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Understanding protein self-assembly is important for many biological and industrial processes. Proteins can self-
assemble into crystals,filaments, gels, and other amorphous aggregates. The final forms include virus capsids and
condensed phases associated with diseases such as amyloid fibrils. Although seemingly different, these assem-
blies all originate from fundamental protein interactions and are driven by similar thermodynamic and kinetic
factors. Herewe review recent advances in understanding protein self-assembly through a soft condensedmatter
perspective with an emphasis on three specific systems: globular proteins, viruses, and amyloid fibrils. We
conclude with a discussion of unanswered questions in the field.

© 2016 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

The self-assembly of proteins into small-scale complexes plays a
crucial biological role [1]. Under certain conditions, proteins also self-
assemble into various structures that range from nm to μm in size
(Fig. 1). This process is almost as ubiquitous as complexation and is
equally essential to biology. Some proteins, such as those that make
up viral capsids or the outer shell of bacterial microcompartments,
self-assemble by design [2••,3••]. Others do so when something goes
wrong: a conformational change triggers the aggregation of amyloid
β-protein (Aβ) into fibrils [4] and a single-point mutation in hemoglo-
bin (Hb) leads to its polymerization [5••]. This type of assembly can
also result from simple changes to solution conditions (pH, tempera-
ture, ionic strength, cosolutes, etc.) [6].

Understanding protein self-assembly is fundamental to many
physiological and industrial processes. For example, the fibrillization
of Aβ is a feature of Alzheimer's disease [7] and the polymerization of
mutant Hb is the primary pathogenic event in sickle-cell anemia [5••];
other protein condensation diseases, for which the pathology is
associatedwith the self-assembly of a condensed protein phase, include
hiva University, New York, NY,
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cataract formation [8] and Parkinson's disease [9]. In the industrial
production of proteins, self-assembly can be harnessed for protein puri-
fication through crystallization or liquid–liquid phase separation [10], or
can be problematic if encountered during formulation and storage
(often at high protein concentration), when the assembly process is
not controlled [11]. Protein self-assembly is also essential to structural
biology. Most structures are determined through x-ray crystallography,
which requires the production of high-quality protein crystals [12••].

Here we review recent advances in understanding protein self-
assembly. We adopt a soft condensed matter perspective in which
simplified models are used to capture the essential elements of protein
interactions to determine their assembly. While it is true that atomic-
level details are sometimes required for a complete explanation of spe-
cific phenomena, the near ubiquitous nature of protein self-assembly
suggests the existence of universal elements governing it, which many
experimental, computational, and theoretical findings support. We
focus on three specific systems: globular proteins, viral capsids, and am-
yloid fibrils. These systems formed the core of a 2015 CECAMworkshop
we organized that brought together researchers from diverse fields
(including material science, crystallography, macromolecular chemis-
try, and biophysics) to discuss current challenges in understanding
protein self-assembly. This opinion piece builds upon the presentations
and discussions at the workshop as well as our own work in the field to
stimulate further research—and perhaps breakthroughs—in the physics
of protein self-assembly.
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Fig. 1.A number of different assemblies can be formed by proteins or peptides as illustrated here. Globular proteins can assemble to become either crystals or amorphous aggregates; both
types of assembly are reversible (top). Upon a conformational change to a protein or peptide, either amorphous aggregates (which are irreversible) or amyloid fibrils can form (right). For
some peptides, a range of different twisted structures have been observed including ribbons, fibrils and stacks (bottom right). Higher-order assemblies including viral capsids (in the
presence of a nucleic acid) and protein superstructures (including bacterial microcompartments) can also form either naturally or in a directed manner, e.g. by mutagenesis (left).

Fig. 2. Illustration of a state diagram for a globular protein indicating the variety of
condensed phases it can form. Not all states are present for any given protein and the
positions of the boundaries depend on solution conditions. The position of the
precipitation line can occur anywhere in the grey region.
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2. Globular proteins

Globular proteins have a compact, often spherical shape with
most of hydrophobic residues buried in the interior, and polar or
charged residues predominantly at the surface, in contact with the
solvent. Single domain globular proteins range in size from 6 to
300 kDa (roughly 60–2500 amino acid residues), and multiple do-
main proteins can be even larger. Globular proteins self-assemble
into a variety of states: crystals, dense liquid phases, gels, fibers, and
amorphous aggregates [13•]. A given globular protein can self-
assemble into different states (e.g., crystal vs. aggregate) depending
on solution conditions [14] and in some cases, two different states
(e.g., two crystal forms) can even coexist [15–17].

The range of self-assembled states can be summarized in a
phase diagram, and for several globular proteins, such as lysozyme
[18], γ-crystallins [19], and bovine pancreatic trypsin inhibitor
[20], comprehensive phase diagrams have been determined. These
phase diagrams share a few common features, the most prominent
being that liquid–liquid phase separation is metastable with respect to
crystallization (Fig. 2). This metastability can be explained bymodeling
the globular protein as a simple attractive colloid: a hard spherical core
with an isotropic attractive interaction [21]. Numerous theoretical and
computational studies have confirmed that for sufficiently short-range
attraction (less than about one-quarter the radius of the hard core),
liquid–liquid phase separation becomes metastable with respect to
crystallization [22], but arrest within the spinodal region of the phase
diagram can also occur [23].

The isotropicmodel does not, however, provide a complete explana-
tion of the self-assembly of globular proteins [24•]. Several predictions
of isotropic models, such as the shape of the phase boundaries or the
crystal density, differ from the experimental observations [25••]. While
it is possible to modify the isotropic model so that its predictions
agree more closely with experiments (e.g., introducing a temperature-
dependent energy of interaction or two different ranges of interactions),
marked discrepancies remain.

A natural way to improve upon isotropic models is to introduce an-
isotropy in the protein–protein attraction [26•,27•]. This naturally fol-
lows from the interaction between surface residues (amino acids)
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differing strongly from one to another [28]. (To a large extent, this effect
dominates over shape anisotropy for simple globular proteins—see Con-
clusions.) A key challenge related to anisotropic models that has yet to
bemet in a comprehensive fashion is selecting the degree of anisotropy.
A common approach consists of placing patches (either randomly or
symmetrically) on the surface of a hard sphere and of imposing rules
for the interaction between different patches (range, angular width,
strength, etc.) [29•,30•]. By investigatingmodels with different parame-
ters (including a different number of patches), it is often possible to fit
experimental results at hand [31]. While this approach can be effective,
it is computationally intensive and must be repeated for each protein
and corresponding set of experimental data. It also cannot identify a
unique anisotropic model. As a result, it can be challenging to obtain
both specific guidance for a given protein and general insights applica-
ble to broad classes of proteins.

Another approach is to use a subset of the experimental results, typ-
ically a crystal structure, to determine a specific anisotropic model
(“patchiness”) and then use this model to analyze other self-assembly
data [32]. This approach has not been explored as extensively as the
first one, andmorework should be carried out in this direction to assess
its applicability to many different proteins. A significant limitation is its
reliance on the crystal structure. While this information provides infor-
mation about the patchiness of the protein, it limits the approach to
those proteins that have already been crystallized.

Given the importance of protein crystals in structural biology,we be-
lieve that one long-term goal should be to develop models for protein
self-assembly that help to directly predict crystal and possibly other
forms of assembly. At present, protein crystallization is a low-success,
brute-force endeavor in which solution conditions are changed or
other alterations to the protein interactions are made (e.g., reduction
of surface entropy by substituting floppy amino acids with more com-
pact ones) in the hope that crystals are produced [12]. Although various
proposals to enhance the likelihood that a protein crystallizes based on
our understanding of self-assembly have been made, existing tools
remain relatively crude [26•,33].

One notable tool is the Surface Entropy Reduction prediction (SERp)
server that, given a protein sequence, suggests sites at which to make
mutations that would reduce the surface entropy of the protein and
therefore increase the likelihood that the protein analog crystallizes
[34•]. It would, however, be useful to have a complementary tool that
makes specific predictions regarding crystal self-assembly based on
protein interactions. A first step towards this goal would be to devise a
method for determining the patchiness of a protein that goes beyond
random or symmetric guesses, yet does not require crystallization
data a priori. One way to do so would be to identify regions based on
the protein sequence and predictions of the protein structure that are
likely to be crystal contacts. These regions would then be modeled as
attractive or repulsive patches whose properties are related to the un-
derlying molecular interactions of the regions—a charged patch would
be modeled differently from a polar one. A tentative phase diagram
could then be calculated for different solution conditions and those
that lead to stable crystals forms identified and tested experimentally.
3. Viral capsids

A virus consists of a single copy of a genome (RNA or DNA) inside a
closed, protein shell, known as a capsid that protects the nucleic acids.
For viruses that encapsulate RNA, capsid self-assembly can occur spon-
taneously upon mixing protein and nucleic acid, which makes them
idealmodel systems to study the assembly process itself [35]. The capsid
of these viruses is also relatively simple: a single protein molecule thick
and often icosahedral (although other polyhedral and helical shapes are
also observed) [36]. For example, the 28 nm capsid of the cowpea
chlorotic mottle virus (CCMV) consists of 180 copies of a single capsid
protein (of molecular weight ~20 kDa) [37].
As with the assembly of globular proteins, viral capsid assembly is
sensitive to solution conditions, in particular pH and ionic strength,
and it is not yet possible to fully predict this micelle-like assembly
[38]. However, unlike most globular proteins, capsid proteins self-
assemble by design. The experimental reproducibility and robustness
is thus high, making their formation less problematic to analyze. Given
the relatively small number of molecules involved, viral capsid assem-
bly is also more amenable to simulations with molecular-scale details
than the crystallization of globular proteins, for example. As a result,
there is significantly more connection between experiments (which
stimulate computational work) and simulations (which lead to
experimentally testable predictions) than for other protein self-
assembly processes [2••].

Minimal models of capsid proteins, like those described earlier for
globular proteins, require an interaction anisotropy and specificity to
capture qualitative features of their assembly [39]. With this minimal
set of features, simulations and experiments show that the assembly
of empty capsids proceeds via nucleation and growth, which is analo-
gous to the crystallization of globular proteins [39]. For both processes,
the loss of translational entropy during self-assembly is offset by gains
from specific hydrophobic, electrostatic, van der Waals, and hydrogen-
bonding interactions. The non-planar geometry of the capsid does
influence the self-assembly process (and may alter the conformation
of the proteins involved). Analogous experiments at larger length scales
show that crystallization of colloidal particles is also altered on the
surface of a sphere [40].

In the presence of a polynucleotide, electrostatic interactions
between positive charges on the capsid protein and negative charges
on the nucleic acids can promote or even dominate the capsid assembly
process [2••]. The length of the polynucleotide encapsulated is also
important, since longer RNA or DNA strands are encapsulated at high
entropic cost while shorter strands may not provide sufficient electro-
static stabilization [41••]. The optimal nucleic acid length for some
viral capsids has been measured [35]. The self-assembly properties of
this model are in excellent agreement with experimental results for a
variety of viruses.

An ongoing challenge related to viral self-assembly is the character-
ization of the interaction anisotropy that results in both protein–protein
and protein–genome interactions. A further challenge is to identify and
characterize intermediate structures along the assembly pathways. It is
interesting to note that a similar challenge is faced in the study of
protein crystallization, where two main ordering pathways have been
proposed: direct nucleation from a solution of monomers, and the for-
mation of long-lived metastable protein clusters from which a crystal
emerges [42••].
4. Amyloid fibrils

Amyloid fibrils are insoluble protein aggregates with a cross-β
structure in which β-strands form almost continuous hydrogen-
bonded β-sheets that run along the fibril. The fibrils formed from
different proteins are qualitatively similar: unbranched filamentous
structures that are a few nanometers in diameter but can grow to be
several microns in length. This common structure is likely driven by
the universal tendency of polypeptide chains to form hydrogen bonds
between atomsalong thebackbone [43]. For peptides, other hierarchical
twisted assemblies, such as ribbons, fibrils, and stacks (or fibers) [44],
are possible, and several types of peptide nanotubes have been de-
scribed [45]. It has been suggested that the fibril can be thought of as
a one-dimensional pseudo-crystal, and in that sense, the fibril is the
most organized structure that a flexible polypeptide chain can form. It
has also been speculated that under certain conditions, an amyloid fibril
made of short polypeptides (b150 residues) would be thermodynami-
callymore stable than even the functional native state [43]. This propos-
al could help explain why most amyloid-related diseases are caused by
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short peptides or proteins. It also implies that understanding the
kinetics of amyloid formation is essential for disease prevention.

The most-studied protein that forms amyloid fibril is amyloid β
(Aβ), a peptide of 40–42 amino acids associated with the pathogenesis
of Alzheimer's disease [46]. A combination of experiments and simula-
tion indicate that, just as for protein crystallization and viral capsid as-
sembly, there are two main pathways for the condensed phase to
form: the fibrils may (i) directly nucleate from a solution of Aβ mono-
mers or (ii) first self-assemble into an oligomer from which the fibril
forms in a second nucleation event [7]. In both cases, there is a confor-
mation change that occurs as the fibril forms. In addition, existing fibrils
can seed the formation of new fibrils that then subsequently break off
from the original fibril [7].

When fully atomistic models are used, it is possible to obtain
reasonable agreement between simulations and experiments of Aβ
fibrilization [47]. Coarse-grained models based on patchy particles
have also been proposed [48–51]. However, the factors that control
the specific pathway that is observed under a given set of conditions re-
main poorly understood. Thefibrilization is strongly dependent on ionic
strength and on the identity of the peptide, and it is currently not
possible to predict the pathway that will be taken by a specific peptide
under a given set of conditions [52].

Despite considerable effort, a number of issues remain unresolved. It
is increasingly accepted that for Aβ, oligomeric peptide assemblies are
more neurotoxic than fibril plaques, yet the links between the kinetics
and mechanisms for fibril growth in vitro and those in vivo are not
always clear [46]. For Aβ and other amyloid-forming peptides and
proteins, cell membranes may be important in the nucleation process
[53,54]. Since much of the work on amyloid-forming peptides and pro-
teins is driven by a search for therapies to prevent, slow down or even
stop the course of amyloid-related diseases, there is a pressing need to
develop a complete picture of the self-assembly of amyloid-forming
proteins and peptides.

5. Conclusions and future directions

Protein self-assembly plays an important role in numerous biophys-
ical process. Here we selected three systems—globular proteins, viral
capsids, and amyloid fibrils—to illustrate recent progress and current
challenges in understanding protein self-assembly from a soft matter
viewpoint. We conclude by highlighting several topics that in our
opinion should be further investigated.

5.1. Solvent effects

A comprehensive understanding of the role of the solvent in protein
self-assembly has yet to be achieved. In aqueous solution, the role of pH
and ionic strength has been considered formanyproteins and explained
using both isotropic and anisotropic colloidal models [55–57]. The addi-
tion of other solvents (and small molecules) such as glycerol, carbohy-
drates, amino acids, and nucleic acids can have a profound influence
on protein self assembly (either by direct interaction with the protein
surface, or by modifying the solvent characteristics) [12••,43,58]. These
effects are particularly important when formulating proteins for liquid
storage or lyophilization and further understanding of the mechanisms
for self-assembly would improve the success of these processes [11].
Crystallization, for instance, can sometimes be improved by the addition
of glycerol, which is thought to suppress nucleation and thus results in
the formation of fewer, larger crystals [59].

Simulations are a natural way to analyze solvent effects as it is pos-
sible to treat the solvent explicitly. Given the computational cost of
working with explicit solvent, a multiscale approach is usually needed:
two proteins are simulated in a solvent to deduce the parameters of an
effective pair interaction energy that is then used to study self-assembly
in a solvent-free system [49•]. Another approach uses a coarse-grained
optimized potential for efficient protein structure prediction (OPEP)
combinedwith hydrodynamics [60] andmay be a useful computational
tool in the future. There are cases, however, for which it is not possible
to separate out the solvent without sacrificing essential details, such as
for membrane proteins, which can only exist in their native state when
embedded in a lipid membrane or solubilized in a detergent. Unsurpris-
ingly, our understanding of the self-assembly of membrane proteins is
still in its infancy.

5.2. Small molecules

The conjugation of small molecules to proteins is routinely per-
formed to conduct analytical testing (e.g., fluorescent tagging), to im-
prove the biological compatibility, (e.g., PEGylation) or to develop a
new therapeutic product, (e.g. in a protein-drug conjugate) [61•–63].
In each case, a smallmolecule is covalently attached to a protein tomod-
ify its behavior. This in turn can alter the self-assembly [61•]. Conjuga-
tion typically occurs at either a primary amine or at a free cysteine,
although specific chemistry to modify proteins at other amino acids
has also been developed [64•]. While these strategies are often used,
there are far fewer experimental, simulation, or theoretical
descriptions of how these modifications alter the protein self-
assembly than for unmodified proteins.

5.3. Non-compact proteins

When modeling proteins for coarse-grained simulations of self-
assembly, it is usually assumed that shape anisotropy is negligible,
with exceptions only when the anisotropy is too pronounced
(e.g., spherocylinders to model Aβ [49•]). Although this may be a rea-
sonable assumption for most single-domain proteins, for multi-
domain proteins it must be used with care, and there are families
of proteins, for which the isotropic-shape approximation is a gross
oversimplification.

5.4. Kinetics

Much of the work on protein self-assembly has focused on the ther-
modynamic behavior, but kinetics often also plays a crucial role in de-
termining the outcome of assembly [65•–67]. The most notorious
example is that of protein crystallization. Although the crystal may be
the most stable state under the conditions studied (as can be verified
by seeding the solution with a crystal and watching it grow), a crystal
may not form spontaneously, even after many months, if the nucle-
ation rate is slow [68•,69•]. In order to obtain a comprehensive un-
derstanding of the phenomenon (in particular, of what will happen
for a given set of conditions), additional computational work should
be carried out to examine the kinetics of self-assembly for particles
with anisotropic interactions and connect the results with experi-
mental data on nucleation and growth of self-assembled phases.

5.5. Purposeful vs. incidental self-assembly

As we mentioned in the introduction, some proteins self-assemble
by designwhile others do so only when things gowrong or the solution
conditions are perturbed. In other words, the structure of some proteins
is such that self-assembly occurs for a specific purpose (such as to en-
capsulate other molecules), while for other proteins, self-assembly is
not central to their function—which they carry out in the unassembled
state—and only occurs because of incidental physical considerations. It
would be interesting to compare the properties of proteins involved in
purposeful and incidental processes to see whether any new insights
may be gleaned regarding the specific and universal features of protein
self-assembly (Fig. 3).

We hope that this brief overview of the physics of protein self-
assembly will stimulate others to tackle some of the outstanding issues
in the field.
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Fig. 3. The approaches taken tomodel protein self-assembly, from simple isotropicmodels to all atom simulationswith explicit solvent, have been used to support or explain experimental
data. With increasing system size, the feasibility of conducting all-atom simulations with explicit solvent reduces significantly.
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6. Future directions

• A more comprehensive view of the kinetics and intermediate
pathways of protein self-assembly.

• Minimal models for protein self-assembly that do not require crystal
structures as experimental inputs.

• A better understanding of how molecular anisotropy directs protein
assembly.

• Greater use of atomistic models with explicit solvent to describe
protein-protein interactions.
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