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aHamilton Institute, National University of Ireland-Maynooth, Co. Kildare, Ireland

bTechnische Universität Berlin, Elektrotechnik und Informatik, Fachgebiet Regelungssysteme, D-10587 Berlin, Germany

cDepartment of Mathematics, National University of Ireland-Maynooth, Co. Kildare, Ireland

Abstract

In this paper we consider the asymptotic stability of a class of discrete-time switching linear systems, where each of the constituent
subsystems is Schur stable. We first present an example to motivate ourstudy, which illustrates that the bilinear transform does not
preserve the stability of a class of switched linear systems. Consequently,continuous time stability results cannot be transformed to
discrete time analogs using this transformation. We then present a subclass of discrete-time switching systems, that arise frequently in
practical applications. We prove that global attractivity for this subclass can be obtained without requiring the existence of a common
quadratic Lyapunov function (CQLF). Using this result we present a synthesis procedure to construct switching stabilizing controllers for
an automotive control problem, which is related to the stabilization of a vehicle’s roll dynamics subject to switches in the center of gravity
(CG) height.

1 Introduction

Many control problems that arise in automotive engineering
lead naturally to solutions that involve switching betweena
set of stabilizing controllers. Examples include speed con-
trol systems, and robust rollover mitigation systems [1]. In
this paper we consider one such problem, where switching
arises naturally due to changes in the vehicle parameters.
Specifically, we consider the design of robust switched con-
trollers that prevent instabilities due to abrupt changes in the
center of gravity position.

Typically, switched linear controllers are designed usinglin-
ear matrix inequalities (LMIs); see [1] for an example of
such a design in the automotive roll dynamics control con-
text. More often than not, LMI based control system design
is based on quadratic Lyapunov functions, and is iterative in
nature, requiring multiple searches before a controller sat-
isfying certain performance criteria is found. Design meth-
ods that are constructive, in the manner of pole placement,
say, for linear systems, are generally not available for the
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design of switched systems. One such method was however
initially proposed in [2], and further developed in [3]. The
basic problem addressed here is to study the discrete time
analog of this system class. To show that this is not a trivial
exercise we present the following example.

Example 1.1 Consider the following stable LTI systems,

ΣAi : ẋ = Aix, Ai ∈ R
3×3,

with the constituent system matrices

A1 =









−19 0 0

0 −9 0

0 0 −0.25









, A2 =









−19 0 0

−10 −9 0

−18.75 0 −0.25









, A3 =









−19 0 18.75

0 −9 8.75

0 0 −0.25









.

These three matrices all share the same eigenvalues, and
they satisfy the conditions of Theorem 3.1 given in [2].
Therefore, one can conclude that the continuous time
switched systemΣAi above is stable. Now consider the
bilinear mapping [4] below

Ad,i = (Ai − I)−1(Ai + I), i ∈ {1,2,3},

whereI ∈ R
3×3 is the identity matrix. The resulting discrete
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time matrices are

Ad,1 =









0.9 0 0

0 0.8 0

0 0 −0.6









, Ad,2 =









0.9 0 0

0.1 0.8 0

1.5 0 −0.6









, Ad,3 =









0.9 0 −1.5

0 0.8 −1.4

0 0 −0.6









.

It is sufficient to show that there exists a switching sequence
between the matrices{Ad,1,Ad,2,Ad,3} such that the system

ΣAd,i : x(k+1) = A(k)x(k) for A(k) ∈ {Ad,1,Ad,2,Ad,3},

is unstable. We simply consider the incremental switching
sequenceAd,3 → Ad,2 → Ad,1; then the dynamics of the sys-
tem evolve according to the product

Ad = Ad,1Ad,2Ad,3.

Since the eigenvalues ofAd are{0.512,−0.081,1.944}, then
with one eigenvalue outside the unit circle, this switching
sequence, repeated periodically, is unstable.

This example shows that, unlike LTI systems, the Bilinear
transform does not necessarily preserve the stability of linear
time-varying systems. This observation may have implica-
tions for control system design. Traditionally, the approach
to relate continuous-time linear time invariant (LTI) Hurwitz
stability results to discrete-time LTI Schur stability counter-
parts requires the use of the bilinear transform. Our exam-
ple is consistent with the results reported in a recent paper
[4], where it is noted that while quadratic Lyapunov func-
tions are preserved under the Bilinear transform, other non-
quadratic Lyapunov functions are not. Unfortunately, the ex-
ample demonstrates that matters are much worse than re-
ported in this paper; namely, that not only are non-quadratic
functions not preserved under this mapping, but also stabil-
ity need not be.

Fortunately, it is possible to modify the proof of Theorem
3.1 in [2] to place additional discrete time conditions on
the system matrices to guarantee the global attractivity, and
hence the exponential stability [5] of the origin for this sys-
tem class.

2 Stability of a class of discrete-time switched systems

Consider the discrete time linear time-varying system

x(k+1) = A(k)x(k), (1)

wherex(k) ∈ R
n, and where the system matrixA(k) is such

that it switches between the matricesAi ∈R
n×n belonging to

the setA = {A1, ...,Am}. We shall refer to this asthe switch-
ing system. The time-invariant discrete time linear system
x(k+1) = Aix(k), denotedΣAi is referred to as theith con-
stituent system.

Following [2] we assume that (amongst other conditions) the
Ai matrices inA are diagonalizable, and any two of theAi

matrices share at leastn−1 real linearly independent eigen-
vectors. Before we proceed, we exploit in what follows the
known fact that for linear systems, uniform global attractiv-
ity of the equilibrium state implies global uniform asymp-
totic stability [5]. With this in mind, we note that while our
main result concerns global attractivity of the origin of (1)
under certain conditions, the implication is asymptotic sta-
bility.

Theorem 2.1 Let V = {v1, . . . ,vn+1} be a set of real vec-
tors, where each vi ∈ R

n for i = {1,2, ...,n+ 1}. Suppose
any choice of n vectors inV are linearly independent. For
each i∈ {1,2, . . . ,n+1}, we construct Mi ∈ R

n×n matrices
as follows

Mi =







[v1,v2, . . . ,vn−1,vn] f or i = 1

[v1, ...,vn+1,vi , ...,vn] f or 2≤ i ≤ n+1
, (2)

i.e., for i 6= 1, Mi is obtained by replacing the(i−1)th column
in M1 with the vector vn+1. Suppose we also have p different
diagonal matrices D1,D2, . . . ,Dp in R

n×n with all diagonal
entries in(0,1). We now define the matrices Ah,i ∈ R

n×n as
follows

Ah,i = MiDhM−1
i , (3)

and let A be the set of all Ah,i for h ∈ {1,2, ..., p} and
i ∈ {1,2, ...,n+ 1}. Then for the switching system (1) with
the setA defined as above, the origin is globally attractive.

Comment 2.1 Before we give the proof, we wish to make
the following comment. The proof of this theorem is analo-
gous to the proof of Theorem 3.1 in [2]. The main differences
in the two proofs are that here we look at the discrete-time
case (as opposed to the continuous-time), and significantly
that this discrete time proof only works if the eigenvalues
of the matrices inA are in(0,1) (as opposed to(−1,1)).

Comment 2.2 The proof of Theorem 2.1 given below
hinges on equation (17). We need the right hand side of
(17) to not change sign as the discrete time stepk stays in
any switching interval (as was the case in equation (24) in
[2]). This is guaranteed by the assumption that the eigenval-
ues of the matrices inA are in (0,1). Example 1.1 above
shows that Theorem 2.1 is not valid if there is no restriction
on the eigenvalues in(−1,1). We will now give the details
of the proof up to equation (17), which is the discrete time
analogue of equation (24) in [2], and the proof thereafter
follows as in [2].

Proof of Theorem 2.1:

Step-1 : In this step we replace then×n matricesM j and
Ah,i ∈ A by (n+ 1)× (n+ 1) matricesM̄ j and Āh,i , re-
spectively. The matrices̄Ah,i ∈ ¯A , {Āh,i : Ah,i ∈ A } are
chosen such that there is at least one common eigenvec-
tor τ = ( 1 0 . . . 0 )T for all the matrices in ¯A . The fol-
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lowing lemma helps us construct the augmented matrices
M̄ j ∈ R

(n+1)×(n+1) in the higher dimensional state space.

Lemma 2.1 [2]: Let V = {v1, . . . ,vn+1} be a set of real
vectors with each vi ∈ R

n for i = {1,2, ...,n+ 1}. Suppose
any choice of n vectors inV are linearly independent. Then
there exists a positive number “a” such that the set W=
{(a,v1),(1,v2),(1,v3), . . . ,(1,vn+1)} is linearly independent
in R

n+1. Here (a,v1) is the vector with n+ 1 coordinates,
whose first coordinate is “a” and remaining n coordinates
are the n coordinates of v1.

Based on this lemma we now define matrices̄Mi ∈
R

(n+1)×(n+1) with a special structure such that they embed
theMi ∈ R

n×n matrices defined in (2) as follows

M̄i =









1 b 1 . . . 1

0

.

.

. Mi

0









, b =

{

1 i f i = 2

a i f i 6= 2
(4)

wherei ∈ {1,2, . . . ,n+1}, and “a” is a scalar as defined in
Lemma 2.1. This structure for̄Mi was used to ensure that
its columns are linearly independent for eachi. We define
matricesD̄h , diag(0,Dh) ∈ R

(n+1)×(n+1). We now define
the matricesĀh,i and the set ¯A as follows

Āh,i ∈ ¯A , {Āh,i : Ah,i ∈ A }, where

Āh,i , M̄iD̄hM̄−1
i =









0 chi,1 . . . chi,n

... Ah,i

0



































(5)

for some real numberschi,1,chi,2, . . . ,chi,n that depend onh

andi. Note here thatτ = ( 1 0 . . . 0 )T is a common eigen-

vector for all them= p(n+1) number of matrices̄Ah,i ∈ ¯A .
We can now express the(n+1)th order state space system
with the augmented matrices̄Ah,i ∈ ¯A as follows















xn+1(k+1)

x1(k+1)
...

xn(k+1)















= Āh,i















xn+1(k)

x1(k)
...

xn(k)















, (6)

which according to the special structure assumed forĀh,i in
(5), is valid if and only if the following set of equations hold









x1(k+1)
...

xn(k+1)









= Ah,i









x1(k)
...

xn(k)









xn+1(k+1) = ∑n
j=1chi, jx j(k)



























(7)

It is apparent from this last equation that the higher dimen-
sional switching system withn+ 1 states explicitly con-
tains the original switching system withn states. We will
show in step 3 of the proof that for any solution ¯x(k) =
(xn+1(k),x1(k),x2(k), . . . ,xn(k)) of the augmented switching
system (6),limk→∞(x1(k),x2(k), . . . ,xn(k)) = 0 will be guar-
anteed for any solutionx(k) = (x1(k),x2(k), . . . ,xn(k)) of the
original switched system (1) with the special structure, thus
proving global attractivity of the origin.

Step-2 : Now for a giveni ∈ {1,2, . . . ,n+ 1} we consider
the n+ 1 linearly independent columns of̄Mi . These form
an n+ 1 dimensional coordinate system which includesτ
as one of the axes. We consider the projection of the state
x̄(k) onto τ as the dynamics of the system (6) evolve. This
projection is given by the first component of the vector

gi(k) = M̄−1
i x̄(k) (8)

and is denoted by[gi ]1(k). We denote thej th component of
gi(k) as[gi ] j(k) for eachi = {1,2, . . . ,n+1}. We define

G(k) =
{

[g1]1(k), [g2]1(k), [g3]1(k), . . . , [gn+1]1(k)
}

. (9)

Now suppose that the system dynamics of the augmented
system (6) are described by the following LTI system

x̄(k+1) = Āh, j x̄(k) (10)

during some arbitrary discrete time interval[k1,k2], where
k2 = k1+s for some positive integers representing the num-
ber of discrete time steps. Then

g j(k+1) = D̄hg j(k). (11)

We denoteλh,m as themth diagonal element of then×
n diagonal matricesDh for m∈ {1,2, . . . ,n} and for h ∈
{1,2, . . . , p}. It follows from the definition ofDh thatλh,m is
the (m+1)th diagonal element of̄Dh. Suppose further that
each eigenvalueλh,m is in (0,1). We then have

[g j ]m(k+1) =

{

0 f or m= 1

λh,m−1[g j ]m(k) f or m 6= 1
. (12)

Thus, when we are system (10) we get

[g j ]m(k) = (λh,m−1)
k−k1[g j ]m(k1) f or m 6= 1 (13)

Note here that[g j ]1(k) is a constant function of the discrete
time stepk, while each[g j ]m(k) for m 6= 1 varies according to
relationship (13) over the discrete interval[k1,k2]. Consider
the evolution of[gi ]1(k) relative to[g j ]1(k). This ‘distance’
denoted bydi, j(k) is given by

di, j(k) = |[gi ]1(k)− [g j ]1(k)|. (14)
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Note that using the following identity

gi(k) = M̄−1
i M̄ jg j(k), (15)

one can conveniently calculate the distancedi, j(k) as the first
component of the vector|(M̄−1

i M̄ j − I)g j(k)|, whereI is the
identity matrix inR

(n+1)×(n+1). Looking at the structure of
the matrixFi, j = M̄−1

i M̄ j for i 6= j, we observe that the first-
row first-column entry of this matrix is always 1. Next, we
give a lemma which establishes that there is only one other
nonzero entry in the first row ofFi, j matrix.

Lemma 2.2 [2] If we exclude the first column of the matrix
Fi, j = M̄−1

i M̄ j , for i 6= j, then there is only one non-zero entry
denoted by ci, j,δ in the first row, and columnδ . Note thatδ
depends on the i, j indices, and the relationship is given as

δ =

{

j when i= 1

i when i 6= 1

Using this lemma and the identity (15) it can be shown that

[gi ]1(k) = [g j ]1(k)+ci, j,δ [g j ]δ (k), (16)

for 1≤ i ≤ n+1 andi 6= j, which is valid irrespective of the
switched system that we are in. Combining (13) and (16)
we get

[gi ]1(k)− [g j ]1(k) = ci, j,δ (λh,δ−1)
k−k1[g j ]δ (k1), (17)

wherei 6= j and whenever we are in system (10).

Step-3 : In this last step we show that limk→∞ |[gi ]1(k)−
[g j ]1(k)| = 0, for all i, j ∈ {1, ...,n+ 1}. From this fact we
will deduce that limk→∞(x1(k), . . . ,xn(k)) = 0. Hence, the
Theorem will be proved.

The proof of this step follows along the same lines as the
proof of Theorem 3.1 in [2]. Note that equation (17) in this
paper is the analogue of equation (24) in [2], and the proofs
thereafter are analogous. As mentioned in Comment 2.2, the
proof from here on works because the eigenvaluesλh,δ−1
are in(0,1).

3 A stabilizing switched controller design for config-
urable driving experience for automotive vehicles

As an example of the application of the results presented in
the previous section we consider the design of an automobile
roll dynamics enhancement system. Software configurable
driving experience enhancement technologies utilizing ac-
tive control systems is a topical subject for many car manu-
facturers. In fact, there are already some passenger vehicles

Fig. 1. Second order roll plane model.

on the market that give the drivers the option to select com-
fort and sporty driving experience settings with a press of a
button, and/or modify the suspension settings as a function
of speed [6]. The aim of the control design given here is to
configure the driving experience based on active suspension
actuators alone, and at the same time, guarantee switching
stability in the roll dynamics of the vehicle subject to sudden
changes in the CG (center of gravity) position.

The equations of motion for the simplified roll plane model
of a car with roll torque input, shown in Figure 1, is given as

Jxeqφ̈ +cφ̇ +kφ = mh(ay +gφ)+u, (18)

where u denotes the roll torque input provided by active
suspension actuators, andφ is the roll angle. Alsoay is
the lateral acceleration, andJxeq = Jxx + mh2 denotes the
equivalent roll moment of inertia. Further definitions of the
parameters appearing in the model is given in Table 1.

It is important here to note that the changes in the CG posi-
tion significantly affects the roll dynamics of a vehicle [1].
Given that these changes in the CG position can be detected
in real time (for an example of such a method see [7]), we
give next a synthesis method for a stable switched linear
control design procedure for driving dynamics enhancement
system based on active suspension actuators, and making
use of the results obtained in Section 2. For illustrative pur-
poses, we assume vertical changes in CG position as the
only source of switching, which can result from vertical load
shifts and/or passenger movements.

The switched control structure consists ofN different con-
trollers that switch based on the current CG height (i.e.,
the CG height change is the switching criteria). For the
ease of exposition we assumeN = 3. Defining the state as
x = [ φ , φ̇ ]T , and using a first order approximation for the
matrix exponentials, we can represent (18) as in the follow-
ing discrete time state space form

x(k+1) = Ad,ix(k)+Gd,iay(k)+Bd,iu(k), (19)
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wherei ∈ {1,2,3} and

Ad,i =





1 ∆t

− (k−mghi)∆t
Jxeq,i

1− c∆t
Jxeq,i



 ,

Gd,i =
[

0 mhi∆t
Jxeq,i

]T
Bd,i =

[

0 ∆t
Jxeq,i

]T



















(20)

We propose the following switched linear state feedback
control structure

Ci : ui(k) = −Kix(k) for i ∈ {1,2,3}, (21)

where Ki = [ κi1, κi2 ] with κi1,κi2 ∈ R, are fixed con-
trol gains corresponding to each CG height configuration.
Then, the closed loop system can be expressed asx(k+1) =
Ãix(k)+Gd,iay(k), where

Ãi = Ad,i −Bd,iKi =





1 ∆t

− (k−mghi+κi1)∆t
Jxeq,i

1− (c+κi2)∆t
Jxeq,i



 (22)

for eachi ∈ {1,2,3}. The following lemma states the con-
troller synthesis procedure.

Lemma 3.1 [6] Let the matricesÃi ∈ R
2×2 for i ∈ {1,2,3}

be given as defined in (22). Consider D1,D2,D3 ∈ R
2×2

D1 =

[

λ1 0

0 λ2

]

, D2 =

[

λ3 0

0 λ2

]

, D3 =

[

λ1 0

0 λ3

]

, (23)

where the diagonal elements are such that0 < λ j < 1 and
λi 6= λ j for every i, j ∈ {1,2,3} and i 6= j. Suppose further
that invertible matrices M1,M2,M3 ∈ R

2×2 are defined as

M1 =

[

ν1 µ1

ν2 µ2

]

, M2 =

[

η1 µ1

η2 µ2

]

, M3 =

[

ν1 η1

ν2 η2

]

, (24)

where all the entriesν1,η1,µ1,ν2,η2,µ2 are real numbers.
Then the following control gainsκi1,κi2 for each i

κ11 = mgh1−k−
Jxeq,1

∆t2
(λ1−1)(λ2−1)

κ12 = −c+
Jxeq,1

∆t
(λ1−1)2−(λ2−1)2

λ2−λ1







for i = 1 (25)

κ21 = mgh2−k−
Jxeq,2

∆t2
(λ3−1)(λ2−1)

κ22 = −c+
Jxeq,2

∆t
(λ3−1)2−(λ2−1)2

λ2−λ3







for i = 2 (26)

κ31 = mgh3−k−
Jxeq,3

∆t2
(λ1−1)(λ3−1)

κ32 = −c+
Jxeq,3

∆t
(λ1−1)2−(λ3−1)2

λ3−λ1







for i = 3 (27)

guarantee that the conditions of Theorem 2.1 are satisfied,
and consequently the switching system is stable.

Table 1
Simulation parameters

Parameter Description Value Unit

m Vehicle mass 1200 [kg]

g Gravitational constant 9.81 [m/s2]

Jxx Roll moment of inertia 300 [kgm2]

c susp. damping coeff. 5000 [kgm2/s]

k susp. spring stifness 30000 [kgm2/s2]

h1,h2,h3 respective CG heights 0.5,0.7,0.9[m]

Example 3.1 Let the positive constantsλ1,λ2,λ3 be given
as 0.994,0.6,0.3, respectively. Without loss of generality,
we choose the constantsν2,µ2,η2 as 1,2,3, respectively.
Also, we set the discrete time step as∆t = 0.05. The vehicle
model parameters used in the example are given in Table
1, and they correspond to a compact class vehicle. In this
example we assume that the CG height of the vehicle can
switch between any of the valuesh1,h2 or h3 specified in
Table 1 at any instant. Now utilizing Lemma 3.1, the closed
loop system matrices̃A1, Ã2 and Ã3 corresponding to the
controller gainsκi1,κi2 for eachi ∈ {1,2,3} are computed as

Ã1 =





1 0.05

−0.048 0.594



 , Ã2 =





1 0.05

−5.6 −0.1



 , Ã3 =





1 0.05

−0.084 0.294



 . (28)

Then the evolution of dynamics corresponding to any switch-
ing sequence between the unforced closed loop system ma-
trices Ã1, Ã2 and Ã3 are stable by Theorem 2.1. That is,
the switched unforced discrete time dynamical systems ex-
pressed as follows

x(k+1) = A(k)x(k), A(k) ∈ {Ã1, Ã2, Ã3},

are stable under arbitrary switches, and the resulting system
matrices have positive real eigenvalues in(0,1). This inher-
ently implies that with the suggested switched control struc-
ture, where controller switching is based on the current CG
height, results in stable roll dynamics of the vehicle regard-
less of the switching parameters. Also, it can be shown that
the closed loop forced switched roll plane model given with
x(k+ 1) = Ãix(k)+ Gd,iay(k) is stable for bounded lateral
accelerationay(k) inputs [6].

Comment 3.1 It is important to note here that the closed
loop system matrices̃Ai for i ∈ {1,2,3} given in (28)do not
have a CQLF, but nevertheless the corresponding switching
system is exponentially stable. The non-existence of a CQLF
can be confirmed numerically using LMI solvers.

We finally give the numerical simulation results correspond-
ing to the suggested controller in feedback loop with a sim-
ple vehicle model known as the “single track model with the
roll degree of freedom” [6]. We used this model to represent
the real vehicle in simulation and in a feedback loop with
the discrete time control design introduced earlier. The ref-
erence maneuver is a steady state cornering maneuver with
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Fig. 2. Driver steering wheel inputδ (where steering ratio is 1/20)
and the time varying CG height during the maneuver.
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Fig. 3. Comparisons of the states for vehicles with and without
control.

a gradual step steering input (δ ) as shown in the upper part
of Figure 2. The steering input starts at 4 seconds into the
simulation and reaches its peak steady state value of 80◦ at
6 seconds in an affine linear fashion. Also the vehicle ve-
locity during the simulation was fixed atvx = 20m/s. In or-
der to represent the switching in the dynamics we assumed
the CG height profile shown in the lower part of Figure 2,
which we assume results from loads falling over inside the
vehicle during the maneuver. Using this controller results
in the state histories during the maneuver shown in Figure
3. Note also in the results that the states are compared to
those of an uncontrolled vehicle subject to the same param-
eter switches, and the effectiveness of the controller is ev-
ident from the results. Specifically, it is observed from the
roll angle and the roll rate profiles (shown in the left half
of figure) that the suggested switched controller reduces the
controlled roll angle significantly while preserving the ver-
tical response characteristics. This implies that for a given
steering input, the controlled vehicle can tolerate higheryaw
rates without having as much sideslip, which is desirable in
terms of improved cornering performance for a sporty driv-
ing experience.

4 Concluding remarks

In this paper we have shown that the global attractivity re-
sults for a class of discrete-time switching systems is not
necessarily equivalent to continuous time systems with this
property. Hence, in cases when the existence of a CQLF
is unknown for the switched set of LTI systems, quali-
tative statements concerning the system stability for the
continuous-time as well as the discrete-time systems must be
validated separately using non-CQLF techniques. One such
technique for a specific class of systems is presented in this
paper. This result can be translated into practical controlde-
sign laws for switched systems, which we demonstrated by
a controller synthesis procedure for the stabilization of auto-
motive roll dynamics subject to switches in the CG height.
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