i=08/a=S08003
http://stacks.iop.org/1748-0221/3/i=08/a=S08003
http://stacks.iop.org/1748-0221/3/i=08/a=S08004
http://openlab.web.cern.ch/ice-dip
http://openlab.web.cern.ch/ice-dip
http://stacks.iop.org/1748-0221/3/i=08/a=S08005
http://stacks.iop.org/1748-0221/3/i=08/a=S08005
https://www.opendaylight.org/
http://top500.org
http://dx.doi.org/10.1145/1594977.1592604
http://dx.doi.org/10.1145/1594977.1592604

Bibliography 165

[172] Arun Vishwanath, Vijay Sivaraman, and Marina Thottan. “Per-
spectives on Router Buffer Sizing: Recent Results and Open
Problems.” In: SIGCOMM Comput. Commun. Rev. 39.2 (2009),
pp. 34–39. doi: 10.1145/1517480.1517487.

[173] Vyatta vRouter. Online; accessed 2016-03-01. url: http://www.
brocade.com.

[174] Haitao Wu et al. “ICTCP: Incast Congestion Control for TCP in
Data Center Networks.” In: Proceedings of the 6th International
COnference. Co-NEXT ’10. ACM, 2010, 13:1–13:12. doi: 10 .
1145/1921168.1921186.

[175] Yukai Yang et al. “Staggered Flows: An Application Layer’s
Way to Avoid Incast Problem.” In: Proceedings of the IEEE Asia
Pacific Cloud Computing Congress (APCloudCC 2012). 2012,
pp. 64–67. doi: 10.1109/APCloudCC.2012.6486513.

[176] H. Yun et al. “MemGuard: Memory Bandwidth Reservation
System for Efficient Performance Isolation in Multi-Core Plat-
forms.” In: Proceedings of the 2013 IEEE 19th Real-Time and
Embedded Technology and Applications Symposium. 2013, pp. 55–
64. doi: 10.1109/RTAS.2013.6531079.

[177] Y. Zhang and N. Ansari. “On Architecture Design, Congestion
Notification, TCP Incast and Power Consumption in Data Cen-
ters.” In: IEEE Communications Surveys Tutorials 15.1 (2013),
pp. 39–64. doi: 10.1109/SURV.2011.122211.00017.

[178] Yan Zhang and Nirwan Ansari. “On Mitigating TCP Incast in
Data Center Networks.” In: Proceedings of the 2011 IEEE IN-
FOCOM Conference. IEEE. 2011, pp. 51–55.

[179] Dong Zhou et al. “Scalable, High Performance Ethernet For-
warding with CuckooSwitch.” In: Proceedings of the Ninth ACM
Conference on Emerging Networking Experiments and Technolo-
gies. CoNEXT ’13. ACM, 2013, pp. 97–108. doi: 10 . 1145 /
2535372.2535379.

[180] Yibo Zhu et al. “Congestion Control for Large-Scale RDMA De-
ployments.” In: Proceedings of the 2015 ACM Conference on
Special Interest Group on Data Communication. ACM. 2015,
pp. 523–536.

[181] T. Zinner et al. “Dynamic Application-Aware Resource Man-
agement Using Software-Defined Networking: Implementation
Prospects and Challenges.” In: 2014 IEEE Network Operations
and Management Symposium (NOMS). 2014, pp. 1–6. doi: 10.
1109/NOMS.2014.6838404.

http://dx.doi.org/10.1145/1517480.1517487
http://www.brocade.com
http://www.brocade.com
http://dx.doi.org/10.1145/1921168.1921186
http://dx.doi.org/10.1145/1921168.1921186
http://dx.doi.org/10.1109/APCloudCC.2012.6486513
http://dx.doi.org/10.1109/RTAS.2013.6531079
http://dx.doi.org/10.1109/SURV.2011.122211.00017
http://dx.doi.org/10.1145/2535372.2535379
http://dx.doi.org/10.1145/2535372.2535379
http://dx.doi.org/10.1109/NOMS.2014.6838404
http://dx.doi.org/10.1109/NOMS.2014.6838404

colophon

This document was typeset using the typographical look-and-feel classicthesis
developed by André Miede. The style was inspired by Robert Bringhurst’s
seminal book on typography “The Elements of Typographic Style”. classicthesis
is available for both LATEX and LYX:

https://bitbucket.org/amiede/classicthesis/

Happy users of classicthesis usually send a real postcard to the
author, a collection of postcards received so far is featured here:

http://postcards.miede.de/

Final Version as of June 27, 2017 (classicthesis).

https://bitbucket.org/amiede/classicthesis/
http://postcards.miede.de/

	Contents
	List of Figures
	Listings
	Declaration
	Acknowledgements
	Abstract

	Glossary
	1 Introduction
	1.1 Background information
	1.1.1 CERN and the LHC
	1.1.2 Trigger and Data Acquisition Systems
	1.1.3 The ATLAS detector
	1.1.4 Networking on general-purpose computers
	1.1.5 Summary

	1.2 Motivation
	1.3 Thesis overview and research objectives
	1.4 Publications
	1.5 Additional material

	2 Literature Review
	2.1 Data acquisition networks
	2.1.1 The ATLAS DAQ network
	2.1.2 The LHCb DAQ network
	2.1.3 The CMS DAQ network
	2.1.4 The ALICE DAQ network
	2.1.5 Summary

	2.2 Solutions for many-to-one communication
	2.2.1 Ethernet versus InfiniBand
	2.2.2 Ethernet and TCP/IP technologies
	2.2.3 Summary

	2.3 Software packet processing
	2.4 Network topologies
	2.5 Software-Defined Networking
	2.6 Summary

	3 Performance in Data Acquisition Networks
	3.1 Introduction
	3.2 Definitions
	3.3 Requirements on DAQ networks
	3.3.1 Reliability
	3.3.2 Data bandwidth
	3.3.3 Data collection latency
	3.3.4 Scalability
	3.3.5 Fault tolerance
	3.3.6 Costs

	3.4 Throughput versus latency optimisation
	3.5 Performance evaluation methodology
	3.5.1 The ATLAS TDAQ system
	3.5.2 Evaluation procedure

	3.6 Conclusion

	4 Many-to-One Patterns in Data Acquisition
	4.1 Introduction
	4.2 TCP performance in DAQ networks
	4.3 The analogies and differences to DCN
	4.4 General approaches for many-to-one communication
	4.4.1 The bandwidth-delay product
	4.4.2 The onset of incast congestion
	4.4.3 Incast avoidance

	4.5 Example solutions for TCP incast
	4.5.1 Application layer solutions
	4.5.2 Alternative TCP congestion control algorithms
	4.5.3 Link layer solutions
	4.5.4 Comparison
	4.5.5 Summary

	4.6 Conclusion

	5 Extending Buffers with Software Switches
	5.1 Introduction
	5.2 Software packet processing
	5.2.1 Theoretical performance
	5.2.2 Potential bottlenecks
	5.2.3 The DPDK packet processing framework

	5.3 The context of data acquisition
	5.3.1 Evaluation setup

	5.4 A dedicated software switch for DAQ networks
	5.4.1 Design
	5.4.2 Evaluation results
	5.4.3 Summary

	5.5 Open vSwitch optimisation for DAQ networks
	5.5.1 Design
	5.5.2 Implementation
	5.5.3 Evaluation
	5.5.4 Detailed performance characteristics

	5.6 Other aspects
	5.6.1 Comparison with traditional switches
	5.6.2 Energy consumption
	5.6.3 The use of the remaining cores

	5.7 Conclusion

	6 Software-Defined Data Acquisition Networks
	6.1 Introduction
	6.2 The leaf-spine topology for DAQ networks
	6.2.1 Design
	6.2.2 Flow optimisation and bandwidth scaling
	6.2.3 Flow assignment and packet routing
	6.2.4 Resilience
	6.2.5 Cost comparison
	6.2.6 Physical space requirements

	6.3 A prototype of an SDN-based DAQ network
	6.3.1 Evaluation setup
	6.3.2 Evaluation results

	6.4 Conclusion

	7 Multi-Host Ethernet Controllers
	7.1 Introduction
	7.2 Advantages in incast-avoidance
	7.2.1 Towards higher port density
	7.2.2 Overcoming QPI limitations
	7.2.3 Open vSwitch acceleration
	7.2.4 Application in datacenter networks

	7.3 Performance evaluation
	7.3.1 Device under test
	7.3.2 Test configuration A
	7.3.3 Test configuration B

	7.4 Conclusion

	8 Conclusions and Outlook
	8.1 Introduction
	8.2 Review of the research
	8.3 Future directions

	A Formulas
	A.1 A simple model for bandwidth
	A.2 Theoretical goodput
	A.3 Mean and jitter

	Bibliography
	Colophon

