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Abstract

Wave Energy Converters (WECs) are devices used to extract energy from the waves. The par-

ticular WEC considered in this thesis is a three-body hinge-barge WEC, which is an articulated

floating structure composed of 3 rectangular bodies interconnected by hinges, and it operates lon-

gitudinally to the direction to the incoming wave. The relative motion between each pair of bodies

drives a Power Take-Off (PTO) system, which extracts the energy from the waves. The objective

of this thesis is to increase the energy that can be extracted by a three-body hinge-barge WEC

using an optimal control strategy, which computes the optimal loads applied by the PTOs driven

by the relative motion between the bodies. The optimal control is formulated in the time domain,

and computes the PTO loads in a coordinated way, so that the total energy extracted by the device

is maximized. The optimal control strategy is formulated for a three-body hinge-barge WEC that

is equipped with either passive or active PTOs.

In this thesis, an optimal control strategy, for the maximization of the energy extracted by a

three-body hinge-barge WEC, is derived with Pseudo-Spectral (PS) methods, which are a subset

of the class of techniques used for the discretisation of integral and partial differential equations

known as mean weighted residuals. In particular, PS methods based on Fourier basis functions,

are used to derive an optimal control strategy, for a finite time horizon. Therefore, an optimal

control strategy, with PS methods based on Fourier basis functions, cannot be applied for real-

time control of the WEC, as Fourier basis functions can only represent the steady-state response

of the WEC. However, PS methods based on Fourier basis functions provide a useful framework

for the evaluation of the achievable power absorption performance of the WEC, with both active

and passive PTOs. The Receding Horizon (RH) real-time optimal control of a three-body hinge-

barge WEC is derived with PS methods based on Half-Range Chebyshev-Fourier (HRCF) basis

functions. The RH optimal real-time controller, with PS methods based on HRCF basis functions,

maximizes the energy extracted by the WEC at each time step over a moving control horizon. In

contrast to Fourier basis functions, HRCF basis functions are well suited for the approximation of

non-periodic signals, allowing the representation of both the transient and steady-state response of

the WEC.

The optimal control strategy, with PS methods based on either Fourier or HRCF basis func-

tions, is based on a dynamic model of the device, which is derived with two different modeling

methodologies, that can be also applied to other types of multiple body WECs. The modeling

methodologies are validated against wave-tank tests carried out on a 1/7th scale two-body hinge-

barge device, and a 1/25th and 1/20th scale three-body hinge-barge device.
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Chapter 1

Introduction

1.1 Scope

The global energy consumption rose by about one-third from 2000 to 2014, and it is estimated

that, in 2040, it will be 25% higher than in 2014 [1]. Given that the availability of traditional

energy resources, such as fossil fuels, is finite, renewable energies will play a fundamental role in

the satisfaction of the global energy demand [2]. In the past three decades, different technologies

based on solar, wind and wave energy have been developed. The density of wave power, which is

around 2-3 kW/m2, is greater than the density of solar and wind power, which is 0.1-0.2 kW/m2

and 0.4-0.6 kW/m2, respectively [2]. Furthermore, the predictability of waves is generally higher

than wind [2], [3].

In Figure 1.1, the distribution of the global wave energy resource is shown, with the largest

values of average wave power in the mid-latitudes, between 30◦and 60◦[4]. As Figure 1.1 shows,

the highest levels of wave energy are found off the western coast of the continents, which are

exposed to the open ocean. The western coasts of Europe, North-America and Australia, are the

locations with the largest wave potential.

Although wave energy is characterized by a large potential, many barriers hinder the devel-

opment of Wave Energy Converters (WECs) for the extraction of the energy from the waves. For

example, the structure of a WEC has to be robust enough to survive the harsh and hostile marine

environment. Moreover, the hostility of the marine environment makes the maintenance of a WEC

difficult, resulting in significant operational and maintenance costs. Also, the largest amount of

wave power is usually located in remote areas away from the shore, increasing the overall instal-

lation costs due to moorings, transmission cables, etc.

Several WECs have been developed throughout history, which are based on different operating

principles, for the extraction of the energy from the waves. Also, WECs can be classified according

to the location where they are deployed. In fact, WECs can be deployed offshore, near-shore and

on the shoreline. Around the world, different projects of WECs, at various stages of development,

are currently being developed. Different studies show that the number of new concepts of WECs
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Figure 1.1: Global distribution of the average wave power in kW/m [4].

does not decrease, with the new WECs replacing the WECs that are not developed anymore [5].

Depending on the operating principle which is used to extract energy from the waves, WECs can

be classified into 6 different categories: point absorbers, Oscillating Water Columns (OWCs),

oscillating wave surge devices, overtopping devices, pressure differential devices and hinge-barge

devices [2]. In Figure 1.2, an illustration of WECs based on different working principles is shown.

As shown in Figure 1.2, a point absorber converts the energy of the waves into electricity

using its translational motion induced by the waves. Typically, a point absorber is floating on the

water level, and is fixed to the sea-bed using a Power Take-Off (PTO) system, which converts the

mechanical energy of the device into electricity. The diameter of a point absorber is significantly

smaller than the wavelength of the incoming wave. An OWC is made of a concrete or steel

chamber which is partly submerged in the water, and is open at the bottom [5]. The motion the

water surface inside the chamber pushes air through a turbine, which is connected to an electrical

generator. An oscillating wave surge device is made of a hinged flap at the sea bed, whose pitch

motion, induced by the waves, drives a hydraulic PTO, which pumps high-pressure fluid to the

shore via a sub-sea pipeline [5]. An overtopping device is made of a structure which is overtopped

by the incoming wave, and the water is then stored into a reservoir. The water in the reservoir

is then released back to the sea through a turbine, which is connected to an electrical generator

[2]. A pressure differential device is an air-reservoir, consisting of a floater which is free to move

vertically, and a stator which is anchored to the sea bed [6]. The position of the floater varies with

the changing hydrodynamic pressure of the water, and the energy is extracted using the vertical

motion. A hinge-barge device is composed of an assembly of floating bodies connected together

by different type of joints. The relative motion between each pair of bodies drives a PTO, which
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extracts the energy from the waves.

A single-body WEC, such as the point absorber, has only one operational mode, and is char-

acterized by a narrow frequency band where the energy is extracted from the waves. Instead, a

multibody WEC, such as the hinge-barge device, can extract energy from multiple modes, allow-

ing the extraction of the energy from the waves over a broader frequency band than the frequency

band of a single body WEC [7]. Hinge-barge WECs are discussed in more detail in Chapter 2.

The focus of this thesis is to increase the energy that can be extracted by a three-body hinge-

barge WEC using an optimal control strategy, which computes the optimal loads applied by the

PTOs driven by the relative motion between the bodies. In particular, the optimal control strategy is

based on a dynamic model of the device, which is derived with two different modeling methodolo-

gies, that can be also applied to other types of multiple body WECs. The modeling methodologies

are validated against wave-tank tests carried out on a 1/7th scale two-body hinge-barge device,

and a 1/25th and 1/20th scale three-body hinge-barge device. More, about the motivation for the

research carried out in this thesis, is discussed in Section 1.2.

Figure 1.2: Classification of WECs based on the working principle for the extraction of the energy
from the waves [2],[8].

1.2 Motivation

The economical viability of WECs can be improved using an optimal control strategy, which

broadens the frequency band where the extraction of the energy from the waves takes place [9].

In [10], an optimal control strategy for the maximization of the energy extracted by a single-body

and multi-body WECs, termed as complex-conjugate control, is derived in the frequency domain.

Complex-conjugate control maximizes the energy extracted by a WEC under the assumption that

the dynamics of the WEC is described by a linear dynamic model, the incoming wave is composed
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of a single frequency component, and an active PTO is used for the energy extraction. An active

PTO can deliver power to the WEC, as well as absorb power from the WEC. In contrast to an

active PTO, a passive PTO can only absorb energy from the WEC.

However, real waves are not regular, but rather irregular, and are composed of multiple fre-

quencies. Therefore, the application of complex-conjugate control for the maximization of the

energy extracted by a WEC, under irregular waves, is difficult to implement. In fact, the derivation

of the complex-conjugate control, in the time domain, involves a non-casual relationship between

the optimal force applied by the PTO and the velocity of the WEC [10]. Alternatively, the condi-

tion for the maximization of the energy extracted by the WEC, with complex-conjugate control,

involves a non-casual relationship between the velocity of the WEC and the excitation force acting

on the WEC, due to the action of the waves [11]. Therefore, complex-conjugate control, in the

time domain, requires knowledge of either the future velocity of the WEC, or the future excitation

force [12].

Also, the optimal force applied by the PTO, computed by complex-conjugate control, induces

a motion of the WEC which can be unrealistically large, resulting into a violation of the physical

limits on the position and velocity of the WEC. Also, the costs involved with the use of a bi-

directional PTO can exceed the increment in the value of absorbed power that can be achieved,

with respect to a simpler passive PTO [13].

In this work, an optimal control strategy for the maximization of the energy extracted by a

three-body hinge-barge WEC, is derived in the time domain, for both regular and irregular waves.

The optimal control strategy is based on a dynamic model of the WEC. Therefore, a dynamic

model, that accurately represents the dynamic response of the WEC to the action of the waves,

plays a fundamental role into the maximization of the energy extracted by the WEC. In this thesis,

a dynamic model of a multibody hinge-barge WEC is derived with two different formulations, that

can be also applied to other types of multibody WEC. The two formulations are validated against

tank tests carried out on small scale models of a two-body and three-body hinge-barge WECs.

For this study, while the need for knowledge of the current excitation forces acting on a three-

body hinge-barge device, is satisfied with the development of two different types of estimators,

future knowledge of the excitation forces, is obtained using a prediction algorithm, based on past

values of the excitation forces.

In this thesis, an optimal control strategy is formulated for a three-body hinge-barge WEC

that is equipped with either passive or active PTOs. Furthermore, the optimal control strategy is

formulated in such a way that the physical limits on the positions, velocities and PTO forces of

the hinge-barge WEC, are taken into account in the maximization of the energy extracted by the

WEC.

1.3 Objectives

The main objectives of this thesis are:
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• Formulation of a dynamic model for a multibody hinge-barge WEC, based on two different

modeling methodologies.

• Validation of the modeling methodologies applied to small scale two-body and three-body

hinge-barge WECs, against wave-tank tests.

• Derivation of a reduced equivalent dynamic model for a three-body hinge-barge WEC, for

the formulation of a computationally attractive optimal control strategy.

• Design of an optimal control strategy, based on a reduced equivalent model of a three-body

hinge-barge device, for both regular and irregular waves, with active and passive PTOs.

• Comparison of the power absorption performance of a three-body hinge-barge device, ob-

tained with the optimal control strategy, with the power absorption performance obtained

with complex-conjugate control and a standard control strategy based on optimal linear

damping coefficients of passive PTOs.

• Development of two algorithms for the estimation of the excitation forces acting on a three-

body hinge-barge device.

• Design of an algorithm for the prediction of the excitation forces acting on a three-body

hinge-barge device.

• Deployment of a system set-up for wave-tank testing of a 1/20th scale three-body hinge-

barge device.

• Design and calibration of a motion capture system for wave-tank testing of small scale

WECs.

• Preliminary tank tests for the control of a 1/20th scale three-body hinge-barge device.

1.4 Main contributions

The main novel contributions of this thesis are summarised as follows:

• In Chapter 3, two different modeling methodologies are adopted to derive a dynamic model

of a multi-body hinge-barge WEC: the Differential and Algebraic Equations (DAEs) formu-

lation and the Ordinary Differential Equations (ODEs) formulation. The DAE formulation

describes the dynamics of a multibody hinge-barge WEC, in terms of the motion coordinates

of the all the bodies, and reaction forces introduced by the joints. The ODE formulation de-

scribes the dynamics of a multibody hinge-barge WEC, in terms of a set of independent

coordinates which are fewer than the motion coordinates of all the bodies. Therefore, the

ODE formulation is computationally more efficient than the DAE formulation, but it does

not provide any information regarding the reaction forces. The information regarding the
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reaction forces, provided by the DAE formulation, can be used for the mechanical design of

the joints between the bodies.

• In Chapter 3, it is shown that a dynamic model of a 1/7th scale two-body hinge-barge WEC

and of a 1/25th scale three-body hinge-barge WEC, obtained with the DAE and ODE for-

mulations, can be efficiently solved with Pseudo-Spectral (PS) methods, based on Fourier

basis functions, which are a subset of the class of techniques used for the discretisation of

integral and partial differential equations known as mean weighted residuals. In particular,

with respect to reference methods based on the integration of the equations of motion, e.g.

the Runge-Kutta (R-K) method, PS methods are computationally more efficient for short

time steps. Furthermore, for large time steps, PS methods are computationally more stable

than the R-K method.

• An equivalent reduced dynamic model for a three-body hinge-barge WEC, which is de-

scribed only in terms of the relative rotations between the barges, is derived in Chapter

4. The equivalent reduced dynamic model is computationally more efficient than both the

DAE and ODE formulations, as it involves a smaller number of variables than the variables

involved by the dynamic models obtained with both the DAE and ODE formulations. There-

fore, the equivalent reduced dynamic model is particularly suitable for the formulation of

an optimal control strategy.

• In Chapter 4, results show that an optimal control strategy derived with PS methods, based

on Fourier basis functions, applied to a 1/25th scale three-body hinge-barge device, outper-

forms a standard control strategy based on optimal linear damping coefficients of passive

PTOs. In particular, for a three-body hinge-barge device equipped with active PTOs, an

optimal control strategy derived with PS methods, based on Fourier-basis functions, shows

a power absorption performance which is the same as the power absorption performance

of complex-conjugate control. For a three-body hinge-barge device equipped with passive

PTOs, an optimal control strategy derived with PS methods, based on Fourier-basis func-

tions, shows a power absorption performance which is comparable to the power absorption

performance obtained with active PTOs.

• An optimal control strategy derived with PS methods, based on Fourier-basis functions,

cannot be applied for real-time control of a three-body hinge-barge WEC, as Fourier basis

functions can only represent the steady-state response of the WEC. In Chapter 5, a receding

horizon real-time optimal control strategy, for a three-body hinge-barge WEC, is obtained

with PS methods based on Half-Range Chebyshev Fourier (HRCF) basis functions. In con-

trast to Fourier basis functions, HRCF basis functions are well suited for the approximation

of non-periodic signals, allowing the representation of both the transient and steady-state

response of the WEC. Results show that there are no computational disadvantages in us-

ing HRCF basis functions, as opposed to Fourier basis functions, for the formulation of the

optimal control problem.
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• An optimal control strategy derived with PS methods based on either Fourier or HRCF basis

functions, relies heavily on knowledge of the current and future excitation forces acting on

the WEC. In Chapter 6, the problem of estimation of the current excitation forces acting on

the WEC is addressed with two different estimator types: feedback and feedforward. The

feedback estimator is based on a dynamic model of the WEC in the time domain, and the

measurements of the position and velocity of the device. The feedforward estimator is based

on a dynamic model of the WEC in the frequency domain, and is based on the measurement

of the position coordinates of the device and the surface elevation up-wave of the device.

Results show that, the feedforward estimator performs slightly better than the feedback

estimator, with an accuracy of the estimated excitation forces that is 20% higher than the

accuracy of the estimated excitation forces given by the feedback estimator. In Chapter 6,

the problem of prediction of the future excitation forces acting on the WEC is addressed

with a simple Auto-Regressive (AR) model, which is based only on the past history of the

estimated excitation forces.

• In order to experimentally validate a control strategy based on optimal linear damping coef-

ficients of passive PTOs, a system set-up for wave-tank testing of a 1/20th scale three-body

hinge barge WEC, is presented Chapter 7. The system set-up features a motion capture sys-

tem, which is developed and calibrated in Chapter 8, for the measurement of the motion of

the central barge, and rotational encoders for the measurement of the relative rotation of the

lateral barges, with respect to the central barge. The WEC is equipped with two hydraulic

dampers, whose damping forces can be changed by varying the opening of a flow control

valve.

• In Chapter 8, a low-cost motion capture system, based on an optimal combination of an

Inertial Measurement Unit (IMU) with ultrasound sensors, is proposed for wave-tank testing

of small scale WECs. The low-cost motion capture system, developed in Chapter 8, provides

a measurement of the motion of small scale WEC at a less expensive cost than a traditional

optical motion capture systems. The low-cost motion capture system is validated against

experimental tests carried out with a servo controlled six-axis robot arm.

• In Chapter 9, wave-tank tests are performed on a 1/20th scale three-body hinge-barge de-

vice. A linear dynamic model of the device is validated against tank tests, and is used

to formulate a control strategy based based on optimal linear damping coefficients of the

hydraulic dampers.

1.4.1 List of publications and awards

The contributions of this thesis resulted in a number of publications, outlined as follows:

• Paparella, F. and Ringwood, J.V., “Receding horizon pseudospectral control for energy max-

imization of a three-body hinge-barge wave energy device”, accepted for presentation at

EWTEC 2017, Cork, 2017.
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• Paparella, F., Sivcev, S., Toal. D. and Ringwood, J.V., “A low-cost motion capture sys-

tem for small-scale wave energy device tank testing”, submitted to IEEE Transactions on

Instrumentation and Measurement.

• Garcia-Abril, M., Paparella, F. and Ringwood, J.V., “Excitation force estimation and fore-

casting for wave energy applications”, in Proc. of 20th IFAC World Congress, Toulouse,

France, 2017.

• Peña-Sanchez, Y., Garcia-Abril, M., Paparella, F. and Ringwood, J.V., “Estimation and fore-

casting of excitation force for arrays of wave energy devices”, accepted for presentation at

EWTEC 2017, Cork, 2017.

• Paparella, F. and Ringwood, J.V., “Optimal control of a three-body hinge-barge wave energy

device using pseudospectral methods”, IEEE Trans. On Sustainable Energy, Vol. 8, No. 1,

pp 200-208, 2017.

• Paparella, F. and Ringwood, J.V.,“Enhancement of the wave energy characteristics of a

hinge-barge using pseudo-spectral control”, in Proc. UKACC Control 2016, Belfast, 2016.

• Paparella, F., Bacelli, G., Paulmeno, A., Mouring, S. and Ringwood, J.V., “Multibody mod-

elling of wave energy converters using pseudo-spectral methods with application to a three-

body hinge-barge device”, IEEE Trans. On Sustainable Energy, Vol. 7, No. 3, pp 966-974,

2016.

• Paparella, F., Bacelli, G., Ó’Catháin, M. and Ringwood, J.V.. “On the solution of multi-

body wave energy converter motions using pseudo-spectral methods”. in Proc. EWTEC,

Nantes, France, Sept. 2015, pp 8B1-5-1 8B1-5-9, 2015.

• Paparella, F., Monk, K., Winands, V., Lopes, M., Conley, D., Ringwood, J.V.. “ Up- Wave

And Autoregressive Methods For Short-Term Wave Forecasting For An Oscillating Water

Column”, IEEE Trans. On Sustainable Energy, Vol 6, No 1, pp 1-8, 2014.

• Paparella, F., Monk, K., Winands, V., Lopes, M., Conley, D., Ringwood, J.V.. “Benefits Of

Up-Wave Measurements In Linear Short-Term Wave Forecasting For Wave Energy Appli-

cations”. in Proc. IEEE Conference On Control Applications (CCA), Antibes, Oct. 2014,

pp 2048-2053, 2014.

A best student paper award has been received for the paper “Enhancement of the wave energy

characteristics of a hinge-barge using pseudo-spectral control”, in Proc. UKACC Control 2016,

Belfast, 2016.

1.5 Organization of the thesis

The thesis is composed of 9 additional chapters following this chapter, the subjects of which are

outlined in the remainder of this section. Each chapter is provided with a dedicated literature
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review, as the nature of the subject material of each chapter is substantially different.

In Chapter 2, the working principle of a hinge-barge WEC is described in detail, together

with a literature review of the different commercial versions of a hinge-barge WEC. Furthermore,

a literature review on the dynamic modeling techniques and the optimal control strategies, for a

multibody hinge-barge WEC, is presented.

In Chapter 3, a literature review of the main modeling techniques, used for the description of

the dynamics of a generic multibody system, is presented. In particular, among the different mod-

eling techniques presented in the literature review, the DAE and ODE formulations are selected for

the dynamic modeling of a multibody hinge-barge WEC. Both the DAE and ODE formulations,

applied to a 1/7th scale two-body and 1/25th scale three-body hinge-barge WECs, are validated

against wave-tank tests. Both the dynamic models obtained with the DAE and ODE formulations

are linearized around the equilibrium position of the WECs, and the resulting linearized dynamic

models are solved with PS methods, based on Fourier basis functions. Furthermore, a comparison

between the DAE and ODE formulations, and a method based on the integration of the equations

of motion, using an explicit 4th order R-K method with a fixed time step, is made.

In Chapter 4, the theory behind the complex-conjugate control for the maximization of the

energy extracted from a WEC is presented, followed by an extensive review of the control meth-

ods proposed in the literature. In particular, among the different control strategies presented in

the literature review, an optimal control strategy, with PS methods based on Fourier basis func-

tions, is applied to a three-body hinge-barge wave energy device. An equivalent reduced dynamic

model of the WEC, which is described only in terms of the relative pitch rotations between the

barges, is derived for the control formulation. The optimal control strategy takes into account the

hydrodynamic and kinematic interactions between the bodies, and the PTO loads at the joints are

controlled in a coordinated way, so that the total energy extracted by the device is maximized.

The optimal control strategy is developed for a three-body hinge-barge equipped with either ac-

tive or passive PTOs, under both regular and irregular waves. The power absorbed by a 1/25th

scale three-body hinge-barge device, with PS optimal control based on the ODE, DAE and re-

duced equivalent model formulations, is compared to the power absorbed with complex-conjugate

control and a standard control strategy based on optimal linear damping coefficients of passive

PTOs.

In Chapter 5, a receding horizon real-time optimal control of a three-body hinge-barge device,

with PS methods based on HRCF basis functions, is presented. While Fourier basis functions can

only represent the steady-state response of the WEC, HRCF basis functions are well suited for

the approximation of non-periodic signals, allowing the representation of both the transient and

steady-state response of the device. HRCF functions represent a Fourier extension for nonperiodic

signals and, therefore, are especially suited for the wave energy field, since wave elevation and

fluid structure interaction forces are all well described using Fourier analysis. The power absorbed

by a 1/25th scale three-body hinge-barge device, with an optimal control strategy with PS meth-

ods based on HRCF basis functions, is compared to the power absorbed with an optimal control

strategy with PS methods based on Fourier basis functions.
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In Chapter 6, a literature review, on the techniques adopted for the estimation the excitation

force acting on a single-body WEC, is presented. Two different estimator types, for the estimation

of the excitation forces of a three-body hinge-barge device, are developed: feedback and feedfor-

ward. The feedback estimator is formulated in the time-domain, and is based on a Kalman filter.

The Kalman filter is based on a dynamic model of the device and the measurements of the posi-

tion and velocity of the device, with the excitation forces considered to be unknown inputs. The

feedforward estimator is formulated in the frequency domain, and is based on the measurement

of the position of the device and of the surface elevation up-wave of the device. The feedforward

estimator is based on the identification of the transfer function between the wave elevation and

the excitation forces. In Chapter 6, for the prediction of the excitation forces, an Auto-Regressive

(AR) model is fitted to the estimated excitation forces given by the feedback and feedforward

estimator, and used to predict their future values.

In Chapter 7, a system set-up for wave-tank testing of a 1/20th scale three-body hinge barge

device is presented. The system set-up is composed of 3 functional parts: control, actuators and

sensors. The actuators are comprised of two hydraulic dampers, which are used to dissipate the

mechanical energy of the device. The hydraulic dampers act as passive PTOs, which convert the

energy of the waves into mechanical energy. The damping forces of the dampers can be changed

by varying the opening of a flow control valve. The sensor suite comprises a motion capture

system, which is developed and calibrated in Chapter 8, for the measurement of the motion of the

central barge, and rotational encoders for the measurement of the relative rotation of the lateral

barges, with respect to the central barge. The control part collects the data from the sensors, and

changes the opening of the flow control valves in order to maximize the energy dissipated by the

hydraulic dampers.

In Chapter 8, a literature review on the motion capture systems that are usually adopted for

wave-tank testing of a small scale WEC, is presented. The principal drawback of the motion

capture systems, usually adopted for the wave-tank testing of a WEC, is their cost, which can be

high and, therefore, the overall cost for wave tank testing is increased. In Chapter 8, a low-cost

motion capture system, based on a optimal combination of an Inertial Measurement Unit (IMU)

with ultrasound sensors, is proposed for the wave-tank testing of a WEC. The IMU is mounted

on the WEC and measures the accelerations and angular velocities of the WEC. The ultrasound

sensors are composed of a set of receivers placed around the device, and a transmitter which

is mounted on the same point of the WEC where the IMU is placed. The ultrasound sensors

measure the absolute position of the WEC with respect to a fixed reference frame. A loosely

coupled ultrasound sensor aided IMU with an Extended Kalman Filter (EKF) is proposed for the

integration of the data from the IMU and ultrasound sensors.

In Chapter 9, wave-tank tests of a 1/20th scale three-body hinge-barge device, are presented.

The wave-tank tests are performed with the system set-up presented in Chapter 7, and the motion

capture system presented in Chapter 8. The wave-tank tests are carried out for both regular and

irregular waves. A linear dynamic model of the WEC is tuned and validated with wave-tank tests,

for the formulation of a control strategy based based on optimal linear damping coefficients of the
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hydraulic dampers.

Finally, conclusions and possible future directions of this research work are documented in

Chapter 10.
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Chapter 2

Overview of multibody hinge-barge
wave energy converters

2.1 Introduction

Multibody hinge-barge WECs are composed of an assembly of bodies connected together by dif-

ferent type of joints. Typically, a multibody hinge-barge is designed to operate along the direction

of the incoming wave. In Figure 2.1, an n-body hinge-barge WEC operating along the direction

of the incoming wave is depicted. As shown in Figure 2.1, the device is composed of n bodies

connected together by hinges which permit relative pitch motion. As shown in Figure 2.1, the

relative pitch motion between each pair of bodies is used to drive a PTO which extracts the energy

from the waves.

For waves of length that are long compared to the overall length of the device, the device

essentially behaves as a rigid body, with no relative motion between the bodies. Therefore, for

long waves, no energy is extracted from the waves. Instead, for waves of length comparable to the

overall length of the device, the relative motion between the bodies increases. In particular, the

power absorbed by the PTOs is maximum when the motion of each pair of bodies is in anti-phase.

Typically, for a hinge-barge WEC, the maximum power absorption is realized when the length

of each body is half wavelength. By way of example, in Figures 2.2a and 2.2b, the operating

condition where the absorbed power is maximum is shown for a hinge-barge composed of 3 and 4

bodies, respectively. Note that, as shown in Figure 2.2b, the 4 body hinge-barge device has a total

length equal to 2 wavelengths.

Single-body WECs that have only one operational mode are characterized by a narrow fre-

quency band where the energy is extracted from the waves, although the frequency band can be

broaden by using an optimal control strategy [9]. Instead, multibody hinge-barge WECs can ex-

tract energy from multiple modes, allowing the energy to be extracted from the waves over a

broader frequency band than the frequency band of a single body WEC [7]. Furthermore, the en-

ergy extraction of a single-body WEC relies on the connection of the WEC to a fixed reference on

the sea-bed, with associated extreme loads on the connecting structures and sea-bed foundation.
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In contrast, the energy extraction of a multibody WEC takes place above the floats, making the

deployment and maintenance of the equipment for the energy extraction easier for a multibody

WEC than for a singe-body WEC.

Figure 2.1: Schematic of a n-body hinge-barge wave energy converter.

(a)

(b)

Figure 2.2: Optimal operating condition for maximum power absorption for a hinge-barge com-
posed of 3 (a) and 4 (b) bodies.
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The motion of each body of a multibody hinge-barge, in the 3D space, can be described by 3

coordinates for position and 3 coordinates for orientation. As shown in Figure 2.1, for position,

the coordinate along the X-axis is referred to as surge, the coordinate along the Y -axis is referred

to as sway and the coordinate along the Z-axis is referred to as heave. As shown in Figure 2.1, for

orientation, the rotation around the X-axis is referred to as roll, the rotation around the Y -axis is

referred to as pitch and the rotation around the Z-axis is referred to as yaw.

For the conversion of the energy of the waves into electrical energy, two type of PTOs can be

used: hydraulic systems and direct electrical generators [14], [15]. Hydraulic PTOs are composed

of hydraulic cylinders which are connected between the bodies, pressure accumulators and an hy-

draulic motor. In Figure 2.3, an example of constant pressure PTO system is shown. The hydraulic

cylinders pump an hydraulic fluid which flows through an hydraulic motor. The hydraulic motor

is coupled with an electrical rotating generator which converts the hydraulic energy into electrical

energy that can be transmitted to the electrical grid. Alternatively to the hydraulic PTO, an elec-

trical linear generator connected between the bodies can be used. The linear generator directly

converts the relative pitch motion between bodies into electrical energy, with no need to convert

the energy from the waves into hydraulic energy.

The remainder of this chapter is organized as follows: in Section 2.2, different commercial

hinge-barge devices are presented while, in Section 2.3, a literature review on the dynamic mod-

eling of a hinge-barge device is presented. In Section 2.4, a literature review on the control of a

hinge-barge WEC is presented while, in Secton 2.5, overall conclusions are drawn.

High-pressure
accumulator

Hydraulic
motor

Low-pressure
accumulator

Relief
valve

Boost
pump

Rectification
valves

Hydraulic
cylinder

x, _x, ẍ

Figure 2.3: A constant pressure PTO system comprising cylinder, valves, high and low pressure
accumulators, motor and generator [16].
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2.2 Commercial hinge-barge WECs

During the years, different commercial versions of a hinge-barge WEC based on the operating

principle of the device shown in Figure 2.1 have been developed:

• The McCabe Wave Pump

• The Pelamis

• The Sea Power WEC

• The Mocean WEC

• The M4 WEC

In the following of this section, the devices listed above are described in more detail, and a

comparison between the devices is also made.

2.2.1 The McCabe Wave Pump

The McCabe Wave Pump (MWP) is shown in Figure 2.4, and is composed of 3 rectangular steel

pontoons hinged together, with the motion of the central pontoon damped by a submerged damper

plate [5]. The forward and aft pontoon relatively pitch with respect to the central pontoon as the

wave travels along the device. Two hydraulic rams convert the relative pitch motion between the

pontoons into useful energy. The damper plate reduces the heave motion of the central pontoon

and, therefore, the relative motion between the forward and aft pontoon, with respect to the central

pontoon, is increased. Therefore, the use of the damper plate widens the device bandwidth.

The full scale MWP is 40 m long and 4 m wide, and it was deployed off the west coast

of Ireland in Shannon Estuary in 1996 [17]. The MWP was proposed to provide electricity or

potable water. For the production of potable water, the hydraulic rams placed above the hinges

pump seawater water at high pressure through a reverse-osmosis desalination plant [17].

2.2.2 The Pelamis

The Pelamis is a snake-like WEC developed in the United Kingdom, and is shown in Figure 2.5.

The Pelamis device is composed of multiple cylindrical sections linked together by multi Degrees

of Freedom (DoF) joints [7], [5]. Each section is typically half a wavelength long so the relative

pitching motion between sections is maximized. The device is floating with a mooring and is

usually about two wavelengths long. The relative motion between the cylindrical sections drives

hydraulic rams which pump pressurized oil through hydraulic motors coupled with electrical gen-

erators. Unlike the MWP, the joints allow a relative pitch and yaw motion between the sections of

the device, capturing energy from relative pitch and yaw motion.

Two different versions of the Pelamis WEC have been developed: P1 and P2. The P1 device

is composed of 4 cylindrical sections and was deployed off the coast of Portugal in 2008. The
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Figure 2.4: Side and top view of the McCabe Wave Pump [5].

sections of the P1 device have a diameter of 3.5 m and and the overall machine length is 120 m.

The P2 has five sections linked by four joints. The sections have a diameter of 4m and a length

of 36 m. The overall machine length is 180m, and is rated at 750 kW, depending on the incident

wave conditions [7]. The P2 device was tested at the Europen Marine Energy Centre (EMEC) in

2010, at Orkney, Scotland.

Figure 2.5: Side and Top view of the Pelamis device [18]

2.2.3 The Sea Power WEC

The Sea Power WEC is being developed in Ireland, and is shown in Figure 2.6. The device is

composed of 2 bodies hinged together [19], with a long body fixed on two floats and a shorter

body fixed on one float. The PTO is located over the hinge, and it is driven by the relative pitch

motion between the two bodies.
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Two different types of PTO have been developed: a hydraulic seawater PTO system and a

mechanical direct drive PTO system. The hydraulic seawater PTO system is used to convert

seawater into fresh water, and it composed of a double acting, reciprocating pump that delivers

seawater at high-pressure to a reverse-osmosis desalination plant. The mechanical direct drive

PTO system transforms the reciprocating linear motion of the piston, driven by the relative pitch

motion between the bodies, into a rotating motion of the generator. Two one-way freewheeling

bearings ensure that the generator rotates in one direction only [20]. A 1/4th scale device was

deployed in 2016, in Galway bay, Ireland.

Figure 2.6: Side view of the Sea Power device [19].

2.2.4 The Mocean WEC

The Mocean WEC is developed in the United Kingdom, and is a hinged-raft as shown in Figure

2.7. The device is composed of 2 bodies, and the relative pitch motion between the bodies is used

to drive a PTO system. The feature that most distinguishes the Mocean device from other hinge-

barge devices is the geometry of the bodies which is designed in order to broaden the range of

frequencies where the energy is extracted by the wave. The design of the geometry of the bodies

is based on varying the ratio between the water-plane area and the submerged volume. While the

water-plane area defines the hydrostatic restoring force, the volume affects the mass and added

mass. Therefore, the frequency response of the device can be tuned in order to improve the power

absorption in waves with wavelengths that are significantly longer than the overall length of the

machine [21].

2.2.5 The M4 WEC

The M4 WEC is developed in the United Kingdom, and is composed of 3 cylindrical floats con-

nected together as shown in Figure 2.8. The bow, mid and stern floats are small, medium and

large, respectively. The increase of the size of the float along the direction of the incoming wave is

used to roughly align the device to the incident waves [22]. The spacing between the floats is half

a wavelength apart at the optimal operating condition, so that the motions of adjacent floats are in

anti-phase [23]. Therefore, at the optimal operating condition, the relative motions between the

floats is maximum, with an increase of the energy extracted from the waves by the device. While
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Figure 2.7: Side and perspective view of the Mocean device [21].

the bow and mid float are rigidly connected, the stern float is hinged to the mid float, with the

relative motion between the stern and mid float used to drive a PTO. The draft of the stern float is

designed in order to have a heave resonance of the stern float at a prominent wave frequency, and

the draft of the mid float is smaller than the draft of the stern float so that its resonance is higher

than the resonance of the stern. Therefore, the energy of the waves can be extracted over a wider

range of frequencies than the range of a single heaving float. The bow float is designed so that the

diffraction of the waves generated by the mid and stern float is minimal, and the relative motion

between the mid and stern float is not reduced.

Experimental results on a 1/8th scale device show capture widths greater than 25% of a wave-

length in regular waves, and greater than 20% of a wavelength in irregular waves across a broad

range of wave periods [23].

As shown in Figure 2.6 and 2.8, although the Sea Power and M4 WEC have the same number

of floats, the geometry of the floats is different. Furthermore, while for the Sea Power WEC the

hinge is placed between the mid body and bow float, for the M4 WEC, the hinge is placed above

the mid float. Also, while the Sea Power WEC uses the relative motion between the bow and mid

float to drive the PTO, for the M4 WEC, the relative motion between the mid and stern float is

used to drive the PTO.

2.2.6 Comparison of devices

In this section, the hinge-barge WECs described previously are compared in terms of number of

bodies, motion and orientation coordinates of each body, number of DoF, number of modes used

for the energy extraction from the waves and type of the bodies. The modes used for the energy

extraction are the modes of the device that drive the PTOs, and are generally less than the number

of DoF of the device. In Table 2.1, the comparison between different type of hinge-barge WECs
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Figure 2.8: Side of the M4 device [22].

is shown.

While the Pelamis WEC has the biggest number of bodies, which can be 4 or 5 depending

of the version of the Pelamis WEC considered, the Mocean WEC has the smallest number of

bodies, which is 2. However, as shown in Figures 2.6 and 2.8, the Sea Power WEC and M4 WEC

have 2 bodies rigidly connected together and, therefore, both WECs effectively behave as 2-body

hinge-barge WECs, as the Mocean WEC.

While each body of all hinge-barge WECs are designed to move in surge, heave and pitch,

only the bodies of the Pelamis WEC can move in sway and yaw, given the particular type of joints

that connect the bodies. Note that, the bodies of the hinge-barge WECs presented in Table 2.1 are

not designed to move in roll.

As shown in Table 2.1, the Sea Power WEC, Mocean WEC and M4 WEC have a number of

DoF equal to 4. The Sea Power WEC and M4 WEC are designed to operate in the plane defined

by the X-Z axis shown in Figure 2.1 and, therefore, if the two bodies rigidly connected together

are considered as a single body with 3 DoF corresponding to the heave, surge and pitch motion,

the remaining DoF is the relative pitch rotation between the bodies rigidly connected together and

the remaining body. The Mocean WEC is also designed to operate in the plane defined by the X-Z

axis shown in Figure 2.1, with one of the bodies assigned with 3 DoF corresponding to the heave,

surge and pitch motion, and the remaining DoF is the relative pitch rotation of the second body

with respect to the first body.

The McCabe Wave Pump has a number of DoF equal to 5. As the Sea Power WEC, M4 WEC

and Mocean WEC, the McCabe WEC is designed to operate in the plane defined by the X-Z axis,

with the central body assigned with 3 DoF corresponding to the heave, surge and pitch motion,

and the 2 remaining DoF are the relative pitch rotations of the lateral bodies with respect to the

central body.

In contrast to the Sea Power WEC, M4 WEC, Mocean WEC and the McCabe WEC, the

Pelamis WEC is designed to operate in the 3D space defined by the X-Y -Z axis shown in Figure

2.1 and, therefore, if one of bodies is assigned with 5 DoF corresponding to the heave, surge, sway,
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pitch and yaw, the remaining 6 DoF are the relative pitch and yaw rotations between each pair of

bodies.

In terms of modes for the energy extraction from the waves, as shown in Table 2.1, the Sea

Power WEC, the Mocean WEC and the M4 WEC have only 1 mode for the energy extraction,

which is the relative pitch rotation between the bodies. The McCabe Wave Pump has 2 modes

for the energy extraction, which are the relative pitch rotations between the lateral bodies and the

central body. The Pelamis WEC has 6 modes of the energy extraction, which are the relative pitch

and yaw rotations between each pair of bodies.

In terms of type of bodies, while both the McCabe Wave Pump and the Sea Power WEC have

rectangular floats, the Pelamis has cylindrical sections. While the McCabe Wave Pump, Sea Power

WEC, Pelamis and M4 WEC are characterized by a fairly simple shape of the floats, the Mocean

WEC is composed of 2 rafts whose shape is optimized in order to broaden the range of frequencies

where the energy is extracted from the waves.

McCabe
Wave
Pump

Pelamis
Sea
Power
WEC

Mocean
WEC

M4 WEC

Numb of bodies 3 4-5 3 2 3

Surge 3 3 3 3 3

Sway 7 3 7 7 7

Heave 3 3 3 3 3

Roll 7 7 7 7 7

Pitch 3 3 3 3 3

Yaw 7 3 7 7 7

Numb DoF 5 11 4 4 4
Numb Energy
extraction
modes

2 6 1 1 1

Type of
bodies

Rectangular
Pontoons

Cylindrical
Sections

Rectangular
floats

Sloped
rafts

Cylindrical
buoys

Table 2.1: Hinge-barge WECs compared in terms of number of bodies, motion and orientation
coordinates of each body, number of DoF, number of modes used for energy extraction and type
of bodies.
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2.3 Literature review on dynamic modeling of hinge-barge WECs

The dynamic modeling of a multibody hinge-barge WEC represents a more challenging task than

the dynamic modeling of single-body device. While the dynamic modeling of a single-body device

does not involve constraints, the dynamic modeling of a multibody hinge-barge device requires the

description of the kinematic constraints introduced by the joints between the bodies.

If no constraints are applied to the bodies of a multibody system, the motion of the bodies

is independent from each other. When kinematic constraints are introduced between bodies, the

motion of the bodies is not independent. Therefore, a set of minimal DoF can be used to describe

the motion of all the bodies.

Apart from the kinematic coupling introduced by the joints, the bodies of a multibody hinge-

barge device are also hydrodynamically coupled. In fact, the motion of each body in the water

generates radiated waves which induce hydrodynamic forces on the other bodies [10]. Over the

years, different mathematical models have been developed to describe the dynamics of a multibody

hinge-barge device.

In [24], a linear dynamic model for a hinge-barge device composed of 5 bodies is presented,

where the motion of the bodies is constrained to heave and pitch only. The hydrodynamic forces

acting on the bodies are derived from linear potential theory [10], and are computed with the

Wamit software [25]. The kinematic constraints are linearized around the equilibrium position of

the device, based on the assumption of small pitch angles between the bodies.

In [26], a modeling methodology for multibody WECs with application to a 3-body hinge-

barge device is presented. The dynamic model of the device is based on a fully non-linear repre-

sentation of the kinematic constraints. Unlike the model presented in [24], the motion of the bodies

is not constrained in surge. A comparison between the nonlinear model and a model linearized

around the equilibrium position is made. The comparison shows that, for small pitch angles be-

tween the bodies, the non-linear model and linear model approximately compute the same motion

of the bodies.

In [17], a dynamic model for a generic hinge-barge device made of n-bodies is presented, with

the motion of the bodies not constrained in surge. Large pitch angles between the bodies are con-

sidered and, therefore, no small angle approximation is used in the development of the kinematic

constraints. The hydrodynamic forces are computed based on linear potential theory, and a numer-

ical approximation of the hydrodynamic forces is obtained with a panel method [27]. Furthermore,

experimental tank tests are carried out on a 1/27th scale MWP device for both monochromatic and

polychromatic waves. The results show a good agreement between the motion computed with the

dynamic model and the tank tests.

In [28] and [29], a modeling methodology for multibody marine systems with application to

a 2-body hinge-barge device is presented. The analysis of the motion considers the surge, heave

and pitch of the bodies. A nonlinear representation of the kinematic constraints is considered, and

all the hydrodynamic forces acting on the device are computed with the Wamit software [25]. The

developed model is validated against tank experiments on a 1/7th scale of the section of the MWP

34



CHAPTER 2. OVERVIEW OF MULTIBODY HINGE-BARGE WAVE ENERGY CONVERTERS

device corresponding to an assembly of the forward and central barge. The tank tests are carried

out for monochromatic waves only, and the results show a good agreement between the motion

computed by the dynamic model and the tank tests.

In [30], the numerical tool WaveDyn for the dynamic simulation of multibody WECs is vali-

dated against experimental tank tests carried out on a 1/21th scale Pelamis model. The tank tests

are carried out for both monochromatic and polychromatic waves. The hydrodynamic forces are

implemented using a predominantly linear formulation, which imports data from the Wamit soft-

ware [25]. No further details on the algorithm used for the simulation of the device motion are

provided. The motion computed by the dynamic model shows a good agreement with the tank

tests for both monochromatic and polychromatic waves.

In [31], a methodology to model and simulate multibody WECs is presented, where a set

of Denavit-Hartenberg parameters is used to describe the interconnection of the bodies. Then, a

recursive technique is used to solve the dynamics of the device. The hydrodynamic forces are

computed with a linear potential flow solver.

In [23], a linear dynamic model for the description of the dynamics of the M4 WEC is de-

veloped, where the bodies are considered to move in heave, surge and pitch. The hydrodynamic

forces acting on the bodies are derived from linear potential theory, and are computed with the

Wamit software [25]. The equations of motion of the dynamic model are solve with second-order

time-stepping algorithm. Tank tests are carried out on a 1/8th scale device to compare the power

absorbed during the tank tests to the absorbed power computed by the dynamic model. In [22], a

different linear modeling methodology than the methodology developed in [23] is used to describe

the dynamic of the M4 WEC; an axisymmetric diffraction analysis [32] is used for each body, with

no hydrodynamic interaction between the bodies. However, the dynamics of the bodies is more

detailed. In fact, in [32], while the bodies are considered to be rigid, the connecting elements

between the bodies assumed to be flexible.

2.4 Literature review on control of hinge-barge WECs

The maximization of the energy extracted by a multibody hinge-barge WEC requires a controller

which computes the optimal trajectories for the PTO forces and velocities of the bodies, and takes

into account all the kinematic and hydrodynamic interaction between the bodies and the effects of

the PTO forces on the device response. Therefore, the complexity of the controller increases with

the number of PTOs and bodies involved.

In [10], a theory for the calculation of the maximum power absorption of a generic multibody

WEC is presented. The theory is formulated in the frequency domain, and it computes the optimal

trajectory of the velocities of the bodies and PTO forces under the assumption of reactive control,

with no constraints on the amplitude of velocities and PTO forces. Reactive control requires a PTO

that can deliver power from the grid to the device, as well as absorbing power from the device.

In [33], a hinged 5-body WEC consisting of a circular center floater hinged to 4 smaller spher-

ical buoys is considered. The relative rotation between the central body and each buoy is used
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to drive a PTO, and the absorbed energy is maximized for both regular and irregular waves. For

regular waves, a numerical procedure is carried out to compute the optimal velocities and control

forces at each frequency of the incident wave, for both passive and reactive control. For reactive

control, the numerical procedure involves a convex optimization problem which consists of max-

imizing the absorbed power under constraints on the amplitudes of the velocities. However, for

passive control, the absorbed power is constrained to be non-negative and, therefore, a non-convex

optimization problem is involved. Thus, for passive control, the numerical procedure can find a

minimum which is not globally optimal, but rather only locally optimal. An alternative approach

to constrain the power to be non-negative is to optimize the damping coefficients of passive PTOs

at each frequency of the incoming wave. However, the convexity of the optimization of the damp-

ing coefficients of passive PTOs is difficult to asses. For irregular waves, only the optimization of

frequency-independent damping coefficients of passive PTOs is considered for waves represented

by different realizations of a Jonswap spectrum [34].

In [7], the optimal control of the Pelamis WEC is presented. The control of the power absorbed

at each joint axis is realized, considering the inputs from all axes. Therefore, the real-time control

of all forces is realized with respect to the entire machine response. However, very few details

on the control strategies for the Pelamis WEC are provided in [7]. In [18], the optimal control

of a hydraulic PTO for the Pelamis WEC is considered. The hydraulic PTO for each joint axis is

composed of hydraulic cylinders, a high and low pressure accumulators, a hydraulic motor coupled

to an electric generator and flow valves. The high-pressure accumulator is used to smooth the

supply of electrical energy to the grid. The impeding joint moment provided by the cylinders must

be varied throughout each wave cycle such that energy extracted from the waves is maximized. In

particular, a reactive control is used to enable impedance matching to maximize power capture.

Real-time control of the joint moment is achieved with the use of sets of electronically controlled

valves, which control the flow of fluid between the hydraulic cylinders and the accumulator. Both

experiments on a 1/7th and full scale device, and numerical simulations, have been carried out in

order to validate the optimal control strategy of the hydraulic PTO.

2.5 Conclusions

As shown in Section 2.3, the problem of the dynamic modeling of a multibody hinge-barge device

has been given consideration by several authors. However, as shown in Section 2.4, documentation

on the optimal control of a multibody hinge-barge device is missing in the available literature.

As shown in Section 2.4, only the optimal control of generic multibody WECs in the frequency

domain is considered, with no real-time implementation of the controller available.

In Chapter 3, a general framework for the derivation of a dynamic model of a multibody

hinge-barge WEC is presented, which is used for the formulation of an optimal control strategy

for a three-body hinge-barge device in Chapter 4.
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Chapter 3

Dynamic modelling of multibody
hinge-barge wave energy converters

In this chapter, a general framework for the derivation of a dynamic model of a multibody hinge-

barge WEC is presented, which is used for the formulation of an optimal control strategy for a

three-body hinge-barge WEC presented in Chapter 4. In the following of this chapter, a literature

review on the dynamic modelling of multibody systems is presented.

3.1 Literature review on dynamic modelling of multibody systems

Multibody wave energy converters are composed of an assembly of bodies connected together

by different type of joints. The motion of each body is restrained by the kinematic constraints

introduced by the joints. Two different formulations can be used to describe the dynamics of a

multi-body system: the Differential and Algebraic Equations (DAEs) and the Ordinary Differ-

ential Equations (ODEs) formulation. In the DAE formulation, a set of redundant n generalized

coordinates is used to describe the dynamics of the system, and the equations of motion result in

2n differential and m constraint equations. In addition, m unknowns called Lagrange multipliers

are added into the differential equations to take into account the reaction forces introduced by the

kinematic constraints. The Lagrange multipliers are algebraic variables, so that their time deriva-

tive does not feature in the equations. The resulting system is a set of DAEs for the generalized

coordinates and Lagrange multipliers.

In the ODE formulation, the generalized coordinates are expressed with respect to a set of (n−
m) independent coordinates, also called DoF, by means of the constraint equations. Therefore, the

DAE system can be transformed into a reduced number of 2(n−m) ordinary differential equations

(ODEs) for the independent coordinates with elimination of the Lagrange multipliers.

Regarding solution techniques for DAE systems, index reduction techniques combined with

backwardward difference methods (BDFs) have been proposed in [35]. The index of a DAE system

composed of the Euler-Lagrange equations is reduced from three to two, and then a variable-order,

variable-step BDF method is applied to the resulting system of equations.
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Alternatively, the DAE system can be reduced to an ODE system by means of an appropriate

transformation of coordinates. In Maggi’s formulation [36], the generalized velocities are ex-

pressed in terms of the kinematic characteristics, which are the velocities of the DoF. Then, the

Euler-Lagrange equations are derived for the kinematic characteristics with elimination of the La-

grange multipliers by means of the null-space of the constraint matrix [37],[38]. In the Index-1

formulation [39], the Euler-Lagrange equations for the generalized coordinates, together with the

constraints at the acceleration level, form an Index-1 system of DAEs which can be solved for

the generalized coordinates and Lagrange multipliers. Then, the accelerations are integrated in

order to obtain the positions and velocities of the generalized coordinates. In the Udwadia and

Kalaba Formulation (UKF) [40], a more compact form of the Index-1 formulation was derived by

means of the Moore-Penrose Generalized Inverse (MPGI). In the Null Space Formulation (NSF)

[39], [41], [42], the Lagrange multipliers that appear in the Index-1 formulation are eliminated

from the Euler-Lagrange equations by means of the null space introduced in Maggi’s formulation.

Therefore, a system of second order ODEs for the generalized coordinates is obtained.

The number of variables needed to describe the dynamics of a constrained system in the DAE

formulation is 2n+m (n generalized positions, n generalized velocities and m Lagrange’s multi-

pliers), while for the ODE formulation, the number of variables is reduced to 2n for the Index-1

formulation, NSF and UKF, and 2(n−m) for Maggi’s formulation. However, a reduction in the

number of variables requires an extra computational effort; in Maggi’s and the NSF formulation,

the computation of the null space of the constraint matrix is required, while in the UKF formula-

tion, MPGIs are calculated. Nevertheless, the matrices in the DAE formulation are characterized

by a high sparsity, so that efficient solution techniques can be used [43], [44].

In this chapter, Pseudo-Spectral (PS) methods are applied to both the DAE and ODE formu-

lations, in order to obtain the solution for the dynamics of a multi-body system. PS methods are

a subset of the class of techniques used for the discretisation of integral and partial differential

equations known as mean weighted residuals [45], [46]. Apart from providing a solution for the

dynamics of a multi-body system, PS methods can also be used to efficiently solve an optimal

control problem for the device [47].

The remainder of this chapter is organized as follows: in Section 3.2, the DAE and ODE

formulations are applied to a multi-body system, while, in Section 3.3, PS methods are used to

obtain a solution for the dynamics of a multi-body system. In Section 3.4, a two-body hinge-

barge device is considered as a case study, and the DAE and ODE formulations are applied in

order to derive the equations of motion. The DAE and ODE formulations applied to the two-

body hinge-barge device are compared against tank tests carried out for regular waves to verify

their validity. Furthermore, the comparison between the computational time required by the PS

methods and by the Runge-Kutta (R-K) method to solve the dynamics of a two-body hinge-barge

device is considered. In Section 3.5, a three-body hinge-barge device is considered as a case study,

and the DAE and ODE formulations are applied in order to derive the equations of motion. The

DAE and ODE formulations applied to the three-body hinge-barge device are compared against

tank tests carried out for both regular and irregular waves to verify their validity. Furthermore, the
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comparison between the computational time required by the PS methods and by the R-K method to

solve the dynamics of a three-body hinge-barge device is considered. Finally, overall conclusions

are drawn in Section 3.6.

3.2 Equations of motion of a multi-body system

3.2.1 Reference frames

For the description of the motion of a body in space, six coordinates are required: three coordinates

for position and three coordinates for rotation. For the analysis of multibody systems, two types of

coordinate frames are defined: the global or inertial frame and the body frame. The global frame

is fixed to a point in space, and therefore its position and orientation are constant in time. The

body frame is attached to a point of the body, and its position and orientation change with time. A

body frame is assigned to each body composing a multi-body system. In Figure 3.1, a free floating

unconstrained body k is represented together with a global frame XiYiZi and a body frame XbYbZb.

The vector pi,bk
∈ R3×1 represents the position of the origin of the body frame Obk with respect

to the point i. The components of the vector pi,bk
can be transformed from the body frame to the

global frame by using the following transformation:

pi
i,bk

= Ri
b(Θk)pb

i,bk
(3.1)

where the vectors pb
i,bk

and pi
i,bk

represent the position vector of Obk with respect to the point

i, expressed in the body frame and global frame, respectively. The matrix Ri
b(Θk) ∈ R3×3, used

for the transformation of coordinates, is a function of the vector of Euler angles Θk = [φ θ ψ]T ,

where φ is the roll angle, θ the pitch angle and ψ the yaw angle of the body [48]. The velocities of

the Euler angles can be obtained from the angular velocity vector ωb
i,b expressed in the body frame

coordinates as follows:

Θ̇k = T(Θk)ω
b
i,bk

(3.2)

where the matrix T(Θk) is a function of Euler angles, and can be obtained by linear superpo-

sition of the rotations of the body frame around its axis [48].

3.2.2 Dynamics of an unconstrained body

The Newton-Euler equations of motion for a free floating unconstrained body are represented as a

system of first-order integro-differential equations as follows [48]:

q̇k = Jbk(Θ)vk (3.3)

Mbk v̇k +(Bbk +Bbk
visc)vk =−Gbkqk−Mbk

∞ v̇k−
∫ t

−∞

Kbk
rad(t− τ)vk,dτ+ fbk

wave + fbk
ext (3.4)
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Xi

Zi

Oi
body k

Xbk

Zbk

Obk

pi,bk

Yi

Ybk

grg,k

Figure 3.1: A free floating unconstrained body k, where XiYiZi and XbYbZb represent the global
and body reference frames, respectively.

where:

qk = [piT
i,bk

ΘT
k ]

T (3.5)

vk = [vbT
i,bk
ωbT

i,bk
]T (3.6)

Jbk(Θ) =

[
Ri

b(Θk) 03×3

03×3 T(Θk)

]
(3.7)

Mbk =

[
mkI3×3 −mkS(rg,k)

mkS(rg,k) Ibk

]
(3.8)

Bbk =

[
mkS(ωb

i,bk
) −mkS(ωb

i,bk
)S(rg,k)

mkS(rg,k)S(ωb
i,bk

) −S(Ibkω
b
i,bk

)

]
(3.9)

fbk
wave =

∫
∞

−∞

Kbk
wave(t− τ)η(τ),dτ (3.10)

fbk
ext = fbk

pto + fbk (3.11)

with mk the mass of the body, rg,k the distance vector of the center of mass from the origin

of the body frame, Ibk the inertia matrix of the body around the origin of the body frame, Mbk
in

the rigid-body inertia matrix of the body, Bbk the Coriolis-Centripetal matrix, Bbk
visc the linearized

viscous damping, Gbk the hydrostatic matrix, fbk
wave the vector of the excitation forces due the action

of the waves on the body, fbk
pto the force vector due to the PTO system, fbk the vector of forces due

to moorings, hinge-friction, etc. , Kbk
rad contains impulse response functions of the radiation forces,

Kbk
wave contains the impulse response functions of the wave excitation forces, Mbk

∞ the added mass

at infinite frequency, η the free surface elevation and S a skew-symmetric matrix for the cross-

product a×b := S(a)b.

The terms on the left-hand side of equation (3.4) represent the rigid-body dynamics of the

unconstrained body, expressed about the origin of the body frame XbYbZb. The hydrodynamic

parameters Gbk , Mbk
∞ , Kbk

rad and Kbk
wave are computed by means of the boundary element software

WAMIT [25], which computes all the quantities in the hydrodynamic h-frame. The transformation
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matrix Rh
b is used to convert the hydrodynamic parameters from the h-frame to the body frame

[49]. Under the assumption of small oscillations of the body frame with respect to the h-frame,

the matrix Rh
b reduces to the identity matrix I3×3.

3.2.3 DAE formulation for N interconnected bodies

In case of N interconnected bodies, m algebraic equations are required in order to describe the

constraints introduced by the joints. The constraint equations can be represented as follows:

C(z, t) = 0 (3.12)

where z = [zT
1 .. zT

N ]
T ∈ R(6×N)×1 and zk = [pbT

i,bk
ΘT

k ]
T , with k = 1, ..N. The constraint equa-

tions (3.12) are considered to be holonomic, since the generalized velocities do not appear in the

equations. An additional term, representing the constraint forces, is added into the Newton-Euler

equations of motion. The constraint forces are represented by a set of m Lagrange multipliers

λ, which are algebraic variables, since their time derivatives do not appear in the equations of

motion. Thus, the equations of motion for a system composed of N interconnected bodies can be

represented by a set of DAEs, given as follows [50]:

q̇ = J(Θ)v (3.13)

Mv̇+(B+Bvisc)v+CT
z λ=−Gq−M∞v̇−

∫ t

−∞

Krad(t− τ)v,dτ+ fwave + f+ fpto (3.14)

C(z, t) = 0 (3.15)

where:

q = [qT
1 qT

2 .. qT
N ]

T (3.16)

v = [vT
1 vT

2 .. vT
N ]

T (3.17)

J(Θ) = diag(Jb1(Θ), ..,JbN (Θ) (3.18)

M = diag(Mb1 , ..,MbN ) (3.19)

B = diag(Bb1 , ..,BbN ) (3.20)

Bvisc = diag(Bb1
visc, ..,B

bN
visc) (3.21)

G = diag(Gb1 , ..,Gb1) (3.22)

M∞ = diag(Mb1
∞ , ..,MbN

∞ ) (3.23)

fwave = [fb1
T

wave.. fbN
T

wave]
T (3.24)

f = [fb1
T
.. fbN

T
]T (3.25)

fpto = [fb1
T

pto .. fbN
T

pto ]
T (3.26)

(3.27)
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where the matrix Cz represents the partial derivative of the constraint equations with respect

to the vector of generalized positions z. In the DAE formulation, the total number of variables

required to describe the motion of N interconnected bodies is 2×(6×N)+m, i.e. 6×N positions,

6×N velocities and m Lagranges multipliers.

3.2.4 ODE formulation for N interconnected bodies

As an alternative to the DAE formulation, using the constraints in equation (3.12), the dynamics

of N interconnected bodies can be described by means of a set of n = (6×N−m) independent

coordinates, or DoF. The vector of generalized velocities v can be partitioned into dependent

velocities vd , and independent velocities vs, as follows:

v =

[
vd

vs

]
(3.28)

vd and vs are related as follows [50]:

vd = Csvs =−C−1
qd

Cqsvs (3.29)

where Cqd and Cqs represent the partial derivatives of the constraint equations associated with

the dependent and independent coordinates, respectively. Therefore, the vector of generalized

velocities v can be written in terms of the independent velocities vs, as follows:

v = Pvs =

[
Cs

In

]
vs (3.30)

where In is the identity matrix of dimension n. The time derivative of the generalized velocities

can be expressed as:

v̇ = Pv̇s + Ṗvs (3.31)

Substituting (3.30) and (3.31) into (3.14), and multiplying both sides of the resulting equation

by PT , the following system of first order integro-differential equations is obtained:

q̇s = vs (3.32)

Msv̇s +(Bs +Bvisc,s)vs =−Gsqs−M∞,sv̇s−
∫ t

−∞

Krad,s(t− τ)vs,dτ+ fwave,s + fs + fpto,s (3.33)

where:
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Ms = PT MP (3.34)

Bs = PT BP+PT MṖ+PT M∞Ṗ (3.35)

Bvisc,s = PT BviscP (3.36)

Gs = PT GP (3.37)

M∞,s = PT M∞P (3.38)

Krad,s = PT KradP (3.39)

fwave,s = PT fwave (3.40)

fs = PT f (3.41)

fpto,s = PT fpto (3.42)

Thus, the equations of motion of a system composed of N interconnected bodies can be rep-

resented by a set of ODEs for the independent coordinates. In the ODE formulation, the total

number of variables required for describing the motion is 2n (n positions and n velocities).

3.3 Pseudo-spectral approximation methods

In this section, PS methods are used to compute an approximate solution to the integro-differential

equations obtained for the DAE and ODE formulations. The positions and velocities that appear in

the equations of motion obtained for the DAE and ODE formulations can be approximated with a

linear combination of basis functions. Assuming that the waves can be described as a summation

of sinusoidal components, non-zero mean trigonometric polynomials (truncated Fourier series)

represent a sensible choice for the approximation of positions and velocities. Therefore, the ith

components of the position and velocity vector are given as follows:

qi(t)≈ qNx
i (t) =

Nx

∑
k=0

xq,c
i,k cos(kω0t)+ xq,s

i,k sin(kω0t) = Φ(t)x̂q
i (3.43)

vi(t)≈ vNx
i (t) =

Nx

∑
k=0

xv,c
i,k cos(kω0t)+ xv,s

i,ksin(kω0t) = Φ(t)x̂v
i (3.44)

where i = 1, ..,6N and i = 1, ..,n for the DAE and ODE formulations, respectively. The pa-

rameter Nx is the order of expansion for the position and velocity of the states. The vector of the

coefficients x̂q
i and x̂v

i of the approximated ith components of the position and velocity vector are

given as follows:
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x̂q
i =

[
xq,c

i,1 xq,s
i,1 .. xq,c

i,Nx
xq,s

i,Nx

]T
(3.45)

x̂v
i =

[
xv,c

i,1 xv,s
i,1 .. xv,c

i,Nx
xv,s

i,Nx

]T
(3.46)

and the vector of the basis function Φ(t) is given as follows:

Φ(t) = [cos(ω0t) sin(ω0t) .. cos(Nxω0t) sin(Nxω0t)]T (3.47)

where ω0 = 2π/T is the fundamental frequency. The derivatives of the ith components of the

position and velocity vector are, respectively,

q̇Nx
i (t) = Φ̇(t)T x̂q

i = Φ(t)T Dφx̂q
i (3.48)

v̇Nx
i (t) = Φ̇(t)T x̂v

i = Φ(t)T Dφx̂v
i (3.49)

where Dφ ∈ R2Nx×2Nx is a block diagonal matrix, with the k-th block is given as follows:

Dφ,k =

[
0 kω0

−kω0 0

]
(3.50)

The convolution integral in equation (3.14) and (3.33) can be expressed as a function of the

PS coefficients x̂v
i . The derivation of the convolution integral expressed with the coefficients x̂v

i

can be carried out at one frequency at the time, because of the linearity of the convolution integral

[47]. Thus, if the following vector of the basis functions Φk and coefficients x̂v,k
i are considered:

Φk(t) = [cos(kω0t) sin(kω0t)]T (3.51)

x̂v,k
i =

[
x̂v,k

i,c x̂v,k
i,s

]T
(3.52)

then, the convolution integral of the element Kradi,ii of the impulse response matrix Krad , with

i = 1, ..6N and ii = 1, ..6N, in equation (3.14) becomes:
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∫ t

−∞

Kradi,ii(t− τ)vi,dτ =
∫

∞

0
Kradi,ii(t− τ)vidτ (3.53)

=
∫

∞

0
Kradi,iiΦ

k(t− τ)T x̂v,k
i dτ (3.54)

=
∫

∞

0
Kradi,ii( cos(kω0t) x̂v,k

i,c + sin(kω0t) x̂v,k
i,s ) dτ (3.55)

= x̂v,k
i,s sin(kω0t)

∫
∞

0
Kradi,iicos(kω0t)dτ− x̂v,k

i,s cos(kω0t)
∫

∞

0
Kradi,iisin(kω0t)dτ

(3.56)

+ x̂v,k
i,c cos(kω0t)

∫
∞

0
Kradi,iicos(kω0t)dτ+ x̂v,k

i,c sin(kω0t)
∫

∞

0
Kradi,iisin(kω0t)dτ

(3.57)

Given the Ogilve’s relations [51]:

∫
∞

0
Kradi,iisin(ωt)dt =−ω( Mai,ii(ω)−M∞i,ii) (3.58)∫

∞

0
Kradi,iicos(ωt)dt = Rradi,ii(ω) (3.59)

then, the convolution integral finally becomes:

∫ t

−∞

Kradi,ii(t− τ)vi,dτ = x̂v,k
i,s sin(kω0t)Rradi,ii(kω0)− x̂v,k

i,s cos(kω0t)( −kω0( Mai,ii(kω0)−M∞i,ii) )

(3.60)

+ x̂v,k
i,c cos(kω0t)Rradi,ii(kω0)+ x̂v,k

i,c sin(kω0t)( −kω0( Mai,ii(kω0)−M∞i,ii) )

(3.61)

= Φk(t)

[
Rradi,ii(kω0) kω0Mai,ii(kω0)

−kω0Mai,ii(kω0) Rradi,ii(kω0)

]
x̂v,k

i −M∞i,iiΦ
k(t)Dφ,kx̂v,k

i

(3.62)

= Φk(t)Gk
radi,ii

x̂v,k
i −M∞i,iiΦ

k(t)Dφ,kx̂v,k
i (3.63)

Therefore, the matrix Gradi,i for the convolution integral of the impulse response Kradi,ii can be

obtained by combination of the block matrixes Gk
radi,ii

as follows:

Gradi,ii =


G1

rad,i,ii 02,2 02,2

02,2 G2
rad,i,ii 02,2

...

02,2 02,2 GNx
rad,i,ii

 (3.64)

A similar development can be carried out for the convolution integral of each element Krad,si,ii
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of the impulse response matrix Krad,s, with i = 1, ..n and ii = 1, ..n, in equation (3.33).

Regarding the DAE formulation, substituting the approximated states (3.43), (3.44) and their

time derivatives (3.48), (3.49) into the equations of motion (3.13)-(3.15) yields the following equa-

tions of motion in residual form:

rq
i (t) = Φ(t)Dφx̂q

i −
6N

∑
p=1

Ji,pΦ(t)x̂v
p (3.65)

rv
i (t) =

6N

∑
p=1

Mi,pΦ(t)Dφx̂v
p +

6N

∑
p=1

Bi,pΦ(t)x̂v
p +

6N

∑
p=1

Gi,pΦ(t)x̂q
p +

6N

∑
p=1

Φ(t)Gradi,p x̂v
p + ..

m

∑
p=1

CT
qi,p

Φ(t)x̂λ
p(t)− fwave,i(t)− fi(t)−

nc

∑
p=1

Fpi,pup(t)

(3.66)

rC
j (t) =C j(q, t) (3.67)

where i = 1, ..,6N, j = 1, ..,m, and Ji,p, Mi,p, Bi,p, Gi,p, Kradi,p , CT
qi,pp

and Fpi,p are the elements

of the matrix J(Θ), M, B, G, Krad , CT
q and Fp, respectively. Regarding the ODE formulation,

substituting the approximated states (3.43), (3.44) and their time derivatives (3.48), (3.49) into the

equations of motion (3.32)-(3.33), yields the following equations of motion in residual form:

rq
i (t) = Φ(t)Dφx̂q

i −Φ(t)x̂v
i (3.68)

rv
i (t) =

n

∑
p=1

Msi,pΦ(t)Dφx̂v
p(t)+

n

∑
p=1

Bsi,pΦ(t)x̂v
p +

n

∑
p=1

Gsi,pΦ(t)x̂q
p +

n

∑
p=1

Φ(t)Grad,si,p x̂v
p

− fwave,si(t)− fsi(t)−
nc

∑
p=1

Fp,si,pup(t)
(3.69)

where i = 1, ..,n, and Msi,p , Bsi,p , Gsi,p , Krad,si,p and Fp,si,p are the elements of the matrix Ms,

Bs, Gs, Krad,s and Fp,s, respectively. PS methods are used to compute the coefficients x̂q
i and x̂v

i

that minimize the residuals (3.65)-(3.67) and (3.68)-(3.69) for the DAE and ODE formulations,

respectively [52]. The PS methods force the residuals of the equations of motion to be zero at a

certain number of points in time tk, called nodes. If the number of nodes is Nc, then a linear system

of (2×6N +m)×Nc and 2×n×Nc equations is solved for the DAE and ODE formulations, re-

spectively. The number of nodes depends on multiple factors, including the order of the expansion

Nx [53].

3.4 Case study: two-body hinge-barge device

In the following section, a two-body hinge barge device is considered as a case study. As shown

in Figure 3.2, the device is made of two bodies interconnected by a hinge. An example of such

systems is the SeaPower Platform [20]. The damping plate connected to body 1 aims to reduce the

46



CHAPTER 3. DYNAMIC MODELLING OF MULTIBODY HINGE-BARGE WAVE ENERGY CONVERTERS

vertical motion of body 1, and increase the pitch motion of body 2. The analysis of the motion of

the device is restricted to the two dimensional plane X−Z. In Figure 3.8, the device is represented

together with the global frame XiZi, while the body frames Xb1Zb1 and Xb2Zb2 are assigned to body

1 and body 2, respectively. The total number of degrees of freedom of the system is three: the

heave displacement z1 of body 1, the pitch angle θ1 of body 1, and the pitch angle θ2 of body 2.

Body 1 Body 2

Wave direction

Damping plate

Hinge

Sea bed

Xi
Zi Xb1

Zb1 Xb2
Zb2

θ1

θ2

z1

Oi
Ob1 Ob2

lb1,h lb2,hd1

Dash-pot

p1 p2

H

hplate

d2

a

Figure 3.2: Two-body hinge barge device, where XiZi, Xb1Zb1 and Xb2Zb2 represent the global
frame, frame of body 1 and body 2, respectively.

3.4.1 DAE formulation for a two-body hinge-barge device

In the following subsection, the DAE formulation is applied in order to obtain the equations of

motion of a two-body hinge-barge device. The vector of generalized positions considered for the

two-body hinge-barge device is given as follows:

z = [z1 z2]
T = [zb

i,b1
θ1 zb

i,b2
θ2]

T (3.70)

where zb
i,bk

and θk are the heaving displacements and pitch angle of body k, respectively, with

k = 1,2. The block matrices Jk(Θ) of the transformation matrix J(Θ) in equation (3.18) are given

as:

Jbk =

[
c(θk) 0

0 1

]
(3.71)

The block matrices Mk of the rigid-body inertia matrix Min in equation (3.19) are given as:

Mbk =

[
mk 0

0 Iyy,k +mkh2
g,k

]
(3.72)

where k = 1,2, mk is the mass of body k, Iyy,k is the moment of inertia of body k around the y-axis

and hg,k is the distance of the center of mass of body k from point Obk along the z-axis.
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The hydrodynamic loads G, M∞, Krad and fwave in equations (3.22), (3.23), (3.14) and (3.24)

respectively, are obtained by means of the boundary element software WAMIT [25]. As shown

in Figure 3.2, the PTO system can be modeled as a linear dash-pot system connected to points p1

and p2. The component of the PTO force along the line connecting points p1 and p2 is as follows:

Fs = cPTO l̇ (3.73)

where cPTO and l are respectively the damping coefficient and displacement between the points

p1 and p2 of the dash-pot system. For small displacements of body 1 and 2, the rate of change of

the length l can be approximated as follows:

l̇ ≈ a(θ̇2− θ̇1) (3.74)

where a is the vertical distance of points p1 and p2 from the center line of the device. There-

fore, the vector of the loads due to the PTO systems in equation (3.14) acting on the device in

equation is given as follows:

fPTO =


0

−Fs1a

0

Fs1a

 (3.75)

The moorings are assumed to be connected only to body 1, and therefore, the vector f in

equation (3.26) is given as follows [28]:

f =−Kmoorq (3.76)

where:

Kmoor =


kmoor,1 0 0 0

0 kmoor,2 0 0

0 0 0 0

0 0 0 0

 (3.77)

where kmoor,k, with k = 1,2, are the stiffness coefficients of the moorings.

In the following, the constraint equations for the two-body hinge-barge device are derived.

The hinge between the two barges introduces the following constraint equations:

Ri
b(θ1)

([
d1

zb
i,b1

]
+

[
l1,h
0

])
−Ri

b(θ2)

([
d2

zb
i,b2

]
+

[
−l2,h

0

])
= 0 (3.78)
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where l1,h and l2,h are the distances of the hinge from Ob1 and Ob2 , respectively, while d1 and

d2 are the distances of Ob1 and Ob2 from the global frame XiZi, respectively. The rotation matrices

Ri
b are given as follows:

Ri
b(θk) =

[
c(θk) −s(θk)

s(θk) c(θk)

]
(3.79)

where k = 1,2. The constraints in equation (3.78) force the global position of the hinge defined

by the coordinates of body 1 to be equal to the global position of the hinge defined by the coor-

dinates of body 2. The matrix of the partial derivatives of constraint equations (3.78) computed

with respect to the generalized positions and linearized around the equilibrium position, is given

as follows:

Cz =

[
1 l1,h −1 l2,h

]
(3.80)

3.4.2 ODE formulation for a two-body hinge-barge device

In the following subsection, the ODE formulation is applied in order to obtain the equations of

motion of a two-body hinge-barge device. The vector of independent velocities of the device is

given as follows:

vs = [żb
i,b1

θ̇1 θ̇2]
T (3.81)

Given the matrix Cz in equation (3.80), the transformation matrix P in equation (3.30), used

to express the relation between the vector of generalized velocities and independent velocities, is

given as follows:

P =


1 0 0

0 1 0

1 l1,h l2,h
0 0 1

 (3.82)

By means of the matrix P, the quantities defined in equations (3.34)-(3.42) can be calculated

in order to obtain the equations of motion of the device expressed with respect to the DoF.

3.4.3 Model validation

In this section, a particular two-body hinge-barge device was tested by Mı́cheál Ó’Catháin in a

wave-tank in order to validate the DAE and ODE formulations against experimental data. The

device is a 1/7th scale model of the section of the MWP device corresponding to an assembly of

the forward and central barge. The dimensions of barge 1 are: length= 1.1 m, width=0.67 m and

height=0.57 m. The dimensions of barge 2 are: length= 2.5 m, width=0.64 m and height=0.12m.
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Full details on the wave-tank experiments are reported in [29]. A series of regular wave tests was

performed for a range of frequencies of the incident wave ω from 2.61 rad/sec to 7.85 rad/secs,

with the direction of the waves along the longitudinal direction of the device. The amplitude

of the incident wave was set to 0.06 m for each test. The advantage of testing the device with

monochromatic waves is that the response of the device can be obtained at each frequency. The

heave motion of body 2 was recorded and compared against the response obtained from the DAE

and ODE formulations derived in sections 3.4.1 and 3.4.2, respectively. PS methods were applied

to compute an approximated solution for the equations of motion obtained for the DAE and ODE

formulations. The order of expansion Nx for the position and velocity of the states is set equal to

1, since the excitation force is monochromatic. Also, the fundamental frequency ω0 is set equal

to the frequency of the incident wave. Simulations of the device were carried out in MATLAB

running on a PC with a 3.40 GHz quad core processor and 8 GB RAM.
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Figure 3.3: Frequency response of the heave of body 2 obtained from tank experiments with error
bars for the uncertainty and ODE formulation for an incident wave of amplitude equal to 60 mm

In Figure 3.3, the frequency response of the heave of body 2, obtained from the tank experi-

ments, is compared against the response obtained from the ODE formulation. The uncertainty on

the measurement of the frequency response of the heave of body 2, obtained from the tank exper-

iments, is represented by using error bars with interval ±σ, where σ is the standard deviation. For

each frequency of the regular wave, the standard deviation is computed as follows:

σ =

√
∑

ndata
k (Zb

i,b2
(k)−Zb

i,b2
)2

ndata
(3.83)

where ndata is the number of peaks of the heave of body 2, Zb
i,b1

(k) is the amplitude of the peak
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k-th and Zb
i,b1

is the average peak amplitude.

Note that, the responses of the heave of body 2, obtained with the ODE and DAE formulations

based on a linear dynamic model, are identical. Therefore, for a linear dynamic model of the

device, the DAE and ODE formulations are equivalent representations of the dynamics of the

device. In general, for a nonlinear model of the device, the DAE and ODE formulations can

provide a different response of the device.

As Figure 3.3 shows, with respect to the tank experiments, the ODE and DAE formulations

give an accurate frequency response of the heave of body 2 for a range of frequencies from 2.61

rad/sec to 5.8 rad/sec. However, for frequencies greater than 5.8 rad/s, the ODE and DAE for-

mulations give a less accurate response. The total root mean square error across the range of

tested frequencies is equal to 0.0035 m for the ODE and DAE formulation. By way of example,

the time response for the heave of body 2, given by the ODE and DAE formulations compared

to the tank experiment, is shown for a regular wave of frequency ω = 3.14 rad/secs in Figure

3.4a, frequency ω = 4.18 rad/secs in Figure 3.4b, frequency ω = 5.23 rad/secs in Figure 3.4c and

frequency ω = 6.28 rad/secs in Figure 3.4d.
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Figure 3.4: Comparison between the heave of body 2 given by tank tests and ODE formulation for
regular waves of frequency ω = 3.14 (a), ω = 4.18 (b), ω = 5.23 (c) and ω = 6.28 (d)
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3.4.4 Computational considerations

With regard to the computational time, a comparison between the DAE and ODE formulations,

and a method based on the numerical integration of the equations of motion, e.g. an explicit R-K

method of the 4th order with a fixed time step, is made. The comparison is carried out for an

incident wave made using a Jonswap spectrum, which is given as follows [34]:

S(ω) =
αg2

ωM e−
M
N (

ωp
ω
) N

γ
a (3.84)

where M = 5, N = 4 and:

σ =

0.07 i f ω < ωp

0.09 i f ω≥ ωp

(3.85)

α = 5.061
H2

s

T 4
p
( 1−0.287 ln(γ)) (3.86)

a = e
−(ω/ωp−1)2

2σ2 (3.87)

For 1/7th scale model of the section of the MWP device, a Jonswap spectrum for the incoming

wave with peak period Tp = 3 seconds and significant wave height Hs = 15 cm is considered, and

is shown in Figure 3.5.
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Figure 3.5: Jonswap spectrum with peak period Tp = 3 s and significant wave height Hs = 15 cm.

While the R-K method is used to solve both the transient and steady-state response of the

device, the DAE and ODE formulations are used to obtain the steady-state response of the device

only. It is important to highlight that, at steady-state, the response obtained with the R-K method,

and DAE and ODE formulations, are identical. Note that, for the R-K method, the convolution
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integral for the radiation forces is approximated by means of a state-space model [54], while,

for the PS methods, the representation of the convolution integral is exact within the limits of

the approximation of the variables of interest introduced by the Truncated Fourier series [47].

Furthermore, for the PS methods, the number of frequencies considered in the Truncated Fourier

series covers the full range of frequencies of the spectrum of the incident wave, so that the response

of the device is correctly represented. The R-K method implemented with an exact numerical

representation of the convolution integral does not converge, due to the complex hydrodynamic

interactions between the bodies of the device.

For a simulation time of 30 seconds, in Figure 3.6, the computational time required by the

DAE and ODE formulations is compared to the computational time required by the R-K method

for different sizes of the time step. As Figure 3.6 shows, the DAE and ODE formulations are more

efficient than the R-K method for all time steps. Furthermore, the computational time required

by the ODE formulation is smaller than the computational time required by the DAE formulation.

Note that, for the DAE and ODE formulations, the computational time does not change for dif-

ferent sizes of the time step since the DAE and ODE formulations are solved with a fixed number

of collocation points, and then, the solution is interpolated along the simulation time for differ-

ent time steps. Therefore, the computational time required by the DAE and ODE formulation is

independent of the size of the time step.

While the size of the time step in the R-K method must be bounded in order to guarantee

stability (∆T < 0.1s), PS methods are naturally stable, since motion variables are composed of

the sum of bounded functions. The specific choice of ∆T depends on the bandwidth of the WEC,

BWWEC Hz, with ∆T = 1/(10BWWEC) offered as a guideline. For short time steps, the DAE

and ODE formulations are computationally faster than the Runge-Kutta method, allowing the

simulation of stiff problems, where a small time step is required in order to describe the rapid

transients of the solution. Stiffness can be introduced into the dynamic model of a wave energy

converter when, for example, the water hammer effects in the PTO system are considered. It is

interesting to note that the ODE formulation is computationally faster than the DAE formulation

for all the time steps. The fact that the ODE formulation requires a shorter computational time

than the DAE formulation could be significant in the real-time model-based control of the device.

For a time step of 0.06 seconds, in Figure 3.7, the computational time required by the DAE and

ODE formulations is compared to the computational time required by the Runge-Kutta method for

different simulation times. As Figure 3.7 shows, the Runge-Kutta method is less efficient than the

DAE and ODE formulations for short simulation times.

3.5 Case study: three-body hinge-barge device

A three-body hinge-barge device such as the MWP [5] is considered as a case study. As shown in

Figure 3.8, the device is composed of 3 rectangular bodies interconnected by hinges. Generally,

the relative pitch motion between bodies is used to drive a Power TakeOff (PTO) system in order
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Figure 3.6: Computational time required by the Runge-Kutta method, DAE and ODE formulations
computed for different time steps and simulation time equal to 30 seconds
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Figure 3.7: Computational time required by the Runge-Kutta method, DAE and ODE formulations
computed for different simulation times and time step equal to 0.06 seconds

to convert the energy from the waves into mechanical energy. The damping plate connected to

body 2 aims to reduce the vertical motion of body 2, increasing the pitch motions of body 1 and

3. The analysis of the motion of the devices is restricted to the two dimensional plane X − Z.

In Figure 3.8, the device is represented together with the global frame XiZi, while a body frame

is assigned to each body composing the device. The total number of degrees of freedom of the

system in Figure 3.8 is four: the heave displacement z2 of body 2, and the pitch angles θ1, θ2 and

θ3 of bodies 1, 2 and 3, respectively.
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Figure 3.8: Three-body hinge-barge device, where XiZi represents the global frame, and a local
frame is assigned to each body composing the device.

3.5.1 DAE formulation for a three-body hinge-barge device

In the following subsection, the DAE formulation is applied in order to obtain the equations of

motion for a three-body hinge-barge device. The vector of generalized positions, considered for

the three-body hinge-barge device, is:

z = [z1 z2 z3]
T = [zb

i,b1
θ1 zb

i,b2
θ2 zb

i,b3
θ3]

T (3.88)

where zb
i,bk

and θk are the heave displacement and pitch angle of body k, respectively, with

k = 1,2,3. The block matrix Jk(Θ) of the transformation matrix J(Θ) in equation (3.18) is given

as:

Jbk =

[
c(θk) 0

0 1

]
(3.89)

where k = 1,2,3. The block matrix Mk of the rigid-body inertia matrix Min in equation (3.19)

is given as:

Mbk =

[
mk 0

0 Iyy,k +mkh2
g,k

]
(3.90)

where k = 1,2,3, mk is the mass of body k, Iyy,k is the moment of inertia of body k around

the y-axis and hg,k is the distance of the center of mass of body k from point Obk along the z-axis.

The hydrodynamic loads G, M∞, Krad and fwave, in equations (3.22), (3.23), (3.14) and (3.24)

respectively, are obtained by means of the boundary element software WAMIT [25]. The vector

of PTO forces fpto in equation (3.14) is given by the forces due to the PTO systems connecting

body 2 to bodies 1 and 3. As shown in Figure 3.8, each PTO system can be modeled as a linear

dash-pot system. Considering the PTO system connecting points p1 and p2, the axial force is
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given as follows:

Fs1 = c1 l̇1 (3.91)

where c1 and l1 are the damping coefficient and displacement of the dash-pot system, respec-

tively. For small displacements of body 1 and 2, l̇1 can be approximated as follows:

l̇1 ≈ a(θ̇1− θ̇2) (3.92)

where a represent the vertical distance between the line of action of the PTO force and the

center-line of the device. Similarly, for the PTO connecting points p3 and p4, the axial force is

given as follows:

Fs2 = c2 l̇2 (3.93)

with l̇2 calculated as follows:

l̇2 ≈ a(θ̇3− θ̇2) (3.94)

Therefore, the vector of loads in equation (3.14), due to the PTO systems acting on the device,

is given as follows:

fPTO =−



0

Fs1a

0

−Fs1a−Fs2a

0

Fs2a


(3.95)

Now, the constraint equations for the three-body hinge-barge device are derived. The hinge

between body 2 and 3 introduces the following constraint equations:

Ri
b(θ2)

([
d2

zb
i,b2

]
+

[
−l3,h

0

])
−Ri

b(θ3)

([
d3

zb
i,b3

]
+

[
l4,h
0

])
= 0 (3.96)

where l3,h and l4,h are the distances of the hinge from Ob2 and Ob3 , respectively, while d2 and

d3 are the distances of Ob2 and Ob3 from the global frame XiZi, respectively. The hinge between

body 1 and 2 introduces the following constraint equations:

Ri
b(θ1)

([
d1

zb
i,b1

]
+

[
−l1,h

0

])
−Ri

b(θ2)

([
d2

zb
i,b2

]
+

[
l2,h
0

])
= 0 (3.97)
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where l1,h and l2,h are the distances of the hinge from Ob1 and Ob2 , respectively, while d1 is the

distance of Ob1 from the global frame XgZg. The rotation matrices Ri
b are given as follows:

Ri
b(θk) =

[
c(θk) −s(θk)

s(θk) c(θk)

]
(3.98)

where c(θk) = cos(θk) and s(θk) = sin(θk), with k = 1,2,3. The constraints in equation (3.96)

force the global position of the hinge defined by the coordinates of body 2 to be equal to the global

position of the hinge defined by the coordinates of body 3. Similar considerations can be made

for the constraints in equation (3.97). The matrix of the partial derivatives of constraint equations

(3.96) and (3.97), computed with respect to the generalized positions and linearized around the

equilibrium position, is given as follows:

Cz =

[
0 0 1 −l3,h −1 −l4,h
1 −l1,h −1 −l2,h 0 0

]
(3.99)

3.5.2 ODE formulation for a three-body hinge-barge device

The ODE formulation is now applied to obtain the equations of motion of a three-body hinge-barge

device. The vector of independent velocities of the device is:

vs = [θ̇1 żb
i,b2

θ̇2 θ̇3]
T (3.100)

Given the matrix Cz from equation (3.99), the transformation matrix P in equation (3.30) is

used to express the relation between the vector of generalized velocities and independent velocities

as follows:

P =



l1,h 1 l2,h 0

1 0 0 0

0 1 0 0

0 0 1 0

0 1 −l3,h −l4,h
0 0 0 1


(3.101)

Using P, the quantities defined in equations (3.34)-(3.42) can be calculated in order to obtain

the equations of motion of the device expressed with respect to the degrees of freedom.

3.5.3 Model validation

A specific 1/25th scale three-body hinge-barge device was tested in a wave tank using facilities

of the U.S. Naval Academy, Annapolis [55]. The tank tests were made in a 36.6 m long, 1.5 m

deep and 2.44 m wide wave tank at the US Naval Academy. The dimensions of the fore barge

are: length= 0.68 m, width=0.4 m and height=0.1 m. The dimensions of the central barge are:
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length= 0.28 m, width=0.4 m and height=0.15m. The dimensions of the aft barge are: length= 1

m, width=0.4 m and height=0.1 m.

3.5.3.1 Tank tests

The following measurements were recorded during the tests:

• Heave displacement of body 2

• Pitch angles of bodies 1, 2 and 3

• Incident wave at 6.1 m upwave of the device

• Axial forces along the dashpots

A series of tanks tests, with regular and irregular waves, was performed, with the direction of

the waves along the longitudinal direction of the device. For regular waves, a series of tests with a

range of frequencies ω from 3.14 rad/sec to 7.54 rad/secs and amplitude of 0.03 m was performed.

In Figure 3.10, the Response Amplitude Operators (RAOs) between the incident wave and the

DoF of the device are shown for regular waves. For irregular waves, two different tank tests were

performed:

• Irregular wave test 1: incident wave made using a BRETSCHNEIDER spectrum with a

significant wave height Hs = 15 cm and peak period Tp = 1.276 seconds.

• Irregular wave test 2: incident wave made using a JONSWAP spectrum with a significant

wave height Hs = 15 cm and peak period Tp = 1.276 seconds.

The Bretschneider spectrum is given as follows [34]:

S(ω) =
αg2

ωM e−
M
N (

ωp
ω
) N

(3.102)

where M = 5, N = 4 and:

α = 5.061
H2

s

T 4
p

(3.103)

In Figure 3.9, the JONSWAP and the BRETSCHNEIDER spectrums, obtained from the tank

experiments, are compared. As Figure 3.9 shows, the BRETSCHNEIDER spectrum is character-

ized by a broader spectral distribution than the JONSWAP spectrum.
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Figure 3.9: Comparison between the JONSWAP and the BRETSCHNEIDER spectrums with a
significant wave height Hs = 15 cm and peak period Tp = 1.276 seconds obtained from the tank
experiments.
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regular and irregular wave tank tests
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3.5.3.2 Model Tuning

Given the frequency domain model of the device with the hydrodynamic parameters computed

from the Wamit software, the viscous damping matrix Bvisc,s in equation (3.33) can be identified

using irregular wave test 1. The transfer function in the frequency domain, between the DoF of

the device and the incident wave, is:

H(ω) =
X̂s(ω)

η̂(ω)
(3.104)

where X̂s(ω) is a complex vector representing the displacements of the DoF of the device. The

transfer function H(ω) can be determined experimentally from the tank data with irregular waves

[56]. While the module of the transfer function H(ω) is obtained by using the spectral densities of

the positions of the Dof of the device and wave elevation, the phase of the transfer function H(ω)

is obtained by using the cross power spectral density between positions of the Dof of the device

and wave elevation. The spectral densities and cross power spectral density are evaluated by using

Welch’s method, where the input signals are split into overlapping segments of length L, with a

50% overlap. The overlapping segments are windowed by a Hanning window, in order to avoid

the frequency leakage to the non-periodicity of the segments. Thus, the transfer function H(ω) is

computed as follows:

H(ω) =

√
Sxsxs

Sηη

e j∠Sxsη (3.105)

where Sxsxs , Sηη and Sxsη are the power spectral density of the DoF of the device, power spectral

density of the wave elevation and the cross power spectral density between the DoF of the device

and the wave elevation, respectively. As shown in Figure 3.10, the RAOs for the heave of the

central barge and pitch angle of the fore barge for regular waves show a good agreement with the

transfer functions for the heave of the central barge and pitch angle of the fore barge computed

with irregular waves. Furthermore, as shown in Figure 3.10, the transfer function for the pitch

angles of the central and aft barge with irregular waves shows a good agreement with RAOs for

the pitch angles of the central and aft barge with regular waves in terms of resonant frequency.

However, the amplitude of the transfer function for the pitch angles of the central and aft barge

with irregular waves are smaller than the RAOs for the pitch angles of the central and aft barge

with regular waves.

The theoretical transfer function between the DoF of the device and the incident wave is:

Ĥ(ω) =
Hwave,s(ω)

−ω2(Ms +Ma,s(ω))+ jω(Bvisc,s +Brad,s(ω))+Gs
(3.106)

where Ms is the inertia matrix, Bvisc,s is the viscous damping matrix, Gs is the hydrostatic

stiffness, Ma,s is the added mass, Brad,s is the radiation damping and Hwave,s is the transfer function

betweeen the excitation forces vector and the incident wave. The problem of identification of the

viscous damping matrix Bvisc,s in equation (3.106) is formulated as an optimization problem as
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follows:

min
Bvisc,s

JLS (3.107)

where the cost function JLS to be minimized is the total sum of squared errors between the

transfer functions H(ω) and Ĥ(ω), across the range of frequencies of the spectrum of the incident

wave,

JLS =
n f

∑
i=1

n

∑
j=1
|H j(ωi)− Ĥ j(ωi)|2 (3.108)

where n f is the number of frequencies of the spectrum of the incident wave, n is the number of

degrees of freedom, H j and Ĥ j are the experimental and theoretical transfer function between the

j-th Dof and the incident wave, respectively. The elements of the viscous damping matrix Bvisc,s

are used as decision variables for the computation of the minimum of the cost function defined in

equation (3.108).

To validate the identified model, the tests with regular waves can be used. PS methods were

applied to compute an approximated solution for the equations of motion obtained for the DAE

and ODE formulations. The order of expansion Nx for the position and velocity of the states is set

equal to 1, according with the monochromatic wave conditions. The fundamental frequency ω0

is set equal to the frequency of the incident wave. Simulations of the device were carried out in

MATLAB running on a PC with a 3.40 GHz quad core processor and 8 GB RAM.

In Figure 3.11, the frequency response of the DoF of the device, obtained from the tank ex-

periments, is compared to the response obtained from the tuned dynamic model. The uncertainty

on the measurement of the frequency response of the DoF of the device, obtained from the tank

experiments, is represented by using error bars with interval ±σXs,i , where σXs,i is the standard

deviation of the i-th DoF. For each frequency of the regular wave, the standard deviation σXs,i is

computed as follows:

σXs,i =

√
∑

ndata
k (Xs,i(k)−X s,i)2

ndata
(3.109)

where ndata is the number of peaks of the i-th DoF, Xs,i(k) is the amplitude of the peak k-th

and X s,i is the average peak amplitude.

The resonant frequencies of the device can be computed as the eigenvalues of the state matrix

Ast of the state-space representation of the system, which is given as follows:

Ast =

[
0n,n In,n

−(Ms +Ma,s(ω))
−1Gs −(Ms +Ma,s(ω))

−1 (Bvisc,s +Brad,s(ω))

]
(3.110)

The matrix Ast has three pairs of complex conjugate eigenvalues which have natural frequen-

cies of 5.05 rad/s, 6.15 rad/s and 7.83 rad/s.
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By way of example, the time response for the heave of body 2, given by the ODE formulation

compared to the tank experiment, is shown for regular waves of frequency ω = 3.14 rad/secs in

Figure 3.12a, frequency ω = 5.02 rad/secs in Figure 3.12b, frequency ω = 5.65 rad/secs in Figure

3.12c, and frequency ω = 6.28 rad/secs in Figure 3.12d. The time response for the pitch angles

of body 1, 2 and 3 given by the ODE formulation compared to the tank experiment is shown for

regular waves of frequency ω = 3.14 rad/secs in Figure 3.13a, frequency ω = 5.65 rad/secs in

Figure 3.13b and frequency ω = 6.28 rad/secs in Figure 3.13c.

As for the 2-body hinge-barge device presented in Section 3.4, the responses of the heave of

body 2 and of the pitch angles of the three bodies, obtained with the ODE and DAE formula-

tions based on a linear dynamic model, are identical. Therefore, for a linear dynamic model of

the device, the DAE and ODE formulation are equivalent representations of the dynamics of the

device.
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Figure 3.11: Frequency response of the DoF of a three-body hinge-barge device, obtained with the
tank experiments with error bars for the uncertainty and tuned dynamic model for regular waves.

In order to validate the identified model with irregular waves, irregular wave test 2 can be used.

Given the linear model of the device derived in Sections 3.5.1 and 3.5.2, the range of frequencies

for the position and velocity spectra is the same as the range of frequencies of the spectrum of the

incident wave. Therefore, for a fundamental frequency ω0 = 0.12 rad/s and a maximum frequency

of the spectrum of the incoming wave of ωmax = 8 rad/s, the order of expansion for the position and

velocity of the states is computed as Nx =ωmax/ω0 = 70. In Figure 3.14, the frequency response of

the heave of body 2, obtained from irregular wave test 2, is compared against the response obtained

from the ODE formulation. The uncertainty on the measurement of the frequency response of the
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Figure 3.12: Comparison between the heave of body 2 given by tank tests and ODE formulation
for regular waves of frequency ω = 3.14 (a), ω = 5.02 (b), ω = 5.65 (c) and ω = 6.28 (d)

heave of body 2, with the irregular wave test 2, is chosen equal to the maximum uncertainty of the

tests with regular waves of comparable scale. In Figure 3.15, the frequency responses of the pitch

angles of bodies 1, 2 and 3, obtained from irregular wave test 2, are compared against the responses

obtained from the ODE formulation. As for the tests of the heave of body 2, the uncertainty on

the measurement of the frequency response of the pitch angles, with the irregular wave test 2, is

chosen equal to the maximum uncertainty of the tests with regular waves of comparable scale. In

Figure 3.16, the time domain response of the heave of body 2, obtained from irregular wave test

2, is compared against the response obtained from the ODE formulation. In Figure 3.17, the time

domain responses of the pitch angles of bodies 1, 2 and 3, obtained from irregular wave test 2, are

compared against the responses obtained from the ODE formulation.
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3.5.4 Computational considerations

A comparison between the DAE and ODE formulations, and a method based on the integration

of the equations of motion, using an explicit 4th order R-K method with a fixed time step, is

made. The comparison is carried out for an incident wave made using a Jonswap spectrum with a

significant wave height Hs = 15 cm and peak period Tp = 1.27 seconds.

While the R-K method is used to solve both the transient and steady-state response of the

device, the DAE and ODE formulations are used to obtain the steady-state response of the device

only. It is important to highlight that, at steady-state, the response obtained from the R-K method,

and DAE and ODE formulations, is identical. As for the 2-body hinge-barge presented in Section

3.4.4, for the R-K method, the convolution integral for the radiation forces is approximated by

means of a state-space model [54], while for the PS methods, the representation of the convolution

integral is exact within the limits of the approximation of the variables of interest introduced by the

Truncated Fourier series [47]. As for the 2-body hinge-barge device presented in Section 3.4.4, the

R-K method implemented with an exact numerical representation of the convolution integral does

not converge, due to the complex hydrodynamic interactions between the bodies of the device.

For a nominal simulation time of 20s, the computation time Tcomp required by the DAE and

ODE formulations is compared to that for R-K, for different time step sizes, in Figure 3.18. Figure

3.18 confirms that the ODE formulation is more efficient than R-K for short time steps and, for

the DAE and ODE formulations, Tcomp does not change significantly with time step, due to the use

of a fixed number of collocation points. Note that the DAE formulation is computationally slower

than both the ODE formulation and R-K method, for all the time steps. However, it should be

borne in mind that Tcomp depends on the order of the finite order radiation damping approximation

used in R-K, with a relatively small order of 3 used for this baseline comparison.

For a specific time step of 0.04s, Tcomp for the DAE, ODE and R-K formulations for different

simulation times Ts is compared in Figure 3.19, showing that the DAE formulation is computa-

tionally less efficient than both the ODE and R-K methods, for all Ts. The Runge-Kutta method is

computationally faster than the ODE formulation for long Ts, though a higher-order convolution

approximation will increase the slope of the R-K trace in Figure 3.19. In terms of likely simu-

lation requirements, system simulation is likely to require a Ts > 100s, while predictive control

algorithms will likely employ a prediction horizon of Ts < 20s [57].

3.6 Conclusions

This chapter demonstrates that PS methods are a compact and numerically efficient formulation

for solving the dynamics of multi-body wave energy devices. Two different case studies were

considered: a two-body and a three-body hinge barge devices. For the two-body hinge-barge de-

vice, experimental tests with monochromatic waves were carried out in order to validate the use

of PS methods for solving the dynamics of the device. Both DAE and ODE PS formulations were
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applied in order to describe the dynamics of the device, showing good agreement with experimen-

tal tests in terms of device motion. However, experimental tests with polychromatic waves are

necessary in order to validate PS methods under a wider range of conditions. For the three-body

hinge-barge device, experimental tests with both monochromatic and polychromatic waves were

carried out to validate the use of the PS models. Both DAE and ODE PS formulations showed

good agreement with experimental tests in terms of device motion.

For a two-body hinge-barge device, the PS ODE formulation is superior to the PS DAE for-

mulation in terms of computational time required to obtain the motion of the device. With respect

to reference methods based on the integration of the equations of motion, e.g. the Runge-Kutta

method, both PS ODE and DAE formulations are computationally more efficient for time steps

that range from 0.01 seconds to 0.06 seconds. Furthermore, for time steps larger than 0.06 seconds,

PS methods are computationally more stable than the Runge-Kutta method. In terms of solution

accuracy, PS methods can be less accurate than the Runge-Kutta method, since they compute an

approximation of the solution based on a finite number of expansion coefficients. However, within

the bounds of this approximation, the convolution integral corresponding to the WEC radiation

damping term is solved exactly. This is in contrast to the R-K method, where the convolution

integral is approximated as the output of a finite order linear system.

For a three-body hinge-barge device, the PS ODE formulation requires shorter computational

times than the PS DAE formulation. With respect to the reference R-K method, the PS ODE

formulation is computationally faster for small time steps. However, the PS DAE formulation is

computationally slower than the R-K method for all time steps.

For the optimal control of multi-body wave energy converters, PS methods are generally more

efficient than traditional methods such as Model Predictive Control (MPC), which relies on the

simulation capabilities of the integration method in order to compute the optimal solution of the

control input [58]. In Chapter 4, PS methods based on Fourier basis functions are applied to

formulate the optimal control problem of a three-body hinge-barge device. A useful feature of PS

is that only a small extra computational effort is required to compute the expansion coefficients

for the optimal control force, in addition to the expansion coefficients for the state variables.

65



CHAPTER 3. DYNAMIC MODELLING OF MULTIBODY HINGE-BARGE WAVE ENERGY CONVERTERS

0 2 4 6 8 10 12 14 16 18 20
−0.05

0

0.05

θ 1 [r
ad

]

 

 

0 2 4 6 8 10 12 14 16 18 20
−0.05

0

0.05

θ 2 [r
ad

]

 

 

0 2 4 6 8 10 12 14 16 18 20
−0.05

0

0.05

time [sec]

θ 3 [r
ad

]

 

 

tank data
ODE formulation

(a)

0 2 4 6 8 10 12 14 16 18 20
−0.05

0

0.05

θ 1 [r
ad

]

 

 

0 2 4 6 8 10 12 14 16 18 20
−0.02

0

0.02

θ 2 [r
ad

]

 

 

0 2 4 6 8 10 12 14 16 18 20
−0.05

0

0.05

time [sec]

θ 3 [r
ad

]

 

 

ODE formulation
tank data

(b)

0 2 4 6 8 10 12 14 16 18 20
−0.05

0

0.05

θ 1 [r
ad

]

 

 

0 2 4 6 8 10 12 14 16 18 20
−0.02

0

0.02

θ 2 [r
ad

]

 

 

0 2 4 6 8 10 12 14 16 18 20
−0.02

0

0.02

time [secs]

θ 3 [r
ad

]

 

 

tank data
ODE formulation

(c)

Figure 3.13: Comparison between the pitch angles of body 1, 2 and 3 given by tank tests and ODE
formulation for regular waves of frequency ω = 3.14 (a), ω = 5.65 (b) and ω = 6.28 (c)

66



CHAPTER 3. DYNAMIC MODELLING OF MULTIBODY HINGE-BARGE WAVE ENERGY CONVERTERS

ω [rad/sec]
0 2 4 6 8 10

| z
2 | 

[m
]

×10-3

0

2

4

6 ODE formulation
tank data

Figure 3.14: Frequency response of the heave of body 2 obtained from tank experiments with error
bars for the uncertainty and ODE formulation for an irregular wave made using using Jonswap
spectrum with a significant wave height Hs = 15 cm and peak period Tp = 1.276 sec.
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iments with error bars for the uncertainty and ODE formulation for an irregular wave made using
using Jonswap spectrum with a significant wave height Hs = 15 cm and peak period Tp = 1.276
sec.
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Figure 3.16: Time domain response of the heave of body 2 obtained from tank experiments and
ODE formulation for an irregular wave made using using Jonswap spectrum with a significant
wave height Hs = 15 cm and peak period Tp = 1.276 sec.
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Figure 3.17: Time domain response of the pitch angles of body 1, 2 and 3 obtained from tank
experiments and ODE formulation for an irregular wave made using using Jonswap spectrum with
a significant wave height Hs = 15 cm and peak period Tp = 1.276 sec.
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Figure 3.18: Computational time required by the Runge-Kutta method, DAE and ODE formula-
tions computed for different time steps and simulation time equal to 20 seconds
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Figure 3.19: Computational time required by the Runge-Kutta method, DAE and ODE formula-
tions computed for different simulation times and time step equal to 0.04 seconds
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Chapter 4

Pseudo-spectral optimal control of a
three-body hinge-barge device

In Section 3.5, a dynamic model for a three-body hinge-barge device is derived, which can be

used to formulate the optimal control problem of the device. The optimal control problem consists

in maximizing the energy extracted by the device for different wave conditions, considering the

limitations on the achievable positions, velocities and PTO forces. In Section 2.4, an overview

of optimal control strategies, for multibody hinge-barge WECs, is presented. The optimal control

strategies developed for multibody hinge-barge WECs represent a subset of the broader set of

control strategies applied to the wave energy conversion. In the remainder of this chapter, an

overview of the control strategies adopted for wave energy applications is presented.

4.1 Literature review on optimal control of wave energy converters

One of the first control strategies developed for WECs is reactive control, or complex-conjugate

(CC) control [10]. CC control is formulated in the frequency domain, and maximizes the energy

extracted by a WEC under the assumptions of regular waves, linear dynamic model of the WEC

and active PTO that can deliver power to the WEC, as well as absorbing power. A scheme for

CC control applied to a single-DoF WEC is shown in Figure 4.1a. As shown in Figure 4.1a, CC

control computes the following optimal control force Uopt(ω):

Uopt(ω) = Zopt(ω)V (ω) = Z∗(ω)V (ω) (4.1)

where Z∗(ω) is the complex-conjugate of the WEC mechanical impedance Z(ω) and V (ω) is

the Fourier transform of the velocity. As shown in equation 4.1, CC control defines the optimal

profile of PTO force at the frequency of the incoming regular wave. However, real waves are not

regular, but rather irregular, and are composed of multiple frequencies. Therefore, CC is difficult

to implement under irregular waves. CC control is a non-causal control strategy, as the inverse

Fourier transform of Z∗(ω) is non-causal and, therefore, the optimal control force uopt(t), in the
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time domain, depends on future values of the velocity v(t). Furthermore, with CC control, the

motion of the WEC and PTO force undergoes large oscillations, as constraints on the motion and

PTO forces cannot be incorporated into CC control. Another difficulty with CC is the use of active

PTO, which are difficult to realize in practice [59].

Another optimal control strategy based on the same theory of CC control is the Phase and

Amplitude (PA) control [10]. A scheme for PA control applied to a single-DoF WEC is shown

in Figure 4.1b. As shown in Figure 4.1b, CC control computes the reference velocity Vopt(ω) as

follows:

Vopt(ω) =
Fex(ω)

2R(ω)
(4.2)

where Fex(ω) is the Fourier transform of the excitation force and R(ω) is the sum of the radi-

ation and viscous damping of the WEC. The condition on the optimal reference velocity VPTO(ω)

in equation (4.2) maximizes the energy extracted by the WEC, as in the case of CC control. The

reference velocity Vopt(ω) is tracked by an inner control loop that computes the PTO force applied

to the WEC. Therefore, with PA control, the velocity of the WEC is in phase with the excitation

force, with amplitude |Vopt(ω)|= |Fex(ω)|/2R(ω). Note that, the optimal velocity VPTO(ω) com-

puted in equation (4.2) is frequency dependent. Therefore, PA control is difficult to implement

under irregular waves. Also, as for CC control, PA control is a non-causal control strategy, as

the inverse Fourier transform of 1/2R(ω) is non-causal and, therefore, the optimal velocity vopt(t)

in the time domain depends on future values of the excitation force fex(t). As for CC control,

with PA control, the motion of the WEC and PTO force undergoes large oscillations. One of the

first applications of reactive control applied to the Salter Duck is described in [60]. CC control

is also applied to the Salter duck in [61]. In [62], an implementation of CC control applied to a

semi-submerged sphere oscillating in heave is presented.

CC and PA control require the prediction of the future velocity of the WEC and excitation

force, respectively, due to their non-causality nature. The WEC velocity or excitation force can be

predicted using a wave probe at some distance ahead of the device, or using a mathematical model

that extrapolates the future values of WEC velocity and excitation force based on their past history.

In Chapter 6, a mathematical model is used to predict the excitation force acting on three-body

hinge-barge device into the future based on its past history. Alternatively, the need of the prediction

of the WEC velocity or excitation force can be eliminated with the use of a sub-optimal causal

control. The main idea behind a sub-optimal causal control technique, is to approximate the ideal

non-realizable transfer function associated with CC and PA control with a causal transfer function

in the frequency range containing most of the wave energy. In [63], two causal approximations

of the ideal non-causal controller are considered for a piston wave absorber. The performances of

the two causal approximations are compared to the performances of a low-frequency asymptotic

Sommerfeld relation. In [64], an approximation of the model of a single-body heaving WEC with

a second order oscillator is considered, and the non-causal transfer function between the optimal

velocity and the excitation force is approximated by a constant. In [65], [66] an optimal causal
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(a)

(b)

Figure 4.1: Scheme for Complex-Cojugate (CC) control (a) and Phase and Amplitude (PA) con-
trol.

control is applied to a WEC attached to 3 generators by tethers, with the device that can extract

energy from the surge, heave, and rotation motions simultaneously. The optimal causal control

relies on measurements of the generator velocities and spectral characteristics of the sea, and is

found as a nonstandard Linear Quadratic Gaussian (LQG) controller. An optimal causal control

that does not require predictions of the future velocities of the WEC is proposed in [67].

The requirement of PA control to use a PTO that can deliver power to the WEC can be obviated

by using a discrete suboptimal controller termed latching [68], [69], [70] which aims to satisfy

the condition on the optimal velocity given by equation (4.2). The latching control keeps the

WEC velocity in phase with the excitation force by locking the device in a fixed position when

the velocity reaches a zero value for a certain time interval. The latching of the WEC can be

realized with a mechanical brake or the closure of a valve, in case of a hydraulic PTO. Although

latching control does not involve an active PTO, the choice of the time during which the WEC is

locked is the solution of an optimization problem which can be difficult to solve. Furthermore,

for latching control, the prediction of the future excitation force is required. A counterpart to

latching control is declutching control, which is presented in [71]. As opposed to latching control,

declutching control consists of unloading the WEC during some parts of the power cycle and,

therefore, the PTO force is set equal to zero [72]. A combination of latching and declutching

control is presented in [73], where a considerable increase in the energy extracted by a WEC can

be achieved with respect to the use of latching and declutching control independently. In general,

for monochromatic sea and under the assumption of linearity of the model of the device, latching
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and declutching control are optimal for a resonant frequency of the device greater and smaller than

the wave period, respectively.

CC and PA control maximize the energy extracted by a WEC, without considering constraints

on the maximum motion amplitudes achievable by the device. It is important that the motion of

the device is restrained due to limits such as the maximum stroke of the PTO or mooring lines.

In [74], a theoretical study on the maximum power absorption of a WEC under constraints on the

velocity, and therefore on the position, is carried out in the frequency domain. In [75], a linear

frequency domain model has been developed for a heaving point absorber, relatively moving with

respect to a floating reference. Three different restrictions are considered in the maximization of

the extracted power from the WEC: restriction on the probability of occurrence of slamming of

the point absorber, restriction on the amplitude of the point absorber motion and restriction on the

force applied by the PTO.

From the control strategies presented before, it is clear that a successful control strategy for a

WEC has to maximize the extracted energy and handle constraints on the motions and the PTO

force, based on the prediction of the excitation force. MPC represents a natural choice for the

control of a WEC, since is formulated as an optimization problem based on a cost function which

can be the energy extracted by a WEC, a mathematical model that can be used to predict the

future response of the WEC, given initial conditions of the state variables and future excitation

force, and constraints on the variables of interest. In [6], MPC is applied to the Archimedes

Wave Swing, where the cost function to be maximized is the power absorbed by the PTO. A

linear dynamic model is considered for the device, and constraints on position and velocity are

considered. The excitation force is estimated from the motion of the device, and predicted by

means of an auto-regressive (AR) model based on past values of the excitation force. In [76],

the constrained optimal control of a heaving sphere is realized with a MPC, where constraints on

the motion and on the PTO force are considered. A linear dynamic model is considered for the

device, and the cost function to be maximized is made of the difference between the excitation

power and lost power due to the radiation and viscous force, as opposed to the power absorbed by

the PTO. The performances of the MPC applied to a heaving sphere are found to be close to the

maximum power absorption under CC control. The wave excitation force is predicted by use of

an augmented Kalman filter based on a damped harmonic oscillator model of the wave process.

In [77], MPC is applied to a heaving point absorber, with constraints on position and velocity.

A linear dynamic model is considered for the device, and no constraints on the PTO force are

considered, in order avoid feasibility issues. The cost function to be maximized is the power

absorbed by the PTO. In [78], a nonlinear MPC is applied to a model-scale point absorber, where

a passive PTO with variable damping is considered. The nonlinearity of the control problem is

due to the nature of the mathematical model used to describe the PTO, where the control force is

given by the multiplication of the WEC velocity and variable damping. Constraints on the position

and maximum value of the variable damping are considered. In [79], a nonlinear MPC is applied

to two-body point-absorber, where a linear model for the hydrodynamic forces and a nonlinear

model for the mooring forces are considered.

73



CHAPTER 4. PSEUDO-SPECTRAL OPTIMAL CONTROL OF A THREE-BODY HINGE-BARGE DEVICE

A valid alternative to MPC for the energy maximization of a WEC, with constraints on the

motion of the device and PTO force, is the optimal control with PS methods, which are a subset

of the class of techniques used for the discretisation of integral and partial differential equations

known as mean weighted residuals [45], [46]. In [47], PS methods with Fourier basis function

are applied for the optimal control of WECs, where only the steady-state solution to the optimal

control problem is considered. In [80], a Receding Horizon Pseudo-Spectral Control (RHPSC),

that also considers transient effects, is employed. In Chapter 5, the RHPSC is adopted for the real-

time control of a three-body hinge-barge device. In [81], a nonlinear MPC using PS methods with

Lagrangian polynomials applied to heaving point-absorber is considered. The major nonlinearity

of the model of the device is due to the nonlinear buoyancy force. The differential flatness of the

WEC model is exploited in order to reduce the computational burden required to the controller,

where only one variable is parametrized with the chosen basis functions. In [58], a critical com-

parison between MPC and RHPSC control for wave energy devices is made. Results show that

the relative computational burden for MPC is significantly greater than for RHPSC. Furthermore,

MPC appears to be sensitive to the finite-order parametrization of the radiation force, with an high

order of the approximation needed to correctly represent the radiation forces. In contrast to MPC,

as shown in Section 3.3, PS control with Fourier basis functions provides an exact representation

of the radiation forces, within the boundaries of the approximation of the variables of interest.

Similarly to PS control with Fourier basis functions, in Section 5.3, it is demonstrated that RH-

PSC provides an exact representation of the radiation forces too. Also, in Chapter 3, it is proven

that PS methods are a compact and numerically efficient formulation for solving the dynamics of

a system.

The objective of this chapter is to asses the value of optimal control with PS methods based on

Fourier basis functions applied to a three-body hinge-barge wave energy device. The optimal con-

trol is based on the model of the device, and it takes into account the hydrodynamic and kinematic

interactions between the bodies. The PTO loads at the joints are controlled in a coordinated way,

so that the total energy extracted by the device is maximized. Both passive and active controllers,

which compute the optimal profile of velocities and control forces of the PTOs, are considered for

both regular and irregular waves. PS methods are used to transform the optimal control problem

of the hinge-barge device into a finite dimensional optimization problem which can be nonconvex

for both passive and active control. In this chapter, only the steady-state solution to the optimal

control problem is considered, and the transient response of the device is neglected. Therefore, the

optimal control with PS methods based on Fourier basis functions cannot be applied for real-time

control of the WEC, but provides an useful framework for the evaluation of the achievable power

absorption under both active and passive control. In Chapter 5, RHPSC for real-time control of a

three-body hinge-barge device is presented.

The remainder of this chapter is organized as follows: in Section 4.2, a reduced equivalent

dynamic model of a three-body hinge-barge device for the control formulation is presented, while,

in Section 4.3, PS control with Fourier basis functions is applied to a three-body hinge-barge

device. In Section 4.4, the maximum theoretical power absorption of the device under reactive
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control is presented, while, in Section 4.5, PS methods with Fourier basis functions are compared

to a standard optimal controller for both monochromatic and polychromatic waves. In Section 4.6,

considerations on the computational time required by PS methods with Fourier basis function to

compute the active and passive control of the device are presented. Finally, overall conclusions

are drawn in Section 4.7.

4.2 Reduced equivalent dynamic model of a three-body hinge-barge
device for control formulation

In Section 3.5.2, a full dynamic model of a three-body hinge-barge device, described in terms of

the motion of the DoF of the device, is presented. An equivalent reduced dynamic model, which

is described only in terms of the relative pitch rotations between the barges, can be obtained [82],

[83]. The equivalent reduced model is described in terms of the relative pitch rotations which

are the modes that are used to extract energy from the device. Therefore, the equivalent reduced

dynamic model is particularly suitable for formulating the optimal control problem, since it in-

volves a smaller number of variables than the full dynamic model. However, with the equivalent

reduced dynamic model, no information on the heave and pitch rotation of the central barge is

provided. Thus, with the reduced equivalent model, no constraints on the heave and absolute pitch

rotation of the central barge can be enforced, as the reduced equivalent model is described in terms

of the relative pitch rotations only. Therefore, the equivalent reduced dynamic model represents

a less comprehensive description of the motion of the device than the full dynamic model, but

considerably reduces the computational effort required for the calculation of the controller.

The fully dynamic model, presented in Section 3.5.2, can be rewritten in terms of the vector

of independent velocities as follows:

vs = [żb
i,b2

θ̇2 θ̇rel,1 θ̇rel,2]
T (4.3)

where z2 is the heave displacement of body 2, θ2 is the pitch angle of body 2, θrel,1 and θrel,2

are the relative pitch angles of bodies 1 and 3 with respect to body 2, respectively. As shown in

Figure 3.8, the control forces are represented by PTO torques acting on the relative pitch motion

between body 2 and bodies 1 and 3. The number of control forces is nc = 2. The full dynamic

model of the device in the frequency domain derived in Section 3.5.3.2 can be rewritten as follows:

(−ω
2 (Ms +Ma,s(ω))+ jω(Brad,s(ω)+Bvisc,s)+ ..

Gs)X̂s(ω) = F̂wave,s(ω)+Fp,sÛ
(4.4)

where Û ∈ Rnc×1 is the Fourier transform of the control force vector, Fp,s ∈ Rn×nc is the

configuration matrix of the PTO and Fwave,s is the Fourier transform of the excitation force vector.

The full dynamic model of the device in equation (4.4) can be rewritten, in the frequency domain,

as follows:
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(B+ jωC)V̂ = F̂wave,s +Fp,sÛ (4.5)

where:

V̂ =
[
Żb

i,b2
Θ̇2 Θ̇rel,1 Θ̇rel,2

]T
(4.6)

B =

[
B11 B12

B21 B22

]
(4.7)

C =

[
C11 C12

C21 C22

]
(4.8)

F̂wave,s =
[
F̂wave,1 F̂wave,2

]T
(4.9)

Fp,s = [02 I2]
T (4.10)

Note that, the dependency of the variables and matrices in equations (4.5)-(4.9) on ω is dropped

in order to simplify the notation. Then, equation (4.5) can be written as a system of two matrix

equations:

[
Żb

i,b2

Θ̇2

]
= Z−1

f

(
F̂wave,1−T

[
Θ̇rel,1

Θ̇rel,2

])
(4.11)

(B22 + jωC22)

[
Θ̇rel,1

Θ̇rel,2

]
= F̂wave,2 + Û− (B21 + jωC21)

[
Żb

i,b2

Θ̇2

]
(4.12)

where Z f = B11 + jωC11 and T = B12 + jωC12. Substituting equation (4.11) into equation

(4.12) yields the following equivalent reduced model for the relative pitch rotations:

AeqV̂eq = F̂eq + Û (4.13)

where:

V̂eq =

[
Θ̇rel,1

Θ̇rel,2

]
(4.14)

Aeq = B22−B21Z−1
f T+ jω

(
C22−C21Z−1

f T
)

(4.15)

F̂eq,wave = F̂wave,2− jωC2,1Z−1
f F̂wave,1−B2,1Z−1

f F̂wave,1 (4.16)

As shown in equation (4.13), the equivalent reduced model is described in terms of the relative
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pitch rotations only. In order to express the dynamic model in equation (4.13) in the time domain,

the equivalent added mass at infinity and inertia matrix are computed. If Aeq in Equation (4.14) is

written as follows:

Aeq = Beq,rad +Beq,visc + jω
(

Meq,in +Meq,a−
Geq

ω2

)
(4.17)

where Beq,rad is the equivalent radiation damping matrix, Beq,visc is the equivalent viscous

damping matrix, Meq,in is the equivalent inertia matrix, Meq,a is the equivalent added mass ma-

trix and Geq is the equivalent stiffness matrix. Therefore, the equivalent added mass at infinite

frequency and the inertia matrix are given as follows:

lim
ω→∞

ℑAeq

ω
= Meq,in +Meq,inf (4.18)

where Meq,inf is the equivalent added mass at infinite frequency. The equivalent stiffness matrix

is given as follows:

lim
ω→0

ωℑAeq =−Geq (4.19)

Finally, the equivalent reduced model, expressed in the time domain, is given as:

q̇eq = veq (4.20)

Meq,tot v̇eq +Beq,viscveq +Geqqeq + ..∫ t

0
Keq,rad(t− τ)veq,dτ = feq,wave +u

(4.21)

where qeq ∈Rnc×1 is the equivalent position vector, veq ∈Rnc×1 is the equivalent velocity vec-

tor, u ∈ Rnc×1 is the control force vector, Meq,tot = Meq,in +Meq,inf, keq,rad is the kernel function

matrix of the equivalent radiation forces and feq,wave is the equivalent wave excitation force vec-

tor. Each element of the matrix keq,radii
can be obtained from the corresponding element of the

equivalent radiation damping matrix Beq,radii
as follows [10]:

keq,radii
=

2
π

∫
∞

0
Beq,radii

(ω)cos(ωt)dω (4.22)

with ii = 1,2.

4.3 Pseudo-spectral control with Fourier basis functions of a three-
body hinge-barge device

This section describes the direct transcription of the optimal control problem in the time domain

for a three-body hinge barge device [47]. For a three-body hinge-barge device, the vector of control

variables is considered to be u = [τ1 τ2]
T , where τ1 is the torque applied by the PTO connecting
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body 2 and 1, while τ2 is the torque applied by the PTO connecting body 2 and 3. In contrast to

the PTOs considered in Section 3.5.1 and 3.5.2 , the torque applied by each PTO are not linearly

dependent on the relative pitch velocity between the connected bodies.

The average power absorbed by the PTOs, over the time interval [0,T ], is given as:

J =
1
T

∫ T

0
vT Fpudt (4.23)

where v is the vector of the velocities of the device, u is the control force vector and Fp is the

configuration matrix. The configuration matrix Fp in equation (4.23) is used in order to combine,

in different ways, the manipulated control forces [47]. Therefore, the configuration matrix Fp

depends on the PTO structure used. The optimal control problem consists of computing the vector

of PTO torques that maximize the cost function in equation (4.23), subject to the equations of

motion (3.13)-(3.15), (3.32)-(3.33) and (4.20)-(4.21), for the DAE, ODE formulations and the

equivalent reduced model, respectively. Additional constraints on the applied torques and relative

pitch velocity between the bodies can be considered in the optimal control formulation.

For the discretization of the control problem, the control torques can be approximated with

a linear combination of basis functions. Given the periodic nature of the variables associated

with the problem, non-zero mean trigonometric polynomials (truncated Fourier series) represent a

sensible choice for the control torques. Therefore, the pth component of the control torque vector

can be approximated as follows:

τp(t)≈ τ
Nx
p (t) =

Nx

∑
k=1

uc
p,kcos(kω0t)+us

p,ksin(kω0t) = Φ(t)ûp (4.24)

with p = 1,2. The vector of the coefficients ûp is given as follows:

ûp =
[
uc

p,1 us
p,1 .. uc

p,Nx
us

p,Nx

]T (4.25)

where Nx is the order of expansion of the PS Fourier methods. In the remainder of this section,

three different PS control frameworks are derived based on the formulation used to describe the

dynamics of the device: DAE PS control, ODE PS control and reduced equivalent model PS

control.

4.3.1 DAE Fourier PS control

For the DAE formulation, the configuration matrix Fp in equation (4.23) is given as:

Fp =



0 0

1 0

0 0

−1 −1

0 0

0 1


(4.26)
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By substituting the approximated velocities and control torques defined in equations (3.44)

and (4.24), respectively, into equation (4.23), the cost function can be written as:

JM =
1
T

∫ T

0
Φ(t)T ( XV FpUT ) Φ(t)dt

=
1
2
( ûT

1 (x̂
v
2− x̂v

4)+ ûT
2 (x̂

v
6− x̂v

4))

=
1
4

xT HDAEx

(4.27)

where:

XV = [ x̂v
1, .., x̂

v
6] (4.28)

U = [ û1 û2] (4.29)

x = [ x̂q,T x̂v,T ûT ]T (4.30)

HDAE =

06×2Nx,6×2Nx 06×2Nx,6×2Nx 06×2Nx,2×2Nx

06×2Nx,6×2Nx 06×2Nx,6×2Nx H1

02×2Nx,6×2Nx H2 02×2Nx,2×2Nx

 (4.31)

H1 =



02Nx,2Nx 02Nx,2Nx

I2Nx,2Nx 02Nx,2Nx

02Nx,2Nx 02Nx,2Nx

−I2Nx,2Nx −I2Nx,2Nx

02Nx,2Nx 02Nx,2Nx

02Nx,2Nx I2Nx,2Nx


(4.32)

H2 = HT
1 (4.33)

Thus, for the DAE formulation, the optimal control problem defined by the maximization of

the cost function (4.23), subject to the dynamic constraints (3.13)-(3.15) is transformed into a fi-

nite dimensional optimization problem with cost function (4.27), and dynamic constraints (3.65)-

(3.67). Note that, the cost function in equation (4.27) is quadratic, but non-convex, due to the

negative eigenvalues of the matrix HDAE . Therefore, with a non-convex quadratic cost function,

a global optimal solution cannot be guaranteed. Additional inequality constraints, on the applied

PTO torques and relative pitch velocity between the bodies, can also be considered in the opti-

mization problems as:

g(x̂q
i , x̂

v
i , ûp)≤ 0 (4.34)

with i = 1, ..,6 and p = 1,2.
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4.3.2 ODE Fourier PS control

For the ODE formulation, the configuration matrix Fp in equation (4.23) is given as:

Fp =


0 0

0 0

1 0

0 1

 (4.35)

Similar to the development presented in Section 4.3.1 for the DAE formulation, the cost func-

tion in equation (4.23), for the ODE case, can be written as:

JM =
1
2
( ûT

1 x̂v
3 + ûT

2 x̂v
4)

=
1
2

xT HODEx
(4.36)

where:

XV = [ x̂v
1, .., x̂

v
4] (4.37)

U = [ û1 û2] (4.38)

x = [ x̂q,T x̂v,T ûT ]T (4.39)

HODE =

04×2Nx,4×2Nx 04×2Nx,4×2Nx 04×2Nx,2×2Nx

04×2Nx,4×2Nx 04×2Nx,4×2Nx H1

02×2Nx,4×2Nx H2 02×2Nx,2×2Nx

 (4.40)

H1 =


02Nx,2Nx 02Nx,2Nx

02Nx,2Nx 02Nx,2Nx

I2Nx,2Nx 02Nx,2Nx

02Nx,2Nx I2Nx,2Nx

 (4.41)

H2 = HT
1 (4.42)

Thus, for the ODE formulation, the optimal control problem defined by the maximization

of the cost function (4.23), subject to the dynamic constraints (3.32)-(3.33) is transformed into

a finite dimensional optimization problem with cost function (4.36), and dynamic constraints

(3.68)-(3.69). As for the DAE formulation in Section 4.3.1, the cost function in equation (4.36) is

quadratic, but non-convex, due to the negative eigenvalues of the matrix HODE .

4.3.3 Reduced equivalent model Fourier PS control

For the reduced equivalent model, the configuration matrix Fp in equation (4.23) becomes:

Fp =

[
1 0

0 1

]
(4.43)
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Similar to the development presented in Section 4.3.1 for the DAE formulation, the cost func-

tion in equation (4.23), for the reduced model case, can be written as:

JM =
1
2
( ûT

1 x̂v
1 + ûT

2 x̂v
2)

=
1
2

xT HRedx
(4.44)

where:

XV = [ x̂v
1 x̂v

2] (4.45)

U = [ û1 û2] (4.46)

x = [ x̂q,T x̂v,T ûT ]T (4.47)

HRed =

02×2Nx,2×2Nx 02×2Nx,2×2Nx 02×2Nx,2×2Nx

02×2Nx,2×2Nx 02×2Nx,2×2Nx H1

02×2Nx,2×2Nx H2 02×2Nx,2×2Nx

 (4.48)

H1 =

[
I2Nx,2Nx 02Nx,2Nx

02Nx,2Nx I2Nx,2Nx

]
(4.49)

H2 = HT
1 (4.50)

Substituting the approximated states (3.43), (3.44) and their time derivatives (3.48), (3.49) into

the equations of motion (4.20)-(4.21), yields the following equations of motion in residual form:

rq
i (t) = Φ(t)Dφx̂q

i −Φ(t)x̂v
i (4.51)

rv
i (t) =

nc

∑
p=1

Beq,visci,p
Φ(t)x̂v

p +
nc

∑
p=1

Geqi,p
Φ(t)x̂q

p +
nc

∑
p=1

Φ(t)Geq,radi,p
x̂v

p

− feq,wavei
(t)−

nc

∑
p=1

Fpi,pup(t)
(4.52)

where i = 1, ..,nc, and Beq,visci,p
, Geqi,p

, Keq,radi,p
and Fpi,p are the elements of the matrix Beq,visc,

Geq, Keq,rad and Fp, respectively. Thus, for the reduced equivalent model, the optimal control

problem defined by the maximization of the cost function (4.23), subject to the dynamic constraints

(4.20)-(4.21) is transformed into a finite dimensional optimization problem with cost function

(4.44), and dynamic constraints (4.51)-(4.52). As for the DAE formulation in Section 4.3.1, the

cost function in equation (4.44) is quadratic, but non-convex, due to the negative eigenvalues of the

matrix HRed . In Section 4.3.3.1, a finite dimensional optimization problem with convex quadratic

cost function based on the reduced equivalent model is proposed.
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4.3.3.1 Convex cost function

On average, the power given by the excitation force is dissipated by the PTOs, radiated waves and

viscous forces due to the motion of the device in the water [10]. Therefore, the maximization of

the cost function (4.23) is equivalent to the maximization of the difference between the excitation

force power and the dissipated power due to the radiated waves and viscous forces [76].

Thus, the cost function in (4.23) can be rewritten as:

J =
1
T

∫ T

0

(
vT

eqfeq,wave−vT
eqBeq,viscveq−vT

eq

(∫ t

−∞

keq,rad(t− τ)veqdτ

))
dt

=
1
T

∫ T

0

(
Φ(t)T XV Xex,T Φ(t)−Φ(t)T XV Beq,viscXV,T Φ(t)−Φ(t)T XV Xrad,T Φ(t)

)
dτ

=
1
2

xex,T x− 1
2

xT H̃Redx

(4.53)

where:

XV = [ x̂v
1 x̂v

2] (4.54)

Xex = [ x̂ex
1 x̂ex

2 ] (4.55)

xex = [ 01,2×2Nx x̂ex,T 01,2×2Nx ]
T (4.56)

Xrad = [ x̂rad
1 x̂rad

2 ] (4.57)

x̂rad = Geq,rad x̂v (4.58)

H̃Red =

02×2Nx,2×2Nx 02×2Nx,2×2Nx 02×2Nx,2×2Nx

02×2Nx,2×2Nx Grad +Dvisc 02×2Nx,2×2Nx

02×2Nx,2×2Nx 02×2Nx,2×2Nx 02×2Nx,2×2Nx

 (4.59)

Dvisc =

[
Beq,visc1,1I2Nx Beq,visc1,2I2Nx

Beq,visc2,1I2Nx Beq,visc2,2I2Nx

]
(4.60)

where x̂rad
i are the PS coefficients of the ith component of radiation force vector. In contrast to

the cost function (4.44), the cost function (4.53) is quadratic and convex. The cost function (4.53)

is convex since all the eigenvalues of the matrix H̃Red are positive. Therefore, the solution to the

optimization of cost function (4.53), subject to the dynamic constraints (4.51)-(4.52), is unique

and globally optimal.

4.4 Maximum theoretical average power for a three-body hinge-barge
device

In [10], a theory for the calculation of the maximum power absorption of a generic multibody

WEC is presented. The theory is formulated in the frequency domain, and it computes the optimal
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trajectory of the velocities of the bodies and PTO forces under the assumption of reactive control,

with no constraints on the amplitude of displacements, velocities and PTO forces. Reactive control

requires a PTO that can deliver power from the grid to the device, as well as absorbing power from

the device.

Given the reduced equivalent model in the frequency domain in equation (4.13), the instanta-

neous power absorbed by the PTOs is given as follows:

pu(t) = u(t)T veq(t) (4.61)

=
1
4
( Ûe jωt + Û∗e− jωt) T ( V̂eqe jωt + V̂∗eqe− jωt) (4.62)

=
1
4
( ÛT V̂∗eq + Û∗,T V̂eq +UT V̂eqe j2ωt + Û∗,T V̂∗eqe− j2ωt) (4.63)

where the symbol ∗ represents the complex conjugate operator. The average absorbed power

is obtained by taking the time average of the power in equation (4.63):

Pu = pu(t) =
1
4
( UT V̂∗eq +U∗,T V̂eq) (4.64)

=
1
2

ℜ( U∗,T V̂eq) (4.65)

The last two terms in equation (4.63) are neglected, since their time average is zero. The total

fluid forces acting on the device, in the frequency domain, are given as follows:

F̂ f = F̂eq,wave−Beq,radV̂eq−Beq,viscV̂eq− jω
(

Meq,in +Meq,a−
Geq

ω2

)
V̂eq (4.66)

The instantaneous power due to the fluid forces acting on the device is given as follows:

p f (t) = f f (t)T veq(t) (4.67)

=
1
4
( F̂T

f V̂∗eq + F̂∗,Tf V̂eq + F̂T
f V̂eqe j2ωt + F̂∗,Tf V̂∗eqe− j2ωt) (4.68)

The average absorbed power is obtained by taking the time average of the power in equation

(4.68):

Pf = p f (t) =
1
2

ℜ( F̂∗,Tf V̂eq) (4.69)

=
1
2

ℜ( F̂∗,Teq,waveV̂eq) −
1
2

ℜ( V̂∗,Teq ( Beq,rad +Beq,visc) V̂eq) (4.70)

= Pex−Ploss (4.71)
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where Pex is the average excitation power due to the action of the waves and Ploss is the average

lost power due to the motion of the device. On average, the absorbed power by the PTO is equal

to the difference between the excitation power and the lost power:

Pu = Pex−Ploss (4.72)

If the matrix Beq,rad +Beq,visc is non-singular, the maximum theoretical average power that can

be absorbed by the device is [10]:

Pu,max =
1
8
( F̂∗,Teq,wave( Beq,rad +Beq,visc)

−1F̂eq,wave) (4.73)

The optimal velocity vector, which gives the maximum average power, is given as follows:

V̂eq,opt =
1
2
( Beq,rad +Beq,visc)

−1F̂eq,wave (4.74)

Given the frequency domain model in equation (4.13), the optimal PTO force vector is given

as follows:

Ûopt =
1
2

jω
(

Meq,in +Meq,a−
Geq

ω2

)
( Beq,rad +Beq,visc)

−1F̂eq,wave−
1
2

F̂eq,wave (4.75)

In Figure 4.2, the maximum average theoretical power for a 1/25th scale three-body hinge-

barge device is shown for regular waves of frequency 2≤ω≤ 8 rad/s and amplitude of 0.02 m. In

Figure 4.3, the magnitudes of the optimal relative pitch angles, relative pitch angles velocities and

PTO torques are shown for regular waves of frequency 2≤ ω≤ 8 rad/s and amplitude of 0.02 m.

4.5 Results

In this section, the performances of PS optimal control with Fourier basis functions applied to a

1/25th scale three-body hinge-barge device, are compared to a standard control strategy based

on optimal linear damping. The comparison between PS optimal control and the optimal linear

damping strategy is carried out for both monochromatic and polychromatic waves. In order to get

more meaningful results of PS optimal control applied to a 1/25th scale three-body hinge-barge

device, the dynamic model tuned in subsection 3.5.3.2 is used for the formulation of the optimal

control. In Figure 4.2, the dynamic model identified in subsection 3.5.3.2 shows a good agreement

with the tank data in terms of average absorbed power.

4.5.1 Monochromatic wave results

In this section, PS control applied to a 1/25th scale three-body hinge-barge device is compared to

standard control strategy based on optimal linear damping for regular waves.
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Figure 4.2: Comparison between the average power given by the tank data, identified model, max
theoretical power, optimal linear damping control, convex active reduced model PS control and
non-convex passive reduced model PS control of a 1/25th scale three-body hinge-barge device for
different frequencies of a regular wave of amplitude A = 2 cm.

4.5.1.1 Optimal linear passive dampers

An alternative strategy to PS methods is to consider a linear model of the WEC in the frequency

domain, and compute the optimal linear damping coefficients of the PTOs that maximize the

energy absorption for each incoming wave frequency [10]. The average power absorbed by linear

passive PTOs is given as follows:

Pu =
1
2

ℜ( V̂∗,Ts KptoV̂s) (4.76)

where the matrix Kpto,s is given as follows:

Kpto =


0 0 0 0

0 0 0 0

0 0 a2cpto,1 0

0 0 0 a2cpto,2

 (4.77)

with the coefficients of the PTOs, cpto,1 and cpto,2, that satisfy the following conditions:
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Figure 4.3: Magnitudes of the optimal relative pitch angles, relative pitch angles velocities and
PTO torques of a 1/25th scale three-body hinge-barge device for different frequencies of a regular
wave of amplitude A = 2 cm.

cpto,1 ≥ 0 (4.78)

cpto,2 ≥ 0 (4.79)

Therefore, the optimal linear passive dampers are obtained by maximization of the cost func-

tion (4.76) subject to the frequency domain model expressed in equation (4.4) and the passivity

condition on the PTO coefficients (4.78)-(4.79).

In Figure 4.2, the average power given by the dynamic model with optimal linear damping

coefficients for the PTOs is shown. As shown in Figure 4.2, the strategy with optimal passive

dampers provides a small increase of the absorbed power with respect to the particular coefficients

of the PTOs deployed during the tank tests. However, at the resonant frequency of the device, the

optimal passive dampers greatly improve the power absorption, with an average power equal to

the maximum theoretical power. At resonance, no reactive power is expected to be delivered by

the PTOs [10].

4.5.1.2 Active PS control

An active controller is computed with PS methods, where the flow of power is considered to be

bi-directional, so that power from the grid can be injected into the device. The active controller
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is based on the reduced equivalent model with a convex cost function (4.53). In Figure 4.2, the

average absorbed power with an active controller is shown. The order of expansion Nx for the

positions, velocities and control torques is set equal to 1, according to the monochromatic wave

conditions.

As shown in Figure 4.2, the average power computed with the active controller reaches the

maximum theoretical power that can be absorbed by the device given by equation (4.73). Note

that, for the active controller, the average powers, computed with the DAE formulation, ODE for-

mulation, convex and non-convex reduced equivalent model, are identical. In fact, if the dynamic

model of the device is linear and the incoming wave is monochromatic, the solution to the active

control problem is unique [10].

While active control with the convex reduced equivalent model is computed analytically, an

active-set algorithm [84] is used for the computation of the PS active control with the DAE for-

mulation, ODE formulation and non-convex reduced equivalent model. By a way of example,

in Figures 4.4 and 4.6, the optimal torques and relative pitch velocities computed by the active

controller are shown for a regular wave of amplitude A=0.02 m and frequencies ω = 3 rad/s and

ω = 6.5 rad/s, respectively. In Figures 4.5 and 4.7, the instantaneous and average absorbed power

computed by the active controller are shown for a regular wave of amplitude A=0.02 m and fre-

quencies ω = 3 rad/s and ω = 6.5 rad/s, respectively.
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Figure 4.4: Optimal relative pitch angle velocities and PTO torques computed by active controller
for regular wave of frequency ω = 3 rad/s and amplitude A = 2 cm.
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Figure 4.5: Instantaneous and average absorbed power computed by active controller for regular
wave of frequency ω = 3 rad/s and amplitude A = 2 cm.
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Figure 4.6: Optimal relative pitch angle velocities and PTO torques computed by active controller
for regular wave of frequency ω = 6.5 rad/s and amplitude A = 2 cm.

4.5.1.3 Passive PS control

Next, a passive controller (i.e. only positive power flow from the device) is computed with PS

methods. While the torques applied by the PTOs, for a strategy based on optimal passive dampers

presented in subsection 4.5.1.1, are linearly dependent on the relative pitch velocities between

the bodies, the PTO torques computed by PS passive control are not linearly dependent of the

relative pitch velocity between the bodies. While the computational time required by the passive

controller based on the reduced equivalent model with a convex cost function (4.53) is of the order
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Figure 4.7: Instantaneous and average absorbed power computed by active controller for regular
wave of frequency ω = 6.5 rad/s and amplitude A = 2 cm.

of seconds, the computational time required to compute the passive control with DAE and ODE

formulation is of the order of minutes, with no benefits in terms of absorbed power with respect

to the passive controller based on the reduced equivalent model. Therefore, the passive controller

is based on the reduced equivalent model, given its computational advantages with respect to the

DAE and ODE formulations.

The passive control satisfies the passivity condition expressed by the following constraints on

the instantaneous absorbed power from the PTOs:

x̂v,T
1 QPTOtp

ûT
1 ≥ 0 (4.80)

x̂v,T
2 QPTOtp

ûT
2 ≥ 0 (4.81)

with tp = 1, ..,np, where np is the number of time instants where the passivity condition is

satisfied. The number of time instants np is generally greater than the number of collocation

points where the dynamics of the device is satisfied. The matrix QPTOtp
is given as:

QPTOtp
= Φ(tp)Φ(tp)

T (4.82)

The quadratic forms in equation (4.80)-(4.81) are non-convex and, therefore, the optimal pas-

sive control problem can be considered as a nonconvex quadratically constrained quadratic pro-

gram [85]. Therefore, a globally optimal solution cannot be guaranteed for the passive controller.

In Figure 4.2, the average absorbed power with a passive controller is shown. The choice of the

order of expansion Nx for the positions, velocities and control torques plays an important role in

the maximization of the absorbed power with the passive controller. In Figure 4.8, the absorbed

power and the computational time of the passive controller is shown for different values of Nx for a
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regular wave of frequency ω = 6 rad/s and amplitude A = 2 cm. An order Nx = 3 is chosen for the

passive controller, as provides a trade-off between the computational time and the maximization

of the absorbed power. An interior-point algorithm [86] is used to compute the PS passive control,

since the computational time required with an active-set algorithm and an interior-point algorithm

is of the order of minutes and seconds, respectively.

As shown in Figure 4.2, the average power with the passive controller is greater than the

average power obtained with a strategy based on optimal passive dampers. In fact, while the

torques applied by the PTOs with optimal passive dampers are linearly proportional to the relative

pitch velocities, no explicit dependency is involved between the PTO’s torques and relative pitch

velocities for the passive controller. Therefore, the passive controller is less constrained than a

strategy based on optimal passive dampers in the computation of the torques applied by the PTOs

and, therefore, the passive control can achieve a greater average absorbed power than the power

absorbed with optimal passive dampers. As a way of example, in Figure 4.9 and 4.11, the optimal

torques and relative pitch velocities computed by the passive controller are shown for a regular

wave of amplitude A=0.02 m and frequency ω = 3 rad/s and ω = 6.5 rad/s, respectively. In Figure

4.10 and 4.12, the instantaneous and average absorbed power computed by the passive controller

are shown for a regular wave of amplitude A=0.02 m and frequency ω = 3 rad/s and ω = 6.5 rad/s,

respectively.

In Figure 4.13, the Peak to Average Power Ratio (PAPR) given by an active and passive con-

troller are compared. As shown in Figure 4.13, the passive controller shows a PAPR which is

approximately constant and significantly lower than the PAPR given the active controller across

the range of frequencies of the regular wave. Therefore, the passive controller applied to a 1/25th

scale three-body hinge-barge device requires a significantly lower power electronics rating than

the power electronics rating required by an active controller [87].

4.5.2 Polychromatic wave results

For polychromatic waves, the maximum theoretical average power that can be absorbed by the

device under reactive control is given as follows:

Ppoly,max =
n f

∑
k=1

Pu,max(ωk)|η=1|η̂(ωk)|2 (4.83)

where Pu,max(ωk)|η=1 is the maximum theoretical power for a regular wave of amplitude A=1

m at the frequency ωk rad/s and |η̂(ωk)| is the magnitude of the spectrum of the incoming wave at

the frequency ωk.
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Figure 4.8: Absorbed power and computational time of the passive control for different values of
Nx for a regular wave of frequency ω = 6 rad/s and amplitude A = 2 cm.
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Figure 4.9: Optimal relative pitch angle velocities and PTO torques computed by passive controller
for regular wave of frequency ω = 3 rad/s and amplitude A = 2 cm.

4.5.2.1 Active PS control

In Figure 4.14, a comparison between the maximum theoretical power and the average power ab-

sorbed with the optimal linear damping control and PS active control is shown for a polychromatic

wave over a time horizon of Thoriz = 30 s. The polychromatic wave is made with a JONSWAP

spectrum with a significant wave height Hs = 15 cm and peak period Tp = 1.276 s. The PS active
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Figure 4.10: Instantaneous and average absorbed power computed by passive controller for regular
wave of frequency ω = 3 rad/s and amplitude A = 2 cm.
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Figure 4.11: Optimal relative pitch angle velocities and PTO torques computed by passive con-
troller for regular wave of frequency ω = 6.5 rad/s and amplitude A = 2 cm.

control is based on the reduced equivalent model with convex cost function (4.53). Note that, for

the active controller, the average power computed with the DAE formulation, ODE formulation,

convex and non-convex reduced equivalent model, are identical.

Given that the dynamic model of the device derived in Section 3.5.1 and Section 3.5.2 is

linear, the range of frequencies for the position and velocity spectra is the same as the range

of frequencies of the spectrum of the incident wave. Therefore, for a fundamental frequency

ω0 = 2π/Thoriz = 2π/30 = 0.2 rad/s and a maximum frequency of the spectrum of the incoming
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Figure 4.12: Instantaneous and average absorbed power computed by passive controller for regular
wave of frequency ω = 6.5 rad/s and amplitude A = 2 cm.
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Figure 4.13: Comparison between the Peak to Average Power Ratio (PAPR) given by an active
and passive controller for a 1/25th scale three-body hinge-barge device for different frequencies
of a regular wave of amplitude A = 2 cm.

wave of ωmax = 10 rad/s, the order of expansion for the positions, velocities and PTO torques is

Nx = ωmax/ω0 = 50. While the PS active maximizes the average absorbed power over the entire

time horizon, the coefficients of dash-pot systems of the optimal linear damping control are set

equal to their optimal values at the peak frequency of the spectrum of the incoming wave. As
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shown in Figure 4.14, the PS active control outperforms the optimal linear damping control. In

particular, the PS active controller compute an average power which is around 1.7 times greater

than the power computed with the optimal linear damping. By a way of example, in Figure 4.15,

the optimal torques and relative pitch velocities computed by the active controller controller are

shown for a polychromatic wave made using JONSWAP spectrum with a significant wave height

Hs = 15 cm and peak period Tp = 1.276 s.

4.5.2.2 Passive PS control

In Figure 4.14, the average power absorbed with PS passive control is shown for a polychromatic

wave over a time horizon of Thoriz = 30 s. The passive controller is computed with the reduced

equivalent model only, since the computational time required with the ODE and DAE formulations

is of the order of hours. As for the regular wave case, an interior-point algorithm is used to compute

the PS passive control. As for the PS active controller, the order of expansion for the positions,

velocities and PTO torques is Nx = 50. As for the PS active controller, the PS passive controller

maximizes the average absorbed power over the entire time horizon, and outperforms the optimal

linear damping control. In particular, the PS passive controller compute an average power which

is around 1.4 times greater than the power computed with the optimal linear damping. By a way of

example, in Figure 4.16, the optimal torques and relative pitch velocities computed by the passive

controller controller are shown for a polychromatic wave made using JONSWAP spectrum with a

significant wave height Hs = 15 cm and peak period Tp = 1.276 s.

4.6 Computational considerations

In this Table 4.1, the comparison between the computational time required by PS methods with

Fourier basis functions to compute the active and passive controller for different time horizons

is presented. The comparison is made for a polychromatic wave from a JONSWAP spectrum

with a significant wave height Hs = 15 cm and peak period Tp = 1.276 s. As shown in Table

4.1, the active controller is computed with the ODE formulation, DAE formulation, non-convex

and convex reduced equivalent model. As shown in Table 4.1, the computational time required to

compute the active controller with the reduced equivalent model is 4 times and 20 times smaller

than the computational time required by the ODE and DAE formulations, respectively. Therefore,

the reduced equivalent model is an efficient formulation which reduces the computational burden

required to the solve the optimal control problem. As shown in Table 4.1, the computational time

required to compute the passive control is considerably high. However, PS control with Fourier

basis function is used to assess the power absorption achievable by the device at steady-state,

rather than provide a framework for the real-time control of the device. Note that, the passive

controller is based on the reduced equivalent model only, since the computational time required
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Figure 4.14: Time domain comparison between the max theoretical power and the average power
given by optimal linear damping control, convex active reduced model PS control and non-convex
passive reduced model PS control for a polychromatic wave made using JONSWAP spectrum with
a significant wave height Hs = 15 cm and peak period Tp = 1.276 s.

with the ODE and DAE formulations is around 10 times the computational time required with the

reduced model.

4.7 Conclusions

This chapter shows the benefits of PS active and passive control with respect to a strategy based on

optimal linear passive dampers for the maximization of the energy extracted by a three-body hinge-

barge device. In particular, for regular waves, the average absorbed power with PS active and

passive control is approximately 1.5 times greater than the average absorbed power with optimal

linear passive dampers around the resonance of the device. For irregular waves, a similar increase

of the average power can be achieved with PS active and passive control with respect to optimal

linear dampers. The main advantage of PS passive control over a strategy based on optimal linear

passive dampers is that the PTO’s torques are not linearly dependent on the relative pitch velocities

between the bodies.

The results also show that the average absorbed power computed by PS passive control is
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Figure 4.15: Optimal relative pitch angle velocities and PTO torques computed by active controller
for a polychromatic wave made using JONSWAP spectrum with a significant wave height Hs = 15
cm and peak period Tp = 1.276 s.
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Figure 4.16: Optimal relative pitch angle velocities and PTO torques computed by passive con-
troller for a polychromatic wave made using JONSWAP spectrum with a significant wave height
Hs = 15 cm and peak period Tp = 1.276 s.

comparable to the average absorbed power computed by PS active control for both regular and

irregular waves. However, considering a realistic PTO efficiency [88], a reduction of the benefits

of using a reactive control is expected. Also, the costs involved with the use of a bi-directional

PTO can exceed the increment in the value of absorbed power that can be achieved with respect to
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Thoriz
[s]

Active Control

DAE
[s]

ODE
[s]

Non-
conv
Red
Mod [s]

Conv
Red
Mod
[s]

Passive
Control
Non-conv
Red Mod
[s]

20 1.29 0.26 0.063 0.04 1800
25 2.62 0.51 0.11 0.07 3700
30 4.09 0.78 0.18 0.1 8800

Table 4.1: Computational time in seconds required to compute the active and passive controller
for a polychromatic wave made using JONSWAP spectrum with a significant wave height Hs = 15
cm and peak period Tp = 1.276 s for different time horizons.

a simpler passive PTO [13].

The complexity of PS optimal control is greatly reduced by using the reduced equivalent dy-

namic model presented in Section 4.2, instead of a fully dynamic model, for the description of the

dynamics of the device. The reduced equivalent model is described in terms of the relative pitch

rotations only, which are the modes that are used to extract energy from the device. In particular,

the computational time required to compute the active controller by the reduced equivalent model

is 4 times and 20 times smaller than the computational time required by the ODE and DAE for-

mulations, respectively. For the passive control, the computational time required to compute an

optimal solution is considerably high, due to the passivity condition on the absorbed power, which

greatly increases the complexity of PS optimal control.

While the optimization problems for the active control with the ODE and DAE formulations

are non-convex, a convex optimization problem for the active control with the reduced equivalent

model can be found, which guarantees a globally optimal solution. However, with the reduced

equivalent model, no constraints on the heave and absolute pitch rotation of the central barge can

be enforced, as the reduced equivalent model is described in terms of the relative pitch rotations

only.
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Chapter 5

Real-time pseudo-spectral optimal
control of a three-body hinge-barge
device

5.1 Introduction

In chapter 4, an optimal PS control of a three-body hinge-barge device, based on Fourier-series

basis functions, is considered for a finite time horizon. However, Fourier-series basis functions

can only represent the steady-state response of the device. Therefore, with Fourier-series basis

functions, the motion of the device is considered to be periodic and the transient effects of the

dynamics of the device are neglected. This chapter addresses Receding Horizon (RH) real-time

optimal control of a three-body hinge-barge device that maximizes the energy extracted by a WEC

at each time step over a moving control horizon T0. In contrast to the RH control, PS methods with

Fourier basis functions maximize the energy extracted by the device only once over a finite time

horizon.

Traditionally, MPC is adopted for RH control of a WEC, where a local approximation, based

on Zero Order Holder (ZOH) basis functions, is used to approximate the control input at each

time step over the entire control horizon T0 [76],[89]. As shown in Figure 5.1, MPC computes the

optimal trajectories of position, velocity and control input at the time step t0 that maximize the

energy extracted by the device over the time interval [t0, t0 +T0]. Then, the first optimal control

input computed by MPC at time step t0, is applied to the device. At the new time step t∗0 = t0 +Ts,

where Ts is the sampling period, a new measurement on position and velocity is available, and

the computation of the optimal trajectories of positions, velocities and control inputs is repeated.

Usually, for MPC, the time period for the update of the control input is equal to the sampling

period Ts.

As presented in Section 4.1, both MPC and RHPSC are valid control strategies that maximize

the energy extracted by a WEC over a moving control horizon T0, considering the limitations on the

motion and the PTO force. In this chapter, PS control based on the Half-Range Chebyshev-Fourier
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(HRCF) basis functions [90] is presented. Unlike ZOH basis functions, HRCF basis functions are

globally defined over the entire control horizon T0. HRCF basis functions are well suited for

the approximation of non-periodic signals, allowing the representation of both the transient and

steady-state response of the device. HRCF functions represent a Fourier extension for nonperiodic

signals and, therefore, are especially suited for the wave energy field, since wave elevation and

fluidstructure interaction forces are all well described using Fourier analysis. As shown in Figure

5.2, PS control based on HRCF basis functions computes the optimal trajectories of position,

velocity and control input at the time step t0 that maximize the energy extracted by the device

over the time interval [t0, t0 +T0]. In contrast to MPC, PS control based on HRCF basis functions

computes a control input which is continuous over the time interval [t0, t0 + T0]. Therefore, in

theory, the time period for the update of the control input computed by PS control with HRCF

basis functions can be longer than the sampling period Ts. However, in practice, in order to retain

the properties of robustness of the control with respect to uncertainty on the dynamics of the WEC,

the computation of the control input is repeated at each time a new measurement on position and

velocity is available.

While in [80], PS with HRCF basis functions is applied to a flap device, in [58], PS shows

advantageous computational properties with respect to MPC.

Figure 5.1: Moving control horizon principle of MPC for the computation of the optimal trajecto-
ries of position, velocity and control input at the time step t0 that maximize the energy extracted
by the device over the time interval [t0, t0 +T0].

In Figure 5.3, a general hierarchical digital control scheme for a multibody WEC is shown.

The control scheme is composed of two different control levels: the high-level control which is

based on a PS control with HRCF basis functions, and the low-level control that manipulates the

control input vector of the WEC. At the time instant k, PS control with HRCF basis functions takes

as inputs the prediction of the future excitation forces vector f̂wave(k+L|k), the current positions

vector x(k) and velocities vector v(k), and computes the optimal reference for the velocity vector

vre f (k). The reference velocity vector vre f (k) is tracked by the low-level control by manipulating
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Figure 5.2: Moving control horizon principle of RHPSC control based on HRCF basis functions
for the computation of the optimal trajectories of position, velocity and control input at the time
step t0 that maximize the energy extracted by the device over the time interval [t0, t0 +T0].

the control input vector of the WEC u(k). The objective of this chapter is to asses the value of PS

control with HRCF basis functions applied to a three-body hinge-barge device, with the assump-

tion that the low-level control can track the optimal reference velocity vector vre f (k) computed by

PS control with HRCF basis functions. In Section 5.6, a general outline of the possible control

schemes that can be adopted for the low-level control are presented.

Note that the DAE formulation is not further considered in the implementation of PS control

with HRCF basis functions, given that it requires a considerable computational time to compute

the PS control with Fourier basis functions with respect to the ODE formulation and reduced

equivalent model, as presented in Table 4.1. In fact, the objective of this chapter is to obtain a

computationally efficient real-time controller and, therefore, the DAE formulation is not further

considered in this chapter.

The remainder of this chapter is organized as follows: in Section 5.2, the HRCF basis func-

tions are introduced, while, in Section 5.3, PS control with HRCF basis functions is applied to

a three-body hinge-barge device. In Section 5.4, PS methods with HRCF basis functions, are

compared to a standard optimal controller and PS methods with Fourier basis functions, for both

monochromatic and polychromatic waves. In Section 5.5, considerations on the computational

time required by PS methods with HRCF basis functions, to compute the active and passive con-

trol of the device, are presented, while, in Section 5.6, a general outline of the possible control

schemes that can be adopted for the low-level control are presented. Finally, overall conclusions

are drawn in Section 5.7.

5.2 Half-range Chebyshev-Fourier basis functions

For the approximation of nonperiodic functions, Fourier basis functions generate boundary dis-

continuities with the consequent emergence of the Gibbs phenomenon. On the other hand, HRCF
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Figure 5.3: RHPSC scheme with low-level control of the PTO for a generic multibody WEC in
the discrete time domain

functions are well suited for the approximation of nonperiodic functions. An orthogonal basis

for nonperiodic functions is determined based on half-range Chebyshev polynomials of the first

and the second kind. Half-range Chebyshev polynomials of the first and the second kind of or-

der k, T h
k and Uh

k , respectively, are orthogonal with lower order monomials with respect to the

weights 1/(1−y2)1/2, for the first kind, and (1−y2)1/2, for the second kind, on the interval [0, 1].

Definitions of T h
k and Uh

k are given in [91] based on [90]:

Definition 1: Let T h
k (y) be the unique normalized sequence of orthogonal polynomials satisfy-

ing:

∫ 1

0
T h

k (y)y
l 1
(1− y2)1/2 dy = 0, l = 0, ..,k−1 (5.1)

4
π

∫ 1

0
T h

k (y)
2 1
(1− y2)1/2 dy = 1 (5.2)

The set T h
k | with k = 0, ..,∞ is a set of half-range Chebyshev polynomials of the first kind.

Definition 2: Let Uh
k (y) be the unique normalized sequence of orthogonal polynomials satis-

fying:

∫ 1

0
Uh

k (y)y
l(1− y2)1/2dy = 0, l = 0, ..,k−1 (5.3)

4
π

∫ 1

0
Uh

k (y)
2(1− y2)1/2dy = 1 (5.4)

The set Uh
k | with k = 0, ..,∞ is a set of half-range Chebyshev polynomials of the second kind.

In Figure 5.4, Half-range Chebyshev polynomials of the first kind T h
k (y) and second kind Uh

k (y),

with k = 0, ..,5, are shown.

In Figure 5.5a, a given nonperiodic function f defined over the interval T ∈ [0,3] is approx-
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imated by using different basis functions: Fourier, HRCF and ZOH functions. The function f is

made of the summation of 3 sinusoidal components of different period, amplitude and phase. The

number of basis functions used to approximate the function f is 23 for the Fourier, HRCF and

ZOH approximation. In Figure 5.5b, the approximation error of the Fourier, HRCF and ZOH ap-

proximation is shown for different numbers of basis functions. As shown in Figure 5.5a, while the

approximation with HRCF basis functions is almost indistinguishable from the original function f ,

the approximation with Fourier and ZOH basis functions do not provide satisfactory approxima-

tion. In particular, the approximation with Fourier basis functions shows boundary discontinuities

and the emergence of the Gibbs phenomenon. Regarding the ZOH approximation, as shown in

Figure 5.5b, a comparatively large number of basis functions is needed to achieve the same ap-

proximation error provided by the HRCF approximation. For a standard MPC strategy based on

ZOH basis functions, the use of a large number of basis functions requires a high computational

time for the computation of the optimal trajectories of positions, velocities and control inputs.

In [80], the HRCF approximation is compared to an approximation based on Legendre polyno-

mials, and the results show that the HRCF functions provides smaller approximation errors than

Legendre polynomials, for high numbers of basis functions.
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Figure 5.4: Half-range Chebyshev polynomials first kind T h
k (y) and second kind Uh

k (y) with k =
0, ..,5.

102



CHAPTER 5. REAL-TIME PSEUDO-SPECTRAL OPTIMAL CONTROL OF A THREE-BODY HINGE-BARGE DEVICE

0 0.5 1 1.5 2 2.5 3
−10

−5

0

5

10

15

T

 

 

f
HRCF approx
Fourier approx
ZOH approx

(a)

6 8 10 12 14 16 18 20 22
10

−6

10
−4

10
−2

10
0

10
2

10
4

Number basis functions

||f
−

f n|| 2

 

 

HRCF approx
Fourier approx
ZOH approx

(b)

Figure 5.5: Approximation (a) and approximation error (b) of a nonperiodic function f with dif-
ferent basis functions: Fourier, HRCF and ZOH basis functions

5.3 Pseudo-spectral control with Half-Range Chebyshev-Fourier ba-
sis functions of a three-body hinge-barge device

This section describes the direct transcription, with HRCF basis functions, of the optimal control

problem for a three-body hinge-barge device. The objective of the optimal control problem is to

compute the trajectories of the PTO torques and velocities of the bodies of the device in order to

maximize the energy absorbed by the device. The average power absorbed by the PTOs, over the
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time interval [t0, t0 +T0], is given as:

J =
1
T0

∫ t0+T0

t0
vT Fpudt (5.5)

For simplicity, the time interval [t0, t0 +T0] is mapped into the time interval [−1,1] by using

the following affine transformation g : t→ τ:

τ = g(t) =
2
T0

(t− t0)−1 (5.6)

where t ∈ [t0, t0 +T0] and τ ∈ [−1,1]. Using the affine transformation in equation (5.6), the

average power absorbed by the PTOs, over the time interval [−1,1], is given as:

J =
1
2

∫ 1

−1
VT FpUdτ (5.7)

where ◦ is the composition operator, V = v◦g is the scaled velocity vector and U = u◦g is the

scaled control force vector. For the discretization of the control problem, the positions, velocities

and control forces can be approximated as a combination HRCF basis functions as follows [80]:

Qi(τ)≈ QM
i (τ) =

M

∑
k=0

xq,c
i,k T h

k

(
cos

π

2
τ

)
+

M−1

∑
k=0

xq,s
i,k Uh

k

(
cos

π

2
τ

)
sin

π

2
τ = Φ(τ)T x̂q

i (5.8)

Vi(τ)≈V M
i (τ) =

M

∑
k=0

xv,c
i,k T h

k

(
cos

π

2
τ

)
+

M−1

∑
k=0

xv,s
i,kU

h
k

(
cos

π

2
τ

)
sin

π

2
τ = Φ(τ)T x̂v

i (5.9)

Up(τ)≈UM
p (τ) =

M

∑
k=0

uc
p,kT h

k

(
cos

π

2
τ

)
+

M−1

∑
k=0

us
p,kU

h
k

(
cos

π

2
τ

)
sin

π

2
τ = Φ(τ)T ûp (5.10)

where Q= q◦g is the scaled position vector, M is the order of expansion of the approximation,

p = 1, ..,2, and i = 1, ..,4 and i = 1, ..,2 for the ODE and reduced equivalent model, respectively.

The vector of the coefficients x̂q
i , x̂v

i and ûp of the approximated components of the position,

velocity and control vectors, are given as follows:

x̂q
i =

[
xq,c

i,0 xq,c
i,1 .. xq,s

i,M−2 xq,s
i,M−1

]T
(5.11)

x̂v
i =

[
xv,c

i,0 xv,c
i,1 .. xv,s

i,M−2 xv,s
i,M−1

]T
(5.12)

ûp =
[
uc

p,0 uc
p,1 .. us

p,M−2 us
p,M−1

]T (5.13)

while the basis function vector Φ(t) is given as follows:

Φ(τ) =
[
T h

0

(
cos

π

2
τ

)
T h

1

(
cos

π

2
τ

)
.. T h

M

(
cos

π

2
τ

)
Uh

0

(
cos

π

2
τ

)
sin

π

2
τ .. Uh

M−1

(
cos

π

2
τ

)
sin

π

2
τ

]T

(5.14)
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The derivatives of the ith components of the position and velocity vector are, respectively,

Q̇M
i (τ) = Φ̇(τ)T x̂q

i = Φ(τ)T Dx̂q
i (5.15)

V̇ M
i (τ) = Φ̇(τ)T x̂v

i = Φ(τ)T Dx̂v
i (5.16)

where D ∈ R2M+1×2M+1 is a block diagonal matrix given as follows [91]:

D =
π

2

[
0 H1

H2 0

]
(5.17)

For the ODE formulation, the convolution integral in equation (3.33) can be expressed as a

function of the PS coefficients x̂v
i . The convolution integral of the element Krad,si,ii of the impulse

response matrix Krad,s, with i = 1, ..n and ii = 1, ..n, in equation (3.33) can be written as [80]:

∫ t

−∞

Krad,si,ii(t− τ)vii,dτ =
∫ t

0
Kradi,ii(t− τ)viidτ (5.18)

=
∫

τ

g(0)
krad,si,ii(τ− s)Vii(s)ds (5.19)

=
∫ −1

g(0)
krad,si,ii(τ− s)Vii(s)ds+

∫
τ

−1
krad,si,ii(τ− s)Vii(s)ds (5.20)

= c0(τ)+ c(τ) (5.21)

where krad,si,ii = Krad,si,ii ◦ g is the scaled kernel function matrix of the radiation forces. The

first part of the convolution integral c0(τ) represents the memory effect of the radiation forces

before t0, and can be computed from the past values of the velocity vii(t). The second part of the

convolution integral c(τ) can be written as:

c(τ) =
2M+1

∑
k=1

ck(τ)x̂v
i,k (5.22)

=
2M+1

∑
k=1

(
∫

τ

−1
krad,si,ii(τ− s)Φk(s)ds) x̂v

i,k (5.23)

If the projection of ck(τ) over each HRCF basis funtion Φ j(τ) is defined as:

p j,k =
∫ 1

−1
ck(τ)Φ j(τ)dτ (5.24)

then, the matrix Prad,si,ii of the convolution integral c(τ) in equation (5.22) is defined as follows:

Prad,si,ii =

 p1,1 p1,2 ... p1,2M+1

... ... ... ...

p2M+1,1 p2M+1,2 ... p2M+1,2M+1

 (5.25)
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Therefore, c(τ) in equation (5.22) can be rewritten as:

c(τ) = Φ(τ)T Pradi,ii x̂
v
i (5.26)

For the equivalent reduced model, a similar development can be carried out for the convolution

integral of each element Keq,radi,ii
of the impulse response matrix Keq,rad , with i = 1, ..nc and ii =

1, ..nc, in equation (4.21).

In the remainder of this section, two different PS control frameworks are derived, based on

the formulation used to describe the dynamics of the device: ODE HRCF PS control, and reduced

equivalent model HRCF PS control. Similarly to PS control with Fourier basis functions presented

in Chapter 4, while the optimization problem associated with the ODE HRCF PS control is non-

convex, the optimization problem associated with the reduced equivalent model HRCF PS control

can be either nonconvex or convex.

5.3.1 ODE HRCF PS control

By substituting the approximated velocities and control torques, defined in equations (5.9) and

(5.10), respectively, into the expression for the absorbed power defined in equation (5.7), the

approximated average absorbed power is given as:

JM =
1
2

∫ 1

−1
Φ(τ)T XV Fp,sUT Φ(τ)dτ

=
1
2
( ûT

1 x̂v
3 + ûT

2 x̂v
4)

=
1
4

xT HHRCF,ODEx

(5.27)

where:
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XV = [ x̂v
1, .., x̂

v
4] (5.28)

U = [ û1, .., û2] (5.29)

x = [ x̂q,T x̂v,T ûT ]T (5.30)

HHRCF,ODE =

04×Mx,4×Mx 04×Mx,4×Mx 04×Mx,2×Mx

04×Mx,4×Mx 04×Mx,4×Mx H1

02×Mx,4×Mx H2 02×Mx,2×Mx

 (5.31)

H1 =


0Mx,Mx 0Mx,Mx

0Mx,Mx 0Mx,Mx

IMx,Mx 0Mx,Mx

0Mx,Mx IMx,Mx

 (5.32)

H2 = HT
1 (5.33)

with Mx = 2M + 1. Using the affine transformation in equation (5.6), equations (3.32) and

(3.33) can be written as:

Q̇s =
T
2

Vs (5.34)

V̇s =
T
2
( Ms +M∞,s)

−1
(
−Bvisc,sVs−GsQs−

∫
τ

g−1(0)
krad,s(τ− s+g(0)−1)Vsds+Fwave,s +Fp,sU

)
(5.35)

where Fwave,s = fwave,s ◦g is the scaled excitation force vector. Substituting the approximated

states (5.8), (5.9) and their time derivatives (5.15), (5.16) into the equations of motion (5.34)-(5.35)

yields the following equations of motion in residual form:

rq
i (τ) = Φ(τ)T Dx̂q

i −Φ(τ)T x̂v
i (5.36)

rv
i (τ) =

4

∑
p=1

2
T
( Msi,p++M∞,si,p) Φ(τ)T Dx̂v

p +
4

∑
p=1

Bvisc,si,pΦ(τ)T x̂v
p +

4

∑
p=1

Gsi,pΦ(τ)T x̂q
p + ..

4

∑
p=1

Φ(τ)T Pradi,p x̂v
p−Fwave,si(τ)−

2

∑
p=1

Fp,si,pΦ(τ)T ûp

(5.37)

where i= 1, ..,4. The optimal control problem defined by the maximization of the cost function

(5.7), subject to the dynamic constraints (5.34)-(5.35), is transformed into a finite dimensional

optimization problem with cost function (5.27), and dynamic constraints (5.36)-(5.37). Note that

the cost function in equation (5.27) is quadratic, but non-convex and, therefore, a solution to the

optimization problem can be locally optimal.
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5.3.2 Reduced equivalent model HRCF PS control

By substituting the approximated velocities and control torques, defined in equations (5.9) and

(5.10), respectively, into the expression for the absorbed power, defined in equation (5.7), the

approximated average absorbed power is given as:

JM =
1
2

∫ 1

−1
Φ(τ)T XV UT Φ(τ)dτ

=
1
2
( ûT

1 x̂v
1 + ûT

2 x̂v
2)

=
1
4

xT HHRCF,Redx

(5.38)

where:

XV = [ x̂v
1, .., x̂

v
nc
] (5.39)

U = [ û1, .., ûnc ] (5.40)

x = [ x̂q,T x̂v,T ûT ]T (5.41)

HHRCF,Red =

02×Mx,2×Mx 02×Mx,2×Mx 02×Mx,2×Mx

02×Mx,2×Mx 02×Mx,2×Mx H1

02×Mx,2×Mx H2 IN

 (5.42)

H1 =

[
IMx 0Mx

0Mx IMx

]
(5.43)

H2 = HT
1 (5.44)

Using the affine transformation in equation (5.6), equations (4.20) and (4.21) can be written

as:

Q̇eq =
T
2

Veq (5.45)

V̇eq =
T
2

M−1
eq,tot

(
−Beq,viscVeq−GeqQeq−

∫
τ

g−1(0)
keq,rad(τ− s+g(0)−1)Veqds+Feq,wave +U

)
(5.46)

where Keq,rad = keq,rad ◦ g is the scaled kernel function matrix of the radiation forces and

Feq,wave = feq,wave ◦ g. Substituting the approximated states (5.8), (5.9) and their time derivatives

(5.15), (5.16) into the equations of motion (5.45)-(5.46) yields the following equations of motion

in residual form:
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rq
i (τ) = Φ(τ)T Dx̂q

i −Φ(τ)T x̂v
i (5.47)

rv
i (τ) =

nc

∑
p=1

2
T

Meq,tot i,p
Φ(τ)T Dx̂v

p +
nc

∑
p=1

Beq,visci,p
Φ(τ)T x̂v

p +
nc

∑
p=1

Geqi,p
Φ(τ)T x̂q

p + ..

nc

∑
p=1

Φ(τ)T Peq,radi,p
x̂v

p−Feq,wavei
(τ)−Φ(τ)T Ûi

(5.48)

where i= 1, ..,2. The optimal control problem defined by the maximization of the cost function

(5.7), subject to the dynamic constraints (5.45)-(5.46), is transformed into a finite dimensional

optimization problem with cost function (5.38), and dynamic constraints (5.47)-(5.48). Note that,

the cost function in equation (5.38) is quadratic, but non-convex and, therefore, a solution to

the optimization problem can be locally optimal. In Section 5.3.2.1, a convex cost function is

proposed, which guarantees that the solution to the optimization problem is globally optimal.

5.3.2.1 Convex cost function

The cost function in (5.7) can be rewritten as:

J =
1
2

∫ 1

−1

(
VT

eqFeq,wave−VT
eqBeq,viscVeq−VT

eq

(∫
τ

g(0)−1
Keq,rad(τ− s+g(0)−1)Veqdτ

))
dτ

=
1
2

∫ 1

−1

(
Φ(τ)T XV Xex,T Φ(τ)−Φ(τ)T XV Beq,viscXV,T Φ(τ)−Φ(τ)T XV Xrad,T Φ(τ)

)
dτ

=
1
2

xex,T x− 1
2

xT H̃x

(5.49)

where:

Xex = [ x̂ex
1 x̂ex

2 ] (5.50)

xex = [ 01,2×Mx x̂ex,T 01,2×Mx ]
T (5.51)

Xrad = [ x̂rad
1 x̂rad

2 ] (5.52)

x̂rad = Peq,rad x̂v (5.53)

H̃ =

02×Mx,2×Mx 02×Mx,2×Mx 02×Mx,2×Mx

02×Mx,2×Mx Peq,rad +Dvisc 02×Mx,2×Mx

02×Mx,2×Mx 02×Mx,2×Mx 02×Mx,2×Mx

 (5.54)

Dvisc =

[
Beq,visc1,1IMx Beq,visc1,2IMx

Beq,visc2,1IMx Beq,visc2,2IMx

]
(5.55)

with Peq,rad ∈RN,N is the matrix used to compute the HRCF coefficients of the radiation forces,
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given the HRCF coefficients of the velocities. In contrast to the cost function in equation (5.38), the

cost function in equation (5.49) is convex and, therefore, the solution to the optimization problem

is a global optimal solution.

5.4 Results

In this Section, the performance of RH control based on PS optimal control with HRCF basis func-

tions applied to a 1/25th scale three-body hinge-barge device is compared to the optimal linear

damping strategy presented in subsection 4.5.1.1, and PS control with Fourier basis functions as

presented in Chapter 4. The comparison between PS optimal control with HRCF basis functions,

PS optimal control with Fourier basis functions and the optimal linear damping strategy is carried

out for both monochromatic and polychromatic waves. In order to get more meaningful results of

PS optimal control with HRCF basis functions applied to a 1/25th scale three-body hinge-barge

device, the dynamic model tuned in subsection 3.5.3.2 is used for the formulation of the optimal

control.

5.4.1 Monochromatic wave results

In this section, PS control with HRCF basis functions applied to a 1/25th scale three-body hinge-

barge device is compared to standard control strategy based on optimal linear damping, and PS

control with Fourier basis functions, for regular waves.

5.4.1.1 Active HRCF PS Control

An active controller, based on the ODE formulation and the reduced equivalent model, is com-

puted with HRCF PS methods. The active controller, based on the reduced equivalent model, is

computed with both non-convex and convex cost function, given in equation (5.38) and (5.49),

respectively. For the PS active control, the choice of number of HRCF basis functions M, in the

approximation of positions, velocities and control forces, plays an important role in the maximiza-

tion of the absorbed power. In Figure 5.6, the absorbed power and the computational time of the

active controller with HRCF basis function is shown for different values of M for a regular wave

of frequency ω = 5 rad/s and amplitude A = 2 cm. An order M = 9 is chosen for the passive

controller, as provides a trade-off between the computational time and the maximization of the

absorbed power. In Figure 5.7, the average absorbed power, given by the HRCF PS control based

on the ODE formulation, and the reduced equivalent model with both non-convex and convex cost

functions, is shown for regular waves.

As Figure 5.7 shows, the PS active control, based on the ODE formulation, computes a nega-

tive average absorbed power for a range of frequencies from 2.5 rad/s to 3 rad/s, which means

that the PTOs supply energy to the device rather than absorb energy. For a range of frequencies

from 2.5 rad/s to 3 rad/s, the PS active control based on the ODE formulation computes a nega-

tive power, as cannot find the optimally global solution to the energy maximization problem, due
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the non-convexity of the cost function in equation (5.27). However, for a range of frequencies

greater than 3 rad/s, the PS active control based on the ODE formulation computes an average

absorbed power which is close to the maximum theoretical power. As Figure 5.7 shows, both the

PS active controller, based on the reduced equivalent model, with convex and nonconvex cost func-

tions, show similar performances, and compute an absorbed power which is close the maximum

theoretical average power. While the active control with the convex reduced equivalent model is

computed analytically, an active-set algorithm [84] is used for the computation of the HRCF PS

active control with the ODE formulation and non-convex reduced equivalent model.

Now, a comparison between PS active control with HRCF basis functions and Fourier basis

functions, as presented in Section 4.5, is made. In Figure 5.8, a comparison between PS active

control with HRCF basis functions and Fourier basis functions is shown for regular waves. As

shown in Figure 5.8, PS active control, with Fourier basis functions, slightly absorbs more power

than PS active control with HRCF basis functions around the natural resonant frequency of the

device.

In Figure 5.9 and 5.11, a comparison between the optimal torques and relative pitch velocities

computed by the active controller, with HRCF basis functions and Fourier basis functions, is

shown for a regular wave of amplitude A=0.02 m and frequency ω = 3 rad/s and ω = 6.5 rad/s,

respectively. As shown in Figure 5.9 and 5.11, the optimal torques and relative pitch velocities

computed by the active controller, with HRCF basis functions, converge to the optimal torques

and relative pitch velocities computed by the active controller with Fourier basis functions. In

Figure 5.10 and 5.12, the average absorbed power achieved by the active controller with HRCF

basis functions is compared to the average absorbed power achieved by the active controller with

Fourier basis functions for a regular wave of amplitude A=0.02 m and frequency ω = 3 rad/s and

ω = 6.5 rad/s, respectively. As shown in Figure 5.10 and 5.12, the average power absorbed by the

active controller with HRCF basis functions converge to the average power absorbed by the active

controller with Fourier basis functions.

5.4.1.2 Passive HRCF PS Control

A passive controller is computed with PS methods based on HRCF basis functions. The pas-

sive controller is based on the reduced equivalent model with convex cost function (5.49), since

the computational time required to compute the passive control with the ODE formulation is ex-

cessive. For the PS passive control, the choice of number of HRCF basis functions M in the

approximation of positions, velocities and control forces plays an important role in the maximiza-

tion of the absorbed power. In Figure 5.13, the absorbed power and the computational time of

the passive controller with HRCF basis function is shown for different values of M for a regular
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Figure 5.6: Absorbed power and computational time of the active control for different values of
M for a regular wave of frequency ω = 5 rad/s and amplitude A = 2 cm.

wave of frequency ω = 5 rad/s and amplitude A = 2 cm. An order M = 6 is chosen for the passive

controller, as provides a trade-off between the computational time and the maximization of the

absorbed power.

Note that, for the PS passive control, the passivity condition introduces a non-convex quadratic

inequality constraint to the optimization problem given by the cost function (5.49). Therefore, a

globally optimal solution cannot be guaranteed for passive control formulation. An interior-point

algorithm [86] is used to compute the PS passive control, since the computational time required

with an active-set algorithm is of the order of minutes. As Figure 5.7 shows, the power absorbed

with the PS passive control is higher than the power absorbed with a control strategy based on

optimal linear damping coefficients.

Now, a comparison between PS passive control, with HRCF basis functions and Fourier basis

functions, as presented in Section 4.5, is made. In Figure 5.8, a comparison between the PS passive

control, with HRCF basis functions and Fourier basis functions, is shown for regular waves. As

shown in Figure 5.8, PS passive control with Fourier basis functions absorbs a greater average

power that the average power with PS passive control with HRCF basis functions, across all the

range of frequencies considered. The discrepancy between the average absorbed power for the PS

passive control with Fourier and HRCF basis functions is due to the nonconvexity of the passive

control problem, which does not guarantee an unique solution to the optimization problem.

In Figure 5.14 and 5.16, a comparison between the optimal torques and relative pitch veloci-
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Figure 5.7: Comparison between the average power given by the tank data, identified model,
max theoretical power, optimal linear damping control, non-convex active ODE HRCF PS con-
trol,convex active reduced model HRCF PS control and non-convex passive reduced model HRCF
PS control for different frequencies of a regular wave of amplitude A = 2 cm.

ties computed by the passive controller, with HRCF basis functions and Fourier basis functions, is

shown for a regular wave of amplitude A=0.02 m, and frequency ω = 3 rad/s and ω = 6.5 rad/s,

respectively. As shown in Figures 5.14 and 5.16, the optimal torques and relative pitch velocities

computed by the passive controller, with HRCF basis functions, do not converge to the optimal

torques and relative pitch velocities computed by the passive controller with Fourier basis func-

tions. However, the optimal trajectories of positions, velocities and control torques computed by

the PS passive control with HRCF and Fourier basis functions show a similar phase delay, with a

difference between their peak values.

In Figure 5.15 and 5.17, the average power absorbed with the passive controller with HRCF

basis functions is compared to the average power absorbed with the passive controller with Fourier

basis functions for a regular wave of amplitude A=0.02 m and frequency ω = 3 rad/s and ω =

6.5 rad/s, respectively. As shown in Figure 5.15 and 5.17, the average power absorbed with the

passive controller, with HRCF basis functions, is less than the average powe absorbed with the

passive controller with Fourier basis functions. The passive controller, with HRCF basis functions,

shows worse power performance than the passive controller with Fourier basis functions due to the

nonconvexity of the passive control problem, which strongly affects the convergence to the global
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Figure 5.9: Comparison between optimal relative pitch angle velocities and PTO torques computed
by active controller with HRCF and Fourier basis functions for regular wave of frequency ω = 3
rad/s and amplitude A = 2 cm.
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HRCF and Fourier basis functions for regular wave of frequency ω = 3 rad/s and amplitude A = 2
cm.
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Figure 5.11: Comparison between optimal relative pitch angle velocities and PTO torques com-
puted by active controller with HRCF and Fourier basis functions for regular wave of frequency
ω = 6.5 rad/s and amplitude A = 2 cm.

0 5 10 15
−1

−0.5

0

0.5

1

1.5

A
ve

ra
ge

 P
ow

er
 [W

]

time [secs]

 

 

Fourier
HRCF

Figure 5.12: Comparison between the average absorbed power computed by active controller with
HRCF and Fourier basis functions for regular wave of frequency ω = 6.5 rad/s and amplitude A =
2 cm.
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Figure 5.13: Absorbed power and computational time of the passive control for different values of
M for a regular wave of frequency ω = 5 rad/s and amplitude A = 2 cm.
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Figure 5.14: Comparison between optimal relative pitch angle velocities and PTO torques com-
puted by passive controller with HRCF and Fourier basis functions for regular wave of frequency
ω = 3 rad/s and amplitude A = 2 cm.
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Figure 5.15: Comparison between the average absorbed power computed by passive controller
with HRCF and Fourier basis functions for regular wave of frequency ω = 3 rad/s and amplitude
A = 2 cm.
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Figure 5.16: Comparison between optimal relative pitch angle velocities and PTO torques com-
puted by passive controller with HRCF and Fourier basis functions for regular wave of frequency
ω = 6.5 rad/s and amplitude A = 2 cm.
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Figure 5.17: Comparison between the average absorbed power computed by passive controller
with HRCF and Fourier basis functions for regular wave of frequency ω = 6.5 rad/s and amplitude
A = 2 cm.

optimal solution. However, for a number of HRCF basis functions M > 6 in the approximation

of positions, velocities and control force, improves the power absorption achievable by the the

passive controller with HRCF basis functions.

5.4.2 Polychromatic wave results

For polychromatic waves, under the assumption of the linear superposition of the hydrodynamic

loads given by the individual frequency components of the incoming wave, the maximum theoret-

ical average power is given as:

Pth,max =
N f

∑
i

Pth,iA2
i (5.56)

where N f is the number of frequency components of the incoming waves, Ai is the amplitude

of the i frequency component and Pth,i is maximum theoretical average power computed for the i

frequency component with unitary amplitude.
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5.4.2.1 Active HRCF PS Control

In Figure 5.18, a comparison between the maximum theoretical average power and the average

power absorbed with the optimal linear damping control, PS active convex and non-convex control

with HRCF basis functions is shown for a polychromatic wave over a simulation time of 100 s.

The polychromatic wave is from a JONSWAP spectrum with a significant wave height Hs = 15

cm and peak period Tp = 1.1 s. While the PS active control maximize the average absorbed power

over the entire time horizon, the coefficients of dash-pot systems of the optimal linear damping

control are set equal to their optimal values at the peak frequency of the spectrum of the incoming

wave. As shown in Figure 5.18, the PS active convex and non-convex control compute an average

power which asymptotically converges to the maximum theoretical power. As for regular wave

case, a number of HRCF basis functions M = 9 is considered in the approximation of positions,

velocities and control forces, for the PS active control. By a way of example, in Figure 5.19, the

optimal torques and relative pitch velocities computed by the active controller are shown for a

polychromatic wave made using JONSWAP spectrum with a significant wave height Hs = 15 cm

and peak period Tp = 1.1 s.

In Figure 5.21, a comparison between the PS active control with HRCF basis functions, and

the PS active with Fourier basis functions is shown for a polychromatic wave over a simulation

time of 30 s. The polychromatic wave is from a JONSWAP spectrum with a significant wave

height Hs = 15 cm and significant period T = 1.1 s. As Figure 5.21 shown, PS active control with

HRCF basis functions converge to an average absorbed power which is the same as the average

absorbed power computed with PS active control with Fourier basis functions. In contrast to the

case with regular waves, for irregular waves, although the average absorbed power computed by

active HRCF and Fourier PS control is the same, the optimal trajectories of the relative velocities

and torques computed by the active HRCF and Fourier PS control are different.

5.4.2.2 Passive HRCF PS Control

In Figure 5.18, the average power absorbed with PS passive control with HRCF basis functions is

shown for a polychromatic wave over a simulation time of 100 s. As for the PS active control, the

PS passive control maximize the average absorbed power over the entire time horizon. Further-

more, as shown in Figure 5.18, the passive PS control shows better performances than the optimal

linear damping control. As for regular wave case, a number of HRCF basis functions M = 6 is con-

sidered in the approximation of positions, velocities and control forces, for the PS passive control.

By a way of example, in Figure 5.20, the optimal torques and relative pitch velocities computed by

the active controller are shown for a polychromatic wave made using JONSWAP spectrum with a

significant wave height Hs = 15 cm and peak period Tp = 1.1 s.

In Figure 5.21, a comparison between the PS passive control with HRCF basis functions, and

the PS passive control with Fourier basis functions is shown for a polychromatic wave over a

simulation time of 30 s. As shown in Figure 5.21, PS passive control with HRCF basis functions

achieve an average absorbed power which is the less than the average absorbed power computed
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Figure 5.18: Comparison between the asymptotic maximum average power and the average power
given by the optimal linear damping control, non-convex active reduced model HRCF PS control,
convex active reduced model HRCF PS control and passive reduced model HRCF PS control for
a polychromatic wave made from a Jonswap spectrum with Hs = 15 cm and Tp = 1.1 s.

with PS passive control with Fourier basis functions. As in the case of PS passive control with

HRCF basis functions for regular waves presented in Section 5.4.1.2, the PS passive control with

HRCF functions for irregular waves cannot find the global optimal solution, due to the noncon-

vexity of the passive control problem. As for the active control problem, the optimal trajectories

of the relative velocities and torques computed by the passive HRCF and Fourier PS control are

different.

5.5 Computational considerations

In this section, a comparison between the computational time required by PS methods with HRCF

and Fourier basis functions to compute the active and passive controller is made. While PS meth-

ods with HRCF basis functions are used solve the optimal control problem over the control horizon

at each time step, PS methods with Fourier basis functions are used to solve the optimal control
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Figure 5.19: Optimal relative pitch angle velocities and PTO torques computed by active controller
with HRCF basis functions for a polychromatic wave made using JONSWAP spectrum with a
significant wave height Hs = 15 cm and peak period Tp = 1.1 s.
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Figure 5.20: Optimal relative pitch angle velocities and PTO torques computed by passive con-
troller with HRCF basis functions for a polychromatic wave made using JONSWAP spectrum with
a significant wave height Hs = 15 cm and peak period Tp = 1.1 s.
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Figure 5.21: Comparison between max theoretical power, convex active reduced model Fourier
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control and passive reduced model HRCF PS control for a polychromatic wave made from a
Jonswap spectrum with Hs = 15 cm and Tp = 1.1 s.
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problem only once over a finite time horizon. Therefore, given the different nature of the control

strategies with PS methods with HRCF and Fourier basis functions, a comparison between the

computational time required by PS methods with HRCF and Fourier basis functions cannot be

made with respect to the time horizon. Instead, PS methods with HRCF and Fourier basis func-

tions can be compared in terms of number of basis functions involved in the approximation of

positions, velocities and control inputs.

In Table 5.1, the comparison between the computational time required by PS methods with

Fourier and HRFC basis functions to compute the active and passive controller for different num-

bers of basis functions is presented. The comparison is made for a regular wave of frequency ω=4

rad/s and amplitude 0.02 m, since the number of basis functions required by PS methods with

Fourier basis functions for irregular waves greatly exceeds the maximum number of basis func-

tions that can be used by PS methods with HRCF basis functions. As shown in Table 5.1, for the

computation of the active controller with the ODE formulation and nonconvex reduced equivalent

model, the computational time required by PS methods with HRCF basis functions is less than

the computational time required by PS methods with Fourier basis functions. However, for the

computation of the active controller with the convex reduced equivalent model and passive control

with nonconvex reduced equivalent model, the computational time required by PS methods with

HRCF basis functions is greater than the computational time required by PS methods with Fourier

basis functions. Therefore, the complexity of PS methods with HRCF and Fourier basis functions

depends on the nature of the controller, whether active or passive, and the formulation used to

describe the dynamic model of the device. Overall, Table 5.1 shows that there are no computa-

tional disadvantages in using HRCF basis functions, as opposed to Fourier basis functions, for the

formulation of the optimal control problem.

5.6 Low-level control

As shown in Figure 5.3, the reference velocity vector vre f computed by the high-level control based

on PS control with HRCF basis functions is tracked by a low-level control, which manipulates the

control input vector of the WEC. Therefore, the low-level control acts on the PTO force vector so

that the velocity vector v of the WEC follows the reference vre f . Usually, the low-level control

is based on a feedback controller, as shown in Figure 5.22. In [11], a feedback controller based

on the concept of Internal Model Control (IMC) [92] is proposed. In [93], IMC is also proposed

for the Archimed Wave Swing WEC. In [80], a feedback control based on a backstepping method

[94] is proposed.

Alternatevely, for the case of a WEC with a hydraulic PTO, a feedforward control can be

adopted for the low-level control, as shown in Figure 5.23. In case of a hydraulic PTO, the damping

force exerted by the PTO can be varied by acting on the opening of the valves that regulate the

flow of a hydraulic fluid. As shown in Figure 5.23, the reference velocity vector vre f (k) and

control vector us,re f (k), computed by PS control based on HRCF basis functions, are used to
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Active Control Passive Control

Number
Func-
tions

Fourier HRCF
Fourier
Non-
Conv
Red
Mod
[s]

HRCF
Non-
Conv
Red
Mod
[s]

ODE
[s]

Non-
conv
Red
Mod
[s]

Conv
Red
Mod
[s]

ODE
[s]

Non-
conv
Red
Mod
[s]

Conv
Red
Mod
[s]

9 0.0067 0.0049 1 ·10−6 0.0029 1.5 ·10−3 2.7 ·10−4 0.85 0.85

11 0.0076 0.0052 1 ·10−6 0.0035 2.1 ·10−3 3.2 ·10−4 0.87 1.42

13 0.0081 0.0071 1 ·10−6 0.0042 2.7 ·10−3 5.3 ·10−4 1.80 2.11

15 0.0088 0.0082 1 ·10−6 0.0050 3.1 ·10−3 6.1 ·10−4 2.16 3.4

17 0.0100 0.0093 1 ·10−6 0.0060 3.5 ·10−3 6.5 ·10−4 3.35 4.1

19 0.0290 0.0150 1 ·10−6 0.0070 3.7 ·10−3 0.001 4.58 5.12

Table 5.1: Computational time in seconds required to compute the active and passive controller
with Fourier and HRCF basis functions for a regular wave of frequency ω=4 rad/s and amplitude
0.02 m.

determine the optimal passive damping for the PTOs. Then, given a static mapping between the

PTOs damping and opening of the valves, as shown in Figure 5.23, the opening of the valves

is changed accordingly by the feedforward control. A feedforward control of a passive PTO is

proposed for the optimal control of a 1/20th scale three-body hinge-barge device in Chapter 7.

-

Figure 5.22: RHPSC scheme with low-level control of the PTO based on a feedback controller for
a generic multibody WEC in the discrete time domain
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Figure 5.23: RHPSC scheme with low-level control of the PTO based on a feedforward controller
for a generic multibody WEC in the discrete time domain

5.7 Conclusions

This chapter assess the value of receding horizon PS control with HRCF basis functions for the

maximization of the energy extracted by a three-body hinge-barge device. In contrast to the opti-

mal control strategy presented in Chapter 4, which computes a steady-state solution to the optimal

control problem, receding horizon PS control with HRCF basis functions can be used for real-time

control of the device. In fact, given a dynamic model of the device and the initial conditions on

positions, velocities and control torques, the receding horizon PS control computes the optimal

trajectories of positions, velocities and control torques that maximize the energy extracted by the

device over a time horizon in the future at each time step. For the optimal control with Fourier

basis functions presented in Chapter 4, the variables associated with the control problem are as-

sumed to be periodic, and no initial conditions on positions, velocities and control torques can be

specified.

In terms of power absorption performance, the PS active control with HRCF basis functions

achieves the same average absorbed power as PS active control with Fourier basis functions, for

both regular and irregular waves. Furthermore, for regular waves, the optimal trajectories of posi-

tions, velocities and control torques computed with PS active control, with HRCF basis functions,

converge to the optimal steady-state solutions computed with PS active control, with Fourier basis

functions. For irregular waves, PS active control with HRCF and Fourier basis functions compute

different trajectories of positions, velocities and control torques. For PS passive control with reg-

ular and irregular waves, the average power absorbed with HRCF basis functions is lower than the

average power achieved with Fourier basis functions. The difference between the average power

computed by the PS passive control with HRCF and Fourier basis functions is due to the non-

convexity associated with the optimal passive control problem, which does not guarantee that a

solution to the optimization problem is a global optimal solution. However, for regular waves,

the optimal trajectories of positions, velocities and control torques computed by the PS passive
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control with HRCF and Fourier basis functions show a similar phase delay, with a difference be-

tween their peak values. As for the PS active control, for irregular waves, the PS passive control

with HRCF and Fourier basis functions compute different trajectories of positions, velocities and

control torques.

As in the case of PS control with Fourier basis functions, the use of the reduced equivalent

model presented in Section 4.2 greatly reduces the computational effort required by the controller

with HRCF basis functions to compute the optimal solution. As shown in Table 5.1, the computa-

tional time required by PS methods, with HRCF basis functions, to compute the active controller

with the reduced equivalent model is 2 times smaller than the time required with the ODE for-

mulation. Furthermore, while the optimization problem for the active control with the ODE is

non-convex, a convex optimization problem for the active control with the reduced equivalent

model can be found, which guarantees a globally optimal solution. For the comparison between

the computational effort required by PS methods with HRCF and Fourier basis functions, as shown

in Table 5.1, the complexity of PS methods depends on the nature of the controller, whether active

or passive, and the formulation used to describe the dynamic model of the device. Overall, Table

5.1 shows that there are no computational disadvantages in using HRCF basis functions, rather

than Fourier basis functions, for the formulation of the optimal control problem.

In terms of formulation used to describe the dynamics of the device, the DAE formulation is

not considered in the implementation of the PS control with HRCF basis functions, given that it

requires a relatively high computational time to compute the PS control with Fourier basis func-

tions, compared to the ODE formulation and reduced equivalent model, as presented in Table 4.1.

Therefore, the DAE formulation is not a suitable candidate for the real-time control of the device,

as it does not represent a computationally efficient formulation for the optimal control problem.

Regarding the ODE formulation, the nonconvexity associated with the PS active control problem

strongly influences the convergence to the optimal global solution. In fact, for regular waves, the

PS active control, based on the ODE formulation, cannot compute the global solution for a range

of frequencies from 2.5 rad/s to 3 rad/s. However, for a range of frequencies greater than 3

rad/s, the PS active control based on the ODE formulation computes an average absorbed power

which is close to the maximum theoretical power. For irregular waves, the PS active control based

on the ODE formulation diverges from the global optimal solution, and computes a negative aver-

age power. Therefore, the reduced equivalent model is more suitable for the real-time control of a

three-body hinge-barge device than a full dynamic model, as it always provides the global optimal

solution to the PS active control problem, and reduces the complexity of the controller.

127



Chapter 6

Excitation force estimation

In Chapter 5, a real-time optimal controller, for the maximization of the energy extracted by a

three-body hinge-barge WEC, is presented. In the wave energy scenario, several control strategies

have been developed to maximize the energy extracted by a WEC. However, most of the control

strategies, including the real-time optimal controller developed in Chapter 5, require knowledge of

the current and future wave excitation force acting upon the wet surface of the device. It has been

proven that the effectiveness of different real-time control strategies depends on the prediction

of the future wave elevation or wave excitation force acting on the device [95], [96], [11], [97],

[9]. Some others developed sub-optimal control schemes that minimize or eliminate the need

for knowledge of the future excitation force [98]. Nevertheless, for the vast majority of WEC

controllers, future knowledge of the wave excitation force is an essential requirement, to maximize

the energy extraction from the WEC. Optimal energy extraction is mandatory in order to reach the

economic viability of wave energy [12], [15], reaching a commercial state.

6.1 Review of excitation force estimation

The wave excitation force acting upon a WEC can be estimated with two different estimator types:

feedback and feedforward. As shown in Figure 6.1a, the feedback estimator is based only on the

measurement of the position and velocity of the WEC, in addition to the control input to the WEC.

The feedback estimator computes an estimate of the excitation force, based on a dynamic model

of the WEC, and knowledge of the control input. Then, the estimate of the excitation force is

corrected by using the measurements of the position and velocity of the WEC. For the implemen-

tation of the feedback estimator, only sensors for the measurement of position and velocity of the

WEC are required, which are already available by virtue of the optimal control of the WEC.

As shown in Figure 6.1b, the feedforward estimator is based on the measurement of the wave

elevation up-wave of the WEC. The feedforward estimator computes an estimate of the excita-

tion force, based on a transfer function between the wave elevation up-wave of the WEC, and

the excitation force. The transfer function between the wave elevation up-wave of the WEC, and

the excitation force, can be determined with two different approaches. For the first approach,
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the transfer function between the wave elevation up-wave of the WEC, and the excitation force,

is computed by using linear potential theory [99]. For the second approach, the transfer function

between the wave elevation up-wave of the WEC, and the excitation force, is experimentally deter-

mined from observations of the position of the WEC, and of the wave elevation up-wave elevation,

as presented in Section 3.5.3.2.

The feedback estimator is naturally robust to uncertainty on the parameters of the dynamic

model of WEC, as the feedback on the position and velocity of the WEC corrects the estimates

of the excitation force computed based on the dynamic model of the device only. However, the

feedforward estimator computes the excitation force purely on the basis of the transfer function

between the wave elevation up-wave of the WEC, and the excitation force. Therefore, a small

variation of the parameters of the transfer function, between the wave elevation up-wave of the

WEC and the excitation force, results into a large decrease in the performance of the feedforward

estimator.

 

(a)

 

(b)

Figure 6.1: Feedback estimator (a) and feedforward estimator (b) of the excitation force of a WEC.

Regarding the feedback estimation of the excitation force, a feedback estimator based on the
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measurement of the position and velocity of a heaving buoy, and on pressure measurements at

9 points on the surface of the WEC, is considered in [100]. The feedback estimator is based

on a state-space model of the WEC, whose state vector X comprises the position and velocity

of the WEC, in addition to the amplitudes, frequencies and phases associated with N dominating

frequency components of the wave elevation. The outputs of the state-space model are the position

and velocity of the WEC, and the pressure at the points on the surface of WEC, where the pressure

measurements are taken. The total force acting on the buoy surface, which includes the excitation

force, hydrostatic force, radiation force and viscous damping force, can be computed in terms of

the state vector X , using potential flow theory. Furthermore, the pressure on the surface of the

WEC can be also computed in terms of the state vector X , using potential flow theory. Therefore,

the resulting state-space model is nonlinear with respect to the state vector X , due to the nonlinear

relationship between the state vector X , and the pressure on the surface of the WEC and the

excitation force. An Extended Kalman Filter (EKF) is used in [100] to compute an estimate of the

state vector X , based on a linearization of the state-space model, at each sampling period.

In [101], the wave excitation force of a heaving buoy is estimated by using a feedback esti-

mator, which is based on the observation of the position and velocity of WEC, without any extra

wave measurements. The feedback estimator is based on a nonlinear state-space model of the

buoy coupled with a Tubular Permanent Magnet Linear Generator (TPMLG). The dynamics of

the buoy coupled with TPMLG is nonlinear due to the nonlinear relationship between the currents

of the TPMLG and the force applied by the TPMLG on the WEC. The instantaneous estimate of

the wave excitation force, in the nonlinear state space model, is obtained via a nonlinear adaptive

observer, which is inspired by the Fast Adaptive Fault Estimation (FAFE) technique addressed in

[102]. The adaptive observer uses proportional and integral terms of the state estimation error in

order to ensure fast and accurate estimation of the wave excitation force, which is considered as

an unknown input signal.

In [103], the wave excitation force of a heaving buoy is estimated using a feedback estimator,

which is based on observation of position and velocity of the WEC. The feedback estimator is

based on a linear state-space model of the WEC, where the radiation force is linearly proportional

to the velocity of the WEC. The excitation force in the linear state-space model is estimated using

a Kalman filter.

Regarding the feedforward estimation of the excitation force, in [104], the wave excitation

forces of a two-body WEC are estimated using a feedforward estimator, based on the measurement

of the wave elevation up-wave of the WEC. The Fourier transform of the wave elevation up-wave

of the WEC is computed and, then, the excitation forces of the WEC are calculated by using the

transfer functions between the wave elevation up-wave of the WEC and the excitation forces. The

transfer functions between the wave elevation up-wave of the WEC and the excitation forces, are

obtained using linear potential theory [99].

For the prediction of the excitation force, an Auto-Regressive (AR) model can be applied

([105]). The forecasting horizon required by the real-time control depends on the characteristics

of the impulse response of the radiation damping of the device [12]. Many researches have worked
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on the prediction of future wave elevation, rather than the prediction of the excitation force [11].

In [106], adaptive filters, based on autoregressive models for wave prediction, are employed. In

[107], a robust control strategy, for wave energy devices, based on the prediction of wave elevation,

is implemented. For wave prediction, a hybrid Kautz/AR predictive model, as well as a purely

predictive Kautz model, are proposed. In [108], neural networks were trained, for the estimation

of the wave excitation force, and results compared to other methods.

In this chapter, a feedback and feedforward estimators, for the estimation of the excitation

forces of a three-body hinge-barge device, are developed. The feedback estimator is based on a

linear dynamic model of the device, and on measurement of position and velocity of the device,

with the excitation forces considered to be unknown inputs. The excitation forces, in the linear

dynamic model of the WEC, are estimated by using a Kalman filter. The dynamic model of the

device is described by using the reduced equivalent model, since the reduced equivalent model is

computationally faster than the ODE formulation, for the implementation of the real-time optimal

controller, as shown in Table 5.1. Furthermore, as shown in Figure 5.7, PS control with the re-

duced equivalent model shows convexity properties that guarantee the convergence to the global

optimal solution, as opposed to PS control based on ODE formulation, which cannot converge to

an acceptable solution for regular waves with a frequency range from 2.5 rad/s to 3 rad/s.

The feedforward estimator is formulated in the frequency domain, and is based on the trans-

fer functions between the wave elevation up-wave of the WEC, and the excitation forces. The

transfer functions between the wave elevation up-wave of the WEC, and the excitation forces, are

computed from the measurement of the position of the device and the surface elevation up-wave

of the device, as presented in Section 3.5.3.2. The transfer functions between the wave elevation

up-wave of the WEC and the excitation forces are derived from the reduced equivalent model.

In this chapter, for the prediction of the excitation forces, an AR model is fitted to the estimated

excitation force given by the feedback and feedforward estimators, and used to predict its future

values.

The remainder of this chapter is organized as follows: in Section 6.2, a feedback estimator

for the excitation forces of a three-body hinge-barge device is presented, while, in Section 6.3,

a feedforward estimator for the excitation forces of the device is derived. In Section 6.4, an AR

model for the prediction of the excitation forces based on the estimated excitation forces, given by

the feedback and feedforward estimators, is developed. In Section 6.5, the results of the feedback

estimator, feedforward estimator and AR model applied to a 1/25th scale three-body hinge-barge

device, under both regular and irregular waves, are presented. Finally, in Section 6.6, overall

conclusions are drawn.

6.2 Feedback estimation of excitation forces

In this section, a feedback estimator for the excitation forces acting on a three-body hinge-barge

device is formulated in the time-domain, and is based on the measurements of the variables that are

affected by the excitation forces, e.g. position and velocity of the device. The feedback estimator
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is based on a Kalman Filter, which makes use of measurements of position and velocity of the

device for estimating the excitation forces acting on the wet surface of the WEC. In Figure 6.2,

the Kalman filter scheme for the estimation of the excitation forces acting on a generic multibody

WEC in the discrete time domain is shown. The Kalman filter takes, as inputs, the control forces,

and computes, as outputs, an estimation of the excitation forces, positions and velocities based on

an linear model of the WEC. Then, the estimates of the excitation forces, positions and velocities

are corrected by using the available measurements of position and velocities.

 

Figure 6.2: Kalman filter scheme for the estimation of the excitation forces acting on a generic
multibody WEC in the discrete time domain

In Section 6.2.1, an overview of the Kalman filter is presented, while, in Section 6.2.2, a linear

dynamic model of the WEC, for the Kalman filter, is developed.

6.2.1 Kalman filter

The Kalman filter is an optimal linear estimator which estimates the states of a linear dynamic

system. In this work, the formulation of the Kalman filter is based on [109], and the dynamical

model used by the filter is described as follows:

ŝk+1 = Ad ŝk +Bduk +Gdwk (6.1)

yk = Hd ŝk +vk (6.2)

wk ∼ (0,Q) (6.3)

vk ∼ (0,R) (6.4)
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where ŝk represents the estimated states, uk represents the control vector states, yk is the mea-

surement vector, wk and vk are the white noise present in the process and in the measurements,

respectively, with both noise signals assumed to be stationary. The matrix Ad is the dynamic ma-

trix, Bd is the input matrix, Hd is the measurement matrix, Gd is the weighting matrix for the

state errors, while Q and R represents the covariance matrices of the white noise considered in the

process and the measurements, respectively.

The Kalman filter is based on two steps [109]: the prediction or time update (TU), and the

correction or measurement-update (MU). In the TU step, the algorithm estimates the state variables

with some uncertainty PKF , which is the effect of the system dynamics. Then, the estimate of the

state vector computed during the TU step is improved by using the measurements provided by the

sensors. The TU and MU steps are detailed as follows:

KF a priori recursive step (TU):

P−KF,k+1 = AdPKF,kAT
d +GdQGT

d (6.5)

ŝ−k+1 = Ad ŝk (6.6)

KF a posteriori recursive step (MU):

KKF,k+1 = P−KF,k+1HT
d (HdP−KF,k+1HT

d +R)−1 (6.7)

PKF,k+1 = (I−KKF,k+1Hd)P−KF,k+1 (6.8)

ŝk+1 = ŝ−k+1 +KKF,k+1(yk+1−Hd ŝ−k+1) (6.9)

In equation (6.7), the Kalman gain KKF,k+1 is the residual weighting coefficient, which pro-

vides an optimal weight between the estimates of the outputs based on the dynamics of the system

and the measurements. The TU step generally increases the covariance error PKF due to the un-

certainty introduced by the process noise wk, whereas the MU step decreases the error covariance

PKF by adding the measurement information.

6.2.2 Kalman filter estimation model

In this section, a continuous-time dynamic model for a three-body hinge-barge device, which can

be used by the Kalman filter, is derived. The excitation forces are considered to be unknown

inputs, and are included in the state variable vector as additional state variables to be estimated,

in addition to positions and velocities. The dynamic model of the Kalman filter is described in

terms of the dynamics of the WEC and the excitation forces. The dynamic model of the WEC

is based on the reduced equivalent model, which is presented in Section 4.2. A linear dynamic

reduced equivalent model is considered, where the convolution integral of the radiation forces is

replaced with a radiation force composed of a term that is linearly proportional to the velocity
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of the WEC, and another term that is linearly proportional to the acceleration of the WEC. The

terms of the radiation force that are linearly proportional to the velocity and acceleration have

a proportionality constant equal to the radiation damping and added mass, respectively. While,

for regular waves, the radiation damping and the added mass are taken at the frequency of the

incoming wave, for irregular waves, the radiation damping and the added mass are taken at the

peak frequency of the incoming wave. Given that the excitation forces have an oscillating nature,

a harmonic oscillator model with assumed wave frequencies ωi is used to describe the excitation

forces. Thus, the continuous-time dynamic WEC model for the Kalman filter is given as follows:


˙̂x
¨̂x

˙̂feq,wave
¨̂feq,wave

=


02,2 I2,2 02,nKF, f 02,nKF, f

−M−1
eq,totGeq −M−1

eq,totBeq,tot M−1
eq,totE 02,nKF, f

0nKF, f ,2 0nKF, f ,2 0nKF, f ,nKF, f InKF, f ,nKF, f

0nKF, f ,2 0nKF, f ,2 −Ω2 0nKF, f ,nKF, f




x̂
x̂

f̂eq,wave
˙̂feq,wave

+ ...

+


02,2

I2,2

0nKF, f ,2

0nKF, f ,2

u+


02,2 02,2 02,nKF, f 02,nKF, f

02,2 02,2 02,nKF, f 02,nKF, f

0nKF, f ,2 0nKF, f ,2 InKF, f ,nKF, f 0nKF, f ,nKF, f

0nKF, f ,2 0nKF, f ,2 0nKF, f ,nKF, f InKF, f ,nKF, f

w

(6.10)

y =

[
I2,2 02,2 02,nKF, f 02,nKF, f

02,2 I2,2 02,nKF, f 02,nKF, f

]
x̂
x̂

f̂eq,wave
˙̂feq,wave

+v (6.11)

where x̂ is the estimated position vector, f̂eq,wave is the estimated equivalent excitation force

vector, nKF, f = 2×n f , n f is the number of frequencies of the excitation forces, Meq,tot = Meq,in +

Meq,a and Beq,tot = Beq,rad +Beq,visc.

The matrix Ω is given as follows:

Ω =

[
diag(ω) 0n f ,n f

0n f ,n f diag(ω)

]
(6.12)

where the vector of excitation force frequencies ω is given as follows:

ω = [ ω1, ..,ωn f ]
T (6.13)

The matrix E in equation (6.10) is given as follows:

E =

[
11,n f 01,n f

01,n f 11,n f

]
(6.14)

The accuracy of the estimation of the equivalent excitation force f̂eq,wave depends on the num-

ber of frequencies n f considered in the estimator model. The more frequencies considered, the
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more accurate is the estimate f̂eq,wave. However, the complexity of the estimation problem in-

creases with n f . The number of frequencies n f is related to the nature of the spectrum of the

incoming wave. A narrow spectrum requires a smaller number of fixed frequencies, compared to

a broad spectrum.

Note that equations (6.10)-(6.11) must be discretized in the time domain in order to implement

equations (6.5)-(6.9). For the initialization of the matrix PKF , the initial values of the excitation

force covariance errors are high, since the initial estimate of the excitation forces contain a high

degree of uncertainty. For this work, while the initial value for each of the covariance errors of the

excitation forces is 10, the initial value for each of the covariance errors of position and velocities

is 0.

The estimation accuracy can be measured with the Goodness of Fit (GoF) index, which is

defined as follows:

GoFest =

1−

√
∑

N1
k=1( feq,wavereal (k)− f̂eq,wave(k))2√

∑
N1
k=1 feq,wavereal (k)2

 ·100 (6.15)

where N1 is a set of data, feq,wavereal and f̂eq,wave are the real and estimated excitation force

vector, respectively. Obtaining a value of GoFest = 100% means that the excitation force has been

perfectly estimated.

6.3 Feedforward estimation of excitation force

In this section, the excitation forces acting on a three-body hinge-barge device are estimated with

a feedforward estimator from the measurements of the surface elevation up-wave of the device.

Compared to the feedback estimation of the excitation forces presented in Section 6.2, which is

based in the time-domain, the feedforward estimator is formulated in the frequency-domain, and

requires knowledge of the incoming wave elevation. In Figure 6.3, a scheme for the feedforward

estimation of the excitation forces acting on a generic multibody WEC in the discrete time domain

is shown.

The feedforward estimator is based on frequency-domain identification of the transfer function

H(ω) between the wave elevation and the positon of the DoF of the device as defined in equation

(3.104). The transfer function H(ω) can be identified from the motion of the device under irregular

waves, via equation (3.105). The peak period of the spectrum of the irregular waves needs to be

close to the resonant period of the device, and the spectrum has to be sufficiently broad in order to

cover the bandwidth of the device. Then, from equation (3.104), the transfer function Hwave,s(ω)

between the wave elevation and the excitation force vector is estimated, in the frequency domain,

using the identified transfer function H(ω), as follows:

Ĥwave,s(ωi) = ( −ω
2(Ms +Ma,s(ωi))+ jω(Bvisc,s +Brad,s(ωi))+Gs) H(ωi) (6.16)
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where i = 1, ..,N f and N f is the number of discrete frequencies considered in the identification

of the transfer function Hwave,s(ω). Note that N f for the feedforward estimator is different from n f

for the feedback estimator. If the vector Hwave,s is partitioned as follows:

Ĥwave,s(ω) =

[
Ĥwave,1(ω)

Ĥwave,2(ω)

]
(6.17)

then, the transfer function between the wave elevation and the equivalent excitation forces can

be derived, from equation (4.16), as follows:

Ĥeq,wave(ωi) = Ĥwave,2(ωi)− jωC2,1Z−1
f Ĥwave,1(ωi)−B2,1Z−1

f Ĥwave,1(ωi) (6.18)

Finally, the estimated excitation forces are computed in the time-domain as a summation of

N f sinusoidal components:

f̂eq,wavep(k) =
N f

∑
i=1
|Ĥeq,wavep(ωi)||η̂(ωi)|cos(ωitk +∠Ĥeq,wavep(ωi)) (6.19)

with p = 1,2.

 

 

Figure 6.3: Feedforward estimator for excitation forces acting on a generic multibody WEC in the
time-domain.

The estimation accuracy of feedforward estimator can be measured with the GoF index defined

in equation (6.15).
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6.4 Prediction of excitation force

In this section, a model for forecasting the excitation forces, based on their past history, is pre-

sented. In particular, an AR model [105] is proposed which assumes that the excitation forces at

time instant k are linearly dependent on a number na of their past values. Thus, the forecasting

model considered is of the form:

f̂eq,wavep(k) =
na

∑
i=1

αi f̂eq,wavep(k− i)+ξ(k) (6.20)

with p = 1,2 and ξ is white noise with zero mean and variance σ. Given a set of parameters

αi, from equation (6.20) the l-step ahead prediction f̃eq,wavep is given as follows:

f̃eq,wavep(k+ l|k) =
na

∑
i=1

αi f̃eq,wavep(k+ l− i|k) (6.21)

where f̃eq,wavep(k+ l− i|k)≡ f̂eq,wavep(k+ l− i) if k+ l− i≤ k, since the information is already

available and there is no need to have a prediction [105]. The coefficients αi in equation (6.20) of

the AR model are estimated by minimizing the following cost function:

JLS =
N1

∑
k=1

( f̂eq,wavep(k+1)− f̂eq,wavep(k+1|k))2 (6.22)

where N1 is a set of training data. The cost function in equation (6.22) is a linear Least

Squares (LS) problem. For estimation of the model parameters, a different cost function, referred

to as Long Range Predictive Identification (LRPI) [110] was considered, with an initial value of

the parameter estimates given by the minimization of (6.22). Since the minimization of the LPRI

cost function for different forecasting horizons did not yield a significantly different value of the

parameters compared to their initial estimates, the LPRI cost function was not further considered.

The prediction accuracy, for every forecasting horizon l, can be measured with the following

GoF index:

GoFpred(l) =

1−

√
∑

N2
k=1( feq,wavep(k+ l)− f̃eq,wavep(k+ l|k))2√

∑
N2
k=1 feq,wavep(k+ l)2

 ·100 (6.23)

where N2 is a set of validation data. Obtaining a value of GoFpred(l) = 100% means that the

excitation force has been perfectly predicted l steps into the future. The accuracy of the prediction

is higher when the bandwidth of the excitation force is narrow ([105]).

6.5 Estimation and prediction results

In this section, a comparison between the performance of the feedback and feedforward estimators

applied to a 1/25th scale three-body hinge-barge device is made for both regular and irregular

waves. Regarding the prediction of the future excitation forces, an AR model as presented in
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Section 6.4 is used. In order to obtain realistic performance of the feedback and feedforward

estimator, the motion of the device is based on the dynamic model identified in subsection 3.5.3.2,

with the convolution integral of the radiation forces approximated with a state-space model. The

measurements of positions and velocities of the device are affected by white noise with zero mean

and given variance.

The feedback estimator is based on a linear reduced equivalent dynamic model, where the

convolution integral of the radiation forces is replaced a radiation force that is composed of a

term that is linearly proportional to the velocity of the WEC, and another term that is linearly

proportional to the acceleration of the WEC. The estimator makes use of the measurements of

positions and velocities of the device, in order to estimate the equivalent excitation forces acting

upon the device.

The feedforward estimator makes use of the measurements of positions and wave elevation in

order to estimate the transfer functions of equivalent excitation force Ĥeq(ω), and then computes

the equivalent excitation forces in the time-domain. Note that the transfer function Ĥeq(ω) can

only be identified by using a set of irregular waves, since an incoming wave with a sufficiently

broad spectrum is needed to excite all the frequency components of the transfer function Ĥeq(ω).

6.5.1 Feedback and Feedforward estimation with regular waves

For the estimation of excitation forces in regular waves with the feedback estimator, a number

of frequencies n f = 1 is chosen, given the monochromatic nature of the incoming waves. The

frequency of the estimator model ω1 is chosen equal to the frequency of the incoming wave.

For the feedforward estimator, the transfer function Ĥeq(ω) is estimated with a set of irregular

waves, as presented in Section 6.5.2.2, and then used to compute the equivalent excitation forces at

the particular frequency of the incoming regular wave. A number of discrete frequencies N f = 100

is chosen, as it provides a good GoFest , as shown in Figure 6.12.

By way of example, the real and estimated equivalent excitation forces, with the feedback and

feedforward estimators, are shown for regular waves of frequency ω = 3 rad/secs in Figure 6.4,

frequency ω = 5 rad/secs in Figure 6.5 and frequency ω = 7 rad/secs in Figure 6.6. As shown

in Figures 6.4, 6.5 and 6.6, both feedback and feedforward estimators provide a good estimate of

the excitation forces for different regular wave frequencies. Therefore, for the feedback estimator,

the linear radiation forces represent a good approximation of the radiation forces in the estimator

model.

As shown in Figures 6.4, 6.5 and 6.6, the equivalent excitation forces estimated by the fee-

back estimator converge to the real equivalent excitation force after a certain transient time. The

transient time is needed by the KF to correct the estimates of the equivalent excitation forces by

using the measurements of the motion of the device. The speed of convergence of the equivalent

excitation forces estimated by the feedback estimator depends on the values of the matrices Q and

R, in equations (6.3) and (6.4). The Q and R matrixes are chosen in order to provide a trade-off

between the accuracy and the noise level of the estimation of the excitation force. Small values
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for the matrix R increase the converge speed of the estimation of the excitation force to the real

excitation force, but the noise level in the estimation is increased too. On the other hand, a small

Q decreases the noise level in the estimation, but the convergence speed is also decreased. While

the values of the matrix Q are equal to the variance of the noise on the measurements of position

and velocity, the values for the matrix Q are appropriately tuned so that the noise level in the esti-

mation of the excitation force is acceptable and the estimation rapidly converges to the real value

of the excitation force.

As shown in Figures 6.4, 6.5 and 6.6, the equivalent excitation forces estimated by the feed-

forward estimator do not show any transient behavior, as they are composed of a single frequency

component with amplitude and phase delay given by the estimated transfer function Ĥeq at the

frequency of the incoming wave, as shown in equation (6.19).

In Figures 6.7a and 6.7b, the GoFest of the estimates of the equivalent excitation forces given

by the feedback estimator is shown for a range of regular wave frequencies from 3 rad/s to 8

rad/s. As Figure 6.7a and 6.7b show, the performance of the feedback estimator is quite good,

with values of the GoFest above 70% across all the range of considered frequencies. In Figure 6.8a

and 6.8b, the GoFest of the estimates of the equivalent excitation forces given by the feedforward

estimator is shown for regular wave frequencies from 3 rad/s to 8 rad/s. As Figure 6.8a and 6.8b

show, the performance of the feedforward estimator is slightly worse than the performance of the

feeback estimator, with a GoFest of the estimated equivalent excitation forces that have a value

of 60% for frequencies of the incoming wave around 7 rad/s. Overall, the performance of both

feedback and feedforward estimator, for regular waves, is acceptable. Regarding the prediction of

excitation forces for regular waves, given that the excitation forces are sinusoidal, the excitation

forces can be easily predicted into the future with the same accuracy achieved by the estimator.

6.5.2 Excitation forces estimation with irregular waves

6.5.2.1 Wave spectrum

For irregular waves, the wave conditions are represented a realization of a JONSWAP spectrum,

which is given as follows [34]:

S(ω) =
αg2

ωM e−
M
N (

ωp
ω
) N

γ
a (6.24)

where M = 5, N = 4 and:
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Figure 6.4: Real and estimated equivalent excitation forces for a 1/25th scale three-body hinge-
barge device with feedback and feedforward estimator for a regular wave of frequecy ω = 3 rad/s
amplitude A = 2 cm.

σ =

0.07 i f ω < ωp

0.09 i f ω≥ ωp

(6.25)

α = 5.061
H2

s

T 4
p
( 1−0.287 ln(γ)) (6.26)

a = e
−(ω/ωp−1)2

2σ2 (6.27)

For realistic sea-states, the peak shape parameter γ = 3.3 [111], [112] for Pico Island, which

has a narrow frequency spectrum. For a 1/25th scale three-body hinge-barge device, a JONSWAP

spectrum for the incoming wave with peak period Tp = 1.25 and significant wave height Hs = 15

cm is considered, and is shown in Figure 6.9.

6.5.2.2 Feedback and Feedforward estimation with irregular waves

Regarding the feedback estimator, the choice of the number of frequencies n f and the frequen-

cies values ωi, with i = 1, ..,n f , in the feedback estimator model, play a fundamental role in the
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Figure 6.5: Real and estimated equivalent excitation forces for a 1/25th scale three-body hinge-
barge device with feedback and feedforward estimator for a regular wave of frequecy ω = 5 rad/s
amplitude A = 2 cm.
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Figure 6.6: Real and estimated equivalent excitation forces for a 1/25th scale three-body hinge-
barge device with feedback and feedforward estimator for a regular wave of frequecy ω = 7 rad/s
amplitude A = 2 cm.
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Figure 6.7: GoF of first estimated equivalent excitation force (a) and second estimated equivalent
excitation force (b) for a 1/25th scale three-body hinge-barge device computed by the feedback
estimator for regular waves of amplitude A=2 cm and range of frequencies from 3 rad/s to 8 rad/s.
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Figure 6.8: GoF of first estimated equivalent excitation force (a) and second estimated equivalent
excitation force (b) for a 1/25th scale three-body hinge-barge device computed by the feedforward
estimator for regular waves of amplitude A=2 cm and range of frequencies from 3 rad/s to 8 rad/s.

performance of the estimator. Given a fixed number of frequencies n f , the frequencies ωi are cho-

sen in order to maximize the GoFest index as defined in equation (6.15). Given the spectrum of

the incoming wave shown in Figure 6.9, a frequency range from 2 rad/s to 10 rad/s is considered

in the choice of the frequencies ωi. The algorithm for the optimal choice of the frequencies ωi,

for a given number of frequencies n f , is presented in Algorithm 1. As shown in Algorithm 1, a

frequency vector ω is defined which takes values from a frequency range from 2 rad/s to 10 rad/s

with a frequency resolution ∆ω. Then, the i-th component of the frequency vector of the excitation

forces ω in the estimator model is assigned with each ii-th component of the frequency vector ω.

Given the vector ω and batch of data of dimension N1, the GoFest index given in equation (6.15)

is computed, and the ii-th component of the frequency vector ω that gives the maximum GoFest
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index is selected as the optimal frequency for the i-th component of the frequency vector ω.

In Table 6.1, the optimal frequencies ωi that maximize the GoFest index, as defined in equation

(6.15), are presented for a number of frequencies n f from 1 to 9. In Figure 6.11, the GOFest of the

equivalent excitation forces is shown for different numbers of frequencies n f . Note that, in Figure

6.11, for every number of frequencies n f , the frequencies ωi are chosen according to Algorithm

1. As Figure 6.11 shows, a number of frequencies n f greater than 5 guarantees a GoFest that is

greater than 85 % and 65 % for the first and second equivalent excitation force, respectively.

Regarding the feedforward estimator, the choice of the number of frequencies N f plays a fun-

damental role in the estimation of the excitation forces. A low number of frequencies N f does

not provide a sufficiently accurate frequency resolution for the estimation of the transfer function

of the equivalent excitation force Ĥeq(ω). On the other hand, a large number of frequencies N f

results in a high frequency resolutions ∆ω for the estimated transfer function Ĥeq(ω), which re-

quires a large observation time Tobsv for the motion of the device. In fact, the frequency resolution

of the transfer function Ĥeq(ω) is given as ∆ω = 1/Tobsv. In Figure 6.12, the GOFest of the equiv-

alent excitation forces is shown for different numbers of frequencies N f . As Figure 6.12 shows,

a number of frequencies N f greater than 100 guarantees a GoFest greater than 80 %, for both the

first and second equivalent excitation force. In Figures 6.10a and 6.10b, the modulus and phase of

the real and estimated transfer function computed with N f = 100, for the first equivalent excitation

force and second equivalent excitation force, are shown, respectively.

By way of example, in Figure 6.13, the real and estimated equivalent excitation forces with

the feedback and feedforward estimator are shown for an irregular wave made using a JONSWAP

spectrum with a significant wave height Hs = 15 cm and peak period Tp = 1.25 s. In Figure

6.13, the number of frequencies for the feeback and feedforward estimator are n f = 5 and N f =

100, respectively. As shown in Figure 6.13, the feedback and feedforward estimators provide

a similar estimation of the first equivalent force. However, for the second equivalent excitation

force, the feedforward estimator provides a more accurate estimation than the feedback estimator.

While the feedforward estimator provides a GoFest=85% for both excitation forces, the feedback

estimator provides a GoFest=85% and GoFest=65% for the first and second equivalent excitation

force, respectively.

6.5.3 Excitation forces prediction with irregular waves

The equivalent excitation force estimated by the feedback and feedforward estimators, with a

number of frequencies n f = 5 and N f = 100, respectively, derived in Section 6.5.2, are predicted

into the future with an AR model defined as in equation (6.20). In particular, an AR model is

designed for each equivalent excitation force, which depends on estimates provided either by the
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Figure 6.9: JONSWAP spectrum with peak period Tp = 1.25 and significant wave height Hs = 15
cm.

Algorithm 1 Optimal Selection Estimator Model Frequencies
∆ω← 0.1 rad/s
ω← 2 : ∆ω : 10
ω← empty array
for i = 1, ..,n f do

for ii = 1, .., length(ω) do
ω[i]← ω[ii]
GoFest [ii]←ComputeGoFest(ω)

end for
index← GetIndexMax(GoFest)
ω[i]← ω[index]

end for

feedback and feedforward estimator. Therefore, two different AR models are derived: an AR

model based on the estimates provided by the feedback estimator, and an AR model based on the

estimates provided by the feedforward estimator.

Low-pass filtering of the estimated excitation forces is carried out in order to focus the pre-

diction of the future excitation forces only on the low-frequency components [105]. In fact, the

low-frequency components of the incoming wave spectrum carry out most of the wave energy and,

therefore, it is reasonable to predict the low-frequency components of the excitation forces only.

Furthermore, focusing the prediction on the low-frequency components of the excitation forces

improves the accuracy of the prediction and extends the achievable prediction horizon with a suf-

ficiently accurate prediction. Given the spectrum of the incoming waves shown in Figure 6.9, an

ideal zero-phase low-pass Chebyshev filter, of the 6nd order with cut-off frequency of 7 rad/s, is

chosen. It is important to highlight that the use of a zero-phase low-pass filter requires the filtering

to be carried out off-line. However, for real-time applications, where the filtering is carried out

online, the filtering introduces a phase delay which depends on the cut-off frequency and the type
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n f = 1 [rad/s] ω1=5

n f = 2 [rad/s] ω1=4.9 ω2=7

n f = 3 [rad/s] ω1=4.8 ω2=5 ω3=6.6

n f = 4 [rad/s] ω1=4.1 ω2=4.7 ω3=5 ω4=6.5

n f = 5 [rad/s] ω1=4.5 ω2=4.7 ω3=5.1 ω4=6.5 ω5=6.6

n f = 6 [rad/s] ω1=3.6 ω2=4.2 ω3=4.5 ω4=5.1 ω5=6.4 ω6=6.6

n f = 7 [rad/s] ω1=2 ω2=4.2 ω3=4.5 ω4=5.1 ω5=6.4 ω6=6.6 ω7=7.2

n f = 8 [rad/s] ω1=2 ω2=4.2 ω3=4.3 ω4=4.5 ω5=5.1 ω6=6.4 ω7=6.6 ω2=7.2

n f = 9 [rad/s] ω1=4.2 ω2=4.7 ω3=4.8 ω4=4.9 ω5=5.1 ω6=6.4 ω7=6.5 ω8=6.6 ω9=7.2

Table 6.1: Estimator model optimal frequencies ωi, with i = 1, ..,n f , computed with Algorithm 1
for different numbers of frequencies n f .

of filter used.

The forecasting horizon Thorizon required to maximize the energy extracted by a WEC depends

on the properties of the impulse response functions of the radiation damping [10], [12]. In par-

ticular, the forecasting horizon is equivalent to the time needed by the impulse response of the

radiation damping to reach a zero value. In Figure 6.14, the impulse responses of the radiation

damping matrix of the reduced equivalent model of a 1/25th scale three-body hinge-barge device

is shown. As shown in Figure 6.14, the impulse response functions decay to zero in approximately

3 seconds. Therefore, a forecasting horizon Thorizon = 3 seconds is considered for the prediction

of the excitation forces.

An important element of the identification of the AR model in equation (6.20), with cost func-

tion (6.22), is the order na. Note that, in order to reduce the complexity of the AR model, the

estimated excitation forces are re-sampled with a sampling time Tsamp = 0.1 seconds. The objec-

tive is to identify a model that guarantees accurate fitting of the training data without incurring in

the so-called “over-fitting”, or rather the identification of an over-parametrized model which also

interpolates the stochastic noise presents in the measurements. In order to select the best order na

that avoids over-fitting the data, AR models of different orders na are trained and validated. Given

a set of estimated excitation force data of dimension N1, the training of the AR models is car-

ried out with cost function in equation 6.22). Then, given a previously unseen batch of validation

data of dimension N2, the GoFpred index given in equation (6.23), for a forecasting horizon of 3

seconds, is computed for different orders na.

In Figure 6.15, for a forecasting horizon of Thorizon = 3 seconds, the GoFpred index given in

equation (6.23), for each equivalent excitation force, is computed for different orders na of the

AR model, based on the feedback and feedforward estimators. As shown in Figure 6.15, an order

na = 30 is chosen as the optimal value that maximizes the GoFpred(l), with l = Thorizon/Tsamp =

3/0.1 = 30, for both the excitation forces provided by the AR model, based on the feedback and
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Figure 6.10: Module and phase of the real and estimated transfer function for first equivalent
excitation force (a) and second equivalent excitation force (b).

feedforward estimator. Furthermore, as shown in Figure 6.15, the GoFpred index provided by the
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Figure 6.11: GoF of the estimation of the equivalent excitation forces for different values of the
number of frequencies n f in the feedback estimator.

AR model, based on the feedback estimator, is lower than the GoFpred provided by the AR model

based on the feedforward estimator, for both equivalent excitation forces, due to the more accurate

estimates provided by the feedforward estimator. In particular, the GoFpred index provided by the

AR model based on the feedforward estimator is 10% and 15% higher than the GoFpred provided

by the AR model based on feedback estimator, for the first and second equivalent excitation force,

respectively.

In Figure 6.16, the GoFpred index given in equation (6.23) for each equivalent excitation force,

is computed for different forecasting horizons Thorizon and different orders of the AR model, based

on the feedback estimator. In Figure 6.17, the GoFpred index given in equation (6.23) for each

equivalent excitation force, is computed for different forecasting horizons Thorizon and different

orders of the AR model, based on the feedforward estimator. As shown in Figures 6.16 and

6.17, the GoFpred , for the first equivalent excitation force, given by the AR model based on the

feedback estimator, is similar to the GoFpred given by the AR model based on the feedforward

estimator, across all the range of forecasting horizons Thorizon considered. However, the GoFpred

for the second equivalent excitation force, given by the AR model based on the feedback estimator,

is worse than the GoFpred given by the AR model based on the feedforward estimator, across

all the range of forecasting horizons Thorizon considered. In particular, for the second equivalent

excitation force, the AR model based on the feedforward estimator computes a GoFpred which is
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Figure 6.12: GoF of the estimation of the equivalent excitation forces for different values of the
number of frequencies N f in the feedforward estimator.

approximately 10% higher than the GoFpred computed by the AR model based on the feedback

estimator, for every forecasting horizon Thorizon considered.

By way of example, in Figure 6.18, the real and predicted equivalent excitation forces for a

forecasting horizon Thorizon = 3 seconds, given by the AR model with na = 30, based on the feed-

back and feedforward estimator, are shown for an irregular wave from a JONSWAP spectrum with

a significant wave height Hs = 15 cm and peak period Tp = 1.25 s. As shown in Figure 6.18, the

AR model, based on the feedback estimator, provides a prediction of the first equivalent force that

is similar to the prediction provided by the AR model based on the feedforward estimator. How-

ever, for the second equivalent excitation force, the AR model based on the feedforward estimator

provides a more accurate prediction than the AR model based on the feedback estimator. While

the AR model based on the feedforward estimator provides a GoFpred=70% for both excitation

forces, the AR model based on the feedback estimator provides a GoFpred=70% and GoFest=60%

for the first and second equivalent excitation force, respectively.
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Figure 6.13: Real and estimated equivalent excitation forces with a number of frequencies in the
estimator model n f = 15 for an irregular wave made using a JONSWAP spectrum with a significant
wave height Hs = 15 cm and peak period Tp = 1.25 s.

6.6 Conclusions

In this chapter, two different estimators for the excitation forces acting on a three-body hinge-

barge devices are presented: feedback and feedforward estimators. The feedback estimator is

formulated in the time domain, and is based on a Kalman filter which takes, as inputs, the position

and the velocity of the DoF of the device. In contrast, the feedforward estimator is formulated

in the frequency domain, and is based on frequency domain identification of the transfer function

between the wave elevation up-wave of the device, and the position of the DoF of the device.

Both estimators are based on the reduced equivalent model derived in Section 4.2, as it provides a

computationally efficient formulation for the solution of the optimal control problem.

While the feedback estimator only requires information on the motion of the device, the feed-

forward estimator requires the information of both the motion of the device and wave elevation

up-wave of the device. Therefore, the feedback estimator is simpler to implement than the second

algorithm, as only motion sensors deployed on the device are required, without the need to deploy

a wave gauge for the measurement of the wave elevation up-wave of the device. Furthermore, for

the feedforward estimator, a long observation time of the motion of the device and wave elevation

up-wave of the device is needed in order to achieve a small frequency resolution of the transfer

function between the wave elevation up-wave of the device, and the position of the DoF of the
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Figure 6.14: Impulse responses of the radiation damping matrix of the reduced equivalent model
of a 1/25th scale three-body hinge-barge device.

device. In particular, a small frequency resolution of the transfer function guarantees an accurate

estimation of the equivalent excitation forces. For the feedback estimator, the Kalman filter con-

verges to an accurate estimate of the equivalent excitation force after a transient time which is 4

times shorter than the observation time required by the feedforward estimator. The time needed by

the feedback estimator to accurately estimate the equivalent excitation forces depends on weight

matrices Q and R of the Kalman filter.

Results of the feedback and feedforward estimator, applied to a 1/25th scale three-body hinge-

barge device, for the estimation of the equivalent excitation forces, show that both estimators

estimate the first equivalent excitation force with the same accuracy. However, for the second

equivalent excitation force, the feedforward estimator performs slightly better than the feedback

estimator, with an accuracy of the estimation of the second equivalent excitation force that is 20%

higher than the accuracy of the estimation given by the feedback estimator.

Note that, for this work, both estimators are based on perfect knowledge of the dynamic model

of the device. It is expected that, in a more realistic scenario, where the knowledge of the param-

eters of the dynamic model is affected by a certain degree of uncertainty, the feedback is likely to

perform better than the feedforward estimator. In fact, the feedback estimator is naturally robust to

uncertainty in the parameters of the dynamic model, as the feedback on the position and velocity

of the DoF of the device corrects the estimates of the excitation forces computed based on the

dynamic model of the device only. In contrast, the feedforward estimates the equivalent excitation

forces purely on the basis of the dynamic model of the device. Therefore, a small variation of the

parameters of the dynamic model of the device could potentially lead to a large decrease of the
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Figure 6.15: GoF of the prediction of the excitation forces for a forecasting horizon of 3 s as
a function of the order na of the AR model based on the estimates given by the feedback and
feedforward estimator.
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Figure 6.16: GoF of the prediction of the excitation forces as a function of the forecasting horizon
Thorizon and order na of the AR model based on the estimates given by the feedback estimator.
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Figure 6.17: GoF of the prediction of the excitation forces as a function of the forecasting horizon
Thorizon and order na of the AR model based on the estimates given by the feedforward estimator.

performance of the feedforward estimator.
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Figure 6.18: Comparison between real and predicted equivalent excitation forces for a forecasting
horizon Thorizon = 3 seconds given by the AR model with na = 30 based on the feedback and
feedforward estimator for an irregular wave made using a JONSWAP spectrum with a significant
wave height Hs = 15 cm and peak period Tp = 1.25 s.
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Chapter 7

System set-up for wave-tank testing

7.1 Introduction

In Section 3.5, a dynamic model of a three-body hinge-barge WEC is derived, while, in Chapter 5,

a real-time optimal controller, that maximizes the energy extracted by the WEC, is presented. The

power absorption performance of the real-time optimal controller heavily depends on the quality of

the dynamic model that is used to evaluate the response of the WEC to the waves. In this chapter,

a system set-up for wave-tank testing of a 1/20th scale three-body hinge barge WEC, is presented.

The wave-tank tests of a 1/20th scale three-body hinge barge WEC can be used to validate the

dynamic model of the WEC, and experimentally evaluate the performance of the real-time optimal

controller and of a control strategy based on optimal linear damping coefficients of passive PTOs.

The scale model device has been provided by Wave Energy Conversion Corporation of America

(WECCA) [113], and the tank tests carried out on the scale model device, are presented in Chapter

9.

The results from wave-tank tests, carried out on a small scale device, can be scaled for a full

scale device. It is important to highlight that the influence of some forces, on the motion of the

small scale device, can be different from the influence of the same forces on the full scale device.

For example, the influence of friction effects, at the hinges between the barges, on the motion of

the device, is higher for the small scale device than the full scale device. Also, the problem of the

design of a PTO, for a small scale device, is considerably more challenging than for a full scale

device, due to the increased effects of friction and backlash between moving parts of the PTO, on

the motion of the small scale device.

A picture of the 1/20th scale three-body hinge-barge WEC in the wave-tank is shown in Figure

7.1a showing the WEC structure composed of fore, central and aft barges. A damping plate is

attached to the central barge in order to reduce the heave motion of the central barge, and increase

the relative pitch motion of the fore and aft barge with respect to the central barge. As shown

in Figure 7.1a, the device is moored with 4 compliant moorings connected to the central barge.

The moorings were kindly provided by Sea Power Ltd [20]. In Figure 7.2, the configuration of

the moorings, connected to one side of the central barge, is shown. As shown in Figure 7.2, each
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mooring is composed of a chain, with one end anchored to the bottom of the tank, and the other

end connected to a buoy. Then, the buoy is connected to the central barge via an elastic string.

While the surge motion of the central barge is constrained by the compliant moorings, the central

barge is free to move in heave. As shown in Figure 7.1a, the device is equipped with a fore and

aft encoder at the hinge-point to measure the relative pitch motion of the fore and aft barge with

respect to the central barge, respectively. The surface elevation of the incoming wave is measured

via a wave gauge situated 1.2 m in front of the device, as shown in Figure 7.1b.

As shown in Figure 7.1a, the central barge is also equipped with an Inertial Measurement

Unit (IMU) which, together with ultrasound sensors, provides a measurement of the motion of the

central barge. The ultrasound sensors are mounted on the ceiling above the wave-tank, as shown

in Figure 7.1c. The measurements provided by the ultrasound sensors and IMU are optimally

combined together with a Extended Kalman Filter (EKF), to compute the motion of the central

barge. Full details on the motion capture system, based on ultrasound sensors and an IMU, are

presented in Chapter 8.

Also shown in Figure 7.1a are two hydraulic dampers, which are connect the central barge to

the fore and aft barges. The relative pitch motion between the fore and aft barge, with respect

to the central barge, drives the hydraulic dampers, which dissipate the mechanical energy of the

device. Therefore, the hydraulic dampers act as PTOs, which convert the energy of the waves into

mechanical energy. The flow of the hydraulic fluid, in each hydraulic damper, is regulated using a

flow control valve, whose opening is controlled with a stepper motor. The force exerted by each

hydraulic damper on the device is measured using a load cell, and the force can be changed by

varying on the opening of the flow control valve. Therefore, the hydraulic dampers, with the flow

control valves, represent passive PTOs with adjustable damping. The damping of the hydraulic

dampers is varied by an optimal control strategy that computes the optimal profile of the damping

of each PTO in order to maximize the energy extracted by the device, as shown by the control

scheme in Figure 5.23.

A functional scheme of the system set-up for wave tank testing of a 1/20th scale device is

shown in Figure 7.3, with the system composed of 3 functional parts: control, actuators and sen-

sors. The sensor suite comprises the fore and load cells, the fore and aft encoders, the ultrasound

sensors and the IMU, and the wave gauge. The actuators are comprised of the fore and aft mo-

tors, the fore and aft valves and the fore and aft hydraulic dampers. The control part comprises

an Arduino board, and a PC running a Matlab script which implements an EKF to compute the

motion of the central barge, and the HRCF PS control for maximization of the energy extracted

by the device. The EKF optimally combines the information provided by the ultrasound sensors

and IMU in order to compute the motion of the central barge. Full details on the EKF for the

motion capture system are presented in Chapter 8. Also, the Matlab script implements HRCF PS

control for maximization of the energy extracted by the device. The HRCF PS control is pre-

sented in Chapter 5, and computes the optimal damping profile for the hydraulic dampers, based

on the optimal trajectories of relative torques and pitch rotational velocities between the fore and

aft barge, with respect to the central barge. The Ardunino board plays the role of an interface
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between the PC, the sensors and the actuators. The signals provided by the sensors are processed

by the Arduino board, and the processed data is then streamed to the PC. The data provided by

the ultrasound sensors and IMU are directly sent to the PC through a dongle. Given the optimal

damping profile for the hydraulic dampers, computed by the HRCF PS control, the Arduino board

changes the opening of the flow control valve accordingly, using the stepper motors.

A major issue of the system set-up, shown in Figure 7.3, is the synchronization of the data

provided by the ultrasound sensors and IMU streamed through the dongle, and the data provided

by the sensors streamed through the Arduino board. The data provided by the Arduino board, and

the dongle, are transmitted to the PC running the Matlab script, via serial ports. However, the

PC running the Matlab script is equipped with only one controller of the serial bus and, therefore,

the dongle and the Arduino board cannot simultaneously stream data. Thus, at a certain time step,

while the PC running the Matlab script retrieves the data provided by the dongle, the data provided

by the Arduino board are buffered. Then, once the data provided by the dongle are retrieved, the

PC running the Matlab scripts empties the buffer in order to retrieve the data provided by the

Arduino at the same time step at which the data provided by the dongle are retrieved. While

the dongle and Arduino board can independently stream data with a sampling frequency of 15

Hz and 1 kHz, respectively, the need for synchronization of data provided by both the dongle

and Arduino board significantly reduces the achievable sampling frequency. In particular, the

maximum sampling frequency achievable by the set-up in Figure 7.3, is only 5 Hz. However, as

shown in Figure 3.10, given that the fastest dynamics of a 1/25th scale three-body hinge-barge

device are around 1.3 Hz, a sampling frequency of 5 Hz satisfies the Nyquist criterion, which

requires a sampling frequency that is, at least, twice the maximum frequency present in the signal.

The remainder of this Chapter is organized as follows: in Section 7.2, the wave-tank used

to carried out the tank tests is described in detail while, in Section 7.3, the wave gauge for the

measurement of the incoming wave is described. In Section 7.4, the load cells for the measurement

of the forces applied by the hydraulic dampers are presented while, in Section 7.5, the encoders

for the relative rotation of the fore and aft barge with respect to the central barge is described. In

Section 7.6, the hydraulic dampers with variable damping are characterized and, finally, in Section

7.7, conclusions are drawn.

7.2 Wave Tank

A graphical representation of the wave tank, used for the wave-tank testing of the device, is shown

in Figure 7.4, together with the ultrasound sensors for the motion capture system placed above the

central section of the tank. The tank is produced by OMEY labs [114], which offers a modular

design for the wave tank, where each module is 2.5 m wide, 2 m long and 1.3 m deep. The

assembly of different modules allows wave tanks of any length to be built and, therefore, provides

a low-cost customized solution that is affordable by small to medium size wave energy companies,
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(a)

(b) (c)

Figure 7.1: Picture of the 1/20th scale three-body hinge-barge in the wave-tank (a), wave gauge
for the measurement of the incident wave elevation (b), and ultrasound sensors mounted on the
ceiling above the wave-tank (c).

eliminating the need to resort to high-end wave tanks characterized by high daily costs. For this

study, the tank is composed of 5 modules, for an overall length of 10 m. The tank is also equipped

with a bottom-hinged paddle wave maker which can create planar regular and irregular waves,

and a parabolic passive beach, for wave absorption. The wave maker is set-up to generate regular

waves with a specific wave height and period, and irregular waves with a specific significant wave

height and peak period, using a Bretschneider spectrum.

In Figure 7.5, the operational range of the wave maker is shown, in terms of the maximum

wave height at each wave period. For example, the maximum wave height that can be generated

at a period of T = 1.25 seconds is 0.16 m. For wave periods less than T = 1.25 seconds, the wave
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Figure 7.2: Illustrative scheme of the moorings connected to one side of the central barge of a
three-body hinge-barge device.
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Figure 7.3: Functional scheme of the system set-up for wave tank testing of the 1/20th scale device
composed of control part, sensors and actuators.

height is limited by wave breaking. In order to determine the maximum wave height for each wave

period smaller than T = 1.25 seconds, the wave height was increased for each wave period with

an increment of 0.01 m until wave breaking occurred [115]. The maximum wave height for wave

periods less than T = 1.25 seconds is determined visually as the wave height just before wave

breaking, or ripples on the top of the wave crests occurred.

As shown in Figure 7.5, the smallest period achievable by the tank is T = 0.5 seconds. For

wave periods less than T = 0.5 seconds, the size of the cross waves generated in the tank have

comparable or even larger size than the size of the longitudinal wave generated by the wave maker.

The size of the cross waves decreases with an increase of the wave period. For each wave period,

the cross waves become less significant, if the waves generated by the wave maker have a small

wave height. For waves of period longer than T = 1.25 seconds, the wave height is limited by the
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stroke of the wave maker.

Given that the depth of the tank is 1.3 m and the operational range of the wave maker goes

from 0.5 to 3 seconds, as shown in Figure 7.5, the tank tests are carried out under the assumption

of deep water. As the 3-body hinge-barge device is classified as an attenuator, the full scale 3-body

hinge-barge WEC is designed to operate offshore [2] and, therefore, the assumption of deep water

for the tank tests if justified. Given a geometric scale ratio between the 1/20th scale and the full

scale model of λ = 20, the resonant period of the 1/20th scale model device is given as follows:

Tn,dev = Tn,scale
√

λ (7.1)

where Tn,scale and Tn,dev are the resonant period of the scale model and full scale device, re-

spectively. Therefore, given that the wave makers generate a spectrum of the waves with peak

period around 1.4 seconds, the peak period of the full scale device is around 6 seconds. For a

spectrum of the waves with a peak period Tp = 6 seconds and significant wave height Hs = 2 m,

the wave power level is given as follows [10]:

J =
ρg2

32π
TpH2

s
∼= 23kW/m (7.2)

Figure 7.4: OMEY labs wave tank with ultrasound receivers placed above the middle section of
the tank.

7.3 Wave gauge

The waves incident on a device can be measured by using two different types of wave gauges:

resistive and capacitive. Resistive wave gauges are composed of two metal rods, where the resis-

tance between the rods changes with the water elevation [116]. Capacitive wave gauges change

their capacitance as the water level varies, and they are generally more accurate and expensive than

resistive gauges. The accuracy of resistive gauges can be improved by using an artificial neural
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Figure 7.5: OMEY labs wave maker operational range.

network trained with data from capacitive gauges [117]. In this study, a capacitive wave gauge

WG-55 from RBR Limited is used [118], and is placed 1.2 m up-wave of the front barge of the

device.

In the remainder of this section, the static calibration of the wave gauge and the measurement

of regular and irregular waves are presented.

7.3.1 Wave gauge static calibration

The output of the wave gauge is a voltage which is linearly proportional to the water level. In order

to statically calibrate the wave gauge, 5 tests, with different water levels, were performed, with an

increase of 22.8 mm of the water level between each test. The output voltage given by the wave

gauge, for each test, is shown in Figure 7.6, together with the linear calibration curve that best fits

the output voltage. The linear calibration curve is used for the subsequent measurement of water

elevation for the wave-tank tests, with regular and irregular waves, with or without the device in

the tank.

7.3.2 Regular wave measurement

In this section, the measurement of the wave elevation for regular waves with a wave height of

0.04 m, and different periods, is presented. In Figures 7.7, 7.8, 7.9 and 7.10, the wave elevation,

measured by the calibrated wave gauge, is shown for regular waves of wave height 0.04 m and

period T = 0.5 seconds, T = 1 seconds, T = 1.5 seconds and T = 2 seconds, respectively. As

shown in Figures 7.7 and 7.8, for small wave periods, the wave height is close to desired value,

but is not constant. For small wave periods, the cross waves generated in the tank interfere with
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Figure 7.6: Static calibration wave gauge with 5 tests of different water levels.

the longitudinal waves generated by the wave maker, resulting into the formation of ripples on the

top of the wave crests. Also, at the end of each test with regular waves, the waves are not fully

absorbed by the passive beach, with reflected waves traveling back along the tank. Therefore,

the measurement of the wave elevation, for a certain test with regular waves, is corrupted by the

reflected waves generated at the end of the previous test. As shown in Figures 7.9 and 7.10, for

long wave periods, the wave height is more constant than for small wave periods, but is about 25%

higher than the desired value. A more extensive study on the measurement of the wave elevation

at OMEY labs can be found in [115].

7.3.3 Irregular wave measurement

In this section, the measurement of the wave elevation for irregular waves generated using a

Bretschneider spectrum with a significant wave height of 0.18 m, and different peak periods, is

presented. In Figures 7.11, 7.13 and 7.15, the wave elevation measured by the calibrated wave

gauge is shown for irregular waves made using a Bretschneider spectrum with a significant wave

height 0.18 m and peak period Tp = 1.0 seconds, Tp = 1.25 seconds and Tp = 1.5 seconds, re-

spectively. In Figures 7.12, 7.14 and 7.16, the spectrum of the wave elevation measured by the

calibrated wave gauge is shown for irregular waves, generated using a Bretschneider spectrum,

with a significant wave height 0.18 m and peak period Tp = 1.0 seconds, Tp = 1.25 seconds and

Tp = 1.5 seconds, respectively. As shown in Figures 7.12, 7.14 and 7.16, the peak frequencies of

the irregular waves are the same as the desired peak frequencies. Given the spectrum of an irreg-

ular wave S(ω), the significant wave height, for an irregular wave, can be calculated as follows
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Figure 7.7: Measured wave elevation for regular wave with period T = 0.5 seconds and desired
wave height of 0.04 m.

60 65 70 75 80 85 90 95 100
−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

0.04

t [sec]

su
rf

ac
e 

el
ev

at
io

n 
[m

]

Period T=1 seconds

Figure 7.8: Measured wave elevation for regular wave with period T = 1 seconds and desired
wave height of 0.04 m.
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Figure 7.9: Measured wave elevation for regular wave with period T = 1.5 seconds and desired
wave height of 0.04 m.
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Figure 7.10: Measured wave elevation for regular wave with period T = 2 seconds and desired
wave height of 0.04 m.
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[34]:

Hs = 4
√

m0 = 4
√∫

∞

0
S(ω)dω (7.3)

For the irregular waves measured in this study, an average significant wave height Hs = 0.048

m is found, which is 70% smaller than the desired significant wave height Hs = 0.18 m.
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Figure 7.11: Measured wave elevation for irregular wave made using a BRETSCHNEIDER spec-
trum with a significant wave height 0.18 m and peak period Tp = 1.0 seconds.

7.4 Load cells

The fore and aft load cells, for measurement of the forces exerted by each hydraulic damper on the

device, are LCM 300 models from Futek [119]. The LCM 300 load cell can measure both tensile

and compressive loads. The output of each load cell is a voltage which is linearly proportional

to the applied load. In order to statically calibrate each load cell, 21 tests with different applied

loads are performed, with an increase of 1.08 N of the applied load between each test. The output

voltage, given by the fore load cell for each test, is shown in Figure 7.17, together with the linear

calibration curve that best fits the output voltage. The output voltage given by the aft load cell,
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Figure 7.12: Spectrum of measured wave elevation for irregular wave made using a
BRETSCHNEIDER spectrum with a significant wave height 0.18 m and peak period Tp = 1.0
seconds.
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Figure 7.13: Measured wave elevation for irregular wave made using a BRETSCHNEIDER spec-
trum with a significant wave height 0.18 m and peak period Tp = 1.25 seconds.
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Figure 7.14: Spectrum of measured wave elevation for irregular wave made using a
BRETSCHNEIDER spectrum with a significant wave height 0.18 m and peak period Tp = 1.25
seconds.
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Figure 7.15: Measured wave elevation for irregular wave made using a BRETSCHNEIDER spec-
trum with a significant wave height 0.18 m and peak period Tp = 1.5 seconds
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Figure 7.16: Spectrum of measured wave elevation for irregular wave made using a
BRETSCHNEIDER spectrum with a significant wave height 0.18 m and peak period Tp = 1.5
seconds

for each test, is shown in Figure 7.18, together with the linear calibration curve that best fits the

output voltage.

7.5 Rotational encoders

The fore and aft encoders, for the measurement of relative pitch rotation of the fore and aft barge

with respect to the central barge, are rotary incremental encoders of the series TRDA-2E [120]. As

shown in Figure 7.19, the rotary incremental encoder is composed of a rotating disk connected to

a shaft, a light source, and two photo detectors A and B. The rotating disk contains two patterns of

alternating opaque and transparent sectors which intermittently block the light emitted by the light

source, as the disk rotates. A pulse signal for the photo detectors A and B is therefore generated.

An example of the pulse signals generated by the photo detectors A and B is shown in Figure 7.19.

As shown in Figure 7.19, both the rotational position and direction of the disk can be measured.

The rotational position of the disk can be measured by counting the number of pulses generated

by the photo detectors. Regarding the direction of the rotation of the disk, if the pulse signal from

the photo detector A leads the pulse signal from the photo detector B, the disk is rotating in a

clockwise direction. Viceversa, if the pulse signal from the photo detector B leads the pulse signal

from the photo detector A, then the disk is rotating in a counter-clockwise direction. The encoders

used in this work have a resolution of the rotational position of 0.09◦.

167



CHAPTER 7. SYSTEM SET-UP FOR WAVE-TANK TESTING

1.3 1.4 1.5 1.6 1.7 1.8
−15

−10

−5

0

5

10

15
Calibration fore load cell

Voltage [V]

F
in

 [N
]

 

 

Static test
Calibration curve

Figure 7.17: Static calibration fore load cell with 21 tests of different applied loads.
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Figure 7.18: Static calibration aft load cell with 21 tests of different applied loads.
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In order to statically calibrate each encoder, 9 tests with different static rotation of the fore and

aft barges are performed, with an increase of 5◦in the rotation of the fore and aft barges between

each test. The rotation measured by the fore encoder, for each test, is shown in Figure 7.20,

together with the linear calibration curve that best fits the rotation measured by the encoder. The

rotation by the aft encoder for each test is shown in Figure 7.21, together with the linear calibration

curve that best fits the rotation measured by the encoder.

Figure 7.19: Scheme of rotary incremental encoder [121].

7.6 Hydraulic pistons with variable damping

Each hydraulic damper that converts the energy of the waves into mechanical energy is composed

of a double acting cylinder, with a flow control valve that regulates the flow of the hydraulic

fluid circulating outside the cylinder. The opening of the flow control valve can be changed via

a stepper motor. In Figure 7.22, a schematic of the hydraulic damper, together together with

the flow control valve and stepper motor, is shown. The hydraulic dampers are of the NITRA

series from NITRA Pneumatics [120], the flow control valve is a high-precision flow-adjustment

valve from McMASTER-CARR [122] and the stepper motor is a STP-MTR-17040 from [120].

The resolution of the stepper motor is 1.8 ◦/step and the maximum motor speed is 13 rps. The

choice of the stepper motor for the actuation of the flow control valve plays a critical role in the

implementation of the real-time optimal control of the device. In fact, most of the control strategies

presented in Section 4.1, that maximize the energy extracted by the device, such as latching, MPC

and RHPSC, require an opening of the flow control valve from 0% to 100% instantaneously. For

the flow control valve chosen in this study, 20 full rotations of the stepper motor are needed to open

the flow control valve from 0% to 100% and, therefore, given a maximum speed of the stepper

motor of 13 rps, the time needed by the motor to fully close the flow control valve is around 1.5
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Figure 7.20: Static calibration fore encoder with 9 tests with different static rotation of the fore
barge.

seconds, which is not an acceptable actuation time for real-time control of the device. In fact, an

actuation time of 1.5 seconds is well beyond the maximum computational time allowed for the

real-time controller of the device, which depends on the fastest dynamics of a 1/20th scale three-

body hinge-barge device. As shown in Figure 3.10, given that the fastest dynamics of a 1/25th

scale three-body hinge-barge device are around 0.8 seconds, a reasonable computational time

available to the real-time controller is around 0.2 seconds. Thus, with the stepper motor chosen

for this study, the maximum variation of the opening of the valve that can be achieved in real-time

is around 10%, which requires an actuation time of 0.2 seconds. Obviously, a maximum variation

of the opening of the valve of 10% greatly reduces the power absorption that can be achieved by

real-time control, with respect to the control strategy based on optimal constant damping for the

dampers presented in Section 4.5.1.1.

In order to characterize the hydraulic dampers, a series of wave-tank tests, with a regular wave

of period T = 1.5 seconds and amplitude of 0.025 m were performed . The opening of the flow

control valve of the fore and aft hydraulic damper was varied from 0% to 100%, with a 10%

increment. The forces applied by the hydraulic dampers, measured by the load cells, together with

the relative pitch rotation of the fore and aft barge measured by the encoders, were recorded during

each test. From equation (3.91), the damping of each hydraulic damper can be computed as:

cpto,i =
Fs,i

l̇i
(7.4)
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Figure 7.21: Static calibration aft encoder with 9 tests with different static rotation of the aft barge.

with i = 1,2 for the fore and aft damper, respectively, while Fs,i and l̇i are the force and time

derivative of the displacement of the hydraulic damper, respectively. For this study, the derivative

of the displacement of the hydraulic damper l̇i is not directly measured, but can be approximated

from equation (7.5) as follows:

l̇i = aθ̇rel,i (7.5)

where a represents the vertical distance between the line of action of the damper force and the

center-line of the device, and θ̇rel,i, with i = 1 and i = 2, is the relative pitch velocity between the

fore and aft barge with respect to the central barge, respectively.

By way of example, for a regular wave of period T = 1.5 seconds and amplitude of 0.025 m,

in Figures 7.23, 7.24 and 7.25, the measured force exerted by the fore and aft hydraulic dampers

is compared to the approximated forces given by equation (3.91) for a valve’s opening of 10%, 50

% and 70%, respectively. As shown in Figures 7.23, 7.24 and 7.25, the forces given by equation

(3.91) provide a quite accurate approximation of the measured forces exerted by the fore and aft

hydraulic damper. Furthermore, as shown in Figures 7.23, 7.24 and 7.25, the magnitude of the

force on the fore hydraulic damper, for an opening of the flow control valves of 10%, is very

similar to the magnitude of the force on the fore hydraulic damper, for an opening of the flow

control valves of 50% and 70%. However, the magnitude of the force on the aft hydraulic damper,

for an opening of the flow control valves of 10%, is twice the magnitude of the force on the
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aft hydraulic damper, for an opening of the flow control valves of 50% and 70%. Furthermore,

as shown in Figures 7.24 and 7.25, the force on the aft hydraulic damper shows an asymmetric

response, with the absolute value of the negative peaks larger than the absolute value of the positive

peaks.

The response of the forces of the hydraulic dampers is asymmetric since the flow of the hy-

draulic fluid is different depending on the direction of the movement of the ram of the dampers.

Therefore, the hydraulic dampers introduce nonlinear effects to the dynamics of the device. In

order to characterize the nonlinearities introduced by the hydraulic dampers, in Figure 7.26, the

forces of the hydraulic dampers are plotted against the derivative of the displacements of the hy-

draulic dampers for a valve’s opening of 10%. In Figure 7.27, the forces of the hydraulic dampers

are plotted against the derivative of the displacements of the the hydraulic dampers for a valve’s

opening of 50%. As shown 7.26 and 7.27, a significant number of points deviate from the linear

function of the derivative of the displacements that best fits the measured forces. In particular,

for a valve’s opening of 10%, the square of the correlation, between the measured values and the

predicted values given by the linear function, R2 is 0.91 and 0.92 for the force of the fore and aft

damper, respectively. For a valve’s opening of 50%, the square of the correlation, between the

measured values and the predicted values given by the linear function, R2 is 0.8 and 0.92 for the

force of the fore and aft damper, respectively.

Another issue that occurred with the hydraulic dampers used in this study is the compressibility

of the hydraulic fluid introduced by the air-bubbles trapped inside the hydraulic fluid. Therefore,

the use of hydraulic dampers for the extraction of the energy from the device involves different

issues that strongly affect the performance of the real-time control of the damping, and the control

strategy based on optimal constant damping for the dampers.

In Figures 7.28 and 7.29, the damping computed with equation (7.4) is shown for the fore

and aft hydraulic damper, respectively. The damping of the fore and aft hydraulic cylinder is

computed for an opening of the flow control valves that varies from 0% to 100%. In Figures 7.28

and 7.29, the damping is interpolated with a quadratic curve. As shown in Figures 7.28 and 7.29,

the damping of the aft hydraulic damper is higher than the damping of the fore hydraulic damper

for each opening of the flow control valves. The quadratic interpolation curve shown in Figures

7.28 and 7.29 can be used by the feedforward controller shown in Figure 5.23, to compute the

optimal opening of the flow control valves, given the optimal damping computed by the PS with

HRCF basis functions.
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Flow control 

valve

Figure 7.22: Schematic of the hydraulic damper together with the flow control valve actuated by
stepper motor.
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Figure 7.23: Measured and approximated forces exerted by the fore (a) and aft (b) hydraulic
damper with an opening of the flow control valves of 10% for a regular wave of period 1.5 seconds
and amplitude 0.025 m.
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Figure 7.24: Measured and approximated forces exerted by the fore (a) and aft (b) hydraulic
damper with an opening of the flow control valves of 50% for a regular wave of period 1.5 seconds
and amplitude 0.025 m.

7.7 Conclusions

In this chapter, the system set-up for wave-tank testing of a 1/20th scale three-body hinge-barge,

is presented. The wave-tank testing of a small scale WEC is important for the evaluation of

the response of the WEC to the waves, and the assessment of power production. Furthermore,

measurements from wave tank tests can also be used to validate the dynamic model of the device,

which can be used for the implementation of energy-maximising control strategies.

The acquisition of data from the sensors, and the energy-maximising control strategy, are

mainly implemented in a PC running Matlab, with an Arduino board acting as an interface between

the PC and the signals provided by the encoders, load cells and wave gauge. The signals provided

by the motion capture system are directly sent to the PC through a dongle.

The major issues associated with the system set-up for the wave-tank testings, in this work,

are:

• The low maximum sampling frequency of the signals provided by the sensors, due to re-

quired synchronization of the streamed data from the Ardunio board and the motion capture

system.
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Figure 7.25: Measured and approximated forces exerted by the fore (a) and aft (b) hydraulic
damper with an opening of the flow control valves of 70% for a regular wave of period 1.5 seconds
and amplitude 0.025 m.
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Figure 7.26: Measured force of the fore damper (a) and aft damper (b) plotted against the derivative
of the displacements with an opening of the flow control valves of 10% for a regular wave of period
1.5 seconds and amplitude 0.025 m.
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Figure 7.27: Measured force of the fore damper (a) and aft damper (b) plotted against the derivative
of the displacements with an opening of the flow control valves of 50% for a regular wave of period
1.5 seconds and amplitude 0.025 m.
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Figure 7.28: Damping of the fore hydraulic cylinder for an opening of the flow control valve that
varies from 0% to 100%.

• The wave heights of regular waves of small period, generated by the wave maker, is not

constant.

• There is a slow dynamic response of the stepper motors for the control of the flow control

valves of the hydraulic dampers.
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Figure 7.29: Damping of the aft hydraulic cylinder for an opening of the flow control valve that
varies from 0% to 100%.

• Only a small variation of the damping force on the fore and aft dampers, for different values

of the opening of the control valves, is achievable.

• The hydraulic dampers introduce nonlinearities to the dynamics of the device as the forces

applied by the dampers are asymmetric due the flow of the hydraulic fluid which is different

depending on the direction of the movement of the ram of the dampers.

The maximum sampling frequency achievable by the system set-up for wave-tank testing is

only 5 Hz, due to the synchronization requirement of the streamed data from the Ardunio board,

and the motion capture system, through the serial ports of the PC. In fact, the PC is equipped with

only one serial bus controller and, therefore, at each time step, the PC retrieves the data from the

motion capture system, and the data provided by the Arduino board are buffered. After the data

from the motion capture system are retrieved, the buffer with the data from the Arduino board is

emptied, in order to retrieve the data from the sensors at the same time step at which the data from

the motion capture system were retrieved.

Although a sampling frequency of 5 Hz satisfies the Nyquist criterion, which requires a sam-

pling frequency that is, at least, twice the maximum frequency presents in the signals, a faster

sampling frequency is desirable, in order to more accurately represent the high-frequency com-

ponents of the signals. A faster sampling frequency can be achieved by using only one interface

for data streaming from all the sensors to the PC, or by using a PC with 2 different controllers for

the serial bus, which can retrieve the data from the Arduino board and the motion capture system,
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independently.

Regarding the wave maker, for regular wave small periods, the height of the wave is close to

desired value, but is not constant. In contrast, for regular wave long periods, the height of the

wave is 25% higher than the desired value, but is more constant than for small periods. For regular

wave small periods, a non-constant wave height is problematic, as the response of the device is

not regular, and validation of the dynamic model of the device, which takes as input a regular

wave of constant wave height, against the tank tests, can be difficult. However, for regular wave

long periods, the fact that the wave height is higher than the desired value, but is constant, is not

an issue, as the dynamic model can take, as input, a regular wave with actual wave height of the

regular waves generated in the wave-tank.

For implementation of energy-maximising control strategies, the most critical point of the

system set-up for wave tank testing is the slow dynamic response of the stepper motors for the

control of the opening of the flow control valves of the hydraulic dampers. In fact, with the stepper

motors selected for this study, a maximum variation of the opening of the valve of only 10% is

allowed in real-time. Obviously, a maximum variation of the opening of the valve of 10% greatly

reduces the power absorption that can be achieved by real-time control, with respect to the control

strategy based on optimal constant damping for the dampers, presented in Section 4.5.1.1. An

obvious solution, to the slow dynamic response of the stepper motor, is to select different stepper

motors which allow faster rotational speed. Alternatively, the dynamic response of the stepper

motors chosen for the system set-up in this work can be faster, if the supplied voltage to the motor

is increased.

The small variation of the damping force on the fore and aft dampers, for different value of

the opening of the control valves, strongly affects the power absorption performance of both the

real-time control of the damping, and the control strategy based on optimal constant damping for

the dampers. A solution to the small variation of the damping of the dampers is to select different

dampers which allows a greater range of damping than the damping range of the dampers used in

this work.
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Chapter 8

Motion capture system for wave-tank
testing

In Chapter 7, the system set-up for wave-tank testing of a 1/20th scale three-body hinge barge

WEC, is presented. Wave-tank tests are fundamental to asses the response of the WEC to the action

of waves, and to experimentally evaluate the power absorption performance of the WEC. The

system set-up for wave-testing of the WEC features a motion capture system, which is described

in detail in this chapter. While the motion capture system measures the motion of the central barge

of the WEC, the relative pitch motion of the fore and aft barge, with respect to the central barge,

is measured by using rotational incremental encoders, as described in Chapter 7. The wave-tank

tests carried out on the scale model device, are presented in Chapter 9.

8.1 Review on motion capture systems

Usually, the motion of a small scale wave energy converter in a tank-testing environment is tracked

using an optical motion capture system which is composed of several cameras positioned around

the device [116]. The optical motion capture system can measure the 6 degrees of freedom of a

body in a 3D space, i.e. surge, sway, heave, roll, pitch and yaw. Reflective markers are mounted

at different points on the body, and the cameras track their motion with high-precision and a high

sampling rate. The use of reflective markers minimizes the amount of instrumentation needed on

the device and, in general, does not affect the motion of the device. In [123], a tank test facility

with an optical motion capture system with a position accuracy of 0.9 mm at 480 Hz sample rate

is presented. In [124], tank tests are carried out with the Qualisys Motion Capture System [125],

which is a popular system for motion capture in wave tanks.

The principal drawback of optical motion capture systems is their cost, which can be high and,

therefore, the overall cost for wave tank testing is increased. Furthermore, for the test of a full

scale device in sea trials, on-board sensors should be used instead of an optical motion capture

system [126].

In this chapter, a low-cost motion capture system, based on a optimal combination of an Inertial
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Navigation System (INS) with ultrasound sensors, is proposed. The INS is based on an Inertial

Measurement Unit (IMU) which is mounted on the device and measures the accelerations and

angular velocities of the device. Given the initial values on position, velocity and orientation

of the body with respect to the fixed reference frame, the accelerations and angular velocities

provided by the IMU can be integrated in order to determine position, velocity and orientation at

any time instant [127]. However, due to low-frequency noise and bias in the IMU, the integration

process can lead to drift in the position and orientation with an unbounded error that grows with

time [128].

The ultrasonic measurement system is composed of a set of receivers placed around the device

and a transmitter which is mounted on the same point of the device where the IMU is placed. The

transmitter emits an ultrasonic signal which is then processed by the receivers. Given the sound

speed and the travel time of the ultrasonic signal to reach the receivers, the distance of an object

from each receiver can be obtained. The ultrasound sensors measure the absolute position of the

device with respect to a fixed reference frame. For the study in this chapter, the ultrasound sensor

provides measurements at lower sampling rates than the IMU. On the other hand, the position

provided by the ultrasound sensor is characterized by long-term stability, as opposed to the position

obtained through the integration of the IMU outputs.

Therefore, the INS and ultrasound sensor have complementary strengths, which make the

integration of the two systems desirable [129]. In [130], a motion capture system based on an

INS, aided by ultrasound sensors, for an augmented reality system is presented. For maritime and

aviation applications, the INS is usually aided by radio sensors, the Global Position System (GPS)

or ground-based radar [131].

The data provided by the INS and ultrasound sensors can be optimally combined in order to

obtain a motion capture system with a higher update rate for the position than the stand-alone

ultrasound receivers, and with bounded errors for the orientation of the body. Several integration

approaches have been developed for aiding the INS by an external global measurement system: un-

coupled, loosely coupled, tightly coupled and ultra-tightly coupled systems [131]. In this chapter,

a loosely coupled ultrasound sensor aided INS with an Extended Kalman Filter (EKF) is proposed

[132]. In a loosely coupled method, the difference between the estimated position given by the

INS and ultrasound sensors is used to drive an EKF, whose model represents the propagation of

the errors of the INS with time. Then, the estimated errors, computed by the EKF, are used to

correct the position, velocity and orientation provided by the INS.

The remainder of the chapter is organized as follows: in Section 8.2, the ultrasound sensors

and IMU are presented while, in Section 8.3, the operational space for the motion of different

types of 1/20th scale WEC models is calculated. In Section 8.4, a sensor fusion algorithm, based

on the EKF, is designed in order to optimally combine the data provided by the INS and ultrasound

sensors while, in Section 8.5, a protocol and results on the validation of the fusion algorithm is

presented. Finally, overall conclusions are drawn in Section 8.6.
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8.2 Proposed sensor suite

The motion capture system of the WEC, which is the focus of this chapter, is composed of an IMU

and an ultrasound measurement system from Hexamite [133]. In the remainder of this section, the

two type of sensors are explained in more detail.

8.2.1 Ultrasound sensors

The sampling frequency of the ultrasound system is 15 Hz. The ultrasound system is composed

of 4 ultrasound receivers positioned around the device and one ultrasound transmitter which is

attached to the top of the WEC, as shown in Figure 8.1. As shown in Figure 8.1, the receivers

are positioned on a plane 2.5 m wide and 2 m long at 2.0 m above the equilibrium free surface

elevation. The ultrasound measures the absolute position of the WEC with respect to a fixed

reference frame Xg,Yg,Zg located at the position of one of the receivers. Given the speed of sound,

the distance of the WEC from each receiver is obtained by measuring the travel time needed by

the ultrasonic signal emitted by the transmitter to reach each receiver. As shown in Figure 8.2, the

global coordinates xg
T ,y

g
T ,z

g
T of the WEC can be computed, through trilateration, as follows:

xg
T =

r2
1− r2

2 +d2

2d
(8.1)

yg
T =

r2
1− r2

3 +B2 +C2

2C
− B

C
xg (8.2)

zg
T =±

√
r2

1− (xg)2− (yg)2 (8.3)

where r1, r2 and r3 are the distances of the WEC from receivers R1, R2 and R3, respectively.

The parameter d is the distance of receiver R2 from receiver R1 along the Xg axis, while the

parameters B and C are the coordinates of receiver R3 along the Xg and Yg axis, respectively. For

redundancy, four receivers are used so that if one fails, the position of the transmitter can still be

recovered from the remaining three receivers.

8.2.2 Inertial measurement unit

The IMU is composed of 3 accelerometers and 3 gyroscopes. As shown in Figure 8.1, the IMU

is placed at the same point as the ultrasound transmitter. The accelerometer measures the accel-

eration along the 3 axis of translation Xb, Yb and Zb, while the gyroscope measures the angular

velocities around the same axes. The sampling frequency of the IMU is 30 Hz.
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Figure 8.1: Set-up ultrasound measurement system and IMU for measurement of the WEC motion
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8.3 Calculation of operational space for motion

In this section, the operational space for the motion of a 1/20th scale model device for 4 different

WEC types, as shown in Figure 8.3, is considered. The devices selected are: a self-reacting point

absorber, a sphere, a flap and a hinge-barge. As shown in Figure 8.3, each device is connected to a

182



CHAPTER 8. MOTION CAPTURE SYSTEM FOR WAVE-TANK TESTING

PTO

(a)

PTO

(b)

PTO

(c)

PTO 1 PTO 2

(d)

Figure 8.3: Different type of WECs: self-reacting point aborber (a), sphere (b), flap (c) and hinge-
barge (d)

Power Take Off (PTO) system, which extracts the mechanical energy of the device. The analysis

of the motion is restricted to the plane longitudinal to the wave directions, since the wavemaker can

only generate planar waves. Therefore, the motions of interest for this study are surge, heave and

pitch. In the available literature, several studies address the motion of full scale devices. In order to

scale the results from full scale to 1/20th, the Froude similarity is applied, since the gravitational

and inertial forces are considered to be the predominant forces [134]. Given a geometric scale

ratio between the 1/20th scale and the full scale model of λ = 20, the resonant period of the 1/20th

scale model device is given as follows:

Tn,scale =
Tn,dev√

λ
(8.4)

where Tn,dev is the resonant period of the full scale device. In Table 8.1, the operational space

for the motion is shown for the maximum values of position, velocity, acceleration, angular posi-

tion and angular velocity of each type of device, with and without control. The control maximizes

the energy extracted by the PTO by increasing the motion of the device. Different control strate-

gies for WECs have been developed and, for this chapter, the controllers considered are: complex-

conjugate control, latching and Pseudo-Spectral (PS) control [9]. The last column in Table 8.1

shows the maximum value of each motion quantity among all the devices. In the remainder of this

section, the operational space of each device is investigated in detail.
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8.3.1 Self-reacting point absorber

For the self-reacting point absorber, a floating two-body heaving converter, inspired by the Wave-

bob WEC, is considered. The device mainly operates in heave, and it is composed of a spar and a

torus sliding relative to each other [5]. The IMU and the ultrasound transmitter are placed on the

spar, while the relative heave motion of the torus is measured by a linear potentiometer. Regarding

the heaving motion of the spar, the modelling and control of the full scale device is carried out in

both the time and frequency domain in [135]. In particular, for control, the PTO parameters are

optimized at each frequency of the incoming regular wave in order to maximize power absorption.

With non-optimized PTO parameters, the Response Amplitude Operator (RAO) for the heave mo-

tion of the spar shows a maximum value of RAOmax,h = 2.5 m/m at the natural resonant period

of the device Tn,dev = 10 seconds. The resonant period Tn,scale of the 1/20th scale model device is

given from equation (8.4), and is 2.23 s. Given the operational range of the tank in Figure 7.5, for

a regular wave with a period of 2.23 s, the maximum wave height is Hmax = 0.08 m and, therefore,

the maximum heave displacement for the 1/20th scale model device is given as follows:

pmax,h = RAOmax,h ·Hmax/2 = 0.1 m (8.5)

At the resonant frequency ωn,scale = 2π/Tn,scale = 2.8 rad/s, the maximum heave velocity and

acceleration are computed as follows:

vmax,h = ωn,scale · pmax = 0.28 m/s (8.6)

amax,h = ω
2
n,scale · pmax = 0.78 m/s2 (8.7)

With optimized PTO parameters, a complex-conjugate control system is considered, and the

RAO for the heave motion of the spar shows a maximum value RAOcontr,h = 10 m/m around the

natural resonant period of the full scale device. Therefore, the maximum heave displacement,

velocity and acceleration are given as follows:

pcontr,h = RAOcontr,h ·Hmax/2 = 0.4 m (8.8)

vcontr,h = ωn,scale · pcontr,h = 1.12 m/s (8.9)

acontr,h = ω
2
n,scale · pcontr,h = 3.13 m/s2 (8.10)

Although a self-reacting point absorber is designed to mainly operate in heave, the device can

also experience a parametric resonance which induces large amplitudes in the pitch and roll motion

[136]. The parametric resonance in the pitch and roll motion of a self-reacting point absorber is

important for the study in this chapter, since it provides an upper bound on the angular motion

that WECs can experience. A numerical and experimental analysis of the 1/17th scale model of

a self-reacting point absorber is carried out in [136], where it is shown that parametric resonance
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occurs at Tres = 3 s. At the period of the parametric resonance, the pitch motion is greater than the

roll motion, showing a maximum value for the RAO of the pitch motion RAOmax,p =221.7 ◦/m.

Given the operational space of the tank in Figure 7.5, for a regular wave with a period of 3 s, the

maximum wave height is Hmax = 0.04 m and, therefore, the maximum pitch rotation is given as

follows:

pmax,p = RAOmax,p ·Hmax/2 = 4.42 ◦ (8.11)

At wave frequency ωres = 2π/Tres = 2 rad/sec, the maximum pitch velocity is computed as

follows:

vmax,p = ωres · pmax,p = 8.8 ◦/s (8.12)

The study in [135] shows reduced pitch motion at parametric resonance than in [136], both

for the uncontrolled and controlled device. Therefore, in order to evaluate the maximum range of

motion of the device, only the study in [136] is considered for the evaluation of the pitch motion.

However, in order to compute the maximum range of the pitch motion that can be achieved by the

controlled device, a max value pcontr,p =40◦ and vcontr,p =80◦/s are considered.

8.3.2 Sphere

The sphere is a device that operates in heave. The modelling and control of the device is considered

in [137], where the diameter of device is 5 m, inspired by the WAVESTAR device [138]. A latching

control strategy is applied in order to maximize power absorption. For the uncontrolled device,

the RAO for heave motion shows a maximum value RAOmax,h = 1.6 m/m at the natural resonant

period of the device Tn,dev = 3 s. The resonant period Tn,scale of the 1/20th scale model device is

given from equation (8.4), and is 0.67 s. Given the operational range of the tank in Figure 7.5, for

a regular wave with a period of 0.67 s, the maximum wave height is Hmax = 0.1 m and, therefore,

the maximum heave displacement for the 1/20th scale model device is given as follows:

pmax,h = RAOmax,h ·Hmax/2 = 0.08 m (8.13)

At the resonant frequency ωn,scale = 2π/Tn,scale = 9.37 rad/s, the maximum heave velocity

and acceleration are computed as follows:

vmax,h = ωn,scale · pmax = 0.74 m/s (8.14)

amax,h = ω
2
n,scale · pmax = 7.02 m/s2 (8.15)

The RAO for the heave motion with a latching control strategy shows a maximum value

RAOcontr,h = 2 m/m at a period Tdev = 6 sec. The corresponding period Tscale for the scale model

device is obtained from equation (8.4), and it is equal to 1.35 secs. Given the operational range of
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the tank in Figure 7.5, for a regular wave with period around 1.35 secs, the maximum wave height

is Hmax = 0.16 m and, therefore, the maximum heave displacement, velocity and acceleration for

the 1/20th scale model device are given as follows:

pcontr,h = RAOcontr,h ·Hmax/2 = 0.16 m (8.16)

vcontr,h = ωscale · pcontr,h = 0.74 m/s (8.17)

acontr,h = ω
2
scale · pcontr,h = 3.45 m/s2 (8.18)

where ωscale = 2π/Tscale = 4.65 rad/s.

8.3.3 Flap

The flap is a device that pitches around a fixed axis close to the sea bottom with the top of the device

piercing the water surface. The IMU cannot be placed at the bottom of the device and, therefore,

the pitch motion is not directly measurable. Instead, the IMU and the ultrasound transmitter are

placed at the top of the device, and the pitch motion can be measured from the measurements

of the surge motion. The modelling and control of the full scale device is considered in [135].

In particular, for control, the influence of the PTO parameters on the RAO for the pitch motion

and power output is investigated. For the uncontrolled device, the RAO for the pitch motion

shows a maximum value of RAOmax,p = 119.74 ◦/m at the natural resonant period of the device

Tn,dev = 20 s. The resonant period Tn,scale for the scale model device is obtained from equation

(8.4), and is 4.47 s. Given the operational range of the tank, as shown in Figure 7.5, regular waves

of period 4.47 s cannot be generated by the wave maker and, therefore, a lower period Tscale = 3

s is considered instead. A corresponding period for the full scale device Tdev = 13 s is obtained

by using equation (8.4). The RAO for the pitch motion at a period Tn,dev = 13 s shows a value

of RAOp = 49.84 ◦/m. Given the operational range of the tank in Figure 7.5, the maximum wave

height is Hmax = 0.04 m and, therefore, the maximum pitch displacement for the 1/20th scale

model device is given as follows:

pmax,p = RAOp ·Hmax/2 = 1.03 ◦ (8.19)

Given the height of the scale model device hscale = 1 m, a surge motion of amplitude pmax,s =

0.018 m is expected. At the resonant frequency ωscale = 2π/Tscale = 2 rad/s, the maximum surge

velocity and acceleration are computed as follows:

vmax,s = ωscale · pmax,s = 0.036 m/s (8.20)

amax,s = ω
2
scale · pmax,s = 0.07 m/s2 (8.21)

For the controlled device, at periods lower than the resonant period, increasing the PTO pa-
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rameters yields an increase in power, with no significant changes for the RAO of the pitch motion.

8.3.4 Hinge-barge

The hinge-barge device is composed of several bodies interconnected together by hinges. The

modelling and control of the 1/20th scale model device of a three-body hinge-barge is considered

in [139]. The central body can move in heave and in pitch, while the end bodies pitch relative

to the central body. The IMU and the ultrasound transmitter measure the motion of the central

body, while the relative angular displacements of the end barges are measured by angular poten-

tiometers. For the uncontrolled device, at the resonant period of the device of Tn,scale = 1.5 s, the

maximum heave and pitch displacements are pmax,h = 0.025 m and pmax,p = 4.5 ◦, respectively.

At the resonant frequency ωn,scale = 2π/Tn,scale = 4.18 rad/s, the maximum heave velocity and

acceleration are computed as follows:

vmax,h = ωn,scale · pmax,h = 0.1 m/s (8.22)

amax,h = ω
2
n,scale · pmax,h = 0.43 m/s2 (8.23)

while the pitch velocity is given as follows:

vmax,p = ωn,scale · pmax,p = 18.81 ◦/s (8.24)

For the case of the controlled device, PS control is applied in order to maximize the power pro-

duction. The maximum heave displacement pcontr,h = 0.04 m is shown at the period Tscale = 1.25

s. At the frequency ωscale = 2π/Tscale = 5 rad/s, the maximum heave velocity and acceleration

are computed as follows:

vcontr,h = ωn,scale · pcontr,h = 0.2 m/s (8.25)

acontr,h = ω
2
n,scale · pcontr,h = 1 m/s2 (8.26)

The maximum pitch displacement pcontr,p = 10.13 ◦ is developed at a period Tscale = 1.75 s.

At the frequency ωscale = 2π/Tscale = 3.6 rad/s, the maximum pitch velocity is given as follows:

vcontr,p = ωscale · pcontr,p = 36.66 ◦/s (8.27)

8.4 Sensor processing and optimal combination

In this section, the measurements from the ultrasound sensors are combined optimally with the

measurements from the IMU through an EKF in order to obtain an accurate estimation of the
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Self-reacting point
absorber

Sphere Flap Hinge-barge Max Value

Max Po-
sition [m]

0.4 [0.1] 0.16 [0.08] 0.018 [0.018] 0.04 [0.025] 0.4

Max
Velocity
[m/s]

1.12 [0.28] 0.74 [0.74] 0.036 [0.036] 0.2 [0.1] 1.12

Max
Accel-
eration
[m/s2]

3.13 [0.78] 3.45 [7.02] 0.07 [0.07] 1 [0.43] 7.02

Max An-
gle [◦] 40 [4.0] - - 10 [4.5] 40

Max
Angular
velocity
[◦/s]

80 [8.6] - - 36 [18.81] 80

Table 8.1: Operational space for motion of different 1/20th scale model of wave energy converters
with control applied (boldface values) and no control (values in brackets)

position, velocity and orientation of a WEC. For the position, the EKF estimates are updated

using the measurements provided by the ultrasound sensors. Furthermore, since the accelerometer

provides a measure of the gravity force vector, the static orientation of the IMU can be detected

[140], while the transient orientation of the IMU is provided by the gyroscope. Therefore, the EKF

computes the correct position, velocity and orientation from the fusion of the static measurements

provided by the ultrasound sensors with the dynamic measurements provided by the IMU.

The INS is described by the inertial navigation equations, which are a set of nonlinear differ-

ential equations describing the relationship between the position, velocity and orientation of the

WEC, and the outputs from the IMU, which are the accelerations and the angular velocities. The

EKF is based on the navigation error equations, which represent a linearized model of the inertial

navigation equations. The navigation error equations describe how the errors on the position, ve-

locity and orientation of the WEC relate to the errors on the measured accelerations and angular

velocities.

In the reminder of this section, the continuous-time inertial navigation and navigation error

equations are obtained. Then, both navigation and navigation error equations are discretized with

a zero order hold for the inputs. The discrete-time error navigation equations are suitable for the

implementation of the EKF with the sampled measurements from both the ultrasound sensors and

the IMU. Finally, the EKF is introduced in order to integrate the measurements provided by the

ultrasound system with the positions, velocities and orientation computed by the INS.
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8.4.1 Continuous-time inertial navigation equations

The continuous-time inertial navigation equations are given as follows [129]:

ṗg = vg (8.28a)

v̇g = Rg
b(Θ)sb +gg (8.28b)

Ṙg
b = Rg

b(Θ)Ωb
gb (8.28c)

where pg and vg are the global position and velocity vector of the WEC, respectively. The

vector gg represents the gravitational force per unit mass, while sb represents the inertial force

per unit mass expressed in the body frame. The matrix Ωb
gb is the skew-symmetric matrix of the

angular velocities vector ωb = [ωb
gbx

ωb
gby

ωb
gbz

]T expressed in the body coordinate frame, and it is

given as follows:

Ωb
gb =


0 −ωb

gbz
ωb

gby

ωb
gbz

0 −ωb
gbx

−ωb
gby

ωb
gbx

0

 (8.29)

The matrix Rg
b(Θ), used for the transformation of coordinates from the body coordinate frame

to the global coordinate frame, is a function of the vector of Euler angles Θ = [φ θ ψ]T . The state

space form of equations (8.28a)-(8.28b) can be expressed as:

ẋ = Ad+Bn (8.30)

where:

x = [pg,T vg,T ]T (8.31a)

n = Rg
b(Θ)sb +gg (8.31b)

A =

[
03 I3

03 03

]
(8.31c)

B =

[
03

I3

]
(8.31d)

8.4.2 Continuous-time navigation error equations

The continuous-time navigation error equations are obtained through linearization of the naviga-

tion equations around the estimated positions, velocities and orientation computed by the INS. The
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estimated position, velocity and orientation are given as [129]:

˙̂pg = v̂g (8.32a)

˙̂vg = R̂g
b(Θ)sb + ĝg (8.32b)

˙̂Rg
b = R̂g

b(Θ)Ωb
gb (8.32c)

where the notation (·̂) and (·̃) represent estimated and measured quantities, respectively. The

estimated rotation matrix R̂g
b(Θ) is given as follows:

R̂g
b(Θ) = (I−Ωε)Rg

b (8.33)

where Ωε is the skew-symmetric matrix of the elements of the orientation angles error vector

ε= [ε1 ε2 ε3]
T , and is given as follows:

Ωε =

 0 −ε3 ε2

ε3 0 −ε1

−ε2 ε1 0

 (8.34)

Defining the errors on the estimated position and velocity as:

δpg = pg− p̂g (8.35)

δvg = vg− v̂g (8.36)

while the errors on the measured accelerations and angular velocities are given as:

δsb = sb− s̃b (8.37)

δωb
gb = ω

b
gb− ω̃b

gb (8.38)

For the position errors, by substitution of equation (8.35) into equation (8.32a), the following

linearized equation is obtained:

δṗg = δvg (8.39)

For the velocity errors, by substitution of equation (8.36) into equation (8.32b), the following

equation is obtained:

v̇g−δv̇g = (I−Ωε)Rg
b(s

b−δsb)+ ĝg (8.40)

Neglecting the terms of second order yields the linearized velocity error equation:
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δv̇g = ΩεRg
bsb +Rg

bδsb

=−Sgε+Rg
bδsb (8.41)

where Sg is the skew-symmetric matrix of the elements of the inertial force per unit mass

vector sg = [sg
x sg

y sg
z ]T , and is given as follows:

Sg =

 0 −sg
z sg

y

sg
z 0 −sg

x

−sg
y sg

x 0

 (8.42)

For the orientation angle errors, by differentiation of the right-hand side of equation (8.33) and

substitution into equation (8.32c), yields to the following equation:

−Ω̇εRg
b +(I−Ωε)Ṙ

g
b = R̂g

b(Θ)Ω̃b
gb (8.43)

By substitution of equations (8.33) and (8.38) into the right-hand side of equation (8.43), the

following equation is obtained:

Ω̇ε = Rg
bδΩb

gbRb
g (8.44)

Equation (8.44) can be rewritten as [141]:

ε̇= Rg
bδωb

gb (8.45)

Hence, the continuous-time navigation error equations are given as follows:

δṗg = δvg (8.46a)

δv̇g =−Sgε+Rg
bδsb (8.46b)

ε̇= Rg
bδωb

gb (8.46c)

The system of equations in (8.46) describes how the evolution over time of the errors on the

positions, velocities and orientations is related to the errors on the measured accelerations and

angular velocities. If the errors on the accelerations and angular velocities are modeled as biases,

the state space form of the system of equations in (8.46) is as follows:

δẋ = Fδx+Gu (8.47)

where:
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δx = [δpg,T
δvg,T εT

δsb,T
δωb,T

gb ]T (8.48a)

u = [wT
acc wT

gyro]
T (8.48b)

F =


03 I3 03 03 03

03 03 −Sg Rg
b 03

03 03 03 03 Rg
b

03 03 03 03 03

03 03 03 03 03

 (8.48c)

G =


03 03

Rg
b 03

03 Rg
b

03 03

03 03

 (8.48d)

(8.48e)

with wacc and wgyro denoting the accelerometer noise and gyroscope noise, respectively. The

covariance matrix of the measurement noise u is:

Q =

[
σ2

accI3 03

03 σ2
gyroI3

]
(8.49)

8.4.3 Discrete time inertial navigation equations

The continuous-time inertial navigation equations in (8.30) are discretised to make them suitable

for the implementation of the EKF with the sampled measurements from both the ultrasound

sensors and IMU. Assuming that the input n in (8.30) is constant over a sampling period, the

zero-order-hold sampling of the state space in (8.30) becomes [129]:

xk+1 =

[
03 TsI3

03 03

]
xk +Tsnk (8.50)

where Ts is the sampling period. For the discretisation of the orientation equation in (8.28c),

if the measured angular velocity Ωb
gb is constant over a sampling period, the discrete orientation

equation is as follows:

Rg
b,k+1 = Rg

b,k(2I3 +Ωb
gb,kTs)(2I3−Ωb

gb,kTs)
−1 (8.51)

The vector of Euler angles Θk, used to represent the orientation of the body coordinate frame,

can be computed from Rb,k [142].
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8.4.4 Discrete time navigation error equations

The discrete-time inertial navigation error equations are derived from the continuous-time inertial

navigation errors equations in (8.47). If the matrix F is constant over a sampling period, the

discrete-time inertial navigation errors equations are given as follows [129]:

δxk+1 = ( I+F(kTs)Ts) δxk +uk (8.52)

where the covariance matrix of the discrete-time process noise uk is given as [141]:

Qk = G(kTs)QG(kTs)
T Ts =


03 03 03 06

03 σ2
accI3 03 06

03 03 σ2
gyroI3 06

06 06 06 06

 (8.53)

8.4.5 Extended Kalman Filter

The EKF integrates the measurements provided by the ultrasounds system with the position, ve-

locities and orientation computed by the INS. Equations (8.50) and (8.51) can be written as:

zk+1 = c(zk,ak) (8.54)

where zk = [xk Θk]
T and ak = [sb

k ω
b
k ]

T . If the measurements from the ultrasound system are

available, the estimates of the positions, velocities and orientation are given as [129]:

ẑk+1 = ẑ−k+1 +δẑk+1 (8.55a)

âk+1 = ãk+1 +δâk+1 (8.55b)

ẑ−k+1 = c(ẑk, âk) (8.55c)

δẑk+1 = [δx̂k+1]1,..,9 (8.55d)

δâk+1 = [δx̂k+1]10,..,15 (8.55e)

δx̂k+1 = δx̂−k+1 +Kk+1( yk+1−Hk( ẑ−k+1 +δx̂−k+1) ) (8.55f)

Kk+1 = P−k+1HT
k (HkP−k+1HT

k +Rk)
−1 (8.55g)

P−k+1 = ( I+F(kTs)Ts)Pk( I+F(kTs)Ts)
T +Qk (8.55h)

Pk+1 = P−k+1−Kk+1HkP−k+1 (8.55i)

δx̂−k+1 = ( I+F(kTs)Ts)δx̂k (8.55j)

where yk+1 is the vector of the positions provided by the ultrasound system and static orien-

tation measured by the accelerometer. The matrix Rk is the covariance matrix of the noise on

position and static orientation. The matrix Hk ∈ R6,15 is the measurement matrix, which is given
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as follows:

Hk =

[
I3,3 03,3 03,3 03,6

03,3 03,3 I3,3 03,6

]
(8.56)

If no ultrasound data are available, estimates of the positions, velocities and orientation are

given as follows:

ẑk+1 = ẑ−k+1 +δẑ−k+1 (8.57a)

âk+1 = ãk+1 +δâ−k+1 (8.57b)

ẑ−k+1 = c(ẑk, âk) (8.57c)

δẑ−k+1 = [δx̂−k+1]1,..,9 (8.57d)

δâ−k+1 = [δx̂−k+1]10,..,15 (8.57e)

P−k+1 = ( I+F(kTs)Ts)Pk( I+F(kTs)Ts)
T +Qk (8.57f)

δx̂−k+1 = ( I+F(kTs)Ts)δx̂k (8.57g)

8.5 Validation sensor system with a 6-axis robotic manipulator

In order to validate the motion sensors proposed in Section 8.2 and the sensor fusion algorithm in

Section 8.4, a series of experimental tests were carried out with a servo controlled six-axis robot

arm at the Mobile and Marine Robotics Research Centre at the University of Limerick. The robot

is a Stäubli TX Series 60 [143] which has a position repeatability at constant temperature of ±
0.02 mm, while the angular resolution for the wrist joint is 0.172 ◦.

8.5.1 Validation protocol

In this section, a series of tests with the robot is proposed in order to cover the operational space

in Table 8.1. The operational space described in Table 8.1 cannot be fully covered due to phys-

ical limitations of the robot. The setup of the sensors illustrated in Figure 8.1 was replicated by

mounting the ultrasound receivers on a wall along a square of 2.3 m by 2.3 m, while the IMU,

along with the ultrasound transmitter, was mounted on the end effector of the robot which is fac-

ing the ultrasound receivers. In Figure 8.4, the setup of the IMU and the global coordinate frame

of the ultrasound sensors for the tests with the robot is shown. The motion of the robot arm is

programmed with a high-level interface with no logging of the actual motion data performed by

the robot. Therefore, the measurements performed with the motion capture system are compared

to the set-points given to the robot through the high-level interface. In order to test the static

performance of the motion capture system, the following static tests are proposed:

• Position measurements:
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Figure 8.4: Set-up of the IMU and ultrasound coordinate frame Xg,Yg,Zg for the tests with the
Stäubli robot

SPx Measurements of the positions given by the ultrasound sensors for a range of x from

-0.4 m to 0.4 m, with an increment of 0.01 m between each measurement.

SPy Measurements of the positions given by the ultrasound sensors for a range of y from

-0.4 m to 0.4 m, with an increment of 0.01 m between each measurement.

SPz Measurements of the positions given by the ultrasound sensors for a range of z from

-0.4 m to 0.4 m, with an increment of 0.01 m between each measurement.

SP* Measurements of the positions given by the ultrasound sensors for the points of a cube

of side 0.2 m, with a space of 0.1 m between each points.

• Rotation angle measurements

SRx Measurements of constant rotations around Xb within a range of values from -40◦ to

40◦, with an increment of 2◦ between each measurement.

SRy Measurements of constant rotations around Yb within a range of values from -40◦ to

40◦, with an increment of 2◦ between each measurement.

SRz Measurements of constant rotations around Zb within a range of values from -40◦ to

40◦, with an increment of 2◦ between each measurement.

• Rotational velocity measurements
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SWx Measurements of constant rotational velocities around Xb axis, within a range of

values from -229◦/s to 229◦/s.

SWy Measurements of constant rotational velocities around Yb axis, within a range of

values from -229◦/s to 229◦/s.

SWz Measurements of constant rotational velocities around Zb axis, within a range of

values from -229◦/s to 229◦/s.

Given the operational space in Figure 8.3, and the operational range of the wave maker in

Figure 7.5, the following dynamic tests are proposed:

• Position measurements

DPx Measurements of sinusoidal positions for x with a peak to peak amplitude of 0.2 m

and a range of periods from 1.25 s to 3 s.

DPy Measurements of sinusoidal positions for y with a peak to peak amplitude of 0.2 m

and a range of periods from 1.25 s to 3 s.

DPz Measurements of sinusoidal positions for z with a peak to peak amplitude of 0.2 m and

a range of periods from 1.25 s to 3 s.

• Rotation angle measurements

DRx Measurements of sinusoidal rotations with amplitude of 20◦ around the axis Xb, with

a range of periods from 1.25 s to 3 s

DRy Measurements of sinusoidal rotations with amplitude of 20◦ around the axis Yb, with

a range of periods from 1.25 s to 3 s

DRz Measurements of sinusoidal rotations with amplitude of 20◦ around the axis Zb, with

a range of periods from 1.25 s to 3 s

• Path trajectory

DHelix Trajectory of the position along a helix of diameter 0.2 m and height 0.2 m

8.5.2 Validation results

8.5.2.1 Static tests

In this section, the results from the experimental tests with the robot are presented. In the upper

part of Figure 8.5, the x-position from the ultrasound sensors Xmeas, for the test SPx, are shown

for different actual value of displacement Xin. In order to calibrate the ultrasound sensors along

the x-axis, the measurements are interpolated with a polynomial. The degree of the polynomial

is chosen as 5, as it provides a good trade-off between complexity and interpolation error. In the

lower part of Figure 8.5, the absolute value of the error between Xin and the measurement Xmeas
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is compared to the absolute value of the error between Xin and the interpolant polynomial. As the

lower part of Figure 8.5 shows, the interpolant polynomial provides a significantly lower position

error than the measurements Xmeas. The maximum error on x-position given by the interpolant

polynomial is approximately 0.005 m.

In the upper part of Figure 8.6, the y-position from the ultrasound sensors Ymeas, for the test

SPy, are shown together with a interpolant polynomial of degree 5 for different actual value of

displacement Yin. In the lower part of Figure 8.6, the absolute value of the error between Yin

and the measurement Ymeas is compared to the absolute value of the error between Yin and the

interpolant polynomial. The maximum error on y-position given by the interpolant polynomial is

approximately 0.005 m.

In the upper part of Figure 8.7, the z-position from the ultrasound sensors Zmeas, for the test

SPz, are shown together with a interpolant polynomial of degree 5 for different actual value of

displacement Zin. In the lower part of Figure 8.7, the absolute value of the error between Zin

and the measurement Zmeas is compared to the absolute value of the error between Zin and the

interpolant polynomial. The maximum error on z-position given by the interpolant polynomial is

approximately 0.005 m.

In Figure 8.8, the positions from the ultrasound sensors are shown for points of a cube, for

the test SP*. The x,y and z coordinates provided by the motion capture system are corrected by

using the polynomials computed for the tests performed individually along the x,y and z axis. The

average absolute errors between the actual points and the points computed by the polynomial for

the x,y and z coordinates are 0.0054 m, 0.0047 m and 0.0033 m, respectively.

In conclusion, for static position measurements, the ultrasound sensors provide an accuracy

of 0.005 m along the x,y and z direction, which is considerably worse that the accuracy of 0.001

m stated by the Hexamite company. It is important to highlight that, the EKF does not show any

significant improvement of the position accuracy with respect to the ultrasound sensors, since the

acceleration measurements provided by the IMU are affected by a considerable bias and, therefore,

the position measurement computed by the inertial navigation equations quickly diverges over

time.

In order to statically calibrate the accelerometer of the IMU along the x,y and z direction,

the tests SRX and SRZ are used. In fact, as the IMU rotates around the x-axis and z-axis, the

components of the gravity vector along the x-axis, y-axis and z-axis of the accelerometer change

accordingly. Given a set of different rotations, a calibration procedure for the accelerometers

based on the minimization of the squared errors between the applied gravity forces and a model

for the accelerometer is proposed in [144]. The model takes into account the scaling factors and

biases of the accelerometer sensitivity axis. Furthermore, given that the accelerometer axes are

not perfectly orthogonal due to the imprecise manufacturing process, the model also considers the

misalignment angles of the accelerometer sensitivity axes with respect to a set of orthogonal axes.
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The cost function to be minimized is as follows:

min
θ

N

∑
k=1

(‖ûk‖2−‖h(ŷk,θ‖2)2 (8.58)

where N is the number of rotation performed, ûk is the applied gravity force vector and ŷk is

the output of the accelerometer. The vector of the model parameters θ is as follows:

θ =
[
kx ky kz αyz αzy αzx βx βy βz

]T
(8.59)

where ki,αi, with i = x,y,z, are the unknown scaling and bias parameters of the accelerometer

along the i direction. The misalignment angles αi, j, with i = y,z and j = x,y,z, represents the

rotation of the i-th accelerometer sensitivity axis around the j-th axis of the orthogonal frame. The

model of the accelerometer h(ŷk,θ) is given as follows:

ûk = h(ŷk,θ) (8.60)

where:

h(ŷk,θ) = TK−1(ŷk−b) (8.61)

and:

T =

1 −αyz αzy

0 1 −αzx

0 0 1

 (8.62)

K = diag(kx,ky,kz) (8.63)

b = [βx βy βz]
T (8.64)

In Table 8.2, the scale factors and biases of the accelerometer sensitivity axes are shown while,

in Table 8.3, the misalignment angles of the accelerometer sensitivity axes are shown. Regarding

the calibration of the gyroscope, the same calibration procedure applied to the accelerometer can

be used. The gyroscope sensitivity axes x, y and z are calibrated by using tests SWX, SWY and

SWZ, respectively. The cost function to be minimized is shown in equation (8.58), where N is

the number of the constant angular velocities performed. In Table 8.4, the scale factors and biases

of the gyroscope sensitivity axis are shown while, in Table 8.5, the misalignment angles of the
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Acc-axis Scale factor Bias
X 16.55 -4.28
Y 16.65 1.35
Z 16.47 -8.06

Table 8.2: Scale factor and bias for accelerometer sensitivity axis

Acc-angle Value
αyz 0.0039
αzy -0.024
αzx 0.0128

Table 8.3: Misalignment angle of accelerometer sensitivity axis

Gyro-axis Scale factor Bias
X 0.1039 7.4 ×10−3

Y 0.1068 2.74 ×10−4

Z 0.1152 -3.94 ×10−4

Table 8.4: Scale factors and biases for gyroscope sensitivity axis

Gyro-angle Value
αyz -0.0344
αzy -0.0192
αzx -0.0204

Table 8.5: Misalignment angle of gyroscope sensitivity axis

gyroscope sensitivity axes are shown.

For the measurement of the static rotations of the IMU around the x-axis, y-axis and z-axis,

two different approaches are considered: integration of the angular velocities provided by the

gyroscope and measurement of the applied gravity vector given by the calibrated accelerometer.

The integration of the angular velocity diverges over time, since the gyroscope is affected by drift.

The calibrated accelerometer can be used to measure the rotation of the IMU around the x-axis

and z-axis, as the components of the gravity vector along the x-axis, y-axis and z-axis change

with the performed rotation angle. However, for measurement of the static rotations of the IMU

around the y-axis, the accelerometer cannot be used, since the gravity vector acts along the y-axis

and, therefore, no change in the components of the gravity vector is detected along the x-axis and

z-axis of the accelerometers.

In the upper part of Figure 8.9, rotation measurements around the x-axis, from the accelerom-

eter and gyroscope φmeas for the test SRx, are shown for different actual rotations φin. In the lower

part of Figure 8.9, the absolute value of the errors between φin and the measurements φmeas from
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Figure 8.5: Measurement of the x positions of the ultrasound transmitter or the test SPx
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Figure 8.6: Measurement of the y positions of the ultrasound transmitter for the test SPy

the accelerometer and gyroscope are shown. The maximum error on the rotation around the x-axis

is 2◦ and 0.9◦ for the gyroscope and accelerometer, respectively.
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Figure 8.7: Measurement of the z positions of the ultrasound transmitter for the test SPz
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Figure 8.8: Measurement of the x,y and z positions of the ultrasound transmitter for the test SP*

In the upper part of Figure 8.10, rotation measurements around the y-axis, from the gyroscope

θmeas for the test SRy, are shown for different actual rotations θin. In the lower part of Figure 8.10,
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the absolute errors between θin and the measurements θmeas from the gyroscope are shown. The

maximum error on the rotation around the y-axis is 4◦. Despite the poor accuracy of the measure-

ment of the rotation angle around the y-axis, for a wave tank that only generates plane waves, the

rotation of the device around the axis where the gravity vector is acting upon is negligible.

In the upper part of Figure 8.11, the rotations around the z-axis from the accelerometer and

gyroscope ψmeas, for the test SRz, are shown for different actual rotations ψin. In the lower part

of Figure 8.11, the absolute value of the errors between ψin and the measurements ψmeas from the

accelerometer and gyroscope are shown. The maximum error on the rotation around the z-axis is

4◦ and 1◦ for the gyroscope and accelerometer, respectively.

In conclusion, for static rotation around the x and z axes, the accelerometer provides a bounded

error of 1◦, while the gyroscope is affected by a considerable bias, which provides an error of

4◦. It is important to highlight that, the EKF does not show any significant improvement of the

rotation accuracy given by accelerometer, since the gyroscope is affected by a considerable bias

and, therefore, the rotation measurement computed by the inertial navigation equations quickly

diverges over time.
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Figure 8.9: Measurement of the angle φ around the x-axis of the IMU for the test SRx

8.5.2.2 Dynamic tests

In the upper part of Figure 8.12, the peak-to-peak amplitudes of the x-position from the ultrasound

sensors Xamp, for the test DPx are shown for different periods of sinusoidal trajectories with a

202



CHAPTER 8. MOTION CAPTURE SYSTEM FOR WAVE-TANK TESTING

−30 −20 −10 0 10 20 30
−40

−20

0

20

40

θ
meas

 [degrees]

θ in
 [°

]

 

 

−30 −20 −10 0 10 20 30
−4

−2

0

2

θ
in

 [degrees]

er
ro

r 
[°

]

 

 

gyro

Figure 8.10: Measurement of the angle θ around the y-axis of the IMU for the test SRy
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Figure 8.11: Measurement of the angle ψ around the z-axis of the IMU for the test SRz

reference peak-to-peak amplitude of 0.2 m. In the lower part of Figure 8.12, the absolute value

of the errors between Xamp and the reference position is shown. Note that, for a period of 1 s,

the position of the robot was not a perfect sinusoid, due to the high speed required to the robot.

Altogether, the accuracy on the x-position is of 0.002 m.
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In the upper part of Figure 8.13, the peak to peak amplitudes of y-position from the ultrasound

sensors Yamp, for the test DPy, are shown, for different periods of sinusoidal trajectories, with a

reference peak-to-peak amplitude of 0.2 m. In the lower part of Figure 8.13, the absolute value of

the errors between Yamp and the reference position is shown. The maximum error on the y-position

is of 0.005 m.

In the upper part of Figure 8.14, the peak to peak amplitudes of z-position from the ultrasound

sensors Zamp, for the test DPz, are shown for different periods of sinusoidal trajectories with a

reference peak-to-peak amplitude of 0.2 m. In the lower part of Figure 8.14, the absolute value of

the errors between Zamp and the reference position is shown. The maximum error on the z-position

is of 0.005 m.

In conclusion, for dynamic position measurements, the ultrasound sensors provide an accuracy

of 0.005 m along the x,y and z direction which is the same as the accuracy provided by the static

position tests. The EKF does not show any significant improvement of the position accuracy given

by the ultrasound sensors.

In Figure 8.15, the comparison between the angle φ computed with the EKF, accelerometers

and gyroscope is shown for a sinusoidal angular motion of amplitude A=20◦ and period T =3.0

s. In Figure 8.16, the comparison between the angle ψ computed with the EKF, accelerometers

and gyroscope is shown for a sinusoidal angular motion of amplitude A=20◦ and period T =3.0 s.

As Figure 8.15 and 8.16 show, for the measurement of the dynamic rotations of the IMU around

the x-axis and z-axis, the EKF provides a more accurate estimation of the angles than the angles

obtained from the accelerometer or from the integration of the gyroscope angular velocities.

In the upper part of Figure 8.17, the rotations around the x-axis from the EKF φmeas, for the test

DRx, are shown for for different periods of sinusoidal trajectories with a reference peak-to-peak

amplitude of 40◦. In the lower part of Figure 8.17, the absolute value of the errors between φmeas

and the reference angle is shown.

In the upper part of Figure 8.18, the rotations around the z-axis from the EKF ψmeas, for the test

DRz, are shown for for different periods of sinusoidal trajectories with a reference peak-to-peak

amplitude of 40◦. In the lower part of Figure 8.18, the absolute value of the errors between ψmeas

and the reference angle is shown.

In conclusion, for dynamic rotation measurements, the EKF provides a bounded error of 2◦.

The gyroscope is affected by a considerable bias and, therefore, the error grows with time. On the

other hand, the rotation measurement provided by the accelerometer is not affected by bias but it

is noisy.

In Figure 8.19, the trajectory of the position given by the ultrasound sensors along the helix

defined for the test DHelix is shown. The error on the diameter is 0.004 m, while the error on the

height is 0.002 m. The accuracy along the x, y and z axes are consistent with the accuracy obtained
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Figure 8.12: Measurement of the x positions of the ultrasound transmitter for the test DPx
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Figure 8.13: Measurement of the y positions of the ultrasound transmitter for the test DPy

for the static and dynamic position measurements.
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Figure 8.14: Measurement of the z positions of the ultrasound transmitter for the test DPz
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Figure 8.15: Comparison between the angle φ around the x-axis of the IMU between computed
with the EKF, accelerometer and gyroscope for a period T = 3.0 and amplitude A = 20◦
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Figure 8.16: Comparison between the angle ψ around the z-axis of the IMU between computed
with the EKF, accelerometer and gyroscope for a period T = 3.0 and amplitude A = 20◦

1.5 2 2.5 3
35

40

45

φ am
p [°

]

1.5 2 2.5 3
0

2

4

6

period [sec]

er
r 

φ 
[°

]

Figure 8.17: Measurement of the angle φ around the x-axis of the IMU for the test DRx

8.6 Conclusions

This chapter describes the development, and calibration of, a low-cost motion capture system for

wave-tank tests. The motion capture system is based on two different sensors: ultrasound sensors,
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Figure 8.18: Measurement of the angle ψ around the z-axis of the IMU for the test DRz
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Figure 8.19: Trajectory of the position along a helix for the test DHelix

which provide position measurements with a low sampling rate but bounded errors, and an IMU,

which provides accelerations and angular velocities with a high sampling rate, but characterized

by biases which induces drifts in the integration process used to obtain positions and orientations.
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Given the complementary strength of the two sensor modalities, a natural choice for the fusion of

the information from the two sensors is represented by EKF which estimates positions, velocities

and orientation more accurately than the two sensors alone.

The tests performed in this chapter show that the ultrasound sensors have a position accuracy

of 5 mm along the x, y and z axes, depending on the range of the position. The position accuracy of

the ultrasound sensors is considerably worse than the accuracy stated by the Hexamite company of

1 mm. The EFK does not show any significant improvement of the position accuracy with respect

to the ultrasound sensors. An alternative to the ultrasound sensors is an optical capture system,

which gives more precise measurements but at a more expensive cost. In fact, while the ultrasound

measurement system used for the study in this chapter costs around e 1.5k, the cost for a optical

capture system can range from e 4k to e 10k.

On the other hand, for rotation measurements, the overall accuracy provided by the EKF is

good, with bounded errors of 1◦ around the x and z axis, depending on the range of the rotation.

The rotation computed by the integration of the angular velocity provided by the gyroscope is

characterized by an error that grows over time. The accelerometer provides an accurate and stable

measure of the static rotation, but the dynamic accuracy is affected by the level of noise in the

measurements. The EKF optimally combines the strengths of the gyroscope and accelerometer to

compute an accurate and stable rotation both in the static and dynamic scenario.

In Chapter 9, the wave-tank tests of a 1/20th scale three-body hinge-barge device, with the

motion of the central barge measured by the motion capture system developed and validated in

this chapter, are presented, while, the relative pitch motion of the fore and aft barge, with respect

to the central barge, is measured by using rotational incremental encoders presented in Chapter 7.

209



Chapter 9

Wave-tank tests on a 1/20th scale model
device

9.1 Introduction

In this chapter, the wave-tank tests performed on a 1/20th scale three-body hinge-barge device,

which is shown in Figure 7.1a, are presented. As shown in Figure 7.1a, while the relative pitch

motion of fore and aft barge, with respect to the central barge, is measured by using the rotational

encoders presented in Chapter 7, the motion of the central barge is measured by using the motion

capture system based on the ultrasound sensors and IMU. In particular, the motion of the central

barge is computed with an EKF which optimally combines the measurements provided by the

ultrasound sensors and IMU. Full details on the ultrasound sensors, IMU and EKF are presented in

Chapter 8. The forces applied by the hydraulic dampers shown in Figure 7.1a are measured using

the loads cells presented in Chapter 7. As shown in Figure 7.1b, the incident wave is measured

using a wave gauge placed 1.2 m up-wave of the device.

The motion of the scale model WEC is restricted to the plane defined by the Xg-Zg axis, as

shown in Figure 8.1, since the wave-tank used for the system set-up presented in Chapter 7, is

equipped with a paddle wave maker that can only generate planar regular and irregular waves.

Therefore, the motions of interest of the WEC are the heave displacement and pitch rotation of the

central barge, and the relative pitch rotation of the fore and aft barge, with respect to the central

barge.

In summary, the following measurements were recorded during the wave-tank tests:

• Heave displacement of the central barge, measured by the motion capture system.

• Pitch rotation of the central barge, measured by the motion capture system.

• Relative pitch rotation of the fore and aft barge, with respect to the central barge, measured

by rotational encoders.

• Incident wave 1.2 m up-wave of the device, measured by a wave gauge.
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• Axial force along the hydraulic dampers, measured by load cells.

A series of tanks tests with regular and irregular waves were performed, with the direction of

the waves along the longitudinal direction of the device. For the tests with regular waves, a series

of tests with a range of regular wave frequencies from 3.14 rad/sec to 8.4 rad/secs and amplitude

of 0.02 m, was performed. For irregular waves, two different tank tests were performed:

• “Irr 1”: incident wave made using a Bretschneider spectrum, with a significant wave height

Hs = 15 cm and peak period Tp = 1.25 seconds

• “Irr 2”: incident wave made using a Bretschneider spectrum, with a significant wave height

Hs = 15 cm and peak period Tp = 1.5 seconds

Note that the measurement of the heave displacement of the central barge, provided by the

ultrasound sensors, is highly affected by the reflection of the ultrasonic waves generated by the

ultrasound transmitter placed on the central barge, which is shown in Figure 8.1. The ultrasonic

waves generated by the ultrasonic transmitter can be reflected by the water or by the box walls

containing the transmitter. Thus, the reflected ultrasonic waves affect the ultrasonic waves trans-

mitted from the ultrasound transmitter to the ultrasound receivers, resulting into a corruption of

the measurement of the distance of the ultrasound transmitter from the each receiver. For regular

waves with a period between 1.7 seconds to 2 seconds, the effect of the reflect ultrasonic waves is

relatively small compared to the heave motion of the central barge. In fact, for regular waves with

a period between 1.7 seconds to 2 seconds, the device essentially behaves like a wave follower,

with small relative pitch rotations of the fore and aft barge with respect to the central barge, and

maximum heave motion of the central barge. However, for regular waves with a period between

0.75 seconds to 1.7 seconds, the heave motion of the central barge is small and, therefore, the

effect of the reflected ultrasonic waves, on the measurement of the heave motion of the central

barge, is high.

By way of example, in Figure 9.1, the heave displacement of the central barge, measured

with the ultrasound sensors only, is shown for a regular wave of period T = 1.75 seconds and

amplitude A=0.025 m. Note that the EKF does not improve the measurement of the heave motion

with respect to the measurement provided by the ultrasound sensors, as presented in Chapter 8.

As shown in Figure 9.1, the measurement of the heave motion of the central barge is not purely

sinusoidal with one main frequency component, as the ultrasonic measurement is affected by the

reflected ultrasonic waves. Therefore, in the remainder of this chapter, the heave displacement of

the central barge is not further considered because of the effect of reflected ultrasonic waves on

the ultrasonic measurement.

Furthermore, it is noted that, for regular waves with a period between 1.7 seconds to 2 seconds,

the damping plate attached to the central barge, as shown in Figure 7.1a, does not reduce the heave

motion of the central barge and, therefore, the relative pitch motion between the fore and aft barge,
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Figure 9.1: Heave displacement of the central barge measured in tank with ultrasound sensors for
regular waves of period T = 1.75 seconds amplitude 0.02 m.

with respect to the central barge, is not maximized. Thus, the damping plate does not extend the

frequency bandwidth over which the maximum power absorption is realized.

The objective of this chapter is to present the wave-tank tests performed on a 1/20th scale

hinge-barge device, and derive a linear dynamic model for the device, for model based optimal

control. In particular, the dynamic model is described in terms of the pitch rotation of the central

barge, and the relative pitch rotation of fore and aft barge, with respect to the central barge. The

dynamic model of the three-body hinge-barge device, derived in Section 3.5, is tuned by using the

experimental transfer functions between the wave elevation and the pitch rotations of the barges,

as presented in Section 3.5.3.2. In particular, given that the device has a resonant frequency around

1.5 seconds, the set of tank tests with irregular waves “Irr 2 ”, is used to tune the dynamic model.

Then, the tuned dynamic model is validated against tank tests with irregular waves “Irr 1” and

regular waves. The tuned dynamic model is used to derive a control strategy based on optimal

linear damping coefficients, as presented in Section 4.5.1.1.

The remainder of the chapter is organized as follows: in Section 9.2, the experimental transfer

functions between the wave elevation and the pitch rotations of the barges, and the experimental

transfer functions between the wave elevation and the forces exerted by the fore and aft hydraulic

damper, are presented. In Section 9.3, a linear dynamic model for a 1/20th scale hinge-barge

device is tuned with the tank tests with irregular waves “Irr 2 ” while, in Section 9.4, the tuned

dynamic model is validated against the tank tests with irregular waves “Irr 1” and regular waves.

In Section 9.5, a control strategy based on optimal linear damping coefficients for the hydraulic

dampers is presented. Finally, overall conclusions are drawn in Section 9.6.
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9.2 Experimental transfer functions with regular and irregular waves

In this section, the experimental transfer functions between the wave elevation and the pitch ro-

tations of the barges, and the experimental transfer functions between the wave elevation and the

forces exerted by the fore and aft hydraulic damper, are calculated using the tank tests with regular

waves, and irregular waves “Irr 1” and “Irr 2”. The spectral densities of the incoming wave for the

tests with irregular waves “Irr 1” and “Irr 2” are shown in Figure 7.14 and 7.16, respectively. For

the tank-tests presented in this section, the opening of the flow control valve of the fore and aft

hydraulic damper is set to 50%.

In order to facilitate the intepretation of the results, while the fore, central and aft barge are

denoted as body 1, 2 and 3, respectively, the fore and aft hydraulic dampers are denoted as damper

1 and 2, respectively. For regular waves, the modulus of the transfer functions between the wave

elevation and the pitch rotations of the bodies, and the module of the transfer functions between the

wave elevation and the forces exerted by the dampers, are determined by dividing the positive peak

value of the pitch rotations and damper forces by the amplitude of the incoming wave, respectively.

For irregular waves, the transfer functions between the wave elevation and the pitch rotations

of the bodies, and the transfer functions between the wave elevation and the forces exerted by the

dampers, are experimentally computed via equation (3.105).

9.2.1 Experimental transfer functions for pitch rotations

The experimental transfer functions for the pith rotation of body 2 is given as follows:

Hθ2(ω) =

√
Sθ2θ2

Sηη

e j∠Sθ2η (9.1)

where Sθ2θi , Sηη and Sθ2η are the power spectral density of the pitch rotation of body 2, power

spectral density of the wave elevation, and the cross power spectral density between the pitch

rotation of body 2 and the wave elevation, respectively. Similarly, for the relative pitch rotation of

body 1 and 3 with respect to body 2, the experimental transfer functions are given as follows:

Hθi,rel (ω) =

√
Sθi,relθi,rel

Sηη

e j∠Sθi,rel η (9.2)

where i = 1,3 and Sθi,relθi,rel and Sθi,relη are the power spectral density of the relative pitch

rotation of body i, and the cross power spectral density between the relative pitch rotation of body

i and the wave elevation, respectively.

In Figure 9.2, the modulus of the experimental transfer functions, between the wave elevation

and the pitch rotation of body 1, 2 and 3, are shown for the wave-tank tests with regular waves,

irregular waves “Irr 1” and “Irr 2”. In Figure 9.3, the phase of the experimental transfer functions

between the wave elevation and the pitch rotations of body 1, 2 and 3, are shown for the wave-tank

tests with irregular waves “Irr 1” and “Irr 2”.
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As shown in Figure 9.2, the modulus of the experimental transfer functions between the wave

elevation and the pitch rotations of the body 1, 2 and 3, computed with the wave-tank tests with

irregular waves “Irr 1”, show a good agreement with the module of the transfer functions computed

with the wave-tank tests with regular waves and irregular waves “Irr 2”. Furthermore, as shown

in Figure 9.3, the phase of the experimental transfer functions between the wave elevation and the

pitch rotations of the body 1, 2 and 3, computed with the wave-tank tests with irregular waves “Irr

1”, show a good agreement with the phase of the transfer functions computed with the wave-tank

tests with irregular waves “Irr 2”. Therefore, for the wave conditions chosen for the tank tests with

regular and irregular waves, the dynamic responses of the pitch rotations of body 1, 2 and 3 are

linear with respect to the incoming wave elevation.
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Figure 9.2: Magnitude experimental transfer function between the wave elevation and the pitch
rotation of body 2 (b), and magnitude experimental transfer functions between the wave elevation
and the relative pitch rotation of bodies 1 (a) and 3 (c), with respect to body 2, of a 1/20th scale
three-body hinge-barge device, computed with regular waves, irregular waves “Irr 1” and “Irr 2”.

9.2.2 Experimental transfer functions for damper forces

The experimental transfer functions for the forces of dampers 1 and 2 are given as follows:

HFs,i(ω) =

√
SFs,iFs,i

Sηη

e j∠SFs,iη (9.3)

where i = 1,2, and SFs,iFs,i and SFs,iη are the power spectral density of the force of damper i, and

the cross power spectral density between the force of damper i and the wave elevation, respectively.
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Figure 9.3: Phase experimental transfer function between the wave elevation and the pitch rotation
of body 2 (b), and phase experimental transfer functions between the wave elevation and the
relative pitch rotation of bodies 1 (a) and 3 (c), with respect to body 2, of a 1/20th scale three-body
hinge-barge device, computed with irregular waves “Irr 1” and “Irr 2”.

In Figure 9.4, the modulus of the experimental transfer functions between the wave elevation

and the force of damper 1 and 2, with 50% opening of the flow control valves, are shown for the

wave-tank tests with regular waves, irregular waves “Irr 1” and “Irr 2”. In Figure 9.5, the phase

of the experimental transfer functions between the wave elevation and the force of damper 1 and

2, with 50% opening of the flow control valves, are shown for the wave-tank tests with irregular

waves “Irr 1” and “Irr 2”.

As shown in Figure 9.4, the magnitude of the experimental transfer functions between the wave

elevation and the force of damper 1 and 2, computed with the tank tests with irregular waves “Irr

1”, show a good agreement with the magnitude of the experimental transfer functions computed

with the tank tests with regular waves and irregular waves “Irr 2”. As shown in Figure 9.5, the

phase of the experimental transfer function between the wave elevation and the force of damper

1 and 2, computed with the tank tests with irregular waves “Irr 1”, show a good agreement with

the phase of the experimental transfer functions computed with irregular waves “Irr 2”. Therefore,

for the wave conditions chosen for the tank tests with regular and irregular waves, the dynamic

response of the force of damper 1 and 2 is linear with respect to the incoming wave elevation.
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Figure 9.4: Magnitude experimental transfer functions between the wave elevation and the force of
dampers 1 (a) and 2 (b), with 50% opening of the flow control valves, of a 1/20th scale three-body
hinge-barge device, computed with regular waves, irregular waves “Irr 1” and “Irr 2”.
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Figure 9.5: Phase experimental transfer functions between the wave elevation and the force of
dampers 1 (a) and 2 (b), with 50% opening of the flow control valves, of a 1/20th scale three-body
hinge-barge device, computed with irregular waves “Irr 1” and “Irr 2”.
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9.3 Model tuning

In this section, the linear dynamic model of a three-body hinge-barge device, derived in Section

3.5, is tuned using the wave-tank tests with irregular waves “Irr 2”, given that the device has a

resonant period around 1.5 seconds, as shown in Figure 9.2. The dynamic model of the device

is tuned in the frequency domain, with the method outlined in Section 3.5.3.2, where the viscous

damping matrix is computed so that the theoretical transfer functions of the pitch rotations of the

bodies, computed with the model, fit the experimental transfer functions of the pitch rotations of

the bodies, computed with tank data.

The theoretical transfer function vector between the wave elevation and the position of the

DoF of a three-body hinge-barge device, is given as:

Ĥ(ω) =
Hwave,s(ω)

−ω2(Ms +Ma,s(ω))+ jω(Bvisc,s +Brad,s(ω))+Gs
(9.4)

where Ms is the inertia matrix, Bvisc,s is the linearized viscous damping matrix, Gs is the

hydrostatic stiffness, Ma,s is the added mass, Brad,s is the radiation damping and Hwave,s is the

transfer function betweeen the excitation forces vector and the incident wave. The theoretical

transfer function vector Ĥ(ω) is given as follows:

Ĥ(ω) =


Ĥz2(ω)

Ĥθ2(ω)

Ĥθ1,rel (ω)

Ĥθ3,rel (ω)

 (9.5)

where Ĥz2, Ĥθ2 , Ĥθ1,rel and Ĥθ3,rel are the theoretical transfer functions of the heave of body 2,

the pitch rotation of body 2, the relative pitch rotation of body 1 and 3, with respect to body 2,

respectively. The problem of identification of the viscous damping matrix Bvisc,s, in equation (9.4),

is formulated as an optimization problem as follows:

min
Bvisc,s

JLS (9.6)

where the cost function JLS to be minimized is the total sum of squared errors between the

theoretical and experimental transfer functions across the range of frequencies of the spectrum of

the incident wave:

JLS =
n f

∑
i=1

( |Hθ2(ωi)− Ĥθ j(ωi)|2 + |Hθ1,rel (ωi)− Ĥθ1,rel (ωi)|2 + |Hθ3,rel (ωi)− Ĥθ3,rel (ωi)|2) (9.7)

where n f is the number of measured frequencies of the spectrum of the incident wave. The

elements of the viscous damping matrix Bvisc,s are used as decision variables for the computation

of the minimum of the cost function defined in equation (9.7).
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9.3.1 Experimental and theoretical transfer functions for pitch rotations

In Figure 9.6, the magnitude of the experimental transfer functions between the wave elevation and

the pitch rotations of bodies 1, 2 and 3, computed with the wave-tank tests with irregular waves

“Irr 2”, is compared to the magnitude of the theoretical transfer functions computed with the tuned

and original dynamic model.

While the original dynamic model is based only on the hydrodynamic parameters given by the

Wamit software [25], the tuned dynamic model is based on the hydrodynamic parameters given by

the Wamit software and the damping matrix Bvisc,s. As shown in Figure 9.6, the natural frequencies

for the pitch rotation of bodies 1, 2 and 3, given by the original dynamic model, are lower than the

natural frequencies experimentally measured with the tank tests.

In Figure 9.7, the phase of the experimental transfer functions between the wave elevation and

the pitch rotations of bodies 1, 2 and 3, computed with the wave-tank tests with irregular waves

“Irr 2”, is compared to the phase of the theoretical transfer functions computed with the tuned

and original dynamic model. As shown in Figure 9.6 and 9.7, the accuracy of the tuned dynamic

model, with respect to the experimental transfer functions, is quite good.
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Figure 9.6: Magnitude transfer function between the wave elevation and the pitch rotation of body
2 (b), and magnitude transfer functions between the wave elevation and the relative pitch rotation
of bodies 1 (a) and 3 (c), with respect to body 2, computed with irregular waves “Irr 2”, original
and tuned dynamic model.
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Figure 9.7: Phase transfer function between the wave elevation and the pitch rotation of body 2 (b),
and phase transfer functions between the wave elevation and the relative pitch rotation of bodies
1 (a) and 3 (c), with respect to body 2, computed with irregular waves “Irr 2”, original and tuned
dynamic model.

9.3.2 Experimental and theoretical transfer functions for damper forces

In Figure 9.8, the magnitude of the experimental transfer functions between the wave elevation

and the force of dampers 1 and 2, computed with the wave-tank tests with irregular waves “Irr 2”,

are compared to the module of the theoretical transfer functions computed with the original and

tuned dynamic model. In Figure 9.9, the phase of the experimental transfer functions between the

wave elevation and the force of damper 1 and 2, computed with the wave-tank tests with irregular

waves “Irr 2”, are compared to the phase of the theoretical transfer functions computed with the

original and tuned dynamic model.

As shown in Figures 9.8 and 9.9, while the original and tuned dynamic model provide a similar

magnitude of the transfer functions, the accuracy of tuned dynamic model, with respect to the

phase of the experimental transfer functions, is higher than the accuracy of the original model.

9.4 Model validation

In this section, the dynamic model obtained in Section 9.3, tuned with the tank tests with irregular

waves “Irr 2”, is validated against the tank tests with regular waves and irregular waves “Irr 1”.

The accuracy of the pitch rotation of body 2, computed by the tuned dynamic model, with respect

to the tank tests, is measured by using the Normalized Mean Absolute Percentage Error (NMPAE),
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Figure 9.8: Comparison between magnitude experimental transfer functions between the wave
elevation and the force of dampers 1 (a) and 2 (b), with 50% opening of the flow control valves,
computed with irregular waves “Irr 2”, and magnitude theoretical transfer functions computed
with original and tuned dynamic model.
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Figure 9.9: Comparison between phase experimental transfer functions between the wave ele-
vation and the force of dampers 1 (a) and 2 (b), with 50% opening of the flow control valves,
computed with irregular waves “Irr 2”, and phase theoretical transfer functions computed with
original and tuned dynamic model.
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which is given as follows:

NMAPEθ2 =
100

N(θ2,measmax−θ2,measmin)

N

∑
k=1
|θ2,meas(k)−θ2,model(k)| (9.8)

where N is a set of validation data. Similarly, the accuracy for the relative pitch rotation of

bodies 1 and 3, with respect to body 2, computed by the tuned dynamic model, with respect to the

tank tests, is measured by using the following NMPAE:

NMAPEθi,rel =
100

N(θi,rel,measmax−θi,measmin)

N

∑
k=1
|θi,rel,meas(k)−θi,rel,model(k)| (9.9)

where i = 1,3. The accuracy of the force of dampers 1 and 2, computed by the tuned dynamic

model, with respect to the tank tests, is measured by using the following NMAPE:

NMAPEFs,i =
100

N(Fs,i,measmax−Fs,i,measmin)

N

∑
k=1
|Fs,i,meas(k)−Fs,i,model(k)| (9.10)

where i = 1,2. The accuracy of the mean absorbed power, computed by the tuned dynamic

model, with respect to the tank tests, is measured by the Percentage Mean Power Error (PMPE)

defined as follows:

PMPE = 100
|Pmeas−Pmodel|

Pmeas
(9.11)

9.4.1 Model validation with regular waves

In Figure 9.10, the frequency response of the pitch rotation of bodies 1, 2 and 3, obtained from

the tank experiments, is compared to the response obtained from the tuned dynamic model. The

uncertainty on the measurement of the frequency response of the pitch rotation of bodies 1, 2 and

3, obtained from the tank experiments, is represented by using error bars with interval±σθ, where

σθ is the standard deviation. For each frequency of the regular wave, the standard deviation σθ is

computed as follows:

σθ =

√
∑

ndata
k (Θi(k)−Θi)2

ndata
(9.12)

where ndata is the number of peaks of the pitch rotation of body i, Θi(k) is the amplitude of

the peak k-th and Θi is the average peak amplitude. In Figure 9.11, the frequency response of

the force of dampers 1 and 2, obtained from the tank experiments, is compared to the response

obtained from the tuned dynamic model. Similarly to the frequency response of the pitch rotation

of the bodies 1, 2 and 3, the uncertainty on the measurement of the frequency response of the force

of the dampers 1 and 2, obtained from the tank experiments, is represented by using error bars with

interval ±σFs . For each frequency of the regular wave, the standard deviation σFs is computed as
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follows:

σFs =

√
∑

ndata
k (Fs,i(k)−Fs,i)2

ndata
(9.13)

where ndata is the number of peaks of the force of damper i, Fs,i(k) is the amplitude of the peak

k-th and Fs,i) is the average peak amplitude.

By way of example, the time response of the pitch rotation of bodies 1, 2 and 3, computed

by the tuned dynamic model compared to the tank tests, is shown for regular waves of amplitude

0.025 m and period T = 1.75 in Figure 9.12, T = 1.4 seconds in Figure 9.14, and T = 1.25 seconds

in Figure 9.16.

Also, by way of example, the time response of the force of dampers 1 and 2, with openings of

the flow control valves of 50%, computed by the tuned dynamic model compared to the tank tests,

are shown for regular waves of amplitude 0.025 m and period T = 1.75 in Figure 9.13, T = 1.4

seconds in Figure 9.15, and T = 1.25 seconds in Figure 9.17.

In Table 9.1, the NMAPE for the pitch rotation of body 2, relative pitch rotation of bodies 1

and 3, with respect to body 2, damper forces 1 and 2, and PMPE, given by the tuned dynamic

model, is computed for regular waves with a range of periods from T = 0.75 seconds to T = 2

seconds. As shown, in Table 9.1, for regular waves of small period from T = 0.75 seconds to

T = 1.25 seconds, the accuracy of the motion of the device and forces applied by the dampers,

computed by the dynamic model, is, on average, poorer than for regular waves of long period from

T = 1.4 seconds to T = 2 seconds.

In particular, for regular waves of small period from T = 0.75 seconds to T = 1.25 seconds,

the NMAPE for the forces applied by dampers 1 and 2 is, on average, 26% and 28%, respectively.

The poor accuracy of the motion of the device and force applied by the dampers, computed by

the tuned dynamic model, for regular waves of small period from T = 0.75 seconds to T = 1.25

seconds, is probably due to the relative large sampling period which is 0.2 seconds. Therefore,

the high-frequency components of the measured variables are not adequately represented in the

computation of the experimental transfer functions in Section 9.2.

In Figure 9.18, a comparison between the average absorbed power measured in tank, and

the average power absorbed with the tuned dynamic model, is shown for regular waves with a

frequency range from 3.14 rad/s to 8.5 rad/s, and amplitude 0.025 m. The uncertainty on the

measurement of the average absorbed power σpow can be obtained from the uncertainty on the

measurement of the relative pitch velocities of bodies 1 and 3. Given that the average absorbed

power is computed as follows:

P±σpow =
1
2
( cpto,1|θ̇rel,1±σ

θ̇rel,1
|2 + cpto,2|θ̇rel,3±σ

θ̇rel,3
|2) (9.14)

where σ
θ̇rel,1

and σ
θ̇rel,3

are the uncertainty on the measurement of the relative pitch velocity of
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body 1 and 3, respectively. Therefore, an upper bound on the uncertainty σpow is given as follows:

σpow =
1
2
( cpto,1|σθ̇rel,1

|2 + cpto,2|σθ̇rel,3
|2) (9.15)

In Figure 9.19, a comparison between the total average absorbed power, average power ab-

sorbed by the fore and aft damper, given by the tank tests, is shown for regular waves with a

frequency range from 3.14 rad/s to 8.5 rad/s and amplitude 0.025 m. As shown in Table 9.1 and

Figure 9.18, the error on the mean absorbed power is quite high, as the instantaneous absorbed

power depends on both the force applied by the dampers 1 and 2, and the relative angular veloc-

ities of bodies 1 and 3, with respect to body 2. Therefore, small errors on the force applied by

the dampers 1 and 2, and the relative pitch velocities of bodies 1 and 3, with respect to body 2,

computed by the tuned dynamic model, are summed up in the calculation of the instantaneous

absorbed power, resulting into large errors in the mean absorbed power.
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Figure 9.10: Frequency response of the pitch rotation of body 2 (b), and frequency response of
the relative pitch rotation of bodies 1 (a) and 3 (c), with respect to body 2, obtained with the tank
experiments with error bars for the uncertainty and tuned dynamic model with regular waves.
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Figure 9.11: Frequency response of the force of dampers 1 (a) and 2 (b) obtained with the tank
experiments with error bars for the uncertainty and tuned dynamic model with regular waves.

9.4.2 Model validation with irregular waves

In Figures 9.20, the frequency responses of the pitch angles, obtained from the tank experiments

with irregular waves “Irr 1”, are compared to the responses obtained from the tuned dynamic

model. In Figures 9.21, the frequency responses of the forces of the dampers, obtained from the

tank experiments with irregular waves “Irr 1”, are compared to the responses obtained from the

tuned dynamic model. In Figures 9.22, the frequency responses of the pitch angles, obtained from

the tank experiments with irregular waves “Irr 2”, are compared to the responses obtained from

the tuned dynamic model. In Figures 9.23, the frequency responses of the forces of the dampers,

obtained from the tank experiments with irregular waves “Irr 2”, are compared to the responses

obtained from the tuned dynamic model. The uncertainty on the measurement of the frequency

response of the pitch angles and forces of the dampers, with the irregular wave test “Irr 1” and

“Irr 2”, is chosen equal to the maximum uncertainty of the tests with regular waves of comparable

scale.

By way of example, the time responses of the pitch rotations of bodies 1, 2 and 3, computed

by the tuned dynamic model compared to the tank tests, are shown for the tank tests with irregular
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Figure 9.12: Comparison in the time domain between pitch rotation of body 2 (b), and relative
pitch rotation of bodies 1 (a) and 3 (c) with respect to body 2, measured in tank and computed
with the tuned dynamic model, for regular waves of period T = 1.75 seconds and amplitude 0.025
m.

waves “Irr 1” in Figure 9.24 and “Irr 2” in Figure 9.26, respectively.

Also, by way of example, the time response of the force of dampers 1 and 2, with 50% opening

of the flow control valves, computed by the tuned dynamic model compared to the tank tests, are

shown for the tank tests with irregular waves “Irr 1” in Figure 9.25 and “Irr 2” in Figure 9.27,

respectively.

In Table 9.2, the NMAPE for pitch rotation of body 2, relative pitch rotation of body 1 and 3

with respect to body 2, force damper 1 and 2, and PMPE, given by the tuned dynamic model, with

respect to the tank tests, is presented for irregular waves. As shown in Table 9.2 and Table 9.1, the

accuracy of the motion of the device and force applied by the dampers, computed by the dynamic

model, for irregular waves, is similar to the accuracy for regular waves with a range of periods

from 1.4 seconds to 2 seconds. Note that the error on the mean absorbed power for the tank tests

with irregular waves “Irr 2”, is smaller than the error for the tank tests with with irregular waves
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Figure 9.13: Comparison in the time domain between the force of dampers 1 (a) and 2 (b), with
50% opening of the flow control valves, measured in tank and computed with the tuned dynamic
model, for regular waves of period T = 1.75 seconds and amplitude 0.025 m.

“Irr 1”, as the dynamic model is tuned with irregular waves “Irr 2”.

9.5 Optimal linear passive dampers

In this section, the optimal linear damping coefficients for dampers 1 and 2, which maximize

the energy absorption of the WEC, are computed for each regular wave frequency. The method

for the computation of the optimal linear damping coefficients is outlined in Section 4.5.1.1. In

particular, the linear damping coefficient of each damper is optimized within an interval of values

delimited by the minimum and maximum damping allowed by the damper. In particular, as shown

in Figure 7.28, the minimum and maximum damping coefficients of damper 1 are 650 Ns/m and

950 Ns/m, respectively. For the damper 2, as shown in Figure 7.29, the minimum and maximum

damping coefficients of damper are 1200 Ns/m and 2000 Ns/m, respectively. The maximum and

minimum damping coefficients of the dampers are different, due to the air bubbles trapped inside

the hydraulic circuit of each damper, which add compressibility to the hydraulic fluid.

In Figure 9.28, a comparison between the average absorbed power given by the tank tests,

tuned dynamic model, and dynamic model with optimal linear dampers, is shown for regular

waves with a frequency range from 3.14 rad/s to 8.5 rad/s and amplitude 0.025 m. As shown in

Figure 9.28, the dynamic model with optimal linear dampers shows a small increase of the average

absorbed power, with respect to the tuned dynamic model, around the resonant frequency of the
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Figure 9.14: Comparison in the time domain between pitch rotation of body 2 (b), and relative
pitch rotation of body 1 (a) and 3 (c) with respect to body 2, measured in tank and computed with
the tuned dynamic model, for regular waves of period T = 1.4 seconds and amplitude 0.025 m.

device.

In Figure 9.29, the average absorbed power, given by the tank tests, is shown for different

opening of the flow control valve of the fore and aft damper, for regular waves with period T=1.5

seconds and amplitude 0.025 m. The opening of the flow control valve of the fore and aft hydraulic

damper is varied from 0% to 100%, with an increase of the opening of the flow control valve of

10% between each test. As shown in Figure 9.29, the variation of the opening of the flow control

valves does not show any significant change of the average absorbed power.

9.6 Conclusions

This chapter presents the wave-tank tests carried out on a 1/20th scale three-body hinge-barge

device. In particular, while the relative pitch motion of fore and aft barge, with respect to the

central barge, is measured by using the rotational encoders, the motion of the central barge is

measured by using the motion capture system based on the ultrasound sensors and IMU. A linear

dynamic model is tuned using the wave-tank tests, with irregular waves, with a peak period around

the resonant period of the device. The tuned dynamic model is used to formulate a control strategy

based on optimal linear damping coefficients for the hydraulic dampers.

During the wave-tank tests, in contrast to the validation tests of the motion capture system with
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Figure 9.15: Comparison in the time domain between the force of dampers 1 (a) and 2 (b), with
50% opening of the flow control valves, measured in tank and computed with the tuned dynamic
model, for regular waves of period T = 1.4 seconds and amplitude 0.025 m.

a six-axis robot arm presented in Chapter 8, the measurements provided by the ultrasound sensors

are highly affected by the reflection of the ultrasonic waves generated by the ultrasound transmitter

placed on the central barge. The ultrasonic waves generated by the ultrasonic transmitter can be

reflected by the water or by the walls of the box containing the transmitter. Therefore, the heave

displacement of the central barge cannot be considered in the analysis of the motion of the device,

because of the adverse effect of reflected ultrasonic waves on the ultrasonic measurement.

Furthermore, it is noted that, for regular waves with a period between 1.7 seconds to 2 seconds,

the damping plate attached to the central barge does not reduce the heave of the central barge and,

therefore, the relative pitch motion between the fore and aft barge, with respect to the central

barge, is not maximized. Thus, the inclusion of a damping plate in the design of a three-body

hinge-barge device does not seem necessary, as the damping plate does not extend the frequency

bandwidth over which the maximum power absorption is realized.

The tuned dynamic model shows good accuracy in the computation of the motion of the WEC

and forces exerted by the dampers, with respect to the tank tests, with both regular and irregular

waves. Therefore, for the wave conditions chosen for the tank tests, with regular and irregular

waves, the dynamic response of the pitch rotations of the barges and the force exerted by the

dampers, are linear with respect to the incoming wave elevation. However, the accuracy of the

mean absorbed power computed by the tuned dynamic model is quite low, as the instantaneous

absorbed power depends on both the forces applied by dampers 1 and 2, and the relative angular
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Figure 9.16: Comparison in the time domain between pitch rotation of body 2 (b), and relative
pitch rotation of body 1 (a) and 3 (c) with respect to body 2, measured in tank and computed with
the tuned dynamic model, for regular waves of period T = 1.25 seconds and amplitude 0.02 m.

velocities of bodies 1 and 3, with respect to body 2. Therefore, small errors on the forces applied

by the dampers 1 and 2, and the relative pitch velocities of bodies 1 and 3, with respect to body

2, computed by the tuned dynamic model, are summed up in the calculation of the instantaneous

absorbed power, resulting in large errors in the mean absorbed power.

As expected, the wave-tank tests show that the motion of the fore barge is larger than the

motion of the central and aft barges, with most of the energy extracted by the fore damper. Thus,

the WEC behaves more like a two-body hinge-barge device, rather than a three-body hinge-barge

device. The wave-tank tests, shown in this chapter, offer useful insight into the motivation that led

to the design of most of the hinge-barge WECs presented in Chapter 2 as, for example, the Sea

Power, Mocean and M4 WECs, which are composed of two-bodies, rather than three.

For the particular dampers used in this study, a control strategy, based on optimal linear damp-

ing coefficients, does not provide any significant increase of the average power absorbed by the

device. Furthermore, for regular waves of period T=1.5 seconds, the wave-tank tests show that

variation in the opening of the flow control valves has little effect on the average absorbed power.

The power absorption performance of a control strategy, based on optimal linear damping coeffi-

cients, can be improved by using hydraulic dampers that allows a greater range of damping than

the damping range of the dampers used in this work.
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Figure 9.17: Comparison in the time domain between the force of dampers 1 (a) and 2 (b), with
50% opening of the flow control valves, measured in tank and computed with the tuned dynamic
model, for regular waves of period T = 1.25 seconds and amplitude 0.02 m.
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Figure 9.18: Comparison between the average absorbed power measured in tank with error bars
for the uncertainty and the average power absorbed with the tuned dynamic model, for regular
waves with a frequency range from 3.14 rad/s to 8.5 rad/s and amplitude 0.025 m.
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Figure 9.19: Comparison between the total average absorbed power, average power absorbed by
the fore and aft damper given by the tank tests for regular waves with a frequency range from 3.14
rad/s to 8.5 rad/s and amplitude 0.025 m.

T
[s]

NMAPEθ1,rel

[%]
NMAPEθ2

[%]
NMAPEθ3,rel

[%]
NMAPEFs,1

[%]
NMAPEFs,2

[%]
PMPE
[%]

0.75 23.5261 23.8350 19.0442 33.0876 22.1819 19.74

1 15.5000 19.0908 24.0543 27.5684 28.7332 0.09

1.25 16.3494 19.3872 23.6441 24.4103 28.1491 44.055

1.4 7.3792 14.9882 13.5461 14.6435 12.8080 1.82

1.5 7.2933 8.8853 8.9734 15.0864 15.1374 46.09

1.6 12.9824 11.2459 12.7194 16.5269 21.0611 113.49

1.75 6.3788 33.5234 14.9231 8.1070 12.3749 16.33

2.0 7.6201 12.0243 37.8092 11.5355 32.5675 25.2519

Table 9.1: Normalized Mean Absolute Percentage Error (NMAPE) for pitch rotation of body 2,
relative pitch rotation of body 1 and 3 with respect to body 2, force damper 1 and 2, and Percentage
Mean Power Error (PMPE) given by the tuned dynamic model with respect to the tank tests with
regular waves.

231



CHAPTER 9. WAVE-TANK TESTS ON A 1/20TH SCALE MODEL DEVICE

(a)
0 2 4 6 8 10

| θ
1| [

ra
d]

0

0.01

0.02 Tank data
Model

(b)
0 2 4 6 8 10

| θ
2| [

ra
d]

0

0.005

0.01

ω (rad/sec)
(c)

0 2 4 6 8 10

| θ
3| [

ra
d]

0

0.005

0.01

Figure 9.20: Frequency response of the pitch rotation of body 2 (b), and frequency response of
the relative pitch rotation of bodies 1 (a) and 3 (c), with respect to body 2, obtained with the tank
experiments with error bars for the uncertainty and tuned dynamic model with irregular wave “Irr
1”.

Tp

[s]
NMAPEθ1,rel

[%]
NMAPEθ2

[%]
NMAPEθ3,rel

[%]
NMAPEFs,1

[%]
NMAPEFs,2

[%]
PMPE
[%]

1.25 16.9317 17.5822 20.4850 19.3411 22.3854 15.32

1.5 15.5828 13.0110 12.9585 17.0422 16.6618 3.4

Table 9.2: Normalized Mean Absolute Percentage Error (NMAPE) for pitch rotation of body 2,
relative pitch rotation of body 1 and 3 with respect to body 2, force damper 1 and 2, and Percentage
Mean Power Error (PMPE) given by the tuned dynamic model, with respect to the tank tests with
irregular waves.
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Figure 9.21: Frequency response the force of damper 1 (a) and 2 (b), with 50% opening of the flow
control valves, obtained with the tank experiments with error bars for the uncertainty and tuned
dynamic model with irregular wave “Irr 1”.
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Figure 9.22: Frequency response of the pitch rotation of body 2 (b), and frequency response of
the relative pitch rotation of bodies 1 (a) and 3 (c), with respect to body 2, obtained with the tank
experiments with error bars for the uncertainty and tuned dynamic model with irregular wave “Irr
2”.
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Figure 9.23: Frequency response the force of damper 1 (a) and 2 (b), with 50% opening of the flow
control valves, obtained with the tank experiments with error bars for the uncertainty and tuned
dynamic model with irregular wave “Irr 2”.
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Figure 9.24: Comparison in the time domain between pitch rotation of body 2 (b), and relative
pitch rotation of body 1 (a) and 3 (c) with respect to body 2, measured in tank with irregular waves
“Irr 1” and computed with the tuned dynamic model.
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Figure 9.25: Comparison in the time domain between the force of damper 1 (a) and 2 (b), with 50%
opening of the flow control valves, measured in tank with irregular waves “Irr 1” and computed
with the tuned dynamic model.
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Figure 9.26: Comparison in the time domain between pitch rotation of body 2 (b), and relative
pitch rotation of body 1 (a) and 3 (c) with respect to body 2, measured in tank with irregular waves
“Irr 2” and computed with the tuned dynamic model.
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Figure 9.27: Comparison in the time domain between the force of damper 1 (a) and 2 (b), with 50%
opening of the flow control valves, measured in tank with irregular waves “Irr 2” and computed
with the tuned dynamic model.
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Figure 9.28: Comparison between the average absorbed power given by the tank tests, tuned
dynamic model and optimal linear damping for regular waves with a frequency range from 3.14
rad/s to 8.5 rad/s and amplitude 0.025 m.
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Figure 9.29: Average absorbed power given by the tank tests for different opening of the flow con-
trol valve of the fore and aft damper, for regular waves with period T=1.5 seconds and amplitude
0.025 m.
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Chapter 10

Conclusions and future work

In this chapter, overall conclusions, that are derived from the research work presented in this thesis,

are drawn in Section 10.1. Possible future work is also presented, in Section 10.2.

10.1 Overall conclusions

The objective of this thesis is to increase the energy that can be extracted by a three-body hinge-

barge WEC using an optimal control strategy, which computes the optimal loads applied by the

PTOs driven by the relative motion between the bodies. The optimal control strategy is based on

a dynamic model of the WEC and, therefore, a significant part of this thesis is dedicated to the

development of two dynamic modelling methodologies for multibody hinge-barge WECs. The

modeling methodologies developed in this thesis are generic enough, so that they can be applied

to other types of multibody WEC.

Moreover, as the power absorption performance of the optimal control strategy heavily de-

pends on the quality of the dynamic model of the WEC, the two modeling methodologies de-

veloped in this thesis, are validated against wave-tank tests carried out on small scale multibody

hinge-barge WECs. A system set-up for the wave-tank testing of a small scale three-body hinge-

barge WEC is presented, which features a low-cost motion capture system. The low-cost motion

capture system is designed so that it can be adopted for the wave-tank testing of other types of

WECs.

Altogether, the topics treated in this thesis are characterized by a high level of variety, due to

the different natures of the challenges that the optimal control of a multibody hinge-barge WEC

involves. In this perspective, this thesis can be mainly divided into 4 parts:

• Dynamic modeling of a multibody hinge-barge WEC.

• Formulation of an optimal control strategy for a three-body hinge-barge WEC.

• Estimation and prediction of excitation forces acting on a three-body hinge-barge WEC.

• Wave-tank testing of a small scale three-body hinge-barge WEC.
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For the dynamic modeling of a multibody hinge-barge WEC, in Chapter 3, two different mod-

eling methodologies are developed: the DAE and ODE formulations. In order to validate the

dynamic models obtained with the DAE and ODE formulations, wave-tank tests are carried out

on small scale multibody hinge-barge devices. While in Chapter 3, wave-tank tests are carried

out on a 1/7th scale two-body hinge-barge device and 1/25th scale three-body hinge-barge device,

in Chapter 9, wave-tank tests are carried out on a 1/20th scale three-body hinge-barge device. In

particular, the dynamic models of the small scale hinge-barge devices, obtained with the DAE and

ODE formulations, are linearized around the equilibrium position of the WECs, and the resulting

linearized dynamic models are solved with PS methods, based on Fourier basis functions. For the

1/25th and 1/20th scale three-body hinge-barge devices, an additional linearized viscous damp-

ing matrix is added into the linear dynamic models of the devices, which is tuned using a set of

wave-tank tests with irregular waves.

In Chapter 3, results show that, PS methods with Fourier basis functions, applied for the

solution of the linearized dynamic models of a 1/7th scale two-body hinge-barge device and 1/25th

scale three-body hinge-barge, show a good agreement with the experimental tests in terms of

devices motions. Also, in Chapter 9, PS methods with Fourier basis functions, applied for the

solution of the linearized dynamic model of a 1/20th scale three-body hinge-barge, show good

agreement with the experimental tests in terms of device motion. Therefore, it can be concluded

that, for the wave conditions chosen for the wave-tank tests, a linear dynamic model represents a

sufficiently accurate representation of the dynamics of a multibody-hinge barge WEC.

Moreover, results show that the linearized dynamic models of the small-scale hinge-barge

WECs, obtained with ODE formulation, are equivalent representations of the linearized dynamic

models of the WECs obtained with the DAE formulation. However, when nonlinearities are intro-

duced in the dynamic models of the WECs, the DAE and ODE formulations can provide different

representations of the dynamics of the WECs.

In terms of computational efficiency of PS methods based on Fourier basis functions, in Chap-

ter 3, it is shown that, for a two-body and three-body hinge-barge device, the PS ODE formulation

is superior to the PS DAE formulation in terms of computational time required to obtain the mo-

tion of the device, as the PS ODE formulation involves a smaller number of variables than the PS

DAE formulation. With respect to reference methods based on the integration of the equations

of motion, e.g. the Runge-Kutta (R-K) method, PS methods based on Fourier basis functions are

computationally more efficient for short time steps. In fact, the computational time required by

PS methods does not change for different sizes of the time step since the PS DAE and PS ODE

formulations are solved with a fixed number of collocation points, and then, the solution is in-

terpolated along the simulation time for different time steps. Therefore, the computational time

required by the PS DAE and PS ODE formulations is independent of the size of the time step.

Also, while the size of the time step in the R-K method must be bounded in order to guaran-

tee stability, PS methods are naturally stable, since motion variables are composed of the sum of

bounded functions.

As for the calculation of the solution to the dynamics of a three-body hinge-barge WEC, in
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Chapter 4, it is shown that the optimal control problem of a three-body hinge-barge device, for a

finite time horizon, can be solved using PS methods based on Fourier basis functions. In order to

implement a RH real-time optimal control of a three-body hinge-barge device, that maximizes the

energy extracted by the WEC over a moving control horizon, in Chapter 5, PS control based on

HRCF basis functions is proposed. In contrast to Fourier basis functions, HRCF basis functions

are well suited for the approximation of non-periodic signals, allowing the representation of both

the transient and steady-state response of the WEC. In Chapter 5, results show that there are no

computational disadvantages in using HRCF basis functions, rather than Fourier basis functions,

for the formulation of the optimal control problem.

The complexity of PS optimal control based on Fourier and HRCF basis functions is greatly

reduced using the reduced equivalent dynamic model presented in Chapter 4, instead of the DAE

and ODE formulations, for the description of the dynamics of the device. The reduced equivalent

model is described in terms of the relative pitch rotations only, which are the modes that are

used to extract energy from the device. However, with the equivalent reduced dynamic model,

no information on the heave and pitch rotation of the central barge is provided. Thus, with the

reduced equivalent model, no constraints on the heave and absolute pitch rotation of the central

barge can be enforced, as the reduced equivalent model is described in terms of the relative pitch

rotations only. Therefore, the equivalent reduced dynamic model represents a less comprehensive

description of the motion of the device than the ODE and DAE formulations, but considerably

reduces the computational effort required for the calculation of PS optimal control with Fourier

and HRCF basis functions.

Chapters 4 and 5 show that PS optimal control, based on Fourier and HRCF basis functions,

can be formulated for a three-body hinge-barge WEC with either active or passive PTOs. In terms

of convexity of PS active optimal control, based on Fourier and HRCF basis functions, the use of

the ODE formulation for the description of the dynamics of the WEC, leads to an optimization

problem with a quadratic, but non-convex, cost function. Therefore, with a non-convex quadratic

cost function, a global optimal solution cannot be guaranteed. However, for PS active optimal

control, based on Fourier and HRCF basis functions, the use of the reduced equivalent model

yields to an optimization problem with a convex quadratic cost function, which has an unique and

globally optimal solution. However, for PS passive optimal control, based on Fourier and HRCF

basis functions, the use of the reduced equivalent model yields an optimization problem with a

convex quadratic cost function, and quadratic, but non-convex, inequality constraints, introduced

by the passivity condition of the PTOs.

In terms of power absorption performance of a 1/25th scale three-body hinge-barge device for

regular waves, Chapters 4 and 5 show that PS active and passive optimal control, based on Fourier

and HRCF basis functions, with the reduced equivalent model formulation, outperform a standard

control strategy based on optimal linear damping coefficients for the PTOs. For regular waves, PS

active optimal control, based on Fourier and HRCF basis functions, with the reduced equivalent

model formulation, guarantees an average absorbed power which is the same as the theoretical

maximum power that can be absorbed by the complex-conjugate control. Furthermore, for regular
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waves, the optimal torques and relative pitch velocities computed by PS active optimal control,

based on HRCF basis functions, converge to the optimal torques and relative pitch velocities com-

puted by PS active optimal control, based on Fourier basis functions. In fact, if the dynamic model

of the device is linear, and the incoming wave is monochromatic, the solution to the active control

problem is unique.

In contrast to the case with regular waves, for irregular waves, although the average absorbed

power computed by PS active optimal control, based on HRCF and Fourier basis functions, is the

same as the theoretical maximum power that can be absorbed by the complex-conjugate control,

the optimal trajectories of the relative velocities and torques computed by PS active optimal control

based on HRCF basis functions, are different from the optimal trajectories of the relative velocities

and torques computed by PS active optimal control based on Fourier basis functions.

For both regular and irregular waves, the average absorbed by PS passive optimal control,

based on Fourier basis functions, is greater than the average absorbed by PS passive optimal con-

trol, based on HRCF basis functions. The discrepancy between the average absorbed power for PS

passive optimal control based on Fourier basis functions, and the absorbed power for PS passive

optimal control based on HRCF basis functions, is due to the nonconvexity of the passive control

problem, which does not guarantee an unique solution to the optimization problem. Furthermore,

for both regular and irregular waves, the optimal torques and relative pitch velocities computed

by PS passive optimal control, based on HRCF basis functions, do not converge to the optimal

torques and relative pitch velocities computed by PS passive optimal control, based on Fourier

basis functions. However, for regular waves, the optimal trajectories of positions, velocities and

control torques computed by PS passive optimal control, based on HRCF and Fourier basis func-

tions, show a similar phase delay, with a difference between their peak values.

In terms of real-time control of passive PTOs, in Chapters 5, it is shown that the computational

time required by PS optimal passive control, based HRCF basis functions, is around 1-2 seconds,

using interpreted (not compiled) Matlab code. A computational time of 1-2 seconds is acceptable

for the control of a full scale three-body hinge-barge device. However, for the control of a small

scale three-body hinge-barge device, a computational time of 1-2 seconds is well beyond the

maximum computational time available to the real-time controller of the device, which is around

50-100 ms.

Regarding the estimation of the excitation forces acting on a three-body hinge-barge device,

in Chapter 6, two different types of estimator, are presented: feedback and feedforward. While the

feedback estimator only requires information on the motion of the device, the feedforward estima-

tor requires the information of both the motion of the device and wave elevation up-wave of the

device. Therefore, the feedback estimator is simpler to implement than the feedforward estimator,

as only motion sensors deployed on the device are required, without the need to deploy a wave

gauge for the measurement of the wave elevation up-wave of the device. Also, the complicating

effects of multi wave directionality have to be taken into account in the implementation of the

feedfoward estimator. Furthermore, for the feedforward estimator, a long observation time of the

motion of the device and wave elevation up-wave of the device is needed in order to achieve a fine
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frequency resolution of the transfer function of the excitation forces, which guarantees accurate

estimation of the excitation forces. Results of the feedback and feedforward estimator, applied to

a 1/25th scale three-body hinge-barge device, for the estimation of the excitation forces, show that

the feedforward estimator performs slightly better than the feedback estimator, with an accuracy

of the estimation that is 20% higher than the accuracy of the estimation given by the feedback

estimator. However, both estimators are based on perfect knowledge of the dynamic model of the

device. It is expected that, in a more realistic scenario, where the knowledge of the parameters of

the dynamic model is affected by a certain degree of uncertainty, the feedback estimator is likely

to perform better than the feedforward estimator. In fact, the feedback estimator is naturally robust

to uncertainty in the parameters of the dynamic model, as the feedback on the position and veloc-

ity of the device corrects the estimates of the excitation forces computed based on the dynamic

model of the device only. In contrast, the feedforward estimates the excitation forces purely on

the basis of the dynamic model of the device. Therefore, a small variation of the parameters of the

dynamic model of the device could potentially lead to a large decrease of the performance of the

feedforward estimator.

In Chapter 7, a system set-up for wave-tank testing of a 1/20th scale three-body hinge-barge

WEC, is presented for the experimental validation of a control strategy based on optimal damping

coefficients of the hydraulic dampers. The flow of the hydraulic fluid, in each hydraulic damper, is

regulated using a flow control valve, whose opening is controlled with a stepper motor. The force

exerted by each hydraulic damper on the device is measured using a load cell, and the damping

force can be changed by varying the opening of the flow control valve. The wave-tank tests

presented in Chapter 9, show that, for the particular dampers used in the system set-up presented

in Chapter 7, a control strategy based on optimal linear damping coefficients, does not provide

any significant increase of the average power absorbed by the device due to the small variation of

the damping force of the fore and aft damper, for different values of the opening of the control

valves. PS methods with HRCF basis functions, for real-time control of the damping forces of the

hydraulic dampers, could not be implemented due to the high computational time required to solve

the optimal control problem, and the slow dynamic response of the stepper motors for the control

valves, which only allows a maximum variation of the opening of the valve of 10%, in real-time.

Obviously, a maximum variation of the opening of the valve of 10% greatly reduces the power

absorption that can be achieved by real-time control, with respect to the control strategy based on

optimal constant damping for the dampers.

In summary, from the research work presented in this thesis, the following conclusions and

recommendations can be drawn:

• A three-body hinge-barge WEC, with no control applied, extracts energy from the waves

over a frequency range which is broader than the frequency range of a point absorber. There-

fore, for a sea-state characterized by a broad spectral distribution, a three-body hinge-barge

WEC is likely to perform better than a point absorber.

• The wave-tank tests carried out on a small scale three-body hinge-barge device show that

243



CHAPTER 10. CONCLUSIONS AND FUTURE WORK

the motion of the fore barge is larger than the motion of the central and aft barges, with

most of the energy extracted by the fore damper. Thus, the WEC behaves more like a

two-body hinge-barge device, rather than a three-body hinge-barge device. Furthermore,

the wave-tank tests show that the inclusion of a damping plate in the design of a three-

body hinge-barge device does not seem necessary, as the damping plate does not extend

the frequency bandwidth over which the maximum power absorption is realized. However,

further numerical and experimental studies are required to better assess the value of the

damping plate for a three-body hinge-barge device.

• For a three-body hinge-barge WEC with passive PTOs, a control strategy, based on opti-

mal linear damping coefficients of the PTOs, does not show any significant increase of the

absorbed power, with respect to a strategy based on non-optimal damping coefficients. On

the other hand, the application of PS optimal control, which adjusts the damping forces of

the PTOs, in real-time, shows great benefits in terms of absorbed power, with a power ab-

sorption performance that is comparable to reactive control. Therefore, the need to resort to

expensive active PTOs, can be obviated with the use passive PTOs whose damping forces

are changed, in real-time, with PS optimal control.

• The computational time required by PS optimal control to change both the damping forces

exerted by passive PTOs of a three-body hinge-barge WEC, is far beyond the maximum

computational time allowed for real-time control. Given that the WEC behaves more like a

two-body hinge-barge WEC, rather than a three-body hinge-barge WEC, PS optimal control

can be implemented, in real-time, if only the damping force of the fore damper is controlled,

and the damping of the aft damper is constant and set to its optimal value.

• The development of a good dynamic model for a hinge-barge WEC represents a challenging

task, due to the complex hydrodynamic and kinematic interactions between the bodies. A

linear dynamic model represents a suitable choice for a hinge-barge WEC, as it allows to

tune a linearized viscous damping matrix to fit the response of the dynamic model to the

wave-tank tests, using the frequency response between the incoming wave elevation and the

device motion. Also, the use of a linear dynamic model greatly reduces the computation ef-

fort required by PS optimal control. It is expected that PS optimal control would be sensitive

to modelling errors on the excitation, radiation and viscous damping forces, since that the

condition for maximum power absorption, under reactive control, involves the excitation,

radiation and viscous damping forces.

10.2 Future work

The research presented in this thesis highlights possible future work, that can be addressed in order

to advance the development of a real-time optimal controller of a multibody hinge-barge device.

Given the variety of the topics treated in this thesis, possible work on both the theoretical and
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experimental aspect of this thesis, can be undertaken in the future. In particular, possible future

theoretical work can be:

• Development of nonlinear hydrodynamic models for multibody hinge-barge WECs that ac-

curately represent the dynamic behavior of the WEC under large wave amplitudes.

• Reduction of the computational effort required by PS passive optimal control using a com-

putationally more efficient formulation of the control problem.

• Design of a Multi-Input Multi-Output (MIMO) low-level control, for a multi-body hinge-

barge device, that tracks the optimal reference velocity computed by PS optimal control,

considering all the interactions between the control forces and the motion coordinates of the

device.

• Study of the effects of the prediction errors of the excitation forces acting on a multi-body

hinge-barge WECs, on the optimal control strategy.

Possible future experimental work includes:

• Deployment of an optical motion capture system, instead of ultrasound sensors and IMU,

for the wave-tank testing of small scale WECs.

• Deployment of stepper motors with a faster rotational speed than the stepper motors pre-

sented in this thesis, for real-time control of the damping forces of the hydraulic dampers of

a 1/20th scale three-body hinge-barge device.

• Deployment of hydraulic dampers, for a 1/20th scale three-body hinge-barge device, that

allow a greater range of damping force than the range of the damping force of the hydraulic

dampers used in this thesis.

• Design of an active PTO, for a 1/20th scale three-body hinge-barge device, allowing an

increase in the power absorption of the device, with respect to simple hydraulic dampers

with adjustable damping force. Such active PTO would likely be electromechanical, with a

facility for bi-directional power flow.

• Reduction of the computational time required by PS passive optimal control by implemen-

tation of the PS passive control problem in a computationally faster language than Matlab

such as, for example, the C-language.
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[144] Skog, I. and Händel, P., “Calibration of a MEMS inertial measurement unit,” in Proc. XVII

IMEKOWORLD CONGRESS Metrology for a Sustainable Development, 2006.

257


	Acronyms
	Nomenclature
	Introduction
	Scope
	Motivation
	Objectives
	Main contributions
	List of publications and awards

	Organization of the thesis

	Overview of multibody hinge-barge wave energy converters
	Introduction
	Commercial hinge-barge WECs
	The McCabe Wave Pump
	The Pelamis
	The Sea Power WEC
	The Mocean WEC
	The M4 WEC 
	Comparison of devices

	Literature review on dynamic modeling of hinge-barge WECs
	Literature review on control of hinge-barge WECs
	Conclusions

	Dynamic modelling of multibody hinge-barge wave energy converters
	Literature review on dynamic modelling of multibody systems
	Equations of motion of a multi-body system
	Reference frames
	Dynamics of an unconstrained body
	DAE formulation for N interconnected bodies 
	ODE formulation for N interconnected bodies 

	Pseudo-spectral approximation methods
	Case study: two-body hinge-barge device
	DAE formulation for a two-body hinge-barge device
	ODE formulation for a two-body hinge-barge device
	Model validation
	Computational considerations

	Case study: three-body hinge-barge device
	DAE formulation for a three-body hinge-barge device
	ODE formulation for a three-body hinge-barge device
	Model validation
	Tank tests
	Model Tuning

	Computational considerations 

	Conclusions

	Pseudo-spectral optimal control of a three-body hinge-barge device
	Literature review on optimal control of wave energy converters
	Reduced equivalent dynamic model of a three-body hinge-barge device for control formulation
	Pseudo-spectral control with Fourier basis functions of a three-body hinge-barge device
	DAE Fourier PS control
	ODE Fourier PS control
	Reduced equivalent model Fourier PS control
	Convex cost function


	Maximum theoretical average power for a three-body hinge-barge device
	Results
	Monochromatic wave results
	Optimal linear passive dampers
	Active PS control
	Passive PS control

	Polychromatic wave results
	Active PS control
	Passive PS control


	Computational considerations
	Conclusions

	Real-time pseudo-spectral optimal control of a three-body hinge-barge device
	Introduction
	Half-range Chebyshev-Fourier basis functions
	Pseudo-spectral control with Half-Range Chebyshev-Fourier basis functions of a three-body hinge-barge device
	ODE HRCF PS control
	Reduced equivalent model HRCF PS control
	Convex cost function


	Results
	Monochromatic wave results
	Active HRCF PS Control
	Passive HRCF PS Control

	Polychromatic wave results
	Active HRCF PS Control
	Passive HRCF PS Control


	Computational considerations
	Low-level control
	Conclusions

	Excitation force estimation
	Review of excitation force estimation
	Feedback estimation of excitation forces
	Kalman filter
	Kalman filter estimation model

	Feedforward estimation of excitation force
	Prediction of excitation force
	Estimation and prediction results
	Feedback and Feedforward estimation with regular waves
	Excitation forces estimation with irregular waves
	Wave spectrum
	Feedback and Feedforward estimation with irregular waves

	Excitation forces prediction with irregular waves

	Conclusions

	System set-up for wave-tank testing
	Introduction
	Wave Tank
	Wave gauge
	Wave gauge static calibration 
	Regular wave measurement
	Irregular wave measurement

	Load cells
	Rotational encoders
	Hydraulic pistons with variable damping
	Conclusions

	Motion capture system for wave-tank testing
	Review on motion capture systems
	Proposed sensor suite
	Ultrasound sensors
	Inertial measurement unit

	Calculation of operational space for motion
	Self-reacting point absorber
	Sphere
	Flap
	Hinge-barge

	Sensor processing and optimal combination
	Continuous-time inertial navigation equations
	Continuous-time navigation error equations
	Discrete time inertial navigation equations
	Discrete time navigation error equations
	Extended Kalman Filter

	Validation sensor system with a 6-axis robotic manipulator
	Validation protocol
	Validation results
	Static tests
	Dynamic tests


	Conclusions

	Wave-tank tests on a 1/20th scale model device
	Introduction
	Experimental transfer functions with regular and irregular waves
	Experimental transfer functions for pitch rotations
	Experimental transfer functions for damper forces

	Model tuning
	Experimental and theoretical transfer functions for pitch rotations
	Experimental and theoretical transfer functions for damper forces

	Model validation
	Model validation with regular waves
	Model validation with irregular waves

	Optimal linear passive dampers 
	Conclusions

	Conclusions and future work
	Overall conclusions
	Future work

	Bibliography

